nishantnadkarni.tech

Arch Linux with BTRFS Installation (Base)

Introduction

In this guide, I will show steps to install Arch Linux with the BTRFS file system with several different

subvolumes.

What is Arch Linux?

Arch Linux is a rolling release linux distribution for x86-64 computers. It is widely popular due to it’s
ease of use and simplicity. You can read more about Arch Linux here :
https://wiki.archlinux.org/index.php/Arch Linux

Why Btrfs?

Btrfs is a modern copy on write (CoW) filesystem for Linux aimed at implementing advanced features
while also focusing on fault tolerance, repair and easy administration. It’s biggest boon is enabling users
to take system snapshots that do not take time to create or restore and barely take up any space on your

system.

Since Arch is soo bleeding edge, it is possible that once in a while, due to an update your system breaks.
Whenever such faults happen, you can simply roll back on the last snapshot in seconds if you have a
BTREFs file system in place.

https://wiki.archlinux.org/index.php/Arch_Linux
https://www.nishantnadkarni.tech/posts/arch_installation/

Step 7: Creating Filesystems

Now we must format the partitons with the respective file systems.
We need FAT32 file system for /boot:

For /swap partition, we need to make the partition and activate swap so:

mkswap /dev/sda2
swapon /dev/sda2

For /(root), we need to make with the btrfs file system:

root@archiso =~ # mkfs.fat -F32 ~deursdal

mkfs.fat 4.1 (2017-01-24)

root@archiso ~ # mkswap sdeursda2

Setting up swapspace version 1, size = 954 MiB (1000337408 bytes)
no label, UUID=cbd381d1-7778-4f42-8dfc-15aac6b?fbcI

root@archiso ™ # swapon -sdeussdaz

rootRarchiso ™ # mkfs.btrfs ~deussda3d

btrfs-progs v5.10

See hitp:/ btrfs.wiki.kernel.org for more informatiom.

(null)
Zb78c?eb-2bca-471d-aBba-Bf2e?940e476
16384
Sector size: 4096
Filesystem size: 8.77GiB
Block group profiles:
Data: single §.00MiB
Hetadata: nup 256 .00MiB
DUP §.00MiB
no
Incompat features: extref, skinny-metadata
Runt ime features:
Checksum : crc3Zc
Number of devices: 1

SIZE PATH
B8.77GiB ~devrsda3

Step 8: Mounting the partitions and subvolumes

Now we must mount the partitions that we just created (except swap as it is not used to store static files).
Now that we have mounted the root subvolume, we must create subvolumes for btrfs.

We create subvolumes to better organize our data and to exclude them from btrfs snapshots. Also, if
you’re using multiple disks for a single OS (eg. Windows C: and D: drives are on different disks),
subvolumes enable you to store even system files on another directory. On my personal setup, I have the

@var and @tmp subvolumes on my HDD so as to save space on my SSD where Arch is installed.

btrfs subvolume create /mnt/@

btrfs subvolume create /mnt/@home

btrfs subvolume create /mnt/@var

btrfs subvolume create /mnt/@opt

btrfs subvolume create /mnt/Q@tmp

btrfs subvolume create /mnt/@.snapshots
umount /mnt

These subvolumes are mainly named after system directories which have specific functions:

* @ - This is the main root subvolume on top of which all subvolumes will be mounted.

* @home - This is the home directory. This consists of most of your data including Desktop and
Downloads.

* @var - Contains logs, temp. files, caches, games, etc.

* @opt - Contains third party products

* @temp - Contains certain temperory files and caches

* (@.snapshots - Directory to store snapshots for snapper (Can exclude this if you plan on using
Timeshift)

Now to mount these partitions:

mount -o noatime,commit=120, compress=zstd, space_cache, subvol=@ /dev/sda3 /mnt
You need to manually create folder to mount the other subvolumes at
mkdir /mnt/{boot,home,var,opt, tmp, .snapshots}

mount -o noatime,commit=120,compress=zstd, space_cache, subvol=@home /dev/sda3
/mnt/home

mount -o noatime,commit=120, compress=zstd, space_cache, subvol=Q@opt /dev/sda3
/mnt/opt

mount -o noatime,commit=120, compress=zstd, space_cache, subvol=Qtmp /dev/sda3
/mnt/tmp

mount -o noatime,commit=120, compress=zstd, space_cache, subvol=@.snapshots
/dev/sda3 /mnt/.snapshots

mount -o subvol=Q@var /dev/sda3 /mnt/var
Mounting the boot partition at /boot folder
mount /dev/sdal /mnt/boot

Btrfs options:

* noatime - No access time. Improves system performace by not writing time when thefile was
accessed.

* commit - Peridoic interval (in sec) in which data is synchronized to permanent storage.

* compress - Choosing the algorithm for compress. I have set zstd as it has good compression level
and speed.

» space_cache - Enables kernel to know where block of free space is on a disk to enable it to write
data immediately after file creation.

* subvol - Choosing the subvol to mount.

You can read more about btrfs mount options here:
https://btrfs.wiki.kernel.org/index.php/Manpage/btrfs(5)

https://btrfs.wiki.kernel.org/index.php/Manpage/btrfs(5)

Verify that you have mounted everything correctly:

root@archiso ™ # lsblk

NMAME HMAJ:MIN RM SIZE RO MOUNTPOINT

loop® e 571.4M srunsarchisossfsrairootfs
sda : 10G

Esdal : 300M smntboot

sdaZ : 954M [SWATF]
: 8.8G smntsuar
695.3M srunsarchisosbootmnt
1024H

The mountpoints show the last subvolume that you mounted.

Step 9: Installing the base system
For intel CPUs:

pacstrap /mnt base linux linux-firmware nano intel-ucode btrfs-progs

For AMD CPUs:

pacstrap /mnt base linux linux-firmware nano amd-ucode btrfs-progs

For VMs:

pacstrap /mnt base linux linux—-firmware nano btrfs—-progs

Type ‘y’ when asked for confirmation.

pacstrap will install the packages mentioned on the newly made root partition. Packages installed:

base - Base linux system

linux - Latest linux kernal and modules(You can replace with with linux-Its if you want a more
stable kernel)

linux-firmware - Firmware files for linux (You can skip this in a vim)

nano - A simple terminal based text editor

intel-ucode - Microcode update files for Intel CPUs

amd-ucode - Microcode update image for AMD CPUs

btrfs-progs - Btrfs filesystem utilities

Depending on your internet speed, this step might take time. You should see something like this when

installation is done:

(12,/12) Beloading system bus configuratiom...
Ruming in chroot, ignoring command ’try-reload-or-restart’

pacstrap +mnt base linux linux-firmuware nano btrfs-progs 19.21s user 12.19s system 49~ cpu 1:03.99
total

Step 10: Generate fstab

After installation of all packages is done, we need to now generate the fstab. The fstab file is used to
define how disk partitions, various other block devices, or remote filesystems should be mounted into

the filesystem. Generate it using:

genfstab -U /mnt >> /mnt/etc/fstab

Verify fstab entries by, It should look something like this:

root@archiso ~ # cat /mntsetc-fstab
Static information about the filesystems.
See fstab(5) for details.

<file system> <dir> {type> <{optioms> {dump> {pass>

sdeuvrssdal

UUID=CD1D-E9FB +boot ufat rw,relatime, fmask=00Z2,dnask=0022, codepage=4
37, iocharset=ascii,shortname=mixed,utf8, errors=remount-ro 02

sdevrssda3
UUID=Zb78c7eb—Zbca-471d-abba—8f2e?3d0e470 ~homne birfs rw,noat ime, compress=
zstd:3,space_cache,commit=120, subvolid=258, subvol=-Chome , subvo 1 =Chone 00

sdevrsda3
UUID=Zb78cYeb-26ca-171d-aBba—8f2e79d0e476 ~tmp btrfs rw,noat ime, compress=
zstd:3,space_cache,comnit=1Z0, subvolid=261, subvol=/@tnp, subvol=@tnp 00

#t rdevrsdad
UUID=Zb78cYeb—26ca-171d-aBba—8f2e?9d0e476 »opt btrfs rw,noat ime, compress=
zstd:3,space_cache,connit=120, subvolid=259, subvol=/Ropt,subvol=Ropt 00

sdevrsda3
UUID=Zb78c7eb—Zbca-471d-abba—8f2e?3d0e470 #.=napshots birfs rw,noat ime, compress=
zstd:3,space_cache,connit=120,subuvol id=262, subvol=/@snapshots,subvol=@snapshots 0 0

rdevrsda3
UUID=Zb78c?eb—26ca-171d-aBba—8f2e79d0e176 Suar btrfs rw,relatine,comnpress
=zstd:3,space_cache,connit=120,subuolid=260, subvol=/Buar, subuol=Euar 00

#t sdevrssdaZ
UUID=cbhd381d1-7?778-4f42-8dfc-15aac6b?fbc none swap defaults

Step 11: Chroot into install

Now you must enter your Arch install to set it up:

Step 12: Seting timezone
You set timezone using:

1ln -sf /usr/share/zoneinfo/Region/City /etc/localtime

Replace region and city with your own timezone. In my case it will be:

1ln -sf /usr/share/zoneinfo/Asia/Kolkata /etc/localtime

You can list all timezones with:

timedatectl list-timezones

Press ‘q’ to quit list

Now to sync hardware and system clock:

Step 13: Setting System Locale

You need to manually edit a file for this:

You need to scroll down and uncomment the language you want. For me, since I want English US, I will

scroll down and uncomment that:

GHU nano 5.6 setclocale.gen Modified

4en_IE 150-8859-1
t#ten_IEReuro IS0-8859-15

H#ten_zZW.UTF-8 UTF-8
Hen_2W 150-8859-1
#eo UTF-8
H#tes_AR.UTF-8 UTF-8

tes_CR.UTF-8 UTF-8
es_CR 150-8859-1
es_CU UTF-8

Help iU Urite Out @ Where Is § Execute i@ Location Undo

bl Exit Read File WY Replace Al Justifu Go_To Line Redo

After you uncomment, press Ctrl+O and then Enter to save and Ctrl+X to exit.
Now generate locales:

Now we set locale in locale.conf file:

echo LANG=en_US.UTF-8 >> /etc/locale.conf

If you choose a different language, replace en_US.UTF-8 with your language.

Step 14: Setting Keymap (Only if you did Step 3)
If you changed your keymap in step 3, you need to add it here also:

echo KEYMAP=[keymap] >> /etc/vconsole.conf

Replace [keymap] with your specific keymap.

Step 15: Network Configuration
We now need to set our Hostname

echo Arch-VM >> /etc/hostname

Replace Arch-VM with whatever hostname you wish to set.
Now for the hostfiles:

Arch Wiki states the format for this:

127.0.0.1 localhost
HE localhost
127.0.1.1 myhostname.localdomain myhostname

So in my case, I will add: After you add, press Ctrl+O and then Enter to save and Ctrl+X to exit.

Step 16: Setting password for root user

Enter your password twice to set root password.

Note: In linux, visual feedback for passwords is disabled for better security.

GNU nano 5.5 setcshosts Modified
Static table lookup for hostnanes.

See hosts(9) for details.

localhost
localhost
Arch-UN. localdomain Arch-UM

i Urite Out il Uhere Is i Cut i Execute Location Undo Set Mark

Read File N Replace Paste 8 Justify Go To Line Redo Copy

Step 17: Installing remaining essential packages

pacman —-S grub grub-btrfs efibootmgr base-devel linux-headers networkmanager
network-manager—applet wpa_supplicant dialog os—-prober mtools dosfstools reflector
git

These are some basic sets of packages you will need if you plan to use Arch in the long run. I would

recommend that you google all packages to understand what they do.
Additional things you can add:

Package Name Use
bluez & bluez-utils Bluetooth support
cups Printing support
xdg-utils & xdg-user-dirs Better integration with desktop environments
After entering the command, press Enter to select all of the base-devel packages to install.

Then wait for the installation to finish.

Step 18: Adding btrfs module to mKinitcpio

nano /etc/mkinitcpio.conf

GNU nano 5.6
vin:set ft=sh
MODULES
The following modules are loaded before any boot hooks are
run. nAdvanced users may wish to specify all system modules
in this array. For instance:

MODULES=(piix ide_disk reiserfs)
DDULES=(btrfs)

setcsmkinitcpio.conf Modified

BINARIES

#t This setting includes any additional binaries a given user may

wish into the CPID image. This is run last, so it may be used to
override the actual binaries included by a given hook

BINARIES are dependency parsed, so you may safely ignore libraries
BINARIES=()

#t FILES

This setting is similar to BINARIES above, however, files are added

as—is and are not parsed in any way. This is wseful for config files.
FILES=()

HODKS
This is the most important setting in this file. The HOOKS control the
modules and scripts added to the image, and what happens at boot time.
Order is important, and it is recommended that you do wot change the
order in which HOOKS are added. Run 'mkinitcpio -H <hook name>’ for
help on a given hook.
‘base’ is _required_ unless you know precisely what you are doing.
‘udev’ is _required_ in order to automatically load modules
'filesystems' is _required_ unless you specify your fs modules in MODULES
Examples:

This setup specifies all modules in the MODULES setting aboue.

No raid, lumZ, or encrypted root is needed.

HODKS=(base)

HEESEEEEEEEEES
=8

il§ Help] Urite Dut @ Where Is @i Cut] Execute Location Undo

Exit Read File W Replace Paste Al Justifu Go To Line Redo

Add btrfs in MODULES=() Save and exit nano.
Now to recreate the image:

Replace linux with linux-Its if you installed the Its kernel

Step 19: Installing GRUB
Installing grub:

grub-install —--target=x86_64—-efi ——efi-directory=/boot —--bootloader—-id = Arch

Now to generate the configuration file:

grub-mkconfig -o /boot/grub/grub.cfg

Step 20: Creating a User
Adding a user:

useradd -mG wheel nishantn

Above command adds a user with name nishantn and gives it access to wheel group (for sudo

privilages). Replace nishantn with whatever name you want.
Giving a password to the user:

Enter password twice

Now to give usersfrom the wheel group full sudo access:

Uncomment the line which says %wheel ALL=(ALL) ALL Save and exit nano

GNU nano 5.6 ~etcssudoers. tnp Modified
this may allow users to subvert the command being run via sudo.

Defaults enu_keep += "XMODIFIERS GTK_IM_MODULE QT_IM_MODULE QT_IM_SWITCHER"

#H

Uncomment to use a hard-coded PATH instead of the user’s to find commands

Defaults secure path="rusr~slocalssbin:susr~localsbin: usrssbin:-usrsbin: sbin:/bin"
i

Uncomment to send mail if the wser does not enter the correct password.

Defaults mail_badpass

#H

Uncomment to enable logging of a command’s output, except for

sudoreplay and reboot. Use sudoreplay to play back logged sessions.

Defaults log_output

Defaultstrusr-binssudoreplay tlog output

Defaults! usr-local binssudoreplay !log_output

Defaults!REBOOT tlog_output

#H
Bunas alias specification

User privilege specification
#H
root ALL=(ALL) ALL

it Uncomment to allow members of group wheel to execute any command
#zwheel ALL=(ALL) ALL

Same thing without a password
»wheel ALL=(ALL) NOPASSWD: ALL

Uncomment to allow members of group sudo to execute any command
“sudo ALL=(ALL) ALL

] Execute ¥ Location
il Justif Go To Line

Step 21: Enabling services

systemctl enable NetworkManager
If you installed bluez
systemctl enable bluetooth

If you installed cups
systemctl enable org.cups.cupsd

Step 22: Restarting into Arch

Exiting the installation

exit

Unmounting all drives

umount -1 /mnt

If you're installing Arch on VM

shutdown now

If you're dual booting/installing on a device reboot

[
@

Display = Con) Optical Drive: | IDE Primary Device 0
Storage L .01.0 150 Live CD/DVD

Information

ntn/Download

lone

Shared Folders

B
1 B
J
L)
»
&
R
=
i

User Interface

X Cancel

Deleting Arch iso (VM users only)

After shutting down, go to Storage settings of your VM, select the iso file and click on remove selected.

After restarting and logging in, it should look something like this:

firch Linux 5.11.2-archl-1 (ttyl)

firch-UM login: nizhantn

Password:

Last login: Wed Mar 3 12:11:20 on ttyl
[nishantn@Arch-UM ~15 _

After Install

Congratulations you have installed Arch Linux successfully! You would still need to go ahead and
install a desktop environment or window manager on top if you want but the hard part is over. After
completing the base install, you are now eligible to make an account on the prestigious Arch Linux

website which contains the Wiki, Forums, etc.

Refer this to see post install guide for Arch:
https://wiki.archlinux.org/index.php/General recommendations

Thank you!

https://wiki.archlinux.org/index.php/General_recommendations

	Arch Linux with BTRFS Installation (Base)
	Introduction
	What is Arch Linux?
	Why Btrfs?
	Step 7: Creating Filesystems
	Step 8: Mounting the partitions and subvolumes
	Step 9: Installing the base system
	Step 10: Generate fstab
	Step 11: Chroot into install
	Step 12: Seting timezone
	Step 13: Setting System Locale
	Step 14: Setting Keymap (Only if you did Step 3)
	Step 15: Network Configuration
	Step 16: Setting password for root user
	Step 17: Installing remaining essential packages
	Step 18: Adding btrfs module to mkinitcpio
	Step 19: Installing GRUB
	Step 20: Creating a User
	Step 21: Enabling services
	Step 22: Restarting into Arch

	After Install

