
Home → Documentation → Manuals → PostgreSQL 9.6
This page in other versions: 9.2 / 9.3 / 9.4 / 9.5 / current (9.6) | Development versions: devel / 10 |
Unsupported versions: 7.1 / 7.2 / 7.3 / 7.4 / 8.0 / 8.1 / 8.2 / 8.3 / 8.4 / 9.0 / 9.1

PostgreSQL 9.6.3 Documentation
Prev Up Next

ALTER TABLE

Name
https://www.postgresql.org/docs/current/static/sql-altertable.html#AEN67134

ALTER TABLE -- change the definition of a table

Synopsis
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER TABLE [IF EXISTS] name
 SET SCHEMA new_schema
ALTER TABLE ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

where action is one of:

 ADD [COLUMN] [IF NOT EXISTS] column_name data_type [COLLATE collation] [
column_constraint [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation]
[USING expression]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
 ADD table_constraint [NOT VALID]
 ADD table_constraint_using_index
 ALTER CONSTRAINT constraint_name [DEFERRABLE | NOT DEFERRABLE] [INITIALLY
DEFERRED | INITIALLY IMMEDIATE]
 VALIDATE CONSTRAINT constraint_name

https://www.postgresql.org/docs/current/static/sql-altertable.html#AEN67134
https://www.postgresql.org/docs/current/static/sql-altertablespace.html
https://www.postgresql.org/docs/current/static/sql-commands.html
https://www.postgresql.org/docs/current/static/sql-altersystem.html
https://www.postgresql.org/docs/current/static/index.html
https://www.postgresql.org/docs/9.1/static/sql-altertable.html
https://www.postgresql.org/docs/9.0/static/sql-altertable.html
https://www.postgresql.org/docs/8.4/static/sql-altertable.html
https://www.postgresql.org/docs/8.3/static/sql-altertable.html
https://www.postgresql.org/docs/8.2/static/sql-altertable.html
https://www.postgresql.org/docs/8.1/static/sql-altertable.html
https://www.postgresql.org/docs/8.0/static/sql-altertable.html
https://www.postgresql.org/docs/7.4/static/sql-altertable.html
https://www.postgresql.org/docs/7.3/static/sql-altertable.html
https://www.postgresql.org/docs/7.2/static/sql-altertable.html
https://www.postgresql.org/docs/7.1/static/sql-altertable.html
https://www.postgresql.org/docs/10/static/sql-altertable.html
https://www.postgresql.org/docs/devel/static/sql-altertable.html
https://www.postgresql.org/docs/9.5/static/sql-altertable.html
https://www.postgresql.org/docs/9.4/static/sql-altertable.html
https://www.postgresql.org/docs/9.3/static/sql-altertable.html
https://www.postgresql.org/docs/9.2/static/sql-altertable.html
https://www.postgresql.org/docs/9.6/static/index.html
https://www.postgresql.org/docs/manuals
https://www.postgresql.org/docs
https://www.postgresql.org/

 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name
 DISABLE RULE rewrite_rule_name
 ENABLE RULE rewrite_rule_name
 ENABLE REPLICA RULE rewrite_rule_name
 ENABLE ALWAYS RULE rewrite_rule_name
 DISABLE ROW LEVEL SECURITY
 ENABLE ROW LEVEL SECURITY
 FORCE ROW LEVEL SECURITY
 NO FORCE ROW LEVEL SECURITY
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITH OIDS
 SET WITHOUT OIDS
 SET TABLESPACE new_tablespace
 SET { LOGGED | UNLOGGED }
 SET (storage_parameter = value [, ...])
 RESET (storage_parameter [, ...])
 INHERIT parent_table
 NO INHERIT parent_table
 OF type_name
 NOT OF
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
 REPLICA IDENTITY { DEFAULT | USING INDEX index_name | FULL | NOTHING }

and table_constraint_using_index is:

 [CONSTRAINT constraint_name]
 { UNIQUE | PRIMARY KEY } USING INDEX index_name
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Description
ALTER TABLE changes the definition of an existing table. There are several subforms described

below. Note that the lock level required may differ for each subform. An ACCESS EXCLUSIVE lock

is held unless explicitly noted. When multiple subcommands are listed, the lock held will be the
strictest one required from any subcommand.

ADD COLUMN [IF NOT EXISTS]

This form adds a new column to the table, using the same syntax as CREATE TABLE. If IF
NOT EXISTS is specified and a column already exists with this name, no error is thrown.

DROP COLUMN [IF EXISTS]

This form drops a column from a table. Indexes and table constraints involving the column will
be automatically dropped as well. You will need to say CASCADE if anything outside the table
depends on the column, for example, foreign key references or views. If IF EXISTS is
specified and the column does not exist, no error is thrown. In this case a notice is issued instead.

https://www.postgresql.org/docs/current/static/sql-createtable.html

SET DATA TYPE

This form changes the type of a column of a table. Indexes and simple table constraints involving
the column will be automatically converted to use the new column type by reparsing the
originally supplied expression. The optional COLLATE clause specifies a collation for the new
column; if omitted, the collation is the default for the new column type. The optional USING
clause specifies how to compute the new column value from the old; if omitted, the default
conversion is the same as an assignment cast from old data type to new. A USING clause must be
provided if there is no implicit or assignment cast from old to new type.

SET/DROP DEFAULT

These forms set or remove the default value for a column. Default values only apply in
subsequent INSERT or UPDATE commands; they do not cause rows already in the table to
change.

SET/DROP NOT NULL

These forms change whether a column is marked to allow null values or to reject null values. You
can only use SET NOT NULL when the column contains no null values.

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations.
The target can be set in the range 0 to 10000; alternatively, set it to -1 to revert to using the
system default statistics target (default_statistics_target). For more information on the use of
statistics by the PostgreSQL query planner, refer to Section 14.2.

SET STATISTICS acquires a SHARE UPDATE EXCLUSIVE lock.

SET (attribute_option = value [, ...])
RESET (attribute_option [, ...])

This form sets or resets per-attribute options. Currently, the only defined per-attribute options are
n_distinct and n_distinct_inherited, which override the number-of-distinct-values
estimates made by subsequent ANALYZE operations. n_distinct affects the statistics for the
table itself, while n_distinct_inherited affects the statistics gathered for the table plus its
inheritance children. When set to a positive value, ANALYZE will assume that the column
contains exactly the specified number of distinct nonnull values. When set to a negative value,
which must be greater than or equal to -1, ANALYZE will assume that the number of distinct
nonnull values in the column is linear in the size of the table; the exact count is to be computed
by multiplying the estimated table size by the absolute value of the given number. For example, a
value of -1 implies that all values in the column are distinct, while a value of -0.5 implies that
each value appears twice on the average. This can be useful when the size of the table changes
over time, since the multiplication by the number of rows in the table is not performed until query
planning time. Specify a value of 0 to revert to estimating the number of distinct values normally.

https://www.postgresql.org/docs/current/static/sql-analyze.html
https://www.postgresql.org/docs/current/static/planner-stats.html
https://www.postgresql.org/docs/current/static/runtime-config-query.html#GUC-DEFAULT-STATISTICS-TARGET
https://www.postgresql.org/docs/current/static/sql-analyze.html

For more information on the use of statistics by the PostgreSQL query planner, refer to Section
14.2.

Changing per-attribute options acquires a SHARE UPDATE EXCLUSIVE lock.

SET STORAGE

This form sets the storage mode for a column. This controls whether this column is held inline or
in a secondary TOAST table, and whether the data should be compressed or not. PLAIN must be
used for fixed-length values such as integer and is inline, uncompressed. MAIN is for inline,
compressible data. EXTERNAL is for external, uncompressed data, and EXTENDED is for
external, compressed data. EXTENDED is the default for most data types that support non-PLAIN
storage. Use of EXTERNAL will make substring operations on very large text and bytea
values run faster, at the penalty of increased storage space. Note that SET STORAGE doesn't
itself change anything in the table, it just sets the strategy to be pursued during future table
updates. See Section 65.2 for more information.

ADD table_constraint [NOT VALID]

This form adds a new constraint to a table using the same syntax as CREATE TABLE, plus the
option NOT VALID, which is currently only allowed for foreign key and CHECK constraints. If
the constraint is marked NOT VALID, the potentially-lengthy initial check to verify that all rows
in the table satisfy the constraint is skipped. The constraint will still be enforced against
subsequent inserts or updates (that is, they'll fail unless there is a matching row in the referenced
table, in the case of foreign keys; and they'll fail unless the new row matches the specified check
constraints). But the database will not assume that the constraint holds for all rows in the table,
until it is validated by using the VALIDATE CONSTRAINT option.

ADD table_constraint_using_index

This form adds a new PRIMARY KEY or UNIQUE constraint to a table based on an existing
unique index. All the columns of the index will be included in the constraint.

The index cannot have expression columns nor be a partial index. Also, it must be a b-tree index
with default sort ordering. These restrictions ensure that the index is equivalent to one that would
be built by a regular ADD PRIMARY KEY or ADD UNIQUE command.

If PRIMARY KEY is specified, and the index's columns are not already marked NOT NULL, then
this command will attempt to do ALTER COLUMN SET NOT NULL against each such column.
That requires a full table scan to verify the column(s) contain no nulls. In all other cases, this is a
fast operation.

If a constraint name is provided then the index will be renamed to match the constraint name.
Otherwise the constraint will be named the same as the index.

https://www.postgresql.org/docs/current/static/sql-createtable.html
https://www.postgresql.org/docs/current/static/storage-toast.html
https://www.postgresql.org/docs/current/static/planner-stats.html
https://www.postgresql.org/docs/current/static/planner-stats.html

After this command is executed, the index is "owned" by the constraint, in the same way as if the
index had been built by a regular ADD PRIMARY KEY or ADD UNIQUE command. In
particular, dropping the constraint will make the index disappear too.

Note: Adding a constraint using an existing index can be helpful in situations where a
new constraint needs to be added without blocking table updates for a long time. To
do that, create the index using CREATE INDEX CONCURRENTLY, and then install
it as an official constraint using this syntax. See the example below.

ALTER CONSTRAINT

This form alters the attributes of a constraint that was previously created. Currently only foreign
key constraints may be altered.

VALIDATE CONSTRAINT

This form validates a foreign key or check constraint that was previously created as NOT
VALID, by scanning the table to ensure there are no rows for which the constraint is not satisfied.
Nothing happens if the constraint is already marked valid.

Validation can be a long process on larger tables. The value of separating validation from initial
creation is that you can defer validation to less busy times, or can be used to give additional time
to correct pre-existing errors while preventing new errors. Note also that validation on its own
does not prevent normal write commands against the table while it runs.

Validation acquires only a SHARE UPDATE EXCLUSIVE lock on the table being altered. If the
constraint is a foreign key then a ROW SHARE lock is also required on the table referenced by the
constraint.

DROP CONSTRAINT [IF EXISTS]

This form drops the specified constraint on a table. If IF EXISTS is specified and the constraint
does not exist, no error is thrown. In this case a notice is issued instead.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER

These forms configure the firing of trigger(s) belonging to the table. A disabled trigger is still
known to the system, but is not executed when its triggering event occurs. For a deferred trigger,
the enable status is checked when the event occurs, not when the trigger function is actually
executed. One can disable or enable a single trigger specified by name, or all triggers on the
table, or only user triggers (this option excludes internally generated constraint triggers such as
those that are used to implement foreign key constraints or deferrable uniqueness and exclusion
constraints). Disabling or enabling internally generated constraint triggers requires superuser
privileges; it should be done with caution since of course the integrity of the constraint cannot be
guaranteed if the triggers are not executed. The trigger firing mechanism is also affected by the
configuration variable session_replication_role. Simply enabled triggers will fire when the
replication role is "origin" (the default) or "local". Triggers configured as ENABLE REPLICA

https://www.postgresql.org/docs/current/static/runtime-config-client.html#GUC-SESSION-REPLICATION-ROLE

will only fire if the session is in "replica" mode, and triggers configured as ENABLE ALWAYS
will fire regardless of the current replication mode.

This command acquires a SHARE ROW EXCLUSIVE lock.

DISABLE/ENABLE [REPLICA | ALWAYS] RULE

These forms configure the firing of rewrite rules belonging to the table. A disabled rule is still
known to the system, but is not applied during query rewriting. The semantics are as for
disabled/enabled triggers. This configuration is ignored for ON SELECT rules, which are always
applied in order to keep views working even if the current session is in a non-default replication
role.

DISABLE/ENABLE ROW LEVEL SECURITY

These forms control the application of row security policies belonging to the table. If enabled and
no policies exist for the table, then a default-deny policy is applied. Note that policies can exist
for a table even if row level security is disabled - in this case, the policies will NOT be applied
and the policies will be ignored. See also CREATE POLICY.

NO FORCE/FORCE ROW LEVEL SECURITY

These forms control the application of row security policies belonging to the table when the user
is the table owner. If enabled, row level security policies will be applied when the user is the table
owner. If disabled (the default) then row level security will not be applied when the user is the
table owner. See also CREATE POLICY.

CLUSTER ON

This form selects the default index for future CLUSTER operations. It does not actually re-cluster
the table.

Changing cluster options acquires a SHARE UPDATE EXCLUSIVE lock.

SET WITHOUT CLUSTER

This form removes the most recently used CLUSTER index specification from the table. This
affects future cluster operations that don't specify an index.

Changing cluster options acquires a SHARE UPDATE EXCLUSIVE lock.

SET WITH OIDS

This form adds an oid system column to the table (see Section 5.4). It does nothing if the table
already has OIDs.

https://www.postgresql.org/docs/current/static/ddl-system-columns.html
https://www.postgresql.org/docs/current/static/sql-cluster.html
https://www.postgresql.org/docs/current/static/sql-cluster.html
https://www.postgresql.org/docs/current/static/sql-createpolicy.html
https://www.postgresql.org/docs/current/static/sql-createpolicy.html

Note that this is not equivalent to ADD COLUMN oid oid; that would add a normal column
that happened to be named oid, not a system column.

SET WITHOUT OIDS

This form removes the oid system column from the table. This is exactly equivalent to DROP
COLUMN oid RESTRICT, except that it will not complain if there is already no oid column.

SET TABLESPACE

This form changes the table's tablespace to the specified tablespace and moves the data file(s)
associated with the table to the new tablespace. Indexes on the table, if any, are not moved; but
they can be moved separately with additional SET TABLESPACE commands. All tables in the
current database in a tablespace can be moved by using the ALL IN TABLESPACE form,
which will lock all tables to be moved first and then move each one. This form also supports
OWNED BY, which will only move tables owned by the roles specified. If the NOWAIT option is
specified then the command will fail if it is unable to acquire all of the locks required
immediately. Note that system catalogs are not moved by this command, use ALTER
DATABASE or explicit ALTER TABLE invocations instead if desired. The
information_schema relations are not considered part of the system catalogs and will be
moved. See also CREATE TABLESPACE.

SET { LOGGED | UNLOGGED }

This form changes the table from unlogged to logged or vice-versa (see UNLOGGED). It cannot be
applied to a temporary table.

SET (storage_parameter = value [, ...])

This form changes one or more storage parameters for the table. See Storage Parameters for
details on the available parameters. Note that the table contents will not be modified immediately
by this command; depending on the parameter you might need to rewrite the table to get the
desired effects. That can be done with VACUUM FULL, CLUSTER or one of the forms of
ALTER TABLE that forces a table rewrite.

Changing fillfactor and autovacuum storage parameters acquires a SHARE UPDATE
EXCLUSIVE lock.

Note: While CREATE TABLE allows OIDS to be specified in the WITH
(storage_parameter) syntax, ALTER TABLE does not treat OIDS as a
storage parameter. Instead use the SET WITH OIDS and SET WITHOUT OIDS
forms to change OID status.

RESET (storage_parameter [, ...])

This form resets one or more storage parameters to their defaults. As with SET, a table rewrite
might be needed to update the table entirely.

https://www.postgresql.org/docs/current/static/sql-cluster.html
https://www.postgresql.org/docs/current/static/sql-vacuum.html
https://www.postgresql.org/docs/current/static/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS
https://www.postgresql.org/docs/current/static/sql-createtable.html#SQL-CREATETABLE-UNLOGGED
https://www.postgresql.org/docs/current/static/sql-createtablespace.html

INHERIT parent_table

This form adds the target table as a new child of the specified parent table. Subsequently, queries
against the parent will include records of the target table. To be added as a child, the target table
must already contain all the same columns as the parent (it could have additional columns, too).
The columns must have matching data types, and if they have NOT NULL constraints in the
parent then they must also have NOT NULL constraints in the child.

There must also be matching child-table constraints for all CHECK constraints of the parent,
except those marked non-inheritable (that is, created with ALTER TABLE ... ADD
CONSTRAINT ... NO INHERIT) in the parent, which are ignored; all child-table constraints
matched must not be marked non-inheritable. Currently UNIQUE, PRIMARY KEY, and
FOREIGN KEY constraints are not considered, but this might change in the future.

NO INHERIT parent_table

This form removes the target table from the list of children of the specified parent table. Queries
against the parent table will no longer include records drawn from the target table.

OF type_name

This form links the table to a composite type as though CREATE TABLE OF had formed it. The
table's list of column names and types must precisely match that of the composite type; the
presence of an oid system column is permitted to differ. The table must not inherit from any
other table. These restrictions ensure that CREATE TABLE OF would permit an equivalent table
definition.

NOT OF

This form dissociates a typed table from its type.

OWNER

This form changes the owner of the table, sequence, view, materialized view, or foreign table to
the specified user.

REPLICA IDENTITY

This form changes the information which is written to the write-ahead log to identify rows which
are updated or deleted. This option has no effect except when logical replication is in use.
DEFAULT (the default for non-system tables) records the old values of the columns of the
primary key, if any. USING INDEX records the old values of the columns covered by the named
index, which must be unique, not partial, not deferrable, and include only columns marked NOT
NULL. FULL records the old values of all columns in the row. NOTHING records no information
about the old row. (This is the default for system tables.) In all cases, no old values are logged
unless at least one of the columns that would be logged differs between the old and new versions
of the row.

RENAME

The RENAME forms change the name of a table (or an index, sequence, view, materialized view,
or foreign table), the name of an individual column in a table, or the name of a constraint of the
table. There is no effect on the stored data.

SET SCHEMA

This form moves the table into another schema. Associated indexes, constraints, and sequences
owned by table columns are moved as well.

All the forms of ALTER TABLE that act on a single table, except RENAME, and SET SCHEMA can be

combined into a list of multiple alterations to applied together. For example, it is possible to add several
columns and/or alter the type of several columns in a single command. This is particularly useful with
large tables, since only one pass over the table need be made.

You must own the table to use ALTER TABLE. To change the schema or tablespace of a table, you

must also have CREATE privilege on the new schema or tablespace. To add the table as a new child of

a parent table, you must own the parent table as well. To alter the owner, you must also be a direct or

indirect member of the new owning role, and that role must have CREATE privilege on the table's

schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do by
dropping and recreating the table. However, a superuser can alter ownership of any table anyway.) To

add a column or alter a column type or use the OF clause, you must also have USAGE privilege on the

data type.

Parameters
IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing table to alter. If ONLY is specified before
the table name, only that table is altered. If ONLY is not specified, the table and all its descendant
tables (if any) are altered. Optionally, * can be specified after the table name to explicitly indicate
that descendant tables are included.

column_name

Name of a new or existing column.

new_column_name

New name for an existing column.

new_name

New name for the table.

data_type

Data type of the new column, or new data type for an existing column.

table_constraint

New table constraint for the table.

constraint_name

Name of a new or existing constraint.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example, views
referencing the column), and in turn all objects that depend on those objects (see Section 5.13).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the default
behavior.

trigger_name

Name of a single trigger to disable or enable.

ALL

Disable or enable all triggers belonging to the table. (This requires superuser privilege if any of
the triggers are internally generated constraint triggers such as those that are used to implement
foreign key constraints or deferrable uniqueness and exclusion constraints.)

USER

Disable or enable all triggers belonging to the table except for internally generated constraint
triggers such as those that are used to implement foreign key constraints or deferrable uniqueness
and exclusion constraints.

index_name

The name of an existing index.

https://www.postgresql.org/docs/current/static/ddl-depend.html

storage_parameter

The name of a table storage parameter.

value

The new value for a table storage parameter. This might be a number or a word depending on the
parameter.

parent_table

A parent table to associate or de-associate with this table.

new_owner

The user name of the new owner of the table.

new_tablespace

The name of the tablespace to which the table will be moved.

new_schema

The name of the schema to which the table will be moved.

Notes
The key word COLUMN is noise and can be omitted.

When a column is added with ADD COLUMN, all existing rows in the table are initialized with the

column's default value (NULL if no DEFAULT clause is specified). If there is no DEFAULT clause, this

is merely a metadata change and does not require any immediate update of the table's data; the added
NULL values are supplied on readout, instead.

Adding a column with a DEFAULT clause or changing the type of an existing column will require the

entire table and its indexes to be rewritten. As an exception when changing the type of an existing

column, if the USING clause does not change the column contents and the old type is either binary

coercible to the new type or an unconstrained domain over the new type, a table rewrite is not needed;

but any indexes on the affected columns must still be rebuilt. Adding or removing a system oid

column also requires rewriting the entire table. Table and/or index rebuilds may take a significant
amount of time for a large table; and will temporarily require as much as double the disk space.

Adding a CHECK or NOT NULL constraint requires scanning the table to verify that existing rows meet

the constraint, but does not require a table rewrite.

The main reason for providing the option to specify multiple changes in a single ALTER TABLE is

that multiple table scans or rewrites can thereby be combined into a single pass over the table.

The DROP COLUMN form does not physically remove the column, but simply makes it invisible to

SQL operations. Subsequent insert and update operations in the table will store a null value for the
column. Thus, dropping a column is quick but it will not immediately reduce the on-disk size of your
table, as the space occupied by the dropped column is not reclaimed. The space will be reclaimed over

time as existing rows are updated. (These statements do not apply when dropping the system oid

column; that is done with an immediate rewrite.)

To force immediate reclamation of space occupied by a dropped column, you can execute one of the

forms of ALTER TABLE that performs a rewrite of the whole table. This results in reconstructing each

row with the dropped column replaced by a null value.

The rewriting forms of ALTER TABLE are not MVCC-safe. After a table rewrite, the table will appear

empty to concurrent transactions, if they are using a snapshot taken before the rewrite occurred. See
Section 13.5 for more details.

The USING option of SET DATA TYPE can actually specify any expression involving the old values

of the row; that is, it can refer to other columns as well as the one being converted. This allows very

general conversions to be done with the SET DATA TYPE syntax. Because of this flexibility, the

USING expression is not applied to the column's default value (if any); the result might not be a

constant expression as required for a default. This means that when there is no implicit or assignment

cast from old to new type, SET DATA TYPE might fail to convert the default even though a USING

clause is supplied. In such cases, drop the default with DROP DEFAULT, perform the ALTER TYPE,

and then use SET DEFAULT to add a suitable new default. Similar considerations apply to indexes and

constraints involving the column.

If a table has any descendant tables, it is not permitted to add, rename, or change the type of a column,
or rename an inherited constraint in the parent table without doing the same to the descendants. That is,

ALTER TABLE ONLY will be rejected. This ensures that the descendants always have columns

matching the parent.

A recursive DROP COLUMN operation will remove a descendant table's column only if the descendant

does not inherit that column from any other parents and never had an independent definition of the

column. A nonrecursive DROP COLUMN (i.e., ALTER TABLE ONLY ... DROP COLUMN) never

removes any descendant columns, but instead marks them as independently defined rather than
inherited.

The TRIGGER, CLUSTER, OWNER, and TABLESPACE actions never recurse to descendant tables; that

is, they always act as though ONLY were specified. Adding a constraint recurses only for CHECK

constraints that are not marked NO INHERIT.

https://www.postgresql.org/docs/current/static/mvcc-caveats.html

Changing any part of a system catalog table is not permitted.

Refer to CREATE TABLE for a further description of valid parameters. Chapter 5 has further
information on inheritance.

Examples
To add a column of type varchar to a table:

ALTER TABLE distributors ADD COLUMN address varchar(30);

To drop a column from a table:

ALTER TABLE distributors DROP COLUMN address RESTRICT;

To change the types of two existing columns in one operation:

ALTER TABLE distributors
 ALTER COLUMN address TYPE varchar(80),
 ALTER COLUMN name TYPE varchar(100);

To change an integer column containing Unix timestamps to timestamp with time zone via a

USING clause:

ALTER TABLE foo
 ALTER COLUMN foo_timestamp SET DATA TYPE timestamp with time zone
 USING
 timestamp with time zone 'epoch' + foo_timestamp * interval '1 second';

The same, when the column has a default expression that won't automatically cast to the new data type:

ALTER TABLE foo
 ALTER COLUMN foo_timestamp DROP DEFAULT,
 ALTER COLUMN foo_timestamp TYPE timestamp with time zone
 USING
 timestamp with time zone 'epoch' + foo_timestamp * interval '1 second',
 ALTER COLUMN foo_timestamp SET DEFAULT now();

To rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

To rename an existing constraint:

ALTER TABLE distributors RENAME CONSTRAINT zipchk TO zip_check;

To add a not-null constraint to a column:

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

https://www.postgresql.org/docs/current/static/ddl.html
https://www.postgresql.org/docs/current/static/sql-createtable.html

To remove a not-null constraint from a column:

ALTER TABLE distributors ALTER COLUMN street DROP NOT NULL;

To add a check constraint to a table and all its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);

To add a check constraint only to a table and not to its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5) NO
INHERIT;

(The check constraint will not be inherited by future children, either.)

To remove a check constraint from a table and all its children:

ALTER TABLE distributors DROP CONSTRAINT zipchk;

To remove a check constraint from one table only:

ALTER TABLE ONLY distributors DROP CONSTRAINT zipchk;

(The check constraint remains in place for any child tables.)

To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES
addresses (address);

To add a foreign key constraint to a table with the least impact on other work:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES
addresses (address) NOT VALID;
ALTER TABLE distributors VALIDATE CONSTRAINT distfk;

To add a (multicolumn) unique constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT dist_id_zipcode_key UNIQUE (dist_id,
zipcode);

To add an automatically named primary key constraint to a table, noting that a table can only ever have
one primary key:

ALTER TABLE distributors ADD PRIMARY KEY (dist_id);

To move a table to a different tablespace:

ALTER TABLE distributors SET TABLESPACE fasttablespace;

To move a table to a different schema:

ALTER TABLE myschema.distributors SET SCHEMA yourschema;

To recreate a primary key constraint, without blocking updates while the index is rebuilt:

CREATE UNIQUE INDEX CONCURRENTLY dist_id_temp_idx ON distributors (dist_id);
ALTER TABLE distributors DROP CONSTRAINT distributors_pkey,
 ADD CONSTRAINT distributors_pkey PRIMARY KEY USING INDEX dist_id_temp_idx;

Compatibility
The forms ADD (without USING INDEX), DROP, SET DEFAULT, and SET DATA TYPE (without

USING) conform with the SQL standard. The other forms are PostgreSQL extensions of the SQL

standard. Also, the ability to specify more than one manipulation in a single ALTER TABLE command

is an extension.

ALTER TABLE DROP COLUMN can be used to drop the only column of a table, leaving a zero-

column table. This is an extension of SQL, which disallows zero-column tables.

See Also
CREATE TABLE

Prev Home Next
ALTER SYSTEM Up ALTER TABLESPACE

https://www.postgresql.org/docs/current/static/sql-commands.html
https://www.postgresql.org/docs/current/static/sql-altertablespace.html
https://www.postgresql.org/docs/current/static/index.html
https://www.postgresql.org/docs/current/static/sql-altersystem.html
https://www.postgresql.org/docs/current/static/sql-createtable.html

	ALTER TABLE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

