
Explaining Docker
Networking Concepts

Docker networking is basically used to establish communication between the docker
containers and the outside world via host machine or you can say it is a communication

passage through which all the isolated containers communicate with each other in various
situations to perform the required actions. In this guide, we will explain basic Docker

networking concepts with practical examples on Ubuntu.

If you haven’t installed Docker yet, refer the following guide.

• How to Install Docker in Ubuntu 18.04 LTS Server

Basics of Docker usage:

• Getting Started With Docker

Explaining Docker Networking
Concepts
All commands listed below are tested with root privileges on Ubuntu.

To manage network operations, like creating a new network, connecting a container to a

network, disconnect a container from the network, listing available networks and removing
networks etc., we use the following command:

https://www.ostechnix.com/getting-started-with-docker/
https://www.ostechnix.com/install-docker-ubuntu/

docker network

Types of docker network drivers
To list all your networks, run:

docker network ls

Let’s have some short introduction on all of them.

1. Bridge network : When you start Docker, a default bridge network is created
automatically. A newly-started containers will connect automatically to it. You can

also create user-defined custom bridge networks. User-defined bridge networks are
superior to the default bridge network.

2. Host network : It remove network isolation between the container and the Docker
host, and use the host’s networking directly. If you run a container which binds to

port 80 and you use host networking, the container’s application is available on port
80 on the host’s IP address. Means you will not be able to run multiple web

containers on the same host, on the same port as the port is now common to all
containers in the host network.

https://www.ostechnix.com/wp-content/uploads/2019/10/docker-network-command.png
https://www.ostechnix.com/wp-content/uploads/2019/10/List-docker-networks.png

3. None network : In this kind of network, containers are not attached to any network
and do not have any access to the external network or other containers. So, this

network is used when you want to completely disable the networking stack on a
container.

4. Overlay network : Creates an internal private network that spans across all the
nodes participating in the swarm cluster. So, Overlay networks facilitate

communication between a docker swarm service and a standalone container, or
between two standalone containers on different Docker Daemons.

5. Macvlan network : Some applications, especially legacy applications or
applications which monitor network traffic, expect to be directly connected to the

physical network. In this type of situation, you can use the Macvlan network driver to
assign a MAC address to each container’s virtual network interface, making it appear

to be a physical network interface directly connected to the physical network.

Allow me to show you hands-on exercises to Bridge and Host networks.

1. Bridge Network

I will be using two Alpine containers to explain this type of network.

Now, I am going to run two Alpine containers namely C1 and C2 using commands:

docker run -it -d --name c1 alpine ash

docker run -it -d --name c2 alpine ash

https://www.ostechnix.com/wp-content/uploads/2019/10/Run-Alpine-containers.png

Next, let us find out the IP address of those running containers. To do so, run:

docker exec -it c1 sh –c “ip a”

docker exec -it c2 sh –c “ip a”

As you can see, the IP address of C1 container is 172.17.0.2 and IP address of C2 is

172.17.0.3.

Now let us go ahead and try to ping each other to ensure if they can be able to

communicate.

https://www.ostechnix.com/wp-content/uploads/2019/10/Show-containers-ip-address.png

First, attach to the running C1 container and try to ping the C2 container:

docker attach c1

Ping –c 2 172.17.0.3

Similarly, attach to C2 container and try to ping C1 container.

docker attach c2

Ping –c 2 172.17.0.2

As you see in the above screenshots, the communication is happening between the

containers with in the same network.

https://www.ostechnix.com/wp-content/uploads/2019/10/Ping-C2-container.png
https://www.ostechnix.com/wp-content/uploads/2019/10/Ping-C1-container.png

We can also verify it by inspecting the bridge network using command:

docker network inspect bridge

The above command will display all information about the network, such as network type,
subnet, gateway, containers name and iip addresses etc.

https://www.ostechnix.com/wp-content/uploads/2019/10/Show-bridge-network-details.png

1.1 Creating user-defined bridge network
Like I already said, when you start Docker, a default bridge network is created
automatically. All newly-started containers will connect automatically to it. However, you

can also create user-defined custom bridge networks.

To create new network driver, simply run:

docker network create my_net

Or,

docker network create --driver bridge dhruv_net

Both commands will do the same work. If you will not specify the driver name, it will
create in the default network driver i.e. bridge.

On user-defined networks like dhruv_net, containers can not only communicate by IP
address, but can also resolve a container name to an IP address. This capability is called

automatic service discovery.

https://www.ostechnix.com/wp-content/uploads/2019/10/Create-user-define-bridge-network.png

To ensure if the containers can communicate with each other, let us run three alpine
containers namely A1, A2 and A3 on dhruv_net network which we created earlier.

docker run -it -d --name A1 --network dhruv_net alpine ash

docker run -it -d --name A2 --network dhruv_net alpine ash

docker run -it -d --name A3 --network dhruv_net alpine ash

Now try to attach to any one of the containers and ping the other two using container name.

https://www.ostechnix.com/wp-content/uploads/2019/10/Run-containers-on-user-defined-bridge-network.png
https://www.ostechnix.com/wp-content/uploads/2019/10/Attach-and-ping-containers.png

From the above screenshots, it is proved that containers can be able to to communicate with
each other.

2. Host Network
We are running a container which binds to port 80 using host networking, the container’s

application is available on port 80 on the host’s IP address.

Host network is only needed when you are running programs with very specific network.
The application running inside the Docker container look like they are running on the host

itself, from the perspective of the network. It allows the container greater network access
than it can normally get.

https://www.ostechnix.com/wp-content/uploads/2019/10/Attach-and-ping-containers-1.png
https://www.ostechnix.com/wp-content/uploads/2019/10/Run-containers-with-host-networking.png

Here, we used netstat -ntlp command to display the listening port on the server. To find
which service is listening on a particular port, this guide.

We’ve only covered the basics of Docker networking concepts. For more details, I suggest
you to look into the Docker networking guide attached below.

• Docker Container Networking

https://docs.docker.com/v17.09/engine/userguide/networking/#exposing-and-publishing-ports
https://www.ostechnix.com/how-to-find-which-service-is-listening-on-a-particular-port/

	Explaining Docker Networking Concepts
	Explaining Docker Networking Concepts
	Types of docker network drivers
	1. Bridge Network
	1.1 Creating user-defined bridge network
	2. Host Network

