Explaining Docker
Networking Concepts

Docker networking is basically used to establish communication between the docker
containers and the outside world via host machine or you can say it is a communication
passage through which all the isolated containers communicate with each other in various
situations to perform the required actions. In this guide, we will explain basic Docker
networking concepts with practical examples on Ubuntu.

If you haven’t installed Docker yet, refer the following guide.

 How to Install Docker in Ubuntu 18.04 LTS Server

Basics of Docker usage:

+ Getting Started With Docker

Explaining Docker Networking
Concepts

All commands listed below are tested with root privileges on Ubuntu.

To manage network operations, like creating a new network, connecting a container to a
network, disconnect a container from the network, listing available networks and removing
networks etc., we use the following command:

https://www.ostechnix.com/getting-started-with-docker/
https://www.ostechnix.com/install-docker-ubuntu/

docker network

root@CPDockerTEST : fhome fubuntu#| docker network

Hsage: docker network COMMAND

Manage networks

Commands :
connect Comnect a container to a network
create Create a network
disconnect Disconnect a container from a network
inspect Display detailed information on one or more networks
1= List nmetworks
prune Eemove all unused networks
rm Eemove one or more networks
Fun 'docker network COMMAND —-help' for more information on a command.

root@CPDockerTEST : S home fubuntu#

Types of docker network drivers
To list all your networks, run:

docker network 1s

IDDt@CPDDCkEITEST:fhumefabanta#ldncker network lsl

METWCORE ID HAME DRIVER SCOFPE
2893a8le37cCS bridge bridge local
94h2d88e4kbed host host local
=5467d5cE0k1 none null local

root@CPDockerTEST : /home/ubuntu#

Let’s have some short introduction on all of them.

1. Bridge network : When you start Docker, a default bridge network is created
automatically. A newly-started containers will connect automatically to it. You can
also create user-defined custom bridge networks. User-defined bridge networks are
superior to the default bridge network.

2. Host network : It remove network isolation between the container and the Docker
host, and use the host’s networking directly. If you run a container which binds to
port 80 and you use host networking, the container’s application is available on port
80 on the host’s IP address. Means you will not be able to run multiple web
containers on the same host, on the same port as the port is now common to all
containers in the host network.

https://www.ostechnix.com/wp-content/uploads/2019/10/docker-network-command.png
https://www.ostechnix.com/wp-content/uploads/2019/10/List-docker-networks.png

3. None network : In this kind of network, containers are not attached to any network
and do not have any access to the external network or other containers. So, this
network is used when you want to completely disable the networking stack on a
container.

. Overlay network : Creates an internal private network that spans across all the
nodes participating in the swarm cluster. So, Overlay networks facilitate
communication between a docker swarm service and a standalone container, or
between two standalone containers on different Docker Daemons.

. Macvlan network : Some applications, especially legacy applications or
applications which monitor network traffic, expect to be directly connected to the
physical network. In this type of situation, you can use the Macvlan network driver to
assign a MAC address to each container’s virtual network interface, making it appear
to be a physical network interface directly connected to the physical network.

Allow me to show you hands-on exercises to Bridge and Host networks.

1. Bridge Network

I will be using two Alpine containers to explain this type of network.

Now, I am going to run two Alpine containers namely C1 and C2 using commands:

docker run -it -d --name cl alpine ash

docker run -it -d --name c2 alpine ash

:DDt@CPDDcke:TESI‘:,.-"'.".Drr.e,.-"';b;.".t';#|d0c]-:e: run -it -d --name cl alpine ash |

660efe5e899c277153a614c022%:bel5eb73dce8779313£39726635%0664628e
root@CPDockerTEST: /home/ubuntu# [docker container l1s|

CONTAINER ID IMAGE COMMAND CRELTED STLTUS PORTS
ce0efeseB99c alpine Maant 11l _zecopds ago Up 9 seconds
root@:PDoc]-:e:I‘ESI‘:_-"'.".orr.e_-"';b';:t';#ldoc]-:e: run -it -d --name c2 alpine as':l
9645ff071af2bece28a5fbbfc14d8dd84525592113f2beE0T884Ecedd47dd974

root@CPDockerTEST : /home/ubuntu# |docker container 1sj

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
9649ff0T71af2 alpine "ash" 12 seconds ago Up 9 seconds

660efeseBaoc alpine "ash" 59 seconds ago Up 57 seconds

root@CPDockerTEST: /home /ubuntuf

NAMES
cl

NAMES
c2

https://www.ostechnix.com/wp-content/uploads/2019/10/Run-Alpine-containers.png

Next, let us find out the IP address of those running containers. To do so, run:

docker exec -it c1 sh -c “ip a”

docker exec -it c2 sh -c “ip a”

rDDt@CFDDckEITEST:fnumefabantu#Idacker exec -it cl sh -c "ip a"l
L: lo: <LOCPBACEK,UP,LOWEER UP> mtu &6553€ gdisc nogueue state UNENOWN glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8% scope host lo
valid 1ft forever preferred 1ft forever
140: ethO@ifl41: <BROADCAST,MULTICAST,UF,LCWER UF,M-DCWH> mtu 1500 gdisc nogueue state UP
link/ether 02:42:8c:11:00:02 brd ff:ff:ff:ff:ff:£ff
inet p?2.17.0.2f16|brd 172.17.255.255 scope glokal ethO
valid 1ft forever preferred 1ft forever
rDDt@CPDDckEITEST:fhumefubantu#Idacker exec —-it o2 sh -c "ip a"
L: lo: <LOCPBACE,UP,LOWER _UP> mtu 653536 gdisc nogueus state UNENOWH glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
wvalid 1ft forever preferred 1ft forewver
136: ethO@ifl137: <BROADCAST,MULTICAST,UF,LCWER UF,M-DCWH> mtu 1500 gdisc nogueue state UP
link/ether 02:42:a8c:11:00:03 brd ff:ff:ff:ff:ff:ff
inetll?i.l?.O.SIlﬁlbrd 172.17.255.255 scope global ethO
valid 1ft forever preferred 1ft forever
Foot@CPDockexrTEST : fhome/ubuntuf I

As you can see, the IP address of C1 container is 172.17.0.2 and IP address of C2 is
172.17.0.3.

Now let us go ahead and try to ping each other to ensure if they can be able to
communicate.

https://www.ostechnix.com/wp-content/uploads/2019/10/Show-containers-ip-address.png

First, attach to the running C1 container and try to ping the C2 container:

docker attach c1

Ping -c 2 172.17.0.3

rDDt@CPDDckEITEST:Ihnmefahunta#ldncker attach cll
f % ip a
1: lo: <LOOPBACE,UP,LOWER UP> mtu €553€ gdisc nogueus state UNENOWN glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid 1ft forever preferred 1ft forever
140: eth0@ifl4l: <BROADCAST,MULTICAST,UP,LCWER UP,M-DOWH> mtu 1500 gdisc nogueus state UP
link/ether 02:42:a3c:11:00:02 bxrd ff:ff:ff:ff:££: £F
inet 16 krd 172.17.255.255 scope glokal ethi
valid 1ft forever preferred 1ft forewver

i #|ping - 2 172.17.0.3
PING 172.17.0.3 [172.17.0.3): 56 data bytes

64 bytes from 172.17.0.3: seqgq=0 ttl=64 time=0.150 ms
64 bytes from 172.17.0.3: seg=l ttl=c4 time=0.109% ms

-——— 172.17.0.3 ping statistics --—-
2 packets transmitted, 2 packets receiwved, 0% packet loss
round-trip min/avg/max = 0.109/0.129/0.150 m=s

N |

Similarly, attach to C2 container and try to ping C1 container.

docker attach c2

Ping -c 2 172.17.0.2

IDDF@CPDDckEITEST:fhnmefahanta#ldncker attach c2 |
S #lip a
1: lo: <LOOPBACK,UP, LOWEE UP> mtu 65536 gdisc nogueus state UNENOWN glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid 1ft forever preferred 1ft forever
144: ethO@ifl45: <BROADCAST,MULTICAST,UF,LOWER UP,M-DOWN> mtu 1500 gdisc nogueus state UFP
link/ether 02:42:a3c:11:00:03 brd ff:ff:ff:ff:ff: £
inec[172.17.0.3}16 brd 172.17.255.255 scope global etho
valid 1ft forever preferred 1ft forever
/ #lping -c 3 172.17.0.2 |
PING 1/2.17.0.2 (1L/2.17.0.2): 56 data bytes
64 byvtezs from 172.17.0.2: seqgq=0 ttl=64 time=0.129 ms
64 bvtes from 172.17.0. zegq=l ttl=64 time=0.110 ms
64 bvtes from 172.17.0. zegq=2 ttl=64 time=0.054 ms

| U T S

-——— 172.17.0.2 ping statistics —-—-
3 packets transmitted, 3 packets received, 0% packet loss
round-trip minfavg/max = 0.0%4,/0.111/0.129 ms

/7 #

As you see in the above screenshots, the communication is happening between the
containers with in the same network.

https://www.ostechnix.com/wp-content/uploads/2019/10/Ping-C2-container.png
https://www.ostechnix.com/wp-content/uploads/2019/10/Ping-C1-container.png

We can also verify it by inspecting the bridge network using command:

docker network inspect bridge

The above command will display all information about the network, such as network type,
subnet, gateway, containers name and iip addresses etc.

root@CPDockerTEST: /home/ubuntuf [docker network inspect bridge|
[

{
"Wame": "bridge",
"Id": "5664b4502fcallel325599ddo9356802d005212elcd084ccflads03acSbde0EdTE",
"Created™: "2019-10-13T05:46:26.876094Z",
"Scope™: "local"®,
"Driver™: "bridge",
"EnableIPve": false,

"IERM": {
"Driver”™: "default",
"Options™: null,
"Config™: [
{
"Subnet": "172.17.0.0/1&",
"Gateway": "172.17.0.1"
1

ir
"Internal™: false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Hetwork": ""
:'r
"ConfigOnly": false,
"Contalners": {
"ge0efE5e899c27T7153a614c022% bel5ebT3doe8T7T93£3£30726635066646 8™ |
"Hame": "cl",
"EndpointID": "43ff4bBelaff0d5fedl50910af96h0053475a178%9af365caeledl5a6d1ldfecl3m,
"MachAddress"™: "02:42:ac:11:00:02",
"IPv4hddrezs": "172.17.0.2/1e",
"IPvehddress"™: ""
ir
"9549ff071af2bec628a5fbbicl14d8ddR4525992113f2h6f07884fceddd7ddaT4™: |
"Name": "c2",
"EndpointID™: "B8807e30fdfcd%:di93e82894a351842801fk5ccTeleb32f2cdfebaBoedecBhag™,
"Machddress": "(02:42:ac:11:00:03",
"IPv4hddress": "172.17.0.3/16",
"IPvEAddress™: ""

ir

"Options": {
"com.docker.network.bridge.default bridge": "true",
"com.docker.network.bridge.enable icc": "true",
"com.docker.network.bridge.enable ip masquerade": "true",

https://www.ostechnix.com/wp-content/uploads/2019/10/Show-bridge-network-details.png

1.1 Creating user-defined bridge network

Like I already said, when you start Docker, a default bridge network is created
automatically. All newly-started containers will connect automatically to it. However, you
can also create user-defined custom bridge networks.

To create new network driver, simply run:

docker network create my_net

Or,

docker network create --driver bridge dhruv_net

Both commands will do the same work. If you will not specify the driver name, it will
create in the default network driver i.e. bridge.

rDDt@CPDDEkEITEST:fhumefabanta#|dncker network 15|

NETWORK ID NAME DREIVER SCOPE
Se64kb4902fca bridge bridge local
94h2d88e4kbed host host local
£8467d9cE0kL1 none null local

IDDE@CPDDCKEITEST:fhumefabanta#ldncker network create my net
Z2elacecedcceefdieToo00le82551df8kbdlll3elkicelToacdses090fbedseccE
root@CPDockexrTEST: /home/ubuntu# docker network 1ls

HETWORK ID HAME DRIVER SCOFPE
Se64kb4902fca bridge bridge local
94h2d88e4kbed host host local
Zelagece3cce bridge local
£8467d9cE0kL1 none null local
IDDE@CPDDCKEITEST:fhumefabanta#ldncker network create --driver bridge dhruv netl

EEEEbEEEE&E&EE&C&EEEEbeibﬂﬂlEEaOEEaEEfl65d$$6fae€hf&b53d9$cf19a9
root@CPDockexrTEST: /home/ubuntu# docker network 1ls

HETWORK ID HAME DRIVER SCOFPE
Se64kb4902fca bridge bridge local
=2eSh5286a0a bridge local
94h2d88e4kbed host host local
Zelagece3cce my net bridge local
£8467d9cE0kL1 none null local

root@CPDockerTEST : fhome/ubuntuf I

On user-defined networks like dhruv_net, containers can not only communicate by IP
address, but can also resolve a container name to an IP address. This capability is called
automatic service discovery.

https://www.ostechnix.com/wp-content/uploads/2019/10/Create-user-define-bridge-network.png

To ensure if the containers can communicate with each other, let us run three alpine
containers namely Al, A2 and A3 on dhruv_net network which we created earlier.

docker run -it -d --name Al --network dhruv_net alpine ash
docker run -it -d --name A2 --network dhruv_net alpine ash
docker run -it -d --name A3 --network dhruv_net alpine ash
root@CPDockerTEST: /home/ubuntu# [docker run -it -d --name A1 --network dhruv net alpine ashl
59z2e2d907214883826a2cTd0e45ee870657cfa9c502fff2bb4Tc6a8ec3bebdalc

root@CPDockerTEST:/home/ubantu#|docker run -it -d --name A2 --network dhruv net alpine ash'
28652fcd409767a43ceacB5658dk2a746d22d08dd2c32400912432032d5kdeka

root@CPDockerTEST: /home/ubuntu# Hocker run -it -d --name A3 -—-network dhruv net alpine ash
fhlaSkT78133kbab40kkefo09ddbk71£9035fcTbe3213707295fe4804d465b6E01E

root@CPDockerTEST: /home/ubuntuf docker container 1s

CCNTAINER ID IMAGE CCMMAND CREATED STATUS PCRTS NAMES
fh0a5b78133b alpine "ash" 16 seconds ago Up 13 seconds L3
38652fcd4097 alpine "ash" 28 seconds ago Up 25 seconds L2
59zed907a148 alpine "ash" 37 seconds ago Up 34 seconds nl
9g49£f071af2 alpine "ash" 9 hours ago Up 4 hours [=
6elefe5e899¢c alpine "ash" 9 hours ago Up 4 hours cl

root@CPDockerTEST: /home/ubuntu ||

Now try to attach to any one of the containers and ping the other two using container name.

rnnt@EPDDckerTEST:fhnmefabanta#ldncker container attach All
! #lping —C 2 a2 |
PING LZ (172.23.0.3): 5& data bytes

64 bytes from 172.23.0.3: seqgq=0 ttl=64 time=0.202 ms
64 bytes from 172.23.0.3: segq=l ttl=64 time=0.146c ms

-—— A2 ping statistics ---

2 packets transmitted, 2 packets receiwved, 0% packet loss
round-trip minfavg/max = 0.146/0.174/0.202 m=s

! #lping —c 2 23|

PING A3 (172.23.0.4): 56 data bytes

64 bytes from 172.23.0.4: seqgq=0 ttl=64 time=0.150 ms

64 bytes from 172.23.0.4: segq=l ttl=64 time=0.100 ms

-—— A3 ping statistics ---
2 packets transmitted, 2 packets receiwved, 0% packet loss
round-trip minfavg/max = 0.100/0.125/0.150 m=s

N |

https://www.ostechnix.com/wp-content/uploads/2019/10/Run-containers-on-user-defined-bridge-network.png
https://www.ostechnix.com/wp-content/uploads/2019/10/Attach-and-ping-containers.png

/ #|ping -c 2 Rl|

—-—— Al ping statistics

round-trip min/avg/max
/ #lping -c 2 A3|

——— A3 ping statistics —--

round-trip min/avg/max 0

/ %

IDDt@CPDDCkEITEST:fhumefabanta#|dncker contalner attach A?T

PING A1 (172.23.0.2): 56 data kbytes
4 bytes from 172.23.0.2: seg=0 ttl=¢4 time=0.1l1l% ms
g4 bytes from 172.23.0.2: seg=l ttl=c4 time=0.125% ms

2 packets transmitted, 2 packets received, 0% packet loss
= 0,118/0.123/0.129 m=
PING A3 (152.23.0.4]: 56 data bytes

4 bytes from 172.23.0.4: seg=0 ttl=¢4 time=0.135% ms
4 bytes from 172.23.0.4: seg=l ttl=c4 time=0.091 ms

2 packets transmitted, 2 packets received, 0% packet loss
= 0.

91/0.115/0.139 ms

From the above screenshots, it is proved that containers can be able to to communicate with

each other.

2. Host Network

We are running a container which binds to port 80 using host networking, the container’s

application is available on port 80 on the host’s IP address.

root@CPDockerTEST : fhome/ubuntuf

netstat -ntlp|

Active Internet connections (only servers)

Proto Recv-Q S5end-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:22 0.0.0.0:% LISTEN
tcp 0 0 0.0.0.0:25324 0.0.0.0:% LISTEN
tcpo 0 0 :::22 HHHL LISTEN

FID/Frogram mname

12240/sshd
14851/ruby
12240/sshd

rDDt@EPDDckEITEST:fhomefabanta#ldocker run -it -d --network host --name my

nginx nginx|

2a59dd04feffelbfocéfazo0ede3bab60ed014e456525001008C La507924Ch45

root@CPDockerTEST : fhome/ubuntuf

netscat -ntlpl|

root@CPDockerTEST : fhome/ubuntuf

Active Internet connections (only servers)

Proto Recv-Q S5end-Q Local Address Foreign Address State
tcp 0 o 0.0.0.0:80]) 0.0.0.0:% LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:% LISTEN
tcp 0 0 0.0.0.0:25324 0.0.0.0:% LISTEN
tcpo 0 0 :::22 HHL LISTEN

FID/Frogram mname

4921 /noginx:

12240/sshd
14851/ruby
12240/sshd

master

Host network is only needed when you are running programs with very specific network.

The application running inside the Docker container look like they are running on the host

itself, from the perspective of the network. It allows the container greater network access

than it can normally get.

https://www.ostechnix.com/wp-content/uploads/2019/10/Attach-and-ping-containers-1.png
https://www.ostechnix.com/wp-content/uploads/2019/10/Run-containers-with-host-networking.png

Here, we used netstat -ntlp command to display the listening port on the server. To find
which service is listening on a particular port, this guide.

We’ve only covered the basics of Docker networking concepts. For more details, I suggest
you to look into the Docker networking guide attached below.

* Docker Container Networking

https://docs.docker.com/v17.09/engine/userguide/networking/#exposing-and-publishing-ports
https://www.ostechnix.com/how-to-find-which-service-is-listening-on-a-particular-port/

	Explaining Docker Networking Concepts
	Explaining Docker Networking Concepts
	Types of docker network drivers
	1. Bridge Network
	1.1 Creating user-defined bridge network
	2. Host Network

