
MySQL 5.5 Reference Manual

Including MySQL NDB Cluster 7.2 Reference Guide



Abstract

This is the MySQL™ Reference Manual. It documents MySQL 5.5 through 5.5.58, as well as NDB Cluster
releases based on version 7.2 of NDBCLUSTER through 5.5.56-ndb-7.2.30.

MySQL 5.5 features.  This manual describes features that are not included in every edition of MySQL 5.5; such
features may not be included in the edition of MySQL 5.5 licensed to you. If you have any questions about the
features included in your edition of MySQL 5.5, refer to your MySQL 5.5 license agreement or contact your Oracle
sales representative.

For notes detailing the changes in each release, see the MySQL 5.5 Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL
Documentation Library.

Licensing information—MySQL 5.5.  This product may include third-party software, used under license. If you
are using a Commercial release of MySQL 5.5, see this document for licensing information, including licensing
information relating to third-party software that may be included in this Commercial release. If you are using a
Community release of MySQL 5.5, see this document for licensing information, including licensing information
relating to third-party software that may be included in this Community release.

Licensing information—MySQL NDB Cluster 7.2.  This product may include third-party software, used
under license. If you are using a Commercial release of MySQL NDB Cluster 7.2, see this document for licensing
information, including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL NDB Cluster 7.2, see this document for licensing
information, including licensing information relating to third-party software that may be included in this Community
release.

Document generated on: 2017-06-13 (revision: 52558)

http://dev.mysql.com/doc/relnotes/mysql/5.5/en/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc
http://dev.mysql.com/doc
http://downloads.mysql.com/docs/licenses/mysqld-5.5-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysqld-5.5-gpl-en.pdf
http://downloads.mysql.com/docs/licenses/cluster-7.2-com-en.pdf
http://downloads.mysql.com/docs/licenses/cluster-7.2-gpl-en.pdf


iii

Table of Contents
Preface and Legal Notices .......................................................................................................... xxi
1 General Information ................................................................................................................... 1

1.1 About This Manual .......................................................................................................... 2
1.2 Typographical and Syntax Conventions ........................................................................... 2
1.3 Overview of the MySQL Database Management System ................................................... 4

1.3.1 What is MySQL? .................................................................................................. 4
1.3.2 The Main Features of MySQL ............................................................................... 5
1.3.3 History of MySQL ................................................................................................. 8

1.4 What Is New in MySQL 5.5 ............................................................................................. 9
1.5 MySQL Information Sources .......................................................................................... 17

1.5.1 MySQL Web Sites .............................................................................................. 17
1.5.2 MySQL Mailing Lists ........................................................................................... 17
1.5.3 MySQL Community Support at the MySQL Forums .............................................. 19
1.5.4 MySQL Community Support on Internet Relay Chat (IRC) .................................... 20
1.5.5 MySQL Enterprise .............................................................................................. 20

1.6 How to Report Bugs or Problems .................................................................................. 20
1.7 MySQL Standards Compliance ...................................................................................... 24

1.7.1 MySQL Extensions to Standard SQL ................................................................... 26
1.7.2 MySQL Differences from Standard SQL .............................................................. 28
1.7.3 How MySQL Deals with Constraints .................................................................... 30

1.8 Credits .......................................................................................................................... 33
1.8.1 Contributors to MySQL ....................................................................................... 33
1.8.2 Documenters and translators .............................................................................. 38
1.8.3 Packages that support MySQL ............................................................................ 39
1.8.4 Tools that were used to create MySQL ............................................................... 40
1.8.5 Supporters of MySQL ......................................................................................... 40

2 Installing and Upgrading MySQL .............................................................................................. 41
2.1 General Installation Guidance ........................................................................................ 43

2.1.1 Which MySQL Version and Distribution to Install .................................................. 43
2.1.2 How to Get MySQL ............................................................................................ 45
2.1.3 Verifying Package Integrity Using MD5 Checksums or GnuPG .............................. 45
2.1.4 Installation Layouts ............................................................................................. 59
2.1.5 Compiler-Specific Build Characteristics ................................................................ 59

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .................................................. 59
2.3 Installing MySQL on Microsoft Windows ......................................................................... 62

2.3.1 MySQL Installation Layout on Microsoft Windows ................................................ 64
2.3.2 Choosing An Installation Package ....................................................................... 65
2.3.3 MySQL Installer for Windows .............................................................................. 66
2.3.4 MySQL Notifier ................................................................................................... 83
2.3.5 Installing MySQL on Microsoft Windows Using an MSI Package ........................... 94
2.3.6 MySQL Server Instance Configuration Wizard .................................................... 100
2.3.7 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive .................. 114
2.3.8 Troubleshooting a Microsoft Windows MySQL Server Installation ........................ 122
2.3.9 Windows Postinstallation Procedures ................................................................ 123
2.3.10 Upgrading MySQL on Windows ....................................................................... 125

2.4 Installing MySQL on OS X ........................................................................................... 127
2.4.1 General Notes on Installing MySQL on OS X ..................................................... 127
2.4.2 Installing MySQL on OS X Using Native Packages ............................................. 128
2.4.3 Installing a MySQL Launch Daemon ................................................................. 133
2.4.4 Installing and Using the MySQL Preference Pane .............................................. 136

2.5 Installing MySQL on Linux ........................................................................................... 140
2.5.1 Installing MySQL on Linux Using RPM Packages ............................................... 141
2.5.2 Installing MySQL on Linux Using Debian Packages ............................................ 146
2.5.3 Installing MySQL on Linux Using Native Package Managers ............................... 146

2.6 Installing MySQL Using Unbreakable Linux Network (ULN) ........................................... 150



MySQL 5.5 Reference Manual

iv

2.7 Installing MySQL on Solaris ......................................................................................... 150
2.7.1 Installing MySQL on Solaris Using a Solaris PKG .............................................. 151

2.8 Installing MySQL on FreeBSD ..................................................................................... 152
2.9 Installing MySQL from Source ..................................................................................... 153

2.9.1 MySQL Layout for Source Installation ................................................................ 155
2.9.2 Installing MySQL Using a Standard Source Distribution ...................................... 155
2.9.3 Installing MySQL Using a Development Source Tree .......................................... 159
2.9.4 MySQL Source-Configuration Options ............................................................... 161
2.9.5 Dealing with Problems Compiling MySQL .......................................................... 172
2.9.6 MySQL Configuration and Third-Party Tools ...................................................... 174

2.10 Postinstallation Setup and Testing ............................................................................. 174
2.10.1 Initializing the Data Directory ........................................................................... 175
2.10.2 Starting the Server ......................................................................................... 178
2.10.3 Testing the Server .......................................................................................... 181
2.10.4 Securing the Initial MySQL Accounts ............................................................... 183
2.10.5 Starting and Stopping MySQL Automatically .................................................... 187

2.11 Upgrading or Downgrading MySQL ............................................................................ 188
2.11.1 Upgrading MySQL .......................................................................................... 188
2.11.2 Downgrading MySQL ...................................................................................... 199
2.11.3 Rebuilding or Repairing Tables or Indexes ....................................................... 204
2.11.4 Copying MySQL Databases to Another Machine .............................................. 205

2.12 Perl Installation Notes ................................................................................................ 206
2.12.1 Installing Perl on Unix ..................................................................................... 206
2.12.2 Installing ActiveState Perl on Windows ............................................................ 207
2.12.3 Problems Using the Perl DBI/DBD Interface ..................................................... 208

3 Tutorial .................................................................................................................................. 211
3.1 Connecting to and Disconnecting from the Server ......................................................... 211
3.2 Entering Queries ......................................................................................................... 212
3.3 Creating and Using a Database ................................................................................... 215

3.3.1 Creating and Selecting a Database ................................................................... 216
3.3.2 Creating a Table .............................................................................................. 217
3.3.3 Loading Data into a Table ................................................................................ 218
3.3.4 Retrieving Information from a Table ................................................................... 219

3.4 Getting Information About Databases and Tables ......................................................... 232
3.5 Using mysql in Batch Mode ......................................................................................... 233
3.6 Examples of Common Queries .................................................................................... 235

3.6.1 The Maximum Value for a Column .................................................................... 235
3.6.2 The Row Holding the Maximum of a Certain Column .......................................... 235
3.6.3 Maximum of Column per Group ........................................................................ 236
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column ....................... 236
3.6.5 Using User-Defined Variables ........................................................................... 237
3.6.6 Using Foreign Keys .......................................................................................... 237
3.6.7 Searching on Two Keys .................................................................................... 239
3.6.8 Calculating Visits Per Day ................................................................................. 239
3.6.9 Using AUTO_INCREMENT ............................................................................... 240

3.7 Using MySQL with Apache .......................................................................................... 242
4 MySQL Programs .................................................................................................................. 243

4.1 Overview of MySQL Programs ..................................................................................... 244
4.2 Using MySQL Programs .............................................................................................. 248

4.2.1 Invoking MySQL Programs ............................................................................... 248
4.2.2 Connecting to the MySQL Server ...................................................................... 249
4.2.3 Specifying Program Options .............................................................................. 252
4.2.4 Using Options on the Command Line ................................................................ 253
4.2.5 Program Option Modifiers ................................................................................. 255
4.2.6 Using Option Files ............................................................................................ 255
4.2.7 Command-Line Options that Affect Option-File Handling ..................................... 260
4.2.8 Using Options to Set Program Variables ............................................................ 261
4.2.9 Option Defaults, Options Expecting Values, and the = Sign ................................. 262



MySQL 5.5 Reference Manual

v

4.2.10 Setting Environment Variables ......................................................................... 265
4.3 MySQL Server and Server-Startup Programs ............................................................... 266

4.3.1 mysqld — The MySQL Server ......................................................................... 266
4.3.2 mysqld_safe — MySQL Server Startup Script ................................................. 266
4.3.3 mysql.server — MySQL Server Startup Script ............................................... 272
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ......................................... 274

4.4 MySQL Installation-Related Programs .......................................................................... 278
4.4.1 comp_err — Compile MySQL Error Message File ............................................ 278
4.4.2 mysqlbug — Generate Bug Report .................................................................. 279
4.4.3 mysql_install_db — Initialize MySQL Data Directory .................................... 279
4.4.4 mysql_plugin — Configure MySQL Server Plugins ......................................... 281
4.4.5 mysql_secure_installation — Improve MySQL Installation Security ........... 283
4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables ................................... 284
4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables ................................... 284

4.5 MySQL Client Programs .............................................................................................. 289
4.5.1 mysql — The MySQL Command-Line Tool ....................................................... 289
4.5.2 mysqladmin — Client for Administering a MySQL Server .................................. 311
4.5.3 mysqlcheck — A Table Maintenance Program ................................................. 318
4.5.4 mysqldump — A Database Backup Program ..................................................... 325
4.5.5 mysqlimport — A Data Import Program ......................................................... 343
4.5.6 mysqlshow — Display Database, Table, and Column Information ...................... 349
4.5.7 mysqlslap — Load Emulation Client ............................................................... 353

4.6 MySQL Administrative and Utility Programs .................................................................. 360
4.6.1 innochecksum — Offline InnoDB File Checksum Utility .................................... 360
4.6.2 myisam_ftdump — Display Full-Text Index information ..................................... 361
4.6.3 myisamchk — MyISAM Table-Maintenance Utility ............................................. 362
4.6.4 myisamlog — Display MyISAM Log File Contents ............................................ 379
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables .................. 380
4.6.6 mysqlaccess — Client for Checking Access Privileges ..................................... 386
4.6.7 mysqlbinlog — Utility for Processing Binary Log Files ..................................... 388
4.6.8 mysqldumpslow — Summarize Slow Query Log Files ...................................... 403
4.6.9 mysqlhotcopy — A Database Backup Program ............................................... 404
4.6.10 mysql_convert_table_format — Convert Tables to Use a Given Storage
Engine ...................................................................................................................... 407
4.6.11 mysql_find_rows — Extract SQL Statements from Files ............................... 408
4.6.12 mysql_fix_extensions — Normalize Table File Name Extensions ............... 409
4.6.13 mysql_setpermission — Interactively Set Permissions in Grant Tables ........ 409
4.6.14 mysql_waitpid — Kill Process and Wait for Its Termination ........................... 410
4.6.15 mysql_zap — Kill Processes That Match a Pattern ......................................... 411

4.7 MySQL Program Development Utilities ......................................................................... 411
4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL .......................... 411
4.7.2 mysql_config — Display Options for Compiling Clients ................................... 412
4.7.3 my_print_defaults — Display Options from Option Files .............................. 413
4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols ....... 414

4.8 Miscellaneous Programs .............................................................................................. 414
4.8.1 perror — Explain Error Codes ........................................................................ 414
4.8.2 replace — A String-Replacement Utility .......................................................... 415
4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa ......................... 416

4.9 MySQL Program Environment Variables ....................................................................... 417
5 MySQL Server Administration ................................................................................................. 419

5.1 The MySQL Server ..................................................................................................... 420
5.1.1 Configuring the Server ...................................................................................... 420
5.1.2 Server Configuration Defaults ........................................................................... 422
5.1.3 Server Option and Variable Reference .............................................................. 422
5.1.4 Server Command Options ................................................................................. 450
5.1.5 Server System Variables .................................................................................. 482
5.1.6 Using System Variables .................................................................................... 592
5.1.7 Server Status Variables .................................................................................... 605



MySQL 5.5 Reference Manual

vi

5.1.8 Server SQL Modes ........................................................................................... 630
5.1.9 IPv6 Support .................................................................................................... 638
5.1.10 Server-Side Help ............................................................................................ 642
5.1.11 Server Response to Signals ............................................................................ 643
5.1.12 The Server Shutdown Process ........................................................................ 643

5.2 The MySQL Data Directory .......................................................................................... 645
5.3 The mysql System Database ....................................................................................... 645
5.4 MySQL Server Logs .................................................................................................... 647

5.4.1 Selecting General Query and Slow Query Log Output Destinations ...................... 648
5.4.2 The Error Log .................................................................................................. 650
5.4.3 The General Query Log .................................................................................... 652
5.4.4 The Binary Log ................................................................................................ 653
5.4.5 The Slow Query Log ........................................................................................ 665
5.4.6 The DDL Log ................................................................................................... 667
5.4.7 Server Log Maintenance ................................................................................... 667

5.5 MySQL Server Plugins ................................................................................................ 669
5.5.1 Server Plugins Available ................................................................................... 669
5.5.2 Installing and Uninstalling Plugins ..................................................................... 669
5.5.3 Obtaining Server Plugin Information .................................................................. 673
5.5.4 MySQL Enterprise Thread Pool ......................................................................... 674

5.6 Running Multiple MySQL Instances on One Machine .................................................... 680
5.6.1 Setting Up Multiple Data Directories .................................................................. 681
5.6.2 Running Multiple MySQL Instances on Windows ................................................ 682
5.6.3 Running Multiple MySQL Instances on Unix ....................................................... 685
5.6.4 Using Client Programs in a Multiple-Server Environment .................................... 686

5.7 Tracing mysqld Using DTrace ...................................................................................... 687
5.7.1 mysqld DTrace Probe Reference ...................................................................... 688

6 Security ................................................................................................................................. 705
6.1 General Security Issues .............................................................................................. 706

6.1.1 Security Guidelines ........................................................................................... 706
6.1.2 Keeping Passwords Secure .............................................................................. 707
6.1.3 Making MySQL Secure Against Attackers .......................................................... 715
6.1.4 Security-Related mysqld Options and Variables ................................................. 717
6.1.5 How to Run MySQL as a Normal User .............................................................. 717
6.1.6 Security Issues with LOAD DATA LOCAL .......................................................... 718
6.1.7 Client Programming Security Guidelines ............................................................ 719

6.2 The MySQL Access Privilege System .......................................................................... 721
6.2.1 Privileges Provided by MySQL .......................................................................... 722
6.2.2 Grant Tables .................................................................................................... 726
6.2.3 Specifying Account Names ............................................................................... 732
6.2.4 Access Control, Stage 1: Connection Verification ............................................... 734
6.2.5 Access Control, Stage 2: Request Verification ................................................... 736
6.2.6 When Privilege Changes Take Effect ................................................................ 738
6.2.7 Troubleshooting Problems Connecting to MySQL ............................................... 739

6.3 MySQL User Account Management ............................................................................. 744
6.3.1 User Names and Passwords ............................................................................. 744
6.3.2 Adding User Accounts ...................................................................................... 746
6.3.3 Removing User Accounts .................................................................................. 747
6.3.4 Setting Account Resource Limits ....................................................................... 747
6.3.5 Assigning Account Passwords ........................................................................... 749
6.3.6 Pluggable Authentication ................................................................................... 751
6.3.7 Proxy Users ..................................................................................................... 753
6.3.8 SQL-Based MySQL Account Activity Auditing .................................................... 757

6.4 Using Secure Connections .......................................................................................... 759
6.4.1 OpenSSL Versus yaSSL ................................................................................... 760
6.4.2 Building MySQL with Support for Secure Connections ........................................ 760
6.4.3 Secure Connection Protocols and Ciphers ......................................................... 761
6.4.4 Configuring MySQL to Use Secure Connections ................................................ 762



MySQL 5.5 Reference Manual

vii

6.4.5 Command Options for Secure Connections ....................................................... 764
6.4.6 Creating SSL Certificates and Keys Using openssl ............................................. 766
6.4.7 Connecting to MySQL Remotely from Windows with SSH ................................... 772

6.5 Security Plugins .......................................................................................................... 772
6.5.1 Authentication Plugins ...................................................................................... 772
6.5.2 MySQL Enterprise Audit ................................................................................... 791

7 Backup and Recovery ............................................................................................................ 809
7.1 Backup and Recovery Types ....................................................................................... 810
7.2 Database Backup Methods .......................................................................................... 813
7.3 Example Backup and Recovery Strategy ...................................................................... 815

7.3.1 Establishing a Backup Policy ............................................................................ 815
7.3.2 Using Backups for Recovery ............................................................................. 817
7.3.3 Backup Strategy Summary ................................................................................ 818

7.4 Using mysqldump for Backups ..................................................................................... 818
7.4.1 Dumping Data in SQL Format with mysqldump .................................................. 818
7.4.2 Reloading SQL-Format Backups ....................................................................... 819
7.4.3 Dumping Data in Delimited-Text Format with mysqldump .................................... 820
7.4.4 Reloading Delimited-Text Format Backups ......................................................... 821
7.4.5 mysqldump Tips ............................................................................................... 822

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log ........................................... 824
7.5.1 Point-in-Time Recovery Using Event Times ....................................................... 825
7.5.2 Point-in-Time Recovery Using Event Positions ................................................... 826

7.6 MyISAM Table Maintenance and Crash Recovery ........................................................ 826
7.6.1 Using myisamchk for Crash Recovery ............................................................... 827
7.6.2 How to Check MyISAM Tables for Errors ........................................................... 828
7.6.3 How to Repair MyISAM Tables ......................................................................... 828
7.6.4 MyISAM Table Optimization .............................................................................. 831
7.6.5 Setting Up a MyISAM Table Maintenance Schedule ........................................... 831

8 Optimization ........................................................................................................................... 833
8.1 Optimization Overview ................................................................................................. 834
8.2 Optimizing SQL Statements ......................................................................................... 836

8.2.1 Optimizing SELECT Statements ........................................................................ 836
8.2.2 Subquery Optimization ...................................................................................... 870
8.2.3 Optimizing INFORMATION_SCHEMA Queries ................................................... 874
8.2.4 Optimizing Data Change Statements ................................................................. 879
8.2.5 Optimizing Database Privileges ......................................................................... 881
8.2.6 Other Optimization Tips .................................................................................... 881

8.3 Optimization and Indexes ............................................................................................ 881
8.3.1 How MySQL Uses Indexes ............................................................................... 881
8.3.2 Using Primary Keys .......................................................................................... 883
8.3.3 Using Foreign Keys .......................................................................................... 883
8.3.4 Column Indexes ............................................................................................... 883
8.3.5 Multiple-Column Indexes ................................................................................... 884
8.3.6 Verifying Index Usage ...................................................................................... 886
8.3.7 InnoDB and MyISAM Index Statistics Collection ................................................. 886
8.3.8 Comparison of B-Tree and Hash Indexes .......................................................... 887

8.4 Optimizing Database Structure ..................................................................................... 889
8.4.1 Optimizing Data Size ........................................................................................ 889
8.4.2 Optimizing MySQL Data Types ......................................................................... 891
8.4.3 Optimizing for Many Tables .............................................................................. 892
8.4.4 Internal Temporary Table Use in MySQL ........................................................... 894

8.5 Optimizing for InnoDB Tables ...................................................................................... 895
8.5.1 Optimizing Storage Layout for InnoDB Tables .................................................... 895
8.5.2 Optimizing InnoDB Transaction Management ..................................................... 896
8.5.3 Optimizing InnoDB Redo Logging ...................................................................... 897
8.5.4 Bulk Data Loading for InnoDB Tables ................................................................ 897
8.5.5 Optimizing InnoDB Queries ............................................................................... 898
8.5.6 Optimizing InnoDB DDL Operations .................................................................. 899



MySQL 5.5 Reference Manual

viii

8.5.7 Optimizing InnoDB Disk I/O .............................................................................. 899
8.5.8 Optimizing InnoDB Configuration Variables ........................................................ 901
8.5.9 Optimizing InnoDB for Systems with Many Tables .............................................. 902

8.6 Optimizing for MyISAM Tables ..................................................................................... 902
8.6.1 Optimizing MyISAM Queries ............................................................................. 902
8.6.2 Bulk Data Loading for MyISAM Tables .............................................................. 904
8.6.3 Optimizing REPAIR TABLE Statements ............................................................. 905

8.7 Optimizing for MEMORY Tables .................................................................................. 907
8.8 Understanding the Query Execution Plan ..................................................................... 907

8.8.1 Optimizing Queries with EXPLAIN ..................................................................... 907
8.8.2 EXPLAIN Output Format ................................................................................... 908
8.8.3 Extended EXPLAIN Output Format .................................................................... 918
8.8.4 Estimating Query Performance .......................................................................... 920

8.9 Controlling the Query Optimizer ................................................................................... 920
8.9.1 Controlling Query Plan Evaluation ..................................................................... 920
8.9.2 Switchable Optimizations .................................................................................. 921
8.9.3 Index Hints ....................................................................................................... 922

8.10 Buffering and Caching ............................................................................................... 925
8.10.1 InnoDB Buffer Pool Optimization ..................................................................... 925
8.10.2 The MyISAM Key Cache ................................................................................. 925
8.10.3 The MySQL Query Cache ............................................................................... 929

8.11 Optimizing Locking Operations ................................................................................... 936
8.11.1 Internal Locking Methods ................................................................................ 936
8.11.2 Table Locking Issues ...................................................................................... 938
8.11.3 Concurrent Inserts .......................................................................................... 940
8.11.4 Metadata Locking ........................................................................................... 940
8.11.5 External Locking ............................................................................................. 941

8.12 Optimizing the MySQL Server .................................................................................... 942
8.12.1 System Factors .............................................................................................. 942
8.12.2 Optimizing Disk I/O ......................................................................................... 943
8.12.3 Using Symbolic Links ...................................................................................... 944
8.12.4 Optimizing Memory Use .................................................................................. 947
8.12.5 Optimizing Network Use .................................................................................. 951

8.13 Measuring Performance (Benchmarking) .................................................................... 953
8.13.1 Measuring the Speed of Expressions and Functions ......................................... 953
8.13.2 The MySQL Benchmark Suite ......................................................................... 953
8.13.3 Using Your Own Benchmarks ......................................................................... 954
8.13.4 Measuring Performance with performance_schema .......................................... 955

8.14 Examining Thread Information ................................................................................... 955
8.14.1 Thread Command Values ............................................................................... 955
8.14.2 General Thread States .................................................................................... 957
8.14.3 Delayed-Insert Thread States .......................................................................... 963
8.14.4 Query Cache Thread States ............................................................................ 964
8.14.5 Replication Master Thread States .................................................................... 965
8.14.6 Replication Slave I/O Thread States ................................................................ 965
8.14.7 Replication Slave SQL Thread States .............................................................. 966
8.14.8 Replication Slave Connection Thread States .................................................... 967
8.14.9 NDB Cluster Thread States ............................................................................. 967
8.14.10 Event Scheduler Thread States ..................................................................... 968

9 Language Structure ................................................................................................................ 969
9.1 Literal Values .............................................................................................................. 969

9.1.1 String Literals ................................................................................................... 969
9.1.2 Number Literals ................................................................................................ 972
9.1.3 Date and Time Literals ..................................................................................... 972
9.1.4 Hexadecimal Literals ........................................................................................ 974
9.1.5 Bit-Value Literals .............................................................................................. 976
9.1.6 Boolean Literals ............................................................................................... 977
9.1.7 NULL Values .................................................................................................... 978



MySQL 5.5 Reference Manual

ix

9.2 Schema Object Names ................................................................................................ 978
9.2.1 Identifier Qualifiers ............................................................................................ 980
9.2.2 Identifier Case Sensitivity .................................................................................. 982
9.2.3 Mapping of Identifiers to File Names ................................................................. 984
9.2.4 Function Name Parsing and Resolution ............................................................. 986

9.3 Keywords and Reserved Words ................................................................................... 989
9.4 User-Defined Variables ................................................................................................ 995
9.5 Expression Syntax ...................................................................................................... 998
9.6 Comment Syntax ....................................................................................................... 1000

10 Globalization ...................................................................................................................... 1003
10.1 Character Set Support ............................................................................................. 1003

10.1.1 Character Sets and Collations in General ....................................................... 1004
10.1.2 Character Sets and Collations in MySQL ....................................................... 1005
10.1.3 Specifying Character Sets and Collations ....................................................... 1009
10.1.4 Connection Character Sets and Collations ..................................................... 1019
10.1.5 Configuring Application Character Set and Collation ....................................... 1021
10.1.6 Error Message Character Set ........................................................................ 1023
10.1.7 Column Character Set Conversion ................................................................. 1024
10.1.8 Collation Issues ............................................................................................ 1025
10.1.9 Unicode Support ........................................................................................... 1033
10.1.10 Supported Character Sets and Collations ..................................................... 1039

10.2 Setting the Error Message Language ....................................................................... 1052
10.3 Adding a Character Set ........................................................................................... 1053

10.3.1 Character Definition Arrays ........................................................................... 1054
10.3.2 String Collating Support for Complex Character Sets ...................................... 1055
10.3.3 Multi-Byte Character Support for Complex Character Sets ............................... 1056

10.4 Adding a Collation to a Character Set ...................................................................... 1056
10.4.1 Collation Implementation Types ..................................................................... 1057
10.4.2 Choosing a Collation ID ................................................................................ 1058
10.4.3 Adding a Simple Collation to an 8-Bit Character Set ....................................... 1059
10.4.4 Adding a UCA Collation to a Unicode Character Set ....................................... 1060

10.5 Character Set Configuration ..................................................................................... 1063
10.6 MySQL Server Time Zone Support ........................................................................... 1064

10.6.1 Staying Current with Time Zone Changes ...................................................... 1067
10.6.2 Time Zone Leap Second Support .................................................................. 1068

10.7 MySQL Server Locale Support ................................................................................. 1069
11 Data Types ........................................................................................................................ 1073

11.1 Data Type Overview ................................................................................................ 1074
11.1.1 Numeric Type Overview ................................................................................ 1074
11.1.2 Date and Time Type Overview ...................................................................... 1077
11.1.3 String Type Overview .................................................................................... 1078

11.2 Numeric Types ........................................................................................................ 1081
11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT .............................................................................................. 1082
11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC ................................. 1082
11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE ......................... 1083
11.2.4 Bit-Value Type - BIT ..................................................................................... 1083
11.2.5 Numeric Type Attributes ................................................................................ 1083
11.2.6 Out-of-Range and Overflow Handling ............................................................. 1084

11.3 Date and Time Types .............................................................................................. 1086
11.3.1 The DATE, DATETIME, and TIMESTAMP Types ........................................... 1087
11.3.2 The TIME Type ............................................................................................ 1088
11.3.3 The YEAR Type ........................................................................................... 1089
11.3.4 YEAR(2) Limitations and Migrating to YEAR(4) .............................................. 1090
11.3.5 Automatic Initialization and Updating for TIMESTAMP .................................... 1091
11.3.6 Fractional Seconds in Time Values ................................................................ 1094
11.3.7 Conversion Between Date and Time Types .................................................... 1094
11.3.8 Two-Digit Years in Dates .............................................................................. 1095



MySQL 5.5 Reference Manual

x

11.4 String Types ............................................................................................................ 1096
11.4.1 The CHAR and VARCHAR Types ................................................................. 1096
11.4.2 The BINARY and VARBINARY Types ........................................................... 1097
11.4.3 The BLOB and TEXT Types ......................................................................... 1099
11.4.4 The ENUM Type ........................................................................................... 1100
11.4.5 The SET Type .............................................................................................. 1103

11.5 Extensions for Spatial Data ...................................................................................... 1105
11.5.1 Spatial Data Types ....................................................................................... 1107
11.5.2 The OpenGIS Geometry Model ..................................................................... 1107
11.5.3 Using Spatial Data ........................................................................................ 1113

11.6 Data Type Default Values ........................................................................................ 1120
11.7 Data Type Storage Requirements ............................................................................ 1122
11.8 Choosing the Right Type for a Column ..................................................................... 1125
11.9 Using Data Types from Other Database Engines ...................................................... 1126

12 Functions and Operators .................................................................................................... 1127
12.1 Function and Operator Reference ............................................................................ 1128
12.2 Type Conversion in Expression Evaluation ............................................................... 1137
12.3 Operators ................................................................................................................ 1139

12.3.1 Operator Precedence .................................................................................... 1140
12.3.2 Comparison Functions and Operators ............................................................ 1141
12.3.3 Logical Operators ......................................................................................... 1147
12.3.4 Assignment Operators ................................................................................... 1149

12.4 Control Flow Functions ............................................................................................ 1150
12.5 String Functions ...................................................................................................... 1152

12.5.1 String Comparison Functions ......................................................................... 1164
12.5.2 Regular Expressions ..................................................................................... 1167
12.5.3 Character Set and Collation of Function Results ............................................. 1173

12.6 Numeric Functions and Operators ............................................................................ 1174
12.6.1 Arithmetic Operators ..................................................................................... 1175
12.6.2 Mathematical Functions ................................................................................. 1177

12.7 Date and Time Functions ......................................................................................... 1185
12.8 What Calendar Is Used By MySQL? ........................................................................ 1207
12.9 Full-Text Search Functions ...................................................................................... 1207

12.9.1 Natural Language Full-Text Searches ............................................................ 1208
12.9.2 Boolean Full-Text Searches .......................................................................... 1212
12.9.3 Full-Text Searches with Query Expansion ...................................................... 1214
12.9.4 Full-Text Stopwords ...................................................................................... 1215
12.9.5 Full-Text Restrictions .................................................................................... 1218
12.9.6 Fine-Tuning MySQL Full-Text Search ............................................................ 1218
12.9.7 Adding a Collation for Full-Text Indexing ........................................................ 1220

12.10 Cast Functions and Operators ................................................................................ 1222
12.11 XML Functions ...................................................................................................... 1228
12.12 Bit Functions and Operators ................................................................................... 1239
12.13 Encryption and Compression Functions .................................................................. 1240
12.14 Information Functions ............................................................................................. 1247
12.15 Spatial Analysis Functions ..................................................................................... 1257

12.15.1 Spatial Function Reference ......................................................................... 1257
12.15.2 Argument Handling by Spatial Functions ...................................................... 1259
12.15.3 Functions That Create Geometry Values from WKT Values ........................... 1259
12.15.4 Functions That Create Geometry Values from WKB Values ........................... 1260
12.15.5 MySQL-Specific Functions That Create Geometry Values ............................. 1260
12.15.6 Geometry Format Conversion Functions ...................................................... 1261
12.15.7 Geometry Property Functions ...................................................................... 1262
12.15.8 Spatial Operator Functions .......................................................................... 1267
12.15.9 Functions That Test Spatial Relations Between Geometry Objects ................. 1267

12.16 Aggregate (GROUP BY) Functions ......................................................................... 1269
12.16.1 Aggregate (GROUP BY) Function Descriptions ............................................. 1269
12.16.2 GROUP BY Modifiers .................................................................................. 1274



MySQL 5.5 Reference Manual

xi

12.16.3 MySQL Handling of GROUP BY .................................................................. 1277
12.17 Miscellaneous Functions ........................................................................................ 1278
12.18 Precision Math ...................................................................................................... 1283

12.18.1 Types of Numeric Values ............................................................................ 1284
12.18.2 DECIMAL Data Type Characteristics ............................................................ 1284
12.18.3 Expression Handling ................................................................................... 1285
12.18.4 Rounding Behavior ..................................................................................... 1287
12.18.5 Precision Math Examples ............................................................................ 1287

13 SQL Statement Syntax ....................................................................................................... 1293
13.1 Data Definition Statements ....................................................................................... 1294

13.1.1 ALTER DATABASE Syntax ........................................................................... 1294
13.1.2 ALTER EVENT Syntax .................................................................................. 1295
13.1.3 ALTER FUNCTION Syntax ........................................................................... 1297
13.1.4 ALTER LOGFILE GROUP Syntax ................................................................. 1297
13.1.5 ALTER PROCEDURE Syntax ....................................................................... 1298
13.1.6 ALTER SERVER Syntax ............................................................................... 1299
13.1.7 ALTER TABLE Syntax .................................................................................. 1299
13.1.8 ALTER TABLESPACE Syntax ....................................................................... 1319
13.1.9 ALTER VIEW Syntax .................................................................................... 1320
13.1.10 CREATE DATABASE Syntax ...................................................................... 1321
13.1.11 CREATE EVENT Syntax ............................................................................. 1321
13.1.12 CREATE FUNCTION Syntax ....................................................................... 1326
13.1.13 CREATE INDEX Syntax .............................................................................. 1326
13.1.14 CREATE LOGFILE GROUP Syntax ............................................................. 1330
13.1.15 CREATE PROCEDURE and CREATE FUNCTION Syntax ............................ 1332
13.1.16 CREATE SERVER Syntax .......................................................................... 1337
13.1.17 CREATE TABLE Syntax ............................................................................. 1338
13.1.18 CREATE TABLESPACE Syntax .................................................................. 1368
13.1.19 CREATE TRIGGER Syntax ......................................................................... 1370
13.1.20 CREATE VIEW Syntax ................................................................................ 1372
13.1.21 DROP DATABASE Syntax .......................................................................... 1376
13.1.22 DROP EVENT Syntax ................................................................................. 1377
13.1.23 DROP FUNCTION Syntax ........................................................................... 1377
13.1.24 DROP INDEX Syntax .................................................................................. 1377
13.1.25 DROP LOGFILE GROUP Syntax ................................................................. 1378
13.1.26 DROP PROCEDURE and DROP FUNCTION Syntax .................................... 1378
13.1.27 DROP SERVER Syntax .............................................................................. 1379
13.1.28 DROP TABLE Syntax ................................................................................. 1379
13.1.29 DROP TABLESPACE Syntax ...................................................................... 1379
13.1.30 DROP TRIGGER Syntax ............................................................................. 1380
13.1.31 DROP VIEW Syntax ................................................................................... 1380
13.1.32 RENAME TABLE Syntax ............................................................................. 1380
13.1.33 TRUNCATE TABLE Syntax ......................................................................... 1382

13.2 Data Manipulation Statements .................................................................................. 1383
13.2.1 CALL Syntax ................................................................................................ 1383
13.2.2 DELETE Syntax ............................................................................................ 1385
13.2.3 DO Syntax ................................................................................................... 1388
13.2.4 HANDLER Syntax ......................................................................................... 1389
13.2.5 INSERT Syntax ............................................................................................ 1391
13.2.6 LOAD DATA INFILE Syntax .......................................................................... 1399
13.2.7 LOAD XML Syntax ....................................................................................... 1408
13.2.8 REPLACE Syntax ......................................................................................... 1415
13.2.9 SELECT Syntax ............................................................................................ 1417
13.2.10 Subquery Syntax ........................................................................................ 1432
13.2.11 UPDATE Syntax ......................................................................................... 1444

13.3 Transactional and Locking Statements ..................................................................... 1446
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax ........................... 1446
13.3.2 Statements That Cannot Be Rolled Back ....................................................... 1449



MySQL 5.5 Reference Manual

xii

13.3.3 Statements That Cause an Implicit Commit .................................................... 1449
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT
Syntax .................................................................................................................... 1450
13.3.5 LOCK TABLES and UNLOCK TABLES Syntax .............................................. 1451
13.3.6 SET TRANSACTION Syntax ......................................................................... 1456
13.3.7 XA Transactions ........................................................................................... 1457

13.4 Replication Statements ............................................................................................ 1461
13.4.1 SQL Statements for Controlling Master Servers .............................................. 1461
13.4.2 SQL Statements for Controlling Slave Servers ............................................... 1463

13.5 Prepared SQL Statement Syntax ............................................................................. 1470
13.5.1 PREPARE Syntax ......................................................................................... 1473
13.5.2 EXECUTE Syntax ......................................................................................... 1473
13.5.3 DEALLOCATE PREPARE Syntax .................................................................. 1474
13.5.4 Automatic Prepared Statement Repreparation ................................................ 1474

13.6 Compound-Statement Syntax ................................................................................... 1474
13.6.1 BEGIN ... END Compound-Statement Syntax ................................................. 1474
13.6.2 Statement Label Syntax ................................................................................ 1475
13.6.3 DECLARE Syntax ......................................................................................... 1476
13.6.4 Variables in Stored Programs ........................................................................ 1476
13.6.5 Flow Control Statements ............................................................................... 1478
13.6.6 Cursors ........................................................................................................ 1482
13.6.7 Condition Handling ........................................................................................ 1483

13.7 Database Administration Statements ........................................................................ 1498
13.7.1 Account Management Statements ................................................................. 1498
13.7.2 Table Maintenance Statements ..................................................................... 1515
13.7.3 Plugin and User-Defined Function Statements ................................................ 1523
13.7.4 SET Syntax .................................................................................................. 1526
13.7.5 SHOW Syntax .............................................................................................. 1530
13.7.6 Other Administrative Statements .................................................................... 1572

13.8 Utility Statements .................................................................................................... 1580
13.8.1 DESCRIBE Syntax ........................................................................................ 1580
13.8.2 EXPLAIN Syntax .......................................................................................... 1580
13.8.3 HELP Syntax ................................................................................................ 1581
13.8.4 USE Syntax .................................................................................................. 1583

14 The InnoDB Storage Engine ............................................................................................... 1585
14.1 Introduction to InnoDB ............................................................................................. 1586

14.1.1 Benefits of Using InnoDB Tables ................................................................... 1588
14.1.2 Best Practices for InnoDB Tables .................................................................. 1589
14.1.3 Checking InnoDB Availability ......................................................................... 1589
14.1.4 Upward and Downward Compatibility ............................................................. 1590
14.1.5 Testing and Benchmarking with InnoDB ......................................................... 1590
14.1.6 Turning Off InnoDB ....................................................................................... 1591
14.1.7 Third-Party Software Contributions ................................................................ 1591

14.2 Installing the InnoDB Storage Engine ....................................................................... 1593
14.3 Upgrading the InnoDB Storage Engine ..................................................................... 1594
14.4 Downgrading the InnoDB Storage Engine ................................................................. 1594
14.5 InnoDB and the ACID Model .................................................................................... 1594
14.6 InnoDB Multi-Versioning ........................................................................................... 1595
14.7 InnoDB Architecture ................................................................................................. 1596

14.7.1 Buffer Pool ................................................................................................... 1596
14.7.2 Change Buffer .............................................................................................. 1597
14.7.3 Adaptive Hash Index ..................................................................................... 1598
14.7.4 Redo Log Buffer ........................................................................................... 1599
14.7.5 System Tablespace ...................................................................................... 1599
14.7.6 InnoDB Data Dictionary ................................................................................. 1599
14.7.7 Doublewrite Buffer ........................................................................................ 1600
14.7.8 Undo Logs ................................................................................................... 1600
14.7.9 File-Per-Table Tablespaces ........................................................................... 1600



MySQL 5.5 Reference Manual

xiii

14.7.10 Redo Log ................................................................................................... 1600
14.8 InnoDB Locking and Transaction Model .................................................................... 1601

14.8.1 InnoDB Locking ............................................................................................ 1601
14.8.2 InnoDB Transaction Model ............................................................................ 1605
14.8.3 Locks Set by Different SQL Statements in InnoDB .......................................... 1613
14.8.4 Phantom Rows ............................................................................................. 1616
14.8.5 Deadlocks in InnoDB .................................................................................... 1616

14.9 InnoDB Configuration ............................................................................................... 1619
14.9.1 InnoDB Startup Configuration ........................................................................ 1620
14.9.2 InnoDB Buffer Pool Configuration .................................................................. 1624
14.9.3 Configuring the Memory Allocator for InnoDB ................................................. 1632
14.9.4 Configuring InnoDB Change Buffering ............................................................ 1633
14.9.5 Configuring Thread Concurrency for InnoDB .................................................. 1634
14.9.6 Configuring the Number of Background InnoDB I/O Threads ........................... 1635
14.9.7 Using Asynchronous I/O on Linux .................................................................. 1636
14.9.8 Configuring the InnoDB Master Thread I/O Rate ............................................. 1636
14.9.9 Configuring Spin Lock Polling ........................................................................ 1637
14.9.10 Configuring InnoDB Purge Scheduling ......................................................... 1637
14.9.11 Configuring Optimizer Statistics for InnoDB .................................................. 1638

14.10 InnoDB Tablespaces .............................................................................................. 1639
14.10.1 Resizing the InnoDB System Tablespace ..................................................... 1639
14.10.2 Changing the Number or Size of InnoDB Redo Log Files .............................. 1640
14.10.3 Using Raw Disk Partitions for the System Tablespace ................................... 1640
14.10.4 InnoDB File-Per-Table Tablespaces ............................................................. 1642

14.11 InnoDB Tables and Indexes ................................................................................... 1645
14.11.1 InnoDB Tables ............................................................................................ 1645
14.11.2 InnoDB Indexes .......................................................................................... 1666

14.12 InnoDB Table Compression ................................................................................... 1667
14.12.1 Overview of Table Compression .................................................................. 1667
14.12.2 Enabling Compression for a Table ............................................................... 1667
14.12.3 Tuning Compression for InnoDB Tables ....................................................... 1668
14.12.4 Monitoring InnoDB Table Compression at Runtime ....................................... 1672
14.12.5 How Compression Works for InnoDB Tables ................................................ 1672
14.12.6 SQL Compression Syntax Warnings and Errors ............................................ 1675

14.13 InnoDB File-Format Management ........................................................................... 1677
14.13.1 Enabling File Formats ................................................................................. 1678
14.13.2 Verifying File Format Compatibility ............................................................... 1678
14.13.3 Identifying the File Format in Use ................................................................ 1681
14.13.4 Downgrading the File Format ...................................................................... 1681

14.14 InnoDB Row Storage and Row Formats ................................................................. 1682
14.14.1 Overview of InnoDB Row Storage ............................................................... 1682
14.14.2 Specifying the Row Format for a Table ........................................................ 1682
14.14.3 DYNAMIC and COMPRESSED Row Formats .............................................. 1682
14.14.4 COMPACT and REDUNDANT Row Formats ................................................ 1683

14.15 InnoDB Disk I/O and File Space Management ........................................................ 1683
14.15.1 InnoDB Disk I/O .......................................................................................... 1684
14.15.2 File Space Management ............................................................................. 1684
14.15.3 InnoDB Checkpoints ................................................................................... 1686
14.15.4 Defragmenting a Table ................................................................................ 1686
14.15.5 Reclaiming Disk Space with TRUNCATE TABLE .......................................... 1687

14.16 InnoDB Fast Index Creation ................................................................................... 1687
14.16.1 Overview of Fast Index Creation .................................................................. 1687
14.16.2 Examples of Fast Index Creation ................................................................. 1687
14.16.3 Implementation Details of Fast Index Creation .............................................. 1688
14.16.4 Concurrency Considerations for Fast Index Creation ..................................... 1688
14.16.5 How Crash Recovery Works with Fast Index Creation ................................... 1689
14.16.6 Limitations of Fast Index Creation ................................................................ 1689

14.17 InnoDB Startup Options and System Variables ........................................................ 1690



MySQL 5.5 Reference Manual

xiv

14.18 InnoDB INFORMATION_SCHEMA Tables .............................................................. 1730
14.18.1 InnoDB INFORMATION_SCHEMA Tables about Compression ...................... 1730
14.18.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information ........ 1732
14.18.3 InnoDB INFORMATION_SCHEMA Buffer Pool Tables .................................. 1738

14.19 InnoDB Integration with MySQL Performance Schema ............................................ 1742
14.19.1 Monitoring InnoDB Mutex Waits Using Performance Schema ........................ 1743

14.20 InnoDB Monitors .................................................................................................... 1746
14.20.1 InnoDB Monitor Types ................................................................................ 1746
14.20.2 Enabling InnoDB Monitors ........................................................................... 1746
14.20.3 InnoDB Standard Monitor and Lock Monitor Output ...................................... 1748
14.20.4 InnoDB Tablespace Monitor Output ............................................................. 1753
14.20.5 InnoDB Table Monitor Output ...................................................................... 1755

14.21 InnoDB Backup and Recovery ................................................................................ 1758
14.21.1 InnoDB Backup ........................................................................................... 1759
14.21.2 InnoDB Recovery ........................................................................................ 1759

14.22 InnoDB and MySQL Replication ............................................................................. 1761
14.23 InnoDB Troubleshooting ......................................................................................... 1763

14.23.1 Troubleshooting InnoDB I/O Problems ......................................................... 1764
14.23.2 Forcing InnoDB Recovery ........................................................................... 1764
14.23.3 Troubleshooting InnoDB Data Dictionary Operations ..................................... 1766
14.23.4 InnoDB Error Handling ................................................................................ 1767

15 Alternative Storage Engines ................................................................................................ 1769
15.1 Setting the Storage Engine ...................................................................................... 1772
15.2 Overview of MySQL Storage Engine Architecture ...................................................... 1773

15.2.1 Pluggable Storage Engine Architecture .......................................................... 1774
15.2.2 The Common Database Server Layer ............................................................ 1774

15.3 The MyISAM Storage Engine ................................................................................... 1775
15.3.1 MyISAM Startup Options ............................................................................... 1777
15.3.2 Space Needed for Keys ................................................................................ 1779
15.3.3 MyISAM Table Storage Formats .................................................................... 1779
15.3.4 MyISAM Table Problems ............................................................................... 1782

15.4 The MEMORY Storage Engine ................................................................................ 1783
15.5 The CSV Storage Engine ........................................................................................ 1787

15.5.1 Repairing and Checking CSV Tables ............................................................. 1788
15.5.2 CSV Limitations ............................................................................................ 1789

15.6 The ARCHIVE Storage Engine ................................................................................. 1789
15.7 The BLACKHOLE Storage Engine ........................................................................... 1790
15.8 The MERGE Storage Engine ................................................................................... 1792

15.8.1 MERGE Table Advantages and Disadvantages .............................................. 1795
15.8.2 MERGE Table Problems ............................................................................... 1796

15.9 The FEDERATED Storage Engine ........................................................................... 1797
15.9.1 FEDERATED Storage Engine Overview ......................................................... 1798
15.9.2 How to Create FEDERATED Tables .............................................................. 1799
15.9.3 FEDERATED Storage Engine Notes and Tips ................................................ 1801
15.9.4 FEDERATED Storage Engine Resources ....................................................... 1803

15.10 The EXAMPLE Storage Engine .............................................................................. 1803
15.11 Other Storage Engines .......................................................................................... 1803

16 High Availability and Scalability ........................................................................................... 1805
16.1 Using ZFS Replication ............................................................................................. 1807

16.1.1 Using ZFS for File System Replication ........................................................... 1808
16.1.2 Configuring MySQL for ZFS Replication ......................................................... 1809
16.1.3 Handling MySQL Recovery with ZFS ............................................................. 1810

16.2 Using MySQL with memcached ................................................................................ 1810
16.2.1 Installing memcached .................................................................................... 1811
16.2.2 Using memcached ........................................................................................ 1813
16.2.3 Developing a memcached Application ............................................................ 1831
16.2.4 Getting memcached Statistics ........................................................................ 1856
16.2.5 memcached FAQ .......................................................................................... 1864



MySQL 5.5 Reference Manual

xv

17 Replication ......................................................................................................................... 1869
17.1 Replication Configuration ......................................................................................... 1870

17.1.1 How to Set Up Replication ............................................................................ 1871
17.1.2 Replication Formats ...................................................................................... 1880
17.1.3 Replication and Binary Logging Options and Variables .................................... 1887
17.1.4 Common Replication Administration Tasks ..................................................... 1940

17.2 Replication Implementation ...................................................................................... 1943
17.2.1 Replication Implementation Details ................................................................ 1943
17.2.2 Replication Relay and Status Logs ................................................................ 1945
17.2.3 How Servers Evaluate Replication Filtering Rules ........................................... 1948

17.3 Replication Solutions ............................................................................................... 1954
17.3.1 Using Replication for Backups ....................................................................... 1955
17.3.2 Using Replication with Different Master and Slave Storage Engines ................. 1958
17.3.3 Using Replication for Scale-Out ..................................................................... 1959
17.3.4 Replicating Different Databases to Different Slaves ........................................ 1960
17.3.5 Improving Replication Performance ................................................................ 1962
17.3.6 Switching Masters During Failover ................................................................. 1963
17.3.7 Setting Up Replication to Use Secure Connections ......................................... 1965
17.3.8 Semisynchronous Replication ........................................................................ 1966

17.4 Replication Notes and Tips ...................................................................................... 1971
17.4.1 Replication Features and Issues .................................................................... 1971
17.4.2 Replication Compatibility Between MySQL Versions ....................................... 1996
17.4.3 Upgrading a Replication Setup ...................................................................... 1997
17.4.4 Troubleshooting Replication .......................................................................... 1998
17.4.5 How to Report Replication Bugs or Problems ................................................. 1999

18 MySQL NDB Cluster 7.2 .................................................................................................... 2001
18.1 NDB Cluster Overview ............................................................................................. 2004

18.1.1 NDB Cluster Core Concepts .......................................................................... 2006
18.1.2 NDB Cluster Nodes, Node Groups, Replicas, and Partitions ............................ 2008
18.1.3 NDB Cluster Hardware, Software, and Networking Requirements .................... 2011
18.1.4 What is New in MySQL NDB Cluster 7.2 ....................................................... 2012
18.1.5 MySQL Server Using InnoDB Compared with NDB Cluster ............................. 2015
18.1.6 Known Limitations of NDB Cluster ................................................................. 2018

18.2 NDB Cluster Installation and Upgrades ..................................................................... 2030
18.2.1 Installing NDB Cluster on Linux ..................................................................... 2032
18.2.2 Installing NDB Cluster on Windows ............................................................... 2038
18.2.3 Initial Configuration of NDB Cluster ............................................................... 2047
18.2.4 Initial Startup of NDB Cluster ........................................................................ 2049
18.2.5 NDB Cluster Example with Tables and Data .................................................. 2050
18.2.6 Safe Shutdown and Restart of NDB Cluster ................................................... 2053
18.2.7 Upgrading and Downgrading NDB Cluster 7.2 ................................................ 2054

18.3 Configuration of NDB Cluster ................................................................................... 2056
18.3.1 Quick Test Setup of NDB Cluster .................................................................. 2056
18.3.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables ..... 2058
18.3.3 NDB Cluster Configuration Files .................................................................... 2100
18.3.4 Using High-Speed Interconnects with NDB Cluster ......................................... 2224

18.4 NDB Cluster Programs ............................................................................................ 2224
18.4.1 ndbd — The NDB Cluster Data Node Daemon .............................................. 2224
18.4.2 ndbinfo_select_all — Select From ndbinfo Tables .................................. 2231
18.4.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded) ................. 2232
18.4.4 ndb_mgmd — The NDB Cluster Management Server Daemon ......................... 2233
18.4.5 ndb_mgm — The NDB Cluster Management Client ......................................... 2241
18.4.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB
Cluster Tables ......................................................................................................... 2242
18.4.7 ndb_config — Extract NDB Cluster Configuration Information ...................... 2245
18.4.8 ndb_cpcd — Automate Testing for NDB Development ................................... 2252
18.4.9 ndb_delete_all — Delete All Rows from an NDB Table ............................. 2252
18.4.10 ndb_desc — Describe NDB Tables ............................................................ 2253



MySQL 5.5 Reference Manual

xvi

18.4.11 ndb_drop_index — Drop Index from an NDB Table ................................... 2258
18.4.12 ndb_drop_table — Drop an NDB Table ................................................... 2259
18.4.13 ndb_error_reporter — NDB Error-Reporting Utility ................................. 2259
18.4.14 ndb_index_stat — NDB Index Statistics Utility ......................................... 2260
18.4.15 ndb_move_data — NDB Data Copy Utility ................................................. 2266
18.4.16 ndb_print_backup_file — Print NDB Backup File Contents ................... 2268
18.4.17 ndb_print_file — Print NDB Disk Data File Contents .............................. 2269
18.4.18 ndb_print_schema_file — Print NDB Schema File Contents .................. 2269
18.4.19 ndb_print_sys_file — Print NDB System File Contents ......................... 2269
18.4.20 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log .... 2270
18.4.21 ndb_restore — Restore an NDB Cluster Backup ....................................... 2273
18.4.22 ndb_select_all — Print Rows from an NDB Table ................................... 2288
18.4.23 ndb_select_count — Print Row Counts for NDB Tables ........................... 2291
18.4.24 ndb_show_tables — Display List of NDB Tables ....................................... 2292
18.4.25 ndb_size.pl — NDBCLUSTER Size Requirement Estimator ...................... 2293
18.4.26 ndb_waiter — Wait for NDB Cluster to Reach a Given Status ..................... 2296
18.4.27 Options Common to NDB Cluster Programs — Options Common to NDB
Cluster Programs .................................................................................................... 2298

18.5 Management of NDB Cluster ................................................................................... 2302
18.5.1 Summary of NDB Cluster Start Phases .......................................................... 2303
18.5.2 Commands in the NDB Cluster Management Client ........................................ 2304
18.5.3 Online Backup of NDB Cluster ...................................................................... 2308
18.5.4 MySQL Server Usage for NDB Cluster .......................................................... 2313
18.5.5 Performing a Rolling Restart of an NDB Cluster ............................................. 2314
18.5.6 Event Reports Generated in NDB Cluster ...................................................... 2316
18.5.7 NDB Cluster Log Messages .......................................................................... 2326
18.5.8 NDB Cluster Single User Mode ..................................................................... 2341
18.5.9 Quick Reference: NDB Cluster SQL Statements ............................................. 2342
18.5.10 ndbinfo: The NDB Cluster Information Database ........................................... 2344
18.5.11 NDB Cluster Security Issues ....................................................................... 2365
18.5.12 NDB Cluster Disk Data Tables .................................................................... 2372
18.5.13 Adding NDB Cluster Data Nodes Online ...................................................... 2378
18.5.14 Distributed MySQL Privileges for NDB Cluster .............................................. 2389
18.5.15 NDB API Statistics Counters and Variables .................................................. 2392

18.6 NDB Cluster Replication .......................................................................................... 2403
18.6.1 NDB Cluster Replication: Abbreviations and Symbols ..................................... 2404
18.6.2 General Requirements for NDB Cluster Replication ........................................ 2405
18.6.3 Known Issues in NDB Cluster Replication ...................................................... 2406
18.6.4 NDB Cluster Replication Schema and Tables ................................................. 2413
18.6.5 Preparing the NDB Cluster for Replication ..................................................... 2416
18.6.6 Starting NDB Cluster Replication (Single Replication Channel) ........................ 2417
18.6.7 Using Two Replication Channels for NDB Cluster Replication .......................... 2419
18.6.8 Implementing Failover with NDB Cluster Replication ....................................... 2420
18.6.9 NDB Cluster Backups With NDB Cluster Replication ....................................... 2422
18.6.10 NDB Cluster Replication: Multi-Master and Circular Replication ...................... 2428
18.6.11 NDB Cluster Replication Conflict Resolution ................................................. 2432

18.7 NDB Cluster Release Notes ..................................................................................... 2441
19 Partitioning ......................................................................................................................... 2443

19.1 Overview of Partitioning in MySQL ........................................................................... 2445
19.2 Partitioning Types .................................................................................................... 2448

19.2.1 RANGE Partitioning ...................................................................................... 2450
19.2.2 LIST Partitioning ........................................................................................... 2454
19.2.3 COLUMNS Partitioning ................................................................................. 2456
19.2.4 HASH Partitioning ......................................................................................... 2463
19.2.5 KEY Partitioning ........................................................................................... 2466
19.2.6 Subpartitioning .............................................................................................. 2468
19.2.7 How MySQL Partitioning Handles NULL ........................................................ 2471

19.3 Partition Management .............................................................................................. 2475



MySQL 5.5 Reference Manual

xvii

19.3.1 Management of RANGE and LIST Partitions .................................................. 2476
19.3.2 Management of HASH and KEY Partitions ..................................................... 2482
19.3.3 Maintenance of Partitions .............................................................................. 2483
19.3.4 Obtaining Information About Partitions ........................................................... 2484

19.4 Partition Pruning ...................................................................................................... 2486
19.5 Restrictions and Limitations on Partitioning ............................................................... 2490

19.5.1 Partitioning Keys, Primary Keys, and Unique Keys ......................................... 2496
19.5.2 Partitioning Limitations Relating to Storage Engines ........................................ 2499
19.5.3 Partitioning Limitations Relating to Functions .................................................. 2500
19.5.4 Partitioning and Table-Level Locking .............................................................. 2501

20 Stored Programs and Views ............................................................................................... 2503
20.1 Defining Stored Programs ........................................................................................ 2504
20.2 Using Stored Routines (Procedures and Functions) ................................................... 2505

20.2.1 Stored Routine Syntax .................................................................................. 2505
20.2.2 Stored Routines and MySQL Privileges ......................................................... 2506
20.2.3 Stored Routine Metadata .............................................................................. 2506
20.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() .................... 2507

20.3 Using Triggers ......................................................................................................... 2507
20.3.1 Trigger Syntax and Examples ........................................................................ 2508
20.3.2 Trigger Metadata .......................................................................................... 2511

20.4 Using the Event Scheduler ...................................................................................... 2511
20.4.1 Event Scheduler Overview ............................................................................ 2512
20.4.2 Event Scheduler Configuration ...................................................................... 2513
20.4.3 Event Syntax ................................................................................................ 2515
20.4.4 Event Metadata ............................................................................................ 2515
20.4.5 Event Scheduler Status ................................................................................. 2516
20.4.6 The Event Scheduler and MySQL Privileges .................................................. 2516

20.5 Using Views ............................................................................................................ 2519
20.5.1 View Syntax ................................................................................................. 2519
20.5.2 View Processing Algorithms .......................................................................... 2520
20.5.3 Updatable and Insertable Views .................................................................... 2521
20.5.4 The View WITH CHECK OPTION Clause ...................................................... 2523
20.5.5 View Metadata .............................................................................................. 2523

20.6 Access Control for Stored Programs and Views ........................................................ 2524
20.7 Binary Logging of Stored Programs .......................................................................... 2525

21 INFORMATION_SCHEMA Tables ....................................................................................... 2533
21.1 The INFORMATION_SCHEMA CHARACTER_SETS Table ....................................... 2536
21.2 The INFORMATION_SCHEMA COLLATIONS Table ................................................. 2537
21.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table .............................................................................................................................. 2537
21.4 The INFORMATION_SCHEMA COLUMNS Table ..................................................... 2538
21.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table .................................. 2538
21.6 The INFORMATION_SCHEMA ENGINES Table ....................................................... 2539
21.7 The INFORMATION_SCHEMA EVENTS Table ......................................................... 2539
21.8 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables .... 2543
21.9 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables ............................................................................................................................. 2543
21.10 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table ................................ 2543
21.11 The INFORMATION_SCHEMA PARAMETERS Table ............................................. 2544
21.12 The INFORMATION_SCHEMA PARTITIONS Table ................................................ 2545
21.13 The INFORMATION_SCHEMA PLUGINS Table ...................................................... 2548
21.14 The INFORMATION_SCHEMA PROCESSLIST Table ............................................. 2549
21.15 The INFORMATION_SCHEMA PROFILING Table .................................................. 2550
21.16 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table .................... 2551
21.17 The INFORMATION_SCHEMA ROUTINES Table ................................................... 2551
21.18 The INFORMATION_SCHEMA SCHEMATA Table .................................................. 2553
21.19 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table ................................. 2553
21.20 The INFORMATION_SCHEMA STATISTICS Table ................................................. 2554



MySQL 5.5 Reference Manual

xviii

21.21 The INFORMATION_SCHEMA TABLES Table ....................................................... 2554
21.22 The INFORMATION_SCHEMA TABLESPACES Table ............................................ 2556
21.23 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table ................................ 2556
21.24 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table .................................... 2557
21.25 The INFORMATION_SCHEMA TRIGGERS Table ................................................... 2557
21.26 The INFORMATION_SCHEMA USER_PRIVILEGES Table ..................................... 2559
21.27 The INFORMATION_SCHEMA VIEWS Table ......................................................... 2559
21.28 InnoDB INFORMATION_SCHEMA Tables .............................................................. 2561

21.28.1 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table ................... 2561
21.28.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table .......... 2563
21.28.3 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table ...... 2565
21.28.4 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET
Tables ..................................................................................................................... 2567
21.28.5 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables ........................................................................ 2568
21.28.6 The INFORMATION_SCHEMA INNODB_LOCKS Table ................................ 2569
21.28.7 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table ...................... 2570
21.28.8 The INFORMATION_SCHEMA INNODB_TRX Table .................................... 2571

21.29 NDB Cluster INFORMATION_SCHEMA Tables ....................................................... 2573
21.29.1 The INFORMATION_SCHEMA FILES Table ................................................ 2573
21.29.2 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table .... 2579

21.30 Thread Pool INFORMATION_SCHEMA Tables ....................................................... 2580
21.30.1 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table ............ 2580
21.30.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table ............ 2582
21.30.3 The INFORMATION_SCHEMA TP_THREAD_STATE Table ......................... 2583

21.31 Extensions to SHOW Statements ........................................................................... 2584
22 MySQL Performance Schema ............................................................................................. 2587

22.1 Performance Schema Quick Start ............................................................................ 2588
22.2 Performance Schema Build Configuration ................................................................. 2594
22.3 Performance Schema Startup Configuration .............................................................. 2595
22.4 Performance Schema Runtime Configuration ............................................................ 2595

22.4.1 Performance Schema Event Timing ............................................................... 2596
22.4.2 Performance Schema Event Filtering ............................................................. 2599
22.4.3 Event Pre-Filtering ........................................................................................ 2600
22.4.4 Naming Instruments or Consumers for Filtering Operations ............................. 2601
22.4.5 Determining What Is Instrumented ................................................................. 2602

22.5 Performance Schema Queries ................................................................................. 2602
22.6 Performance Schema Instrument Naming Conventions .............................................. 2603
22.7 Performance Schema Status Monitoring ................................................................... 2604
22.8 Performance Schema General Table Characteristics ................................................. 2607
22.9 Performance Schema Table Descriptions ................................................................. 2608

22.9.1 Performance Schema Table Index ................................................................. 2608
22.9.2 Performance Schema Setup Tables ............................................................... 2609
22.9.3 Performance Schema Instance Tables ........................................................... 2611
22.9.4 Performance Schema Wait Event Tables ....................................................... 2614
22.9.5 Performance Schema Summary Tables ......................................................... 2617
22.9.6 Performance Schema Miscellaneous Tables .................................................. 2620

22.10 Performance Schema Option and Variable Reference ............................................. 2621
22.11 Performance Schema System Variables ................................................................. 2622
22.12 Performance Schema Status Variables ................................................................... 2628
22.13 Performance Schema and Plugins .......................................................................... 2629
22.14 Using the Performance Schema to Diagnose Problems ........................................... 2629

23 Connectors and APIs ......................................................................................................... 2631
23.1 MySQL Connector/C ................................................................................................ 2634
23.2 MySQL Connector/C++ ............................................................................................ 2634
23.3 MySQL Connector/J ................................................................................................ 2634
23.4 MySQL Connector/Net ............................................................................................. 2635
23.5 MySQL Connector/ODBC ......................................................................................... 2635



MySQL 5.5 Reference Manual

xix

23.6 MySQL Connector/Python ........................................................................................ 2635
23.7 libmysqld, the Embedded MySQL Server Library ....................................................... 2635

23.7.1 Compiling Programs with libmysqld ................................................................ 2636
23.7.2 Restrictions When Using the Embedded MySQL Server .................................. 2636
23.7.3 Options with the Embedded Server ............................................................... 2637
23.7.4 Embedded Server Examples ......................................................................... 2637

23.8 MySQL C API ......................................................................................................... 2640
23.8.1 MySQL C API Implementations ..................................................................... 2641
23.8.2 Simultaneous MySQL Server and Connector/C Installations ............................ 2642
23.8.3 Example C API Client Programs .................................................................... 2643
23.8.4 Building and Running C API Client Programs ................................................. 2643
23.8.5 C API Data Structures .................................................................................. 2647
23.8.6 C API Function Overview .............................................................................. 2652
23.8.7 C API Function Descriptions .......................................................................... 2657
23.8.8 C API Prepared Statements .......................................................................... 2707
23.8.9 C API Prepared Statement Data Structures .................................................... 2707
23.8.10 C API Prepared Statement Function Overview ............................................. 2713
23.8.11 C API Prepared Statement Function Descriptions ......................................... 2716
23.8.12 C API Threaded Function Descriptions ......................................................... 2739
23.8.13 C API Embedded Server Function Descriptions ............................................ 2740
23.8.14 C API Client Plugin Functions ..................................................................... 2740
23.8.15 Common Questions and Problems When Using the C API ............................ 2743
23.8.16 Controlling Automatic Reconnection Behavior ............................................... 2745
23.8.17 C API Support for Multiple Statement Execution ........................................... 2746
23.8.18 C API Prepared Statement Problems ........................................................... 2748
23.8.19 C API Prepared Statement Handling of Date and Time Values ....................... 2748
23.8.20 C API Support for Prepared CALL Statements .............................................. 2749

23.9 MySQL PHP API ..................................................................................................... 2753
23.10 MySQL Perl API .................................................................................................... 2753
23.11 MySQL Python API ................................................................................................ 2754
23.12 MySQL Ruby APIs ................................................................................................ 2755

23.12.1 The MySQL/Ruby API ................................................................................. 2755
23.12.2 The Ruby/MySQL API ................................................................................. 2755

23.13 MySQL Tcl API ..................................................................................................... 2755
23.14 MySQL Eiffel Wrapper ........................................................................................... 2755

24 Extending MySQL .............................................................................................................. 2757
24.1 MySQL Internals ...................................................................................................... 2757

24.1.1 MySQL Threads ........................................................................................... 2757
24.1.2 The MySQL Test Suite ................................................................................. 2758

24.2 The MySQL Plugin API ............................................................................................ 2759
24.2.1 Types of Plugins ........................................................................................... 2759
24.2.2 Plugin API Characteristics ............................................................................. 2762
24.2.3 Plugin API Components ................................................................................ 2763
24.2.4 Writing Plugins ............................................................................................. 2764

24.3 MySQL Services for Plugins .................................................................................... 2804
24.4 Adding New Functions to MySQL ............................................................................. 2805

24.4.1 Features of the User-Defined Function Interface ............................................. 2806
24.4.2 Adding a New User-Defined Function ............................................................ 2806
24.4.3 Adding a New Native Function ...................................................................... 2815

24.5 Debugging and Porting MySQL ................................................................................ 2817
24.5.1 Debugging a MySQL Server .......................................................................... 2817
24.5.2 Debugging a MySQL Client ........................................................................... 2825
24.5.3 The DBUG Package ..................................................................................... 2825

25 MySQL Enterprise Edition ................................................................................................... 2829
25.1 MySQL Enterprise Monitor Overview ........................................................................ 2829
25.2 MySQL Enterprise Backup Overview ........................................................................ 2830
25.3 MySQL Enterprise Security Overview ....................................................................... 2830
25.4 MySQL Enterprise Encryption Overview ................................................................... 2831



MySQL 5.5 Reference Manual

xx

25.5 MySQL Enterprise Audit Overview ........................................................................... 2831
25.6 MySQL Enterprise Firewall Overview ........................................................................ 2831
25.7 MySQL Enterprise Thread Pool Overview ................................................................. 2832

26 MySQL Workbench ............................................................................................................ 2833
A MySQL 5.5 Frequently Asked Questions ............................................................................... 2835

A.1 MySQL 5.5 FAQ: General ......................................................................................... 2835
A.2 MySQL 5.5 FAQ: Storage Engines ............................................................................ 2837
A.3 MySQL 5.5 FAQ: Server SQL Mode .......................................................................... 2837
A.4 MySQL 5.5 FAQ: Stored Procedures and Functions ................................................... 2838
A.5 MySQL 5.5 FAQ: Triggers ......................................................................................... 2841
A.6 MySQL 5.5 FAQ: Views ............................................................................................ 2844
A.7 MySQL 5.5 FAQ: INFORMATION_SCHEMA .............................................................. 2844
A.8 MySQL 5.5 FAQ: Migration ....................................................................................... 2845
A.9 MySQL 5.5 FAQ: Security ......................................................................................... 2845
A.10 MySQL FAQ: MySQL 5.5 and NDB Cluster .............................................................. 2846
A.11 MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets ................. 2859
A.12 MySQL 5.5 FAQ: Connectors & APIs ....................................................................... 2871
A.13 MySQL 5.5 FAQ: Replication ................................................................................... 2871
A.14 MySQL 5.5 FAQ: MySQL Enterprise Thread Pool ..................................................... 2875
A.15 MySQL 5.5 FAQ: InnoDB Change Buffer .................................................................. 2876
A.16 MySQL 5.5 FAQ: Virtualization Support .................................................................... 2878

B Errors, Error Codes, and Common Problems ........................................................................ 2879
B.1 Sources of Error Information ...................................................................................... 2879
B.2 Types of Error Values ............................................................................................... 2879
B.3 Server Error Codes and Messages ............................................................................ 2880
B.4 Client Error Codes and Messages ............................................................................. 2932
B.5 Problems and Common Errors .................................................................................. 2936

B.5.1 How to Determine What Is Causing a Problem ................................................ 2936
B.5.2 Common Errors When Using MySQL Programs ............................................... 2937
B.5.3 Administration-Related Issues ......................................................................... 2950
B.5.4 Query-Related Issues ..................................................................................... 2957
B.5.5 Optimizer-Related Issues ................................................................................ 2965
B.5.6 Table Definition-Related Issues ....................................................................... 2965
B.5.7 Known Issues in MySQL ................................................................................ 2966

C Restrictions and Limits ......................................................................................................... 2971
C.1 Restrictions on Stored Programs ............................................................................... 2971
C.2 Restrictions on Condition Handling ............................................................................ 2975
C.3 Restrictions on Server-Side Cursors .......................................................................... 2975
C.4 Restrictions on Subqueries ........................................................................................ 2975
C.5 Restrictions on Views ................................................................................................ 2977
C.6 Restrictions on XA Transactions ................................................................................ 2978
C.7 Restrictions on Character Sets .................................................................................. 2979
C.8 Restrictions on Performance Schema ........................................................................ 2979
C.9 Restrictions on Pluggable Authentication .................................................................... 2980
C.10 Limits in MySQL ..................................................................................................... 2982

C.10.1 Limits on Joins ............................................................................................. 2982
C.10.2 Limits on Number of Databases and Tables .................................................. 2982
C.10.3 Limits on Table Size ..................................................................................... 2982
C.10.4 Limits on Table Column Count and Row Size ................................................ 2983
C.10.5 Limits Imposed by .frm File Structure ............................................................ 2986
C.10.6 Windows Platform Limitations ....................................................................... 2987

D Indexes ............................................................................................................................... 2989
MySQL Glossary ..................................................................................................................... 3499



xxi

Preface and Legal Notices
This is the Reference Manual for the MySQL Database System, version 5.5, through release 5.5.58.
Differences between minor versions of MySQL 5.5 are noted in the present text with reference to
release numbers (5.5.x). For license information, see the Legal Notices.

This manual is not intended for use with older versions of the MySQL software due to the many
functional and other differences between MySQL 5.5 and previous versions. If you are using an earlier
release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.1
Reference Manual covers the 5.1 series of MySQL software releases.

If you are using MySQL 5.6, please refer to the MySQL 5.6 Reference Manual.

Licensing information—MySQL 5.5.  This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 5.5, see this document for licensing
information, including licensing information relating to third-party software that may be included in
this Commercial release. If you are using a Community release of MySQL 5.5, see this document
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Licensing information—MySQL NDB Cluster.  This product may include third-party software, used
under license. If you are using a Commercial release of MySQL NDB Cluster 7.2, see this document
for licensing information, including licensing information relating to third-party software that may be
included in this Commercial release. If you are using a Community release of MySQL NDB Cluster
7.2, see this document for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Legal Notices

Copyright © 1997, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

http://dev.mysql.com/doc/refman/5.1/en/
http://dev.mysql.com/doc/refman/5.1/en/
http://dev.mysql.com/doc/refman/5.6/en/
http://downloads.mysql.com/docs/licenses/mysqld-5.5-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysqld-5.5-gpl-en.pdf
http://downloads.mysql.com/docs/licenses/cluster-7.2-com-en.pdf
http://downloads.mysql.com/docs/licenses/cluster-7.2-gpl-en.pdf


Legal Notices

xxii

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.



1

Chapter 1 General Information

Table of Contents
1.1 About This Manual .................................................................................................................. 2
1.2 Typographical and Syntax Conventions ................................................................................... 2
1.3 Overview of the MySQL Database Management System .......................................................... 4

1.3.1 What is MySQL? .......................................................................................................... 4
1.3.2 The Main Features of MySQL ....................................................................................... 5
1.3.3 History of MySQL ......................................................................................................... 8

1.4 What Is New in MySQL 5.5 ..................................................................................................... 9
1.5 MySQL Information Sources .................................................................................................. 17

1.5.1 MySQL Web Sites ...................................................................................................... 17
1.5.2 MySQL Mailing Lists .................................................................................................. 17
1.5.3 MySQL Community Support at the MySQL Forums ...................................................... 19
1.5.4 MySQL Community Support on Internet Relay Chat (IRC) ............................................ 20
1.5.5 MySQL Enterprise ...................................................................................................... 20

1.6 How to Report Bugs or Problems .......................................................................................... 20
1.7 MySQL Standards Compliance .............................................................................................. 24

1.7.1 MySQL Extensions to Standard SQL ........................................................................... 26
1.7.2 MySQL Differences from Standard SQL ...................................................................... 28
1.7.3 How MySQL Deals with Constraints ............................................................................ 30

1.8 Credits .................................................................................................................................. 33
1.8.1 Contributors to MySQL ............................................................................................... 33
1.8.2 Documenters and translators ...................................................................................... 38
1.8.3 Packages that support MySQL .................................................................................... 39
1.8.4 Tools that were used to create MySQL ....................................................................... 40
1.8.5 Supporters of MySQL ................................................................................................. 40

The MySQL™ software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured
Query Language) database server. MySQL Server is intended for mission-critical, heavy-load
production systems as well as for embedding into mass-deployed software. Oracle is a registered
trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/
or its affiliates, and shall not be used by Customer without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open
Source product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or
can purchase a standard commercial license from Oracle. See http://www.mysql.com/company/legal/
licensing/ for more information on our licensing policies.

The following list describes some sections of particular interest in this manual:

• For a discussion of MySQL Database Server capabilities, see Section 1.3.2, “The Main Features of
MySQL”.

• For an overview of new MySQL features, see Section 1.4, “What Is New in MySQL 5.5”. For
information about the changes in each version, see the Release Notes.

• For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about
upgrading MySQL, see Section 2.11.1, “Upgrading MySQL”.

• For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.

• For information about configuring and administering MySQL Server, see Chapter 5, MySQL Server
Administration.

• For information about security in MySQL, see Chapter 6, Security.

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
http://dev.mysql.com/doc/relnotes/mysql/5.5/en/


About This Manual

2

• For information about setting up replication servers, see Chapter 17, Replication.

• For information about MySQL Enterprise, the commercial MySQL release with advanced features
and management tools, see Chapter 25, MySQL Enterprise Edition.

• For answers to a number of questions that are often asked concerning the MySQL Database Server
and its capabilities, see Appendix A, MySQL 5.5 Frequently Asked Questions.

• For a history of new features and bug fixes, see the Release Notes.

Important

To report problems or bugs, please use the instructions at Section 1.6, “How
to Report Bugs or Problems”. If you find a sensitive security bug in MySQL
Server, please let us know immediately by sending an email message to
<secalert_us@oracle.com>. Exception: Support customers should report
all problems, including security bugs, to Oracle Support.

1.1 About This Manual
This is the Reference Manual for the MySQL Database System, version 5.5, through release 5.5.58.
Differences between minor versions of MySQL 5.5 are noted in the present text with reference to
release numbers (5.5.x). For license information, see the Legal Notices.

This manual is not intended for use with older versions of the MySQL software due to the many
functional and other differences between MySQL 5.5 and previous versions. If you are using an earlier
release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.1
Reference Manual covers the 5.1 series of MySQL software releases.

If you are using MySQL 5.6, please refer to the MySQL 5.6 Reference Manual.

Because this manual serves as a reference, it does not provide general instruction on SQL or relational
database concepts. It also does not teach you how to use your operating system or command-line
interpreter.

The MySQL Database Software is under constant development, and the Reference Manual is updated
frequently as well. The most recent version of the manual is available online in searchable form at
http://dev.mysql.com/doc/. Other formats also are available there, including HTML, PDF, and EPUB
versions.

The Reference Manual source files are written in DocBook XML format. The HTML version and other
formats are produced automatically, primarily using the DocBook XSL stylesheets. For information
about DocBook, see http://docbook.org/

If you have questions about using MySQL, you can ask them using our mailing lists or forums. See
Section 1.5.2, “MySQL Mailing Lists”, and Section 1.5.3, “MySQL Community Support at the MySQL
Forums”. If you have suggestions concerning additions or corrections to the manual itself, please send
them to the http://www.mysql.com/company/contact/.

This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by
the MySQL Documentation Team, consisting of Chris Cole, Paul DuBois, Edward Gilmore, Stefan Hinz,
David Moss, Philip Olson, Daniel Price, Daniel So, and Jon Stephens.

1.2 Typographical and Syntax Conventions
This manual uses certain typographical conventions:

• Text in this style is used for SQL statements; database, table, and column names; program
listings and source code; and environment variables. Example: “To reload the grant tables, use the
FLUSH PRIVILEGES statement.”

http://dev.mysql.com/doc/relnotes/mysql/5.5/en/
http://dev.mysql.com/doc/refman/5.1/en/
http://dev.mysql.com/doc/refman/5.1/en/
http://dev.mysql.com/doc/refman/5.6/en/
http://dev.mysql.com/doc/
http://docbook.org/
http://www.mysql.com/company/contact/


Typographical and Syntax Conventions

3

• Text in this style indicates input that you type in examples.

• Text in this style indicates the names of executable programs and scripts, examples being
mysql (the MySQL command-line client program) and mysqld (the MySQL server executable).

• Text in this style is used for variable input for which you should substitute a value of your
own choosing.

• Text in this style is used for emphasis.

• Text in this style is used in table headings and to convey especially strong emphasis.

• Text in this style is used to indicate a program option that affects how the program is
executed, or that supplies information that is needed for the program to function in a certain way.
Example: “The --host option (short form -h) tells the mysql client program the hostname or IP
address of the MySQL server that it should connect to”.

• File names and directory names are written like this: “The global my.cnf file is located in the /etc
directory.”

• Character sequences are written like this: “To specify a wildcard, use the ‘%’ character.”

When commands are shown that are meant to be executed from within a particular program, the
prompt shown preceding the command indicates which command to use. For example, shell>
indicates a command that you execute from your login shell, root-shell> is similar but should be
executed as root, and mysql> indicates a statement that you execute from the mysql client program:

shell> type a shell command here
root-shell> type a shell command as root here
mysql> type a mysql statement here

In some areas different systems may be distinguished from each other to show that commands should
be executed in two different environments. For example, while working with replication the commands
might be prefixed with master and slave:

master> type a mysql command on the replication master here
slave> type a mysql command on the replication slave here

The “shell” is your command interpreter. On Unix, this is typically a program such as sh, csh, or bash.
On Windows, the equivalent program is command.com or cmd.exe, typically run in a console window.

When you enter a command or statement shown in an example, do not type the prompt shown in the
example.

Database, table, and column names must often be substituted into statements. To indicate that such
substitution is necessary, this manual uses db_name, tbl_name, and col_name. For example, you
might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own database, table,
and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case sensitive and may be written in any lettercase. This manual uses
uppercase.

In syntax descriptions, square brackets (“[” and “]”) indicate optional words or clauses. For example, in
the following statement, IF EXISTS is optional:



Overview of the MySQL Database Management System

4

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by vertical
bars (“|”). When one member from a set of choices may be chosen, the alternatives are listed within
square brackets (“[” and “]”):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within braces (“{”
and “}”):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter
version of more complex syntax. For example, SELECT ... INTO OUTFILE is shorthand for the form
of SELECT statement that has an INTO OUTFILE clause following other parts of the statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In
the following example, multiple reset_option values may be given, with each of those after the first
preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence
to set the CC environment variable and run the configure command looks like this in Bourne shell
syntax:

shell> CC=gcc ./configure

If you are using csh or tcsh, you must issue commands somewhat differently:

shell> setenv CC gcc
shell> ./configure

1.3 Overview of the MySQL Database Management System

1.3.1 What is MySQL?

MySQL, the most popular Open Source SQL database management system, is developed, distributed,
and supported by Oracle Corporation.

The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL software.

• MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to
a picture gallery or the vast amounts of information in a corporate network. To add, access, and
process data stored in a computer database, you need a database management system such
as MySQL Server. Since computers are very good at handling large amounts of data, database
management systems play a central role in computing, as standalone utilities, or as parts of other
applications.

• MySQL databases are relational.

 A relational database stores data in separate tables rather than putting all the data in one big
storeroom. The database structures are organized into physical files optimized for speed. The
logical model, with objects such as databases, tables, views, rows, and columns, offers a flexible

http://www.mysql.com/


The Main Features of MySQL

5

programming environment. You set up rules governing the relationships between different data
fields, such as one-to-one, one-to-many, unique, required or optional, and “pointers” between
different tables. The database enforces these rules, so that with a well-designed database, your
application never sees inconsistent, duplicate, orphan, out-of-date, or missing data.

The SQL part of “MySQL” stands for “Structured Query Language”. SQL is the most common
standardized language used to access databases. Depending on your programming environment,
you might enter SQL directly (for example, to generate reports), embed SQL statements into code
written in another language, or use a language-specific API that hides the SQL syntax.

SQL is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986
and several versions exist. In this manual, “SQL-92” refers to the standard released in 1992,
“SQL:1999” refers to the standard released in 1999, and “SQL:2003” refers to the current version
of the standard. We use the phrase “the SQL standard” to mean the current version of the SQL
Standard at any time.

• MySQL software is Open Source.

    Open Source means that it is possible for anyone to use and modify the software. Anybody can
download the MySQL software from the Internet and use it without paying anything. If you wish, you
may study the source code and change it to suit your needs. The MySQL software uses the GPL
(GNU General Public License), http://www.fsf.org/licenses/, to define what you may and may not do
with the software in different situations. If you feel uncomfortable with the GPL or need to embed
MySQL code into a commercial application, you can buy a commercially licensed version from us.
See the MySQL Licensing Overview for more information (http://www.mysql.com/company/legal/
licensing/).

• The MySQL Database Server is very fast, reliable, scalable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server can run comfortably on a
desktop or laptop, alongside your other applications, web servers, and so on, requiring little or no
attention. If you dedicate an entire machine to MySQL, you can adjust the settings to take advantage
of all the memory, CPU power, and I/O capacity available. MySQL can also scale up to clusters of
machines, networked together.

MySQL Server was originally developed to handle large databases much faster than existing
solutions and has been successfully used in highly demanding production environments for several
years. Although under constant development, MySQL Server today offers a rich and useful set of
functions. Its connectivity, speed, and security make MySQL Server highly suited for accessing
databases on the Internet.

• MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multi-threaded
SQL server that supports different back ends, several different client programs and libraries,
administrative tools, and a wide range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that you can link into your
application to get a smaller, faster, easier-to-manage standalone product.

• A large amount of contributed MySQL software is available.

MySQL Server has a practical set of features developed in close cooperation with our users. It is
very likely that your favorite application or language supports the MySQL Database Server.

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we do not mind if you
pronounce it as “my sequel” or in some other localized way.

1.3.2 The Main Features of MySQL

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/


The Main Features of MySQL

6

This section describes some of the important characteristics of the MySQL Database Software. In most
respects, the roadmap applies to all versions of MySQL. For information about features as they are
introduced into MySQL on a series-specific basis, see the “In a Nutshell” section of the appropriate
Manual:

• MySQL 8.0: What Is New in MySQL 8.0

• MySQL 5.7: What Is New in MySQL 5.7

• MySQL 5.6: What Is New in MySQL 5.6

• MySQL 5.5: Section 1.4, “What Is New in MySQL 5.5”

Internals and Portability

• Written in C and C++.

• Tested with a broad range of different compilers.

• Works on many different platforms. See http://www.mysql.com/support/supportedplatforms/
database.html.

• For portability, uses CMake in MySQL 5.5 and up. Previous series use GNU Automake, Autoconf,
and Libtool.

• Tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool
(http://developer.kde.org/~sewardj/).

• Uses multi-layered server design with independent modules.

• Designed to be fully multi-threaded using kernel threads, to easily use multiple CPUs if they are
available.

• Provides transactional and nontransactional storage engines.

• Uses very fast B-tree disk tables (MyISAM) with index compression.

• Designed to make it relatively easy to add other storage engines. This is useful if you want to provide
an SQL interface for an in-house database.

• Uses a very fast thread-based memory allocation system.

• Executes very fast joins using an optimized nested-loop join.

• Implements in-memory hash tables, which are used as temporary tables.

• Implements SQL functions using a highly optimized class library that should be as fast as possible.
Usually there is no memory allocation at all after query initialization.

• Provides the server as a separate program for use in a client/server networked environment, and as
a library that can be embedded (linked) into standalone applications. Such applications can be used
in isolation or in environments where no network is available.

Data Types

• Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR,
VARCHAR, BINARY, VARBINARY, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET,
ENUM, and OpenGIS spatial types. See Chapter 11, Data Types.

• Fixed-length and variable-length string types.

Statements and Functions

• Full operator and function support in the SELECT list and WHERE clause of queries. For example:

http://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://developer.kde.org/~sewardj/


The Main Features of MySQL

7

mysql> SELECT CONCAT(first_name, ' ', last_name)
    -> FROM citizen
    -> WHERE income/dependents > 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(),
AVG(), STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC
syntax.

• Support for aliases on tables and columns as required by standard SQL.

• Support for DELETE, INSERT, REPLACE, and UPDATE to return the number of rows that were
changed (affected), or to return the number of rows matched instead by setting a flag when
connecting to the server.

• Support for MySQL-specific SHOW statements that retrieve information about databases, storage
engines, tables, and indexes. Support for the INFORMATION_SCHEMA database, implemented
according to standard SQL.

• An EXPLAIN statement to show how the optimizer resolves a query.

• Independence of function names from table or column names. For example, ABS is a valid column
name. The only restriction is that for a function call, no spaces are permitted between the function
name and the “(” that follows it. See Section 9.3, “Keywords and Reserved Words”.

• You can refer to tables from different databases in the same statement.

Security

• A privilege and password system that is very flexible and secure, and that enables host-based
verification.

• Password security by encryption of all password traffic when you connect to a server.

Scalability and Limits

• Support for large databases. We use MySQL Server with databases that contain 50 million records.
We also know of users who use MySQL Server with 200,000 tables and about 5,000,000,000 rows.

• Support for up to 64 indexes per table. Each index may consist of 1 to 16 columns or parts of
columns. The maximum index width for InnoDB tables is either 767 bytes or 3072 bytes. See
Section 14.11.1.7, “Limits on InnoDB Tables”. The maximum index width for MyISAM tables is 1000
bytes. See Section 15.3, “The MyISAM Storage Engine”. An index may use a prefix of a column for
CHAR, VARCHAR, BLOB, or TEXT column types.

Connectivity

• Clients can connect to MySQL Server using several protocols:

• Clients can connect using TCP/IP sockets on any platform.

• On Windows systems, clients can connect using named pipes if the server is started with the
--enable-named-pipe option. Windows servers also support shared-memory connections if
started with the --shared-memory option. Clients can connect through shared memory by using
the --protocol=memory option.

• On Unix systems, clients can connect using Unix domain socket files.

• MySQL client programs can be written in many languages. A client library written in C is available for
clients written in C or C++, or for any language that provides C bindings.



History of MySQL

8

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, enabling MySQL
clients to be written in many languages. See Chapter 23, Connectors and APIs.

• The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use
ODBC (Open Database Connectivity) connections. For example, you can use MS Access to connect
to your MySQL server. Clients can be run on Windows or Unix. Connector/ODBC source is available.
All ODBC 2.5 functions are supported, as are many others. See MySQL Connector/ODBC Developer
Guide.

• The Connector/J interface provides MySQL support for Java client programs that use JDBC
connections. Clients can be run on Windows or Unix. Connector/J source is available. See MySQL
Connector/J 5.1 Developer Guide.

• MySQL Connector/Net enables developers to easily create .NET applications that require secure,
high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and
integrates into ADO.NET aware tools. Developers can build applications using their choice of .NET
languages. MySQL Connector/Net is a fully managed ADO.NET driver written in 100% pure C#. See
MySQL Connector/Net Developer Guide.

Localization

• The server can provide error messages to clients in many languages. See Section 10.2, “Setting the
Error Message Language”.

• Full support for several different character sets, including latin1 (cp1252), german, big5, ujis,
several Unicode character sets, and more. For example, the Scandinavian characters “å”, “ä” and “ö”
are permitted in table and column names.

• All data is saved in the chosen character set.

• Sorting and comparisons are done according to the default character set and collation. is possible
to change this when the MySQL server is started (see Section 10.1.3.2, “Server Character Set and
Collation”). To see an example of very advanced sorting, look at the Czech sorting code. MySQL
Server supports many different character sets that can be specified at compile time and runtime.

• The server time zone can be changed dynamically, and individual clients can specify their own time
zone. See Section 10.6, “MySQL Server Time Zone Support”.

Clients and Tools

• MySQL includes several client and utility programs. These include both command-line programs
such as mysqldump and mysqladmin, and graphical programs such as MySQL Workbench.

• MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These
statements are available from the command line through the mysqlcheck client. MySQL also
includes myisamchk, a very fast command-line utility for performing these operations on MyISAM
tables. See Chapter 4, MySQL Programs.

• MySQL programs can be invoked with the --help or -? option to obtain online assistance.

1.3.3 History of MySQL

We started out with the intention of using the mSQL database system to connect to our tables using
our own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that
mSQL was not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our
database but with almost the same API interface as mSQL. This API was designed to enable third-party
code that was written for use with mSQL to be ported easily for use with MySQL.

MySQL is named after co-founder Monty Widenius's daughter, My.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names
suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose

http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/connector-j/5.1/en/
http://dev.mysql.com/doc/connector-j/5.1/en/
http://dev.mysql.com/doc/connector-net/en/


What Is New in MySQL 5.5

9

Twebaze, an Open Source software developer from Swaziland, Africa. According to Ambrose, the
feminine name Sakila has its roots in SiSwati, the local language of Swaziland. Sakila is also the name
of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.

1.4 What Is New in MySQL 5.5
This section summarizes what has been added to, deprecated in, and removed from MySQL 5.5.

• Features Added in MySQL 5.5

• Features Deprecated in MySQL 5.5

• Features Removed in MySQL 5.5

Features Added in MySQL 5.5

The following features have been added to MySQL 5.5:

• MySQL Enterprise Thread Pool.  The default thread-handling model in MySQL Server executes
statements using one thread per client connection. As more clients connect to the server and
execute statements, overall performance degrades. As of MySQL 5.5.16, MySQL Enterprise Edition
distributions include a thread pool plugin that provides an alternative thread-handling model designed
to reduce overhead and improve performance. The plugin implements a thread pool that increases
server performance by efficiently managing statement execution threads for large numbers of client
connections. For more information, see Section 5.5.4, “MySQL Enterprise Thread Pool”.

• MySQL Enterprise Audit.  MySQL Enterprise Edition now includes MySQL Enterprise Audit,
implemented using a server plugin named audit_log. MySQL Enterprise Audit uses the open
MySQL Audit API to enable standard, policy-based monitoring and logging of connection and query
activity executed on specific MySQL servers. Designed to meet the Oracle audit specification,
MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance solution for
applications that are governed by both internal and external regulatory guidelines. When installed,
the audit plugin enables MySQL Server to produce a log file containing an audit record of server
activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access. For more information,
see Section 6.5.2, “MySQL Enterprise Audit”.

• Pluggable authentication.  MySQL authentication supports two new capabilities, pluggable
authentication and proxy users. With pluggable authentication, the server can use plugins to
authenticate incoming client connections, and clients can load an authentication plugin that interacts
properly with the corresponding server plugin. This capability enables clients to connect to the
MySQL server with credentials that are appropriate for authentication methods other than the built-
in MySQL authentication based on native MySQL passwords stored in the mysql.user table. For
example, plugins can be created to use external authentication methods such as LDAP, Kerberos,
PAM, or Windows login IDs. Proxy user capability enables a client who connects and authenticates
as one user to be treated, for purposes of access control while connected, as having the privileges
of a different user. In effect, one user impersonates another. Proxy capability depends on pluggable
authentication because it is based on having an authentication plugin return to the server the user
name that the connecting user impersonates. See Section 6.3.6, “Pluggable Authentication”, and
Section 6.3.7, “Proxy Users”.

As of MySQL 5.5.16, MySQL Enterprise Edition includes two plugins that enable MySQL Server to
use external authentication methods to authenticate MySQL users:

• PAM (Pluggable Authentication Modules) enables a system to access various kinds of
authentication methods through a standard interface. A PAM authentication plugin enables MySQL
Server to use PAM to authenticate MySQL users.

• Distributions of MySQL for Windows include an authentication plugin that enables MySQL Server
to use native Windows services to authenticate client connections. Users who have logged in to



Features Added in MySQL 5.5

10

Windows can connect from MySQL client programs to the server based on the information in their
environment without specifying an additional password.

These authentication plugins enable MySQL Server to accept connections from users defined
outside the MySQL grant tables. They also support the MySQL proxy-user capability. Each plugin
can return to MySQL a user name different from the login user, which means that the plugin can
return the MySQL user that defines the privileges the externally authenticated user should have.

For more information, see Section 6.5.1.4, “PAM Pluggable Authentication”, and Section 6.5.1.5,
“Windows Pluggable Authentication”.

• Multi-core scalability.  Scalability on multi-core CPUs is improved. The trend in hardware
development now is toward more cores rather than continued increases in CPU clock speeds, which
renders “wait until CPUs get faster” a nonviable means of improving database performance. Instead,
it is necessary to make better use of multiple cores to maximally exploit the processing cycles they
make available. MySQL 5.5 takes advantage of features of SMP systems and tries to eliminate
bottlenecks in MySQL architecture that hinder full use of multiple cores. The focus has been on
InnoDB, especially locking and memory management. See Scalability Improvements.

• Default storage engine.  The default storage engine for new tables is InnoDB rather than
MyISAM. See Section 14.1, “Introduction to InnoDB”.

• InnoDB I/O subsystem.  InnoDB I/O subsystem changes enable more effective use of available
I/O capacity. See InnoDB I/O Subsystem Changes.

• InnoDB storage engine.  MySQL 5.5 includes several InnoDB storage engine enhancements:

• Indexes can be added or dropped without copying the table. See Section 14.16, “InnoDB Fast
Index Creation”.

• Tables can be compressed to significantly reduce storage requirements and I/O. See
Section 14.12, “InnoDB Table Compression”.

• BLOB, TEXT, and VARCHAR columns can be stored fully off page. See Section 14.14, “InnoDB Row
Storage and Row Formats”.

• File format management enhancements protect upward and downward compatibility. See
Section 14.13, “InnoDB File-Format Management”.

• INFORMATION_SCHEMA tables provide information about InnoDB compression and locking. See
Section 14.18, “InnoDB INFORMATION_SCHEMA Tables”.

• InnoDB performance and scalability enhancements:

• The InnoDB mutex and read/write lock implementation was improved. Use of Pthreads mutexes
was replaced with calls to GCC - atomic builtins.

• The memory allocator used by InnoDB is configurable. See Section 14.9.3, “Configuring the
Memory Allocator for InnoDB”.

• The extent to which InnoDB performs change buffering is configurable. See Section 14.9.4,
“Configuring InnoDB Change Buffering”.

• The adaptive hash index (AHI) feature makes InnoDB perform more like an in-memory
database on systems with appropriate combinations of workload and ample memory for the
buffer pool, without sacrificing transactional features or reliability. See Section 14.7.3, “Adaptive
Hash Index”.

• Different techniques can be used to limit the number of concurrently executing operating system
threads to minimize context switching. See Section 14.9.5, “Configuring Thread Concurrency for
InnoDB”.



Features Added in MySQL 5.5

11

• How InnoDB performs buffer pool read-ahead is configurable. See Section 14.9.2.4,
“Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

• The number of background threads that service read and write I/O operations on data pages is
configurable. See Section 14.9.6, “Configuring the Number of Background InnoDB I/O Threads”.

• Asynchronous I/O is supported on Linux systems. See innodb_use_native_aio.

• The overall I/O capacity available to InnoDB is configurable. See Section 14.9.8, “Configuring
the InnoDB Master Thread I/O Rate”.

• How InnoDB performs buffer pool flushing is configurable. Section 14.9.2.5, “Configuring
InnoDB Buffer Pool Flushing”.

• The maximum delay between checking the availability of a mutex or rw-lock is configurable. See
Section 14.9.9, “Configuring Spin Lock Polling”.

• InnoDB can be configured to minimize the amount of data brought into the buffer pool and
never accessed again. See Section 14.9.2.3, “Making the Buffer Pool Scan Resistant”.

• Crash recovery performance was improved. See Section 8.5.8, “Optimizing InnoDB
Configuration Variables”.

• Certain internal InnoDB operations can be profiled using the Performance Schema feature. See
Section 14.19, “InnoDB Integration with MySQL Performance Schema”.

• The buffer pool can be divided into separate instances to reduce contention between threads
that read and write to cached pages. See Section 14.9.2.2, “Configuring Multiple Buffer Pool
Instances”.

• The limit on concurrent data modifying transactions was increased. See Section 14.7.8, “Undo
Logs”.

• InnoDB can be configured to have purge operations performed by a separate thread, rather
than by the master thread. See Section 14.9.10, “Configuring InnoDB Purge Scheduling”.

• InnoDB flexibility, ease of use, and reliability enhancements:

• The innodb_file_per_table, innodb_stats_on_metadata,
innodb_lock_wait_timeout, and innodb_adaptive_hash_index options can be set at
runtime using a SET statement.

• Operating system disk space can be reclaimed when truncating an InnoDB table. See
Section 14.15.5, “Reclaiming Disk Space with TRUNCATE TABLE”.

• InnoDB can be run in strict mode. See the innodb_strict_mode parameter documentation.

• InnoDB provides greater control over the quality of optimizer statistics estimates. See
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”.

• SHOW ENGINE INNODB MUTEX output is more compact. See Section 13.7.5.16, “SHOW
ENGINE Syntax”.

• SHOW ENGINE INNODB STATUS output displays counter information for the
Innodb_buffer_pool_read_ahead and Innodb_buffer_pool_read_ahead_evicted
global status variables, which you can use to fine-tune the innodb_random_read_ahead
setting and evaluate the effectiveness of the read-ahead algorithm.

• Diagnostic improvements.  There is better access to execution and performance information.
Diagnostic improvements include Performance Schema (a feature for monitoring MySQL Server



Features Added in MySQL 5.5

12

execution at a low level), DTrace probes, expanded SHOW ENGINE INNODB STATUS output, Debug
Sync, and a new status variable. See Diagnostic and Monitoring Capabilities.

• Solaris.  Several modifications improve operation of MySQL Server on Solaris. See Enhanced
Solaris Support.

• MySQL NDB Cluster.  MySQL NDB Cluster is released as a separate product, with version 7.2 of
the NDB storage engine being based on MySQL 5.5. Clustering support is not available in mainline
MySQL Server 5.5 releases. For more information about MySQL NDB Cluster 7.2, see Chapter 18,
MySQL NDB Cluster 7.2.

NDB Cluster releases are identified by a 3-part NDB version number. NDB Cluster 7.5, now available
as a General Availability (GA) release beginning with version 7.5.4, incorporates version 7.5 of the
NDB storage engine. Previous GA releases still available for production, NDB Cluster 7.3 and NDB
Cluster 7.4, incorporate NDB versions 7.3 and 7.4, respectively. For information about NDB Cluster
7.5, see MySQL NDB Cluster 7.5 and NDB Cluster 7.6. For more information about NDB Cluster 7.4
and NDB Cluster 7.3, see MySQL NDB Cluster 7.3 and NDB Cluster 7.4.

• Semisynchronous replication.  A commit performed on the master side blocks before returning
to the session that performed the transaction until at least one slave acknowledges that it has
received and logged the events for the transaction. Semisynchronous replication is implemented
through an optional plugin component. See Section 17.3.8, “Semisynchronous Replication”

• Unicode.  Support for supplementary Unicode characters; that is, characters outside the Basic
Multilingual Plane (BMP). These new Unicode character sets include supplementary characters:
utf16, utf32, and utf8mb4. See Section 10.1.9, “Unicode Support”.

• Partitioning.  Enhancements to table partitioning:

• Two new types of user-defined partitioning are supported: RANGE COLUMNS partitioning is an
extension to RANGE partitioning; LIST COLUMNS partitioning is an extension to LIST partitioning.
Each of these extensions provides two enhancements to MySQL partitioning capabilities:

• It is possible to define partitioning ranges or lists based on DATE, DATETIME, or string values
(such as CHAR or VARCHAR).

You can also define ranges or lists based on multiple column values when partitioning tables by
RANGE COLUMNS or LIST COLUMNS, respectively. Such a range or list may refer to up to 16
columns.

• For tables defined using these partitioning types, partition pruning can now optimize queries
with WHERE conditions that use multiple comparisons between (different) column values and
constants, such as a = 10 AND b > 5 or a < "2005-11-25" AND b = 10 AND c = 50.

See Section 19.2.1, “RANGE Partitioning”, and Section 19.2.2, “LIST Partitioning”.

• It is now possible to delete all rows from one or more partitions of a partitioned table using the
ALTER TABLE ... TRUNCATE PARTITION statement. Executing the statement deletes rows
without affecting the structure of the table. The partitions named in the TRUNCATE PARTITION
clause do not have to be contiguous.

• Key caches are now supported for indexes on partitioned MyISAM tables, using the CACHE INDEX
and LOAD INDEX INTO CACHE statements. In addition, a key cache can be defined for and
loaded with indexes from an entire partitioned table, or for one or more partitions. In the latter
case, the partitions are not required to be contiguous.

• The new TO_SECONDS() function converts a date or datetime expression to a number of seconds
since the year 0. This is a general-purpose function, but is useful for partitioning. You may use
it in partitioning expressions, and partition pruning is supported for tables defined using such
expressions.

http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html


Features Deprecated in MySQL 5.5

13

• SIGNAL and RESIGNAL.  Support for the SQL standard SIGNAL and RESIGNAL statements. See
Section 13.6.7, “Condition Handling”.

• Metadata locking.  The server now prevents DDL statements from compromising transaction
serializibility by using a new class of locks called metadata locks. See Section 8.11.4, “Metadata
Locking”.

• IPv6 support.  MySQL Server can accept TCP/IP connections from clients connecting over IPv6.
See Section 5.1.9, “IPv6 Support”.

• XML.  Enhancements to XML functionality, including a new LOAD XML INFILE statement. See
Section 13.2.7, “LOAD XML Syntax”.

• Build configuration.  MySQL releases are now built using CMake rather than the GNU autotools.
Accordingly, the instructions for installing MySQL from source have been updated to discuss how to
build MySQL using CMake. See Section 2.9, “Installing MySQL from Source”.

The build process is now similar enough on all platforms, including Windows, that there are no longer
sections dedicated to notes for specific platforms.

Features Deprecated in MySQL 5.5

The following features are deprecated in MySQL 5.5 and may be or will be removed in a future series.
Where alternatives are shown, applications should be updated to use them.

• Relying on implicit GROUP BY sorting in MySQL 5.5 is deprecated. To achieve a specific sort order of
grouped results, it is preferable to use an explicit ORDER BY clause. GROUP BY sorting is a MySQL
extension that may change in a future release; for example, to make it possible for the optimizer to
order groupings in whatever manner it deems most efficient and to avoid the sorting overhead.

• The YEAR(2) data type. YEAR(2) columns in existing tables are treated as before, but YEAR(2)
in new or altered tables are converted to YEAR(4). For more information, see Section 11.3.4,
“YEAR(2) Limitations and Migrating to YEAR(4)”.

The SHOW AUTHORS and SHOW CONTRIBUTORS statements.

• The --ignore-builtin-innodb server option. It does nothing and has no effect.

• The --language server option. Use the lc_messages_dir and lc_messages sytem variables
instead.

• The ALWAYS value for the --base64-output option for mysqlbinlog.

• The --config-file option for mysqld_multi. Use --defaults-extra-file instead.

• Use of unambigious option prefixes. If an unambiguous prefix is given, a warning occurs to provide
feedback. Option prefixes are no longer supported in MySQL 5.7; only full options are accepted.

• The engine_condition_pushdown system variable. Use the engine_condition_pushdown
flag of the optimizer_switch variable instead.

• The timed_mutexes system variable. It does nothing and has no effect.

• The storage_engine system variable. Use default_storage_engine instead.

• Use of the data directory as the location for my.cnf.

Features Removed in MySQL 5.5

The following constructs are obsolete and have been removed in MySQL 5.5. Where alternatives are
shown, applications should be updated to use them.

• The language system variable (use lc_messages_dir and lc_messages).



Features Removed in MySQL 5.5

14

• The log_bin_trust_routine_creators system variable (use
log_bin_trust_function_creators).

• The myisam_max_extra_sort_file_size system variable.

• The record_buffer system variable (use read_buffer_size).

• The sql_log_update system variable.

• The Innodb_buffer_pool_read_ahead_rnd and Innodb_buffer_pool_read_ahead_seq
status variables (use Innodb_buffer_pool_read_ahead and
Innodb_buffer_pool_read_ahead_evicted).

• The table_lock_wait_timeout system variable.

• The table_type system variable (use default_storage_engine).

• The FRAC_SECOND modifier for the TIMESTAMPADD() function (use MICROSECOND).

• The TYPE table option to specify the storage engine for CREATE TABLE or ALTER TABLE (use
ENGINE).

• The SHOW TABLE TYPES SQL statement (use SHOW ENGINES).

• The SHOW INNODB STATUS and SHOW MUTEX STATUS SQL statements (use SHOW ENGINE
INNODB STATUS and SHOW ENGINE INNODB MUTEX).

• The SHOW PLUGIN SQL statement (use SHOW PLUGINS).

• The LOAD TABLE ... FROM MASTER and LOAD DATA FROM MASTER SQL statements (use
mysqldump or mysqlhotcopy to dump tables and mysql to reload dump files).

• The BACKUP TABLE and RESTORE TABLE SQL statements (use mysqldump or mysqlhotcopy to
dump tables and mysql to reload dump files).

• TIMESTAMP(N) data type: The ability to specify a display width of N (use without N).

• The --default-character-set and --default-collation server options (use --
character-set-server and --collation-server).

• The --default-table-type server option (use --default-storage-engine).

• The --delay-key-write-for-all-tables server option (use --delay-key-write=ALL).

• The --enable-locking and --skip-locking server options (use --external-locking and
--skip-external-locking).

• The --log-bin-trust-routine-creators server option (use --log-bin-trust-
function-creators).

• The --log-long-format server option.

• The --log-update server option.

• The --master-xxx server options to set replication parameters (use the CHANGE MASTER TO
statement instead): --master-host, --master-user, --master-password, --master-port,
--master-connect-retry, --master-ssl, --master-ssl-ca, --master-ssl-capath, --
master-ssl-cert, --master-ssl-cipher, --master-ssl-key.

• The --safe-show-database server option.

• The --skip-symlink and --use-symbolic-links server options (use --skip-symbolic-
links and --symbolic-links).

• The --sql-bin-update-same server option.



Scalability Improvements

15

• The --warnings server option (use --log-warnings).

• The --no-named-commands option for mysql (use --skip-named-commands).

• The --no-pager option for mysql (use --skip-pager).

• The --no-tee option for mysql (use --skip-tee).

• The --position option for mysqlbinlog (use --start-position).

• The --all option for mysqldump (use --create-options).

• The --first-slave option for mysqldump (use --lock-all-tables).

• The --config-file option for mysqld_multi (use --defaults-extra-file).

• The --set-variable=var_name=value and -O var_name=value general-purpose options for
setting program variables (use --var_name=value).

• The --with-pstack option for configure and the --enable-pstack option for mysqld.

Scalability Improvements

MySQL 5.5 modifications improve performance on SMP systems to increase scalability on multi-core
systems. The changes affect InnoDB locking and memory management.

MySQL 5.5 incorporates changes in InnoDB that improve the performance of RW-locks by using
atomic CPU instructions (on platforms where they are available), rather than less scalable mutexes.
It is also possible for InnoDB memory allocation to be disabled and replaced by the normal malloc
library, or by a different library that implements malloc such as tcmalloc on Linux or mtalloc on
Solaris.

The reimplementation of RW-locks requires atomic instructions. A status variable,
Innodb_have_atomic_builtins, shows whether the server was built with atomic instructions.

InnoDB I/O Subsystem Changes

MySQL 5.5 changes to the InnoDB I/O subsystem enable more effective use of available I/O capacity.
The changes also provide more control over configuration of the I/O subsystem.

Background I/O Threads

InnoDB uses background threads to perform I/O for several kinds of activities, two of which are
prefetching disk blocks and flushing dirty pages. Previously, InnoDB used only one thread each to
perform these activities, but that can underutilize server capacity. MySQL 5.5 enables use of multiple
background read and write threads, making it possible to read and write pages faster.

The patch makes the number of background I/O threads configurable using system variables:
innodb_read_io_threads controls the number of threads to use for read prefetch requests.
innodb_write_io_threads controls the number of threads to use for writing dirty pages from the
buffer cache to disk. The default for both variables is 4.

The ability to increase the number of I/O threads can benefit systems that use multiple disks for
InnoDB. However, the type of I/O being done should be considered. On systems that use buffered
writes rather than direct writes, increasing the write thread count higher than 1 might yield little benefit
because writes will be quick already.

Adjustable I/O Rate

Previously, the number of input/output operations per second (IOPS) that InnoDB will perform was
a compile-time parameter. The rate was chosen to prevent background I/O from exhausting server
capacity and the compiled-in value of 100 reflected an assumption that the server can perform 100



Diagnostic and Monitoring Capabilities

16

IOPS. However, many modern systems can exceed this, so the value is low and unnecessarily restricts
I/O utilization.

MySQL 5.5 exposes this I/O rate parameter as a system variable, innodb_io_capacity. This
variable can be set at server startup, which enables higher values to be selected for systems capable
of higher I/O rates. Having a higher I/O rate can help the server handle a higher rate of row changes
because it may be able to increase dirty-page flushing, deleted-row removal, and application of
changes in the change buffer. The default value of innodb_io_capacity is 200. In general, you can
increase the value as a function of the number of drives used for InnoDB I/O.

The ability to raise the I/O limit should be especially beneficial on platforms that support many IOPS.
For example, systems that use multiple disks or solid-state disks for InnoDB are likely to benefit from
the ability to control this parameter.

Diagnostic and Monitoring Capabilities

MySQL 5.5 provides improved access to execution and performance information. Diagnostic
improvements include Performance Schema, Dtrace probes, expanded SHOW ENGINE INNODB
STATUS output, Debug Sync, and a new status variable.

Performance Schema

Performance Schema is a feature for monitoring MySQL Server execution at a low level. See
Chapter 22, MySQL Performance Schema.

DTrace Support

The DTrace probes work on Solaris, OS X, and FreeBSD. For information on using DTrace in MySQL,
see Section 5.7, “Tracing mysqld Using DTrace”.

Enhanced SHOW ENGINE INNODB STATUS Output

The output from SHOW ENGINE INNODB STATUS includes more information due to changes made for
InnoDB Plugin. A description of revisions to statement output follows.

A new BACKGROUND THREAD section has srv_master_thread lines that show work done by the
main background thread.

----------
BACKGROUND THREAD
----------
srv_master_thread loops: 53 1_second, 44 sleeps, 5 10_second, 7 background,
  7 flush
srv_master_thread log flush and writes: 48

The SEMAPHORES section includes a line to show the number of spinlock rounds per OS wait for a
mutex.

----------
SEMAPHORES
----------
...
Spin rounds per wait: 0.00 mutex, 20.00 RW-shared, 0.00 RW-excl

Debug Sync

The Debug Sync facility provides synchronization points for debugging, see MySQL Internals: Test
Synchronization.

New Status Variable

The Innodb_have_atomic_builtins status variable provides information about availability of
atomic instructions; see Scalability Improvements.

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html


Enhanced Solaris Support

17

Enhanced Solaris Support

MySQL 5.5 incorporates several modifications for improved operation of MySQL Server on Solaris:

• DTrace support for execution monitoring. See Diagnostic and Monitoring Capabilities.

• Atomic instructions, which are needed for the improvements to RW-locking described in Scalability
Improvements. Atomic instructions now are supported for Sun Studio on SPARC and x86 platforms.
This extends their previous availability (supported for gcc 4.1 and up on all platforms).

• The SMP improvements described in Scalability Improvements, were originally intended for x86
platforms. In MySQL 5.5, these also work on SPARC platforms. Also, Solaris optimizations have
been implemented.

• Large page support is enhanced for recent SPARC platforms. Standard use of large pages in
MySQL attempts to use the largest size supported, up to 4MB. Under Solaris, a “super large pages”
feature enables uses of pages up to 256MB. This feature can be enabled or disabled by using the --
super-large-pages or --skip-super-large-pages option.

• Inline handling for InnoDB and processor instruction prefetching support, previously not enabled for
builds created using Sun Studio, now are supported for that build environment.

1.5 MySQL Information Sources
This section lists sources of additional information that you may find helpful, such as MySQL web sites,
mailing lists, user forums, and Internet Relay Chat.

1.5.1 MySQL Web Sites

The primary web site for MySQL documentation is http://dev.mysql.com/doc/. Online and downloadable
documentation formats are available for the MySQL Reference Manual, MySQL Connectors, and more.

The MySQL developers provide information about new and upcoming features as the MySQL Server
Blog.

1.5.2 MySQL Mailing Lists

This section introduces the MySQL mailing lists and provides guidelines as to how the lists should be
used. When you subscribe to a mailing list, you receive all postings to the list as email messages. You
can also send your own questions and answers to the list.

To subscribe to or unsubscribe from any of the mailing lists described in this section, visit http://
lists.mysql.com/. For most of them, you can select the regular version of the list where you get
individual messages, or a digest version where you get one large message per day.

Please do not send messages about subscribing or unsubscribing to any of the mailing lists, because
such messages are distributed automatically to thousands of other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the site may have a local
mailing list, so that messages sent from lists.mysql.com to your site are propagated to the local
list. In such cases, please contact your system administrator to be added to or dropped from the local
MySQL list.

To have traffic for a mailing list go to a separate mailbox in your mail program, set up a filter based on
the message headers. You can use either the List-ID: or Delivered-To: headers to identify list
messages.

The MySQL mailing lists are as follows:

• announce

http://dev.mysql.com/doc/
http://mysqlserverteam.com/
http://mysqlserverteam.com/
http://lists.mysql.com/
http://lists.mysql.com/


MySQL Mailing Lists

18

The list for announcements of new versions of MySQL and related programs. This is a low-volume
list to which all MySQL users should subscribe.

• mysql

The main list for general MySQL discussion. Please note that some topics are better discussed on
the more-specialized lists. If you post to the wrong list, you may not get an answer.

• bugs

The list for people who want to stay informed about issues reported since the last release of MySQL
or who want to be actively involved in the process of bug hunting and fixing. See Section 1.6, “How
to Report Bugs or Problems”.

• internals

The list for people who work on the MySQL code. This is also the forum for discussions on MySQL
development and for posting patches.

• mysqldoc

The list for people who work on the MySQL documentation.

• benchmarks

The list for anyone interested in performance issues. Discussions concentrate on database
performance (not limited to MySQL), but also include broader categories such as performance of the
kernel, file system, disk system, and so on.

• packagers

The list for discussions on packaging and distributing MySQL. This is the forum used by distribution
maintainers to exchange ideas on packaging MySQL and on ensuring that MySQL looks and feels as
similar as possible on all supported platforms and operating systems.

• java

The list for discussions about the MySQL server and Java. It is mostly used to discuss JDBC drivers
such as MySQL Connector/J.

• win32

The list for all topics concerning the MySQL software on Microsoft operating systems, such as
Windows 9x, Me, NT, 2000, XP, and 2003.

• myodbc

The list for all topics concerning connecting to the MySQL server with ODBC.

• gui-tools

The list for all topics concerning MySQL graphical user interface tools such as MySQL Workbench.

• cluster

The list for discussion of MySQL Cluster.

• dotnet

The list for discussion of the MySQL server and the .NET platform. It is mostly related to MySQL
Connector/Net.

• plusplus



MySQL Community Support at the MySQL Forums

19

The list for all topics concerning programming with the C++ API for MySQL.

• perl

The list for all topics concerning Perl support for MySQL with DBD::mysql.

If you're unable to get an answer to your questions from a MySQL mailing list or forum, one option is to
purchase support from Oracle. This puts you in direct contact with MySQL developers.

The following MySQL mailing lists are in languages other than English. These lists are not operated by
Oracle.

• <mysql-france-subscribe@yahoogroups.com>

A French mailing list.

• <list@tinc.net>

A Korean mailing list. To subscribe, email subscribe mysql your@email.address to this list.

• <mysql-de-request@lists.4t2.com>

A German mailing list. To subscribe, email subscribe mysql-de your@email.address to this
list. You can find information about this mailing list at http://www.4t2.com/mysql/.

• <mysql-br-request@listas.linkway.com.br>

A Portuguese mailing list. To subscribe, email subscribe mysql-br your@email.address to
this list.

• <mysql-alta@elistas.net>

A Spanish mailing list. To subscribe, email subscribe mysql your@email.address to this list.

1.5.2.1 Guidelines for Using the Mailing Lists

Please do not post mail messages from your browser with HTML mode turned on. Many users do not
read mail with a browser.

When you answer a question sent to a mailing list, if you consider your answer to have broad interest,
you may want to post it to the list instead of replying directly to the individual who asked. Try to make
your answer general enough that people other than the original poster may benefit from it. When you
post to the list, please make sure that your answer is not a duplication of a previous answer.

Try to summarize the essential part of the question in your reply. Do not feel obliged to quote the entire
original message.

When answers are sent to you individually and not to the mailing list, it is considered good etiquette to
summarize the answers and send the summary to the mailing list so that others may have the benefit
of responses you received that helped you solve your problem.

1.5.3 MySQL Community Support at the MySQL Forums

The forums at http://forums.mysql.com are an important community resource. Many forums are
available, grouped into these general categories:

• Migration

• MySQL Usage

• MySQL Connectors

• Programming Languages

http://www.4t2.com/mysql/
http://forums.mysql.com


MySQL Community Support on Internet Relay Chat (IRC)

20

• Tools

• 3rd-Party Applications

• Storage Engines

• MySQL Technology

• SQL Standards

• Business

1.5.4 MySQL Community Support on Internet Relay Chat (IRC)

In addition to the various MySQL mailing lists and forums, you can find experienced community people
on Internet Relay Chat (IRC). These are the best networks/channels currently known to us:

freenode (see http://www.freenode.net/ for servers)

• #mysql is primarily for MySQL questions, but other database and general SQL questions are
welcome. Questions about PHP, Perl, or C in combination with MySQL are also common.

• #workbench is primarily for MySQL Workbench related questions and thoughts, and it is also a
good place to meet the MySQL Workbench developers.

If you are looking for IRC client software to connect to an IRC network, take a look at xChat (http://
www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as for Windows platforms (a free
Windows build of X-Chat is available at http://www.silverex.org/download/).

1.5.5 MySQL Enterprise

Oracle offers technical support in the form of MySQL Enterprise. For organizations that rely on the
MySQL DBMS for business-critical production applications, MySQL Enterprise is a commercial
subscription offering which includes:

• MySQL Enterprise Server

• MySQL Enterprise Monitor

• Monthly Rapid Updates and Quarterly Service Packs

• MySQL Knowledge Base

• 24x7 Technical and Consultative Support

MySQL Enterprise is available in multiple tiers, giving you the flexibility to choose the level of service
that best matches your needs. For more information, see MySQL Enterprise.

1.6 How to Report Bugs or Problems
Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been
reported already:

• Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try to keep the
manual up to date by updating it frequently with solutions to newly found problems. In addition, the
release notes accompanying the manual can be particularly useful since it is quite possible that a
newer version contains a solution to your problem. The release notes are available at the location
just given for the manual.

• If you get a parse error for an SQL statement, please check your syntax closely. If you cannot find
something wrong with it, it is extremely likely that your current version of MySQL Server doesn't
support the syntax you are using. If you are using the current version and the manual doesn't cover
the syntax that you are using, MySQL Server doesn't support your statement.

http://www.freenode.net/
http://www.xchat.org/
http://www.xchat.org/
http://www.silverex.org/download/
http://www.mysql.com/products/enterprise/
http://dev.mysql.com/doc/


How to Report Bugs or Problems

21

If the manual covers the syntax you are using, but you have an older version of MySQL Server, you
should check the MySQL change history to see when the syntax was implemented. In this case, you
have the option of upgrading to a newer version of MySQL Server.

• For solutions to some common problems, see Section B.5, “Problems and Common Errors”.

• Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and
fixed.

• Search the MySQL mailing list archives at http://lists.mysql.com/. See Section 1.5.2, “MySQL Mailing
Lists”.

• You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual)
that are located at the MySQL Web site.

If you cannot find an answer in the manual, the bugs database, or the mailing list archives, check with
your local MySQL expert. If you still cannot find an answer to your question, please use the following
guidelines for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are
noted in the release notes.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an
email message to <secalert_us@oracle.com>. Exception: Support customers should report all
problems, including security bugs, to Oracle Support at http://support.oracle.com/.

To discuss problems with other users, you can use one of the MySQL mailing lists. Section 1.5.2,
“MySQL Mailing Lists”.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
the bug in the next release. This section helps you write your report correctly so that you do not waste
your time doing things that may not help us much or at all. Please read this section carefully and make
sure that all the information described here is included in your report.

Preferably, you should test the problem using the latest production or development version of MySQL
Server before posting. Anyone should be able to repeat the bug by just using mysql test <
script_file on your test case or by running the shell or Perl script that you include in the bug report.
Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

It is most helpful when a good description of the problem is included in the bug report. That is, give a
good example of everything you did that led to the problem and describe, in exact detail, the problem
itself. The best reports are those that include a full example showing how to reproduce the bug or
problem. See Section 24.5, “Debugging and Porting MySQL”.

Remember that it is possible for us to respond to a report containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem
and assume that some details do not matter. A good principle to follow is that if you are in doubt about
stating something, state it. It is faster and less troublesome to write a couple more lines in your report
than to wait longer for the answer if we must ask you to provide information that was missing from the
initial report.

The most common errors made in bug reports are (a) not including the version number of the MySQL
distribution that you use, and (b) not fully describing the platform on which the MySQL server is
installed (including the platform type and version number). These are highly relevant pieces of
information, and in 99 cases out of 100, the bug report is useless without them. Very often we get
questions like, “Why doesn't this work for me?” Then we find that the feature requested wasn't

http://bugs.mysql.com/
http://lists.mysql.com/
http://www.mysql.com/search/
http://bugs.mysql.com/
http://bugs.mysql.com/
http://support.oracle.com/


How to Report Bugs or Problems

22

implemented in that MySQL version, or that a bug described in a report has been fixed in newer
MySQL versions. Errors often are platform-dependent. In such cases, it is next to impossible for us to
fix anything without knowing the operating system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler if
it is related to the problem. Often people find bugs in compilers and think the problem is MySQL-
related. Most compilers are under development all the time and become better version by version. To
determine whether your problem depends on your compiler, we need to know what compiler you used.
Note that every compiling problem should be regarded as a bug and reported accordingly.

If a program produces an error message, it is very important to include the message in your report. If
we try to search for something from the archives, it is better that the error message reported exactly
matches the one that the program produces. (Even the lettercase should be observed.) It is best
to copy and paste the entire error message into your report. You should never try to reproduce the
message from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it
with your report. See How to Report Connector/ODBC Problems or Bugs.

If your report includes long query output lines from test cases that you run with the mysql command-
line tool, you can make the output more readable by using the --vertical option or the \G statement
terminator. The EXPLAIN SELECT example later in this section demonstrates the use of \G.

Please include the following information in your report:

• The version number of the MySQL distribution you are using (for example, MySQL 5.7.10). You can
find out which version you are running by executing mysqladmin version. The mysqladmin
program can be found in the bin directory under your MySQL installation directory.

• The manufacturer and model of the machine on which you experience the problem.

• The operating system name and version. If you work with Windows, you can usually get the name
and version number by double-clicking your My Computer icon and pulling down the “Help/About
Windows” menu. For most Unix-like operating systems, you can get this information by executing the
command uname -a.

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

• If you are using a source distribution of the MySQL software, include the name and version number
of the compiler that you used. If you have a binary distribution, include the distribution name.

• If the problem occurs during compilation, include the exact error messages and also a few lines of
context around the offending code in the file where the error occurs.

• If mysqld died, you should also report the statement that crashed mysqld. You can usually get this
information by running mysqld with query logging enabled, and then looking in the log after mysqld
crashes. See Section 24.5, “Debugging and Porting MySQL”.

• If a database table is related to the problem, include the output from the SHOW CREATE TABLE
db_name.tbl_name statement in the bug report. This is a very easy way to get the definition of
any table in a database. The information helps us create a situation matching the one that you have
experienced.

• The SQL mode in effect when the problem occurred can be significant, so please report the value
of the sql_mode system variable. For stored procedure, stored function, and trigger objects, the
relevant sql_mode value is the one in effect when the object was created. For a stored procedure
or function, the SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION statement shows the
relevant SQL mode, or you can query INFORMATION_SCHEMA for the information:

SELECT ROUTINE_SCHEMA, ROUTINE_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.ROUTINES;

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-support-bug-report.html


How to Report Bugs or Problems

23

For triggers, you can use this statement:

SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE, TRIGGER_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.TRIGGERS;

• For performance-related bugs or problems with SELECT statements, you should always include
the output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT statement
produces. You should also include the output from SHOW CREATE TABLE tbl_name for each
table that is involved. The more information you provide about your situation, the more likely it is that
someone can help you.

The following is an example of a very good bug report. The statements are run using the mysql
command-line tool. Note the use of the \G statement terminator for statements that would otherwise
provide very long output lines that are difficult to read.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
       <output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
       <output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
       <A short version of the output from SELECT,
       including the time taken to run the query>
mysql> SHOW STATUS;
       <output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the
anomaly. This script should include any necessary source files. The more closely the script can
reproduce your situation, the better. If you can make a reproducible test case, you should upload it to
be attached to the bug report.

If you cannot provide a script, you should at least include the output from mysqladmin variables
extended-status processlist in your report to provide some information on how your system
is performing.

• If you cannot produce a test case with only a few rows, or if the test table is too big to be included in
the bug report (more than 10 rows), you should dump your tables using mysqldump and create a
README file that describes your problem. Create a compressed archive of your files using tar and
gzip or zip. After you initiate a bug report for our bugs database at http://bugs.mysql.com/, click the
Files tab in the bug report for instructions on uploading the archive to the bugs database.

• If you believe that the MySQL server produces a strange result from a statement, include not only the
result, but also your opinion of what the result should be, and an explanation describing the basis for
your opinion.

• When you provide an example of the problem, it is better to use the table names, variable names,
and so forth that exist in your actual situation than to come up with new names. The problem could
be related to the name of a table or variable. These cases are rare, perhaps, but it is better to be
safe than sorry. After all, it should be easier for you to provide an example that uses your actual
situation, and it is by all means better for us. If you have data that you do not want to be visible
to others in the bug report, you can upload it using the Files tab as previously described. If the
information is really top secret and you do not want to show it even to us, go ahead and provide an
example using other names, but please regard this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate the
options that you use when you start the mysqld server, as well as the options that you use to run
any MySQL client programs. The options to programs such as mysqld and mysql, and to the
configure script, are often key to resolving problems and are very relevant. It is never a bad idea
to include them. If your problem involves a program written in a language such as Perl or PHP,

http://bugs.mysql.com/


MySQL Standards Compliance

24

please include the language processor's version number, as well as the version for any modules
that the program uses. For example, if you have a Perl script that uses the DBI and DBD::mysql
modules, include the version numbers for Perl, DBI, and DBD::mysql.

• If your question is related to the privilege system, please include the output of mysqladmin
reload, and all the error messages you get when trying to connect. When you test your privileges,
you should execute mysqladmin reload version and try to connect with the program that gives
you trouble.

• If you have a patch for a bug, do include it. But do not assume that the patch is all we need, or that
we can use it, if you do not provide some necessary information such as test cases showing the bug
that your patch fixes. We might find problems with your patch or we might not understand it at all. If
so, we cannot use it.

If we cannot verify the exact purpose of the patch, we will not use it. Test cases help us here. Show
that the patch handles all the situations that may occur. If we find a borderline case (even a rare one)
where the patch will not work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the
MySQL team cannot guess such things without first using a debugger to determine the real cause of
a bug.

• Indicate in your bug report that you have checked the reference manual and mail archive so that
others know you have tried to solve the problem yourself.

• If your data appears corrupt or you get errors when you access a particular table, first check your
tables with CHECK TABLE. If that statement reports any errors:

• The InnoDB crash recovery mechanism handles cleanup when the server is restarted after being
killed, so in typical operation there is no need to “repair” tables. If you encounter an error with
InnoDB tables, restart the server and see whether the problem persists, or whether the error
affected only cached data in memory. If data is corrupted on disk, consider restarting with the
innodb_force_recovery option enabled so that you can dump the affected tables.

• For non-transactional tables, try to repair them with REPAIR TABLE or with myisamchk. See
Chapter 5, MySQL Server Administration.

If you are running Windows, please verify the value of lower_case_table_names using the SHOW
VARIABLES LIKE 'lower_case_table_names' statement. This variable affects how the server
handles lettercase of database and table names. Its effect for a given value should be as described
in Section 9.2.2, “Identifier Case Sensitivity”.

• If you often get corrupted tables, you should try to find out when and why this happens. In this case,
the error log in the MySQL data directory may contain some information about what happened. (This
is the file with the .err suffix in the name.) See Section 5.4.2, “The Error Log”. Please include any
relevant information from this file in your bug report. Normally mysqld should never crash a table
if nothing killed it in the middle of an update. If you can find the cause of mysqld dying, it is much
easier for us to provide you with a fix for the problem. See Section B.5.1, “How to Determine What Is
Causing a Problem”.

• If possible, download and install the most recent version of MySQL Server and check whether it
solves your problem. All versions of the MySQL software are thoroughly tested and should work
without problems. We believe in making everything as backward-compatible as possible, and you
should be able to switch MySQL versions without difficulty. See Section 2.1.1, “Which MySQL
Version and Distribution to Install”.

1.7 MySQL Standards Compliance
This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many
extensions to the SQL standard, and here you can find out what they are and how to use them. You



Selecting SQL Modes

25

can also find information about functionality missing from MySQL Server, and how to work around
some of the differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92”
refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999,
“SQL:2003” refers to the standard released in 2003, and “SQL:2008” refers to the most recent version
of the standard, released in 2008. We use the phrase “the SQL standard” or “standard SQL” to mean
the current version of the SQL Standard at any time.

One of our main goals with the product is to continue to work toward compliance with the SQL
standard, but without sacrificing speed or reliability. We are not afraid to add extensions to SQL
or support for non-SQL features if this greatly increases the usability of MySQL Server for a large
segment of our user base. The HANDLER interface is an example of this strategy. See Section 13.2.4,
“HANDLER Syntax”.

We continue to support transactional and nontransactional databases to satisfy both mission-critical
24/7 usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium-sized databases (10-100 million rows,
or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-
sized databases, but the code can also be compiled in a reduced version suitable for hand-held and
embedded devices. The compact design of the MySQL server makes development in both directions
possible without any conflicts in the source tree.

We are not targeting real-time support, although MySQL replication capabilities offer significant
functionality.

MySQL supports ODBC levels 0 to 3.51.

MySQL supports high-availability database clustering using the NDBCLUSTER storage engine. See
Chapter 18, MySQL NDB Cluster 7.2.

We are implementing XML functionality beginning in MySQL 5.1, which supports most of the W3C
XPath standard. See Section 12.11, “XML Functions”.

Selecting SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sql_mode system variable. DBAs can set the global
SQL mode to match site server operating requirements, and each application can set its session SQL
mode to its own requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes
it easier to use MySQL in different environments and to use MySQL together with other database
servers.

For more information on setting the SQL mode, see Section 5.1.8, “Server SQL Modes”.

Running MySQL in ANSI Mode

To run MySQL Server in ANSI mode, start mysqld with the --ansi option. Running the server in
ANSI mode is the same as starting it with the following options:

--transaction-isolation=SERIALIZABLE --sql-mode=ANSI

To achieve the same effect at runtime, execute these two statements:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'ANSI';

You can see that setting the sql_mode system variable to 'ANSI' enables all SQL mode options that
are relevant for ANSI mode as follows:



MySQL Extensions to Standard SQL

26

mysql> SET GLOBAL sql_mode='ANSI';
mysql> SELECT @@global.sql_mode;
        -> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'

Running the server in ANSI mode with --ansi is not quite the same as setting the SQL mode to
'ANSI' because the --ansi option also sets the transaction isolation level.

See Section 5.1.4, “Server Command Options”.

1.7.1 MySQL Extensions to Standard SQL

MySQL Server supports some extensions that you probably will not find in other SQL DBMSs. Be
warned that if you use them, your code will not be portable to other SQL servers. In some cases, you
can write code that includes MySQL extensions, but is still portable, by using comments of the following
form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other
SQL statement, but other SQL servers will ignore the extensions. For example, MySQL Server
recognizes the STRAIGHT_JOIN keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the ! character, the syntax within the comment is executed only if the
MySQL version is greater than or equal to the specified version number. The KEY_BLOCK_SIZE clause
in the following comment is executed only by servers from MySQL 5.1.10 or higher:

CREATE TABLE t1(a INT, KEY (a)) /*!50110 KEY_BLOCK_SIZE=1024 */;

The following descriptions list MySQL extensions, organized by category.

• Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and maps tables
within a database to file names in the database directory. This has a few implications:

•     Database and table names are case sensitive in MySQL Server on operating systems that
have case-sensitive file names (such as most Unix systems). See Section 9.2.2, “Identifier Case
Sensitivity”.

• You can use standard system commands to back up, rename, move, delete, and copy tables that
are managed by the MyISAM storage engine. For example, it is possible to rename a MyISAM table
by renaming the .MYD, .MYI, and .frm files to which the table corresponds. (Nevertheless, it is
preferable to use RENAME TABLE or ALTER TABLE ... RENAME and let the server rename the
files.)

• General language syntax

• By default, strings can be enclosed by " as well as '. If the ANSI_QUOTES SQL mode is enabled,
strings can be enclosed only by ' and the server interprets strings enclosed by " as identifiers.

• \ is the escape character in strings.

• In SQL statements, you can access tables from different databases with the db_name.tbl_name
syntax. Some SQL servers provide the same functionality but call this User space. MySQL
Server doesn't support tablespaces such as used in statements like this: CREATE TABLE
ralph.my_table ... IN my_tablespace.

• SQL statement syntax



MySQL Extensions to Standard SQL

27

• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See
Section 13.1.10, “CREATE DATABASE Syntax”, Section 13.1.21, “DROP DATABASE Syntax”,
and Section 13.1.1, “ALTER DATABASE Syntax”.

• The DO statement.

• EXPLAIN SELECT to obtain a description of how tables are processed by the query optimizer.

• The FLUSH and RESET statements.

• The SET statement. See Section 13.7.4.1, “SET Syntax for Variable Assignment”.

• The SHOW statement. See Section 13.7.5, “SHOW Syntax”. The information produced by many of
the MySQL-specific SHOW statements can be obtained in more standard fashion by using SELECT
to query INFORMATION_SCHEMA. See Chapter 21, INFORMATION_SCHEMA Tables.

•   Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle's LOAD DATA
INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• Use of RENAME TABLE. See Section 13.1.32, “RENAME TABLE Syntax”.

• Use of REPLACE instead of DELETE plus INSERT. See Section 13.2.8, “REPLACE Syntax”.

• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in ALTER
TABLE statements. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE
statement. See Section 13.1.7, “ALTER TABLE Syntax”.

• Use of index names, indexes on a prefix of a column, and use of INDEX or KEY in CREATE TABLE
statements. See Section 13.1.17, “CREATE TABLE Syntax”.

• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

• Use of IF EXISTS with DROP TABLE and DROP DATABASE.

• The capability of dropping multiple tables with a single DROP TABLE statement.

• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

• INSERT INTO tbl_name SET col_name = ... syntax.

• The DELAYED clause of the INSERT and REPLACE statements.

• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

• Use of INTO OUTFILE or INTO DUMPFILE in SELECT statements. See Section 13.2.9, “SELECT
Syntax”.

• Options such as STRAIGHT_JOIN or SQL_SMALL_RESULT in SELECT statements.

• You don't need to name all selected columns in the GROUP BY clause. This gives better
performance for some very specific, but quite normal queries. See Section 12.16, “Aggregate
(GROUP BY) Functions”.

• You can specify ASC and DESC with GROUP BY, not just with ORDER BY.

• The ability to set variables in a statement with the := assignment operator. See Section 9.4, “User-
Defined Variables”.

• Data types



MySQL Differences from Standard SQL

28

• The MEDIUMINT, SET, and ENUM data types, and the various BLOB and TEXT data types.

• The AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL data type attributes.

• Functions and operators

• To make it easier for users who migrate from other SQL environments, MySQL Server supports
aliases for many functions. For example, all string functions support both standard SQL syntax and
ODBC syntax.

• MySQL Server understands the || and && operators to mean logical OR and AND, as in the C
programming language. In MySQL Server, || and OR are synonyms, as are && and AND. Because
of this nice syntax, MySQL Server doesn't support the standard SQL || operator for string
concatenation; use CONCAT() instead. Because CONCAT() takes any number of arguments, it is
easy to convert use of the || operator to MySQL Server.

• Use of COUNT(DISTINCT value_list) where value_list has more than one element.

• String comparisons are case insensitive by default, with sort ordering determined by the collation
of the current character set, which is latin1 (cp1252 West European) by default. To perform
case-sensitive comparisons instead, you should declare your columns with the BINARY attribute or
use the BINARY cast, which causes comparisons to be done using the underlying character code
values rather than a lexical ordering.

•   The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is
supported for C programmers and for compatibility with PostgreSQL.

• The =, <>, <=, <, >=, >, <<, >>, <=>, AND, OR, or LIKE operators may be used in expressions in
the output column list (to the left of the FROM) in SELECT statements. For example:

mysql> SELECT col1=1 AND col2=2 FROM my_table;

• The LAST_INSERT_ID() function returns the most recent AUTO_INCREMENT value. See
Section 12.14, “Information Functions”.

• LIKE is permitted on numeric values.

• The REGEXP and NOT REGEXP extended regular expression operators.

• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server, these
functions can take a variable number of arguments.)

• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(), ENCRYPT(),
MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(), TO_DAYS(), and WEEKDAY()
functions.

• Use of TRIM() to trim substrings. Standard SQL supports removal of single characters only.

• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and GROUP_CONCAT().
See Section 12.16, “Aggregate (GROUP BY) Functions”.

1.7.2 MySQL Differences from Standard SQL

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but
MySQL Server performs operations differently in some cases:

• There are several differences between the MySQL and standard SQL privilege systems. For
example, in MySQL, privileges for a table are not automatically revoked when you delete a table.
You must explicitly issue a REVOKE statement to revoke privileges for a table. For more information,
see Section 13.7.1.5, “REVOKE Syntax”.



MySQL Differences from Standard SQL

29

• The CAST() function does not support cast to REAL or BIGINT. See Section 12.10, “Cast Functions
and Operators”.

1.7.2.1 SELECT INTO TABLE Differences

MySQL Server doesn't support the SELECT ... INTO TABLE Sybase SQL extension. Instead,
MySQL Server supports the INSERT INTO ... SELECT standard SQL syntax, which is basically the
same thing. See Section 13.2.5.1, “INSERT ... SELECT Syntax”. For example:

INSERT INTO tbl_temp2 (fld_id)
    SELECT tbl_temp1.fld_order_id
    FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Alternatively, you can use SELECT ... INTO OUTFILE or CREATE TABLE ... SELECT.

You can use SELECT ... INTO with user-defined variables. The same syntax can also be used
inside stored routines using cursors and local variables. See Section 13.2.9.1, “SELECT ... INTO
Syntax”.

1.7.2.2 UPDATE Differences

If you access a column from the table to be updated in an expression, UPDATE uses the current value
of the column. The second assignment in the following statement sets col2 to the current (updated)
col1 value, not the original col1 value. The result is that col1 and col2 have the same value. This
behavior differs from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

1.7.2.3 Foreign Key Differences

The MySQL implementation of foreign keys differs from the SQL standard in the following key respects:

• If there are several rows in the parent table that have the same referenced key value, InnoDB acts
in foreign key checks as if the other parent rows with the same key value do not exist. For example,
if you have defined a RESTRICT type constraint, and there is a child row with several parent rows,
InnoDB does not permit the deletion of any of those parent rows.

InnoDB performs cascading operations through a depth-first algorithm, based on records in the
indexes corresponding to the foreign key constraints.

• A FOREIGN KEY constraint that references a non-UNIQUE key is not standard SQL but rather an
InnoDB extension.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has
previously updated during the same cascade, it acts like RESTRICT. This means that you cannot
use self-referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent
infinite loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the
other hand, is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not
be nested more than 15 levels deep.

• In an SQL statement that inserts, deletes, or updates many rows, foreign key constraints (like unique
constraints) are checked row-by-row. When performing foreign key checks, InnoDB sets shared row-
level locks on child or parent records that it must examine. MySQL checks foreign key constraints
immediately; the check is not deferred to transaction commit. According to the SQL standard, the
default behavior should be deferred checking. That is, constraints are only checked after the entire
SQL statement has been processed. This means that it is not possible to delete a row that refers to
itself using a foreign key.

For information about how the InnoDB storage engine handles foreign keys, see Section 14.11.1.6,
“InnoDB and FOREIGN KEY Constraints”.



How MySQL Deals with Constraints

30

1.7.2.4 '--' as the Start of a Comment

Standard SQL uses the C syntax /* this is a comment */ for comments, and MySQL Server
supports this syntax as well. MySQL also support extensions to this syntax that enable MySQL-specific
SQL to be embedded in the comment, as described in Section 9.6, “Comment Syntax”.

Standard SQL uses “--” as a start-comment sequence. MySQL Server uses # as the start comment
character. MySQL Server also supports a variant of the -- comment style. That is, the -- start-
comment sequence must be followed by a space (or by a control character such as a newline). The
space is required to prevent problems with automatically generated SQL queries that use constructs
such as the following, where we automatically insert the value of the payment for payment:

UPDATE account SET credit=credit-payment

Consider about what happens if payment has a negative value such as -1:

UPDATE account SET credit=credit--1

credit--1 is a valid expression in SQL, but -- is interpreted as the start of a comment, part of
the expression is discarded. The result is a statement that has a completely different meaning than
intended:

UPDATE account SET credit=credit

The statement produces no change in value at all. This illustrates that permitting comments to start with
-- can have serious consequences.

Using our implementation requires a space following the -- for it to be recognized as a start-comment
sequence in MySQL Server. Therefore, credit--1 is safe to use.

Another safe feature is that the mysql command-line client ignores lines that start with --.

1.7.3 How MySQL Deals with Constraints

MySQL enables you to work both with transactional tables that permit rollback and with
nontransactional tables that do not. Because of this, constraint handling is a bit different in MySQL
than in other DBMSs. We must handle the case when you have inserted or updated a lot of rows in a
nontransactional table for which changes cannot be rolled back when an error occurs.

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect
while parsing a statement to be executed, and tries to recover from any errors that occur while
executing the statement. We do this in most cases, but not yet for all.

The options MySQL has when an error occurs are to stop the statement in the middle or to recover as
well as possible from the problem and continue. By default, the server follows the latter course. This
means, for example, that the server may coerce invalid values to the closest valid values.

Several SQL mode options are available to provide greater control over handling of bad data values
and whether to continue statement execution or abort when errors occur. Using these options, you
can configure MySQL Server to act in a more traditional fashion that is like other DBMSs that reject
improper input. The SQL mode can be set globally at server startup to affect all clients. Individual
clients can set the SQL mode at runtime, which enables each client to select the behavior most
appropriate for its requirements. See Section 5.1.8, “Server SQL Modes”.

The following sections describe how MySQL Server handles different types of constraints.

1.7.3.1 PRIMARY KEY and UNIQUE Index Constraints



How MySQL Deals with Constraints

31

Normally, errors occur for data-change statements (such as INSERT or UPDATE) that would violate
primary-key, unique-key, or foreign-key constraints. If you are using a transactional storage engine
such as InnoDB, MySQL automatically rolls back the statement. If you are using a nontransactional
storage engine, MySQL stops processing the statement at the row for which the error occurred and
leaves any remaining rows unprocessed.

MySQL supports an IGNORE keyword for INSERT, UPDATE, and so forth. If you use it, MySQL ignores
primary-key or unique-key violations and continues processing with the next row. See the section
for the statement that you are using (Section 13.2.5, “INSERT Syntax”, Section 13.2.11, “UPDATE
Syntax”, and so forth).

You can get information about the number of rows actually inserted or updated with the
mysql_info() C API function. You can also use the SHOW WARNINGS statement. See
Section 23.8.7.35, “mysql_info()”, and Section 13.7.5.41, “SHOW WARNINGS Syntax”.

Only InnoDB tables support foreign keys. See Section 14.11.1.6, “InnoDB and FOREIGN KEY
Constraints”.

1.7.3.2 FOREIGN KEY Constraints

Foreign keys let you cross-reference related data across tables, and foreign key constraints help keep
this spread-out data consistent.

MySQL supports ON UPDATE and ON DELETE foreign key references in CREATE TABLE and ALTER
TABLE statements. The available referential actions are RESTRICT (the default), CASCADE, SET NULL,
and NO ACTION.

SET DEFAULT is also supported by the MySQL Server but is currently rejected as invalid by InnoDB.
Since MySQL does not support deferred constraint checking, NO ACTION is treated as RESTRICT. For
the exact syntax supported by MySQL for foreign keys, see Section 13.1.17.6, “Using FOREIGN KEY
Constraints”.

MATCH FULL, MATCH PARTIAL, and MATCH SIMPLE are allowed, but their use should be avoided,
as they cause the MySQL Server to ignore any ON DELETE or ON UPDATE clause used in the same
statement. MATCH options do not have any other effect in MySQL, which in effect enforces MATCH
SIMPLE semantics full-time.

MySQL requires that foreign key columns be indexed; if you create a table with a foreign key constraint
but no index on a given column, an index is created.

You can obtain information about foreign keys from the INFORMATION_SCHEMA.KEY_COLUMN_USAGE
table. An example of a query against this table is shown here:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
     > FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
     > WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+---------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME    | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+---------------+-------------+-----------------+
| fk1          | myuser        | myuser_id   | f               |
| fk1          | product_order | customer_id | f2              |
| fk1          | product_order | product_id  | f1              |
+--------------+---------------+-------------+-----------------+
3 rows in set (0.01 sec)

Only InnoDB tables support foreign keys. See Section 14.11.1.6, “InnoDB and FOREIGN KEY
Constraints”, for information specific to foreign key support in InnoDB.

1.7.3.3 Constraints on Invalid Data



How MySQL Deals with Constraints

32

By default, MySQL is forgiving of invalid or improper data values and coerces them to valid values for
data entry. However, you can enable strict SQL mode to select more traditional treatment of bad values
such that the server rejects them and aborts the statement in which they occur. See Section 5.1.8,
“Server SQL Modes”.

This section describes the default (forgiving) behavior of MySQL, as well as the strict SQL mode and
how it differs.

If you are not using strict mode, then whenever you insert an “incorrect” value into a column, such as
a NULL into a NOT NULL column or a too-large numeric value into a numeric column, MySQL sets the
column to the “best possible value” instead of producing an error: The following rules describe in more
detail how this works:

• If you try to store an out of range value into a numeric column, MySQL Server instead stores zero,
the smallest possible value, or the largest possible value, whichever is closest to the invalid value.

• For strings, MySQL stores either the empty string or as much of the string as can be stored in the
column.

• If you try to store a string that does not start with a number into a numeric column, MySQL Server
stores 0.

• Invalid values for ENUM and SET columns are handled as described in Section 1.7.3.4, “ENUM and
SET Constraints”.

• MySQL permits you to store certain incorrect date values into DATE and DATETIME columns (such
as '2000-02-31' or '2000-02-00'). In this case, when an application has not enabled strict
SQL mode, it up to the application to validate the dates before storing them. If MySQL can store a
date value and retrieve exactly the same value, MySQL stores it as given. If the date is totally wrong
(outside the server's ability to store it), the special “zero” date value '0000-00-00' is stored in the
column instead.

• If you try to store NULL into a column that doesn't take NULL values, an error occurs for single-
row INSERT statements. For multiple-row INSERT statements or for INSERT INTO ... SELECT
statements, MySQL Server stores the implicit default value for the column data type. In general, this
is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date and time
types. Implicit default values are discussed in Section 11.6, “Data Type Default Values”.

• If an INSERT statement specifies no value for a column, MySQL inserts its default value if the
column definition includes an explicit DEFAULT clause. If the definition has no such DEFAULT clause,
MySQL inserts the implicit default value for the column data type.

The reason for using the preceding rules in nonstrict mode is that we can't check these conditions until
the statement has begun executing. We can't just roll back if we encounter a problem after updating
a few rows, because the storage engine may not support rollback. The option of terminating the
statement is not that good; in this case, the update would be “half done,” which is probably the worst
possible scenario. In this case, it is better to “do the best you can” and then continue as if nothing
happened.

You can select stricter treatment of input values by using the STRICT_TRANS_TABLES or
STRICT_ALL_TABLES SQL modes:

SET sql_mode = 'STRICT_TRANS_TABLES';
SET sql_mode = 'STRICT_ALL_TABLES';

STRICT_TRANS_TABLES enables strict mode for transactional storage engines, and also to some
extent for nontransactional engines. It works like this:

• For transactional storage engines, bad data values occurring anywhere in a statement cause the
statement to abort and roll back.



Credits

33

• For nontransactional storage engines, a statement aborts if the error occurs in the first row to be
inserted or updated. (When the error occurs in the first row, the statement can be aborted to leave
the table unchanged, just as for a transactional table.) Errors in rows after the first do not abort the
statement, because the table has already been changed by the first row. Instead, bad data values
are adjusted and result in warnings rather than errors. In other words, with STRICT_TRANS_TABLES,
a wrong value causes MySQL to roll back all updates done so far, if that can be done without
changing the table. But once the table has been changed, further errors result in adjustments and
warnings.

For even stricter checking, enable STRICT_ALL_TABLES. This is the same as
STRICT_TRANS_TABLES except that for nontransactional storage engines, errors abort the statement
even for bad data in rows following the first row. This means that if an error occurs partway through
a multiple-row insert or update for a nontransactional table, a partial update results. Earlier rows are
inserted or updated, but those from the point of the error on are not. To avoid this for nontransactional
tables, either use single-row statements or else use STRICT_TRANS_TABLES if conversion warnings
rather than errors are acceptable. To avoid problems in the first place, do not use MySQL to check
column content. It is safest (and often faster) to let the application ensure that it passes only valid
values to the database.

With either of the strict mode options, you can cause errors to be treated as warnings by using INSERT
IGNORE or UPDATE IGNORE rather than INSERT or UPDATE without IGNORE.

1.7.3.4 ENUM and SET Constraints

ENUM and SET columns provide an efficient way to define columns that can contain only a given set of
values. See Section 11.4.4, “The ENUM Type”, and Section 11.4.5, “The SET Type”.

With strict mode enabled (see Section 5.1.8, “Server SQL Modes”), the definition of a ENUM or SET
column acts as a constraint on values entered into the column. An error occurs for values that do not
satisfy these conditions:

• An ENUM value must be one of those listed in the column definition, or the internal numeric equivalent
thereof. The value cannot be the error value (that is, 0 or the empty string). For a column defined as
ENUM('a','b','c'), values such as '', 'd', or 'ax' are invalid and are rejected.

• A SET value must be the empty string or a value consisting only of the values listed in the column
definition separated by commas. For a column defined as SET('a','b','c'), values such as 'd'
or 'a,b,c,d' are invalid and are rejected.

Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE
IGNORE. In this case, a warning is generated rather than an error. For ENUM, the value is inserted as
the error member (0). For SET, the value is inserted as given except that any invalid substrings are
deleted. For example, 'a,x,b,y' results in a value of 'a,b'.

1.8 Credits
The following sections list developers, contributors, and supporters that have helped to make MySQL
what it is today.

1.8.1 Contributors to MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and the
MySQL manual, we wish to recognize those who have made contributions of one kind or another to
the MySQL distribution. Contributors are listed here, in somewhat random order:

• Gianmassimo Vigazzola <qwerg@mbox.vol.it> or <qwerg@tin.it>

The initial port to Win32/NT.

• Per Eric Olsson



Contributors to MySQL

34

For constructive criticism and real testing of the dynamic record format.

• Irena Pancirov <irena@mail.yacc.it>

Win32 port with Borland compiler. mysqlshutdown.exe and mysqlwatch.exe.

• David J. Hughes

For the effort to make a shareware SQL database. At TcX, the predecessor of MySQL AB, we
started with mSQL, but found that it couldn't satisfy our purposes so instead we wrote an SQL
interface to our application builder Unireg. mysqladmin and mysql client are programs that were
largely influenced by their mSQL counterparts. We have put a lot of effort into making the MySQL
syntax a superset of mSQL. Many of the API's ideas are borrowed from mSQL to make it easy to port
free mSQL programs to the MySQL API. The MySQL software doesn't contain any code from mSQL.
Two files in the distribution (client/insert_test.c and client/select_test.c) are based
on the corresponding (noncopyrighted) files in the mSQL distribution, but are modified as examples
showing the changes necessary to convert code from mSQL to MySQL Server. (mSQL is copyrighted
David J. Hughes.)

• Patrick Lynch

For helping us acquire http://www.mysql.com/.

• Fred Lindberg

For setting up qmail to handle the MySQL mailing list and for the incredible help we got in managing
the MySQL mailing lists.

• Igor Romanenko <igor@frog.kiev.ua>

mysqldump (previously msqldump, but ported and enhanced by Monty).

• Yuri Dario

For keeping up and extending the MySQL OS/2 port.

• Tim Bunce

Author of mysqlhotcopy.

• Zarko Mocnik <zarko.mocnik@dem.si>

Sorting for Slovenian language.

• "TAMITO" <tommy@valley.ne.jp>

The _MB character set macros and the ujis and sjis character sets.

• Joshua Chamas <joshua@chamas.com>

Base for concurrent insert, extended date syntax, debugging on NT, and answering on the MySQL
mailing list.

• Yves Carlier <Yves.Carlier@rug.ac.be>

mysqlaccess, a program to show the access rights for a user.

• Rhys Jones <rhys@wales.com> (And GWE Technologies Limited)

For one of the early JDBC drivers.

• Dr Xiaokun Kelvin ZHU <X.Zhu@brad.ac.uk>

http://www.mysql.com/


Contributors to MySQL

35

Further development of one of the early JDBC drivers and other MySQL-related Java tools.

• James Cooper <pixel@organic.com>

For setting up a searchable mailing list archive at his site.

• Rick Mehalick <Rick_Mehalick@i-o.com>

For xmysql, a graphical X client for MySQL Server.

• Doug Sisk <sisk@wix.com>

For providing RPM packages of MySQL for Red Hat Linux.

• Diemand Alexander V. <axeld@vial.ethz.ch>

For providing RPM packages of MySQL for Red Hat Linux-Alpha.

• Antoni Pamies Olive <toni@readysoft.es>

For providing RPM versions of a lot of MySQL clients for Intel and SPARC.

• Jay Bloodworth <jay@pathways.sde.state.sc.us>

For providing RPM versions for MySQL 3.21.

• David Sacerdote <davids@secnet.com>

Ideas for secure checking of DNS host names.

• Wei-Jou Chen <jou@nematic.ieo.nctu.edu.tw>

Some support for Chinese(BIG5) characters.

• Wei He <hewei@mail.ied.ac.cn>

A lot of functionality for the Chinese(GBK) character set.

• Jan Pazdziora <adelton@fi.muni.cz>

Czech sorting order.

• Zeev Suraski <bourbon@netvision.net.il>

FROM_UNIXTIME() time formatting, ENCRYPT() functions, and bison advisor. Active mailing list
member.

• Luuk de Boer <luuk@wxs.nl>

Ported (and extended) the benchmark suite to DBI/DBD. Have been of great help with crash-me
and running benchmarks. Some new date functions. The mysql_setpermission script.

• Alexis Mikhailov <root@medinf.chuvashia.su>

User-defined functions (UDFs); CREATE FUNCTION and DROP FUNCTION.

• Andreas F. Bobak <bobak@relog.ch>

The AGGREGATE extension to user-defined functions.

• Ross Wakelin <R.Wakelin@march.co.uk>

Help to set up InstallShield for MySQL-Win32.



Contributors to MySQL

36

• Jethro Wright III <jetman@li.net>

The libmysql.dll library.

• James Pereria <jpereira@iafrica.com>

Mysqlmanager, a Win32 GUI tool for administering MySQL Servers.

• Curt Sampson <cjs@portal.ca>

Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.

• Martin Ramsch <m.ramsch@computer.org>

Examples in the MySQL Tutorial.

• Steve Harvey

For making mysqlaccess more secure.

• Konark IA-64 Centre of Persistent Systems Private Limited

Help with the Win64 port of the MySQL server.

• Albert Chin-A-Young.

Configure updates for Tru64, large file support and better TCP wrappers support.

• John Birrell

Emulation of pthread_mutex() for OS/2.

• Benjamin Pflugmann

Extended MERGE tables to handle INSERTS. Active member on the MySQL mailing lists.

• Jocelyn Fournier

Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery code).

• Marc Liyanage

Maintaining the OS X packages and providing invaluable feedback on how to create OS X packages.

• Robert Rutherford

Providing invaluable information and feedback about the QNX port.

• Previous developers of NDB Cluster

Lots of people were involved in various ways summer students, master thesis students, employees.
In total more than 100 people so too many to mention here. Notable name is Ataullah Dabaghi who
up until 1999 contributed around a third of the code base. A special thanks also to developers of
the AXE system which provided much of the architectural foundations for NDB Cluster with blocks,
signals and crash tracing functionality. Also credit should be given to those who believed in the ideas
enough to allocate of their budgets for its development from 1992 to present time.

• Google Inc.

We wish to recognize Google Inc. for contributions to the MySQL distribution: Mark Callaghan's SMP
Performance patches and other patches.

Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wojciech
Tryc, Luca Berra, Zarko Mocnik, Wim Bonis, Elmar Haneke, <jehamby@lightside>,



Contributors to MySQL

37

<psmith@BayNetworks.com>, <duane@connect.com.au>, Ted Deppner <ted@psyber.com>,
Mike Simons, Jaakko Hyvatti.

And lots of bug report/patches from the folks on the mailing list.

A big tribute goes to those that help us answer questions on the MySQL mailing lists:

• Daniel Koch <dkoch@amcity.com>

Irix setup.

• Luuk de Boer <luuk@wxs.nl>

Benchmark questions.

• Tim Sailer <tps@users.buoy.com>

DBD::mysql questions.

• Boyd Lynn Gerber <gerberb@zenez.com>

SCO-related questions.

• Richard Mehalick <RM186061@shellus.com>

xmysql-related questions and basic installation questions.

• Zeev Suraski <bourbon@netvision.net.il>

Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-related
questions and other general questions.

• Francesc Guasch <frankie@citel.upc.es>

General questions.

• Jonathan J Smith <jsmith@wtp.net>

Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need some
work.

• David Sklar <sklar@student.net>

Using MySQL from PHP and Perl.

• Alistair MacDonald <A.MacDonald@uel.ac.uk>

Is flexible and can handle Linux and perhaps HP-UX.

• John Lyon <jlyon@imag.net>

Questions about installing MySQL on Linux systems, using either .rpm files or compiling from
source.

• Lorvid Ltd. <lorvid@WOLFENET.com>

Simple billing/license/support/copyright issues.

• Patrick Sherrill <patrick@coconet.com>

ODBC and VisualC++ interface questions.

• Randy Harmon <rjharmon@uptimecomputers.com>



Documenters and translators

38

DBD, Linux, some SQL syntax questions.

1.8.2 Documenters and translators

The following people have helped us with writing the MySQL documentation and translating the
documentation or error messages in MySQL.

• Paul DuBois

Ongoing help with making this manual correct and understandable. That includes rewriting Monty's
and David's attempts at English into English as other people know it.

• Kim Aldale

Helped to rewrite Monty's and David's early attempts at English into English.

• Michael J. Miller Jr. <mke@terrapin.turbolift.com>

For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into the
MySQL manual a long time ago).

• Yan Cailin

First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which the
Big5 and HK coded versions were based.

• Jay Flaherty <fty@mediapulse.com>

Big parts of the Perl DBI/DBD section in the manual.

• Paul Southworth <pauls@etext.org>, Ray Loyzaga <yar@cs.su.oz.au>

Proof-reading of the Reference Manual.

• Therrien Gilbert <gilbert@ican.net>, Jean-Marc Pouyot <jmp@scalaire.fr>

French error messages.

• Petr Snajdr, <snajdr@pvt.net>

Czech error messages.

• Jaroslaw Lewandowski <jotel@itnet.com.pl>

Polish error messages.

• Miguel Angel Fernandez Roiz

Spanish error messages.

• Roy-Magne Mo <rmo@www.hivolda.no>

Norwegian error messages and testing of MySQL 3.21.xx.

• Timur I. Bakeyev <root@timur.tatarstan.ru>

Russian error messages.

• <brenno@dewinter.com> & Filippo Grassilli <phil@hyppo.com>

Italian error messages.

• Dirk Munzinger <dirk@trinity.saar.de>



Packages that support MySQL

39

German error messages.

• Billik Stefan <billik@sun.uniag.sk>

Slovak error messages.

• Stefan Saroiu <tzoompy@cs.washington.edu>

Romanian error messages.

• Peter Feher

Hungarian error messages.

• Roberto M. Serqueira

Portuguese error messages.

• Carsten H. Pedersen

Danish error messages.

• Arjen Lentz

Dutch error messages, completing earlier partial translation (also work on consistency and spelling).

1.8.3 Packages that support MySQL

The following is a list of creators/maintainers of some of the most important API/packages/applications
that a lot of people use with MySQL.

We cannot list every possible package here because the list would then be way to hard to maintain. For
other packages, please refer to the software portal at http://solutions.mysql.com/software/.

• Tim Bunce, Alligator Descartes

For the DBD (Perl) interface.

• Andreas Koenig <a.koenig@mind.de>

For the Perl interface for MySQL Server.

• Jochen Wiedmann <wiedmann@neckar-alb.de>

For maintaining the Perl DBD::mysql module.

• Eugene Chan <eugene@acenet.com.sg>

For porting PHP for MySQL Server.

• Georg Richter

MySQL 4.1 testing and bug hunting. New PHP 5.0 mysqli extension (API) for use with MySQL 4.1
and up.

• Giovanni Maruzzelli <maruzz@matrice.it>

For porting iODBC (Unix ODBC).

• Xavier Leroy <Xavier.Leroy@inria.fr>

The author of LinuxThreads (used by the MySQL Server on Linux).

http://solutions.mysql.com/software/


Tools that were used to create MySQL

40

1.8.4 Tools that were used to create MySQL

The following is a list of some of the tools we have used to create MySQL. We use this to express our
thanks to those that has created them as without these we could not have made MySQL what it is
today.

• Free Software Foundation

From whom we got an excellent compiler (gcc), an excellent debugger (gdb and the libc library
(from which we have borrowed strto.c to get some code working in Linux).

• Free Software Foundation & The XEmacs development team

For a really great editor/environment.

• Julian Seward

Author of valgrind, an excellent memory checker tool that has helped us find a lot of otherwise
hard to find bugs in MySQL.

• Dorothea Lütkehaus and Andreas Zeller

For DDD (The Data Display Debugger) which is an excellent graphical front end to gdb).

1.8.5 Supporters of MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and
the MySQL manual, we wish to recognize the following companies, which helped us finance the
development of the MySQL server, such as by paying us for developing a new feature or giving us
hardware for development of the MySQL server.

• VA Linux / Andover.net

Funded replication.

• NuSphere

Editing of the MySQL manual.

• Stork Design studio

The MySQL Web site in use between 1998-2000.

• Intel

Contributed to development on Windows and Linux platforms.

• Compaq

Contributed to Development on Linux/Alpha.

• SWSoft

Development on the embedded mysqld version.

• FutureQuest

The --skip-show-database option.



41

Chapter 2 Installing and Upgrading MySQL

Table of Contents
2.1 General Installation Guidance ................................................................................................ 43

2.1.1 Which MySQL Version and Distribution to Install .......................................................... 43
2.1.2 How to Get MySQL .................................................................................................... 45
2.1.3 Verifying Package Integrity Using MD5 Checksums or GnuPG ...................................... 45
2.1.4 Installation Layouts ..................................................................................................... 59
2.1.5 Compiler-Specific Build Characteristics ........................................................................ 59

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .......................................................... 59
2.3 Installing MySQL on Microsoft Windows ................................................................................. 62

2.3.1 MySQL Installation Layout on Microsoft Windows ........................................................ 64
2.3.2 Choosing An Installation Package ............................................................................... 65
2.3.3 MySQL Installer for Windows ...................................................................................... 66
2.3.4 MySQL Notifier ........................................................................................................... 83
2.3.5 Installing MySQL on Microsoft Windows Using an MSI Package ................................... 94
2.3.6 MySQL Server Instance Configuration Wizard ............................................................ 100
2.3.7 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive ......................... 114
2.3.8 Troubleshooting a Microsoft Windows MySQL Server Installation ................................ 122
2.3.9 Windows Postinstallation Procedures ........................................................................ 123
2.3.10 Upgrading MySQL on Windows ............................................................................... 125

2.4 Installing MySQL on OS X .................................................................................................. 127
2.4.1 General Notes on Installing MySQL on OS X ............................................................. 127
2.4.2 Installing MySQL on OS X Using Native Packages .................................................... 128
2.4.3 Installing a MySQL Launch Daemon ......................................................................... 133
2.4.4 Installing and Using the MySQL Preference Pane ...................................................... 136

2.5 Installing MySQL on Linux ................................................................................................... 140
2.5.1 Installing MySQL on Linux Using RPM Packages ....................................................... 141
2.5.2 Installing MySQL on Linux Using Debian Packages .................................................... 146
2.5.3 Installing MySQL on Linux Using Native Package Managers ....................................... 146

2.6 Installing MySQL Using Unbreakable Linux Network (ULN) ................................................... 150
2.7 Installing MySQL on Solaris ................................................................................................. 150

2.7.1 Installing MySQL on Solaris Using a Solaris PKG ...................................................... 151
2.8 Installing MySQL on FreeBSD ............................................................................................. 152
2.9 Installing MySQL from Source ............................................................................................. 153

2.9.1 MySQL Layout for Source Installation ........................................................................ 155
2.9.2 Installing MySQL Using a Standard Source Distribution .............................................. 155
2.9.3 Installing MySQL Using a Development Source Tree .................................................. 159
2.9.4 MySQL Source-Configuration Options ....................................................................... 161
2.9.5 Dealing with Problems Compiling MySQL .................................................................. 172
2.9.6 MySQL Configuration and Third-Party Tools .............................................................. 174

2.10 Postinstallation Setup and Testing ..................................................................................... 174
2.10.1 Initializing the Data Directory ................................................................................... 175
2.10.2 Starting the Server ................................................................................................. 178
2.10.3 Testing the Server .................................................................................................. 181
2.10.4 Securing the Initial MySQL Accounts ....................................................................... 183
2.10.5 Starting and Stopping MySQL Automatically ............................................................ 187

2.11 Upgrading or Downgrading MySQL .................................................................................... 188
2.11.1 Upgrading MySQL .................................................................................................. 188
2.11.2 Downgrading MySQL .............................................................................................. 199
2.11.3 Rebuilding or Repairing Tables or Indexes ............................................................... 204
2.11.4 Copying MySQL Databases to Another Machine ...................................................... 205

2.12 Perl Installation Notes ........................................................................................................ 206
2.12.1 Installing Perl on Unix ............................................................................................. 206
2.12.2 Installing ActiveState Perl on Windows .................................................................... 207



42

2.12.3 Problems Using the Perl DBI/DBD Interface ............................................................. 208

This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later
sections provide the details. If you plan to upgrade an existing version of MySQL to a newer version
rather than install MySQL for the first time, see Section 2.11.1, “Upgrading MySQL”, for information
about upgrade procedures and about issues that you should consider before upgrading.

If you are interested in migrating to MySQL from another database system, see Section A.8, “MySQL
5.5 FAQ: Migration”, which contains answers to some common questions concerning migration issues.

If you are migrating from MySQL Enterprise Edition to MySQL Community Server, see
Section 2.11.2.2, “Downgrading from MySQL Enterprise Edition to MySQL Community Server”.

Installation of MySQL generally follows the steps outlined here:

1. Determine whether MySQL runs and is supported on your platform.

Please note that not all platforms are equally suitable for running MySQL, and that not all
platforms on which MySQL is known to run are officially supported by Oracle Corporation. For
information about those platforms that are officially supported, see http://www.mysql.com/support/
supportedplatforms/database.html on the MySQL Web site.

2. Choose which distribution to install.

Several versions of MySQL are available, and most are available in several distribution formats.
You can choose from pre-packaged distributions containing binary (precompiled) programs or
source code. When in doubt, use a binary distribution. Oracle also provides access to the MySQL
source code for those who want to see recent developments and test new code. To determine
which version and type of distribution you should use, see Section 2.1.1, “Which MySQL Version
and Distribution to Install”.

3. Download the distribution that you want to install.

For instructions, see Section 2.1.2, “How to Get MySQL”. To verify the integrity of the distribution,
use the instructions in Section 2.1.3, “Verifying Package Integrity Using MD5 Checksums or
GnuPG”.

4. Install the distribution.

To install MySQL from a binary distribution, use the instructions in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”.

To install MySQL from a source distribution or from the current development source tree, use the
instructions in Section 2.9, “Installing MySQL from Source”.

5. Perform any necessary postinstallation setup.

After installing MySQL, see Section 2.10, “Postinstallation Setup and Testing” for information
about making sure the MySQL server is working properly. Also refer to the information provided in
Section 2.10.4, “Securing the Initial MySQL Accounts”. This section describes how to secure the
initial MySQL user accounts, which have no passwords until you assign passwords. The section
applies whether you install MySQL using a binary or source distribution.

6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See
Section 2.12, “Perl Installation Notes”.

Instructions for installing MySQL on different platforms and environments is available on a platform by
platform basis:

• Unix, Linux, FreeBSD

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html


General Installation Guidance

43

For instructions on installing MySQL on most Linux and Unix platforms using a generic binary (for
example, a .tar.gz package), see Section 2.2, “Installing MySQL on Unix/Linux Using Generic
Binaries”.

For information on building MySQL entirely from the source code distributions or the source code
repositories, see Section 2.9, “Installing MySQL from Source”

For specific platform help on installation, configuration, and building from source see the
corresponding platform section:

• Linux, including notes on distribution specific methods, see Section 2.5, “Installing MySQL on
Linux”.

• Solaris, including PKG and IPS formats, see Section 2.7, “Installing MySQL on Solaris”.

• IBM AIX, see Section 2.7, “Installing MySQL on Solaris”.

• FreeBSD, see Section 2.8, “Installing MySQL on FreeBSD”.

• Microsoft Windows

For instructions on installing MySQL on Microsoft Windows, using either the MySQL Installer
standalone MSI, or Zipped binary, see Section 2.3, “Installing MySQL on Microsoft Windows”.

For information about managing MySQL instances, see Section 2.3.4, “MySQL Notifier”.

For details and instructions on building MySQL from source code using Microsoft Visual Studio, see
Section 2.9, “Installing MySQL from Source”.

• OS X

For installation on OS X, including using both the binary package and native PKG formats, see
Section 2.4, “Installing MySQL on OS X”.

For information on making use of an OS X Launch Daemon to automatically start and stop MySQL,
see Section 2.4.3, “Installing a MySQL Launch Daemon”.

For information on the MySQL Preference Pane, see Section 2.4.4, “Installing and Using the MySQL
Preference Pane”.

2.1 General Installation Guidance

The immediately following sections contain the information necessary to choose, download, and verify
your distribution. The instructions in later sections of the chapter describe how to install the distribution
that you choose. For binary distributions, see the instructions at Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries” or the corresponding section for your platform if available. To build
MySQL from source, use the instructions in Section 2.9, “Installing MySQL from Source”.

2.1.1 Which MySQL Version and Distribution to Install

MySQL is available on a number of operating systems and platforms. For information about those
platforms that are officially supported, see http://www.mysql.com/support/supportedplatforms/
database.html on the MySQL Web site.

When preparing to install MySQL, decide which version and distribution format (binary or source) to
use.

First, decide whether to install a development release or a General Availability (GA) release.
Development releases have the newest features, but are not recommended for production use. GA

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html


Which MySQL Version and Distribution to Install

44

releases, also called production or stable releases, are meant for production use. We recommend
using the most recent GA release.

The naming scheme in MySQL 5.5 uses release names that consist of three numbers and an optional
suffix; for example, mysql-5.5.1-m2. The numbers within the release name are interpreted as follows:

• The first number (5) is the major version number.

• The second number (5) is the minor version number. Taken together, the major and minor numbers
constitute the release series number. The series number describes the stable feature set.

• The third number (1) is the version number within the release series. This is incremented for each
new bugfix release. In most cases, the most recent version within a series is the best choice.

Release names can also include a suffix to indicate the stability level of the release. Releases within
a series progress through a set of suffixes to indicate how the stability level improves. The possible
suffixes are:

• mN (for example, m1, m2, m3, ...) indicates a milestone number. MySQL development uses a
milestone model, in which each milestone introduces a small subset of thoroughly tested features.
Following the releases for one milestone, development proceeds with another small number of
releases that focuses on the next set of features. From one milestone to the next, feature interfaces
may change or features may even be removed, based on feedback provided by community members
who try these earily releases. Features within milestone releases may be considered to be of pre-
production quality.

• rc indicates a Release Candidate (RC). Release candidates are believed to be stable, having passed
all of MySQL's internal testing. New features may still be introduced in RC releases, but the focus
shifts to fixing bugs to stabilize features introduced earlier within the series.

• Absence of a suffix indicates a General Availability (GA) or Production release. GA releases are
stable, having successfully passed through the earlier release stages, and are believed to be
reliable, free of serious bugs, and suitable for use in production systems.

Development within a series begins with milestone releases, followed by RC releases, and finally
reaches GA status releases.

After choosing which MySQL version to install, decide which distribution format to install for your
operating system. For most use cases, a binary distribution is the right choice. Binary distributions are
available in native format for many platforms, such as RPM packages for Linux or DMG packages for
OS X. Distributions are also available in more generic formats such as Zip archives or compressed tar
files. On Windows, you can use the MySQL Installer to install a binary distribution.

Under some circumstances, it may be preferable to install MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are ready
to run at any installation location, but you might require even more flexibility to place MySQL
components where you want.

• You want to configure mysqld with features that might not be included in the standard binary
distributions. Here is a list of the most common extra options used to ensure feature availability:

• -DWITH_LIBWRAP=1 for TCP wrappers support.

• -DWITH_ZLIB={system|bundled} for features that depend on compression

• -DWITH_DEBUG=1 for debugging support

For additional information, see Section 2.9.4, “MySQL Source-Configuration Options”.

• You want to configure mysqld without some features that are included in the standard binary
distributions. For example, distributions normally are compiled with support for all character sets. If



How to Get MySQL

45

you want a smaller MySQL server, you can recompile it with support for only the character sets you
need.

• You want to read or modify the C and C++ code that makes up MySQL. For this purpose, obtain a
source distribution.

• Source distributions contain more tests and examples than binary distributions.

2.1.2 How to Get MySQL

Check our downloads page at http://dev.mysql.com/downloads/ for information about the current
version of MySQL and for downloading instructions. For a complete up-to-date list of MySQL download
mirror sites, see http://dev.mysql.com/downloads/mirrors.html. You can also find information there
about becoming a MySQL mirror site and how to report a bad or out-of-date mirror.

To obtain the latest development source, see Section 2.9.3, “Installing MySQL Using a Development
Source Tree”.

2.1.3 Verifying Package Integrity Using MD5 Checksums or GnuPG

After downloading the MySQL package that suits your needs and before attempting to install it, make
sure that it is intact and has not been tampered with. There are three means of integrity checking:

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the
respective package one more time, perhaps from another mirror site.

2.1.3.1 Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum that
you can verify against the package that you downloaded. The correct MD5 checksum is listed on the
downloads page for each MySQL product, and you will compare it against the MD5 checksum of the
file (product) that you download.

Each operating system and setup offers its own version of tools for checking the MD5 checksum.
Typically the command is named md5sum, or it may be named md5, and some operating systems do
not ship it at all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide
range of platforms. You can also download the source code from http://www.gnu.org/software/textutils/.
If you have OpenSSL installed, you can use the command openssl md5 package_name instead.
A Windows implementation of the md5 command line utility is available from http://www.fourmilab.ch/
md5/. winMd5Sum is a graphical MD5 checking tool that can be obtained from http://www.nullriver.com/
index/products/winmd5sum. Our Microsoft Windows examples will assume the name md5.exe.

Linux and Microsoft Windows examples:

shell> md5sum mysql-standard-5.5.58-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945  mysql-standard-5.5.58-linux-i686.tar.gz

shell> md5.exe mysql-installer-community-5.5.58.msi
aaab65abbec64d5e907dcd41b8699945  mysql-installer-community-5.5.58.msi

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one
displayed on the download page immediately below the respective package.

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/mirrors.html
http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum
http://www.nullriver.com/index/products/winmd5sum


Verifying Package Integrity Using MD5 Checksums or GnuPG

46

Note

Make sure to verify the checksum of the archive file (for example, the .zip,
.tar.gz, or .msi file) and not of the files that are contained inside of the
archive. In other words, verify the file before extracting its contents.

2.1.3.2 Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic
signatures. This is more reliable than using MD5 checksums, but requires more work.

We sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source
alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. Most Linux distributions
ship with GnuPG installed by default. Otherwise, see http://www.gnupg.org/ for more information about
GnuPG and how to obtain and install it.

To verify the signature for a specific package, you first need to obtain a copy of our public GPG build
key, which you can download from http://pgp.mit.edu/. The key that you want to obtain is named
mysql-build@oss.oracle.com. Alternatively, you can copy and paste the key directly from the
following text:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.5 (GNU/Linux)

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep
rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q2TXlTUUwgUmVs
ZWFzZSBFbmdpbmVlcmluZyA8bXlzcWwtYnVpbGRAb3NzLm9yYWNsZS5jb20+iGwE
ExECACwCGyMCHgECF4ACGQEGCwkIBwMCBhUKCQgCAwUWAgMBAAUCWKcFIAUJHirJ
FAAKCRCMcY07UHLh9VcFAJ46pUyVd8BZ2r5CppMC1tmyQ3ceRgCfVPwuVsiS0VER
5WUqtAQDt+DoetCIaQQTEQIAKQIbIwYLCQgHAwIEFQIIAwQWAgMBAh4BAheAAhkB
BQJTAdRmBQkaZsvLAAoJEIxxjTtQcuH1X4MAoKNLWAbCBUj96637kv6Xa/fJuX5m
AJwPtmgDfjUe2iuhXdTrFEPT19SB6ohmBBMRAgAmAhsjBgsJCAcDAgQVAggDBBYC
AwECHgECF4AFAk53PioFCRP7AhUACgkQjHGNO1By4fUmzACeJdfqgc9gWTUhgmcM
AOmG4RjwuxcAoKfM+U8yMOGELi+TRif7MtKEms6piGkEExECACkCGyMGCwkIBwMC
BBUCCAMEFgIDAQIeAQIXgAIZAQUCUZSROgUJFTchqgAKCRCMcY07UHLh9YtAAJ9X
rA/ymlmozPZn+A9ls8/uwMcTsQCfaQMNq1dNkhH2kyByc3Rx9/W2xfqJARwEEAEC
AAYFAlAS6+UACgkQ8aIC+GoXHivrWwf/dtLk/x+NC2VMDlg+vOeM0qgG1IlhXZfi
NsEisvvGaz4m8fSFRGe+1bvvfDoKRhxiGXU48RusjixzvBb6KTMuY6JpOVfz9Dj3
H9spYriHa+i6rYySXZIpOhfLiMnTy7NH2OvYCyNzSS/ciIUACIfH/2NH8zNT5CNF
1uPNRs7HsHzzz7pOlTjtTWiF4cq/Ij6Z6CNrmdj+SiMvjYN9u6sdEKGtoNtpycgD
5HGKR+I7Nd/7v56yhaUe4FpuvsNXig86K9tI6MUFS8CUyy7Hj3kVBZOUWVBM053k
nGdALSygQr50DA3jMGKVl4ZnHje2RVWRmFTr5YWoRTMxUSQPMLpBNIkBHAQQAQIA
BgUCU1B+vQAKCRAohbcD0zcc8dWwCACWXXWDXIcAWRUw+j3ph8dr9u3SItljn3wB
c7clpclKWPuLvTz7lGgzlVB0s8hH4xgkSA+zLzl6u56mpUzskFl7f1I3Ac9GGpM4
0M5vmmR9hwlD1HdZtGfbD+wkjlqgitNLoRcGdRf/+U7x09GhSS7Bf339sunIX6sM
gXSC4L32D3zDjF5icGdb0kj+3lCrRmp853dGyA3ff9yUiBkxcKNawpi7Vz3D2ddU
pOF3BP+8NKPg4P2+srKgkFbd4HidcISQCt3rY4vaTkEkLKg0nNA6U4r0YgOa7wIT
SsxFlntMMzaRg53QtK0+YkH0KuZR3GY8B7pi+tlgycyVR7mIFo7riQEcBBABCAAG
BQJWgVd0AAoJEEZu4b/gk4UKk9MH/Rnt7EccPjSJC5CrB2AU5LY2Dsr+PePI2ubP
WsEdG82qSjjGpbhIH8LSg/PzQoGHiFWMmmZWJktRT+dcgLbs3b2VwCNAwCE8jOHd
UkQhEowgomdNvHiBHKHjP4/lF68KOPiO/2mxYYkmpM7BWf3kB57DJ5CTi3/JLoN7
zF40qIs/p09ePvnwStpglbbtUn7XPO+1/Ee8VHzimABom52PkQIuxNiVUzLVn3bS
Wqrd5ecuqLk6yzjPXd2XhDHWC9Twpl68GePru6EzQtusi0m6S/sHgEXqh/IxrFZV
JlljF75JvosZq5zeulr0i6kOij+Y1p6MFffihITZ1gTmk+CLvK2JASIEEAECAAwF
Ak53QS4FAwASdQAACgkQlxC4m8pXrXwJ8Qf/be/UO9mqfoc2sMyhwMpN4/fdBWwf
LkA12FXQDOQMvwH9HsmEjnfUgYKXschZRi+DuHXe1P7l8G2aQLubhBsQf9ejKvRF
TzuWMQkdIq+6Koulxv6ofkCcv3d1xtO2W7nb5yxcpVBPrRfGFGebJvZa58DymCNg
yGtAU6AOz4veavNmI2+GIDQsY66+tYDvZ+CxwzdYu+HDV9HmrJfc6deM0mnBn7SR
jqzxJPgoTQhihTav6q/R5/2p5NvQ/H84OgS6GjosfGc2duUDzCP/kheMRKfzuyKC
OHQPtJuIj8++gfpHtEU7IDUX1So3c9n0PdpeBvclsDbpRnCNxQWU4mBot4kBIgQQ
AQIADAUCToi2GQUDABJ1AAAKCRCXELibyletfLZAB/9oRqx+NC98UQD/wlxCRytz

http://www.gnupg.org/
http://pgp.mit.edu/


Verifying Package Integrity Using MD5 Checksums or GnuPG

47

vi/MuPnbgQUPLHEap10tvEi33S/H/xDR/tcGofY4cjAvo5skZXXeWq93Av7PACUb
zkg0X0eSr2oL6wy66xfov72AwSuX+iUK68qtKaLqRLitM02y8aNRV/ggKvt7UMvG
mOvs5yLaYlobyvGaFC2ClfkNOt2MlVnQZCmnYBCwOktPGkExiu2yZMifcYGxQcpH
KVFG59KeF2cM2d4xYM8HJqkSGGW306LFVSyeRwG+wbttgLpD5bM/T2b3fF/J35ra
CSMLZearRTq8aygPl+XM7MM2eR946aw6jmOsgNBErbvvIdQj6LudAZj+8imcXV2K
iQEiBBABAgAMBQJOmdnRBQMAEnUAAAoJEJcQuJvKV618AvIIAIEF1ZJ+Ry7WOdKF
5oeQ/ynaYUigzN92fW/9zB8yuQlngkFJGidYMbci1tR1siziIVJFusR3ZonqAPGK
/SUta9Y6KWLhmc7c5UnEHklq/NfdMZ2WVSIykXlctqw0sbb+z1ecEd4G8u9j5ill
MO1B36rQayYAPoeXLX8dY4VyFLVGaQ00rWQBYFZrpw16ATWbWGJP332NSfCk4zZq
6kXEW07q0st3YBgAAGdNQyEeZCa4d4pBRSX6189Kjg6GDnIcaiOF6HO6PLr9fRlL
r5ObCgU+G9gEhfiVwDEV9E+7/Bq2pYZ9whhkBqWQzdpXTNTM24uaEhE01EPO5zeC
O214q6mJASIEEAECAAwFAk6rpgEFAwASdQAACgkQlxC4m8pXrXzAhwf/f9O99z16
3Y5FZVIxexyqXQ/Mct9uKHuXEVnRFYbA49dQLD4S73N+zN7gn9jFeQcBo4w8qVUV
94U/ta/VbLkdtNREyplPM4XY8YE5Wfd9bfyg3q1PbEiVjk995sBF+2+To99YYKst
gXPqjlH0jUfEyDmexOj+hsp8Rc63kvkIx36VBa4ONRYFefGAhKDMigL2YAhc1UkG
tkGTuLmlCGwIV6lviDZD3RJf5375VFnaHv7eXfwQxCwE+BxG3CURrjfxjaxMTmMP
yAG2rhDp5oTUEvqDYNbko5UxYOmrSjvF4FzXwqerElXJUkUzSh0pp7RxHB/1lCxD
s7D1F1hlgFQuNIkBIgQQAQIADAUCTrzZHAUDABJ1AAAKCRCXELibyletfMUpB/4s
07dREULIBnA1D6qr3fHsQJNZqbAuyDlvgGGLWzoyEDs+1JMFFlaa+EeLIo1386GU
2DammDC23p3IB79uQhJeD2Z1TcVg4cA64SfF/CHca5coeRSrdAiudzU/cgLGtXIP
/OaFamXgdMxAhloLFbSHPCZkyb00phVa8+xeIVDrK1HByZsNIXy/SSK8U26S2PVZ
2o14fWvKbJ1Aga8N6DuWY/D8P2mi3RAbiuZgfzkmKL5idH/wSKfnFKdTgJzssdCc
1jZEGVk5rFYcWOrJARHeP/tsnb/UxKBEsNtO7e3N2e/rLVnEykVIO066hz7xZK/V
NBSpx3k3qj4XPK41IHy2iQEiBBABAgAMBQJOzqO8BQMAEnUAAAoJEJcQuJvKV618
2twH/0IzjXLxN45nvIfEjC75a+i9ZSLlqR8lsHL4GpEScFKI0a0lT4IVAIY2RKG+
MAs2eHm0UfKuwGs5jluRZ9RqKrc61sY0XQV9/7znY9Db16ghX04JjknOKs/fPi87
rvKkB/QxJWS8qbb/erRmW+cPNjbRxTFPS5JIwFWHA16ieFEpvdAgKV6nfvJVTq1r
jPDcnIA9CJN2SmUFx9Qx3SRc6ITbam1hjFnY6sCh6AUhxLI2f1mq1xH9PqEy42Um
68prRqTyJ7Iox1g/UDDkeeUcAg7T1viTz7uXpS3Wrq4zzo4yOpaJfLDR3pI5g2Zk
SNGTMo6aySE4OABt8i1Pc1Pm6AmJASIEEAECAAwFAk7yPFYFAwASdQAACgkQlxC4
m8pXrXzXiAf9FrXe0lgcPM+tYOWMLhv5gXJi2VUBaLxpyRXm/kJcmxInKq1GCd3y
D4/FLHNu3ZcCz/uklPAbZXWI0O6ewq0LWsRtklmJjWiedH+hGyaTv95VklojRIBd
8nBaJ6M98rljMBHTFwWvjQFVf4FLRJQZqHlvjcCkq2Dd9BWJpGXvr/gpKkmMJYNK
/ftfZRcChb35NI19WRpOhj9u808OPcqKVvZBcPwFGV5cEBzmAC94J7JcD8+S8Ik8
iUJMQGGL3QcmZOBozovh86hj7KTSEBHlLXl832z89H1hLeuLbnXoGLv3zeUFSxkv
1h35LhZLqIMDQRXLuUzxGHMBpLhPyGWRJ4kBIgQQAQIADAUCTwQJFwUDABJ1AAAK
CRCXELibyletfABvB/9Cy69cjOqLGywITs3Cpg//40jmdhSAVxilJivP6J5bubFH
DJlVTx541Dv5h4hTG2BQuueQ4q1VCpSGW+rHcdhPyvmZGRz1rxdQQGh1Dv0Bod2c
3PJVSYPSrRSwCZJkJHOtVRBdjK4mkZb5aFTza+Tor9kxzj4FcXVd4KAS+hHQHYHc
Ar8tt2eOLzqdEFTULeGiSoNn+PVzvzdfhndphK+8F2jfQ2UKuc01O7k0Yn9xZVx0
OG6fE1gStzLv7C5amWLRd8+xh+MN0G8MgNglpBoExsEMMlPBYSUHa6lxpdMNMuib
rIyVncE9X8QOhImt8K0sNn/EdbuldJNGYbDLt7O4iQEiBBABAgAMBQJPFdTcBQMA
EnUAAAoJEJcQuJvKV6184owH+wZ/uLpezXnSxigeH1sig72QEXMrNd5DVHCJdig3
bo+K5YmmN710/m5z+63XKUEWpd6/knajObgckThzWftNeK1SSFQGPmoYZP9EZnSU
7L+/dSUpExbj842G5LYagrCyMGtlxRywWEmbi72TKS/JOK0jLiOdvVy+PHrZSu0D
TVQ7cJh1BmPsbz7zzxjmcI5l+7B7K7RHZHq45nDLoIabwDacj7BXvBK0Ajqz4QyJ
GQUjXC7q+88I+ptPvOXlE5nI/NbiCJOMI6d/bWN1KwYrC80fZuFaznfQFcPyUaDw
yRaun+K3kEji2wXecq+yMmLUEp01TKsUeOL50HD6hHH07W+JASIEEAECAAwFAk85
bQsFAwASdQAACgkQlxC4m8pXrXwKPQgAlkbUsTr7nkq+haOk0jKpaHWEbRMEGMrB
I3F7E+RDO6V/8y4Jtn04EYDc8GgZMBah+mOgeINq3y8jRMYV5jVtZXv2MWYFUcjM
kVBKeqhi/pGEjmUdmdt3DlPv3Z+fMTMRmAocI981iY/go8PVPg/+nrR6cFK2xxnO
R8TacikJBFeSfkkORg1tDzjjYv1B5ZIEkpplepl5ahJBBq7cpYhTdY6Yk0Sz0J8w
EdffLSaNxrRuWLrRhWzZU7p9bFzfb/7OHc21dJnB7wKv5VvtgE+jiQw9tOKaf5hc
SgRYuF6heu+B25gc5Uu88lo409mZ7oxQ6hDCn7JHvzh0rhmSN+Kid4kBIgQQAQIA
DAUCT0qQrQUDABJ1AAAKCRCXELibyletfC9UB/4o2ggJYM0CLxEpP0GU8UKOh3+/
zm1DN7Qe4kY2iCtF1plKHQaTgt5FlgRCFaiXcVv7WzGz/FnmxonR1leLl+kfRlwy
PPnoI/AWPCy/NO4Cl5KnjsSmsdDUpObwZ4KYsdilZR7ViJu2swdAIgnXBUwrlRJR
7CK4TAKrTeonRgVSrVx8Vt//8/cYj73CLq8oY/KK0iHiQrSwo44uyhdiFIAssjyX
n6/2E+w0zgvPexNSNNROHQ8pjbq+NTY6GwKIGsaej3UTRwQ7psvKXz8y7xdzmOAr
/khGvxB5gjkx02pimjeia8v66aH6rbnojJMAovNUS4EHdHnulv4rovC8Kf9iiQEi
BBABAgAMBQJPVdsaBQMAEnUAAAoJEJcQuJvKV618vVEIALFXPBzcAO1SnQarBLzy
YMVZZumPvSXKnUHAO+6kjApXPJ+qFRdUaSNshZxVKY9Zryblu4ol/fLUTt0CliSD
IxD6L4GXEm4VYYCl4lPO3bVsJnGITLFwQGHM27EmjVoTiD8Ch7kPq2EXr3dMRgzj
pdz+6aHGSUfOdLTPXufDvW83bEWGaRVuTJKw+wIrcuRqQ+ucWJgJGwcE4zeHjZad
Jx1XUm1X+BbI73uiQussyjhhQVVNU7QEdrjyuscaZ/H38wjUwNbylxDPB4I8quC1
knQ0wSHr7gKpM+E9nhiS14poRqU18u78/sJ2MUPXnQA6533IC238/LP8JgqB+BiQ
BTSJASIEEAECAAwFAk9ng3cFAwASdQAACgkQlxC4m8pXrXxQRAf/UZlkkpFJj1om
9hIRz7gS+l7YvTaKSzpo+TBcx3C7aqKJpir6TlMK9cb9HGTHo2Xp1N3FtQL72NvO
6CcJpBURbvSyb4i0hrm/YcbUC4Y3eajWhkRS3iVfGNFbc/rHthViz0r6Y5lhXX16
aVkDv5CIFWaF3BiUK0FnHrZiy4FPacUXCwEjv3uf8MpxV5oEmo8Vs1h4TL3obyUz
qrImFrEMYE/12lkE8iR5KWCaF8eFyl56HL3PPl90JMQBXzhwsFoWCPuwjfM5w6sW
Ll//zynwxtlJ9CRz9c2vK6aJ8DRu3OfBKN1iiEcNEynksDnNXErn5xXKz3p5pYdq



Verifying Package Integrity Using MD5 Checksums or GnuPG

48

e9BLzUQCDYkBIgQQAQIADAUCT3inRgUDABJ1AAAKCRCXELibyletfGMKCADJ97qk
geBntQ+tZtKSFyXznAugYQmbzJld8U6eGSQnQkM40Vd62UZLdA8MjlWKS8y4A4L2
0cI14zs5tKG9Q72BxQOw5xkxlLASw1/8WeYEbw7ZA+sPG//q9v3kIkru3sv64mMA
enZtxsykexRGyCumxLjzlAcL1drWJGUYE2Kl6uzQS7jb+3PNBloQvz6nb3YRZ+Cg
Ly9D41SIK+fpnV8r4iqhu7r4LmAQ7Q1DF9aoGaYvn2+xLGyWHxJAUet4xkMNOLp6
k9RF1nbNe4I/sqeCB25CZhCTEvHdjSGTD2yJR5jfoWkwO9w8DZG1Q9WrWqki4hSB
l0cmcvO34pC1SJYziQEiBBABAgAMBQJPinQFBQMAEnUAAAoJEJcQuJvKV618CFEI
AJp5BbcV7+JBMRSvkoUcAWDoJSP2ug9zGw5FB8J90PDefKWCKs5Tjayf2TvM5ntq
5DE9SGaXbloIwa74FoZlgqlhMZ4AtY9Br+oyPJ5S844wpAmWMFc6NnEPFaHQkQ+b
dJYpRVNd9lzagJP261P3S+S9T2UeHVdOJBgWIq9Mbs4lnZzWsnZfQ4Lsz0aPqe48
tkU8hw+nflby994qIwNOlk/u+I/lJbNz5zDY91oscXTRl2jV1qBgKYwwCXxyB3j9
fyVpRl+7QnqbTWcCICVFL+uuYpP0HjdoKNqhzEguAUQQLOB9msPTXfa2hG+32ZYg
5pzI5V7GCHq0KO6u5Ctj3TGJASIEEAECAAwFAk+cQEEFAwASdQAACgkQlxC4m8pX
rXzi7AgAx8wJzNdD7UlgdKmrAK//YqH7arSssb33Xf45sVHDpUVA454DXeBrZpi+
zEuo03o5BhAuf38cwfbkV6jN1mC2N0FZfpy4v7RxHKLYr7tr6r+DRn1L1giX5ybx
CgY0fLAxkwscWUKGKABWxkz9b/beEXaO2rMt+7DBUdpAOP5FNRQ8WLRWBcMGQiaT
S4YcNDAiNkrSP8CMLQP+04hQjahxwCgBnksylciqz3Y5/MreybNnTOrdjVDsF0Oe
t0uLOiWXUZV1FfaGIdb/oBQLg+e1B74p5+q3aF8YI97qAZpPa1qiQzWIDX8LX9QX
EFyZ3mvqzGrxkFoocXleNPgWT8fRuokBIgQQAQIADAUCT64N/QUDABJ1AAAKCRCX
ELibyletfDOGCACKfcjQlSxrWlEUrYYZpoBP7DE+YdlIGumt5l6vBmxmt/5OEhqr
+dWwuoiyC5tm9CvJbuZup8anWfFzTTJmPRPsmE4z7Ek+3CNMVM2wIynsLOt1pRFK
4/5RNjRLbwI6EtoCQfpLcZJ//SB56sK4DoFKH28Ok4cplESPnoMqA3QafdSEA/FL
qvZV/iPgtTz7vjQkMgrXAIUM4fvKe3iXkAExGXtmgdXHVFoKmHrxJ2DTSvM7/19z
jGJeu2MhIKHyqEmCk6hLjxyCE5pAH59KlbAQOP1bS28xlRskBApm2wN+LOZWzC62
HhEReQ50inCGuuubK0PqUQnyYc+lUFxrFpcliQEiBBABAgAMBQJPv9lVBQMAEnUA
AAoJEJcQuJvKV618AzgH/iRFFCi4qjvoqji1fi7yNPZVOMMO2H13Ks+AfcjRtHuV
aa30u50ND7TH+XQe6yerTapLh3aAm/sNP99aTxIuwRSlyKEoDs93+XVSgRqPBgbF
/vxv0ykok3p6L9DxFO/w5cL8JrBhMZoJrEkIBFkwN8tWlcXPRFQvcdBYv3M3DTZU
qY+UHnOxHvSzsl+LJ0S9Xcd9C5bvYfabmYJvG5eRS3pj1L/y3a6yw6hvY+JtnQAk
t05TdeHMIgQH/zb8V9wxDzmE0un8LyoC2Jx5TpikQsJSejwK6b3coxVBlngku6+C
qDAimObZLw6H9xYYIK0FoJs7j5bQZEwUO7OLBgjcMOqJASIEEAECAAwFAk/Rpc8F
AwASdQAACgkQlxC4m8pXrXw49Qf/TdNbun2htQ+cRWarszOx8BLEiW/x6PVyUQpZ
nV/0qvhKzlJUjM9hQPcA0AsOjhqtCN6Cy8KXbK/TvPm9D/Nk6HWwD1PomzrJVFk2
ywGFIuTR+lluKSp7mzm5ym0wJs5cPq731Im31RUQU8ndjLrq9YOf5FVL8NqmcOAU
4E8d68BbmVCQC5MMr0901FKwKznShfpy7VYN25/BASj8dhnynBYQErqToOJB6Cnd
JhdTlbfR4SirqAYZZg3XeqGhByytEHE1x7FMWWFYhdNtsnAVhYBbWqAzBs8lF9Jd
Mhaf0VQU/4z10gVrRtXLR/ixrCi+P4cM/fOQkqd6pwqWkaXt6okBIgQQAQIADAUC
T+NxIAUDABJ1AAAKCRCXELibyletfFBBCAC6+0TUJDcNaqOxOG1KViY6KYg9NCL8
pwNK+RKNK/N1V+WGJQH7qDMwRoOn3yogrHax4xIeOWiILrvHK0O6drS1DjsymIhR
Sm2XbE/8pYmEbuJ9vHh3b/FTChmSAO7dDjSKdWD3dvaY8lSsuDDqPdTX8FzOfrXC
M22C/YPg7oUG2A5svE1b+yismP4KmVNWAepEuPZcnEMPFgop3haHg9X2+mj/btDB
Yr6p9kAgIY17nigtNTNjtI0dMLu43aIzedCYHqOlNHiB049jkJs54fMGBjF9qPtc
m0k44xyKd1/JXWMdNUmtwKsChAXJS3YOciMgIx6tqYUTndrP4I6q1rfriQEiBBAB
AgAMBQJP9T1VBQMAEnUAAAoJEJcQuJvKV618J9wIAI1lId9SMbEHF6PKXRe154lE
pap5imMU/lGTj+9ZcXmlf8o2PoMMmb3/E1k+EZUaeSBoOmjS8C2gwd5XFwRrlwAD
RlK/pG5XsL4h5wmN2fj1ororrJXvqH427PLRQK9yzdwG4+9HTBOxjoS8qZT9plyK
AJZzAydAMqyseRHgNo0vMwlgrs4ojo+GcFGQHrF3IaUjvVfUPOmIj7afopFdIZmI
GaSF0TXBzqcZ1chFv/eTBcIuIKRvlaDee5FgV7+nLH2nKOARCLvV/+8uDi2zbr83
Ip5x2tD3XuUZ0ZWxD0AQWcrLdmGb4lkxbGxvCtsaJHaLXWQ2m760RjIUcwVMEBKJ
ASIEEAECAAwFAlAGYWsFAwASdQAACgkQlxC4m8pXrXwyVAgAvuvEl6yuGkniWOlv
uHEusUv/+2GCBg6qV+IEpVtbTCCgiFjYR5GasSp1gpZ5r4BocOlbGdjdJGHTpyK8
xD1i+6qZWUYhNRg2POXUVzcNEl2hhouwPLOifcmTwAKU76TEv3L5STviL3hWgUR2
yEUZ3Ut0IGVV6uPER9jpR3qd6O3PeuFkwf+NaGTye4jioLAy3aYwtZCUXzvYmNLP
90K4y+5yauZteLmNeq26miKC/NQu4snNFClPbGRjHD1ex9KDiAMttOgN4WEq7srT
rYgtT531WY4deHpNgoPlHPuAfC0H+S6YWuMbgfcb6dV+Rrd8Ij6zM3B/PcjmsYUf
OPdPtIkBIgQQAQIADAUCUBgtfQUDABJ1AAAKCRCXELibyletfAm3CACQlw21Lfeg
d8RmIITsfnFG/sfM3MvZcjVfEAtsY3fTK9NiyU0B3yX0PU3ei37qEW+50BzqiStf
5VhNvLfbZR+yPou7o2MAP31mq3Uc6grpTV64BRIkCmRWg40WMjNI1hv7AN/0atgj
ATYQXgnEw7mfFb0XZtMTD6cmrz/A9nTPVgZDxzopOMgCCC1ZK4Vpq9FKdCYUaHpX
3sqnDf+gpVIHkTCMgWLYQOeX5Nl+fgnq6JppaQ3ySZRUDr+uFUs0uvDRvI/cn+ur
ri92wdDnczjFumKvz/cLJAg5TG2Jv1Jx3wecALsVqQ3gL7f7vr1OMaqhI5FEBqdN
29L9cZe/ZmkriQEiBBIBCgAMBQJVoNxyBYMHhh+AAAoJEEoz7NUmyPxLD1EH/2eh
7a4+8A1lPLy2L9xcNt2bifLfFP2pEjcG6ulBoMKpHvuTCgtX6ZPdHpM7uUOje/F1
CCN0IPB533U1NIoWIKndwNUJjughtoRM+caMUdYyc4kQm29Se6hMPDfyswXE5Bwe
PmoOm4xWPVOH/cVN04zyLuxdlQZNQF/nJg6PMsz4w5z+K6NGGm24NEPcc72iv+6R
Uc/ry/7v5cVu4hO5+r104mmNV5yLecQF13cHy2JlngIHXPSlxTZbeJX7qqxE7TQh
5nviSPgdk89oB5jFSx4g1efXiwtLlP7lbDlxHduomyQuH9yqmPZMbkJt9uZDc8Zz
MYsDDwlc7BIe5bGKfjqJAhwEEAECAAYFAlSanFIACgkQdzHqU52lcqLdvg//cAEP
qdN5VTKWEoDFjDS4I6t8+0KzdDWDacVFwKJ8RAo1M2SklDxnIvnzysZd2VHp5Pq7
i4LYCZo5lDkertQ6LwaQxc4X6myKY4LTA652ObFqsSfgh9kW+aJBBAyeahPQ8CDD
+Yl23+MY5wTsj4qt7KffNzy78vLbYnVnvRQ3/CboVix0SRzg0I3Oi7n3B0lihvXy
5goy9ikjzZevejMEfjfeRCgoryy9j5RvHH9PF3fJVtUtHCS4f+kxLmbQJ1XqNDVD



Verifying Package Integrity Using MD5 Checksums or GnuPG

49

hlFzjz8oUzz/8YXy3im5MY7Zuq4P4wWiI7rkIFMjTYSpz/evxkVlkR74qOngT2pY
VHLyJkqwh56i0aXcjMZiuu2cymUt2LB9IsaMyWBNJjXr2doRGMAfjuR5ZaittmML
yZwix9mWVk7tkwlIxmT/IW6Np0qMhDZcWYqPRpf7+MqY3ZYMK4552b8aDMjhXrnO
OwLsz+UI4bZa1r9dguIWIt2C2b5C1RQ9AsQBPwg7h5P+HhRuFAuDKK+vgV8FRuzR
JeKkFqwB4y0Nv7BzKbFKmP+V+/krRv+/Dyz9Bz/jyAQgw02u1tPupH9BGhlRyluN
yCJFTSNj7G+OLU0/l4XNph5OOC7sy+AMZcsL/gsT/TXCizRcCuApNTPDaenACpbv
g8OoIzmNWhh4LXbAUHCKmY//hEw9PvTZA1xKHgyJAhwEEgECAAYFAlJYsKQACgkQ
oirk60MpxUV2XQ//b2/uvThkkbeOegusDC4AZfjnL/V3mgk4iYy4AC9hum0R9oNl
XDR51P1TEw9mC1btHj+7m7Iq1a5ke5wIC7ENZiilr0yPqeWgL5+LC98dz/L85hqA
wIoGeOfMhrlaVbAZEj4yQTAJDA35vZHVsQmp87il0m+fZX04OBLXBzw86EoAAZ7Q
EoH4qFcT9k1T363tvNnIm3mEvkQ5WjE1R9uchJa1g7hdlNQlVkjFmPZrJK9fl4z5
6Dto89Po4Sge48jDH0pias4HATYHsxW819nz5jZzGcxLnFRRR5iITVZi9qzsHP7N
bUh3qxuWCHS9xziXpOcSZY848xXw63Y5jDJfpzupzu/KHj6CzXYJUEEqp9MluoGb
/BCCEPzdZ0ovyxFutM/BRcc6DvE6sTDF/UES21ROqfuwtJ6qJYWX+lBIgyCJvj4o
RdbzxUleePuzqCzmwrIXtoOKW0Rlj4SCeF9yCwUMBTGW5/nCLmN4dwf1KW2RP2Eg
4ERbuUy7QnwRP5UCl+0ISZJyYUISfg8fmPIdQsetUK9Cj+Q5jpB2GXwELXWnIK6h
K/6jXp+EGEXSqdIE53vAFe7LwfHiP/D5M71D2h62sdIOmUm3lm7xMOnM5tKlBiV+
4jJSUmriCT62zo710+6iLGqmUUYlEll6Ppvo8yuanXkYRCFJpSSP7VP0bBqIZgQT
EQIAJgUCTnc9dgIbIwUJEPPzpwYLCQgHAwIEFQIIAwQWAgMBAh4BAheAAAoJEIxx
jTtQcuH1Ut4AoIKjhdf70899d+7JFq3LD7zeeyI0AJ9Z+YyE1HZSnzYi73brScil
bIV6sbQ7TXlTUUwgUGFja2FnZSBzaWduaW5nIGtleSAod3d3Lm15c3FsLmNvbSkg
PGJ1aWxkQG15c3FsLmNvbT6IbwQwEQIALwUCTnc9rSgdIGJ1aWxkQG15c3FsLmNv
bSB3aWxsIHN0b3Agd29ya2luZyBzb29uAAoJEIxxjTtQcuH1tT0An3EMrSjEkUv2
9OX05JkLiVfQr0DPAJwKtL1ycnLPv15pGMvSzav8JyWN3IhlBBMRAgAdBQJHrJS0
BQkNMFioBQsHCgMEAxUDAgMWAgECF4AAEgkQjHGNO1By4fUHZUdQRwABAa6SAJ9/
PgZQSPNeQ6LvVVzCALEBJOBt7QCffgs+vWP18JutdZc7XiawgAN9vmmITAQTEQIA
DAUCPj6j0QWDCWYAuwAKCRBJUOEqsnKR8iThAJ9ZsR4o37dNGyl77nEqP6RAlJqa
YgCeNTPTEVY+VXHR/yjfyo0bVurRxT2ITAQTEQIADAUCPkKCAwWDCWIiiQAKCRC2
9c1NxrokP5aRAKCIaaegaMyiPKenmmm8xeTJSR+fKQCgrv0TqHyvCRINmi6LPucx
GKwfy7KIRgQQEQIABgUCP6zjrwAKCRCvxSNIeIN0D/aWAKDbUiEgwwAFNh2n8gGJ
Sw/8lAuISgCdHMzLAS26NDP8T2iejsfUOR5sNriIRgQQEQIABgUCP7RDdwAKCRCF
lq+rMHNOZsbDAJ0WoPV+tWILtZG3wYqg5LuHM03faQCeKuVvCmdPtro06xDzeeTX
VrZ14+GIRgQQEQIABgUCQ1uz6gAKCRCL2C5vMLlLXH90AJ0QsqhdAqTAk3SBnO2w
zuSOwiDIUwCdFExsdDtXf1cL3Q4ilo+OTdrTW2CIRgQTEQIABgUCRPEzJgAKCRD2
ScT0YJNTDApxAKCJtqT9LCHFYfWKNGGBgKjka0zi9wCcCG3MvnvBzDUqDVebudUZ
61Sont+ITAQQEQIADAUCQYHLAQWDBiLZiwAKCRAYWdAfZ3uh7EKNAJwPywk0Nz+Z
Lybw4YNQ7H1UxZycaQCePVhY4P5CHGjeYj9SX2gQCE2SNx+ITAQQEQIADAUCQYHL
NAWDBiLZWAAKCRCBwvfr4hO2kiIjAJ0VU1VQHzF7yYVeg+bh31nng9OOkwCeJI8D
9mx8neg4wspqvgXRA8+t2saITAQQEQIADAUCQYHLYgWDBiLZKgAKCRBrcOzZXcP0
cwmqAJsFjOvkY9c5eA/zyMrOZ1uPB6pd4QCdGyzgbYb/eoPu6FMvVI9PVIeNZReI
TAQQEQIADAUCQdCTJAWDBdQRaAAKCRB9JcoKwSmnwmJVAKCG9a+Q+qjCzDzDtZKx
5NzDW1+W+QCeL68seX8OoiXLQuRlifmPMrV2m9+ITAQQEQIADAUCQitbugWDBXlI
0gAKCRDmG6SJFeu5q/MTAKCTMvlCQtLKlzD0sYdwVLHXJrRUvgCffmdeS6aDpwIn
U0/yvYjg1xlYiuqITAQSEQIADAUCQCpZOgWDB3pLUgAKCRA8oR80lPr4YSZcAJwP
4DncDk4YzvDvnRbXW6SriJn1yQCdEy+d0CqfdhM7HGUs+PZQ9mJKBKqITAQSEQIA
DAUCQD36ugWDB2ap0gAKCRDy11xj45xlnLLfAKC0NzCVqrbTDRw25cUss14RRoUV
PACeLpEc3zSahJUB0NNGTNlpwlTczlCITAQSEQIADAUCQQ4KhAWDBpaaCAAKCRA5
yiv0PWqKX/zdAJ4hNn3AijtcAyMLrLhlZQvib551mwCgw6FEhGLjZ+as0W681luc
wZ6PzW+ITAQSEQIADAUCQoClNAWDBSP/WAAKCRAEDcCFfIOfqOMkAJwPUDhS1eTz
gnXclDKgf353LbjvXgCeLCWyyj/2d0gIk6SqzaPl2UcWrqiITAQTEQIADAUCPk1N
hAWDCVdXCAAKCRAtu3a/rdTJMwUMAKCVPkbk1Up/kyPrlsVKU/Nv3bOTZACfW5za
HX38jDCuxsjIr/084n4kw/uITAQTEQIADAUCQdeAdgWDBc0kFgAKCRBm79vIzYL9
Pj+8AJ9d7rvGJIcHzTCSYVnaStv6jP+AEACeNHa5yltqieRBCCcLcacGqYK81omI
TAQTEQIADAUCQhiBDgWDBYwjfgAKCRB2wQMcojFuoaDuAJ9CLYdysef7IsW42UfW
hI6HjxkzSgCfeEpXS4hEmmGicdpRiJQ/W21aB0GIZQQTEQIAHQULBwoDBAMVAwID
FgIBAheABQJLcC/KBQkQ8/OnABIHZUdQRwABAQkQjHGNO1By4fWw2wCeJilgEarL
8eEyfDdYTyRdqE45HkoAnjFSZY8Zg/iXeErHI0r04BRukNVgiHsEMBECADsFAkJ3
NfU0HQBPb3BzLi4uIHNob3VsZCBoYXZlIGJlZW4gbG9jYWwhIEknbSAqc28qIHN0
dXBpZC4uLgAKCRA5yiv0PWqKX+9HAJ0WjTx/rqgouK4QCrOV/2IOU+jMQQCfYSC8
JgsIIeN8aiyuStTdYrk0VWCIjwQwEQIATwUCRW8Av0gdAFNob3VsZCBoYXZlIGJl
ZW4gYSBsb2NhbCBzaWduYXR1cmUsIG9yIHNvbWV0aGluZyAtIFdURiB3YXMgSSB0
aGlua2luZz8ACgkQOcor9D1qil+g+wCfcFWoo5qUl4XTE9K8tH3Q+xGWeYYAnjii
KxjtOXc0ls+BlqXxbfZ9uqBsiQIiBBABAgAMBQJBgcuFBYMGItkHAAoJEKrj5s5m
oURoqC8QAIISudocbJRhrTAROOPoMsReyp46Jdp3iL1oFDGcPfkZSBwWh8L+cJjh
dycIwwSeZ1D2h9S5Tc4EnoE0khsS6wBpuAuih5s//coRqIIiLKEdhTmNqulkCH5m
imCzc5zXWZDW0hpLr2InGsZMuh2QCwAkB4RTBM+r18cUXMLV4YHKyjIVaDhsiPP/
MKUj6rJNsUDmDq1GiJdOjySjtCFjYADlQYSD7zcd1vpqQLThnZBESvEoCqumEfOP
xemNU6xAB0CL+pUpB40pE6Un6Krr5h6yZxYZ/N5vzt0Y3B5UUMkgYDSpjbulNvaU
TFiOxEU3gJvXc1+h0BsxM7FwBZnuMA8LEA+UdQb76YcyuFBcROhmcEUTiducLu84
E2BZ2NSBdymRQKSinhvXsEWlH6Txm1gtJLynYsvPi4B4JxKbb+awnFPusL8W+gfz
jbygeKdyqzYgKj3M79R3geaY7Q75Kxl1UogiOKcbI5VZvg47OQCWeeERnejqEAdx
EQiwGA/ARhVOP/1l0LQA7jg2P1xTtrBqqC2ufDB+v+jhXaCXxstKSW1lTbv/b0d6



Verifying Package Integrity Using MD5 Checksums or GnuPG

50

454UaOUV7RisN39pE2zFvJvY7bwfiwbUJVmYLm4rWJAEOJLIDtDRtt2h8JahDObm
3CWkpadjw57S5v1c/mn+xV9yTgVx5YUfC/788L1HNKXfeVDq8zbAiQIiBBMBAgAM
BQJCnwocBYMFBZpwAAoJENjCCglaJFfPIT4P/25zvPp8ixqV85igs3rRqMBtBsj+
5EoEW6DJnlGhoi26yf1nasC2frVasWG7i4JIm0U3WfLZERGDjR/nqlOCEqsP5gS3
43N7r4UpDkBsYh0WxH/ZtST5llFK3zd7XgtxvqKL98l/OSgijH2W2SJ9DGpjtO+T
iegq7igtJzw7Vax9z/LQH2xhRQKZR9yernwMSYaJ72i9SyWbK3k0+e95fGnlR5pF
zlGq320rYHgD7v9yoQ2t1klsAxK6e3b7Z+RiJG6cAU8o8F0kGxjWzF4v8D1op7S+
IoRdB0Bap01ko0KLyt3+g4/33/2UxsW50BtfqcvYNJvU4bZns1YSqAgDOOanBhg8
Ip5XPlDxH6J/3997n5JNj/nk5ojfd8nYfe/5TjflWNiput6tZ7frEki1wl6pTNbv
V9C1eLUJMSXfDZyHtUXmiP9DKNpsucCUeBKWRKLqnsHLkLYydsIeUJ8+ciKc+EWh
FxEY+Ml72cXAaz5BuW9L8KHNzZZfez/ZJabiARQpFfjOwAnmhzJ9r++TEKRLEr96
taUI9/8nVPvT6LnBpcM38Td6dJ639YvuH3ilAqmPPw50YvglIEe4BUYD5r52Seqc
8XQowouGOuBX4vs7zgWFuYA/s9ebfGaIw+uJd/56Xl9ll6q5CghqB/yt1EceFEnF
CAjQc2SeRo6qzx22iEYEEBECAAYFAkSAbycACgkQCywYeUxD5vWDcACfQsVk/XGi
ITFyFVQ3IR/3Wt7zqBMAoNhso/cX8VUfs2BzxPvvGS3y+5Q9iEYEEBECAAYFAkUw
ntcACgkQOI4l6LNBlYkyFgCbBcw5gIii0RTDJsdNiuJDcu/NPqEAniSq9iTaLjgF
HZbaizUU8arsVCB5iEYEEBECAAYFAkWho2sACgkQu9u2hBuwKr6bjwCfa7ZK6O+X
mT08Sysg4DEoZnK4L9UAoLWgHuYg35wbZYx+ZUTh98diGU/miF0EExECAB0FAj4+
owwFCQlmAYAFCwcKAwQDFQMCAxYCAQIXgAAKCRCMcY07UHLh9XGOAJ4pVME15/DG
rUDohtGv2z8a7yv4AgCeKIp0jWUWE525QocBWms7ezxd6syIXQQTEQIAHQUCR6yU
zwUJDTBYqAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQcuH1dCoAoLC6RtsD9K3N
7NOxcp3PYOzH2oqzAKCFHn0jSqxk7E8by3sh+Ay8yVv0BYhdBBMRAgAdBQsHCgME
AxUDAgMWAgECF4AFAkequSEFCQ0ufRUACgkQjHGNO1By4fUdtwCfRNcueXikBMy7
tE2BbfwEyTLBTFAAnifQGbkmcARVS7nqauGhe1ED/vdgiF0EExECAB0FCwcKAwQD
FQMCAxYCAQIXgAUCS3AuZQUJEPPyWQAKCRCMcY07UHLh9aA+AKCHDkOBKBrGb8tO
g9BIub3LFhMvHQCeIOOot1hHHUlsTIXAUrD8+ubIeZaJARwEEgECAAYFAkvCIgMA
CgkQ3PTrHsNvDi8eQgf/dSx0R9Klozz8iK79w00NOsdoJY0Na0NTFmTbqHg30XJo
G62cXYgc3+TJnd+pYhYi5gyBixF/L8k/kPVPzX9W0YfwChZDsfTw0iDVmGxOswiN
jzSo0lhWq86/nEL30Khl9AhCC1XFNRw8WZYq9Z1qUXHHJ2rDARaedvpKHOjzRY0N
dx6R2zNyHDx2mlfCQ9wDchWEuJdAv0uHrQ0HV9+xq7lW/Q3L/V5AuU0tiowyAbBL
PPYrB6x9vt2ZcXS7BOy8SfQ1i8W2QDQ/Toork4YwBiv6WCW/ociy7paAoPOWV/Nf
2S6hDispeecbk7wqpbUj5klDmwrlgB/jmoAXWEnbsYkBIgQQAQIADAUCSSpooAUD
ABJ1AAAKCRCXELibyletfFOMCACpP+OVZ7lH/cNY+373c4FnSI0/S5PXS0ABgdd4
BFWRFWKrWBeXBGc8sZfHOzVEwkzV96iyHbpddeAOAkEA4OVPW1MMFCmlHxi2s9/N
JrSrTPVfQOH5fR9hn7Hbpq/ETw0IoX1FKo7vndMnHZnFEnI+PDXLcdMYQgljYzhT
xER4vYY0UKu8ekSshUy4zOX7XSJxwqPUvps8qs/TvojIF+vDJvgFYHVkgvS+shp8
Oh/exg9vKETBlgU87Jgsqn/SN2LrR/Jhl0aLd0G0iQ+/wHmVYdQUMFaCZwk/BKNa
XPzmGZEUZ3RNbYa19Mo7hcE3js76nh5YMxFvxbTggVu4kdFkiQEiBBABAgAMBQJK
M06IBQMAEnUAAAoJEJcQuJvKV618F4gH/innejIHffGMk8jYix4ZZT7pW6ApyoI+
N9Iy85H4L+8rVQrtcTHyq0VkcN3wPSwtfZszUF/0qP6P8sLJNJ1BtrHxLORYjJPm
gveeyHPzA2oJl6imqWUTiW822fyjY/azwhvZFzxmvbFJ+r5N/Z57+Ia4t9LTSqTN
HzMUYaXKDaAqzZeK7P0E6XUaaeygbjWjBLQ1O0ezozAy+Kk/gXApmDCGFuHSFe7Z
mgtFcbXLM2XFQpMUooETD2R8MUsd+xnQsff/k6pQOLxi+jUEsWSr/iqmvlk6gZ4D
pemBjuhcXYlxJYjUaX9Zmn5s+ofF4GFxRqXoY7l9Z+tCM9AX37lm6S+JASIEEAEC
AAwFAkpEcgoFAwASdQAACgkQlxC4m8pXrXz2mgf/RQkpmMM+5r8znx2TpRAGHi5w
ktvdFxlvPaOBWE28NDwTrpcoMqo9kzAiuvEQjVNihbP21wR3kvnQ84rTAH0mlC2I
uyybggpqwzOUl+Wi0o+vk8ZA0A0dStWRN8uqneCsd1XnqDe1rvqC4/9yY223tLmA
kPvz54ka2vX9GdJ3kxMWewhrVQSLCktQpygU0dujGTDqJtnk0WcBhVF9T87lv3W2
eGdPielzHU5trXezmGFj21d56G5ZFK8co7RrTt4qdznt80glh1BTGmhLlzjMPLTe
dcMusm3D1QB9ITogcG94ghSf9tEKmmRJ6OnnWM5Kn9KcL63E5oj2/lY9H54wSYkB
IgQQAQIADAUCSlY+RwUDABJ1AAAKCRCXELibyletfOOQB/0dyJBiBjgf+8d3yNID
pDktLhZYw8crIjPBVdOgX12xaUYBTGcQITRVHSggzffDA5BQXeUuWhpL4QB0uz1c
EPPwSMiWiXlBtwF5q6RVf3PZGJ9fmFuTkPRO7SruZeVDo9WP8HjbQtOLukYf566e
grzAYR9p74UgWftpDtmrqrRTobiuvsFBxosbeRCvEQCrN0n+p5D9hCVB88tUPHnO
WA4mlduAFZDxQWTApKQ92frHiBqy+M1JFezz2OM3fYN+Dqo/Cb7ZwOAA/2dbwS7o
y4sXEHbfWonjskgPQwFYB23tsFUuM4uZwVEbJg+bveglDsDStbDlfgArXSL/0+ak
lFcHiQEiBBABAgAMBQJKaAqEBQMAEnUAAAoJEJcQuJvKV618rH0H/iCciD4U6YZN
JBj0GN7/Xt851t9FWocmcaC+qtuXnkFhplXkxZVOCU4VBMs4GBoqfIvagbBTyfV4
Di+W8Uxr+/1jiu3l/HvoFxwdwNkGG6zNBhWSjdwQpGwPvh5ryV1OfLX/mgQgdDmx
vqz5+kFDUj4m7uLaeuU2j1T0lR4zU0yAsbt7J3hwfqJCXHOc9bm5nvJwMrSm+sdC
TP5HjUlwHr9mTe8xuZvj6sO/w0P4AqIMxjC9W7pT9q0ofG2KSTwt7wFbh05sbG4U
QYOJe4+Soh3+KjAa1c0cvmIh4cKX9qfCWwhhdeNfh1A9VTHhnl5zTv/UjvnQtjhl
H/Fq1eBSKcSJASIEEAECAAwFAkp5LgoFAwASdQAACgkQlxC4m8pXrXwY6wgAg3f8
76L3qDZTYlFAWs3pXBl8GsUr1DEkTlEDZMZKDM3wPmhaWBR1hMA3y6p3aaCUyJIJ
BEneXzgyU9uqCxXpC78d5qc3xs/Jd/SswzNYuvuzLYOw5wN5L31SLmQTQ8KqE0uo
RynBmtDCQ4M2UKifSnv+0+3mPh85LVAS481GNpL+VVfCYtKesWNu40+98Yg6L9NG
WwRTfsQbcdokZo44Jz7Y7f81ObC4r/X1DgPj2+d4AU/plzDcdrbINOyprs+7340e
cnaGO4Lsgd19b1CvcgJgltRquu3kRvd+Ero2RYpDv6GVK8Ea0Lto4+b/Ae8cLXAh
QnaWQCEWmw+AU4Jbz4kBIgQQAQIADAUCSo5fvQUDABJ1AAAKCRCXELibyletfA08
B/9w8yJdc8K+k07U30wR/RUg3Yb2lBDygmy091mVsyB0RGixBDXEPOXBqGKAXiV1
QSMAXM2VKRsuKahY2HFkPbyhZtjbdTa7Pr/bSnPvRhAh9GNWvvRg2Kp3qXDdjv9x
ywEghKVxcEIVXtNRvpbqRoKmHzIExvUQck5DM1VwfREeYIoxgs4035WADhVMdngQ



Verifying Package Integrity Using MD5 Checksums or GnuPG

51

S2Gt8P2WaU/p8EZhFGg6X8KtOlD68zGboaJe0hj2VDc+Jc+KdjRfE3fW5IToid/o
DkUaIW6tB3WkXb0g6D/2hrEJbX3headChHKSB8eQdOR9bcCJDhhU8csd501qmrhC
ctmvlpeWQZdIQdk6sABPWeeCiQEiBBABAgAMBQJKoBJHBQMAEnUAAAoJEJcQuJvK
V618Ml8H/1D88/g/p9fSVor4Wu5WlMbg8zEAik3BIxQruEFWda6nART6M9E7e+P1
++UHZsWYs6l9ROpWxRLG1Yy9jLec2Y3nUtb20m65p+IVeKR2a9PHW35WZDV9dOYP
GZabKkO1clLeWLVgp9LRjZ+AeRG+ljHqsULXro1dwewLTB/gg9I2vgNv6dKxyKak
nM/GrqZLATAq2KoaE/u/6lzRFZIzZnLtjZh8X7+nS+V8v9IiY4ntrpkrbvFk30U6
WJp79oBIWwnW/84RbxutRoEwSar/TLwVRkcZyRXeJTapbnLGnQ/lDO1o1d7+Vbjd
q/Sg/cKHHf7NthCwkQNsCnHL0f51gZCJASIEEAECAAwFAkqoEAAFAwASdQAACgkQ
lxC4m8pXrXwE/Af/XD4R/A5R6Ir/nCvKwCTKJmalajssuAcLEa2pMnFZYO/8rzLO
+Gp8p0qFH9C4LFwA0NvR5q6X/swuROf4zxljSvNcdlQVaAfJ2ZDEgJ5GXzsPplrv
SAI9jS3LL7fSWDZgKuUe0a4qx7A0NgyGMUYGhP+QlRFa8vWEBI9fANd/0mMqAeBV
qQyOH0X1FiW1Ca2Jn4NKfuMy9GEvRddVIbB1LvoNVtXPNzeeKMyNb9Jdx1MFWssy
COBP2DayJKTmjvqPEc/YOjOowoN5sJ/jn4mVSTvvlTooLiReSs6GSCAjMVxN7eYS
/Oyq6Iu1JDcJvmB8N2WixAZtAVgF8OA7CWXKVYkBIgQQAQIADAUCSrnHiQUDABJ1
AAAKCRCXELibyletfPChB/9uECti1dZeNuFsd0/RuGyRUVlrrhJE6WCcOrLO9par
rPbewbKBmjSzB0MygJXGvcC06mPNuquJ7/WpxKsFmfg4vJBPlADFKtgRUy9BLzjC
eotWchPHFBVW9ftPbaQViSUu7d89NLjDDM5xrh80puDIApxoQLDoIrh3T1kpZx56
jSWv0gelFUMbXAzmqkJSyL4Xdh1aqzgUbREd7Xf2ICzuh0sV6V7c/AwWtjWEGEsA
HZaiQDywZwbC18GwrMLiAzGWb/AScFDQRCZKJDjL+Ql8YT6z+ZMVr8gb7CIU5PKY
dhiIf2UVTQwLAoW7lNRCQQAqcGjK3IMIz7SO/yk4HmVUiQEiBBABAgAMBQJK3gjG
BQMAEnUAAAoJEJcQuJvKV618jkEH+wb0Zv9z7xQgpLMowVuBFQVu8/z7P5ASumyB
PUO3+0JVxSHBhlCKQK7n11m1fhuGt2fCxXhSU6LzXj36rsKRY53lGZ9QhvqFUtQH
3Xb2IQLIJC4UKjG2jSSCdcuA/x98bwp2v7O03rn7ndCS16CwXnRV3geQoNipRKMS
DajKPpZv1RiZm8pMKqEb8WSw352xWoOcxuffjlsOEwvJ85SEGCAZ9tmIlkZOc7Ai
QONDvii9b8AYhQ60RIQC0HP2ASSmK0V92VeFPxHmAygdDQgZNVtbVxgnnt7oTNEu
VRXNY+z4OfBArp7R+cTsvijDRZY4kML1n22hUybwoxUEvjqZV2+JASIEEAECAAwF
AkrvOlQFAwASdQAACgkQlxC4m8pXrXxrPAgArXiNgZirNuBhfNCXlkzkCHLx5wnV
e4SmTpbWzTwWw7+qk7d4l9hlWtdImISORINzo7f4ShSUzJX2GciNaXhaHRo7+y5O
Zbu82jQb09aQQj/nibKYuqxqUrobTEm+DuYz3JUQZm2PsPcHLS8mX9cxvrJUncPG
nXEV0DRaq71SGWDprtkvBbp6i38aY3sIhYgz8wM5m1szKDtjywmBYcFehIdozt9z
hm7wZshzRWQX1+Rf/pIsnk+OzBIa34crSemTnacbV/B7278z2XAyziPNFuqz0xu+
iltOmYmayfNWAmumuw9NcuwWMlth6Mc2HLrpo0ZBheJ6iuDMPsHnwqdB/4kBIgQQ
AQIADAUCSwBd2gUDABJ1AAAKCRCXELibyletfP6tB/4m1w0BtlkJgtS6E+B/ns14
z4A4PGors+n+MYm05qzvi+EnDF/sytCmVcKeimrtvDcfoDtKAFFvJjcYXfnJdGWm
Pu0SJMRL5KKCirAKwZmU/saxOgoB5QLNw+DHPteJ3w9GmWlGxIqG1r15WC5duzBC
y3FsnjJYG3jaLnHOO9yXXb5h0kUTORfUKdvAr1gxF2KoatZWqGoaPPnHoqb88rjt
zk8I7gDqoXnzh8wLxa0ZYvfTC/McxdWTrwXLft+krmMQ18iIZEne2hvVLNJVuluU
oiWLeHA8iNCQ4W4WTdLc1mCnCjGTMX/MN41uLH0C9Ka4R6wEaqj4lPDk1B/1TV+Q
iQEiBBABAgAMBQJLEYGrBQMAEnUAAAoJEJcQuJvKV618naIH/2t9aH5mBTKBN6fU
qhrf79vIsjtI/QNS5qisBISZMX3/1/0Gu6WnxkPSfdCUJMWCjMcnVj7KU2wxTHHG
VpAStd9r2afUNxRyqZwzwyytktuZok0XngAEDYDDBS3ssu2R4uWLCsC2ysXEqO/5
tI5YrTWJZrfeIphTaYP5hxrMujvqy3kEwKKbiMz91cDeiLS+YCBcalj5n/1dMYf7
8U8C6ieurxAg/L8h6x25VM4Ilx4MmG2T8QGtkkUXd+Fd/KYWmf0LE5LLPknf0Hhw
oVslPXeinp4FsHK/5wzviv4YZpzuTqs9NlKcMsa4IuuPOB0FDf0pn+OFQbEg9QwY
2gCozK+JASIEEAECAAwFAksjTdQFAwASdQAACgkQlxC4m8pXrXwlogf/XBGbXRVX
LMaRN4SczOjwT3/tUCriTkb3v+zKjRG90zFhYAccjn7w+7jKQicjq6quQG1EH2X4
/Su6ps1lDLqGHHhiJW3ZhxQScLZmhdAYsh2qG4GP/UW3QjXG7c61t+H3olvWg2cr
wqCxxFZAgkAAkr9xcHWFZJEQeXoob6cCZObaUnHSANdmC6s5lUxXYa2bmL7Q3UB4
4KCzDvAfbPZKJOw9k0qb3lc11zx+vGdyZFbm4R0+3LPp/vT0b3GlSbbF9lU1GOXh
VaphrgFFa76dmjfHCkPplXAkK1VSIU/aPGAefduTFMdlSZpdMtJ5AULjGcszBDlR
pLlPxvqVa0ZpgIkBIgQQAQIADAUCSycmkgUDABJ1AAAKCRCXELibyletfHlNCACp
1YespiHfQt2alcscE5zgfETEHHic8Ai6pNkU9HT4TeWcFHEDe5QqfYcpjLrQvBXS
kSvxEittbyRdv+e+j5Z+HyHjiG8nAQBL6qy9eHqQE4+d7gYs6DTk7sG9ZMYphREb
ltzD+F4hVCQdLT8LNr0eVFN7ehqECScDaCG8/Qyti+l/0M902/Yn+mz0ilOiUdWJ
9x6LPaIINtb1gsYDEylLjwGIZmI0r5Kh9wYoV4vnNezFbxO1uRiW0B7iaPjIEsbt
OOKp7wx2aX+DM3N9F3BtaIY8XnzcnomNm83SNsgmgrZljpQltUnNqIhNM8DupQ+I
WOV5gtl6pTC7CgeVTVyRiQEiBBABAgAMBQJLOGXuBQMAEnUAAAoJEJcQuJvKV618
ll4IAKJ9mm4jb0c8fe9+uDI8eCJRbzNbVXm8zWzpA8GUtQAakwxoKv332QP1Wa1P
odni/e3EMhsSREOZJJv79YqGxGRBTE9Kb/VjM34nas4XSnXKW28XWhKyIw+XwQAi
nY2swFHh+83Htr/mwTdJfS2aEYl2zboBvd/JZCdhOGU2GH737S/3uEczoKkfVQ/w
OTM8X1xWwlYWqx23k/DsGcuDs9lA2g7Mx7DSqBtVjaTkn9h0zATzXLDkmP4SAUVj
cZ83WDpFre5WnizZjdXlBMM5OCexp5WpmzyHLTnaBFK4jEmnsk5C2Rnoyp8Ivz6g
Ecg1tRbEXijRw++d2TFYlJwLKtiJASIEEAECAAwFAktKMicFAwASdQAACgkQlxC4
m8pXrXxqHQgAuYY5scKrh0m/GS9EYnyC9494lOlO6iytU0CpE6oBC31M3hfX/Dbj
UbcS5szZNU+2CPYo4ujQLZ7suN7+tTjG6pZFfMevajT9+jsL+NPMF8RLdLOVYmbl
TmSQGNO+XGEYaKYH5oZIeIW5AKCgi2ozkdFlBBLAx7Kqo/FyybhkURFEcvEyVmgf
3KLV7IIiX/fYLfoCMCJ/Lcm9/llSFB1n8Nvg66Xd533DKoHjueD3jyaNAVlo2mq/
sIAv++kntvOiB3GDK5pfwHZ78WWiCpsWZpE5gzAnzJ1Y0WEigRo0PVLu3cLO0jLG
23d+H/CbfZ8rkajHJeCDQF7YVmP0t0nYpYkBIgQQAQIADAUCS1v+ZgUDABJ1AAAK
CRCXELibyletfNS/CACqt2TkB86mjqM+cJ74+dWBvJ2aFuURuxzm95i9Q/W/hU08
2iMbC3+0k2oD8CrTOe61P+3oRyLjv/UEDUNzLncNe2YsA9JeV+4hvPwH5Vp3Om13



Verifying Package Integrity Using MD5 Checksums or GnuPG

52

089fCKZUbqslXNKkHiWYU+zAaZJXEuGRmRz0HbQIeAMOWF4oa226uo1e4ws1Jhc+
F3E/ApCRyFBqBUdL05hapQLditYpsBjIdiBGpjzidMLE2wX2W4ZpAdN0U6BIyIqR
mTPjbSkvzS9kSWFmfhQgnBDKEYJpVZgE1sN52rYC1sDeGeiuKxlzjVov9MMhYMWa
Zo3R5o3F2iIM/BK6FbC252lf/Mhu3ICuXujNBZNYiQEiBBABAgAMBQJLbSH4BQMA
EnUAAAoJEJcQuJvKV618kd0IAJLLwDH6gvgAlBFklQJXqQxUdcSOOVMAWtlHgWOy
ozjgomZZBkRL8dtCDr9YBMcj5czcQ3qpmLJdppXhKB+kJV2iUXfDMSFXwJ4wLfIs
8FNnXw8H5U01oBkGH/Ku6ngL9Vwt+MjYHtCWkw9QueUKZnDudX9qIzLAIt+mwSTu
A6+fY4VWIg40AA0v3exaQM55YR/UhlKunpGG9o8Qkq77dMEbTMpOmBoLbOMRB3Dd
MAvVU6G2l6Pcb7KobVCuOBnb6batXARV/G8sw+nzfJ16fr/KobZT2A6m+Jrqk4dl
F14ljLbz16O5JGUPAryN2G2ddBdSAy7dtFSVhWWiWC9n88q5Ag0EPj6jHRAIAO/h
iX8WzHWOMLJT54x/axeDdqn1rBDf5cWmaCWHN2ujNNlgpx5emoU9v7QStsNUCOGB
bXkeO4Ar7YG+jtSR33zqNh3y5kQ0YkY3dQ0wh6nsl+wh4XIIY/3TUZVtmdJeUBRH
JlfVNFYad2hX1guFI37Ny1PoZAFsxO82g+XB/Se8r/+sbmVcONdcdIeFKrE3FjLt
IjNQcxC6l9Q2Oy8KDxG/zvUZG3+H5i3tdRMyGgmuD6gEV0GXOHYUopzLeit1+Aa0
bCk36Mwbu+BeOw/CJW3+b0mB27hOaf9aCA855IP6fJFvtxcblq8nHIqhU3Dc9tec
sl9/S1xZ5S8ylG/xeRsAAwUH/i8KqmvAhq0X7DgCcYputwh37cuZlHOa1Ep07JRm
BCDgkdQXkGrsj2Wzw7Aw/TGdWWkmn2pxb8BRui5cfcZFO7c6vryi6FpJuLucX975
+eVY50ndWkPXkJ1HF4i+HJwRqE2zliN/RHMs4LJcwXQvvjD43EE3AO6eiVFbD+qA
AdxUFoOeLblKNBHPG7DPG9xL+Ni5rkE+TXShxsB7F0z7ZdJJZOG0JODmox7IstQT
GoaU9u41oyZTIiXPiFidJoIZCh7fdurP8pn3X+R5HUNXMr7M+ba8lSNxce/F3kmH
0L7rsKqdh9d/aVxhJINJ+inVDnrXWVoXu9GBjT8Nco1iU9SIVAQYEQIADAUCTnc9
7QUJE/sBuAASB2VHUEcAAQEJEIxxjTtQcuH1FJsAmwWK9vmwRJ/y9gTnJ8PWf0BV
roUTAKClYAhZuX2nUNwH4vlEJQHDqYa5yQ==
=HfUN
-----END PGP PUBLIC KEY BLOCK-----

To import the build key into your personal public GPG keyring, use gpg --import. For example, if
you have saved the key in a file named mysql_pubkey.asc, the import command looks like this:

shell> gpg --import mysql_pubkey.asc
gpg: key 5072E1F5: public key "MySQL Release Engineering
<mysql-build@oss.oracle.com>" imported
gpg: Total number processed: 1
gpg:               imported: 1
gpg: no ultimately trusted keys found

You can also download the key from the public keyserver using the public key id, 5072E1F5:

shell> gpg --recv-keys 5072E1F5
gpg: requesting key 5072E1F5 from hkp server keys.gnupg.net
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
1 new user ID
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
53 new signatures
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg:           new user IDs: 1
gpg:         new signatures: 53

If you want to import the key into your RPM configuration to validate RPM install packages, you should
be able to import the key directly:

shell> rpm --import mysql_pubkey.asc

If you experience problems or require RPM specific information, see Section 2.1.3.4, “Signature
Checking Using RPM”.

After you have downloaded and imported the public build key, download your desired MySQL package
and the corresponding signature, which also is available from the download page. The signature file
has the same name as the distribution file with an .asc extension, as shown by the examples in the
following table.

Table 2.1 MySQL Package and Signature Files for Source files

File Type File Name

Distribution file mysql-standard-5.5.58-linux-i686.tar.gz



Verifying Package Integrity Using MD5 Checksums or GnuPG

53

File Type File Name

Signature file mysql-standard-5.5.58-linux-i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file:

shell> gpg --verify package_name.asc

If the downloaded package is valid, you will see a "Good signature" similar to:

shell> gpg --verify mysql-standard-5.5.58-linux-i686.tar.gz.asc
gpg: Signature made Tue 01 Feb 2011 02:38:30 AM CST using DSA key ID 5072E1F5
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"

The Good signature message indicates that the file signature is valid, when compared to the
signature listed on our site. But you might also see warnings, like so:

shell> gpg --verify mysql-standard-5.5.58-linux-i686.tar.gz.asc
gpg: Signature made Wed 23 Jan 2013 02:25:45 AM PST using DSA key ID 5072E1F5
gpg: checking the trustdb
gpg: no ultimately trusted keys found
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg:          There is no indication that the signature belongs to the owner.
Primary key fingerprint: A4A9 4068 76FC BD3C 4567  70C8 8C71 8D3B 5072 E1F5

That is normal, as they depend on your setup and configuration. Here are explanations for these
warnings:

• gpg: no ultimately trusted keys found: This means that the specific key is not "ultimately trusted" by
you or your web of trust, which is okay for the purposes of verifying file signatures.

• WARNING: This key is not certified with a trusted signature! There is no indication that the signature
belongs to the owner.: This refers to your level of trust in your belief that you possess our real public
key. This is a personal decision. Ideally, a MySQL developer would hand you the key in person,
but more commonly, you downloaded it. Was the download tampered with? Probably not, but this
decision is up to you. Setting up a web of trust is one method for trusting them.

See the GPG documentation for more information on how to work with public keys.

2.1.3.3 Signature Checking Using Gpg4win for Windows

The Section 2.1.3.2, “Signature Checking Using GnuPG” section describes how to verify MySQL
downloads using GPG. That guide also applies to Microsoft Windows, but another option is to use a
GUI tool like Gpg4win. You may use a different tool but our examples are based on Gpg4win, and
utilize its bundled Kleopatra GUI.

Download and install Gpg4win, and then load Kleopatra. The dialog should look similar to:

http://www.gpg4win.org/


Verifying Package Integrity Using MD5 Checksums or GnuPG

54

Figure 2.1 Initial screen after loading Kleopatra

Next, add the MySQL Release Engineering certificate. Do this by clicking File, Lookup Certificates on
Server. Type "Mysql Release Engineering" into the search box and press Search.

Figure 2.2 Finding the MySQL Release Engineering certificate

Select the "MySQL Release Engineering" certificate. The Fingerprint and Key-ID must be "5072E1F5",
or choose Details... to confirm the certificate is valid. Now, import it by clicking Import. An import
dialog will be displayed, choose Okay, and this certificate will now be listed under the Imported
Certificates tab.

Next, configure the trust level for our certificate. Select our certificate, then from the main menu select
Certificates, Change Owner Trust.... We suggest choosing I believe checks are very accurate for



Verifying Package Integrity Using MD5 Checksums or GnuPG

55

our certificate, as otherwise you might not be able to verify our signature. Select I believe checks are
very accurate and then press OK.

Figure 2.3 Changing the Trust level

Next, verify the downloaded MySQL package file. This requires files for both the packaged file, and
the signature. The signature file must have the same name as the packaged file but with an appended
.asc extension, as shown by the example in the following table. The signature is linked to on the
downloads page for each MySQL product. You must create the .asc file with this signature.

Table 2.2 MySQL Package and Signature Files for MySQL Installer for Microsoft Windows

File Type File Name

Distribution file mysql-installer-community-5.5.58.msi

Signature file mysql-installer-community-5.5.58.msi.asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file. Either drag and drop the signature (.asc) file into Kleopatra, or
load the dialog from File, Decrypt/Verify Files..., and then choose either the .msi or .asc file.



Verifying Package Integrity Using MD5 Checksums or GnuPG

56

Figure 2.4 The Decrypt/Verify Files dialog

Click Decrypt/Verify to check the file. The two most common results will look like the following, and
although the yellow warning looks problematic, the following means that the file check passed with
success. You may now run this installer.



Verifying Package Integrity Using MD5 Checksums or GnuPG

57

Figure 2.5 The Decrypt/Verify Results: Good

Seeing a red "The signature is bad" error means the file is invalid. Do not execute the MSI file if you
see this error.



Verifying Package Integrity Using MD5 Checksums or GnuPG

58

Figure 2.6 The Decrypt/Verify Results: Bad

The Section 2.1.3.2, “Signature Checking Using GnuPG” section explains why you probably don't see a
green Good signature result.

2.1.3.4 Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and
MD5 checksum. You can verify a package by running the following command:

shell> rpm --checksig package_name.rpm

Example:

shell> rpm --checksig MySQL-server-5.5.58-0.glibc23.i386.rpm
MySQL-server-5.5.58-0.glibc23.i386.rpm: md5 gpg OK

Note

If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING
KEYS: GPG#5072e1f5), even though you have imported the MySQL public
build key into your own GPG keyring, you need to import the key into the RPM
keyring first. RPM 4.1 no longer uses your personal GPG keyring (or GPG
itself). Rather, RPM maintains a separate keyring because it is a system-wide
application and a user's GPG public keyring is a user-specific file. To import the



Installation Layouts

59

MySQL public key into the RPM keyring, first obtain the key, then use rpm --
import to import the key. For example:

shell> gpg --export -a 5072e1f5 > 5072e1f5.asc
shell> rpm --import 5072e1f5.asc

Alternatively, rpm also supports loading the key directly from a URL, and you can use this manual
page:

shell> rpm --import http://dev.mysql.com/doc/refman/5.5/en/checking-gpg-signature.html

If you need to obtain the MySQL public key, see Section 2.1.3.2, “Signature Checking Using GnuPG”.

2.1.4 Installation Layouts

The installation layout differs for different installation types (for example, native packages, binary
tarballs, and source tarballs), which can lead to confusion when managing different systems or using
different installation sources. The individual layouts are given in the corresponding installation type or
platform chapter, as described following. Note that the layout of installations from vendors other than
Oracle may differ from these layouts.

• Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”

• Section 2.9.1, “MySQL Layout for Source Installation”

• Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”

• Table 2.10, “MySQL Installation Layout for Linux RPM Packages”

• Table 2.9, “MySQL Installation Layout on OS X”

2.1.5 Compiler-Specific Build Characteristics

In some cases, the compiler used to build MySQL affects the features available for use. The notes in
this section apply for binary distributions provided by Oracle Corporation or that you compile yourself
from source.

icc (Intel C++ Compiler) Builds

A server built with icc has these characteristics:

• SSL support is not included.

2.2 Installing MySQL on Unix/Linux Using Generic Binaries

Oracle provides a set of binary distributions of MySQL. These include generic binary distributions in the
form of compressed tar files (files with a .tar.gz extension) for a number of platforms, and binaries
in platform-specific package formats for selected platforms.

This section covers the installation of MySQL from a compressed tar file binary distribution. For other
platform-specific package formats, see the other platform-specific sections. For example, for Windows
distributions, see Section 2.3, “Installing MySQL on Microsoft Windows”.

To obtain MySQL, see Section 2.1.2, “How to Get MySQL”.

MySQL compressed tar file binary distributions have names of the form
mysql-VERSION-OS.tar.gz, where VERSION is a number (for example, 5.5.58), and OS indicates
the type of operating system for which the distribution is intended (for example, pc-linux-i686 or
winx64).



Installing MySQL on Unix/Linux Using Generic Binaries

60

Warning

If you have previously installed MySQL using your operating system native
package management system, such as yum or apt-get, you may experience
problems installing using a native binary. Make sure your previous MySQL
installation has been removed entirely (using your package management
system), and that any additional files, such as old versions of your data files,
have also been removed. You should also check for configuration files such as
/etc/my.cnf or the /etc/mysql directory and delete them.

Warning

MySQL has a dependency on the libaio library. Data directory initialization
and subsequent server startup steps will fail if this library is not installed locally.
If necessary, install it using the appropriate package manager. For example, on
Yum-based systems:

shell> yum search libaio  # search for info
shell> yum install libaio # install library

Or, on APT-based systems:

shell> apt-cache search libaio # search for info
shell> apt-get install libaio1 # install library

If you run into problems and need to file a bug report, please use the instructions in Section 1.6, “How
to Report Bugs or Problems”.

On Unix, to install a compressed tar file binary distribution, unpack it at the installation location you
choose (typically /usr/local/mysql). This creates the directories shown in the following table.

Table 2.3 MySQL Installation Layout for Generic Unix/Linux Binary Package

Directory Contents of Directory

bin, scripts mysqld server, client and utility programs

data Log files, databases

docs MySQL manual in Info format

man Unix manual pages

include Include (header) files

lib Libraries

share Miscellaneous support files, including error messages,
sample configuration files, SQL for database installation

sql-bench Benchmarks

Debug versions of the mysqld binary are available as mysqld-debug. To compile your own debug
version of MySQL from a source distribution, use the appropriate configuration options to enable
debugging support. See Section 2.9, “Installing MySQL from Source”.

To install and use a MySQL binary distribution, the command sequence looks like this:

shell> groupadd mysql
shell> useradd -r -g mysql -s /bin/false mysql
shell> cd /usr/local
shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
shell> ln -s full-path-to-mysql-VERSION-OS mysql



Create a mysql User and Group

61

shell> cd mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql data
# Next command is optional
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> bin/mysqld_safe --user=mysql &
# Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server

Note

This procedure assumes that you have root (administrator) access to your
system. Alternatively, you can prefix each command using the sudo (Linux) or
pfexec (Solaris) command.

Note

The procedure does not assign passwords to MySQL accounts. To do so, use
the instructions in Section 2.10.4, “Securing the Initial MySQL Accounts”.

A more detailed version of the preceding description for installing a binary distribution follows.

Create a mysql User and Group

If your system does not already have a user and group to use for running mysqld, you may need to
create one. The following commands add the mysql group and the mysql user. You might want to
call the user and group something else instead of mysql. If so, substitute the appropriate name in the
following instructions. The syntax for useradd and groupadd may differ slightly on different versions
of Unix, or they may have different names such as adduser and addgroup.

shell> groupadd mysql
shell> useradd -r -g mysql -s /bin/false mysql

Note

Because the user is required only for ownership purposes, not login purposes,
the useradd command uses the -r and -s /bin/false options to create
a user that does not have login permissions to your server host. Omit these
options if your useradd does not support them.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it. The
example here unpacks the distribution under /usr/local. The instructions, therefore, assume that
you have permission to create files and directories in /usr/local. If that directory is protected, you
must perform the installation as root.

shell> cd /usr/local

Obtain a distribution file using the instructions in Section 2.1.2, “How to Get MySQL”. For a given
release, binary distributions for all platforms are built from the same MySQL source distribution.

Unpack the distribution, which creates the installation directory. Then create a symbolic link to that
directory. tar can uncompress and unpack the distribution if it has z option support:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz



Perform Postinstallation Setup

62

shell> ln -s full-path-to-mysql-VERSION-OS mysql

The tar command creates a directory named mysql-VERSION-OS. The ln command makes a
symbolic link to that directory. This enables you to refer more easily to the installation directory as /
usr/local/mysql.

To install MySQL from a compressed tar file binary distribution, your system must have GNU gunzip
to uncompress the distribution and a reasonable tar to unpack it. If your tar program supports the z
option, it can both uncompress and unpack the file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or if
available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar
within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is
available from http://www.gnu.org/software/tar/.

If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack
it. Replace the preceding tar command with the following alternative command to uncompress and
extract the distribution:

shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -

Perform Postinstallation Setup

The remainder of the installation process involves setting distribution ownership and access
permissions, initializing the data directory, starting the MySQL server, and setting up the configuration
file. For instructions, see Section 2.10, “Postinstallation Setup and Testing”.

2.3 Installing MySQL on Microsoft Windows

Important

MySQL Community 5.5 Server requires the Microsoft Visual C++ 2008
Redistributable Package to run on Windows platforms. Users should make sure
the package has been installed on the system before installing the server. The
package is available at the Microsoft Download Center.

MySQL is available for Microsoft Windows, for both 32-bit and 64-bit versions. For supported Windows
platform information, see http://www.mysql.com/support/supportedplatforms/database.html.

There are different methods to install MySQL on Microsoft Windows.

MySQL Installer Method

The simplest and recommended method is to download MySQL Installer (for Windows) and let it install
and configure all of the MySQL products on your system. Here is how:

1. Download MySQL Installer from http://dev.mysql.com/downloads/installer/ and execute it.

Note

Unlike the standard MySQL Installer, the smaller "web-community" version
does not bundle any MySQL applications but it will download the MySQL
products you choose to install.

2. Choose the appropriate Setup Type for your system. Typically you will choose Developer Default
to install MySQL server and other MySQL tools related to MySQL development, helpful tools like
MySQL Workbench. Or, choose the Custom setup type to manually select your desired MySQL
products.

http://www.gnu.org/software/tar/
http://www.microsoft.com/en-us/download/default.aspx
http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/downloads/installer/


Additional Installation Information

63

Note

Multiple versions of MySQL server can exist on a single system. You can
choose one or multiple versions.

3. Complete the installation process by following the MySQL Installation wizard's instructions. This will
install several MySQL products and start the MySQL server.

MySQL is now installed. If you configured MySQL as a service, then Windows will automatically start
MySQL server every time you restart your system.

Note

You probably also installed other helpful MySQL products like MySQL
Workbench and MySQL Notifier on your system. Consider loading Chapter 26,
MySQL Workbench to check your new MySQL server connection, and
Section 2.3.4, “MySQL Notifier” to view the connection's status. By default,
these two programs automatically start after installing MySQL.

This process also installs the MySQL Installer application on your system, and later you can use
MySQL Installer to upgrade or reconfigure your MySQL products.

Additional Installation Information

It is possible to run MySQL as a standard application or as a Windows service. By using a service,
you can monitor and control the operation of the server through the standard Windows service
management tools. For more information, see Section 2.3.7.7, “Starting MySQL as a Windows
Service”.

Generally, you should install MySQL on Windows using an account that has administrator rights.
Otherwise, you may encounter problems with certain operations such as editing the PATH environment
variable or accessing the Service Control Manager. Once installed, MySQL does not need to be
executed using a user with Administrator privileges.

For a list of limitations on the use of MySQL on the Windows platform, see Section C.10.6, “Windows
Platform Limitations”.

In addition to the MySQL Server package, you may need or want additional components to use MySQL
with your application or development environment. These include, but are not limited to:

• To connect to the MySQL server using ODBC, you must have a Connector/ODBC driver. For more
information, including installation and configuration instructions, see MySQL Connector/ODBC
Developer Guide.

Note

MySQL Installer will install and configure Connector/ODBC for you.

• To use MySQL server with .NET applications, you must have the Connector/Net driver. For more
information, including installation and configuration instructions, see MySQL Connector/Net
Developer Guide.

Note

MySQL Installer will install and configure MySQL Connector/Net for you.

MySQL distributions for Windows can be downloaded from http://dev.mysql.com/downloads/. See
Section 2.1.2, “How to Get MySQL”.

http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/connector-net/en/
http://dev.mysql.com/doc/connector-net/en/
http://dev.mysql.com/downloads/


MySQL Installation Layout on Microsoft Windows

64

MySQL for Windows is available in several distribution formats, detailed here. Generally speaking,
you should use MySQL Installer. It contains more features and MySQL products than the older MSI, is
simpler to use than the Zip file, and you need no additional tools to get MySQL up and running. MySQL
Installer automatically installs MySQL Server and additional MySQL products, creates an options file,
starts the server, and enables you to create default user accounts. For more information on choosing a
package, see Section 2.3.2, “Choosing An Installation Package”.

• Binary installer distributions. There are two different installable distributions that come packaged as
a Microsoft Windows Installer (MSI) package that you can install manually or automatically on your
systems. The preferred MySQL Installer package includes MySQL Server and additional MySQL
products including MySQL Workbench, MySQL Notifier, and MySQL for Excel. MySQL Installer can
also be used to upgrade these product in the future. The older MSI package contains all the files you
need to install and configure MySQL server, but no additional components.

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “MySQL Installer for
Windows”.

• The standard binary distribution (packaged as a Zip file) contains all of the necessary files that you
unpack into your chosen location. This package contains all of the files in the full Windows MSI
Installer package, but does not include an installation program.

For instructions on installing MySQL using the Zip file, see Section 2.3.7, “Installing MySQL on
Microsoft Windows Using a noinstall Zip Archive”.

• The source distribution format contains all the code and support files for building the executables
using the Visual Studio compiler system.

For instructions on building MySQL from source on Windows, see Section 2.9, “Installing MySQL
from Source”.

MySQL on Windows considerations:

• Large Table Support

If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer file system. Do
not forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables. See Section 13.1.17,
“CREATE TABLE Syntax”.

• MySQL and Virus Checking Software

Virus-scanning software such as Norton/Symantec Anti-Virus on directories containing MySQL data
and temporary tables can cause issues, both in terms of the performance of MySQL and the virus-
scanning software misidentifying the contents of the files as containing spam. This is due to the
fingerprinting mechanism used by the virus-scanning software, and the way in which MySQL rapidly
updates different files, which may be identified as a potential security risk.

After installing MySQL Server, it is recommended that you disable virus scanning on the main
directory (datadir) used to store your MySQL table data. There is usually a system built into the
virus-scanning software to enable specific directories to be ignored.

In addition, by default, MySQL creates temporary files in the standard Windows temporary directory.
To prevent the temporary files also being scanned, configure a separate temporary directory for
MySQL temporary files and add this directory to the virus scanning exclusion list. To do this, add
a configuration option for the tmpdir parameter to your my.ini configuration file. For more
information, see Section 2.3.7.2, “Creating an Option File”.

2.3.1 MySQL Installation Layout on Microsoft Windows

For MySQL 5.5 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL
Server 5.5. Some Windows users prefer to install in C:\mysql, the directory that formerly was used
as the default. However, the layout of the subdirectories remains the same.



Choosing An Installation Package

65

All of the files are located within this parent directory, using the structure shown in the following table.

Table 2.4 Default MySQL Installation Layout for Microsoft Windows

Directory Contents of Directory Notes

bin, scripts mysqld server, client and utility
programs

 

%ALLUSERSPROFILE%
\MySQL\MySQL Server
5.5\

Log files, databases (Windows XP,
Windows Server 2003)

The Windows
system variable
%ALLUSERSPROFILE%
defaults to C:\Documents
and Settings\All Users
\Application Data

%PROGRAMDATA%\MySQL
\MySQL Server 5.5\

Log files, databases (Vista, Windows 7,
Windows Server 2008, and newer)

The Windows system
variable %PROGRAMDATA
% defaults to C:
\ProgramData

examples Example programs and scripts  

include Include (header) files  

lib Libraries  

share Miscellaneous support files, including
error messages, character set files,
sample configuration files, SQL for
database installation

 

If you install MySQL using a Windows MSI package, this package creates and sets up the data
directory that the installed server will use, but as of MySQL 5.5.5, it also creates a pristine “template”
data directory named data under the installation directory. This directory can be useful when the
machine will be used to run multiple instances of MySQL: After an installation has been performed
using an MSI package, the template data directory can be copied to set up additional MySQL
instances. See Section 5.6, “Running Multiple MySQL Instances on One Machine”.

2.3.2 Choosing An Installation Package

For MySQL 5.5, there are multiple installation package formats to choose from when installing MySQL
on Windows.

Note

MySQL Installer and the "Complete Package" methods for installing MySQL
are similar, but different. The MySQL Installer is the newer and more advanced
option, and it includes all functionality found within the "Complete Package."

Note

Program Database (PDB) files (with file name extension pdb) provide
information for debugging your MySQL installation in the event of a problem.
These files are included in ZIP Archive distributions (but not MSI distributions) of
MySQL.

• MySQL Installer: This package has a file name similar to mysql-installer-
community-5.5.58.0.msi or mysql-installer-commercial-5.5.58.0.msi, and utilizes
MSIs to automatically install MySQL server and other products. It will download and apply updates to
itself, and for each of the installed products. It also configures the additional non-server products.

The installed products are configurable, and this includes: documentation with samples and
examples, connectors (such as C, C++, J, NET, and ODBC), MySQL Workbench, MySQL Notifier,
MySQL for Excel, and the MySQL Server with its components.



MySQL Installer for Windows

66

MySQL Installer will run on all Windows platforms that are supported by MySQL (see http://
www.mysql.com/support/supportedplatforms/database.html).

Note

Because MySQL Installer is not a native component of Microsoft Windows
and depends on .NET, it will not work on minimal installation options like the
"Server Core" version of Windows Server 2008.

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “MySQL Installer for
Windows”.

• The Complete Package: This package has a file name similar to mysql-5.5.58-win32.msi or
mysql-5.5.58-winx64.zip, and contains all files needed for a complete Windows installation,
including the Configuration Wizard. This package includes optional components such as the
embedded server and benchmark suite.

• The Noinstall Archive: This package has a file name similar to mysql-5.5.58-win32.zip or
mysql-5.5.58-winx64.zip, and contains all the files found in the Complete install package, with
the exception of the GUI. It also contains PDB files. This package does not include an automated
installer, and must be manually installed and configured.

MySQL Installer is recommended for most users.

Your choice of install package affects the installation process you must follow. If you choose to use
MySQL Installer, see Section 2.3.3, “MySQL Installer for Windows”. If you choose to install a standard
MSI package, see Section 2.3.5, “Installing MySQL on Microsoft Windows Using an MSI Package”. If
you choose to install a Noinstall archive, see Section 2.3.7, “Installing MySQL on Microsoft Windows
Using a noinstall Zip Archive”.

2.3.3 MySQL Installer for Windows

MySQL Installer is a standalone application designed to ease the complexity of installing and managing
MySQL products that run on Microsoft Windows. It supports the following MySQL products:

• MySQL Servers

A single MySQL Installer instance can install and manage multiple MySQL server versions. For
example, a single MySQL Installer instance can install (and update) versions 5.6, 5.7, and 8.0 on the
same host. A host cannot have both community and commercial editions of MySQL server installed.

• MySQL Applications

MySQL Workbench, MySQL Shell, MySQL Router, MySQL for Visual Studio, MySQL for Excel,
MySQL Notifier, and MySQL Utilities.

• MySQL Connectors

MySQL Connector/Net, MySQL Connector/Python, Connector/ODBC, MySQL Connector/J,
Connector/C, and Connector/C++.

• Documentation and Samples

MySQL Reference Manuals (by version) in PDF format and MySQL database samples (by version).

MySQL Installer Community Edition

Download this edition from http://dev.mysql.com/downloads/installer/ to install the community version of
all MySQL products for Windows. Select one of the following MySQL Installer package options:

• Web: Contains MySQL Installer and configuration files only. The web package downloads only
the MySQL products you select to install, but it requires an internet connection for each download.

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/downloads/installer/


MySQL Installer for Windows

67

The size of this file is approximately 2 MB; the name of the file has the form mysql-installer-
community-web-VERSION.N.msi where VERSION is the MySQL server version number such as
5.7 and N is the package number, which begins at 0.

• Full: Bundles all of the MySQL products for Windows (including the MySQL server). The file size is
over 300 MB, and its name has the form mysql-installer-community-VERSION.N.msi where
VERSION is the MySQL Server version number such as 5.7 and N is the package number, which
begins at 0.

MySQL Installer Commercial Edition

Download this edition from https://edelivery.oracle.com/ to install the commercial edition of all MySQL
products for Windows. The Commercial Edition includes all of the products in the Community Edition
and also includes the following products:

• Workbench SE/EE

• MySQL Enterprise Backup

• MySQL Enterprise Firewall

This edition integrates with your My Oracle Support (MOS) account. For knowledge-base content and
patches, see My Oracle Support.

2.3.3.1 MySQL Installer Initial Setup

• MySQL Installer Licensing and Support Authentication

• Choosing a Setup Type

• Path Conflicts

• Check Requirements

• MySQL Installer Configuration Files

When you download MySQL Installer for the first time, a setup wizard guides you through the initial
installation of MySQL products. As the following figure shows, the initial setup is a one-time activity in
the overall process. MySQL Installer detects existing MySQL products installed on the host during its
initial setup and adds them to the list of products to be managed.

Figure 2.7 MySQL Installer Process Overview

MySQL Installer extracts configuration files (described later) to the hard drive of the host during the
initial setup. Although MySQL Installer is a 32-bit application, it can install both 32-bit and 64-bit
binaries.

The initial setup adds a link to the Start menu under the MySQL group. Click Start, All Programs,
MySQL, MySQL Installer to open MySQL Installer.

MySQL Installer Licensing and Support Authentication

MySQL Installer requires you to accept the license agreement before it will install new MySQL
packages. After you accept the terms of the agreement, you can add, update, reconfigure, and remove
all of the products and features provided by the MySQL Installer edition you downloaded.

https://edelivery.oracle.com/
https://support.oracle.com/


MySQL Installer for Windows

68

For the commercial edition, entering your My Oracle Support (MOS) credentials is optional when
installing bundled MySQL products, but your credentials are required when choosing unbundled
MySQL products that MySQL Installer must download. An unbundled product is any MSI file that you
download using MySQL Installer after the initial setup. Your credentials must match the user name and
password that you have registered with Oracle for access to the support site.

Choosing a Setup Type

During the initial setup, you are prompted to select the MySQL products to be installed on the host.
One alternative is to use a predetermined setup type that matches your setup requirements. Choosing
one of the following setup types determines the initial installation only and does not limit your ability to
install or update MySQL products for Windows later:

• Developer Default: Install the following products that compliment application development with
MySQL:

• MySQL Server (Installs the version that you selected when you downloaded MySQL Installer.)

• MySQL Shell

• MySQL Router

• MySQL Workbench

• MySQL for Visual Studio

• MySQL for Excel

• MySQL Notifier

• MySQL Connectors (.NET / Python / ODBC / Java / C / C++)

• MySQL Utilities

• MySQL Documentation

• MySQL Samples and Examples

• Server only: Only install the MySQL server. This setup type installs the general availability (GA) or
development release server that you selected when you downloaded MySQL Installer. It uses the
default installation and data paths.

• Client only: Only install the most recent MySQL applications and MySQL connectors. This setup
type is similar to the Developer Default type, except that it does not include MySQL server or
the client programs typically bundled with the server, such as mysql or mysqladmin.

• Full: Install all available MySQL products.

• Custom The custom setup type enables you to filter and select individual MySQL products from the
MySQL Installer catalog.

Use the Custom setup type to install:

• A product or product version that is not available from the usual download locations. The catalog
contains all product releases, including the other releases between pre-release (or development)
and GA.

• An instance of MySQL server using an alternative installation path, data path, or both. For
instructions on how to adjust the paths, see Setting Alternative Server Paths.

• Two or more MySQL server versions on the same host at the same time (for example, 5.6, 5.7,
and 8.0).

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/refman/5.7/en/mysql-shell.html
http://dev.mysql.com/doc/mysql-router/2.1/en/
http://dev.mysql.com/doc/visual-studio/en/
http://dev.mysql.com/doc/mysql-for-excel/en/
http://dev.mysql.com/doc/index-connectors.html
http://dev.mysql.com/doc/index-utils-fabric.html


MySQL Installer for Windows

69

• A specific combination of products and features not offered as a predetermine setup type. For
example, you can install a single product, such as MySQL Workbench, instead of installing all
client applications for Windows.

Path Conflicts

When the default installation or data folder (required by MySQL server) for a product to be installed
already exists on the host, the wizard displays the Path Conflict step to identify each conflict and
enable you to take action to avoid having files in the existing folder overwritten by the new installation.
You see this step in the initial setup only when MySQL Installer detects a conflict.

To resolve the path conflict, do one of the following:

• Select a product from the list to display the conflict options. A warning symbol indicates which path is
in conflict. Use the browse button to choose a new path and then click Next.

• Click Back to choose a different setup type or product version, if applicable. The Custom setup type
enables you to select individual product versions.

• Click Next to ignore the conflict and overwrite files in the existing folder.

• Delete the existing product. Click Cancel to stop the initial setup and close MySQL Installer. Open
MySQL Installer again from the Start menu and delete the installed product from the host using the
Delete operation from the dashboard.

Check Requirements

MySQL Installer uses entries in the package-rules.xml file to determine whether the prerequisite
software for each product is installed on the host. When the requirements check fails, MySQL Installer
displays the Check Requirements step to help you update the host. The following figure identifies and
describes the key areas of this step.

Figure 2.8 Check Requirements

Description of Check Requirements Elements



MySQL Installer for Windows

70

1. Shows the current step in the initial setup. Steps in this list may change slightly depending on the
products already installed on the host, the availability of prerequisite software, and the products to
be installed on the host.

2. Lists all pending installation requirements by product and indicates the status as follows:

• A blank space in the Status column means that MySQL Installer can attempt to download and
install the required software for you.

• The word Manual in the Status column means that you must satisfy the requirement manually.
Select each product in the list to see its requirement details.

3. Describes the requirement in detail to assist you with each manual resolution. When possible, a
download URL is provided. After you download and install the required software, click Check to
verify that the requirement has been met.

4. Provides the following set operations to proceed:

• Back – Return to the previous step. This action enables you to select a different the setup type.

• Execute – Have MySQL Installer attempt to download and install the required software for all
items without a manual status. Manual requirements are resolved by you and verified with the
Check button.

• Next – Do not execute the request to apply the requirements automatically and proceed to the
installation without including the products that fail the check requirements step.

• Cancel – Stop the installation of MySQL products. Because MySQL Installer is already installed,
the initial setup begins again when you open MySQL Installer from the Start menu and click Add
from the dashboard. For a description of the available management operations, see Product
Catalog.

MySQL Installer Configuration Files

All MySQL Installer files are located within the C:\Program Files (x86) and C:\ProgramData
folders. The following table describes the files and folders that define MySQL Installer as a standalone
application.

Note

Installed MySQL products are neither altered nor removed when you update or
uninstall MySQL Installer.

Table 2.5 MySQL Installer Configuration Files

File or Folder Description Folder Hierarchy

MySQL Installer for
Windows

This folder contains all of the files
needed to run MySQL Installer
and MySQLInstallerConsole.exe, a
command-line program with similar
functionality.

C:\Program Files (x86)

Templates The Templates folder has one file
for each version of MySQL server.
Template files contain keys and
formulas to calculate some values
dynamically.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

package-rules.xml This file contains the prerequisites for
every product to be installed.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest



MySQL Installer for Windows

71

File or Folder Description Folder Hierarchy

produts.xml The products file (or product catalog)
contains a list of all products available
for download.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

Product Cache The Product Cache folder contains
all standalone MSI files bundled
with the full package or downloaded
afterward.

C:\ProgramData\MySQL
\MySQL Installer for
Windows

2.3.3.2 Installation Workflow

MySQL Installer provides a wizard-like tool to install and configure new MySQL products for Windows.
Unlike the initial setup, which runs only once, MySQL Installer invokes the wizard each time you
download or install a new product. For first-time installations, the steps of the initial setup proceed
directly into the steps of the installation.

Note

Full permissions are granted to the user executing MySQL Installer to all
generated files, such as my.ini. This does not apply to files and directories for
specific products, such as the MySQL server data directory in %ProgramData%
that is owned by SYSTEM.

Products installed and configured on a host follow a general pattern that might require your input during
the various steps. MySQL Installer loads all selected products together using the following workflow:

• Product download. If you installed the full (not web) MySQL Installer package, all MSI files were
loaded to the Product Cache folder during the initial setup and are not downloaded again.
Otherwise, the status of each product changes from Downloading to Downloaded.

• Product installation. The status of each product in the list changes from Ready to Install to
Installing to Complete. During the process, click Show Details to view the installation actions.

If you cancel the installation at this point, the products are installed, but the server (if installed) is not
yet configured. To restart the server configuration, open MySQL Installer from the Start menu and
click the Reconfigure link next to the appropriate server in the dashboard.

• Product configuration. This step applies to MySQL server and samples in most cases. The status for
each item in the list should indicate, Ready to Configure. Click Next to begin the step-by-step
configuration of all items in the list.

The configuration options presented during this step depend on which version of the database you
selected to install. After the installation completes, you can reconfigure MySQL server from the
MySQL Installer dashboard.

• Installation compete. This step finalizes the installation and enables you to start some applications
when the installation finishes.

InnoDB Cluster Sandbox Test Setup

You have two options to implement a high-availability solution when you install MySQL Server 5.7.17 or
higher using MySQL Installer:

• Standalone MySQL Server / Classic MySQL Replication (default)

Select this option to begin the initial configuration of a standalone MySQL server. You can configure
multiple servers with classic MySQL Replication manually or use MySQL Shell 1.0.9 or higher to
configure a production InnoDB cluster.

For a description of the server configuration options that apply to a standalone MySQL server on
Windows, see Server Configuration.



MySQL Installer for Windows

72

• InnoDB Cluster Sandbox Test Setup (for testing only)

Select this option to create and configure InnoDB cluster sandbox instances locally for testing.
You can configure an InnoDB cluster sandbox to have three, five, seven, or nine MySQL server
instances. Use the Reconfigure quick action in the MySQL Installer toolbar to adjust the number of
instances in the InnoDB cluster after the configuration has finished.

Figure 2.9 InnoDB Cluster Sandbox Test Setup

The InnoDB cluster sandbox, named sandboxCluster by default, is available on selected ports. After
the configuration executes, click the Summary tab to view the specific ports that apply to your cluster.

You can use MySQL Installer to install MySQL Shell 1.0.9, if it is not installed. MySQL Shell enables
you to manage the sandbox instances. To connect with the MySQL Shell on port 3310, execute the
following command:

shell> mysqlsh root@localhost:3310

MySQL Installer also provides a wizard for configuring MySQL Router to connect to the test InnoDB
cluster that was created in this step. For configuration details, see MySQL Router Configuration. To
learn more about MySQL Router operations, see Routing for MySQL InnoDB cluster.

Server Configuration

MySQL Installer handles the initial configuration of the MySQL server. For example:

• It creates the configuration file (my.ini) that is used to configure the MySQL server. The values
written to this file are influenced by choices you make during the installation process.

Note

Some definitions are host dependent. For example, query_cache is enabled if
the host has fewer than three cores.

http://dev.mysql.com/doc/mysql-router/2.1/en/mysql-router-innodb-cluster.html


MySQL Installer for Windows

73

• By default, a Windows service for the MySQL server is added.

• Provides default installation and data paths for MySQL server. For instructions on how to change the
default paths, see Setting Alternative Server Paths.

• It can optionally create MySQL server user accounts with configurable permissions based on general
roles, such as DB Administrator, DB Designer, and Backup Admin. It optionally creates a Windows
user named MysqlSys with limited privileges, which would then run the MySQL Server.

User accounts may also be added and configured in MySQL Workbench.

• Checking Show Advanced Options allows additional Logging Options to be set. This includes
defining custom file paths for the error log, general log, slow query log (including the configuration of
seconds it requires to execute a query), and the binary log.

During the configuration process, click Next to proceed to the next step or Back to return to the
previous step. Click Execute at the final step to apply the server configuration.

The sections that follow describe the server configuration options that apply to MySQL server on
Windows. The server version you installed will determine which steps and options you can configure.

• Type and Networking

• Accounts and Roles

• Windows Service

• Plugins and Extensions

• Advanced Options

• Apply Server Configuration

Type and Networking

• Server Configuration Type

Choose the MySQL server configuration type that describes your setup. This setting defines the
amount of system resources (memory) that will be assigned to your MySQL server instance.

• Development: A machine that will host many other applications, and typically this is your personal
workstation. This option configures MySQL to use the least amount of memory.

• Server: Several other applications will be running on this machine, such as a web server. This
option configures MySQL to use a medium amount of memory.

• Dedicated: A machine that is dedicated to running the MySQL server. Because no other major
applications will run on this server, such as a web server, this option configures MySQL to use the
majority of available memory.

• Connectivity

Connectivity options control how the connection to MySQL is made. Options include:

• TCP/IP: You may enable TCP/IP Networking here as otherwise only local host connections are
allowed. Also define the Port Number and whether to open the firewall port for network access. If

the port number is in use already, you will see the information icon (  ) next to the default value
and Next is disabled until you provide a new port number.

• Named Pipe: Enable and define the pipe name, similar to using the --enable-named-pipe
option.



MySQL Installer for Windows

74

• Shared Memory: Enable and then define the memory name, similar to using the --shared-
memory option.

• Advanced Configuration

Check Show Advanced Options to set additional logging options in a later step. This includes
defining custom file paths for the error log, general log, slow query log (including the configuration of
seconds it requires to execute a query), and the binary log.

• MySQL Enterprise Firewall (Commercial Edition only)

The Enable Enterprise Firewall check box is selected by default. For post-installation instructions,
see MySQL Enterprise Firewall.

Accounts and Roles

• Root Account Password

Assigning a root password is required and you will be asked for it when performing other MySQL
Installer operations. Password strength is evaluated when you repeat the password in the box
provided. For descriptive information regarding password requirements or status, move your mouse

pointer over the information icon (  ) when it appears.

• MySQL User Accounts

Optionally, you can create additional MySQL user accounts with predefined user roles. Each
predefined role, such as DB Admin, are configured with their own set of privileges. For example, the
DB Admin role has more privileges than the DB Designer role. Click the Role drop-down list for a
description of each role.

Note

If the MySQL server is installed, then you must also enter the current root
password.

Windows Service

On the Windows platform, MySQL server can run as a named service managed by the operating
system and be configured to start up automatically when Windows starts. Alternatively, you can
configure MySQL server to run as an executable program that requires manual configuration.

• Configure MySQL server as a Windows service (Selected by default.)

When the default configuration option is selected, you can also select the following:

• Start the MySQL Server at System Startup

When selected (default), the service startup type is set to Automatic; otherwise, the startup type is
set to Manual.

• Run Windows Service as

When Standard System Account is selected (default), the service logs on as Network Service.

The Custom User option must have privileges to log on to Microsoft Windows as a service. The
Next button will be disabled until this user is configured with the required privileges.

A custom user is configured in Windows by searching for "local security policy" in the Start menu.
In the Local Security Policy window, select Local Policies, User Rights Assignment, and then
Log On As A Service to open the property dialog. Click Add User or Group to add the custom
user and then click OK in each dialog to save the changes.

http://dev.mysql.com/doc/refman/5.6/en/firewall.html


MySQL Installer for Windows

75

• Deselect the Windows Service option

Plugins and Extensions

The Plugins and Extensions step is visible during a new installation of MySQL server version 5.7.12
(or higher) only. If you are upgrading from a previous MySQL version, then you need to open MySQL
Installer again and select the Reconfigure MySQL server option.

• Enable X Protocol / MySQL as a Document Store (Selected by default.)

When the X Protocol option is selected, MySQL Installer loads and starts the X Plugin. Without the X
Plugin running, X Protocol clients cannot connect to the server.

• Port Number: 33060

Requires an unused port. The default port number is 33060.

• Open Firewall port for network access

Open by default when the X Protocol is selected.

For more information about using MySQL as a document store and the X Plugin, see Key Concepts
and X Plugin.

Advanced Options

This step is available if the Show Advanced Configuration check box was selected during the Type
and Networking step. To enable this step now, click Back to return to the Type and Networking step
and select the check box.

Advanced configuration options are related to the following MySQL log files:

• Error log

• General log

• Slow query log

• Bin log

Apply Server Configuration

All configuration settings are applied to the MySQL server when you click Execute. Use the
Configuration Steps tab to follow the progress of each action; the icon for each toggles from white to
green on success. Otherwise, the process stops and displays an error message if an individual action
times out. Click the Log tab to view the log.

When the installation is done and you click Finish, MySQL Installer and the installed MySQL products
are added to the Microsoft Windows Start menu under the MySQL group. Opening MySQL Installer
loads the dashboard where installed MySQL products are listed and other MySQL Installer operations
are available.

Setting Alternative Server Paths

You can change the default installation path, the data path, or both when you install MySQL server.
After you have installed the server, the paths cannot be altered without removing and reinstalling the
server instance.

To change paths for MySQL server

1. Identify the MySQL server to change and display the Advanced Options link.

a. Navigate to the Select Products and Features step by doing one of the following:

http://dev.mysql.com/doc/refman/5.7/en/document-store-concepts.html
http://dev.mysql.com/doc/refman/5.7/en/x-plugin.html


MySQL Installer for Windows

76

i. If this is an initial setup, select the Custom setup type and click Next.

ii. If MySQL Installer is installed already, launch it from the Start menu and then click Add
from the dashboard.

b. Click Edit to filter the list of products, locate the server instance to be installed in the
Available Products list.

c. With the server instance selected, use the arrow to move the selected server to the Products/
Features To Be Installed list.

d. Click the server to select it. When you select the server, the Advanced Options link appears.
For details, see the figure that follows.

2. Click Advanced Options to open a dialog window with the path-setting options. After setting the
path, click Next to continue with the configuration steps.

Figure 2.10 Change MySQL Server Path

MySQL Applications, Connectors, and Documentation

MySQL Installer provides you with a suite of tools for developing and managing business-critical
applications on Windows. The suite consist of applications, connectors, documentation, and samples.

During the initial setup, choose any predetermined setup type, except Server only, to install the
latest GA version of the tools. Use the Custom setup type to install an individual tool or specific
version. If MySQL Installer is installed on the host already, use the Add operation to select and install
tools from the MySQL Installer dashboard.

MySQL Router Configuration

MySQL Installer provides a configuration wizard that can bootstrap an installed instance of MySQL
Router 2.1.3 or later to route traffic between MySQL applications and an InnoDB cluster. When
configured, MySQL Router runs as a local Windows service. For detailed information about using
MySQL Router with an InnoDB cluster, see Routing for MySQL InnoDB cluster.

http://dev.mysql.com/doc/mysql-router/2.1/en/mysql-router-innodb-cluster.html


MySQL Installer for Windows

77

To configure MySQL Router, do the following:

1. Set up InnoDB cluster. For instructions on how to configure an InnoDB cluster sandbox on the local
host using MySQL Installer, see InnoDB Cluster Sandbox Test Setup. InnoDB cluster requires
MySQL Server 5.7.17 or higher.

For general InnoDB cluster information, see InnoDB Cluster.

2. Using MySQL Installer, download and install the MySQL Router application. After the installation
finishes, the configuration wizard prompts you for information. Select the Configure MySQL
Router for InnoDB cluster check box to begin the configuration and provide the following
configuration values:

• Hostname: localhost by default.

• Port: The port number of the primary server in the InnoDB cluster. The default is 3310.

• Management User: An administrative user with root-level privileges.

• Password: The password for the management user.

• Classic MySQL protocol connections to InnoDB cluster

Read/Write: Set the first base port number to one that is unused (between 80 and 65532) and
the wizard will select the remaining ports for you.

The figure that follows shows an example of the MySQL Router configuration screen.

Figure 2.11 MySQL Router Configuration

3. Click Next and then Execute to apply the configuration. Click Finish to close MySQL Installer or
return to the MySQL Installer dashboard.

2.3.3.3 MySQL Installer Product Catalog and Dashboard

• Product Catalog

• MySQL Installer Dashboard

http://dev.mysql.com/doc/refman/5.7/en/mysql-innodb-cluster-userguide.html


MySQL Installer for Windows

78

• Locating Products to Install

This section describes the MySQL Installer product catalog and the dashboard.

Product Catalog

The product catalog stores the complete list of released MySQL products for Microsoft Windows
that are available to download from MySQL. By default, and when an Internet connection is present,
MySQL Installer updates the catalog daily. You can also update the catalog manually from the
dashboard (described later).

An up-to-date catalog performs the following actions:

• Populates the Available Products pane of the Select Products and Features step. This step
appears when you select:

• The Custom setup type during the initial setup.

• The Add operation from the dashboard.

• Identifies when product updates are available for the installed products listed in the dashboard.

The catalog includes all development releases (Pre-Release), general releases (Current GA), and
minor releases (Other Releases). Products in the catalog will vary somewhat, depending on the
MySQL Installer edition that you download.

MySQL Installer Dashboard

Figure 2.12 MySQL Installer Dashboard Elements

Description of MySQL Installer Dashboard Elements

1.
The About MySQL button (  ) shows the current version of MySQL Installer and general
information about MySQL. The version number is located above the Back button.

http://dev.mysql.com/downloads/


MySQL Installer for Windows

79

Always include this version number when reporting a problem with MySQL Installer.

2.
The MySQL Installer Options button (  ) enables you to schedule daily automatic catalog
updates. By default, catalog updates are scheduled at the hour when MySQL Installer was first
installed. When new products or product versions are available, MySQL Installer adds them to the

catalog and then displays an arrow icon (  ) next to the version number of installed products
listed in the dashboard.

Use this option to enable or disable automatic catalog updates and to reset the time of day when
the MySQL Installer updates the catalog automatically. For specific settings, see the task named
ManifestUpdate in the Windows Task Scheduler.

3. MySQL Installer dashboard operations provide a variety of actions that apply to installed products
or products listed in the catalog. To initiate the following operations, first click the operation link and
then select the product or products to manage:

• Add: This operation opens the Select Products and Features screen. From there, you can filter
the product in the product catalog, select one or more products to download (as needed), and
begin the installation. For hints about using the filter, see Locating Products to Install.

• Modify: Use this operation to add or remove the features associated with installed products.
Features that you can modify vary in complexity by product. When the Program Shortcut check
box is selected, the product appears in the Start menu under the MySQL group.

• Upgrade: This operation loads the Select Products to Upgrade screen and populates it with
all the upgrade candidates. An installed product can have more than one upgrade version and
requires a current product catalog.

To choose a new product version:

a. Confirm that the check box next to product name in the Upgradeable Products pane has a
check mark. Deselect the products that you do not intend to upgrade at this time.

b. Click a product in the list to highlight it. This action populates the Upgradeable Versions
pane with the details of each available version for the selected product: version number,
published date, and a Changes link to open the release notes for that version.

MySQL Installer upgrades all of the selected products in one action. Click Show Details to view
the actions performed by MySQL Installer.

• Remove This operation opens the Remove Products screen and populates it with the MySQL
products installed on the host. Select the MySQL products you want to remove (uninstall) and
then click Execute to begin the removal process.

To select products to remove, do one of the following:

• Select the check box for one or more products.

• Select the Product check box to select all products.

4. The Reconfigure link in the Quick Action column next to each installed server loads the current
configuration values for the server and then cycles through all configuration steps enabling you
to change the options and values. On completion, MySQL Installer stops the server, applies the
configuration changes, and restarts the server for you. For a description of each configuration
option, see Server Configuration.

Installed Samples and Examples associated with a specific MySQL server version can be also
be reconfigured to apply feature-configuration changes, if any. You must provide credentials with
root privileges to reconfigure these items.



MySQL Installer for Windows

80

5. The Catalog link enables you to download the latest catalog of MySQL products manually and
then to integrate those product changes with MySQL Installer. The catalog-download action does
not perform an upgrade of the products already installed on the host. Instead, it returns to the
dashboard and displays an arrow icon in the Version column for each installed product that has a
newer version. Use the Upgrade operation to install the newer product version.

You can also use the Catalog link to display the current change history of each product without
downloading the new catalog. Select the Do not update at this time check box to view the change
history only.

Locating Products to Install

MySQL products in the catalog are listed by category: MySQL Servers, Applications, MySQL
Connectors, and Documentation. Only the latest GA versions appear in the Available Products pane
by default. If you are looking for a pre-GA or older version of a product, it may not be visible in the
default list.

To change the filter that displays available products in the Select Products and Features screen, click
Edit.

Figure 2.13 Filter Available Products

Reset the following values to filter the list of available products:

• Text: Filter by text.

• Category: All Software (default), MySQL Servers, Applications, MySQL Connectors, or
Documentation (for samples and documentation).

• Age: Pre-Release, Current GA (default), or Other Releases.

• Already Downloaded (the check box is deselected by default).

• Architecture: Any (default), 32-bit, or 64-bit.

2.3.3.4 MySQLInstallerConsole Reference

MySQLInstallerConsole.exe provides command-line functionality that is similar to MySQL
Installer. It is installed when MySQL Installer is initially executed and then available within the MySQL
Installer directory. Typically, that is in C:\Program Files (x86)\MySQL\MySQL Installer
\, and the console must be executed with administrative privileges.

To use, invoke the command prompt with administrative privileges by choosing Start, Accessories,
then right-click on Command Prompt and choose Run as administrator. And from the command
line, optionally change the directory to where MySQLInstallerConsole.exe is located:

C:\> cd Program Files (x86)\MySQL\MySQL Installer for Windows



MySQL Installer for Windows

81

C:\Program Files (x86)\MySQL\MySQL Installer for Windows> MySQLInstallerConsole.exe help
=================== Start Initialization ===================
MySQL Installer is running in Community mode

Attempting to update manifest.
Initializing product requirements
Loading product catalog
Checking for product catalog snippets
Checking for product packages in the bundle
Categorizing product catalog
Finding all installed packages.
Your product catalog was last updated at 11/1/2016 4:10:38 PM
=================== End Initialization ===================

The following commands are available:

Configure - Configures one or more of your installed programs.
Help      - Provides list of available commands.
Install   - Install and configure one or more available MySQL programs.
List      - Provides an interactive way to list all products available.
Modify    - Modifies the features of installed products.
Remove    - Removes one or more products from your system.
Status    - Shows the status of all installed products.
Update    - Update the current product catalog.
Upgrade   - Upgrades one or more of your installed programs.

MySQLInstallerConsole.exe supports the following options, which are specified on the command
line:

Note

Configuration block values that contain a colon (":") must be wrapped in double
quotes. For example, installdir="C:\MySQL\MySQL Server 8.0".

•   configure [product1]:[setting]=[value]; [product2]:[setting]=[value];
[...]

Configure one or more MySQL products on your system. Multiple setting=value pairs can be
configured for each product.

Switches include:

• -showsettings : Displays the available options for the selected product, by passing in the
product name after -showsettings.

• -silent : Disable confirmation prompts.

C:\> MySQLInstallerConsole configure -showsettings server
C:\> MySQLInstallerConsole configure server:port=3307

•   help [command]

Displays a help message with usage examples, and then exits. Pass in an additional command to
receive help specific to that command.

C:\> MySQLInstallerConsole help
C:\> MySQLInstallerConsole help install

•   install [product]:[features]:[config block]:[config block]:[config
block]; [...]

Install one or more MySQL products on your system.

Switches and syntax options include:



MySQL Installer for Windows

82

• -type=[SetupType] : Installs a predefined set of software. The "SetupType" can be one of the
following:

Note

Non-custom setup types can only be chosen if no other MySQL products
are installed.

• Developer: Installs a complete development environment.

• Server: Installs a single MySQL server

• Client: Installs client programs and libraries

• Full: Installs everything

• Custom: Installs user selected products. This is the default option.

• -showsettings : Displays the available options for the selected product, by passing in the
product name after -showsettings.

• -silent : Disable confirmation prompts.

• [config block]: One or more configuration blocks can be specified. Each configuration block
is a semicolon separated list of key value pairs. A block can include either a "config" or "user" type
key, where "config" is the default type if one is not defined.

Configuration block values that contain a colon (":") must be wrapped in double quotes. For
example, installdir="C:\MySQL\MySQL Server 8.0".

Only one "config" type block can be defined per product. A "user" block should be defined for each
user that should be created during the product's installation.

Note

Adding users is not supported when a product is being reconfigured.

• [feature]: The feature block is a semicolon separated list of features, or '*' to select all features.

C:\> MySQLInstallerConsole install server;5.6.25:*:port=3307;serverid=2:type=user;username=foo;password=bar;role=DBManager
C:\> MySQLInstallerConsole install server;5.6.25;x64 -silent

An example that passes in additional configuration blocks, broken up by ^ to fit this screen:

C:\> MySQLInstallerConsole install server;5.6.25;x64:*:type=config;openfirewall=true; ^
          generallog=true;binlog=true;serverid=3306;enable_tcpip=true;port=3306;rootpasswd=pass; ^
          installdir="C:\MySQL\MySQL Server 5.6":type=user;datadir="C:\MySQL\data";username=foo;password=bar;role=DBManager

•   list

Lists an interactive console where all of the available MySQL products can be searched. Execute
MySQLInstallerConsole list to launch the console, and enter in a substring to search.

C:\> MySQLInstallerConsole list

•   modify [product1:-removelist|+addlist] [product2:-removelist|+addlist]
[...]

Modifies or displays features of a previously installed MySQL product.



MySQL Notifier

83

• -silent : Disable confirmation prompts.

C:\> MySQLInstallerConsole modify server
C:\> MySQLInstallerConsole modify server:+documentation
C:\> MySQLInstallerConsole modify server:-debug

•   remove [product1] [product2] [...]

Removes one ore more products from your system.

• * : Pass in * to remove all of the MySQL products.

• -continue : Continue the operation even if an error occurs.

• -silent : Disable confirmation prompts.

C:\> MySQLInstallerConsole remove *
C:\> MySQLInstallerConsole remove server

•   status

Provides a quick overview of the MySQL products that are installed on the system. Information
includes product name and version, architecture, date installed, and install location.

C:\> MySQLInstallerConsole status

•   update

Downloads the latest MySQL product catalog to your system. On success, the download catalog will
be applied the next time either MySQLInstaller or MySQLInstallerConsole is executed.

C:\> MySQLInstallerConsole update

Note

The Automatic Catalog Update GUI option executes this command from the
Windows Task Scheduler.

•   upgrade [product1:version] [product2:version] [...]

Upgrades one or more products on your system. Syntax options include:

• * : Pass in * to upgrade all products to the latest version, or pass in specific products.

• ! : Pass in ! as a version number to upgrade the MySQL product to its latest version.

• -silent : Disable confirmation prompts.

C:\> MySQLInstallerConsole upgrade *
C:\> MySQLInstallerConsole upgrade workbench:6.3.5
C:\> MySQLInstallerConsole upgrade workbench:!
C:\> MySQLInstallerConsole upgrade workbench:6.3.5 excel:1.3.2

2.3.4 MySQL Notifier

MySQL Notifier is a tool that enables you to monitor and adjust the status of your local and remote
MySQL server instances through an indicator that resides in the system tray. MySQL Notifier also gives
quick access to MySQL Workbench through its context menu.



MySQL Notifier

84

The MySQL Notifier is installed by MySQL Installer, and (by default) will start-up when Microsoft
Windows is started.

To install, download and execute the MySQL Installer, be sure the MySQL Notifier product is selected,
then proceed with the installation. See the MySQL Installer manual for additional details.

For notes detailing the changes in each release of MySQL Notifier, see the MySQL Notifier Release
Notes.

Visit the MySQL Notifier forum for additional MySQL Notifier help and support.

Features include:

• Start, Stop, and Restart instances of the MySQL Server.

• Automatically detects (and adds) new MySQL Server services. These are listed under Manage
Monitored Items, and may also be configured.

• The Tray icon changes, depending on the status. It's green if all monitored MySQL Server instances
are running, or red if at least one service is stopped. The Update MySQL Notifier tray icon based
on service status option, which dictates this behavior, is enabled by default for each service.

• Links to other applications like MySQL Workbench, MySQL Installer, and the MySQL Utilities. For
example, choosing Manage Instance will load the MySQL Workbench Server Administration window
for that particular instance.

• If MySQL Workbench is also installed, then the Manage Instance and SQL Editor options are
available for local (but not remote) MySQL instances.

• Monitors both local and remote MySQL instances.

2.3.4.1 MySQL Notifier Usage

MySQL Notifier resides in the system tray and provides visual status information for your MySQL
server instances. A green icon is displayed at the top left corner of the tray icon if the current MySQL
server is running, or a red icon if the service is stopped.

MySQL Notifier automatically adds discovered MySQL services on the local machine, and each service
is saved and configurable. By default, the Automatically add new services whose name contains
option is enabled and set to mysql. Related Notifications Options include being notified when new
services are either discovered or experience status changes, and are also enabled by default. And
uninstalling a service will also remove the service from MySQL Notifier.

Clicking the system tray icon will reveal several options, as the follow figures show:

The Service Instance menu is the main MySQL Notifier window, and enables you to Stop, Start, and
Restart the MySQL server.

Figure 2.14 MySQL Notifier Service Instance menu

http://dev.mysql.com/downloads/installer/
http://dev.mysql.com/doc/relnotes/mysql-notifier/en/
http://dev.mysql.com/doc/relnotes/mysql-notifier/en/
http://forums.mysql.com/list.php?173


MySQL Notifier

85

The Actions menu includes several links to external applications (if they are installed), and a Refresh
Status option to manually refresh the status of all monitored services (in both local and remote
computers) and MySQL instances.

Note

The main menu will not show the Actions menu when there are no services
being monitored by MySQL Notifier.

Figure 2.15 MySQL Notifier Actions menu

The Actions, Options menu configures MySQL Notifier and includes options to:

• Use colorful status icons: Enables a colorful style of icons for the tray of MySQL Notifier.

• Run at Windows Startup: Allows the application to be loaded when Microsoft Windows starts.

• Automatically Check For Updates Every # Weeks: Checks for a new version of MySQL Notifier,
and runs this check every # weeks.

• Automatically add new services whose name contains: The text used to filter services and add
them automatically to the monitored list of the local computer running MySQL Notifier, and on remote
computers already monitoring Windows services.

• Ping monitored MySQL Server instances every # seconds: The interval (in seconds) to ping
monitored MySQL Server instances for status changes. Longer intervals might be necessary if the
list of monitored remote instances is large.

• Notify me when a service is automatically added: Will display a balloon notification from the
taskbar when a newly discovered service is added to the monitored services list.

• Notify me when a service changes status: Will display a balloon notification from the taskbar when
a monitored service changes its status.

• Automatic connections migration delayed until: When there are connections to migrate,
postpone the migration by one hour, one day, one week, one month, or indefinitely.



MySQL Notifier

86

Figure 2.16 MySQL Notifier Options menu

The Actions, Manage Monitored Items menu enables you to configure the monitored services and
MySQL instances. First, with the Services tab open:

Figure 2.17 MySQL Notifier Manage Services menu

The Instances tab is similar:



MySQL Notifier

87

Figure 2.18 MySQL Notifier Manage Instances menu

Adding a service or instance (after clicking Add in the Manage Monitored Items window) enables you
to select a running Microsoft Windows service or instance connection, and configure MySQL Notifier
to monitor it. Add a new service or instance by clicking service name from the list, then OK to accept.
Multiple services and instances may be selected.



MySQL Notifier

88

Figure 2.19 MySQL Notifier Adding new services

Add instances:



MySQL Notifier

89

Figure 2.20 MySQL Notifier Adding new instances

Troubleshooting

For issues that are not documented here, visit the MySQL Notifier Support Forum for MySQL Notifier
help and support.

• Problem: attempting to start/stop/restart a MySQL service might generate an error similar to "The
Service MySQLVERSION failed the most recent status change request with the message "The
service mysqlVERSION was not found in the Windows Services".

Explanation: this is a case-sensitivity issue, in that the service name is MySQLVERSION compared
to having mysqlVERSION in the configuration file.

Solution: either update your MySQL Notifier configuration file with the correct information, or stop
MySQL Notifier and delete this configuration file. The MySQL Notifier configuration file is located at
%APPDATA%\Oracle\MySQL Notifier\settings.config where %APPDATA% is a variable and
depends on your system. A typical location is "C:\Users\YourUsername\AppData\Running\Oracle
\MySQL Notifier\settings.config" where YourUsername is your system's user name. In this file, and
within the ServerList section, change the ServerName values from lowercase to the actual service
names. For example, change mysqlVERSION to MySQLVERSION, save, and then restart MySQL
Notifier. Alternatively, stop MySQL Notifier, delete this file, then restart MySQL Notifier.

• Problem: when connecting to a remote computer for the purpose of monitoring a remote Windows
service, the Add Service dialog does not always show all the services shown in the Windows
Services console.

Explanation: this behavior is governed by the operating system and the outcome is expected when
working with nondomain user accounts. For a complete description of the behavior, see the User
Account Control and WMI article from Microsoft.

http://forums.mysql.com/list.php?173
https://msdn.microsoft.com/en-us/library/aa826699(VS.85).aspx
https://msdn.microsoft.com/en-us/library/aa826699(VS.85).aspx


MySQL Notifier

90

Solution: when the remote computer is in a compatible domain, it is recommended that domain user
accounts are used to connect through WMI to a remote computer. For detailed setup instructions
using WMI, see Section 2.3.4.2, “Setting Up Remote Monitoring in MySQL Notifier”.

Alternatively, when domain user accounts are not available, Microsoft provides a less secure
workaround that should only be implemented with caution. For more information, see the Description
of User Account Control and remote restrictions in Windows Vista KB article from Microsoft.

2.3.4.2 Setting Up Remote Monitoring in MySQL Notifier

MySQL Notifier uses Windows Management Instrumentation (WMI) to manage and monitor services on
remote computers. This section explains how it works and how to set up your system to monitor remote
MySQL instances.

In order to configure WMI, it is important to understand that the underlying Distributed Component
Object Model (DCOM) architecture is doing the WMI work. Specifically, MySQL Notifier is using
asynchronous notification queries on remote Microsoft Windows hosts as .NET events. These events
send an asynchronous callback to the computer running MySQL Notifier so it knows when a service
status has changed on the remote computer. Asynchronous notifications offer the best performance
compared to semisynchronous notifications or synchronous notifications that use timers.

Asynchronous notification requires the remote computer to send a callback to the client computer
(thus opening a reverse connection), so the Windows Firewall and DCOM settings must be properly
configured for the communication to function properly.

Figure 2.21 MySQL Notifier Distributed Component Object Model (DCOM)

Most of the common errors thrown by asynchronous WMI notifications are related to Windows Firewall
blocking the communication, or to DCOM / WMI settings not being set up properly. For a list of
common errors with solutions, see Common Errors.

The following steps are required to make WMI function. These steps are divided between two
machines. A single host computer that runs MySQL Notifier (Computer A), and multiple remote
machines that are being monitored (Computer B).

Computer running MySQL Notifier (Computer A)

1. Enable remote administration by either editing the Group Policy Editor, or using NETSH:

Using the Group Policy Editor:

a. Click Start, click Run, type GPEDIT.MSC, and then click OK.

b. Under the Local Computer Policy heading, expand Computer Configuration.

c. Expand Administrative Templates, then Network, Network Connections, and then Windows
Firewall.

d. If the computer is in the domain, then double-click Domain Profile; otherwise, double-click
Standard Profile.

https://support.microsoft.com/en-us/kb/951016
https://support.microsoft.com/en-us/kb/951016


MySQL Notifier

91

e. Double-click Windows Firewall: Allow inbound remote administration exception to open a
configuration window.

f. Check the Enabled option button and then click OK.

Using the NETSH command:

Note

The "netsh firewall" command is deprecated as of Microsoft Server 2008
and Vista, and replaced with "netsh advfirewall firewall".

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and select Run as Administrator).

b. Execute the following command:

NETSH advfirewall firewall set service RemoteAdmin enable

2. Open the DCOM port TCP 135:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and select Run as Administrator).

b. Execute the following command:

NETSH advfirewall firewall add rule name=DCOM_TCP135 protocol=TCP localport=135 dir=in action=allow

3. Add the client application that contains the sink for the callback (MySqlNotifier.exe) to the
Windows Firewall Exceptions List (use either the Windows Firewall configuration or NETSH):

Using the Windows Firewall configuration:

a. In the Control Panel, double-click Windows Firewall.

b. In the Windows Firewall window's left panel, click Allow a program or feature through
Windows Firewall.

c. In the Allowed Programs window, click Change Settings and do one of the following:

• If MySqlNotifier.exe is in the Allowed programs and features list, make sure it is checked
for the type of networks the computer connects to (Private, Public or both).

• If MySqlNotifier.exe is not in the list, click Allow another program....

i. In the Add a Program window, select the MySqlNotifier.exe if it exists
in the Programs list, otherwise click Browse... and go to the directory where
MySqlNotifier.exe was installed to select it, then click Add.

ii. Make sure MySqlNotifier.exe is checked for the type of networks the computer
connects to (Private, Public or both).

Using the NETSH command:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

b. Execute the following command, where you change "[YOUR_INSTALL_DIRECTORY]":



MySQL Notifier

92

NETSH advfirewall firewall add rule name=MySqlNotifier program=[YOUR_INSTALL_DIRECTORY]\MySqlNotifier.exe action=allow dir=in

4. If Computer B is either a member of WORKGROUP or is in a different domain that is untrusted by
Computer A, then the callback connection (Connection 2) is created as an Anonymous connection.
To grant Anonymous connections DCOM Remote Access permissions:

a. Click Start, click Run, type DCOMCNFG, and then click OK.

b. In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

c. In the My Computer Properties dialog box, click the COM Security tab.

d. Under Access Permissions, click Edit Limits.

e. In the Access Permission dialog box, select ANONYMOUS LOGON name in the Group or user
names box. In the Allow column under Permissions for User, select Remote Access, and then
click OK.

Monitored Remote Computer (Computer B)

If the user account that is logged on to the computer running the MySQL Notifier (Computer A)
is a local administrator on the remote computer (Computer B), such that the same account is an
administrator on Computer B, you can skip to the "Allow for remote administration" step.

Setting DCOM security to allow a non-administrator user to access a computer remotely:

1. Grant "DCOM remote launch" and activation permissions for a user or group:

a. Click Start, click Run, type DCOMCNFG, and then click OK.

b. In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

c. In the My Computer Properties dialog box, click the COM Security tab.

d. Under Launch and Activation Permission, click Edit Limits.

e. In the Launch and Activation Permission dialog box, follow these steps if your name or your
group does not appear in the Groups or user names list:

i. In the Launch and Activation Permission dialog box, click Add.

ii. In the Select Users or Groups dialog box, add your name and the group in the Enter the
object names to select box, and then click OK.

f. In the Launch and Activation Permission dialog box, select your user and group in the Group
or user names box. In the Allow column under Permissions for User, select Remote Launch,
select Remote Activation, and then click OK.

Grant DCOM remote access permissions:

a. Click Start, click Run, type DCOMCNFG, and then click OK.

b. In the Component Services dialog box, expand Component Services, expand Computers, and
then right-click My Computer and click Properties.

c. In the My Computer Properties dialog box, click the COM Security tab.

d. Under Access Permissions, click Edit Limits.



MySQL Notifier

93

e. In the Access Permission dialog box, select ANONYMOUS LOGON name in the Group or user
names box. In the Allow column under Permissions for User, select Remote Access, and then
click OK.

2. Allowing non-administrator users access to a specific WMI namespace:

a. In the Control Panel, double-click Administrative Tools.

b. In the Administrative Tools window, double-click Computer Management.

c. In the Computer Management window, expand the Services and Applications tree.

d. Right-click the WMI Control icon and select Properties.

e. In the WMI Control Properties window, click the Security tab.

f. In the Security tab, select the namespace and click Security. Root/CIMV2 is a commonly used
namespace.

g. Locate the appropriate account and check Remote Enable in the Permissions list.

3. Allow for remote administration by either editing the Group Policy Editor or using NETSH:

Using the Group Policy Editor:

a. Click Start, click Run, type GPEDIT.MSC, and then click OK.

b. Under the Local Computer Policy heading, double-click Computer Configuration.

c. Double-click Administrative Templates, then Network, Network Connections, and then
Windows Firewall.

d. If the computer is in the domain, then double-click Domain Profile; otherwise, double-click
Standard Profile.

e. Click Windows Firewall: Allow inbound remote administration exception.

f. On the Action menu either select Edit, or double-click the selection from the previous step.

g. Check the Enabled radio button, and then click OK.

Using the NETSH command:

a. Open a command prompt window with Administrative rights (you can right-click the Command
Prompt icon and click Run as Administrator).

b. Execute the following command:

NETSH advfirewall firewall set service RemoteAdmin enable

4. Confirm that the user account you are logging in with uses the Name value and not the Full Name
value:

a. In the Control Panel, double-click Administrative Tools.

b. In the Administrative Tools window, double-click Computer Management.

c. In the Computer Management window, expand the System Tools then Local Users and
Groups.



Installing MySQL on Microsoft Windows Using an MSI Package

94

d. Click the Users node, and on the right side panel locate your user and make sure it uses the
Name value to connect, and not the Full Name value.

Common Errors

• 0x80070005

• DCOM Security was not configured properly (see Computer B, the Setting DCOM
security... step).

• The remote computer (Computer B) is a member of WORKGROUP or is in a domain that is
untrusted by the client computer (Computer A) (see Computer A, the Grant Anonymous
connections DCOM Remote Access permissions step).

• 0x8007000E

• The remote computer (Computer B) is a member of WORKGROUP or is in a domain that is
untrusted by the client computer (Computer A) (see Computer A, the Grant Anonymous
connections DCOM Remote Access permissions step).

• 0x80041003

• Access to the remote WMI namespace was not configured properly (see Computer B, the
Allowing non-administrator users access to a specific WMI namespace step).

• 0x800706BA

• The DCOM port is not open on the client computers (Computer A) firewall. See the Open the
DCOM port TCP 135 step for Computer A.

• The remote computer (Computer B) is inaccessible because its network location is set to Public.
Make sure you can access it through the Windows Explorer.

2.3.5 Installing MySQL on Microsoft Windows Using an MSI Package

The MSI package is designed to install and configure MySQL in such a way that you can immediately
get started using MySQL.

The MySQL Installation Wizard and MySQL Configuration Wizard are available in the Complete install
package, which is recommended for most standard MySQL installations. Exceptions include users
who need to install multiple instances of MySQL on a single server host and advanced users who want
complete control of server configuration.

• For information on installing using the GUI MSI installer process, see Section 2.3.5.1, “Using the
MySQL Installation Wizard”.

• For information on installing using the command line using the MSI package, see Section 2.3.5.2,
“Automating MySQL Installation on Microsoft Windows Using the MSI Package”.

• If you have previously installed MySQL using the MSI package and want to remove MySQL, see
Section 2.3.5.3, “Removing MySQL When Installed from the MSI Package”.

The workflow sequence for using the installer is shown in the figure below:



Installing MySQL on Microsoft Windows Using an MSI Package

95

Figure 2.22 Installation Workflow for Windows Using MSI Installer

Note

Microsoft Windows XP and later include a firewall which specifically blocks
ports. If you plan on using MySQL through a network port then you should open
and create an exception for this port before performing the installation. To check
and if necessary add an exception to the firewall settings:

1. First ensure that you are logged in as an Administrator or a user with
Administrator privileges.

2. Go to the Control Panel, and double click the Windows Firewall icon.

3. Choose the Allow a program through Windows Firewall option and click
the Add port button.

4. Enter MySQL into the Name text box and 3306 (or the port of your choice)
into the Port number text box.

5. Also ensure that the TCP protocol radio button is selected.

6. If you wish, you can also limit access to the MySQL server by choosing the
Change scope button.



Installing MySQL on Microsoft Windows Using an MSI Package

96

7. Confirm your choices by clicking the OK button.

Additionally, when running the MySQL Installation Wizard on Windows Vista or
newer, ensure that you are logged in as a user with administrative rights.

Note

When using Windows Vista or newer, you may want to disable User Account
Control (UAC) before performing the installation. If you do not do so, then
MySQL may be identified as a security risk, which will mean that you need
to enable MySQL. You can disable the security checking by following these
instructions:

1. Open Control Panel.

2. Under the User Accounts and Family Safety, select Add or remove user
accounts.

3. Click the Got to the main User Accounts page link.

4. Click on Turn User Account Control on or off. You may be prompted to
provide permission to change this setting. Click Continue.

5. Deselect or uncheck the check box next to Use User Account Control
(UAC) to help protect your computer. Click OK to save the setting.

You will need to restart to complete the process. Click Restart Now to reboot
the machine and apply the changes. You can then follow the instructions below
for installing Windows.

2.3.5.1 Using the MySQL Installation Wizard

MySQL Installation Wizard is an installer for the MySQL server that uses the latest installer
technologies for Microsoft Windows. The MySQL Installation Wizard, in combination with the MySQL
Configuration Wizard, enables a user to install and configure a MySQL server that is ready for use
immediately after installation.

The MySQL Installation Wizard is the standard installer for all MySQL server distributions, version 4.1.5
and higher. Users of previous versions of MySQL need to shut down and remove their existing MySQL
installations manually before installing MySQL with the MySQL Installation Wizard. See Upgrading
MySQL with the Installation Wizard, for more information on upgrading from a previous version.

Microsoft has included an improved version of their Microsoft Windows Installer (MSI) in the recent
versions of Windows. MSI has become the de-facto standard for application installations on Windows
2000, Windows XP, and Windows Server 2003. The MySQL Installation Wizard makes use of this
technology to provide a smoother and more flexible installation process.

The Microsoft Windows Installer Engine was updated with the release of Windows XP; those using a
previous version of Windows can reference this Microsoft Knowledge Base article for information on
upgrading to the latest version of the Windows Installer Engine.

In addition, Microsoft has introduced the WiX (Windows Installer XML) toolkit recently. This is the first
highly acknowledged Open Source project from Microsoft. We have switched to WiX because it is
an Open Source project and it enables us to handle the complete Windows installation process in a
flexible manner using scripts.

Improving the MySQL Installation Wizard depends on the support and feedback of users like you. If you
find that the MySQL Installation Wizard is lacking some feature important to you, or if you discover a
bug, please report it in our bugs database using the instructions given in Section 1.6, “How to Report
Bugs or Problems”.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539


Installing MySQL on Microsoft Windows Using an MSI Package

97

Downloading and Starting the MySQL Installation Wizard

The MySQL installation packages can be downloaded from http://dev.mysql.com/downloads/. If the
package you download is contained within a Zip archive, you need to extract the archive first.

Note

If you are installing on Windows Vista or newer, it is best to open a network
port before beginning the installation. To do this, first ensure that you are
logged in as an Administrator, go to the Control Panel, and double-click
the Windows Firewall icon. Choose the Allow a program through
Windows Firewall option and click the Add port button. Enter MySQL into
the Name text box and 3306 (or the port of your choice) into the Port number
text box. Also ensure that the TCP protocol radio button is selected. If you wish,
you can also limit access to the MySQL server by choosing the Change scope
button. Confirm your choices by clicking the OK button. If you do not open a
port prior to installation, you cannot configure the MySQL server immediately
after installation. Additionally, when running the MySQL Installation Wizard
on Windows Vista or newer, ensure that you are logged in as a user with
administrative rights.

The process for starting the wizard depends on the contents of the installation package you download.
If there is a setup.exe file present, double-click it to start the installation process. If there is an .msi
file present, double-click it to start the installation process.

Choosing an Install Type

There are three installation types available: Typical, Complete, and Custom.

The Typical installation type installs the MySQL server, the mysql command-line client, and the
command-line utilities. The command-line clients and utilities include mysqldump, myisamchk, and
several other tools to help you manage the MySQL server.

The Complete installation type installs all components included in the installation package. The full
installation package includes components such as the embedded server library, the benchmark suite,
support scripts, and documentation.

The Custom installation type gives you complete control over which packages you wish to install and
the installation path that is used. See The Custom Install Dialog, for more information on performing a
custom install.

If you choose the Typical or Complete installation types and click the Next button, you advance to
the confirmation screen to verify your choices and begin the installation. If you choose the Custom
installation type and click the Next button, you advance to the custom installation dialog, described in
The Custom Install Dialog.

The Custom Install Dialog

If you wish to change the installation path or the specific components that are installed by the MySQL
Installation Wizard, choose the Custom installation type.

A tree view on the left side of the custom install dialog lists all available components. Components that
are not installed have a red X icon; components that are installed have a gray icon. To change whether
a component is installed, click that component's icon and choose a new option from the drop-down list
that appears.

You can change the default installation path by clicking the Change... button to the right of the
displayed installation path.

After choosing your installation components and installation path, click the Next button to advance to
the confirmation dialog.

http://dev.mysql.com/downloads/


Installing MySQL on Microsoft Windows Using an MSI Package

98

The Confirmation Dialog

Once you choose an installation type and optionally choose your installation components, you advance
to the confirmation dialog. Your installation type and installation path are displayed for you to review.

To install MySQL if you are satisfied with your settings, click the Install button. To change your
settings, click the Back button. To exit the MySQL Installation Wizard without installing MySQL, click
the Cancel button.

The final screen of the installer provides a summary of the installation and gives you the option to
launch the MySQL Configuration Wizard, which you can use to create a configuration file, install the
MySQL service, and configure security settings.

Changes Made by MySQL Installation Wizard

Once you click the Install button, the MySQL Installation Wizard begins the installation process and
makes certain changes to your system which are described in the sections that follow.

Changes to the Registry

The MySQL Installation Wizard creates one Windows registry key in a typical install situation, located in
HKEY_LOCAL_MACHINE\SOFTWARE\MySQL AB.

The MySQL Installation Wizard creates a key named after the release series of the server that is being
installed, such as MySQL Server 5.5. It contains two string values, Location and Version. The
Location string contains the path to the installation directory. In a default installation it contains C:
\Program Files\MySQL\MySQL Server 5.5\. The Version string contains the release number.
For example, for an installation of MySQL Server 5.5.58, the key contains a value of 5.5.58.

These registry keys are used to help external tools identify the installed location of the MySQL server,
preventing a complete scan of the hard-disk to determine the installation path of the MySQL server.
The registry keys are not required to run the server, and if you install MySQL using the noinstall Zip
archive, the registry keys are not created.

Changes to the Start Menu

The MySQL Installation Wizard creates a new entry in the Windows Start menu under a common
MySQL menu heading named after the release series of MySQL that you have installed. For example,
if you install MySQL 5.5, the MySQL Installation Wizard creates a MySQL Server 5.5 section in the
Start menu.

The following entries are created within the new Start menu section:

• MySQL Command-Line Client: This is a shortcut to the mysql command-line client and is
configured to connect as the root user. The shortcut prompts for a root user password when you
connect.

• MySQL Server Instance Config Wizard: This is a shortcut to the MySQL Configuration Wizard. Use
this shortcut to configure a newly installed server, or to reconfigure an existing server.

• MySQL Documentation: This is a link to the MySQL server documentation that is stored locally in
the MySQL server installation directory.

Changes to the File System

The MySQL Installation Wizard by default installs the MySQL 5.5 server to C:\Program
Files\MySQL\MySQL Server 5.5, where Program Files is the default location for applications
in your system, and 5.5 is the release series of your MySQL server. This is the recommended location
for the MySQL server, replacing the former default location C:\mysql.

By default, all MySQL applications are stored in a common directory at C:\Program Files\MySQL,
where Program Files is the default location for applications in your Windows installation. A typical
MySQL installation on a developer machine might look like this:



Installing MySQL on Microsoft Windows Using an MSI Package

99

C:\Program Files\MySQL\MySQL Server 5.5
C:\Program Files\MySQL\MySQL Workbench 5.1 OSS

This approach makes it easier to manage and maintain all MySQL applications installed on a particular
system.

The default location of the data directory is the AppData directory configured for the user that installed
the MySQL application.

Upgrading MySQL with the Installation Wizard

The MySQL Installation Wizard can perform server upgrades automatically using the upgrade
capabilities of MSI. That means you do not need to remove a previous installation manually before
installing a new release. The installer automatically shuts down and removes the previous MySQL
service before installing the new version.

Automatic upgrades are available only when upgrading between installations that have the same major
and minor version numbers. For example, you can upgrade automatically from MySQL 5.5.5 to MySQL
5.5.6, but not from MySQL 5.1 to MySQL 5.5.

See Section 2.3.10, “Upgrading MySQL on Windows”.

2.3.5.2 Automating MySQL Installation on Microsoft Windows Using the MSI Package

The Microsoft Installer (MSI) supports a both a quiet and a passive mode that can be used to install
MySQL automatically without requiring intervention. You can use this either in scripts to automatically
install MySQL or through a terminal connection such as Telnet where you do not have access to the
standard Windows user interface. The MSI packages can also be used in combination with Microsoft's
Group Policy system (part of Windows Server 2003 and Windows Server 2008) to install MySQL
across multiple machines.

To install MySQL from one of the MSI packages automatically from the command line (or within a
script), you need to use the msiexec.exe tool. For example, to perform a quiet installation (which
shows no dialog boxes or progress):

shell> msiexec /i mysql-5.5.58.msi /quiet

The /i indicates that you want to perform an installation. The /quiet option indicates that you want
no interactive elements.

To provide a dialog box showing the progress during installation, and the dialog boxes providing
information on the installation and registration of MySQL, use /passive mode instead of /quiet:

shell> msiexec /i mysql-5.5.58.msi /passive

Regardless of the mode of the installation, installing the package in this manner performs a 'Typical'
installation, and installs the default components into the standard location.

You can also use this method to uninstall MySQL by using the /uninstall or /x options:

shell> msiexec /x mysql-5.5.58.msi /uninstall

To install MySQL and configure a MySQL instance from the command line, see Section 2.3.6.13,
“MySQL Server Instance Config Wizard: Creating an Instance from the Command Line”.

For information on using MSI packages to install software automatically using Group Policy, see How
to use Group Policy to remotely install software in Windows Server 2003.

http://support.microsoft.com/kb/816102
http://support.microsoft.com/kb/816102


MySQL Server Instance Configuration Wizard

100

2.3.5.3 Removing MySQL When Installed from the MSI Package

To uninstall MySQL when you installed it using the MSI package, you must use the Add/Remove
Programs tool within Control Panel. To do this:

1. Right-click the start menu and choose Control Panel.

2. If the Control Panel is set to category mode (you will see Pick a category at the top of the Control
Panel window), double-click Add or Remove Programs. If the Control is set to classic mode,
double-click the Add or Remove Programs icon.

3. Find MySQL in the list of installed software. MySQL Server is installed against release series
numbers (MySQL 5.1, MySQL 5.5, etc.). Select the version that you want to remove and click
Remove.

4. You will be prompted to confirm the removal. Click Yes to remove MySQL.

When MySQL is removed using this method, only the installed components are removed. Any
database information (including the tables and data), import or export files, log files, and binary logs
produced during execution are kept in their configured location.

If you try to install MySQL again the information will be retained and you will be prompted to enter the
password configured with the original installation.

If you want to delete MySQL completely:

• Delete the associated data directory. On Windows XP and Windows Server 2003, the default data
directory is the configured AppData directory, which is C:\Documents and Settings\All
Users\Application Data\MySQL by default.

• On Windows 7 and Windows Server 2008, the default data directory location is C:\ProgramData
\Mysql.

Note

The C:\ProgramData directory is hidden by default. You must change your
folder options to view the hidden file. Choose Organize, Folder and search
options, Show hidden folders.

2.3.6 MySQL Server Instance Configuration Wizard

The MySQL Server Instance Configuration Wizard helps automate the process of configuring your
server. It creates a custom MySQL configuration file (my.ini or my.cnf) by asking you a series of
questions and then applying your responses to a template to generate the configuration file that is
tuned to your installation.

The MySQL Server Instance Configuration Wizard is included with the MySQL 5.5 server. The MySQL
Server Instance Configuration Wizard is only available for Windows.

2.3.6.1 Starting the MySQL Server Instance Configuration Wizard

The MySQL Server Instance Configuration Wizard is normally started as part of the installation
process. You should only need to run the MySQL Server Instance Configuration Wizard again when
you need to change the configuration parameters of your server.

If you chose not to open a port prior to installing MySQL on Windows Vista or newer, you can choose
to use the MySQL Server Configuration Wizard after installation. However, you must open a port in
the Windows Firewall. To do this see the instructions given in Downloading and Starting the MySQL
Installation Wizard. Rather than opening a port, you also have the option of adding MySQL as a
program that bypasses the Windows Firewall. One or the other option is sufficient—you need not do



MySQL Server Instance Configuration Wizard

101

both. Additionally, when running the MySQL Server Configuration Wizard on Windows Vista or newer,
ensure that you are logged in as a user with administrative rights.

You can launch the MySQL Configuration Wizard by clicking the MySQL Server Instance Config
Wizard entry in the MySQL section of the Windows Start menu.

Alternatively, you can navigate to the bin directory of your MySQL installation and launch the
MySQLInstanceConfig.exe file directly.

The MySQL Server Instance Configuration Wizard places the my.ini file in the installation directory
for the MySQL server. This helps associate configuration files with particular server instances.

To ensure that the MySQL server knows where to look for the my.ini file, an argument similar to this
is passed to the MySQL server as part of the service installation:

--defaults-file="C:\Program Files\MySQL\MySQL Server 5.5\my.ini"

Here, C:\Program Files\MySQL\MySQL Server 5.5 is replaced with the installation path to the
MySQL Server. The --defaults-file option instructs the MySQL server to read the specified file
for configuration options when it starts.

Apart from making changes to the my.ini file by running the MySQL Server Instance Configuration
Wizard again, you can modify it by opening it with a text editor and making any necessary changes.
You can also modify the server configuration with the http://www.mysql.com/products/administrator/
utility. For more information about server configuration, see Section 5.1.4, “Server Command Options”.

MySQL clients and utilities such as the mysql and mysqldump command-line clients are not able
to locate the my.ini file located in the server installation directory. To configure the client and
utility applications, create a new my.ini file in the Windows installation directory (for example, C:
\WINDOWS).

http://www.mysql.com/products/administrator/


MySQL Server Instance Configuration Wizard

102

Under Windows Server 2003, Windows Server 2000, Windows XP, and Windows Vista, MySQL Server
Instance Configuration Wizard will configure MySQL to work as a Windows service. To start and stop
MySQL you use the Services application that is supplied as part of the Windows Administrator Tools.

2.3.6.2 Choosing a Maintenance Option

If the MySQL Server Instance Configuration Wizard detects an existing configuration file, you have
the option of either reconfiguring your existing server, or removing the server instance by deleting the
configuration file and stopping and removing the MySQL service.

To reconfigure an existing server, choose the Re-configure Instance option and click the Next button.
Any existing configuration file is not overwritten, but renamed (within the same directory) using a
timestamp (Windows) or sequential number (Linux). To remove the existing server instance, choose
the Remove Instance option and click the Next button.

If you choose the Remove Instance option, you advance to a confirmation window. Click the Execute
button. The MySQL Server Configuration Wizard stops and removes the MySQL service, and then
deletes the configuration file. The server installation and its data folder are not removed.

If you choose the Re-configure Instance option, you advance to the Configuration Type dialog
where you can choose the type of installation that you wish to configure.

2.3.6.3 Choosing a Configuration Type

When you start the MySQL Server Instance Configuration Wizard for a new MySQL installation,
or choose the Re-configure Instance option for an existing installation, you advance to the
Configuration Type dialog.

There are two configuration types available: Detailed Configuration and Standard Configuration.
The Standard Configuration option is intended for new users who want to get started with



MySQL Server Instance Configuration Wizard

103

MySQL quickly without having to make many decisions about server configuration. The Detailed
Configuration option is intended for advanced users who want more fine-grained control over server
configuration.

If you are new to MySQL and need a server configured as a single-user developer machine, the
Standard Configuration should suit your needs. Choosing the Standard Configuration option
causes the MySQL Configuration Wizard to set all configuration options automatically with the
exception of Service Options and Security Options.

The Standard Configuration sets options that may be incompatible with systems where there are
existing MySQL installations. If you have an existing MySQL installation on your system in addition to
the installation you wish to configure, the Detailed Configuration option is recommended.

To complete the Standard Configuration, please refer to the sections on Service Options and
Security Options in Section 2.3.6.10, “The Service Options Dialog”, and Section 2.3.6.11, “The
Security Options Dialog”, respectively.

2.3.6.4 The Server Type Dialog

There are three different server types available to choose from. The server type that you choose affects
the decisions that the MySQL Server Instance Configuration Wizard makes with regard to memory,
disk, and processor usage.

• Developer Machine: Choose this option for a typical desktop workstation where MySQL is intended
only for personal use. It is assumed that many other desktop applications are running. The MySQL
server is configured to use minimal system resources.

• Server Machine: Choose this option for a server machine where the MySQL server is running
alongside other server applications such as FTP, email, and Web servers. The MySQL server is
configured to use a moderate portion of the system resources.



MySQL Server Instance Configuration Wizard

104

• Dedicated MySQL Server Machine: Choose this option for a server machine that is intended to run
only the MySQL server. It is assumed that no other applications are running. The MySQL server is
configured to use all available system resources.

Note

By selecting one of the preconfigured configurations, the values and settings
of various options in your my.cnf or my.ini will be altered accordingly. The
default values and options as described in the reference manual may therefore
be different to the options and values that were created during the execution of
the configuration wizard.

2.3.6.5 The Database Usage Dialog

The Database Usage dialog enables you to indicate the storage engines that you expect to use when
creating MySQL tables. The option you choose determines whether the InnoDB storage engine is
available and what percentage of the server resources are available to InnoDB.

• Multifunctional Database: This option enables both the InnoDB and MyISAM storage engines
and divides resources evenly between the two. This option is recommended for users who use both
storage engines on a regular basis.

• Transactional Database Only: This option enables both the InnoDB and MyISAM storage engines,
but dedicates most server resources to the InnoDB storage engine. This option is recommended for
users who use InnoDB almost exclusively and make only minimal use of MyISAM.

• Non-Transactional Database Only: This option disables the InnoDB storage engine completely
and dedicates all server resources to the MyISAM storage engine. This option is recommended for
users who do not use InnoDB.



MySQL Server Instance Configuration Wizard

105

The Configuration Wizard uses a template to generate the server configuration file. The Database
Usage dialog sets one of the following option strings:

Multifunctional Database:        MIXED
Transactional Database Only:     INNODB
Non-Transactional Database Only: MYISAM

When these options are processed through the default template (my-template.ini) the result is:

Multifunctional Database:
default-storage-engine=InnoDB
_myisam_pct=50

Transactional Database Only:
default-storage-engine=InnoDB
_myisam_pct=5

Non-Transactional Database Only:
default-storage-engine=MyISAM
_myisam_pct=100
skip-innodb

The _myisam_pct value is used to calculate the percentage of resources dedicated to MyISAM. The
remaining resources are allocated to InnoDB.

2.3.6.6 The InnoDB Tablespace Dialog

Some users may want to locate the InnoDB tablespace files in a different location than the MySQL
server data directory. Placing the tablespace files in a separate location can be desirable if your system
has a higher capacity or higher performance storage device available, such as a RAID storage system.



MySQL Server Instance Configuration Wizard

106

To change the default location for the InnoDB tablespace files, choose a new drive from the drop-down
list of drive letters and choose a new path from the drop-down list of paths. To create a custom path,
click the ... button.

If you are modifying the configuration of an existing server, you must click the Modify button before
you change the path. In this situation you must move the existing tablespace files to the new location
manually before starting the server.

2.3.6.7 The Concurrent Connections Dialog

To prevent the server from running out of resources, it is important to limit the number of concurrent
connections to the MySQL server that can be established. The Concurrent Connections dialog
enables you to choose the expected usage of your server, and sets the limit for concurrent connections
accordingly. It is also possible to set the concurrent connection limit manually.

• Decision Support (DSS)/OLAP: Choose this option if your server does not require a large number
of concurrent connections. The maximum number of connections is set at 100, with an average of 20
concurrent connections assumed.

• Online Transaction Processing (OLTP): Choose this option if your server requires a large number
of concurrent connections. The maximum number of connections is set at 500.

• Manual Setting: Choose this option to set the maximum number of concurrent connections to the
server manually. Choose the number of concurrent connections from the drop-down box provided,
or enter the maximum number of connections into the drop-down box if the number you desire is not
listed.



MySQL Server Instance Configuration Wizard

107

2.3.6.8 The Networking and Strict Mode Options Dialog

Use the Networking Options dialog to enable or disable TCP/IP networking and to configure the port
number that is used to connect to the MySQL server.

TCP/IP networking is enabled by default. To disable TCP/IP networking, uncheck the box next to the
Enable TCP/IP Networking option.

Port 3306 is used by default. To change the port used to access MySQL, choose a new port number
from the drop-down box or type a new port number directly into the drop-down box. If the port number
you choose is in use, you are prompted to confirm your choice of port number.

Set the Server SQL Mode to either enable or disable strict mode. Enabling strict mode (default) makes
MySQL behave more like other database management systems. If you run applications that rely on
MySQL's old “forgiving” behavior, make sure to either adapt those applications or to disable strict
mode. For more information about strict mode, see Section 5.1.8, “Server SQL Modes”.

2.3.6.9 The Character Set Dialog

The MySQL server supports multiple character sets and it is possible to set a default server character
set that is applied to all tables, columns, and databases unless overridden. Use the Character Set
dialog to change the default character set of the MySQL server.



MySQL Server Instance Configuration Wizard

108

• Standard Character Set: Choose this option if you want to use latin1 as the default server
character set. latin1 is used for English and many Western European languages.

• Best Support For Multilingualism: Choose this option if you want to use utf8 as the default
server character set. This is a Unicode character set that can store characters from many different
languages.

• Manual Selected Default Character Set / Collation: Choose this option if you want to pick the
server's default character set manually. Choose the desired character set from the provided drop-
down list.

2.3.6.10 The Service Options Dialog

On Windows platforms, the MySQL server can be installed as a Windows service. When installed
this way, the MySQL server can be started automatically during system startup, and even restarted
automatically by Windows in the event of a service failure.

The MySQL Server Instance Configuration Wizard installs the MySQL server as a service by default,
using the service name MySQL. If you do not wish to install the service, uncheck the box next to the
Install As Windows Service option. You can change the service name by picking a new service name
from the drop-down box provided or by entering a new service name into the drop-down box.

Note

Service names can include any legal character except forward (/) or backward
(\) slashes, and must be less than 256 characters long.



MySQL Server Instance Configuration Wizard

109

Warning

If you are installing multiple versions of MySQL onto the same machine, you
must choose a different service name for each version that you install. If you
do not choose a different service for each installed version then the service
manager information will be inconsistent and this will cause problems when you
try to uninstall a previous version.

If you have already installed multiple versions using the same service name,
you must manually edit the contents of the HKEY_LOCAL_MACHINE\SYSTEM
\CurrentControlSet\Services parameters within the Windows registry to
update the association of the service name with the correct server version.

Typically, when installing multiple versions you create a service name based on
the version information. For example, you might install MySQL 5.x as mysql5,
or specific versions such as MySQL 5.5.0 as mysql50500.

To install the MySQL server as a service but not have it started automatically at startup, uncheck the
box next to the Launch the MySQL Server Automatically option.

2.3.6.11 The Security Options Dialog

The content of the security options portion of the MySQL Server Instance Configuration Wizard will
depend on whether this is a new installation, or modifying an existing installation.

• Setting the root password for a new installation

It is strongly recommended that you set a root password for your MySQL server, and the MySQL
Server Instance Config Wizard requires by default that you do so. If you do not wish to set a root
password, uncheck the box next to the Modify Security Settings option.



MySQL Server Instance Configuration Wizard

110

• To set the root password, enter the desired password into both the New root password and
Confirm boxes.

Setting the root password for an existing installation

If you are modifying the configuration of an existing configuration, or you are installing an upgrade
and the MySQL Server Instance Configuration Wizard has detected an existing MySQL system, then
you must enter the existing password for root before changing the configuration information.

If you want to change the current root password, enter the desired new password into both the New
root password and Confirm boxes.

To permit root logins from across the network, check the box next to the Enable root access from
remote machines option. This decreases the security of your root account.

To create an anonymous user account, check the box next to the Create An Anonymous Account
option. Creating an anonymous account can decrease server security and cause login and permission
difficulties. For this reason, it is not recommended.

2.3.6.12 The Confirmation Dialog

The final dialog in the MySQL Server Instance Configuration Wizard is the Confirmation Dialog. To
start the configuration process, click the Execute button. To return to a previous dialog, click the Back
button. To exit the MySQL Server Instance Configuration Wizard without configuring the server, click
the Cancel button.



MySQL Server Instance Configuration Wizard

111

After you click the Execute button, the MySQL Server Instance Configuration Wizard performs a series
of tasks and displays the progress onscreen as the tasks are performed.

The MySQL Server Instance Configuration Wizard first determines configuration file options based on
your choices using a template prepared by MySQL developers and engineers. This template is named
my-template.ini and is located in your server installation directory.

The MySQL Configuration Wizard then writes these options to the corresponding configuration file.

If you chose to create a service for the MySQL server, the MySQL Server Instance Configuration
Wizard creates and starts the service. If you are reconfiguring an existing service, the MySQL Server
Instance Configuration Wizard restarts the service to apply your configuration changes.

If you chose to set a root password, the MySQL Configuration Wizard connects to the server, sets
your new root password, and applies any other security settings you may have selected.

After the MySQL Server Instance Configuration Wizard has completed its tasks, it displays a summary.
Click the Finish button to exit the MySQL Server Configuration Wizard.

2.3.6.13 MySQL Server Instance Config Wizard: Creating an Instance from the Command
Line

In addition to using the GUI interface to the MySQL Server Instance Config Wizard, you can also create
instances automatically from the command line.

To use the MySQL Server Instance Config Wizard on the command line, you need to use the
MySQLInstanceConfig.exe command that is installed with MySQL in the bin directory within the
installation directory. MySQLInstanceConfig.exe takes a number of command-line arguments the
set the properties that would normally be selected through the GUI interface, and then creates a new



MySQL Server Instance Configuration Wizard

112

configuration file (my.ini) by combining these selections with a template configuration file to produce
the working configuration file.

The main command line options are provided in the table below. Some of the options are required,
while some options are optional.

Table 2.6 MySQL Server Instance Config Wizard Command Line Options

Option Description

Required Parameters

-nPRODUCTNAME The name of the instance when installed

-pPATH Path of the base directory for installation. This is equivalent to the directory
when using the basedir configuration parameter

-vVERSION The version tag to use for this installation

Action to Perform

-i Install an instance

-r Remove an instance

-s Stop an existing instance

-q Perform the operation quietly

-lFILENAME Sae the installation progress in a logfile

Config File to Use

-tFILENAME Path to the template config file that will be used to generate the installed
configuration file

-cFILENAME Path to a config file to be generated

The -t and -c options work together to set the configuration parameters for a new instance. The -t
option specifies the template configuration file to use as the basic configuration, which are then merged
with the configuration parameters generated by the MySQL Server Instance Config Wizard into the
configuration file specified by the -c option.

A sample template file, my-template.ini is provided in the toplevel MySQL installation directory.
The file contains elements are replaced automatically by the MySQL Server Instance Config Wizard
during configuration.

If you specify a configuration file that already exists, the existing configuration file will be saved in the
file with the original, with the date and time added. For example, the mysql.ini will be copied to
mysql 2009-10-27 1646.ini.bak.

The parameters that you can specify on the command line are listed in the table below.

Table 2.7 MySQL Server Instance Config Wizard Parameters

Parameter Description

ServiceName=$ Specify the name of the service to be created

AddBinToPath={yes
| no}

Specifies whether to add the binary directory of MySQL to the standard
PATH environment variable

ServerType={DEVELOPMENT
| SERVER |
DEDICATED}

Specify the server type. For more information, see Section 2.3.6.4, “The
Server Type Dialog”

DatabaseType={MIXED
| INNODB | MYISAM}

Specify the default database type. For more information, see
Section 2.3.6.5, “The Database Usage Dialog”

ConnectionUsage={DSS
| OLTP}

Specify the type of connection support, this automates the setting for the
number of concurrent connections (see the ConnectionCount parameter).



MySQL Server Instance Configuration Wizard

113

Parameter Description
For more information, see Section 2.3.6.7, “The Concurrent Connections
Dialog”

ConnectionCount=# Specify the number of concurrent connections to support. For more
information, see Section 2.3.6.4, “The Server Type Dialog”

SkipNetworking={yes
| no}

Specify whether network support should be supported. Specifying yes
disables network access altogether

Port=# Specify the network port number to use for network connections. For more
information, see Section 2.3.6.8, “The Networking and Strict Mode Options
Dialog”

StrictMode={yes |
no}

Specify whether to use the strict SQL mode. For more information, see
Section 2.3.6.8, “The Networking and Strict Mode Options Dialog”

Charset=$ Specify the default character set. For more information, see Section 2.3.6.9,
“The Character Set Dialog”

RootPassword=$ Specify the root password

RootCurrentPassword=
$

Specify the current root password then stopping or reconfiguring an existing
service

Note

When specifying options on the command line, you can enclose the entire
command-line option and the value you are specifying using double quotation
marks. This enables you to use spaces in the options. For example, "-cC:
\mysql.ini".

The following command installs a MySQL Server 5.5 instance from the directory C:\Program Files
\MySQL\MySQL Server 5.5 using the service name MySQL55 and setting the root password to
1234.

shell> MySQLInstanceConfig.exe -i -q "-lC:\mysql_install_log.txt" »
   "-nMySQL Server 5.5" "-pC:\Program Files\MySQL\MySQL Server 5.5" -v5.5.58 »
   "-tmy-template.ini" "-cC:\mytest.ini" ServerType=DEVELOPMENT DatabaseType=MIXED »
   ConnectionUsage=DSS Port=3311 ServiceName=MySQL55 RootPassword=1234

In the above example, a log file will be generated in mysql_install_log.txt containing the
information about the instance creation process. The log file generated by the above example is shown
below:

Welcome to the MySQL Server Instance Configuration Wizard 1.0.16.0
Date: 2009-10-27 17:07:21

Installing service ...

Product Name:         MySQL Server 5.5
Version:              5.5.58
Installation Path:    C:\Program Files\MySQL\MySQL Server 5.5\

Creating configuration file C:\mytest.ini using template my-template.ini.
Options:
DEVELOPMENT
MIXED
DSS
STRICTMODE

Variables:
port: 3311
default-character-set: latin1
basedir: "C:/Program Files/MySQL/MySQL Server 5.5/"
datadir: "C:/Program Files/MySQL/MySQL Server 5.5/Data/"



Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

114

Creating Windows service entry.
Service name: "MySQL55"
Parameters:   "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqld" --defaults-file="C:\mytest.ini" MySQL55.
Windows service MySQL55 installed.

When using the command line, the return values in the following table indicate an error performing the
specified option.

Table 2.8 Return Value from MySQL Server Instance Config Wizard

Value Description

2 Configuration template file cannot be found

3 The Windows service entry cannot be created

4 Could not connect to the Service Control Manager

5 The MySQL service cannot be started

6 The MySQL service cannot be stopped

7 The security settings cannot be applied

8 The configuration file cannot be written

9 The Windows service entry cannot be removed

You can perform an installation of MySQL automatically using the MSI package. For more information,
see Section 2.3.5.2, “Automating MySQL Installation on Microsoft Windows Using the MSI Package”.

2.3.7 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

Users who are installing from the noinstall package can use the instructions in this section to
manually install MySQL. The process for installing MySQL from a Zip archive is as follows:

1. Extract the archive to the desired install directory

2. Create an option file

3. Choose a MySQL server type

4. Start the MySQL server

5. Secure the default user accounts

This process is described in the sections that follow.

2.3.7.1 Extracting the Install Archive

To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 2.3.10, “Upgrading MySQL on
Windows”, before beginning the upgrade process.

2. Make sure that you are logged in as a user with administrator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. The
MySQL Installation Wizard installs MySQL under C:\Program Files\MySQL. If you do not install
MySQL at C:\mysql, you must specify the path to the install directory during startup or in an
option file. See Section 2.3.7.2, “Creating an Option File”.

Note

The MySQL Installer installs MySQL under C:\Program Files\MySQL.



Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

115

4. Extract the install archive to the chosen installation location using your preferred Zip archive tool.
Some tools may extract the archive to a folder within your chosen installation location. If this occurs,
you can move the contents of the subfolder into the chosen installation location.

2.3.7.2 Creating an Option File

If you need to specify startup options when you run the server, you can indicate them on the command
line or place them in an option file. For options that are used every time the server starts, you may find
it most convenient to use an option file to specify your MySQL configuration. This is particularly true
under the following circumstances:

• The installation or data directory locations are different from the default locations (C:\Program
Files\MySQL\MySQL Server 5.5 and C:\Program Files\MySQL\MySQL Server
5.5\data).

• You need to tune the server settings, such as memory, cache, or InnoDB configuration information.

When the MySQL server starts on Windows, it looks for option files in several locations, such as
the Windows directory, C:\, and the MySQL installation directory (for the full list of locations, see
Section 4.2.6, “Using Option Files”). The Windows directory typically is named something like C:
\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable
using the following command:

C:\> echo %WINDIR%

MySQL looks for options in each location first in the my.ini file, and then in the my.cnf file. However,
to avoid confusion, it is best if you use only one file. If your PC uses a boot loader where C: is not the
boot drive, your only option is to use the my.ini file. Whichever option file you use, it must be a plain
text file.

Note

When using the MySQL Installer to install MySQL Server, it will create the
my.ini at the default location. And as of MySQL Server 5.5.27, the user
running MySQL Installer is granted full permissions to this new my.ini.

In other words, be sure that the MySQL Server user has permission to read the
my.ini file.

You can also make use of the example option files included with your MySQL distribution; see
Section 5.1.2, “Server Configuration Defaults”.

An option file can be created and modified with any text editor, such as Notepad. For example, if
MySQL is installed in E:\mysql and the data directory is in E:\mydata\data, you can create an
option file containing a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
# set basedir to your installation path
basedir=E:/mysql
# set datadir to the location of your data directory
datadir=E:/mydata/data

Microsoft Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
# set basedir to your installation path
basedir=E:\\mysql
# set datadir to the location of your data directory
datadir=E:\\mydata\\data

The rules for use of backslash in option file values are given in Section 4.2.6, “Using Option Files”.



Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

116

The data directory is located within the AppData directory for the user running MySQL.

If you would like to use a data directory in a different location, you should copy the entire contents
of the data directory to the new location. For example, if you want to use E:\mydata as the data
directory instead, you must do two things:

1. Move the entire data directory and all of its contents from the default location (for example C:
\Program Files\MySQL\MySQL Server 5.5\data) to E:\mydata.

2. Use a --datadir option to specify the new data directory location each time you start the server.

2.3.7.3 Selecting a MySQL Server Type

The following table shows the available servers for Windows in MySQL 5.5.

Binary Description

mysqld Optimized binary with named-pipe support

mysqld-debug Like mysqld, but compiled with full debugging and automatic memory allocation
checking

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel
i386-class or higher processor.

Each of the servers in a distribution support the same set of storage engines. The SHOW ENGINES
statement displays which engines a given server supports.

All Windows MySQL 5.5 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows also support named
pipes, if you start the server with the --enable-named-pipe option. It is necessary to use this option
explicitly because some users have experienced problems with shutting down the MySQL server when
named pipes were used. The default is to use TCP/IP regardless of platform because named pipes are
slower than TCP/IP in many Windows configurations.

2.3.7.4 Starting the Server for the First Time

This section gives a general overview of starting the MySQL server. The following sections provide
more specific information for starting the MySQL server from the command line or as a Windows
service.

The information here applies primarily if you installed MySQL using the Noinstall version, or if you
wish to configure and test MySQL manually rather than with the GUI tools.

Note

MySQL server will automatically start after using MySQL Installer, and MySQL
Notifier can be used to start/stop/restart at any time.

The examples in these sections assume that MySQL is installed under the default location of C:
\Program Files\MySQL\MySQL Server 5.5. Adjust the path names shown in the examples if
you have MySQL installed in a different location.

Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports
named-pipe connections.

MySQL for Windows also supports shared-memory connections if the server is started with
the --shared-memory option. Clients can connect through shared memory by using the --
protocol=MEMORY option.

For information about which server binary to run, see Section 2.3.7.3, “Selecting a MySQL Server
Type”.



Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

117

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you
can have the server display status messages in the window where they are easy to see. If something is
wrong with your configuration, these messages make it easier for you to identify and fix any problems.

To start the server, enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqld" --console

For a server that includes InnoDB support, you should see the messages similar to those following as
it starts (the path names and sizes may differ):

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25  InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which indicates that
the server is ready to service client connections:

mysqld: ready for connections
Version: '5.5.58'  socket: ''  port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a
new console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data
directory (C:\Program Files\MySQL\MySQL Server 5.5\data by default). The error log is the
file with the .err extension, and may be set using the --log-error option.

Note

The accounts that are listed in the MySQL grant tables initially have no
passwords. After starting the server, you should set up passwords for them
using the instructions in Section 2.10.4, “Securing the Initial MySQL Accounts”.

2.3.7.5 Starting MySQL from the Windows Command Line

The MySQL server can be started manually from the command line. This can be done on any version
of Windows.

Note

MySQL Notifier can also be used to start/stop/restart the MySQL server.

To start the mysqld server from the command line, you should start a console window (or “DOS
window”) and enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqld"

The path to mysqld may vary depending on the install location of MySQL on your system.



Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

118

You can stop the MySQL server by executing this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke
mysqladmin with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell
it to shut down. The command connects as the MySQL root user, which is the default administrative
account in the MySQL grant system.

Note

Users in the MySQL grant system are wholly independent from any login users
under Microsoft Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to
indicate the cause of the problem. By default, the error log is located in the C:\Program Files
\MySQL\MySQL Server 5.5\data directory. It is the file with a suffix of .err, or may be specified
by passing in the --log-error option. Alternatively, you can try to start the server with the --
console option; in this case, the server may display some useful information on the screen that will
help solve the problem.

The last option is to start mysqld with the --standalone and --debug options. In this case, mysqld
writes a log file C:\mysqld.trace that should contain the reason why mysqld doesn't start. See
Section 24.5.3, “The DBUG Package”.

Use mysqld --verbose --help to display all the options that mysqld supports.

2.3.7.6 Customizing the PATH for MySQL Tools

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory
to your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL
\MySQL Server 5.5\bin)

Note

There must be a semicolon separating this path from any values present in
this field.

Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were
opened have been dismissed. You should now be able to invoke any MySQL executable program
by typing its name at the DOS prompt from any directory on the system, without having to supply
the path. This includes the servers, the mysql client, and all MySQL command-line utilities such as
mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.



Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

119

Warning

You must exercise great care when editing your system PATH by hand;
accidental deletion or modification of any portion of the existing PATH value can
leave you with a malfunctioning or even unusable system.

2.3.7.7 Starting MySQL as a Windows Service

On Windows, the recommended way to run MySQL is to install it as a Windows service, so that MySQL
starts and stops automatically when Windows starts and stops. A MySQL server installed as a service
can also be controlled from the command line using NET commands, or with the graphical Services
utility. Generally, to install MySQL as a Windows service you should be logged in using an account that
has administrator rights.

Note

MySQL Notifier can also be used to monitor the status of the MySQL service.

The Services utility (the Windows Service Control Manager) can be found in the Windows
Control Panel (under Administrative Tools on Windows 2000, XP, Vista, and Server 2003). To avoid
conflicts, it is advisable to close the Services utility while performing server installation or removal
operations from the command line.

Installing the service

Before installing MySQL as a Windows service, you should first stop the current server if it is running
by using the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqladmin"
          -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke
mysqladmin with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell
it to shut down. The command connects as the MySQL root user, which is the default administrative
account in the MySQL grant system.

Note

Users in the MySQL grant system are wholly independent from any login users
under Windows.

Install the server as a service using this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqld" --install

The service-installation command does not start the server. Instructions for that are given later in this
section.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory
to your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.



Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

120

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL
\MySQL Server 5.5\bin), and there should be a semicolon separating this path from any values
present in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the
dialogues that were opened have been dismissed. You should now be able to invoke any MySQL
executable program by typing its name at the DOS prompt from any directory on the system, without
having to supply the path. This includes the servers, the mysql client, and all MySQL command-line
utilities such as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.

Warning

You must exercise great care when editing your system PATH by hand;
accidental deletion or modification of any portion of the existing PATH value can
leave you with a malfunctioning or even unusable system.

The following additional arguments can be used when installing the service:

• You can specify a service name immediately following the --install option. The default service
name is MySQL.

• If a service name is given, it can be followed by a single option. By convention, this should be --
defaults-file=file_name to specify the name of an option file from which the server should
read options when it starts.

The use of a single option other than --defaults-file is possible but discouraged. --
defaults-file is more flexible because it enables you to specify multiple startup options for the
server by placing them in the named option file.

• You can also specify a --local-service option following the service name. This causes the
server to run using the LocalService Windows account that has limited system privileges. This
account is available only for Windows XP or newer. If both --defaults-file and --local-
service are given following the service name, they can be in any order.

For a MySQL server that is installed as a Windows service, the following rules determine the service
name and option files that the server uses:

• If the service-installation command specifies no service name or the default service name (MySQL)
following the --install option, the server uses the a service name of MySQL and reads options
from the [mysqld] group in the standard option files.

• If the service-installation command specifies a service name other than MySQL following the --
install option, the server uses that service name. It reads options from the [mysqld] group
and the group that has the same name as the service in the standard option files. This enables you
to use the [mysqld] group for options that should be used by all MySQL services, and an option
group with the service name for use by the server installed with that service name.

• If the service-installation command specifies a --defaults-file option after the service name,
the server reads options the same way as described in the previous item, except that it reads options
only from the named file and ignores the standard option files.

As a more complex example, consider the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqld"
          --install MySQL --defaults-file=C:\my-opts.cnf



Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

121

Here, the default service name (MySQL) is given after the --install option. If no --defaults-
file option had been given, this command would have the effect of causing the server to read the
[mysqld] group from the standard option files. However, because the --defaults-file option is
present, the server reads options from the [mysqld] option group, and only from the named file.

Note

On Windows, if the server is started with the --defaults-file and --
install options, --install must be first. Otherwise, mysqld.exe will
attempt to start the MySQL server.

You can also specify options as Start parameters in the Windows Services utility before you start the
MySQL service.

Finally, before trying to start the MySQL service, make sure the user variables %TEMP% and %TMP%
(and also %TMPDIR%, if it has ever been set) for the system user who is to run the service are pointing
to a folder to which the user has write access. The default user for running the MySQL service is
LocalSystem, and the default value for its %TEMP% and %TMP% is C:\Windows\Temp, a directory
LocalSystem has write access to by default. However, if there are any changes to that default setup
(for example, changes to the user who runs the service or to the mentioned user variables, or the --
tmpdir option has been used to put the temporary directory somewhere else), the MySQL service
might fail to run because write access to the temporary directory has not been granted to the proper
user.

Starting the service

Once a MySQL server has been installed as a service, Windows starts the service automatically
whenever Windows starts. The service also can be started immediately from the Services utility, or
by using a NET START MySQL command. The NET command is not case sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen
there. If mysqld does not start, check the error log to see whether the server wrote any messages
there to indicate the cause of the problem. The error log is located in the MySQL data directory (for
example, C:\Program Files\MySQL\MySQL Server 5.5\data). It is the file with a suffix of
.err.

When a MySQL server has been installed as a service, and the service is running, Windows stops the
service automatically when Windows shuts down. The server also can be stopped manually by using
the Services utility, the NET STOP MySQL command, or the mysqladmin shutdown command.

You also have the choice of installing the server as a manual service if you do not wish for the service
to be started automatically during the boot process. To do this, use the --install-manual option
rather than the --install option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqld" --install-manual

Removing the service

To remove a server that is installed as a service, first stop it if it is running by executing NET STOP
MySQL. Then use the --remove option to remove it:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqld" --remove

If mysqld is not running as a service, you can start it from the command line. For instructions, see
Section 2.3.7.5, “Starting MySQL from the Windows Command Line”.

If you encounter difficulties during installation, see Section 2.3.8, “Troubleshooting a Microsoft
Windows MySQL Server Installation”.

For more information about stopping or removing a MySQL Windows service, see Section 5.6.2.2,
“Starting Multiple MySQL Instances as Windows Services”.



Troubleshooting a Microsoft Windows MySQL Server Installation

122

2.3.7.8 Testing The MySQL Installation

You can test whether the MySQL server is working by executing any of the following commands:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqlshow"
C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqlshow" -u root mysql
C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqladmin" version status proc
C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysql" test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem
with your DNS. In this case, start mysqld with the --skip-name-resolve option and use only
localhost and IP addresses in the Host column of the MySQL grant tables. (Be sure that an account
exists that specifies an IP address or you may not be able to connect.)

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the --
pipe or --protocol=PIPE option, or by specifying . (period) as the host name. Use the --socket
option to specify the name of the pipe if you do not want to use the default pipe name.

If you have set a password for the root account, deleted the anonymous account, or created a new
user account, then to connect to the MySQL server you must use the appropriate -u and -p options
with the commands shown previously. See Section 4.2.2, “Connecting to the MySQL Server”.

For more information about mysqlshow, see Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”.

2.3.8 Troubleshooting a Microsoft Windows MySQL Server Installation

When installing and running MySQL for the first time, you may encounter certain errors that prevent the
MySQL server from starting. This section helps you diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the
error log to record information relevant to the error that prevents the server from starting. The error log
is located in the data directory specified in your my.ini file. The default data directory location is C:
\Program Files\MySQL\MySQL Server 5.5\data, or C:\ProgramData\Mysql on Windows
7 and Windows Server 2008. The C:\ProgramData directory is hidden by default. You need to
change your folder options to see the directory and contents. For more information on the error log and
understanding the content, see Section 5.4.2, “The Error Log”.

For information regarding possible errors, also consult the console messages displayed when the
MySQL service is starting. Use the NET START MySQL command from the command line after
installing mysqld as a service to see any error messages regarding the starting of the MySQL server
as a service. See Section 2.3.7.7, “Starting MySQL as a Windows Service”.

The following examples show other common error messages you might encounter when installing
MySQL and starting the server for the first time:

• If the MySQL server cannot find the mysql privileges database or other critical files, it displays these
messages:

System error 1067 has occurred.
Fatal error: Can't open and lock privilege tables:
Table 'mysql.user' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different
locations than the default locations (C:\Program Files\MySQL\MySQL Server 5.5 and C:
\Program Files\MySQL\MySQL Server 5.5\data, respectively).

This situation can occur when MySQL is upgraded and installed to a new location, but the
configuration file is not updated to reflect the new location. In addition, old and new configuration files
might conflict. Be sure to delete or rename any old configuration files when upgrading MySQL.



Windows Postinstallation Procedures

123

If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server
5.5, ensure that the MySQL server is aware of this through the use of a configuration (my.ini)
file. Put the my.ini file in your Windows directory, typically C:\WINDOWS. To determine its exact
location from the value of the WINDIR environment variable, issue the following command from the
command prompt:

C:\> echo %WINDIR%

You can create or modify an option file with any text editor, such as Notepad. For example, if MySQL
is installed in E:\mysql and the data directory is D:\MySQLdata, you can create the option file and
set up a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
# set basedir to your installation path
basedir=E:/mysql
# set datadir to the location of your data directory
datadir=D:/MySQLdata

Microsoft Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
# set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.5
# set datadir to the location of your data directory
datadir=D:\\MySQLdata

The rules for use of backslash in option file values are given in Section 4.2.6, “Using Option Files”.

If you change the datadir value in your MySQL configuration file, you must move the contents of
the existing MySQL data directory before restarting the MySQL server.

See Section 2.3.7.2, “Creating an Option File”.

• If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service
and install MySQL using the MySQL Installer, you might see this error:

Error: Cannot create Windows service for MySql. Error: 0

This occurs when the Configuration Wizard tries to install the service and finds an existing service
with the same name.

One solution to this problem is to choose a service name other than mysql when using the
configuration wizard. This enables the new service to be installed correctly, but leaves the outdated
service in place. Although this is harmless, it is best to remove old services that are no longer in use.

To permanently remove the old mysql service, execute the following command as a user with
administrative privileges, on the command line:

C:\> sc delete mysql
[SC] DeleteService SUCCESS

If the sc utility is not available for your version of Windows, download the delsrv utility from http://
www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv
mysql syntax.

2.3.9 Windows Postinstallation Procedures

GUI tools exist that perform most of the tasks described in this section, including:

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp


Windows Postinstallation Procedures

124

• MySQL Installer: Used to install and upgrade MySQL products.

• MySQL Workbench: Manages the MySQL server and edits SQL statements.

• MySQL Notifier: Starts, stops, or restarts the MySQL server, and monitors its status.

• MySQL for Excel: Edits MySQL data with Microsoft Excel.

On Windows, you need not create the data directory and the grant tables. MySQL Windows
distributions include the grant tables with a set of preinitialized accounts in the mysql database under
the data directory.

Regarding passwords, if you installed MySQL using the MySQL Installer, you may have already
assigned passwords to the accounts. (See Section 2.3.3, “MySQL Installer for Windows”.) Otherwise,
use the password-assignment procedure given in Section 2.10.4, “Securing the Initial MySQL
Accounts”.

Before assigning passwords, you might want to try running some client programs to make sure that
you can connect to the server and that it is operating properly. Make sure that the server is running
(see Section 2.3.7.4, “Starting the Server for the First Time”). You can also set up a MySQL service
that runs automatically when Windows starts (see Section 2.3.7.7, “Starting MySQL as a Windows
Service”).

These instructions assume that your current location is the MySQL installation directory and that it has
a bin subdirectory containing the MySQL programs used here. If that is not true, adjust the command
path names accordingly.

If you installed MySQL using MySQL Installer (see Section 2.3.3, “MySQL Installer for Windows”), the
default installation directory is C:\Program Files\MySQL\MySQL Server 5.5:

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.5"

A common installation location for installation from a Zip package is C:\mysql:

C:\> cd C:\mysql

Alternatively, add the bin directory to your PATH environment variable setting. That enables your
command interpreter to find MySQL programs properly, so that you can run a program by typing only
its name, not its path name. See Section 2.3.7.6, “Customizing the PATH for MySQL Tools”.

With the server running, issue the following commands to verify that you can retrieve information from
the server. The output should be similar to that shown here.

Use mysqlshow to see what databases exist:

C:\> bin\mysqlshow
+--------------------+
|     Databases      |
+--------------------+
| information_schema |
| mysql              |
| performance_schema |
| test               |
+--------------------+

The list of installed databases may vary, but will always include the minimum of mysql and
information_schema.

The preceding command (and commands for other MySQL programs such as mysql) may not work
if the correct MySQL account does not exist. For example, the program may fail with an error, or you
may not be able to view all databases. If you installed MySQL using MySQL Installer, the root user
will have been created automatically with the password you supplied. In this case, you should use the

http://dev.mysql.com/doc/mysql-for-excel/en/


Upgrading MySQL on Windows

125

-u root and -p options. (You must use those options if you have already secured the initial MySQL
accounts.) With -p, the client program prompts for the root password. For example:

C:\> bin\mysqlshow -u root -p
Enter password: (enter root password here)
+--------------------+
|     Databases      |
+--------------------+
| information_schema |
| mysql              |
| performance_schema |
| test               |
+--------------------+

If you specify a database name, mysqlshow displays a list of the tables within the database:

C:\> bin\mysqlshow mysql
Database: mysql
+---------------------------+
|          Tables           |
+---------------------------+
| columns_priv              |
| db                        |
| event                     |
| func                      |
| general_log               |
| help_category             |
| help_keyword              |
| help_relation             |
| help_topic                |
| host                      |
| ndb_binlog_index          |
| plugin                    |
| proc                      |
| procs_priv                |
| proxies_priv              |
| servers                   |
| slow_log                  |
| tables_priv               |
| time_zone                 |
| time_zone_leap_second     |
| time_zone_name            |
| time_zone_transition      |
| time_zone_transition_type |
| user                      |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

C:\> bin\mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host      | plugin                |
+------+-----------+-----------------------+
| root | localhost | mysql_native_password |
+------+-----------+-----------------------+

For more information about mysql and mysqlshow, see Section 4.5.1, “mysql — The MySQL
Command-Line Tool”, and Section 4.5.6, “mysqlshow — Display Database, Table, and Column
Information”.

2.3.10 Upgrading MySQL on Windows

To upgrade MySQL on Windows, follow these steps:

1. Review Section 2.11.1, “Upgrading MySQL”, for additional information on upgrading MySQL that is
not specific to Windows.



Upgrading MySQL on Windows

126

2. Always back up your current MySQL installation before performing an upgrade. See Section 7.2,
“Database Backup Methods”.

3. Download the latest Windows distribution of MySQL from http://dev.mysql.com/downloads/.

4. Before upgrading MySQL, stop the server. If the server is installed as a service, stop the service
with the following command from the command prompt:

C:\> NET STOP MySQL

If you are not running the MySQL server as a service, use mysqladmin to stop it. For example,
before upgrading from MySQL 5.1 to 5.5, use mysqladmin from MySQL 5.1 as follows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, invoke mysqladmin with
the -p option and enter the password when prompted.

5. Before upgrading to MySQL 5.5 from a version previous to 4.1.5, or from a version of MySQL
installed from a Zip archive to a version of MySQL installed with the MySQL Installation Wizard, you
must first manually remove the previous installation and MySQL service (if the server is installed as
a service).

To remove the MySQL service, use the following command:

C:\> C:\mysql\bin\mysqld --remove

If you do not remove the existing service, the MySQL Installation Wizard may fail to properly
install the new MySQL service.

6. If you are using the MySQL Installer, start it as described in Section 2.3.3, “MySQL Installer for
Windows”.

If you are using the MySQL Installation Wizard, start the wizard as described in Section 2.3.5.1,
“Using the MySQL Installation Wizard”.

7. If you are upgrading MySQL from a Zip archive, extract the archive. You may either overwrite your
existing MySQL installation (usually located at C:\mysql), or install it into a different directory,
such as C:\mysql5. Overwriting the existing installation is recommended. However, for upgrades
(as opposed to installing for the first time), you must remove the data directory from your existing
MySQL installation to avoid replacing your current data files. To do so, follow these steps:

a. Unzip the Zip archive in some location other than your current MySQL installation

b. Remove the data directory

c. Rezip the Zip archive

d. Unzip the modified Zip archive on top of your existing installation

Alternatively:

a. Unzip the Zip archive in some location other than your current MySQL installation

b. Remove the data directory

c. Move the data directory from the current MySQL installation to the location of the just-removed
data directory

http://dev.mysql.com/downloads/


Installing MySQL on OS X

127

d. Remove the current MySQL installation

e. Move the unzipped installation to the location of the just-removed installation

8. If you were running MySQL as a Windows service and you had to remove the service earlier in this
procedure, reinstall the service. (See Section 2.3.7.7, “Starting MySQL as a Windows Service”.)

9. Restart the server. For example, use NET START MySQL if you run MySQL as a service, or invoke
mysqld directly otherwise.

10. As Administrator, run mysql_upgrade to check your tables, attempt to repair them if necessary,
and update your grant tables if they have changed so that you can take advantage of any new
capabilities. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.

11. If you encounter errors, see Section 2.3.8, “Troubleshooting a Microsoft Windows MySQL Server
Installation”.

2.4 Installing MySQL on OS X

For a list of OS X versions that the MySQL server supports, see http://www.mysql.com/support/
supportedplatforms/database.html.

MySQL for OS X is available in a number of different forms:

• Native Package Installer, which uses the native OS X installer (DMG) to walk you through the
installation of MySQL. For more information, see Section 2.4.2, “Installing MySQL on OS X Using
Native Packages”. You can use the package installer with OS X. The user you use to perform the
installation must have administrator privileges.

• Compressed TAR archive, which uses a file packaged using the Unix tar and gzip commands.
To use this method, you will need to open a Terminal window. You do not need administrator
privileges using this method, as you can install the MySQL server anywhere using this method.
For more information on using this method, you can use the generic instructions for using a tarball,
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

In addition to the core installation, the Package Installer also includes Section 2.4.3, “Installing a
MySQL Launch Daemon” and Section 2.4.4, “Installing and Using the MySQL Preference Pane”,
both of which simplify the management of your installation.

For additional information on using MySQL on OS X, see Section 2.4.1, “General Notes on Installing
MySQL on OS X”.

2.4.1 General Notes on Installing MySQL on OS X

You should keep the following issues and notes in mind:

• As of MySQL server 5.5.45, the DMG bundles a launchd daemon instead of the deprecated startup
item. Startup items do not function as of OS X 10.10 (Yosemite), so using launchd is preferred.
The available MySQL preference pane under OS X System Preferences was also updated to use
launchd.

• You may need (or want) to create a specific mysql user to own the MySQL directory and data. You
can do this through the Directory Utility, and the mysql user should already exist. For use in
single user mode, an entry for _mysql (note the underscore prefix) should already exist within the
system /etc/passwd file.

• Because the MySQL package installer installs the MySQL contents into a version and platform
specific directory, you can use this to upgrade and migrate your database between versions. You
will need to either copy the data directory from the old version to the new version, or alternatively

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html


Installing MySQL on OS X Using Native Packages

128

specify an alternative datadir value to set location of the data directory. By default, the MySQL
directories are installed under /usr/local/.

• You might want to add aliases to your shell's resource file to make it easier to access commonly
used programs such as mysql and mysqladmin from the command line. The syntax for bash is:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

For tcsh, use:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. You can do this
by modifying the appropriate startup file for your shell. For more information, see Section 4.2.1,
“Invoking MySQL Programs”.

• After you have copied over the MySQL database files from the previous installation and have
successfully started the new server, you should consider removing the old installation files to save
disk space. Additionally, you should also remove older versions of the Package Receipt directories
located in /Library/Receipts/mysql-VERSION.pkg.

• Prior to OS X 10.7, MySQL server was bundled with OS X Server.

2.4.2 Installing MySQL on OS X Using Native Packages

The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking
its icon in the Finder. It should then mount the image and display its contents.

Note

Before proceeding with the installation, be sure to stop all running MySQL
server instances by using either the MySQL Manager Application (on OS X
Server), the preference pane, or mysqladmin shutdown on the command
line.

When installing from the package version, you can also install the MySQL preference pane, which will
enable you to control the startup and execution of your MySQL server from System Preferences. For
more information, see Section 2.4.4, “Installing and Using the MySQL Preference Pane”.

When installing using the package installer, the files are installed into a directory within /usr/
local matching the name of the installation version and platform. For example, the installer file
mysql-5.5.58-osx10.9-x86_64.dmg installs MySQL into /usr/local/mysql-5.5.58-
osx10.9-x86_64/ . The following table shows the layout of the installation directory.

Table 2.9 MySQL Installation Layout on OS X

Directory Contents of Directory

bin, scripts mysqld server, client and utility programs

data Log files, databases

docs Helper documents, like the Release Notes and build
information

include Include (header) files

lib Libraries

man Unix manual pages



Installing MySQL on OS X Using Native Packages

129

Directory Contents of Directory

mysql-test MySQL test suite

share Miscellaneous support files, including error messages,
sample configuration files, SQL for database installation

sql-bench Benchmarks

support-files Scripts and sample configuration files

/tmp/mysql.sock Location of the MySQL Unix socket

During the package installer process, a symbolic link from /usr/local/mysql to the version/platform
specific directory created during installation will be created automatically.

1. Download and open the MySQL package installer, which is provided on a disk image (.dmg) that
includes the main MySQL installation package file. Double-click the disk image to open it.

Figure 2.23 MySQL Package Installer: DMG Contents

2. Double-click the MySQL installer package. It will be named according to the version of MySQL
you have downloaded. For example, if you have downloaded MySQL server 5.5.58, double-click
mysql-5.5.58-osx-10.9-x86_64.pkg.

3. You will be presented with the opening installer dialog. Click Continue to begin installation.



Installing MySQL on OS X Using Native Packages

130

Figure 2.24 MySQL Package Installer: Introduction

4. If you have downloaded the community version of MySQL, you will be shown a copy of the relevant
GNU General Public License. Click Continue and then Agree to continue.

5. From the Installation Type page you can either click Install to execute the installation wizard
using all defaults, click Customize to alter which components to install (MySQL server, Preference
Pane, Launchd Support -- all enabled by default), or click Change Installation Location to change
the type of installation for either all users, only the user executing the Installer, or define a custom
location.



Installing MySQL on OS X Using Native Packages

131

Figure 2.25 MySQL Package Installer: Installation Type

Figure 2.26 MySQL Package Installer: Destination Select (Change Installation Location)



Installing MySQL on OS X Using Native Packages

132

Figure 2.27 MySQL Package Installer: Customize

6. Click Install to begin the installation process.

7. Once the installation has been completed successfully, you will be shown an Install Succeeded
message with a short summary. Now, Close the wizard and begin using the MySQL server.



Installing a MySQL Launch Daemon

133

Figure 2.28 MySQL Package Installer: Summary

MySQL server is now installed, but it is not loaded (started) by default. Use either launchctl from the
command line, or start MySQL by clicking "Start" using the MySQL preference pane. For additional
information, see Section 2.4.3, “Installing a MySQL Launch Daemon”, and Section 2.4.4, “Installing and
Using the MySQL Preference Pane”.

2.4.3 Installing a MySQL Launch Daemon

OS X uses launch daemons to automatically start, stop, and manage processes and applications such
as MySQL.

Note

Before MySQL 5.5.45, the OS X builds installed startup items instead of launchd
daemons. However, startup items do not function as of OS X 10.10 (Yosemite).
The OS X builds now install launchd daemons.

By default, the installation package (DMG) on OS X installs a launchd file named /Library/
LaunchDaemons/com.oracle.oss.mysql.mysqld.plist that contains a plist definition similar
to:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
  "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
    <key>Label</key>             <string>com.oracle.oss.mysql.mysqld</string>
    <key>ProcessType</key>       <string>Interactive</string>
    <key>Disabled</key>          <false/>
    <key>RunAtLoad</key>         <true/>
    <key>KeepAlive</key>         <true/>



Installing a MySQL Launch Daemon

134

    <key>SessionCreate</key>     <true/>
    <key>LaunchOnlyOnce</key>    <false/>
    <key>UserName</key>          <string>_mysql</string>
    <key>GroupName</key>         <string>_mysql</string>
    <key>ExitTimeOut</key>       <integer>600</integer>
    <key>Program</key>           <string>/usr/local/mysql/bin/mysqld</string>
    <key>ProgramArguments</key>
        <array>
            <string>/usr/local/mysql/bin/mysqld</string>
            <string>--user=_mysql</string>
            <string>--basedir=/usr/local/mysql</string>
            <string>--datadir=/usr/local/mysql/data</string>
            <string>--plugin-dir=/usr/local/mysql/lib/plugin</string>
            <string>--log-error=/usr/local/mysql/data/mysqld.local.err</string>
            <string>--pid-file=/usr/local/mysql/data/mysqld.local.pid</string>
            <string>--port=3306</string>
        </array>
    <key>WorkingDirectory</key>  <string>/usr/local/mysql</string>
</dict>
</plist>

   

Note

Some users report that adding a plist DOCTYPE declaration causes the
launchd operation to fail, despite it passing the lint check. We suspect it's a
copy-n-paste error. The md5 checksum of a file containing the above snippet is
60d7963a0bb2994b69b8b9c123db09df.

To enable the launchd service, you can either:

• Click Start MySQL Server from the MySQL preference pane.



Installing a MySQL Launch Daemon

135

Figure 2.29 MySQL Preference Pane: Location



Installing and Using the MySQL Preference Pane

136

Figure 2.30 MySQL Preference Pane: Usage

• Or, manually load the launchd file.

shell> cd /Library/LaunchDaemons
shell> sudo launchctl load -F com.oracle.oss.mysql.mysqld.plist
        

Note

When upgrading MySQL server, the launchd installation process will remove the
old startup items that were installed with MySQL server 5.5.44 and below.

2.4.4 Installing and Using the MySQL Preference Pane

The MySQL Installation Package includes a MySQL preference pane that enables you to start, stop,
and control automated startup during boot of your MySQL installation.

This preference pane is installed by default, and is listed under your system's System Preferences
window.



Installing and Using the MySQL Preference Pane

137

Figure 2.31 MySQL Preference Pane: Location

To install the MySQL Preference Pane:

1. Download and open the MySQL package installer, which is provided on a disk image (.dmg) that
includes the main MySQL installation package.

Note

Before MySQL 5.5.45, OS X packages included the deprecated startup
items instead of launchd daemons, and the preference pane managed that
intstead of launchd.



Installing and Using the MySQL Preference Pane

138

Figure 2.32 MySQL Package Installer: DMG Contents

2. Go through the process of installing the MySQL server, as described in the documentation at
Section 2.4.2, “Installing MySQL on OS X Using Native Packages”.

3. Click Customize at the Installation Type step. The "Preference Pane" option is listed there and
enabled by default.

Figure 2.33 MySQL Installer on OS X: Customize

4. Complete the MySQL server installation process.



Installing and Using the MySQL Preference Pane

139

Note

The MySQL preference pane only starts and stops MySQL installation installed
from the MySQL package installation that have been installed in the default
location.

Once the MySQL preference pane has been installed, you can control your MySQL server instance
using the preference pane. To use the preference pane, open the System Preferences... from the
Apple menu. Select the MySQL preference pane by clicking the MySQL logo within the bottom section
of the preference panes list.

Figure 2.34 MySQL Preference Pane: Location



Installing MySQL on Linux

140

Figure 2.35 MySQL Preference Pane: Usage

The MySQL Preference Pane shows the current status of the MySQL server, showing stopped (in
red) if the server is not running and running (in green) if the server has already been started. The
preference pane also shows the current setting for whether the MySQL server has been set to start
automatically.

• To start the MySQL server using the preference pane:

Click Start MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to start the MySQL server.

• To stop the MySQL server using the preference pane:

Click Stop MySQL Server. You may be prompted for the username and password of a user with
administrator privileges to stop the MySQL server.

• To automatically start the MySQL server when the system boots:

Check the check box next to Automatically Start MySQL Server on Startup.

• To disable automatic MySQL server startup when the system boots:

Uncheck the check box next to Automatically Start MySQL Server on Startup.

You can close the System Preferences... window once you have completed your settings.

2.5 Installing MySQL on Linux
Linux supports a number of different solutions for installing MySQL. The recommended method is to
use one of the distributions from Oracle. If you choose this method, there are several options available:

• Installing from a generic binary package in .tar.gz format. See Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries” for more information.

• Extracting and compiling MySQL from a source distribution. For detailed instructions, see
Section 2.9, “Installing MySQL from Source”.

• Installing using a precompiled RPM package. For more information, see Section 2.5.1, “Installing
MySQL on Linux Using RPM Packages”.



Installing MySQL on Linux Using RPM Packages

141

• Installing using a precompiled Debian package. For more information, see Section 2.5.2, “Installing
MySQL on Linux Using Debian Packages”.

• Installing using Oracle's Unbreakable Linux Network (ULN). For more information, see Section 2.6,
“Installing MySQL Using Unbreakable Linux Network (ULN)”.

As an alternative, you can use the native package manager within your Linux distribution to
automatically download and install MySQL for you. Native package installations can take care of
the download and dependencies required to run MySQL, but the MySQL version will often be some
versions behind the currently available release. You will also normally be unable to install development
releases, as these are not usually made available in the native repository. For more information
on using the native package installers, see Section 2.5.3, “Installing MySQL on Linux Using Native
Package Managers”.

Note

For many Linux installations, you will want to set up MySQL to be started
automatically when your machine starts. Many of the native package
installations perform this operation for you, but for source, binary and RPM
solutions you may need to set this up separately. The required script,
mysql.server, can be found in the support-files directory under the
MySQL installation directory or in a MySQL source tree. You can install it
as /etc/init.d/mysql for automatic MySQL startup and shutdown. See
Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

2.5.1 Installing MySQL on Linux Using RPM Packages

Note

To install or upgrade to MySQL 5.5.31, be sure to read the special instructions
at the end of this section.

The recommended way to install MySQL on RPM-based Linux distributions is by using the RPM
packages. The RPMs that we provide to the community should work on all versions of Linux that
support RPM packages and use glibc 2.3. To obtain RPM packages, see Section 2.1.2, “How to Get
MySQL”.

For non-RPM Linux distributions, you can install MySQL using a .tar.gz package. See Section 2.2,
“Installing MySQL on Unix/Linux Using Generic Binaries”.

Installations created from our Linux RPM distributions result in files under the system directories shown
in the following table.

Table 2.10 MySQL Installation Layout for Linux RPM Packages

Directory Contents of Directory

/usr/bin Client programs and scripts

/usr/sbin The mysqld server

/var/lib/mysql Log files, databases

/var/lib/mysql-files Value of secure_file_priv

/usr/share/info MySQL manual in Info format

/usr/share/man Unix manual pages

/usr/include/mysql Include (header) files

/usr/lib/mysql Libraries

/usr/share/mysql Miscellaneous support files, including error messages,
character set files, sample configuration files, SQL for
database installation



Installing MySQL on Linux Using RPM Packages

142

Directory Contents of Directory

/usr/share/sql-bench Benchmarks

Note

RPM distributions of MySQL are also provided by other vendors. Be aware
that they may differ from those built by Oracle in features, capabilities, and
conventions (including communication setup), and that the instructions in this
manual do not necessarily apply to installing them. The vendor's instructions
should be consulted instead. Because of these differences, RPM packages built
by Oracle check whether such RPMs built by other vendors are installed. If so,
the RPM does not install and produces a message explaining this.

Conflicts can arise when an RPM from another vendor is already installed, such
as when a vendor's conventions about which files belong with the server and
which belong with the client library differ from the breakdown used for Oracle
packages. In such cases, attempts to install an Oracle RPM with rpm -i may
result in messages that files in the RPM to be installed conflict with files from an
installed package (denoted mysql-libs in the following paragraphs).

Each MySQL release provides a MySQL-shared-compat package that
is meant to replace mysql-libs and provides a replacement-compatible
client library for older MySQL series. MySQL-shared-compat is set up to
make mysql-libs obsolete, but rpm explicitly refuses to replace obsoleted
packages when invoked with -i (unlike -U), which is why installation with rpm
-i produces a conflict.

MySQL-shared-compat can safely be installed alongside mysql-libs
because libraries are installed to different locations. Therefore, it is possible
to install MySQL-shared-compat first, then manually remove mysql-libs
before continuing with the installation. After mysql-libs is removed, the
dynamic linker stops looking for the client library in the location where mysql-
libs puts it, and the library provided by the MySQL-shared-compat package
takes over.

Another alternative is to install packages using yum. In a directory containing all
RPM packages for a MySQL release, yum install MySQL*rpm installs them
in the correct order and removes mysql-libs in one step without conflicts.

In most cases, you need install only the MySQL-server and MySQL-client packages to get a
functional standard MySQL installation. The other packages are not required for a standard installation.

RPMs for NDB Cluster.  Standard MySQL server RPMs built by MySQL do not provide support for
the NDBCLUSTER storage engine.

Important

When upgrading an NDB Cluster RPM installation, you must upgrade all
installed RPMs, including the Server and Client RPMs.

For more information about installing NDB Cluster from RPMs, see Section 18.2, “NDB Cluster
Installation and Upgrades”.

For upgrades, if your installation was originally produced by installing multiple RPM packages, it is best
to upgrade all the installed packages, not just some. For example, if you previously installed the server
and client RPMs, do not upgrade just the server RPM.

If the data directory exists at RPM installation time, the installation process does not modify existing
data. This has the effect, for example, that accounts in the grant tables are not initialized to the default
set of accounts.



Installing MySQL on Linux Using RPM Packages

143

If you get a dependency failure when trying to install MySQL packages (for example, error:
removing these packages would break dependencies: libmysqlclient.so.10 is
needed by ...), you should also install the MySQL-shared-compat package, which includes the
shared libraries for older releases for backward compatibility.

The following list shows the available RPM packages. The names shown here use a suffix of
.glibc23.i386.rpm, but particular packages can have different suffixes, described later. If you plan
to install multiple RPM packages, you may wish to download the RPM Bundle tar file instead, which
contains multiple RPM packages so that you need not download them separately.

• MySQL-server-VERSION.glibc23.i386.rpm

The MySQL server. You need this unless you only want to connect to a MySQL server running on
another machine.

• MySQL-client-VERSION.glibc23.i386.rpm

The standard MySQL client programs. You probably always want to install this package.

• MySQL-devel-VERSION.glibc23.i386.rpm

The libraries and include files needed to compile other MySQL clients, such as the Perl MySQL
module. Install this RPM if you intend to compile C API applications.

• MySQL-shared-VERSION.glibc23.i386.rpm

The shared libraries (libmysqlclient.so*) that certain languages and applications need to
dynamically load and use MySQL. It contains single-threaded and thread-safe libraries. Install this
RPM if you intend to compile or run C API applications that depend on the shared client library. Prior
to MySQL 5.5.6, if you install this package, do not install the MySQL-shared-compat package.

• MySQL-shared-compat-VERSION.glibc23.i386.rpm

The shared libraries for older releases. It contains single-threaded and thread-safe libraries. Install
this package if you have applications installed that are dynamically linked against older versions of
MySQL but you want to upgrade to the current version without breaking the library dependencies.
Before MySQL 5.5.6, MySQL-shared-compat also includes the libraries for the current release,
so if you install it, you should not also install MySQL-shared. As of 5.5.6, MySQL-shared-compat
does not include the current library version, so there is no conflict.

As of MySQL 5.5.23, the MySQL-shared-compat RPM package enables users of Red
Hat-provided mysql-*-5.1 RPM packages to migrate to Oracle-provided MySQL-*-5.5
packages. MySQL-shared-compat replaces the Red Hat mysql-libs package by replacing
libmysqlclient.so files of the latter package, thus satisfying dependencies of other packages on
mysql-libs. This change affects only users of Red Hat (or Red Hat-compatible) RPM packages.
Nothing is different for users of Oracle RPM packages.

• MySQL-embedded-VERSION.glibc23.i386.rpm

The embedded MySQL server library.

• MySQL-test-VERSION.glibc23.i386.rpm

The MySQL test suite.

• MySQL-VERSION.src.rpm

The source code for all of the previous packages. It can also be used to rebuild the RPMs on other
architectures (for example, SPARC).

In RPM package names, the suffix (following the VERSION value) has the following syntax:



Installing MySQL on Linux Using RPM Packages

144

.PLATFORM.CPU.rpm

The PLATFORM and CPU values indicate the type of system for which the package is built. PLATFORM
indicates the platform and CPU indicates the processor type or family.

All packages are dynamically linked against glibc 2.3. The PLATFORM value indicates whether the
package is platform independent or intended for a specific platform, as shown in the following table.

Table 2.11 MySQL Linux RPM Package Platforms

PLATFORM Value Intended Use

glibc23 Platform independent, should run on any Linux distribution that supports
glibc 2.3

rhel4, rhel5 Red Hat Enterprise Linux 4 or 5

el6 Enterprise Linux 6

sles10, sles11 SuSE Linux Enterprise Server 10 or 11

In MySQL 5.5, only glibc23 packages are available currently.

The CPU value indicates the processor type or family for which the package is built, as shown in the
following table.

Table 2.12 MySQL Linux RPM Package CPU Identifiers

CPU Value Intended Processor Type or Family

i386, i586, i686 Pentium processor or better, 32 bit

x86_64 64-bit x86 processor

ia64 Itanium (IA-64) processor

To see all files in an RPM package (for example, a MySQL-server RPM), run a command like this
(modify the platform and CPU identifiers appropriately for your system):

shell> rpm -qpl MySQL-server-VERSION.glibc23.i386.rpm

To perform a standard minimal installation, install the server and client RPMs:

shell> rpm -i MySQL-server-VERSION.glibc23.i386.rpm
shell> rpm -i MySQL-client-VERSION.glibc23.i386.rpm

To install only the client programs, install just the client RPM:

shell> rpm -i MySQL-client-VERSION.glibc23.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing them. To
learn more about this feature, see Section 2.1.3, “Verifying Package Integrity Using MD5 Checksums
or GnuPG”.

The server RPM places data under the /var/lib/mysql directory. The RPM also creates a login
account for a user named mysql (if one does not exist) to use for running the MySQL server, and
creates the appropriate entries in /etc/init.d/ to start the server automatically at boot time. (This
means that if you have performed a previous installation and have made changes to its startup script,
you may want to make a copy of the script so that you can reinstall it after you install a newer RPM.)
See Section 2.10.5, “Starting and Stopping MySQL Automatically”, for more information on how
MySQL can be started automatically at system startup.



Installing MySQL on Linux Using RPM Packages

145

In MySQL 5.5.5 and later, during a new installation using RPM packages, the server boot scripts are
installed, but the MySQL server is not started at the end of the installation, since the status of the
server during an unattended installation is not known.

In MySQL 5.5.5 and later, during an upgrade installation using RPM packages, if the MySQL server is
running when the upgrade occurs, the MySQL server is stopped, the upgrade occurs, and the MySQL
server is restarted. If the MySQL server is not already running when the RPM upgrade occurs, the
MySQL server is not started at the end of the installation.

If something goes wrong, you can find more information in the binary installation section. See
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

Note

The accounts created in the MySQL grant tables for an RPM installation initially
have no passwords. After starting the server, you should assign passwords to
them using the instructions in Section 2.10, “Postinstallation Setup and Testing”.

An RPM installation creates a user named mysql and a group named mysql on the system using the
useradd, groupadd, and usermod commands. Those commands require appropriate administrative
privileges, which is required for locally managed users and groups (as listed in the /etc/passwd and
/etc/group files) by the RPM installation process being run by root.

If you log in as the mysql user, you may find that MySQL displays “Invalid (old?) table or
database name” errors that mention .mysqlgui, lost+found, .mysqlgui, .bash_history,
.fonts.cache-1, .lesshst, .mysql_history, .profile, .viminfo, and similar files created
by MySQL or operating system utilities. You can safely ignore these error messages or remove the files
or directories that cause them if you do not need them.

For nonlocal user management (LDAP, NIS, and so forth), the administrative tools may require
additional authentication (such as a password), and will fail if the installing user does not provide this
authentication. Even if they fail, the RPM installation will not abort but succeed, and this is intentional.
If they failed, some of the intended transfer of ownership may be missing, and it is recommended that
the system administrator then manually ensures some appropriate user and group exists and manually
transfers ownership following the actions in the RPM spec file.

In MySQL 5.5.31, the RPM spec file has been updated, which has the following consequences:

• For a non-upgrade installation (no existing MySQL version installed), it possible to install MySQL
using yum.

• For upgrades, it is necessary to clean up any earlier MySQL installations. In effect, the update is
performed by removing the old installations and installing the new one.

Additional details follow.

For a non-upgrade installation of MySQL 5.5.31, it is possible to install using yum:

shell> yum install MySQL-server-NEWVERSION.glibc23.i386.rpm

For upgrades to MySQL 5.5.31, the upgrade is performed by removing the old installation and installing
the new one. To do this, use the following procedure:

1. Remove the existing 5.5.X installation. OLDVERSION is the version to remove.

shell> rpm -e MySQL-server-OLDVERSION.glibc23.i386.rpm

Repeat this step for all installed MySQL RPMs.

2. Install the new version. NEWVERSION is the version to install.



Installing MySQL on Linux Using Debian Packages

146

shell> rpm -ivh MySQL-server-NEWVERSION.glibc23.i386.rpm

Alternatively, the removal and installation can be done using yum:

shell> yum remove MySQL-server-OLDVERSION.glibc23.i386.rpm
shell> yum install MySQL-server-NEWVERSION.glibc23.i386.rpm

For some Linux distributions, it might be necessary to increase the limit on number of file descriptors
available to mysqld. See Section B.5.2.18, “File Not Found and Similar Errors”

2.5.2 Installing MySQL on Linux Using Debian Packages

Oracle provides Debian packages for installation on Debian or Debian-like Linux systems. To obtain a
package, see Section 2.1.2, “How to Get MySQL”.

Note

Debian distributions of MySQL are also provided by other vendors. Be aware
that they may differ from those built by us in features, capabilities, and
conventions (including communication setup), and that the instructions in this
manual do not necessarily apply to installing them. The vendor's instructions
should be consulted instead.

Debian package files have names in mysql-MVER-DVER-CPU.deb format. MVER is the MySQL
version and DVER is the Debian version. The CPU value indicates the processor type or family for which
the package is built, as shown in the following table.

Table 2.13 MySQL Installation Packages for Linux CPU Identifiers

CPU Value Intended Processor Type or Family

i686 Pentium processor or better, 32 bit

x86_64 64-bit x86 processor

After downloading a Debian package, use the following command to install it;

shell> dpkg -i mysql-MVER-DVER-CPU.deb

The Debian package installs files in the /opt/mysql/server-5.5 directory.

You may also need to install the libaio library if it is not already present on your system:

shell> sudo apt-get install libaio1

2.5.3 Installing MySQL on Linux Using Native Package Managers

Many Linux distributions include a version of the MySQL server, client tools, and development
components in their native software repositories and can be installed with the platforms' standard
package management systems. This section provides basic instructions for installing MySQL using
those package management systems.

Important

Native package installations can take care of the download and dependencies
required to run MySQL, but the MySQL version will often be some way behind
the currently available release. You will also normally be unable to install
development releases, as these are not usually made available in the native
repository.



Installing MySQL on Linux Using Native Package Managers

147

Distribution specific instructions are shown below:

• Red Hat Linux, Fedora, CentOS

For Red Hat and similar distributions, the MySQL distribution is divided into a number of separate
packages, mysql for the client tools, mysql-server for the server and associated tools, and
mysql-libs for the libraries. The libraries are required if you want to provide connectivity from
different languages and environments such as Perl, Python and others.

To install, use the yum command to specify the packages that you want to install. For example:

root-shell> yum install mysql mysql-server mysql-libs mysql-server
Loaded plugins: presto, refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package mysql.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-libs.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-server.x86_64 0:5.1.48-2.fc13 set to be updated
--> Processing Dependency: perl-DBD-MySQL for package: mysql-server-5.1.48-2.fc13.x86_64
--> Running transaction check
---> Package perl-DBD-MySQL.x86_64 0:4.017-1.fc13 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

================================================================================
 Package               Arch          Version               Repository      Size
================================================================================
Installing:
 mysql                 x86_64        5.1.48-2.fc13         updates        889 k
 mysql-libs            x86_64        5.1.48-2.fc13         updates        1.2 M
 mysql-server          x86_64        5.1.48-2.fc13         updates        8.1 M
Installing for dependencies:
 perl-DBD-MySQL        x86_64        4.017-1.fc13          updates        136 k

Transaction Summary
================================================================================
Install       4 Package(s)
Upgrade       0 Package(s)

Total download size: 10 M
Installed size: 30 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata
Package(s) data still to download: 10 M
(1/4): mysql-5.1.48-2.fc13.x86_64.rpm                    | 889 kB     00:04
(2/4): mysql-libs-5.1.48-2.fc13.x86_64.rpm               | 1.2 MB     00:06
(3/4): mysql-server-5.1.48-2.fc13.x86_64.rpm             | 8.1 MB     00:40
(4/4): perl-DBD-MySQL-4.017-1.fc13.x86_64.rpm            | 136 kB     00:00
--------------------------------------------------------------------------------
Total                                           201 kB/s |  10 MB     00:52
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
  Installing     : mysql-libs-5.1.48-2.fc13.x86_64                          1/4
  Installing     : mysql-5.1.48-2.fc13.x86_64                               2/4
  Installing     : perl-DBD-MySQL-4.017-1.fc13.x86_64                       3/4
  Installing     : mysql-server-5.1.48-2.fc13.x86_64                        4/4

Installed:
  mysql.x86_64 0:5.1.48-2.fc13            mysql-libs.x86_64 0:5.1.48-2.fc13
  mysql-server.x86_64 0:5.1.48-2.fc13

Dependency Installed:
  perl-DBD-MySQL.x86_64 0:4.017-1.fc13



Installing MySQL on Linux Using Native Package Managers

148

Complete!

MySQL and the MySQL server should now be installed. A sample configuration file is installed into /
etc/my.cnf. An init script, to start and stop the server, will have been installed into /etc/init.d/
mysqld. To start the MySQL server use service:

root-shell> service mysqld start

To enable the server to be started and stopped automatically during boot, use chkconfig:

root-shell> chkconfig --levels 235 mysqld on

Which enables the MySQL server to be started (and stopped) automatically at the specified the run
levels.

The database tables will have been automatically created for you, if they do not already exist. You
should, however, run mysql_secure_installation to set the root passwords on your server.

• Debian, Ubuntu, Kubuntu

On Debian and related distributions, there are two packages, mysql-client and mysql-server,
for the client and server components respectively. You should specify an explicit version, for example
mysql-client-5.1, to ensure that you install the version of MySQL that you want.

To download and install, including any dependencies, use the apt-get command, specifying the
packages that you want to install.

Note

Before installing, make sure that you update your apt-get index files to
ensure you are downloading the latest available version.

A sample installation of the MySQL packages might look like this (some sections trimmed for clarity):

root-shell> apt-get install mysql-client-5.1 mysql-server-5.1
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
  linux-headers-2.6.28-11 linux-headers-2.6.28-11-generic
Use 'apt-get autoremove' to remove them.
The following extra packages will be installed:
  bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
  libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
  mysql-common postfix
Suggested packages:
  dbishell libipc-sharedcache-perl tinyca procmail postfix-mysql postfix-pgsql
  postfix-ldap postfix-pcre sasl2-bin resolvconf postfix-cdb
The following NEW packages will be installed
  bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
  libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
  mysql-client-5.1 mysql-common mysql-server-5.1 postfix
0 upgraded, 13 newly installed, 0 to remove and 182 not upgraded.
Need to get 1907kB/25.3MB of archives.
After this operation, 59.5MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
Get: 1 http://gb.archive.ubuntu.com jaunty-updates/main mysql-common 5.1.30really5.0.75-0ubuntu10.5 [63.6kB]
Get: 2 http://gb.archive.ubuntu.com jaunty-updates/main libmysqlclient15off 5.1.30really5.0.75-0ubuntu10.5 [1843kB]
Fetched 1907kB in 9s (205kB/s)
Preconfiguring packages ...
Selecting previously deselected package mysql-common.
(Reading database ... 121260 files and directories currently installed.)
...
Processing 1 added doc-base file(s)...



Installing MySQL on Linux Using Native Package Managers

149

Registering documents with scrollkeeper...
Setting up libnet-daemon-perl (0.43-1) ...
Setting up libplrpc-perl (0.2020-1) ...
Setting up libdbi-perl (1.607-1) ...
Setting up libmysqlclient15off (5.1.30really5.0.75-0ubuntu10.5) ...

Setting up libdbd-mysql-perl (4.008-1) ...
Setting up libmysqlclient16 (5.1.31-1ubuntu2) ...

Setting up mysql-client-5.1 (5.1.31-1ubuntu2) ...

Setting up mysql-server-5.1 (5.1.31-1ubuntu2) ...
 * Stopping MySQL database server mysqld
   ...done.
100825 11:46:15  InnoDB: Started; log sequence number 0 46409
100825 11:46:15  InnoDB: Starting shutdown...
100825 11:46:17  InnoDB: Shutdown completed; log sequence number 0 46409
100825 11:46:17 [Warning] Forcing shutdown of 1 plugins
 * Starting MySQL database server mysqld
   ...done.
 * Checking for corrupt, not cleanly closed and upgrade needing tables.
...
Processing triggers for libc6 ...
ldconfig deferred processing now taking place

Note

The apt-get command will install a number of packages, including
the MySQL server, in order to provide the typical tools and application
environment. This can mean that you install a large number of packages in
addition to the main MySQL package.

During installation, the initial database will be created, and you will be prompted for the MySQL root
password (and confirmation). A configuration file will have been created in /etc/mysql/my.cnf.
An init script will have been created in /etc/init.d/mysql.

The server will already be started. You can manually start and stop the server using:

root-shell> service mysql [start|stop]

The service will automatically be added to the 2, 3 and 4 run levels, with stop scripts in the single,
shutdown and restart levels.

• Gentoo Linux

As a source-based distribution, installing MySQL on Gentoo involves downloading the source,
patching the Gentoo specifics, and then compiling the MySQL server and installing it. This process is
handled automatically by the emerge command.

The MySQL server and client tools are provided within a single package, dev-db/mysql. You can
obtain a list of the versions available to install by looking at the portage directory for the package:

root-shell> ls /usr/portage/dev-db/mysql/mysql-5.5*
mysql-5.5.46.ebuild
mysql-5.5.47.ebuild

To install a specific MySQL version, you must specify the entire atom. For example:

root-shell> emerge =dev-db/mysql-5.5.46

After installation, you should initialize the data directory and set the password for the MySQL root
user (see Section 2.10.1, “Initializing the Data Directory”). Alternatively, use the configuration
interface to perform those tasks:



Installing MySQL Using Unbreakable Linux Network (ULN)

150

root-shell> emerge --config =dev-db/mysql-5.5.46

During installation, a sample configuration file is created for you in /etc/mysql/my.cnf, and an
init script is created in /etc/init.d/mysql.

To enable MySQL to start automatically at the normal (default) run levels, use this command:

root-shell> rc-update add mysql default

2.6 Installing MySQL Using Unbreakable Linux Network (ULN)

Linux supports a number of different solutions for installing MySQL, covered in Section 2.5,
“Installing MySQL on Linux”. One of the methods, covered in this section, is installing from Oracle's
Unbreakable Linux Network (ULN). You can find information about Oracle Linux and ULN under http://
linux.oracle.com/.

To use ULN, you need to obtain a ULN login and register the machine used for installation with
ULN. This is described in detail in the ULN FAQ. The page also describes how to install and update
packages.The MySQL packages are in the “MySQL for Oracle Linux 6” channel for your system
architecture on ULN.

Note

At the time of this writing, ULN provides MySQL 5.5 for Oracle Linux 6.

Once MySQL has been installed using ULN, you can find information on starting and stopping the
server, and more, in this section, particularly under Section 2.5.1, “Installing MySQL on Linux Using
RPM Packages”.

If you're updating an existing MySQL installation to an installation using ULN, the recommended
procedure is to export your data using mysqldump, remove the existing installation, install MySQL from
ULN, and load the exported data into your freshly installed MySQL.

If the existing MySQL installation you're upgrading from is from a previous release series (prior to
MySQL 5.5), make sure to read the section on upgrading MySQL, Section 2.11.1, “Upgrading MySQL”.

2.7 Installing MySQL on Solaris

Note

MySQL 5.5 supports Solaris 10 (Update 11 and later), and Solaris 11 (Update 3
and later).

MySQL on Solaris is available in a number of different formats.

• For information on installing using the native Solaris PKG format, see Section 2.7.1, “Installing
MySQL on Solaris Using a Solaris PKG”.

• To use a standard tar binary installation, use the notes provided in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”. Check the notes and hints at the end of this section for
Solaris specific notes that you may need before or after installation.

To obtain a binary MySQL distribution for Solaris in tarball or PKG format, http://dev.mysql.com/
downloads/mysql/5.5.html.

Additional notes to be aware of when installing and using MySQL on Solaris:

http://linux.oracle.com/
http://linux.oracle.com/
https://linux.oracle.com/uln_faq.html
http://dev.mysql.com/downloads/mysql/5.5.html
http://dev.mysql.com/downloads/mysql/5.5.html


Installing MySQL on Solaris Using a Solaris PKG

151

• If you want to use MySQL with the mysql user and group, use the groupadd and useradd
commands:

groupadd mysql
useradd -g mysql -s /bin/false mysql

• If you install MySQL using a binary tarball distribution on Solaris, because the Solaris tar cannot
handle long file names, use GNU tar (gtar) to unpack the distribution. If you do not have GNU tar
on your system, install it with the following command:

pkg install archiver/gnu-tar

• You should mount any file systems on which you intend to store InnoDB files with the
forcedirectio option. (By default mounting is done without this option.) Failing to do so will cause
a significant drop in performance when using the InnoDB storage engine on this platform.

• If you would like MySQL to start automatically, you can copy support-files/mysql.server to /
etc/init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.

• If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL
log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this.

• To configure the generation of core files on Solaris you should use the coreadm command. Because
of the security implications of generating a core on a setuid() application, by default, Solaris
does not support core files on setuid() programs. However, you can modify this behavior using
coreadm. If you enable setuid() core files for the current user, they will be generated using the
mode 600 and owned by the superuser.

2.7.1 Installing MySQL on Solaris Using a Solaris PKG

You can install MySQL on Solaris using a binary package using the native Solaris PKG format instead
of the binary tarball distribution.

To use this package, download the corresponding mysql-VERSION-solaris10-
PLATFORM.pkg.gz file, then uncompress it. For example:

shell> gunzip mysql-5.5.58-solaris10-x86_64.pkg.gz

To install a new package, use pkgadd and follow the onscreen prompts. You must have root privileges
to perform this operation:

shell> pkgadd -d mysql-5.5.58-solaris10-x86_64.pkg

The following packages are available:
  1  mysql     MySQL Community Server (GPL)
               (i86pc) 5.5.58

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]:

The PKG installer installs all of the files and tools needed, and then initializes your database if
one does not exist. To complete the installation, you should set the root password for MySQL
as provided in the instructions at the end of the installation. Alternatively, you can run the
mysql_secure_installation script that comes with the installation.



Installing MySQL on FreeBSD

152

By default, the PKG package installs MySQL under the root path /opt/mysql. You can change only
the installation root path when using pkgadd, which can be used to install MySQL in a different Solaris
zone. If you need to install in a specific directory, use a binary tar file distribution.

The pkg installer copies a suitable startup script for MySQL into /etc/init.d/mysql. To enable
MySQL to startup and shutdown automatically, you should create a link between this file and the init
script directories. For example, to ensure safe startup and shutdown of MySQL you could use the
following commands to add the right links:

shell> ln /etc/init.d/mysql /etc/rc3.d/S91mysql
shell> ln /etc/init.d/mysql /etc/rc0.d/K02mysql

To remove MySQL, the installed package name is mysql. You can use this in combination with the
pkgrm command to remove the installation.

To upgrade when using the Solaris package file format, you must remove the existing installation
before installing the updated package. Removal of the package does not delete the existing database
information, only the server, binaries and support files. The typical upgrade sequence is therefore:

shell> mysqladmin shutdown
shell> pkgrm mysql
shell> pkgadd -d mysql-5.5.58-solaris10-x86_64.pkg
shell> mysqld_safe &
shell> mysql_upgrade

You should check the notes in Section 2.11, “Upgrading or Downgrading MySQL” before performing
any upgrade.

2.8 Installing MySQL on FreeBSD
This section provides information about installing MySQL on variants of FreeBSD Unix.

You can install MySQL on FreeBSD by using the binary distribution provided by Oracle. For more
information, see Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client
ports available at http://www.freebsd.org/. Using these ports gives you the following benefits:

• A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.

• Automatic configuration and build.

• Startup scripts installed in /usr/local/etc/rc.d.

• The ability to use pkg_info -L to see which files are installed.

• The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you
must install it first before compiling MySQL.

To install using the ports system:

# cd /usr/ports/databases/mysql55-server
# make
...
# cd /usr/ports/databases/mysql55-client
# make
...

The standard port installation places the server into /usr/local/libexec/mysqld, with the startup
script for the MySQL server placed in /usr/local/etc/rc.d/mysql-server.

http://www.freebsd.org/


Installing MySQL from Source

153

Some additional notes on the BSD implementation:

• To remove MySQL after installation using the ports system:

# cd /usr/ports/databases/mysql55-server
# make deinstall
...
# cd /usr/ports/databases/mysql55-client
# make deinstall
...

• If you get problems with the current date in MySQL, setting the TZ variable should help. See
Section 4.9, “MySQL Program Environment Variables”.

2.9 Installing MySQL from Source

Building MySQL from the source code enables you to customize build parameters, compiler
optimizations, and installation location. For a list of systems on which MySQL is known to run, see
http://www.mysql.com/support/supportedplatforms/database.html.

Before you proceed with an installation from source, check whether Oracle produces a precompiled
binary distribution for your platform and whether it works for you. We put a great deal of effort into
ensuring that our binaries are built with the best possible options for optimal performance. Instructions
for installing binary distributions are available in Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”.

Warning

Building MySQL with nonstandard options may lead to reduced functionality,
performance, or security.

Note

This section describes how to build MySQL from source using CMake. Before
MySQL 5.5, source builds used the GNU autotools on Unix-like systems.
Source builds on Windows used CMake, but the process was different from that
described here. For source-building instructions for older versions of MySQL,
see the MySQL 5.1 Reference Manual. If you are familiar with autotools but not
CMake, you might find these transition instructions helpful: Autotools to CMake
Transition Guide

Source Installation Methods

There are two methods for installing MySQL from source:

• Use a standard MySQL source distribution. To obtain a standard distribution, see Section 2.1.2,
“How to Get MySQL”. For instructions on building from a standard distribution, see Section 2.9.2,
“Installing MySQL Using a Standard Source Distribution”.

Standard distributions are available as compressed tar files, Zip archives, or RPM packages.
Distribution files have names of the form mysql-VERSION.tar.gz, mysql-VERSION.zip,
or mysql-VERSION.rpm, where VERSION is a number like 5.5.58. File names for source
distributions can be distinguished from those for precompiled binary distributions in that source
distribution names are generic and include no platform name, whereas binary distribution names
include a platform name indicating the type of system for which the distribution is intended (for
example, pc-linux-i686 or winx64).

• Use a MySQL development tree. For information on building from one of the development trees, see
Section 2.9.3, “Installing MySQL Using a Development Source Tree”.

http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/doc/internals/en/autotools-to-cmake.html
http://dev.mysql.com/doc/internals/en/autotools-to-cmake.html


Source Installation System Requirements

154

Source Installation System Requirements

Installation of MySQL from source requires several development tools. Some of these tools are needed
no matter whether you use a standard source distribution or a development source tree. Other tool
requirements depend on which installation method you use.

To install MySQL from source, the following system requirements must be satisfied, regardless of
installation method:

• CMake, which is used as the build framework on all platforms. CMake can be downloaded from http://
www.cmake.org.

• A good make program. Although some platforms come with their own make implementations, it is
highly recommended that you use GNU make 3.75 or higher. It may already be available on your
system as gmake. GNU make is available from http://www.gnu.org/software/make/.

• A working ANSI C++ compiler. GCC 4.2.1 or later, Sun Studio 12 or later, Visual Studio 2008 or later,
and many current vendor-supplied compilers are known to work.

• Sufficient free memory. If you encounter problems such as “internal compiler error” when compiling
large source files, it may be that you have too little memory. If compiling on a virtual machine, try
increasing the memory allocation.

• Perl is needed if you intend to run test scripts. Most Unix-like systems include Perl. On Windows, you
can use a version such as ActiveState Perl.

To install MySQL from a standard source distribution, one of the following tools is required to unpack
the distribution file:

• For a .tar.gz compressed tar file: GNU gunzip to uncompress the distribution and a reasonable
tar to unpack it. If your tar program supports the z option, it can both uncompress and unpack the
file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or
if available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as
tar within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU
tar is available from http://www.gnu.org/software/tar/.

• For a .zip Zip archive: WinZip or another tool that can read .zip files.

• For an .rpm RPM package: The rpmbuild program used to build the distribution unpacks it.

To install MySQL from a development source tree, the following additional tools are required:

• The Git revision control system is required to obtain the development source code. The GitHub
Help provides instructions for downloading and installing Git on different platforms. MySQL officially
joined GitHub in September, 2014. For more information about MySQL's move to GitHub, refer to the
announcement on the MySQL Release Engineering blog: MySQL on GitHub

• bison 2.1 or higher, available from http://www.gnu.org/software/bison/. (Version 1 is no longer
supported.) Use the latest version of bison where possible; if you experience problems, upgrade to
a later version, rather than revert to an earlier one.

bison is available from http://www.gnu.org/software/bison/. bison for Windows can be downloaded
from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the package labeled “Complete
package, excluding sources”. On Windows, the default location for bison is the C:\Program
Files\GnuWin32 directory. Some utilities may fail to find bison because of the space in the
directory name. Also, Visual Studio may simply hang if there are spaces in the path. You can
resolve these problems by installing into a directory that does not contain a space; for example C:
\GnuWin32.

http://www.cmake.org
http://www.cmake.org
http://www.gnu.org/software/make/
http://www.gnu.org/software/tar/
https://help.github.com/
https://help.github.com/
http://mysqlrelease.com/2014/09/mysql-on-github/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://gnuwin32.sourceforge.net/packages/bison.htm


MySQL Layout for Source Installation

155

• On Solaris Express, m4 must be installed in addition to bison. m4 is available from http://
www.gnu.org/software/m4/.

Note

If you have to install any programs, modify your PATH environment variable to
include any directories in which the programs are located. See Section 4.2.10,
“Setting Environment Variables”.

If you run into problems and need to file a bug report, please use the instructions in Section 1.6, “How
to Report Bugs or Problems”.

2.9.1 MySQL Layout for Source Installation

By default, when you install MySQL after compiling it from source, the installation step installs files
under /usr/local/mysql. The component locations under the installation directory are the same
as for binary distributions. See Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary
Package”, and Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”. To configure
installation locations different from the defaults, use the options described at Section 2.9.4, “MySQL
Source-Configuration Options”.

2.9.2 Installing MySQL Using a Standard Source Distribution

To install MySQL from a standard source distribution:

1. Verify that your system satisfies the tool requirements listed at Section 2.9, “Installing MySQL from
Source”.

2. Obtain a distribution file using the instructions in Section 2.1.2, “How to Get MySQL”.

3. Configure, build, and install the distribution using the instructions in this section.

4. Perform postinstallation procedures using the instructions in Section 2.10, “Postinstallation Setup
and Testing”.

In MySQL 5.5, CMake is used as the build framework on all platforms. The instructions given here
should enable you to produce a working installation. For additional information on using CMake to build
MySQL, see How to Build MySQL Server with CMake.

If you start from a source RPM, use the following command to make a binary RPM that you can install.
If you do not have rpmbuild, use rpm instead.

shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

The result is one or more binary RPM packages that you install as indicated in Section 2.5.1, “Installing
MySQL on Linux Using RPM Packages”.

The sequence for installation from a compressed tar file or Zip archive source distribution is similar to
the process for installing from a generic binary distribution (see Section 2.2, “Installing MySQL on Unix/
Linux Using Generic Binaries”), except that it is used on all platforms and includes steps to configure
and compile the distribution. For example, with a compressed tar file source distribution on Unix, the
basic installation command sequence looks like this:

# Preconfiguration setup
shell> groupadd mysql
shell> useradd -r -g mysql -s /bin/false mysql
# Beginning of source-build specific instructions
shell> tar zxvf mysql-VERSION.tar.gz
shell> cd mysql-VERSION
shell> mkdir bld
shell> cd bld
shell> cmake ..

http://www.gnu.org/software/m4/
http://www.gnu.org/software/m4/
http://dev.mysql.com/doc/internals/en/cmake.html


Installing MySQL Using a Standard Source Distribution

156

shell> make
shell> make install
# End of source-build specific instructions
# Postinstallation setup
shell> cd /usr/local/mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql data
# Next command is optional
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> bin/mysqld_safe --user=mysql &
# Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server

A more detailed version of the source-build specific instructions is shown following.

Note

The procedure shown here does not set up any passwords for MySQL
accounts. After following the procedure, proceed to Section 2.10,
“Postinstallation Setup and Testing”, for postinstallation setup and testing.

Perform Preconfiguration Setup

On Unix, set up the mysql user and group that will be used to run and execute the MySQL server and
own the database directory. For details, see Creating a mysql System User and Group, in Section 2.2,
“Installing MySQL on Unix/Linux Using Generic Binaries”. Then perform the following steps as the
mysql user, except as noted.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it.

Obtain a distribution file using the instructions in Section 2.1.2, “How to Get MySQL”.

Unpack the distribution into the current directory:

• To unpack a compressed tar file, tar can uncompress and unpack the distribution if it has z option
support:

shell> tar zxvf mysql-VERSION.tar.gz

If your tar does not have z option support, use gunzip to unpack the distribution and tar to
unpack it:

shell> gunzip < mysql-VERSION.tar.gz | tar xvf -

Alternatively, CMake can uncompress and unpack the distribution:

shell> cmake -E tar zxvf mysql-VERSION.tar.gz

• To unpack a Zip archive, use WinZip or another tool that can read .zip files.

Unpacking the distribution file creates a directory named mysql-VERSION.

Configure the Distribution

Change location into the top-level directory of the unpacked distribution:

shell> cd mysql-VERSION



Installing MySQL Using a Standard Source Distribution

157

Build out of the source tree to keep the tree clean. If the top-level source directory is named mysql-
src under your current working directory, you can build in a directory named bld at the same level.
Create the directory and go there:

shell> mkdir bld
shell> cd bld

Configure the build directory. The minimum configuration command includes no options to override
configuration defaults:

shell> cmake ../mysql-src

The build directory needs not be outside the source tree. For example, you can build in a directory
named bld under the top-level source tree. To do this, starting with mysql-src as your current
working directory, create the directory bld and then go there:

shell> mkdir bld
shell> cd bld

Configure the build directory. The minimum configuration command includes no options to override
configuration defaults:

shell> cmake ..

If you have multiple source trees at the same level (for example, to build multiple versions of MySQL),
the second strategy can be advantageous. The first strategy places all build directories at the same
level, which requires that you choose a unique name for each. With the second strategy, you can use
the same name for the build directory within each source tree. The following instructions assume this
second strategy.

On Windows, specify the development environment. For example, the following commands configure
MySQL for 32-bit or 64-bit builds, respectively:

shell> cmake .. -G "Visual Studio 9 2008"
shell> cmake .. -G "Visual Studio 9 2008 Win64"

On OS X, to use the Xcode IDE:

shell> cmake .. -G Xcode

When you run cmake, you might want to add options to the command line. Here are some examples:

• -DBUILD_CONFIG=mysql_release: Configure the source with the same build options used by
Oracle to produce binary distributions for official MySQL releases.

• -DCMAKE_INSTALL_PREFIX=dir_name: Configure the distribution for installation under a
particular location.

• -DCPACK_MONOLITHIC_INSTALL=1: Cause make package to generate a single installation file
rather than multiple files.

• -DWITH_DEBUG=1: Build the distribution with debugging support.

For a more extensive list of options, see Section 2.9.4, “MySQL Source-Configuration Options”.

To list the configuration options, use one of the following commands:

shell> cmake .. -L   # overview
shell> cmake .. -LH  # overview with help text
shell> cmake .. -LAH # all params with help text
shell> ccmake ..     # interactive display



Installing MySQL Using a Standard Source Distribution

158

If CMake fails, you might need to reconfigure by running it again with different options. If you do
reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts up, it looks
for that file and reads its contents if it exists, on the assumption that the information is still correct.
That assumption is invalid when you reconfigure.

• Each time you run CMake, you must run make again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old object files or configuration information from being used, run these commands in the
build direcotry on Unix before re-running CMake:

shell> make clean
shell> rm CMakeCache.txt

Or, on Windows:

shell> devenv MySQL.sln /clean
shell> del CMakeCache.txt

If you are going to send mail to a MySQL mailing list to ask for configuration assistance, first check the
files in the CMakeFiles directory for useful information about the failure. To file a bug report, please
use the instructions in Section 1.6, “How to Report Bugs or Problems”.

Build the Distribution

On Unix:

shell> make
shell> make VERBOSE=1

The second command sets VERBOSE to show the commands for each compiled source.

Use gmake instead on systems where you are using GNU make and it has been installed as gmake.

On Windows:

shell> devenv MySQL.sln /build RelWithDebInfo

If you have gotten to the compilation stage, but the distribution does not build, see Section 2.9.5,
“Dealing with Problems Compiling MySQL”, for help. If that does not solve the problem, please enter it
into our bugs database using the instructions given in Section 1.6, “How to Report Bugs or Problems”.
If you have installed the latest versions of the required tools, and they crash trying to process our
configuration files, please report that also. However, if you get a command not found error or a
similar problem for required tools, do not report it. Instead, make sure that all the required tools are
installed and that your PATH variable is set correctly so that your shell can find them.

Install the Distribution

On Unix:

shell> make install

This installs the files under the configured installation directory (by default, /usr/local/mysql). You
might need to run the command as root.

To install in a specific directory, add a DESTDIR parameter to the command line:



Installing MySQL Using a Development Source Tree

159

shell> make install DESTDIR="/opt/mysql"

Alternatively, generate installation package files that you can install where you like:

shell> make package

This operation produces one or more .tar.gz files that can be installed like generic binary distribution
packages. See Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”. If you run CMake
with -DCPACK_MONOLITHIC_INSTALL=1, the operation produces a single file. Otherwise, it produces
multiple files.

On Windows, generate the data directory, then create a .zip archive installation package:

shell> devenv MySQL.sln /build RelWithDebInfo /project initial_database
shell> devenv MySQL.sln /build RelWithDebInfo /project package

You can install the resulting .zip archive where you like. See Section 2.3.7, “Installing MySQL on
Microsoft Windows Using a noinstall Zip Archive”.

Perform Postinstallation Setup

The remainder of the installation process involves setting up the configuration file, creating the core
databases, and starting the MySQL server. For instructions, see Section 2.10, “Postinstallation Setup
and Testing”.

Note

The accounts that are listed in the MySQL grant tables initially have no
passwords. After starting the server, you should set up passwords for them
using the instructions in Section 2.10, “Postinstallation Setup and Testing”.

2.9.3 Installing MySQL Using a Development Source Tree

This section describes how to install MySQL from the latest development source code, which is hosted
on GitHub. To obtain the MySQL Server source code from this repository hosting service, you can set
up a local MySQL Git repository.

On GitHub, MySQL Server and other MySQL projects are found on the MySQL page. The MySQL
Server project is a single repository that contains branches for several MySQL series.

MySQL officially joined GitHub in September, 2014. For more information about MySQL's move to
GitHub, refer to the announcement on the MySQL Release Engineering blog: MySQL on GitHub

Prerequisites for Installing from Development Source

To install MySQL from a development source tree, your system must satisfy the tool requirements
outlined in Section 2.9, “Installing MySQL from Source”.

Setting Up a MySQL Git Repository

To set up a MySQL Git repository on your machine, use this procedure:

1. Clone the MySQL Git repository to your machine. The following command clones the MySQL
Git repository to a directory named mysql-server. The initial download will take some time to
complete, depending on the speed of your connection.

~$ git clone https://github.com/mysql/mysql-server.git
Cloning into 'mysql-server'...
remote: Counting objects: 1035465, done.
remote: Total 1035465 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1035465/1035465), 437.48 MiB | 5.10 MiB/s, done.
Resolving deltas: 100% (855607/855607), done.
Checking connectivity... done.

https://github.com/
https://github.com/
https://github.com/mysql
http://mysqlrelease.com/2014/09/mysql-on-github/


Installing MySQL Using a Development Source Tree

160

Checking out files: 100% (21902/21902), done.

2. When the clone operation completes, the contents of your local MySQL Git repository appear
similar to the following:

~$ cd mysql-server

~/mysql-server$ ls
BUILD            COPYING             libmysqld    regex          tests
BUILD-CMAKE      dbug                libservices  scripts        unittest
client           Docs                man          sql            VERSION
cmake            extra               mysql-test   sql-bench      vio
CMakeLists.txt   include             mysys        sql-common     win
cmd-line-utils   INSTALL-SOURCE      packaging    storage        zlib
config.h.cmake   INSTALL-WIN-SOURCE  plugin       strings
configure.cmake  libmysql            README       support-files

3. Use the git branch -r command to view the remote tracking branches for the MySQL
repository.

~/mysql-server$ git branch -r
  origin/5.5
  origin/5.6
  origin/5.7
  origin/HEAD -> origin/5.7
  origin/cluster-7.2
  origin/cluster-7.3
  origin/cluster-7.4

4. To view the branches that are checked out in your local repository, issue the git branch
command. When you cloned the MySQL Git repository, the MySQL 5.7 branch was checked out
automatically. The asterisk identifies the 5.7 branch as the active branch.

~/mysql-server$ git branch
* 5.7

5. To check out a different MySQL branch, run the git checkout command, specifying the branch
name. For example, to checkout the MySQL 5.5 branch:

~/mysql-server$ git checkout 5.5
Branch 5.5 set up to track remote branch 5.5 from origin.
Switched to a new branch '5.5'

6. Run git branch again to verify that the MySQL 5.5 branch is present. MySQL 5.5, which is the
last branch you checked out, is marked by an asterisk indicating that it is the active branch.

~/mysql-server$ git branch
* 5.5
  5.7

The git checkout command is also used to switch branches. For example, to make MySQL 5.7
the active branch again, you would run git checkout 5.7.

7. To obtain changes made after your initial setup of the MySQL Git repository, switch to the branch
you want to update and issue the git pull command:

~/mysql-server$ git checkout 5.5
~/mysql-server$ git pull

To examine the commit history, use the git log option:

~/mysql-server$ git log

You can also browse commit history and source code on the GitHub MySQL site.

If you see changes or code that you have a question about, send an email to the MySQL
internals mailing list. See Section 1.5.2, “MySQL Mailing Lists”. For information about
contributing a patch, see Contributing to MySQL Server.

https://github.com/mysql
http://mysqlserverteam.com/contributing-to-mysql-server/


MySQL Source-Configuration Options

161

8. After you have cloned the MySQL Git repository and have checked out the branch you want to
build, you can build MySQL Server from the source code. Instructions are provided in Section 2.9.2,
“Installing MySQL Using a Standard Source Distribution”, except that you skip the part about
obtaining and unpacking the distribution.

Be careful about installing a build from a distribution source tree on a production machine. The
installation command may overwrite your live release installation. If you already have MySQL
installed and do not want to overwrite it, run CMake with values for the CMAKE_INSTALL_PREFIX,
MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options different from those used by your production
server. For additional information about preventing multiple servers from interfering with each other,
see Section 5.6, “Running Multiple MySQL Instances on One Machine”.

Play hard with your new installation. For example, try to make new features crash. Start by running
make test. See Section 24.1.2, “The MySQL Test Suite”.

2.9.4 MySQL Source-Configuration Options

The CMake program provides a great deal of control over how you configure a MySQL source
distribution. Typically, you do this using options on the CMake command line. For information about
options supported by CMake, run either of these commands in the top-level source directory:

shell> cmake . -LH
shell> ccmake .

You can also affect CMake using certain environment variables. See Section 4.9, “MySQL Program
Environment Variables”.

The following table shows the available CMake options. In the Default column, PREFIX stands for
the value of the CMAKE_INSTALL_PREFIX option, which specifies the installation base directory. This
value is used as the parent location for several of the installation subdirectories.

Table 2.14 MySQL Source-Configuration Option Reference (CMake)

Formats Description Default IntroducedRemoved

BUILD_CONFIG Use same build options as
official releases

 5.5.7  

CMAKE_BUILD_TYPE Type of build to produce RelWithDebInfo 5.5.7  

CMAKE_CXX_FLAGS Flags for C++ Compiler    

CMAKE_C_FLAGS Flags for C Compiler    

CMAKE_INSTALL_PREFIX Installation base directory /usr/local/
mysql

5.5.8  

COMPILATION_COMMENT Comment about compilation
environment

 5.5.7  

CPACK_MONOLITHIC_INSTALLWhether package build
produces single file

OFF 5.5.7  

DEFAULT_CHARSET The default server character
set

latin1 5.5.7  

DEFAULT_COLLATION The default server collation latin1_swedish_ci5.5.7  

ENABLED_LOCAL_INFILE Whether to enable LOCAL for
LOAD DATA INFILE

OFF 5.5.7  

ENABLED_PROFILING Whether to enable query
profiling code

ON 5.5.7  

ENABLE_DEBUG_SYNC Whether to enable Debug
Sync support

ON 5.5.7 5.5.55



MySQL Source-Configuration Options

162

Formats Description Default IntroducedRemoved

ENABLE_DOWNLOADS Whether to download optional
files

OFF 5.5.7  

ENABLE_DTRACE Whether to include DTrace
support

 5.5.7  

ENABLE_GCOV Whether to include gcov
support

 5.5.14  

IGNORE_AIO_CHECK With -
DBUILD_CONFIG=mysql_release,
ignore libaio check

OFF 5.5.9  

INSTALL_BINDIR User executables directory PREFIX/bin 5.5.7  

INSTALL_DOCDIR Documentation directory PREFIX/docs 5.5.7  

INSTALL_DOCREADMEDIR README file directory PREFIX 5.5.7  

INSTALL_INCLUDEDIR Header file directory PREFIX/include 5.5.7  

INSTALL_INFODIR Info file directory PREFIX/docs 5.5.7  

INSTALL_LAYOUT Select predefined installation
layout

STANDALONE 5.5.7  

INSTALL_LIBDIR Library file directory PREFIX/lib 5.5.7  

INSTALL_MANDIR Manual page directory PREFIX/man 5.5.7  

INSTALL_MYSQLSHAREDIR Shared data directory PREFIX/share 5.5.7  

INSTALL_MYSQLTESTDIR mysql-test directory PREFIX/mysql-
test

5.5.7  

INSTALL_PLUGINDIR Plugin directory PREFIX/lib/
plugin

5.5.7  

INSTALL_SBINDIR Server executable directory PREFIX/bin 5.5.7  

INSTALL_SCRIPTDIR Scripts directory PREFIX/scripts 5.5.7  

INSTALL_SECURE_FILE_PRIVDIRsecure_file_priv default value platform
specific

5.5.53  

INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIRsecure_file_priv default value
for libmysqld

 5.5.53  

INSTALL_SHAREDIR aclocal/mysql.m4 installation
directory

PREFIX/share 5.5.7  

INSTALL_SQLBENCHDIR sql-bench directory PREFIX 5.5.7  

INSTALL_SUPPORTFILESDIRExtra support files directory PREFIX/
support-files

5.5.7  

MEMCACHED_HOME Path to memcached [none] 5.5.16-
ndb-7.2.2

 

MYSQL_DATADIR Data directory  5.5.7  

MYSQL_MAINTAINER_MODE Whether to enable MySQL
maintainer-specific
development environment

OFF 5.5.7  

MYSQL_PROJECT_NAME Windows/OS X project name MySQL 5.5.21  

MYSQL_TCP_PORT TCP/IP port number 3306 5.5.7  

MYSQL_UNIX_ADDR Unix socket file /tmp/
mysql.sock

5.5.7  

ODBC_INCLUDES ODBC includes directory    



MySQL Source-Configuration Options

163

Formats Description Default IntroducedRemoved

ODBC_LIB_DIR ODBC library directory    

SYSCONFDIR Option file directory  5.5.7  

TMPDIR tmpdir default value  5.5.36  

WITHOUT_SERVER Do not build the server OFF   

WITHOUT_xxx_STORAGE_ENGINEExclude storage engine xxx
from build

 5.5.7  

WITH_ASAN Enable AddressSanitizer OFF 5.5.35  

WITH_BUNDLED_LIBEVENT Use bundled libevent when
building ndbmemcache

ON 5.5.16-
ndb-7.2.2

 

WITH_BUNDLED_MEMCACHED Use bundled memcached
when building ndbmemcache

ON 5.5.16-
ndb-7.2.2

 

WITH_CLASSPATH Classpath to use when
building MySQL Cluster
Connector for Java. Default is
an empty string.

  

WITH_DEBUG Whether to include
debugging support

OFF 5.5.7  

WITH_EMBEDDED_SERVER Whether to build embedded
server

OFF 5.5.7  

WITH_EMBEDDED_SHARED_LIBRARYWhether to build a shared
embedded server library

OFF 5.5.37  

WITH_ERROR_INSERT Enable error injection in
the NDB storage engine.
Should not be used for
building binaries intended for
production.

OFF   

WITH_EXTRA_CHARSETS Which extra character sets to
include

all 5.5.7  

WITH_LIBEDIT Use bundled libedit library ON 5.5.7  

WITH_LIBWRAP Whether to include libwrap
(TCP wrappers) support

OFF 5.5.7  

WITH_NDBCLUSTER Build the NDB storage
engine; alias for
WITH_NDBCLUSTER_STORAGE_ENGINE

ON   

WITH_NDBCLUSTER_STORAGE_ENGINEBuild the NDB storage engine ON   

WITH_NDBMTD Build multi-threaded data
node.

ON   

WITH_NDB_BINLOG Enable binary logging by
default by mysqld.

ON   

WITH_NDB_DEBUG Produce a debug build for
testing or troubleshooting.

OFF   

WITH_NDB_JAVA Enable building of Java and
ClusterJ support. Enabled by
default. Supported in MySQL
Cluster only.

ON 5.5.27-
ndb-7.2.9

 

WITH_NDB_PORT Default port used by a
management server built
with this option. If this option

[none]   



MySQL Source-Configuration Options

164

Formats Description Default IntroducedRemoved
was not used to build it, the
management server's default
port is 1186.

WITH_NDB_TEST Include NDB API test
programs.

OFF   

WITH_READLINE Use bundled readline library OFF 5.5.7  

WITH_SSL Type of SSL support bundled 5.5.7  

WITH_UNIXODBC Enable unixODBC support OFF   

WITH_VALGRIND Whether to compile in
Valgrind header files

OFF 5.5.6  

WITH_ZLIB Type of zlib support bundled 5.5.7  

WITH_xxx_STORAGE_ENGINECompile storage engine xxx
statically into server

 5.5.7  

The following sections provide more information about CMake options.

• General Options

• Installation Layout Options

• Storage Engine Options

• Feature Options

• Compiler Flags

• CMake Options for Compiling NDB Cluster

For boolean options, the value may be specified as 1 or ON to enable the option, or as 0 or OFF to
disable the option.

Many options configure compile-time defaults that can be overridden at server startup. For example,
the CMAKE_INSTALL_PREFIX, MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options that configure the
default installation base directory location, TCP/IP port number, and Unix socket file can be changed at
server startup with the --basedir, --port, and --socket options for mysqld. Where applicable,
configuration option descriptions indicate the corresponding mysqld startup option.

General Options

•   -DBUILD_CONFIG=mysql_release

This option configures a source distribution with the same build options used by Oracle to produce
binary distributions for official MySQL releases.

•   -DCMAKE_BUILD_TYPE=type

The type of build to produce:

• RelWithDebInfo: Enable optimizations and generate debugging information. This is the default
MySQL build type.

• Debug: Disable optimizations and generate debugging information. This build type is also used
if the WITH_DEBUG option is enabled. That is, -DWITH_DEBUG=1 has the same effect as -
DCMAKE_BUILD_TYPE=Debug.

•   -DCPACK_MONOLITHIC_INSTALL=bool



MySQL Source-Configuration Options

165

This option affects whether the make package operation produces multiple installation package
files or a single file. If disabled, the operation produces multiple installation package files, which may
be useful if you want to install only a subset of a full MySQL installation. If enabled, it produces a
single file for installing everything.

Installation Layout Options

The CMAKE_INSTALL_PREFIX option indicates the base installation directory. Other options with
names of the form INSTALL_xxx that indicate component locations are interpreted relative to the
prefix and their values are relative pathnames. Their values should not include the prefix.

•   -DCMAKE_INSTALL_PREFIX=dir_name

The installation base directory.

This value can be set at server startup with the --basedir option.

•   -DINSTALL_BINDIR=dir_name

Where to install user programs.

•   -DINSTALL_DOCDIR=dir_name

Where to install documentation.

•   -DINSTALL_DOCREADMEDIR=dir_name

Where to install README files.

•   -DINSTALL_INCLUDEDIR=dir_name

Where to install header files.

•   -DINSTALL_INFODIR=dir_name

Where to install Info files.

•   -DINSTALL_LAYOUT=name

Select a predefined installation layout:

• STANDALONE: Same layout as used for .tar.gz and .zip packages. This is the default.

• RPM: Layout similar to RPM packages.

• SVR4: Solaris package layout.

• DEB: DEB package layout (experimental).

You can select a predefined layout but modify individual component installation locations by
specifying other options. For example:

shell> cmake . -DINSTALL_LAYOUT=SVR4 -DMYSQL_DATADIR=/var/mysql/data

•   -DINSTALL_LIBDIR=dir_name

Where to install library files.

•   -DINSTALL_MANDIR=dir_name

Where to install manual pages.



MySQL Source-Configuration Options

166

•   -DINSTALL_MYSQLSHAREDIR=dir_name

Where to install shared data files.

•   -DINSTALL_MYSQLTESTDIR=dir_name

Where to install the mysql-test directory. As of MySQL 5.5.32, to suppress installation of this
directory, explicitly set the option to the empty value (-DINSTALL_MYSQLTESTDIR=).

•   -DINSTALL_PLUGINDIR=dir_name

The location of the plugin directory.

This value can be set at server startup with the --plugin_dir option.

•   -DINSTALL_SBINDIR=dir_name

Where to install the mysqld server.

•   -DINSTALL_SCRIPTDIR=dir_name

Where to install mysql_install_db.

•   -DINSTALL_SECURE_FILE_PRIVDIR=dir_name

The default value for the secure_file_priv system variable. The default value is platform
specific and depends on the value of the INSTALL_LAYOUT CMake option; see the description of the
secure_file_priv system variable in Section 5.1.5, “Server System Variables”.

This option was added in MySQL 5.5.53. To set the value for the libmysqld embedded server, use
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR.

•   -DINSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR=dir_name

The default value for the secure_file_priv system variable, for the libmysqld embedded
server. This option was added in MySQL 5.5.53.

•   -DINSTALL_SHAREDIR=dir_name

Where to install aclocal/mysql.m4.

•   -DINSTALL_SQLBENCHDIR=dir_name

Where to install the sql-bench directory. To suppress installation of this directory, explicitly set the
option to the empty value (-DINSTALL_SQLBENCHDIR=).

•   -DINSTALL_SUPPORTFILESDIR=dir_name

Where to install extra support files.

•   -DMYSQL_DATADIR=dir_name

The location of the MySQL data directory.

This value can be set at server startup with the --datadir option.

•   -DODBC_INCLUDES=dir_name

The location of the ODBC includes directory, and may be used while configuring Connector/ODBC.

•   -DODBC_LIB_DIR=dir_name

The location of the ODBC library directory, and may be used while configuring Connector/ODBC.



MySQL Source-Configuration Options

167

•   -DSYSCONFDIR=dir_name

The default my.cnf option file directory.

This location cannot be set at server startup, but you can start the server with a given option file
using the --defaults-file=file_name option, where file_name is the full path name to the
file.

•   -DTMPDIR=dir_name

The default location to use for the tmpdir system variable. If unspecified, the value defaults to
P_tmpdir in <stdio.h>. This option was added in MySQL 5.6.16.

Storage Engine Options

Storage engines are built as plugins. You can build a plugin as a static module (compiled into the
server) or a dynamic module (built as a dynamic library that must be installed into the server using the
INSTALL PLUGIN statement or the --plugin-load option before it can be used). Some plugins
might not support static or dynamic building.

The InnoDB, MyISAM, MERGE, MEMORY, and CSV engines are mandatory (always compiled into the
server) and need not be installed explicitly.

To compile a storage engine statically into the server, use -DWITH_engine_STORAGE_ENGINE=1.
Some permissible engine values are ARCHIVE, BLACKHOLE, EXAMPLE, FEDERATED, NDBCLUSTER
(NDB), PARTITION (partitioning support), and PERFSCHEMA (Performance Schema). Examples:

-DWITH_ARCHIVE_STORAGE_ENGINE=1
-DWITH_BLACKHOLE_STORAGE_ENGINE=1
-DWITH_PERFSCHEMA_STORAGE_ENGINE=1

Note

WITH_NDBCLUSTER_STORAGE_ENGINE is supported only when building NDB
Cluster using the NDB Cluster sources. It cannot be used to enable clustering
support in other MySQL source trees or distributions. In MySQL NDB Cluster
7.2 source distributions, it is enabled by default. See Section 18.2.1.4, “Building
NDB Cluster from Source on Linux”, and Section 18.2.2.2, “Compiling and
Installing NDB Cluster from Source on Windows”, for more information.

To exclude a storage engine from the build, use -DWITHOUT_engine_STORAGE_ENGINE=1.
Examples:

-DWITHOUT_EXAMPLE_STORAGE_ENGINE=1
-DWITHOUT_FEDERATED_STORAGE_ENGINE=1
-DWITHOUT_PARTITION_STORAGE_ENGINE=1

If neither -DWITH_engine_STORAGE_ENGINE nor -DWITHOUT_engine_STORAGE_ENGINE are
specified for a given storage engine, the engine is built as a shared module, or excluded if it cannot be
built as a shared module.

Feature Options

•   -DCOMPILATION_COMMENT=string

A descriptive comment about the compilation environment.

•   -DDEFAULT_CHARSET=charset_name

The server character set. By default, MySQL uses the latin1 (cp1252 West European) character
set.



MySQL Source-Configuration Options

168

charset_name may be one of binary, armscii8, ascii, big5, cp1250, cp1251, cp1256,
cp1257, cp850, cp852, cp866, cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8, greek,
hebrew, hp8, keybcs2, koi8r, koi8u, latin1, latin2, latin5, latin7, macce, macroman,
sjis, swe7, tis620, ucs2, ujis, utf8, utf8mb4, utf16, utf32. The permissible character sets
are listed in the cmake/character_sets.cmake file as the value of CHARSETS_AVAILABLE.

This value can be set at server startup with the --character_set_server option.

•   -DDEFAULT_COLLATION=collation_name

The server collation. By default, MySQL uses latin1_swedish_ci. Use the SHOW COLLATION
statement to determine which collations are available for each character set.

This value can be set at server startup with the --collation_server option.

•   -DENABLE_DEBUG_SYNC=bool

Note

As of MySQL 5.5.55, ENABLE_DEBUG_SYNC is removed and enabling
WITH_DEBUG enables Debug Sync.

Whether to compile the Debug Sync facility into the server. This facility is used for testing and
debugging. This option is enabled by default, but has no effect unless MySQL is configured
with debugging enabled. If debugging is enabled and you want to disable Debug Sync, use -
DENABLE_DEBUG_SYNC=0.

When compiled in, Debug Sync is disabled by default at runtime. To enable it, start mysqld with the
--debug-sync-timeout=N option, where N is a timeout value greater than 0. (The default value is
0, which disables Debug Sync.) N becomes the default timeout for individual synchronization points.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

•    -DENABLE_DOWNLOADS=bool

Whether to download optional files. For example, with this option enabled, CMake downloads the
Google Test distribution that is used by the test suite to run unit tests.

•   -DENABLE_DTRACE=bool

Whether to include support for DTrace probes. For information about DTrace, wee Section 5.7,
“Tracing mysqld Using DTrace”

•   -DENABLE_GCOV=bool

Whether to include gcov support (Linux only).

•   -DENABLED_LOCAL_INFILE=bool

This option controls the compiled-in default LOCAL capability for the MySQL client library. Clients that
make no explicit arrangements therefore have LOCAL capability disabled or enabled according to the
ENABLED_LOCAL_INFILE setting specified at MySQL build time.

By default, the client library in MySQL binary distributions is compiled with
ENABLED_LOCAL_INFILE enabled. If you compile MySQL from source, configure it with
ENABLED_LOCAL_INFILE disabled or enabled based on whether clients that make no explicit
arrangements should have LOCAL capability disabled or enabled, respectively.

ENABLED_LOCAL_INFILE controls the default for client-side LOCAL capability. For the server, the
local_infile system variable controls server-side LOCAL capability. To explicitly cause the server

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html


MySQL Source-Configuration Options

169

to refuse or permit LOAD DATA LOCAL statements (regardless of how client programs and libraries
are configured at build time or runtime), start mysqld with local_infile disabled or enabled,
respectively. local_infile can also be set at runtime. See Section 6.1.6, “Security Issues with
LOAD DATA LOCAL”.

•   -DENABLED_PROFILING=bool

Whether to enable query profiling code (for the SHOW PROFILE and SHOW PROFILES statements).

•    -DIGNORE_AIO_CHECK=bool

If the -DBUILD_CONFIG=mysql_release option is given on Linux, the libaio library must be
linked in by default. If you do not have libaio or do not want to install it, you can suppress the
check for it by specifying -DIGNORE_AIO_CHECK=1. This option was added in MySQL 5.5.9.

•   -DMYSQL_MAINTAINER_MODE=bool

Whether to enable a MySQL maintainer-specific development environment. If enabled, this option
causes compiler warnings to become errors.

•   -DMYSQL_PROJECT_NAME=name

For Windows or OS X, the project name to incorporate into the project file name. This option was
added in MySQL 5.5.21.

•   -DMYSQL_TCP_PORT=port_num

The port number on which the server listens for TCP/IP connections. The default is 3306.

This value can be set at server startup with the --port option.

•   -DMYSQL_UNIX_ADDR=file_name

The Unix socket file path on which the server listens for socket connections. This must be an
absolute path name. The default is /tmp/mysql.sock.

This value can be set at server startup with the --socket option.

•   -DWITH_ASAN=bool

Whether to enable AddressSanitizer, for compilers that support it. The default is off. This option was
added in MySQL 5.5.35.

•   -DWITH_DEBUG=bool

Whether to include debugging support.

Configuring MySQL with debugging support enables you to use the --debug="d,parser_debug"
option when you start the server. This causes the Bison parser that is used to process SQL
statements to dump a parser trace to the server's standard error output. Typically, this output is
written to the error log.

As of MySQL 5.5.55, enabling WITH_DEBUG also enables Debug Sync. For a description of
the Debug Sync facility and how to use synchronization points, see MySQL Internals: Test
Synchronization.

•   -DWITH_EMBEDDED_SERVER=bool

Whether to build the libmysqld embedded server library.

•   -DWITH_EMBEDDED_SHARED_LIBRARY=bool

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html


MySQL Source-Configuration Options

170

Whether to build a shared libmysqld embedded server library. This option was added in MySQL
5.5.37.

•   -DWITH_EXTRA_CHARSETS=name

Which extra character sets to include:

• all: All character sets. This is the default.

• complex: Complex character sets.

• none: No extra character sets.

•   -DWITH_LIBEDIT=bool

Whether to use the libedit library bundled with the distribution.

•   -DWITH_LIBWRAP=bool

Whether to include libwrap (TCP wrappers) support.

•   -DWITH_READLINE=bool

Whether to use the readline library bundled with the distribution.

•   -DWITH_SSL=ssl_type

The type of SSL support to include, if any:

• no: No SSL support. This is the default before MySQL 5.5.56. As of 5.5.56, this is no longer a
permitted value and the default is bundled.

• yes: Use the system SSL library if present, else the library bundled with the distribution.

• bundled: Use the SSL library bundled with the distribution. This is the default as of MySQL
5.5.56.

• system: Use the system SSL library.

For information about using SSL support, see Section 6.4, “Using Secure Connections”.

•   -DWITH_UNIXODBC=1

Enables unixODBC support, for Connector/ODBC.

•   -DWITH_VALGRIND=bool

Whether to compile in the Valgrind header files, which exposes the Valgrind API to MySQL code.
The default is OFF.

To generate a Valgrind-aware debug build, -DWITH_VALGRIND=1 normally is combined with -
DWITH_DEBUG=1. See Building Debug Configurations.

•   -DWITH_ZLIB=zlib_type

Some features require that the server be built with compression library support, such as the
COMPRESS() and UNCOMPRESS() functions, and compression of the client/server protocol. The
WITH_ZLIB indicates the source of zlib support:

• bundled: Use the zlib library bundled with the distribution. This is the default.

• system: Use the system zlib library.

http://dev.mysql.com/doc/internals/en/debug-configurations.html


MySQL Source-Configuration Options

171

•   -DWITHOUT_SERVER=bool

Whether to build without the MySQL server. The default is OFF, which does build the server.

Compiler Flags

•   -DCMAKE_C_FLAGS="flags"

Flags for the C Compiler.

•   -DCMAKE_CXX_FLAGS="flags"

Flags for the C++ Compiler.

To specify your own C and C++ compiler flags, for flags that do not affect optimization, use the
CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options.

When providing your own compiler flags, you might want to specify CMAKE_BUILD_TYPE as well.

For example, to create a 32-bit release build on a 64-bit Linux machine, do this:

shell> mkdir bld
shell> cd bld
shell> cmake .. -DCMAKE_C_FLAGS=-m32 \
         -DCMAKE_CXX_FLAGS=-m32 \
         -DCMAKE_BUILD_TYPE=RelWithDebInfo

If you set flags that affect optimization (-Onumber), you must set the CMAKE_C_FLAGS_build_type
and/or CMAKE_CXX_FLAGS_build_type options, where build_type corresponds
to the CMAKE_BUILD_TYPE value. To specify a different optimization for the default
build type (RelWithDebInfo) set the CMAKE_C_FLAGS_RELWITHDEBINFO and
CMAKE_CXX_FLAGS_RELWITHDEBINFO options. For example, to compile on Linux with -O3 and with
debug symbols, do this:

shell> cmake .. -DCMAKE_C_FLAGS_RELWITHDEBINFO="-O3 -g" \
         -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O3 -g"

CMake Options for Compiling NDB Cluster

The following options are for use when building MySQL NDB Cluster 7.2 or later. These options
are supported only with the MySQL NDB Cluster 7.2 and later NDB Cluster sources; they are not
supported when using sources from the MySQL 5.5 Server tree.

•   -DMEMCACHED_HOME=dir_name

Perform the build using the memcached (version 1.6 or later) installed in the system directory
indicated by dir_name. Files from this installation that are used in the build include the memcached
binary, header files, and libraries, as well as the memcached_utilities library and the header file
engine_testapp.h.

You must leave this option unset when building ndbmemcache using the bundled memcached
sources (WITH_BUNDLED_MEMCACHED option); in other words, the bundled sources are used by
default).

This option was added in MySQL NDB Cluster 7.2.2.

While additional CMake options—such as for SASL authorization and for providing dtrace support
—are available for use when compiling memcached from external sources, these options are
currently not enabled for the memcached sources bundled with NDB Cluster.

•   -DWITH_BUNDLED_LIBEVENT={ON|OFF}



Dealing with Problems Compiling MySQL

172

Use the libevent included in the NDB Cluster sources when building NDB Cluster with
ndbmemcached support (MySQL NDB Cluster 7.2.2 and later). Enabled by default. OFF causes the
system's libevent to be used instead.

•   -DWITH_BUNDLED_MEMCACHED={ON|OFF}

Build the memcached sources included in the NDB Cluster source tree (MySQL NDB Cluster 7.2.3
and later), then use the resulting memcached server when building the ndbmemcache engine. In
this case, make install places the memcached binary in the installation bin directory, and the
ndbmemcache engine shared library file ndb_engine.so in the installation lib directory.

This option is ON by default.

•   -DWITH_CLASSPATH=path

Sets the classpath for building NDB Cluster Connector for Java. The default is empty. In MySQL
NDB Cluster 7.2.9 and later, this option is ignored if -DWITH_NDB_JAVA=OFF is used.

•   -DWITH_ERROR_INSERT={ON|OFF}

Enables error injection in the NDB kernel. For testing only; not intended for use in building production
binaries. The default is OFF.

•   -DWITH_NDBCLUSTER_STORAGE_ENGINE={ON|OFF}

Build and link in support for the NDB (NDBCLUSTER) storage engine in mysqld. The default is ON.

•   -DWITH_NDBCLUSTER={ON|OFF}

This is an alias for WITH_NDBCLUSTER_STORAGE_ENGINE.

•   -DWITH_NDBMTD={ON|OFF}

Build the multi-threaded data node executable ndbmtd. The default is ON.

•   -DWITH_NDB_BINLOG={ON|OFF}

Enable binary logging by default in the mysqld built using this option. ON by default.

•   -DWITH_NDB_DEBUG={ON|OFF}

Enable building the debug versions of the NDB Cluster binaries. OFF by default.

•   -DWITH_NDB_JAVA={ON|OFF}

Enable building NDB Cluster with Java support, including ClusterJ.

This option was added in MySQL NDB Cluster 7.2.9, and is ON by default. If you do not
wish to compile NDB Cluster with Java support, you must disable it explicitly by specifying -
DWITH_NDB_JAVA=OFF when running CMake. Otherwise, if Java cannot be found, configuration of
the build fails.

•   -DWITH_NDB_PORT=port

Causes the NDB Cluster management server (ndb_mgmd) that is built to use this port by default. If
this option is unset, the resulting management server tries to use port 1186 by default.

•   -DWITH_NDB_TEST={ON|OFF}

If enabled, include a set of NDB API test programs. The default is OFF.

2.9.5 Dealing with Problems Compiling MySQL



Dealing with Problems Compiling MySQL

173

The solution to many problems involves reconfiguring. If you do reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts up, it looks
for that file and reads its contents if it exists, on the assumption that the information is still correct.
That assumption is invalid when you reconfigure.

• Each time you run CMake, you must run make again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old object files or configuration information from being used, run the following commands
before re-running CMake:

On Unix:

shell> make clean
shell> rm CMakeCache.txt

On Windows:

shell> devenv MySQL.sln /clean
shell> del CMakeCache.txt

If you build outside of the source tree, remove and recreate your build directory before re-running
CMake. For instructions on building outside of the source tree, see How to Build MySQL Server with
CMake.

On some systems, warnings may occur due to differences in system include files. The following list
describes other problems that have been found to occur most often when compiling MySQL:

•     To define which C and C++ compilers to use, you can define the CC and CXX environment
variables. For example:

shell> CC=gcc
shell> CXX=g++
shell> export CC CXX

To specify your own C and C++ compiler flags, use the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS
CMake options. See Compiler Flags.

To see what flags you might need to specify, invoke mysql_config with the --cflags option.

• To see what commands are executed during the compile stage, after using CMake to configure
MySQL, run make VERBOSE=1 rather than just make.

• If compilation fails, check whether the MYSQL_MAINTAINER_MODE option is enabled. This mode
causes compiler warnings to become errors, so disabling it may enable compilation to proceed.

• If your compile fails with errors such as any of the following, you must upgrade your version of make
to GNU make:

make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

make: file `Makefile' line 18: Must be a separator (:

Or:

http://dev.mysql.com/doc/internals/en/cmake.html
http://dev.mysql.com/doc/internals/en/cmake.html


MySQL Configuration and Third-Party Tools

174

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make 3.75 is known to work.

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not need
to create sql_yacc.cc because MySQL comes with a pregenerated copy. However, if you do need
to re-create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install a recent version of
bison (the GNU version of yacc) and use that instead.

Versions of bison older than 1.75 may report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

The maximum table size is not actually exceeded; the error is caused by bugs in older versions of
bison.

For information about acquiring or updating tools, see the system requirements in Section 2.9,
“Installing MySQL from Source”.

2.9.6 MySQL Configuration and Third-Party Tools

Third-party tools that need to determine the MySQL version from the MySQL source can read the
VERSION file in the top-level source directory. The file lists the pieces of the version separately. For
example, if the version is MySQL 5.7.4-m14, the file looks like this:

MYSQL_VERSION_MAJOR=5
MYSQL_VERSION_MINOR=7
MYSQL_VERSION_PATCH=4
MYSQL_VERSION_EXTRA=-m14

If the source is not for a General Availablility (GA) release, the MYSQL_VERSION_EXTRA value will be
nonempty. For the example, the value corresponds to Milestone 14.

To construct a five-digit number from the version components, use this formula:

MYSQL_VERSION_MAJOR*10000 + MYSQL_VERSION_MINOR*100 + MYSQL_VERSION_PATCH

2.10 Postinstallation Setup and Testing

This section discusses tasks that you should perform after installing MySQL:

• If necessary, initialize the data directory and create the MySQL grant tables. For some MySQL
installation methods, data directory initialization may be done for you automatically:

• Installation on Windows

• Installation on Linux using a server RPM distribution.

• Installation using the native packaging system on many platforms, including Debian Linux, Ubuntu
Linux, Gentoo Linux, and others.



Initializing the Data Directory

175

• Installation on OS X using a DMG distribution.

For other platforms and installation types, including installation from generic binary and source
distributions, you must initialize the data directory yourself. For instructions, see Section 2.10.1,
“Initializing the Data Directory”.

• For instructions, see Section 2.10.2, “Starting the Server”, and Section 2.10.3, “Testing the Server”.

• Assign passwords to any initial accounts in the grant tables, if that was not already done during data
directory initialization. Passwords prevent unauthorized access to the MySQL server. You may also
wish to restrict access to test databases. For instructions, see Section 2.10.4, “Securing the Initial
MySQL Accounts”.

• Optionally, arrange for the server to start and stop automatically when your system starts and stops.
For instructions, see Section 2.10.5, “Starting and Stopping MySQL Automatically”.

• Optionally, populate time zone tables to enable recognition of named time zones. For instructions,
see Section 10.6, “MySQL Server Time Zone Support”.

When you are ready to create additional user accounts, you can find information on the MySQL access
control system and account management in Section 6.2, “The MySQL Access Privilege System”, and
Section 6.3, “MySQL User Account Management”.

2.10.1 Initializing the Data Directory

After installing MySQL, you must initialize the data directory, including the tables in the mysql
system database. For some MySQL installation methods, data directory initialization may be done
automatically, as described in Section 2.10, “Postinstallation Setup and Testing”. For other installation
methods, including installation from generic binary and source distributions, you must initialize the data
directory yourself.

This section describes how to initialize the data directory on Unix and Unix-like systems. (For Windows,
see Section 2.3.9, “Windows Postinstallation Procedures”.) For some suggested commands that you
can use to test whether the server is accessible and working properly, see Section 2.10.3, “Testing the
Server”.

In the examples shown here, the server runs under the user ID of the mysql login account. This
assumes that such an account exists. Either create the account if it does not exist, or substitute the
name of a different existing login account that you plan to use for running the server. For information
about creating the account, see Creating a mysql System User and Group, in Section 2.2, “Installing
MySQL on Unix/Linux Using Generic Binaries”.

1. Change location into the top-level directory of your MySQL installation, represented here by
BASEDIR:

shell> cd BASEDIR

BASEDIR is likely to be something like /usr/local/mysql or /usr/local. The following steps
assume that you have changed location to this directory.

You will find several files and subdirectories in the BASEDIR directory. The most important for
installation purposes are the bin and scripts subdirectories, which contain the server as well as
client and utility programs.

2. If necessary, ensure that the distribution contents are accessible to mysql. If you installed the
distribution as mysql, no further action is required. If you installed the distribution as root, its
contents will be owned by root. Change its ownership to mysql by executing the following
commands as root in the installation directory. The first command changes the owner attribute of
the files to the mysql user. The second changes the group attribute to the mysql group.



Initializing the Data Directory

176

shell> chown -R mysql .
shell> chgrp -R mysql .

3. If necessary, initialize the data directory, including the mysql database containing the initial MySQL
grant tables that determine how users are permitted to connect to the server.

Typically, data directory initialization need be done only the first time you install MySQL. If you are
upgrading an existing installation, you should run mysql_upgrade instead (see Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”). However, the command that initializes
the data directory does not overwrite any existing privilege tables, so it should be safe to run in any
circumstances.

shell> scripts/mysql_install_db --user=mysql

It is important to make sure that the database directories and files are owned by the mysql login
account so that the server has read and write access to them when you run it later. To ensure this
if you run mysql_install_db as root, include the --user option as shown. Otherwise, you
should execute the program while logged in as mysql, in which case you can omit the --user
option from the command.

The mysql_install_db command creates the server's data directory. Under the data directory, it
creates directories for the mysql database that holds the grant tables and the test database that
you can use to test MySQL. The program also creates privilege table entries for the initial account
or accounts. test_. For a complete listing and description of the grant tables, see Section 6.2,
“The MySQL Access Privilege System”.

It might be necessary to specify other options such as --basedir or --datadir if
mysql_install_db does not identify the correct locations for the installation directory or data
directory. For example:

shell> scripts/mysql_install_db --user=mysql \
         --basedir=/opt/mysql/mysql \
         --datadir=/opt/mysql/mysql/data

If you do not want to have the test database, you can remove it after starting the server, using the
instructions in Section 2.10.4, “Securing the Initial MySQL Accounts”.

If you have trouble with mysql_install_db at this point, see Section 2.10.1.1, “Problems
Running mysql_install_db”.

4. After initializing the data directory, you can establish the final installation ownership settings. To
leave the installation owned by mysql, no action is required here. Otherwise, most of the MySQL
installation can be owned by root if you like. The exception is that the data directory must be
owned by mysql. To accomplish this, run the following commands as root in the installation
directory. For some distribution types, the data directory might be named var rather than data;
adjust the second command accordingly.

shell> chown -R root .
shell> chown -R mysql data

If the plugin directory (the directory named by the plugin_dir system variable) is writable by
the server, it may be possible for a user to write executable code to a file in the directory using
SELECT ... INTO DUMPFILE. This can be prevented by making the plugin directory read only
to the server or by setting the secure_file_priv system variable at server startup to a directory
where SELECT writes can be performed safely.

5. If you installed MySQL using a source distribution, you may want to optionally copy one of the
provided configuration files from the support-files directory into your /etc directory. There



Initializing the Data Directory

177

are different sample configuration files for different use cases, server types, and CPU and RAM
configurations. To use one of these standard files, copy it to /etc/my.cnf, or /etc/mysql/
my.cnf and edit and check the configuration before starting your MySQL server for the first time.

You can also create my.cnf yourself and place into it the options the server should use at startup.
See Section 5.1.2, “Server Configuration Defaults”.

If you do not copy one of the standard configuration files or create your own, the MySQL server
starts with its default settings.

6. If you want MySQL to start automatically when you boot your machine, see Section 2.10.5,
“Starting and Stopping MySQL Automatically”.

Data directory initialization creates time zone tables in the mysql database but does not populate
them. To do so, use the instructions in Section 10.6, “MySQL Server Time Zone Support”.

2.10.1.1 Problems Running mysql_install_db

The purpose of the mysql_install_db program is to initialize the data directory, including the tables
in the mysql system database. It does not overwrite existing MySQL privilege tables, and it does not
affect any other data.

To re-create your privilege tables, first stop the mysqld server if it is running. Then rename the
mysql directory under the data directory to save it, and run mysql_install_db. Suppose that
your current directory is the MySQL installation directory and that mysql_install_db is located in
the bin directory and the data directory is named data. To rename the mysql database and re-run
mysql_install_db, use these commands.

shell> mv data/mysql data/mysql.old
shell> scripts/mysql_install_db --user=mysql

When you run mysql_install_db, you might encounter the following problems:

• mysql_install_db fails to install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after
displaying the following messages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in the
directory XXXXXX named by the error message and should indicate why mysqld did not start. If you
do not understand what happened, include the log when you post a bug report. See Section 1.6,
“How to Report Bugs or Problems”.

• There is a mysqld process running

This indicates that the server is running, in which case the grant tables have probably been created
already. If so, there is no need to run mysql_install_db at all because it needs to be run only
once, when you first install MySQL.

• Installing a second mysqld server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation
in a different location. For example, you might have a production installation, but you want to create
a second installation for testing purposes. Generally the problem that occurs when you try to run a
second server is that it tries to use a network interface that is in use by the first server. In this case,
you should see one of the following error messages:

Can't start server: Bind on TCP/IP port:



Starting the Server

178

Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Section 5.6, “Running Multiple MySQL Instances
on One Machine”.

•    You do not have write access to the /tmp directory

If you do not have write access to create temporary files or a Unix socket file in the default location
(the /tmp directory) or the TMPDIR environment variable, if it has been set, an error occurs when
you run mysql_install_db or the mysqld server.

You can specify different locations for the temporary directory and Unix socket file by executing
these commands prior to starting mysql_install_db or mysqld, where some_tmp_dir is the full
path name to some directory for which you have write permission:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT

Then you should be able to run mysql_install_db and start the server with these commands:

shell> scripts/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &

If mysql_install_db is located in the scripts directory, modify the first command to scripts/
mysql_install_db.

See Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”, and Section 4.9,
“MySQL Program Environment Variables”.

There are some alternatives to running the mysql_install_db program provided in the MySQL
distribution:

• If you want the initial privileges to be different from the standard defaults, use account-management
statements such as CREATE USER, GRANT, and REVOKE to change the privileges after the grant
tables have been set up. In other words, run mysql_install_db, and then use mysql -u root
mysql to connect to the server as the MySQL root user so that you can issue the necessary
statements. (See Section 13.7.1, “Account Management Statements”.)

To install MySQL on several machines with the same privileges, put the CREATE USER, GRANT,
and REVOKE statements in a file and execute the file as a script using mysql after running
mysql_install_db. For example:

shell> scripts/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

This enables you to avoid issuing the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been created. You
might want to do this if you are just learning how to use CREATE USER, GRANT, and REVOKE and
have made so many modifications after running mysql_install_db that you want to wipe out the
tables and start over.

To re-create the grant tables, stop the server if it is running and remove the mysql database
directory. Then run mysql_install_db again.

2.10.2 Starting the Server

This section describes how start the server on Unix and Unix-like systems. (For Windows, see
Section 2.3.7.4, “Starting the Server for the First Time”.) For some suggested commands that you can



Starting the Server

179

use to test whether the server is accessible and working properly, see Section 2.10.3, “Testing the
Server”.

Start the MySQL server like this:

shell> bin/mysqld_safe --user=mysql &

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure
this if you run mysqld_safe as root, include the --user option as shown. Otherwise, execute the
program while logged in as mysql, in which case you can omit the --user option from the command.

For further instructions for running MySQL as an unprivileged user, see Section 6.1.5, “How to Run
MySQL as a Normal User”.

If the command fails immediately and prints mysqld ended, look for information in the error log (which
by default is the host_name.err file in the data directory).

If the server is unable to access the data directory it starts or read the grant tables in the mysql
database, it writes a message to its error log. Such problems can occur if you neglected to create the
grant tables by initializing the data directory before proceeding to this step, or if you ran the command
that initializes the data directory without the --user option. Remove the data directory and run the
command with the --user option.

If you have other problems starting the server, see Section 2.10.2.1, “Troubleshooting Problems
Starting the MySQL Server”. For more information about mysqld_safe, see Section 4.3.2,
“mysqld_safe — MySQL Server Startup Script”.

You can set up new accounts using the bin/mysql_setpermission script if you install the DBI
and DBD::mysql Perl modules. See Section 4.6.13, “mysql_setpermission — Interactively
Set Permissions in Grant Tables”. For Perl module installation instructions, see Section 2.12, “Perl
Installation Notes”.

If you would like to use mysqlaccess and have the MySQL distribution in some nonstandard location,
you must change the location where mysqlaccess expects to find the mysql client. Edit the bin/
mysqlaccess script at approximately line 18. Search for a line that looks like this:

$MYSQL     = '/usr/local/bin/mysql';    # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do not do
this, a Broken pipe error will occur when you run mysqlaccess.

2.10.2.1 Troubleshooting Problems Starting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server. For additional
suggestions for Windows systems, see Section 2.3.8, “Troubleshooting a Microsoft Windows MySQL
Server Installation”.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start.

• Specify any special options needed by the storage engines you are using.

• Make sure that the server knows where to find the data directory.

• Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must be set such that the server can read and modify them.

• Verify that the network interfaces the server wants to use are available.



Starting the Server

180

Some storage engines have options that control their behavior. You can create a my.cnf file and
specify startup options for the engines that you plan to use. If you are going to use storage engines that
support transactional tables (InnoDB, NDB), be sure that you have them configured the way you want
before starting the server:

If you are using InnoDB tables, see Section 14.9, “InnoDB Configuration”.

Storage engines will use default option values if you specify none, but it is recommended that you
review the available options and specify explicit values for those for which the defaults are not
appropriate for your installation.

When the mysqld server starts, it changes location to the data directory. This is where it expects to
find databases and where it expects to write log files. The server also writes the pid (process ID) file in
the data directory.

The data directory location is hardwired in when the server is compiled. This is where the server looks
for the data directory by default. If the data directory is located somewhere else on your system, the
server will not work properly. You can determine what the default path settings are by invoking mysqld
with the --verbose and --help options.

If the default locations do not match the MySQL installation layout on your system, you can override
them by specifying options to mysqld or mysqld_safe on the command line or in an option file.

To specify the location of the data directory explicitly, use the --datadir option. However, normally
you can tell mysqld the location of the base directory under which MySQL is installed and it looks for
the data directory there. You can do this with the --basedir option.

To check the effect of specifying path options, invoke mysqld with those options followed by the --
verbose and --help options. For example, if you change location into the directory where mysqld
is installed and then run the following command, it shows the effect of starting the server with a base
directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be the
last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this
command:

shell> mysqladmin variables

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means that
the privileges of the data directory or its contents do not permit server access. In this case, you change
the permissions for the involved files and directories so that the server has the right to use them. You
can also start the server as root, but this raises security issues and should be avoided.

Change location into the data directory and check the ownership of the data directory and its contents
to make sure the server has access. For example, if the data directory is /usr/local/mysql/var,
use this command:



Testing the Server

181

shell> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use for
running the server, change their ownership to that account. If the account is named mysql, use these
commands:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running
on your system that manages application access to various parts of the file system. In this case,
reconfigure that software to enable mysqld to access the directories it uses during normal operation.

If the server fails to start up correctly, check the error log. Log files are located in the data directory
(typically C:\Program Files\MySQL\MySQL Server 5.5\data on Windows, /usr/local/
mysql/data for a Unix/Linux binary distribution, and /usr/local/var for a Unix/Linux source
distribution). Look in the data directory for files with names of the form host_name.err and
host_name.log, where host_name is the name of your server host. Then examine the last few lines
of these files. You can use tail to display them:

shell> tail host_name.err
shell> tail host_name.log

The error log should contain information that indicates why the server could not start.

If either of the following errors occur, it means that some other program (perhaps another mysqld
server) is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the server
before starting mysqld again. (If another server is running, and you really want to run multiple servers,
you can find information about how to do so in Section 5.6, “Running Multiple MySQL Instances on
One Machine”.)

If no other server is running, try to execute the command telnet your_host_name
tcp_ip_port_number. (The default MySQL port number is 3306.) Then press Enter a couple of
times. If you do not get an error message like telnet: Unable to connect to remote host:
Connection refused, some other program is using the TCP/IP port that mysqld is trying to use.
You will need to track down what program this is and disable it, or else tell mysqld to listen to a
different port with the --port option. In this case, you will also need to specify the port number for
client programs when connecting to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks
connections to it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, you should make sure that you have an entry in /etc/
hosts that looks like this:

127.0.0.1       localhost

If you cannot get mysqld to start, you can try to make a trace file to find the problem by using the --
debug option. See Section 24.5.3, “The DBUG Package”.

2.10.3 Testing the Server

After the data directory is initialized and you have started the server, perform some simple tests to
make sure that it works satisfactorily. This section assumes that your current location is the MySQL



Testing the Server

182

installation directory and that it has a bin subdirectory containing the MySQL programs used here. If
that is not true, adjust the command path names accordingly.

Alternatively, add the bin directory to your PATH environment variable setting. That enables your shell
(command interpreter) to find MySQL programs properly, so that you can run a program by typing only
its name, not its path name. See Section 4.2.10, “Setting Environment Variables”.

Use mysqladmin to verify that the server is running. The following commands provide simple tests to
check whether the server is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

If you cannot connect to the server, specify a -u root option to connect as root. If you have
assigned a password for the root account already, you'll also need to specify -p on the command line
and enter the password when prompted. For example:

shell> bin/mysqladmin -u root -p version
Enter password: (enter root password here)

The output from mysqladmin version varies slightly depending on your platform and version of
MySQL, but should be similar to that shown here:

shell> bin/mysqladmin version
mysqladmin  Ver 14.12 Distrib 5.5.58, for pc-linux-gnu on i686
...

Server version          5.5.58
Protocol version        10
Connection              Localhost via UNIX socket
UNIX socket             /var/lib/mysql/mysql.sock
Uptime:                 14 days 5 hours 5 min 21 sec

Threads: 1  Questions: 366  Slow queries: 0
Opens: 0  Flush tables: 1  Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

Verify that you can shut down the server (include a -p option if the root account has a password
already):

shell> bin/mysqladmin -u root shutdown

Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld
directly. For example:

shell> bin/mysqld_safe --user=mysql &

If mysqld_safe fails, see Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”.

Run some simple tests to verify that you can retrieve information from the server. The output should be
similar to that shown here.

Use mysqlshow to see what databases exist:

shell> bin/mysqlshow
+--------------------+
|     Databases      |
+--------------------+
| information_schema |



Securing the Initial MySQL Accounts

183

| mysql              |
| performance_schema |
| test               |
+--------------------+

The list of installed databases may vary, but will always include the minimum of mysql and
information_schema.

If you specify a database name, mysqlshow displays a list of the tables within the database:

shell> bin/mysqlshow mysql
Database: mysql
+---------------------------+
|          Tables           |
+---------------------------+
| columns_priv              |
| db                        |
| event                     |
| func                      |
| general_log               |
| help_category             |
| help_keyword              |
| help_relation             |
| help_topic                |
| host                      |
| ndb_binlog_index          |
| plugin                    |
| proc                      |
| procs_priv                |
| proxies_priv              |
| servers                   |
| slow_log                  |
| tables_priv               |
| time_zone                 |
| time_zone_leap_second     |
| time_zone_name            |
| time_zone_transition      |
| time_zone_transition_type |
| user                      |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

shell> bin/mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host      | plugin                |
+------+-----------+-----------------------+
| root | localhost | mysql_native_password |
+------+-----------+-----------------------+

At this point, your server is running and you can access it. To tighten security if you have not yet
assigned passwords to the initial account or accounts, follow the instructions in Section 2.10.4,
“Securing the Initial MySQL Accounts”.

For more information about mysql, mysqladmin, and mysqlshow, see Section 4.5.1, “mysql —
The MySQL Command-Line Tool”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL
Server”, and Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”.

2.10.4 Securing the Initial MySQL Accounts

The MySQL installation process involves initializing the data directory, including the mysql database
containing the grant tables that define MySQL accounts. For details, see Section 2.10, “Postinstallation
Setup and Testing”.

This section describes how to assign passwords to the initial accounts created during the MySQL
installation procedure, if you have not already done so.



Securing the Initial MySQL Accounts

184

The mysql.user grant table defines the initial MySQL user accounts and their access privileges:

• Some accounts have the user name root. These are superuser accounts that have all privileges
and can do anything. If these root accounts have empty passwords, anyone can connect to the
MySQL server as root without a password and be granted all privileges.

• On Windows, root accounts are created that permit connections from the local host only.
Connections can be made by specifying the host name localhost, the IP address 127.0.0.1,
or the IPv6 address ::1. If the user selects the Enable root access from remote machines
option during installation, the Windows installer creates another root account that permits
connections from any host.

• On Unix, each root account permits connections from the local host. Connections can be made
by specifying the host name localhost, the IP address 127.0.0.1, the IPv6 address ::1, or
the actual host name or IP address.

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account.
However, this fails if the server is run with the --skip-name-resolve option, so the 127.0.0.1
account is useful in that case. The ::1 account is used for IPv6 connections.

•  If accounts for anonymous users were created, these have an empty user name. The anonymous
accounts have no password, so anyone can use them to connect to the MySQL server.

• On Windows, there is one anonymous account that permits connections from the local host.
Connections can be made by specifying a host name of localhost.

• On Unix, each anonymous account permits connections from the local host. Connections can be
made by specifying a host name of localhost for one of the accounts, or the actual host name
or IP address for the other.

• The 'root'@'localhost' account also has a row in the mysql.proxies_priv table that
enables granting the PROXY privilege for ''@'', that is, for all users and all hosts. This enables
root to set up proxy users, as well as to delegate to other accounts the authority to set up proxy
users. See Section 6.3.7, “Proxy Users”.

To display which accounts exist in the mysql.user table and check whether their passwords are
empty, use the following statement:

mysql> SELECT User, Host, Password FROM mysql.user;
+------+--------------------+----------+
| User | Host               | Password |
+------+--------------------+----------+
| root | localhost          |          |
| root | myhost.example.com |          |
| root | 127.0.0.1          |          |
| root | ::1                |          |
|      | localhost          |          |
|      | myhost.example.com |          |
+------+--------------------+----------+

This output indicates that there are several root and anonymous-user accounts, none of which
have passwords. The output might differ on your system, but the presence of accounts with empty
passwords means that your MySQL installation is unprotected until you do something about it:

• Assign a password to each MySQL root account that does not have one.

• To prevent clients from connecting as anonymous users without a password, either assign a
password to each anonymous account or remove the accounts.

In addition, the mysql.db table contains rows that permit all accounts to access the test database
and other databases with names that start with test_. This is true even for accounts that otherwise
have no special privileges such as the default anonymous accounts. This is convenient for testing



Securing the Initial MySQL Accounts

185

but inadvisable on production servers. Administrators who want database access restricted only to
accounts that have permissions granted explicitly for that purpose should remove these mysql.db
table rows.

The following instructions describe how to set up passwords for the initial MySQL accounts, first for
the root accounts, then for the anonymous accounts. The instructions also cover how to remove
anonymous accounts, should you prefer not to permit anonymous access at all, and describe how
to remove permissive access to test databases. Replace new_password in the examples with the
password that you want to use. Replace host_name with the name of the server host. You can
determine this name from the output of the preceding SELECT statement. For the output shown,
host_name is myhost.example.com.

Note

For additional information about setting passwords, see Section 6.3.5,
“Assigning Account Passwords”. If you forget your root password after setting
it, see Section B.5.3.2, “How to Reset the Root Password”.

To set up additional accounts, see Section 6.3.2, “Adding User Accounts”.

You might want to defer setting the passwords until later, to avoid the need to specify them while you
perform additional setup or testing. However, be sure to set them before using your installation for
production purposes.

Note

On Windows, you can also perform the process described in this section
using the Configuration Wizard (see Section 2.3.6.11, “The Security
Options Dialog”). On all platforms, the MySQL distribution includes
mysql_secure_installation, a command-line utility that automates much
of the process of securing a MySQL installation. MySQL Workbench is available
on all platforms, and also offers the ability to manage user accounts (see
Chapter 26, MySQL Workbench ).

Assigning root Account Passwords

A root account password can be set several ways. The following discussion demonstrates three
methods:

• Use the SET PASSWORD statement

• Use the UPDATE statement

• Use the mysqladmin command-line client program

To assign passwords using SET PASSWORD, connect to the server as root and issue a SET
PASSWORD statement for each root account listed in the mysql.user table.

For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'::1' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('new_password');

The last statement is unnecessary if the mysql.user table has no root account with a host value of
%.

For Unix, do this:



Securing the Initial MySQL Accounts

186

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'::1' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('new_password');

You can also use a single statement that assigns a password to all root accounts by using UPDATE to
modify the mysql.user table directly. This method works on any platform:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('new_password')
    ->     WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the password change
remains unnoticed by the server until you restart it.

To assign passwords to the root accounts using mysqladmin, execute the following commands:

shell> mysqladmin -u root password "new_password"
shell> mysqladmin -u root -h host_name password "new_password"

Those commands apply both to Windows and to Unix. The double quotation marks around the
password are not always necessary, but you should use them if the password contains spaces or other
characters that are special to your command interpreter.

The mysqladmin method of setting the root account passwords does not work for the
'root'@'127.0.0.1' or 'root'@'::1' account. Use the SET PASSWORD method shown earlier.

After the root passwords have been set, you must supply the appropriate password whenever you
connect as root to the server. For example, to shut down the server with mysqladmin, use this
command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

The mysql commands in the following instructions include a -p option based on the assumption that
you have assigned the root account passwords using the preceding instructions and must specify that
password when connecting to the server.

Assigning Anonymous Account Passwords

To assign passwords to the anonymous accounts, connect to the server as root, then use either SET
PASSWORD or UPDATE.

To use SET PASSWORD on Windows, do this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('new_password');

To use SET PASSWORD on Unix, do this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('new_password');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('new_password');

To set the anonymous-user account passwords with a single UPDATE statement, do this (on any
platform):



Starting and Stopping MySQL Automatically

187

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> UPDATE mysql.user SET Password = PASSWORD('new_password')
    ->     WHERE User = '';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the password change
remains unnoticed by the server until you restart it.

Removing Anonymous Accounts

If you prefer to remove any anonymous accounts rather than assigning them passwords, do so as
follows on Windows:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DROP USER ''@'localhost';

On Unix, remove the anonymous accounts like this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DROP USER ''@'localhost';
mysql> DROP USER ''@'host_name';

Securing Test Databases

By default, the mysql.db table contains rows that permit access by any user to the test database
and other databases with names that start with test_. (These rows have an empty User column
value, which for access-checking purposes matches any user name.) This means that such databases
can be used even by accounts that otherwise possess no privileges. If you want to remove any-user
access to test databases, do so as follows:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DELETE FROM mysql.db WHERE Db LIKE 'test%';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the privilege change
remains unnoticed by the server until you restart it.

With the preceding change, only users who have global database privileges or privileges granted
explicitly for the test database can use it. However, if you prefer that the database not exist at all,
drop it:

mysql> DROP DATABASE test;

2.10.5 Starting and Stopping MySQL Automatically

This section discusses methods for starting and stopping the MySQL server.

Generally, you start the mysqld server in one of these ways:

• Invoke mysqld directly. This works on any platform.

• On Windows, you can set up a MySQL service that runs automatically when Windows starts. See
Section 2.3.7.7, “Starting MySQL as a Windows Service”.

• On Unix and Unix-like systems, you can invoke mysqld_safe, which tries to determine the proper
options for mysqld and then runs it with those options. See Section 4.3.2, “mysqld_safe —
MySQL Server Startup Script”.



Upgrading or Downgrading MySQL

188

• On systems that use System V-style run directories (that is, /etc/init.d and run-level specific
directories), invoke mysql.server. This script is used primarily at system startup and shutdown. It
usually is installed under the name mysql. The mysql.server script starts the server by invoking
mysqld_safe. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

• On OS X, install a launchd daemon to enable automatic MySQL startup at system startup. The
daemon starts the server by invoking mysqld_safe. For details, see Section 2.4.3, “Installing a
MySQL Launch Daemon”. A MySQL Preference Pane also provides control for starting and stopping
MySQL through the System Preferences. See Section 2.4.4, “Installing and Using the MySQL
Preference Pane”.

• On Solaris, use the service management framework (SMF) system to initiate and control MySQL
startup.

The mysqld_safe and mysql.server scripts, Solaris SMF, and the OS X Startup Item (or MySQL
Preference Pane) can be used to start the server manually, or automatically at system startup time.
mysql.server and the Startup Item also can be used to stop the server.

The following table shows which option groups the server and startup scripts read from option files.

Table 2.15 MySQL Startup Scripts and Supported Server Option Groups

Script Option Groups

mysqld [mysqld], [server], [mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-5.1] and
[mysqld-5.5] are read by servers having versions 5.1.x, 5.5.x, and so forth. This feature can be
used to specify options that can be read only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and
mysqld_safe also reads the [safe_mysqld] group. However, you should update your option files to
use the [mysql.server] and [mysqld_safe] groups instead.

For more information on MySQL configuration files and their structure and contents, see Section 4.2.6,
“Using Option Files”.

2.11 Upgrading or Downgrading MySQL

This section describes the steps to upgrade or downgrade a MySQL installation.

Upgrading is a common procedure, as you pick up bug fixes within the same MySQL release series
or significant features between major MySQL releases. You perform this procedure first on some test
systems to make sure everything works smoothly, and then on the production systems.

Downgrading is less common. Typically, you undo an upgrade because of some compatibility or
performance issue that occurs on a production system, and was not uncovered during initial upgrade
verification on the test systems. As with the upgrade procedure, perform and verify the downgrade
procedure on some test systems first, before using it on a production system.

2.11.1 Upgrading MySQL

This section describes how to upgrade to a new MySQL version.

• Supported Upgrade Methods

• Supported Upgrade Paths



Upgrading MySQL

189

• Before You Begin

• Performing an In-Place Upgrade

• Performing a Logical Upgrade

• Upgrade Troubleshooting

Note

In the following discussion, MySQL commands that must be run using a MySQL
account with administrative privileges include -u root on the command line
to specify the MySQL root user. Commands that require a password for root
also include a -p option. Because -p is followed by no option value, such
commands prompt for the password. Type the password when prompted and
press Enter.

SQL statements can be executed using the mysql command-line client
(connect as root to ensure that you have the necessary privileges).

Supported Upgrade Methods

Supported downgrade methods include:

• In-Place Upgrade: Involves shutting down the old MySQL version, replacing the old MySQL binaries
or packages with the new ones, restarting MySQL on the existing data directory, and running
mysql_upgrade.

• Logical Upgrade: Involves exporting existing data from the old MySQL version using mysqldump,
installing the new MySQL version, loading the dump file into the new MySQL version, and running
mysql_upgrade.

Note

MySQL recommends a mysqldump upgrade when upgrading from a previous
release. For example, use this method when upgrading from 5.1 to 5.5.

For in-place and logical upgrade procedures, see Performing an In-Place Upgrade, and Performing a
Logical Upgrade.

If you run MySQL Server on Windows, see Section 2.3.10, “Upgrading MySQL on Windows”.

Supported Upgrade Paths

Unless otherwise documented, the following upgrade paths are supported:

• Upgrading from a release series version to a newer release series version is supported. For
example, upgrading from 5.5.45 to 5.5.46 is supported. Skipping release series versions is also
supported. For example, upgrading from 5.5.44 to 5.5.46 is supported.

• Upgrading one release level is supported. For example, upgrading from 5.1 to 5.5 is supported.
Upgrading to the latest release series version is recommended before upgrading to the next release
level. For example, upgrade to the latest 5.1 release before upgrading to 5.5.

• Upgrading more than one release level is supported, but only if you upgrade one release level
at a time. For example, if you currently are running MySQL 5.0 and wish to upgrade to a newer
series, upgrade to MySQL 5.1 first before upgrading to MySQL 5.5, and so forth. For information on
upgrading to MySQL 5.1 see the MySQL 5.1 Reference Manual.

• Direct upgrades that skip a release level (for example, upgrading directly from MySQL 5.0 to 5.5) are
not recommended or supported.



Upgrading MySQL

190

The following conditions apply to all upgrade paths:

• Upgrades between General Availability (GA) status releases are supported.

• Upgrades between milestone releases (or from a milestone release to a GA release) are not
supported. For example, upgrading from 5.5.7 to 5.5.8 is not supported, as 5.5.7 is not a GA status
release.

• For upgrades between versions of a MySQL release series that has reached GA status, you can
move the MySQL format files and data files between different versions on systems with the same
architecture. This is not necessarily true for upgrades between milestone releases. Use of milestone
releases is at your own risk.

Before You Begin

Before upgrading, review the following information and perform the recommended steps:

• Before upgrading, protect your data by creating a backup of your current databases and log files.
The backup should include the mysql system database, which contains the MySQL system tables.
See Section 7.2, “Database Backup Methods”.

• Review the Release Notes which provide information about features that are new in the MySQL
5.5 or differ from those found in earlier MySQL releases. Some of these changes may result in
incompatibilities.

For a description of MySQL server features that have been removed in MySQL 5.5, see Features
Removed in MySQL 5.5. An upgrade requires changes with respect to those features if you use any
of them.

• Review Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”. This section describes
changes that may require action before or after upgrading.

• If you use replication, review Section 17.4.3, “Upgrading a Replication Setup”.

• If you use XA transactions with InnoDB, run XA RECOVER before upgrading to check for
uncommitted XA transactions. If results are returned, either commit or rollback the XA transactions
by issuing an XA COMMIT or XA ROLLBACK statement.

• If your MySQL installation contains a large amount of data that might take a long time to convert after
an in-place upgrade, you might find it useful to create a “dummy” database instance for assessing
what conversions might be needed and the work involved to perform them. Make a copy of your
MySQL instance that contains a full copy of the mysql database, plus all other databases without
data. Run your upgrade procedure on this dummy instance to see what actions might be needed
so that you can better evaluate the work involved when performing actual data conversion on your
original database instance.

• Rebuilding and reinstalling MySQL language interfaces is recommended whenever you install
or upgrade to a new release of MySQL. This applies to MySQL interfaces such as PHP mysql
extensions, the Perl DBD::mysql module, and the Python MySQLdb module.

Performing an In-Place Upgrade

This section describes how to perform an in-place upgrade. Review Before you Begin before
proceeding.

Note

If you upgrade an installation originally produced by installing multiple RPM
packages, upgrade all the packages, not just some. For example, if you
previously installed the server and client RPMs, do not upgrade just the server
RPM.

http://dev.mysql.com/doc/relnotes/mysql/5.5/en/


Upgrading MySQL

191

To perform an in-place upgrade:

1. Review the changes described in Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5” for
steps to be performed before upgrading.

2. If you use InnoDB, configure MySQL to perform a slow shutdown by setting
innodb_fast_shutdown to 0. For example:

mysql -u root -p --execute="SET GLOBAL innodb_fast_shutdown=0"

With a slow shutdown, InnoDB performs a full purge and change buffer merge before shutting
down, which ensures that data files are fully prepared in case of file format differences between
releases.

3. Shut down the old MySQL server. For example:

mysqladmin -u root -p shutdown

4. Upgrade the MySQL binary installation or packages. If upgrading a binary installation, unpack the
new MySQL binary distribution package. See Obtain and Unpack the Distribution. For package-
based installations, replace the old packages with the new ones.

5. Start the MySQL 5.5 server, using the existing data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

6. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

mysql_upgrade examines all tables in all databases for incompatibilities with the current version
of MySQL. mysql_upgrade also upgrades the mysql system database so that you can take
advantage of new privileges or capabilities.

Note

mysql_upgrade does not upgrade the contents of the help tables. For
upgrade instructions, see Section 5.1.10, “Server-Side Help”.

7. Shut down and restart the MySQL server to ensure that any changes made to the system tables
take effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

Performing a Logical Upgrade

This section describes how to perform a logical upgrade. Review Before you Begin before proceeding.

To perform a logical upgrade:

1. Review the changes described in Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5” for
steps to be performed before upgrading.

2. Export your existing data from the previous MySQL version:

mysqldump -u root -p
  --add-drop-table --routines --events
  --all-databases --force > data-for-upgrade.sql



Upgrading MySQL

192

Note

Use the --routines and --events options with mysqldump (as shown
above) if your databases include stored programs. The --all-databases
option includes all databases in the dump, including the mysql database
that holds the system tables.

3. Shut down the old MySQL server. For example:

mysqladmin -u root -p shutdown

4. Install MySQL 5.5. For installation instructions, see Chapter 2, Installing and Upgrading MySQL.

5. Initialize a new data directory, as described at Section 2.10.1, “Initializing the Data Directory”. For
example:

scripts/mysql_install_db --user=mysql --datadir=/path/to/5.5-datadir

6. Start the MySQL 5.5 server, using the new data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/5.5-datadir

7. Load the previously created dump file into the new MySQL server. For example:

mysql -u root -p --force < data-for-upgrade.sql

8. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

mysql_upgrade examines all tables in all databases for incompatibilities with the current version
of MySQL. mysql_upgrade also upgrades the mysql system database so that you can take
advantage of new privileges or capabilities.

Note

mysql_upgrade does not upgrade the contents of the help tables. For
upgrade instructions, see Section 5.1.10, “Server-Side Help”.

9. Shut down and restart the MySQL server to ensure that any changes made to the system tables
take effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/5.5-datadir

Upgrade Troubleshooting

• If problems occur, such as that the new mysqld server does not start or that you cannot connect
without a password, verify that you do not have an old my.cnf file from your previous installation.
You can check this with the --print-defaults option (for example, mysqld --print-
defaults). If this command displays anything other than the program name, you have an active
my.cnf file that affects server or client operation.

• If, after an upgrade, you experience problems with compiled client programs, such as Commands
out of sync or unexpected core dumps, you probably have used old header or library
files when compiling your programs. In this case, check the date for your mysql.h file and
libmysqlclient.a library to verify that they are from the new MySQL distribution. If not, recompile



Upgrading MySQL

193

your programs with the new headers and libraries. Recompilation might also be necessary for
programs compiled against the shared client library if the library major version number has changed
(for example, from libmysqlclient.so.15 to libmysqlclient.so.16).

• If you have created a user-defined function (UDF) with a given name and upgrade MySQL to a
version that implements a new built-in function with the same name, the UDF becomes inaccessible.
To correct this, use DROP FUNCTION to drop the UDF, and then use CREATE FUNCTION to
re-create the UDF with a different nonconflicting name. The same is true if the new version of
MySQL implements a built-in function with the same name as an existing stored function. See
Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

2.11.1.1 Changes Affecting Upgrades to MySQL 5.5

Before upgrading to MySQL 5.5, review the changes described in this section to identify upgrade
issues that apply to your current MySQL installation and applications.

Note

In addition to the changes outlined in this section, review the Release Notes and
other important information outlined in Before You Begin.

Changes marked as either Known issue or Incompatible change are incompatibilities with earlier
versions of MySQL, and may require your attention before you upgrade. Our aim is to avoid these
changes, but occasionally they are necessary to correct problems that would be worse than an
incompatibility between releases. If any upgrade issue applicable to your installation involves an
incompatibility that requires special handling, follow the instructions given in the incompatibility
description. Sometimes this involves dumping and reloading tables, or use of a statement such as
CHECK TABLE or REPAIR TABLE.

For dump and reload instructions, see Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”. Any
procedure that involves REPAIR TABLE with the USE_FRM option must be done before upgrading. Use
of this statement with a version of MySQL different from the one used to create the table (that is, using
it after upgrading) may damage the table. See Section 13.7.2.5, “REPAIR TABLE Syntax”.

• Configuration Changes

• Server Changes

• SQL Changes

Configuration Changes

• Incompatible change: The InnoDB Plugin is included in MySQL 5.5 releases. It becomes the
built-in version of InnoDB in MySQL Server, replacing the version previously included as the built-
in InnoDB engine. InnoDB Plugin is also available in MySQL 5.1 as of 5.1.38, but it is an optional
storage engine that must be enabled explicitly using two server options:

[mysqld]
ignore-builtin-innodb
plugin-load=innodb=ha_innodb_plugin.so

If you were using InnoDB Plugin in MySQL 5.1 by means of those options, you must remove them
after an upgrade to 5.5 or the server will fail to start.

In addition, in InnoDB Plugin, the innodb_file_io_threads system variable has been
removed and replaced with innodb_read_io_threads and innodb_write_io_threads. If you
upgrade from MySQL 5.1 to MySQL 5.5 and previously explicitly set innodb_file_io_threads
at server startup, you must change your configuration. Either remove any reference to
innodb_file_io_threads or replace it with references to innodb_read_io_threads and
innodb_write_io_threads.

http://dev.mysql.com/doc/relnotes/mysql/5.5/en/


Upgrading MySQL

194

• Incompatible change: In MySQL 5.5, the server includes a plugin services interface that
complements the plugin API. The services interface enables server functionality to be exposed
as a “service” that plugins can access through a function-call interface. The libmysqlservices
library provides access to the available services and dynamic plugins now must be linked against this
library (use the -lmysqlservices flag). For an example showing how to configure for CMake, see
Section 24.3, “MySQL Services for Plugins”.

Server Changes

•  On Linux systems, the libaio library may be needed. Install it first, if it is not already present on
your system.

• Known issue: As of MySQL 5.5.32, for new installations, the url columns in the mysql
database help tables are now created as type TEXT to accommodate longer URLs. For upgrades,
mysql_upgrade does not update the columns. Modify them manually using these statements:

ALTER TABLE mysql.help_category MODIFY url TEXT NOT NULL;
ALTER TABLE mysql.help_topic MODIFY url TEXT NOT NULL;

• Incompatible change: As of MySQL 5.5.3, due to work done for Bug #989, FLUSH TABLES is
not permitted when there is an active LOCK TABLES ... READ. To provide a workaround for this
restriction, FLUSH TABLES has a new variant, FLUSH TABLES tbl_list WITH READ LOCK, that
enables tables to be flushed and locked in a single operation. As a result of this change, applications
that previously used this statement sequence to lock and flush tables will fail:

LOCK TABLES tbl_list READ;
FLUSH TABLES tbl_list;

Such applications should now use this statement instead:

FLUSH TABLES tbl_list WITH READ LOCK;

•  Incompatible change: As of MySQL 5.5.7, the server requires that a new grant table,
proxies_priv, be present in the mysql database. If you are upgrading to 5.5.7 from a previous
MySQL release rather than performing a new installation, the server will find that this table is missing
and exit during startup with the following message:

Table 'mysql.proxies_priv' doesn't exist

To create the proxies_priv table, start the server with the --skip-grant-tables option to
cause it to skip the normal grant table checks, then run mysql_upgrade. For example:

mysqld --skip-grant-tables &
mysql_upgrade

Then stop the server and restart it normally.

You can specify other options on the mysqld command line if necessary. Alternatively, if your
installation is configured so that the server normally reads options from an option file, use the --
defaults-file option to specify the file (enter each command on a single line):

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
  --skip-grant-tables &
mysql_upgrade

With the --skip-grant-tables option, the server does no password or privilege checking, so
any client can connect and effectively have all privileges. For additional security, use the --skip-
networking option as well to prevent remote clients from connecting.



Upgrading MySQL

195

Note

This problem is fixed in MySQL 5.5.8; the server treats a missing
proxies_priv table as equivalent to an empty table. However, after starting
the server, you should still run mysql_upgrade to create the table.

• Incompatible change: As of MySQL 5.5.7, InnoDB always uses the fast truncation technique,
equivalent to DROP TABLE and CREATE TABLE. It no longer performs a row-by-row delete for
tables with parent-child foreign key relationships. TRUNCATE TABLE returns an error for such tables.
Modify your SQL to issue DELETE FROM table_name for such tables instead.

• Incompatible change: Prior to MySQL 5.5.7, if you flushed the logs using FLUSH LOGS or
mysqladmin flush-logs and mysqld was writing the error log to a file (for example, if it was
started with the --log-error option), it renames the current log file with the suffix -old, then
created a new empty log file. This had the problem that a second log-flushing operation thus caused
the original error log file to be lost unless you saved it under a different name. For example, you
could use the following commands to save the file:

mysqladmin flush-logs
mv host_name.err-old backup-directory

To avoid the preceding file-loss problem, no renaming occurs as of MySQL 5.5.7; the server merely
closes and reopens the log file. To rename the file, you can do so manually before flushing. Then
flushing the logs reopens a new file with the original file name. For example, you can rename the file
and create a new one using the following commands:

mv host_name.err host_name.err-old
mysqladmin flush-logs
mv host_name.err-old backup-directory

• Incompatible change: As of MySQL 5.5.6, handling of CREATE TABLE IF NOT EXISTS ...
SELECT statements has been changed for the case that the destination table already exists:

• Previously, for CREATE TABLE IF NOT EXISTS ... SELECT, MySQL produced a warning
that the table exists, but inserted the rows and wrote the statement to the binary log anyway.
By contrast, CREATE TABLE ... SELECT (without IF NOT EXISTS) failed with an error, but
MySQL inserted no rows and did not write the statement to the binary log.

• MySQL now handles both statements the same way when the destination table exists, in that
neither statement inserts rows or is written to the binary log. The difference between them is that
MySQL produces a warning when IF NOT EXISTS is present and an error when it is not.

This change in handling of IF NOT EXISTS results in an incompatibility for statement-based
replication from a MySQL 5.1 master with the original behavior and a MySQL 5.5 slave with the new
behavior. Suppose that CREATE TABLE IF NOT EXISTS ... SELECT is executed on the master
and the destination table exists. The result is that rows are inserted on the master but not on the
slave. (Row-based replication does not have this problem.)

To address this issue, statement-based binary logging for CREATE TABLE IF NOT EXISTS ...
SELECT is changed in MySQL 5.1 as of 5.1.51:

• If the destination table does not exist, there is no change: The statement is logged as is.

• If the destination table does exist, the statement is logged as the equivalent pair of CREATE
TABLE IF NOT EXISTS and INSERT ... SELECT statements. (If the SELECT in the original
statement is preceded by IGNORE or REPLACE, the INSERT becomes INSERT IGNORE or
REPLACE, respectively.)



Upgrading MySQL

196

This change provides forward compatibility for statement-based replication from MySQL 5.1 to 5.5
because when the destination table exists, the rows will be inserted on both the master and slave.
To take advantage of this compatibility measure, the 5.1 server must be at least 5.1.51 and the 5.5
server must be at least 5.5.6.

To upgrade an existing 5.1-to-5.5 replication scenario, upgrade the master first to 5.1.51 or higher.
Note that this differs from the usual replication upgrade advice of upgrading the slave first.

A workaround for applications that wish to achieve the original effect (rows inserted regardless of
whether the destination table exists) is to use CREATE TABLE IF NOT EXISTS and INSERT ...
SELECT statements rather than CREATE TABLE IF NOT EXISTS ... SELECT statements.

Along with the change just described, the following related change was made: Previously, if an
existing view was named as the destination table for CREATE TABLE IF NOT EXISTS ...
SELECT, rows were inserted into the underlying base table and the statement was written to the
binary log. As of MySQL 5.1.51 and 5.5.6, nothing is inserted or logged.

• Incompatible change: Prior to MySQL 5.5.6, if the server was started with
character_set_server set to utf16, it crashed during full-text stopword initialization. Now the
stopword file is loaded and searched using latin1 if character_set_server is ucs2, utf16,
or utf32. If any table was created with FULLTEXT indexes while the server character set was ucs2,
utf16, or utf32, it should be repaired using this statement:

REPAIR TABLE tbl_name QUICK;

• Incompatible change: As of MySQL 5.5.5, all numeric operators and functions on integer, floating-
point and DECIMAL values throw an “out of range” error (ER_DATA_OUT_OF_RANGE) rather
than returning an incorrect value or NULL, when the result is out of the supported range for the
corresponding data type. See Section 11.2.6, “Out-of-Range and Overflow Handling”.

•      Incompatible change: In very old versions of MySQL (prior to 4.1), the TIMESTAMP data type
supported a display width, which was silently ignored beginning with MySQL 4.1. This is deprecated
in MySQL 5.1, and removed altogether in MySQL 5.5. These changes in behavior can lead to two
problem scenarios when trying to use TIMESTAMP(N) columns with a MySQL 5.5 or later server:

• When importing a dump file (for example, one created using mysqldump) created in a MySQL 5.0
or earlier server into a server from a newer release series, a CREATE TABLE or ALTER TABLE
statement containing TIMESTAMP(N) causes the import to fail with a syntax error.

To fix this problem, edit the dump file in a text editor to replace any instances of TIMESTAMP(N)
with TIMESTAMP prior to importing the file. Be sure to use a plain text editor for this, and not a
word processor; otherwise, the result is almost certain to be unusable for importing into the MySQL
server.

• When trying replicate any CREATE TABLE or ALTER TABLE statement containing
TIMESTAMP(N) from a master MySQL server that supports the TIMESTAMP(N) syntax to a
MySQL 5.5.3 or higher slave, the statement causes replication to fail. Similarly, when you try to
restore from a binary log written by a server that supports TIMESTAMP(N) to a MySQL 5.5.3
or higher server, any CREATE TABLE or ALTER TABLE statement containing TIMESTAMP(N)
causes the backup to fail. This holds true regardless of the logging format.

It may be possible to fix such issues using a hex editor, by replacing any width arguments used
with TIMESTAMP, and the parentheses containing them, with space characters (hexadecimal 20).
Be sure to use a programmer's binary hex editor and not a regular text editor or word processor
for this; otherwise, the result is almost certain to be a corrupted binary log file. To guard against
accidental corruption of the binary log, you should always work on a copy of the file rather than the
original.



Upgrading MySQL

197

You should try to handle potential issues of these types proactively by updating with ALTER TABLE
any TIMESTAMP(N) columns in your databases so that they use TIMESTAMP instead, before
performing any upgrades.

• Incompatible change: As of MySQL 5.5.3, the Unicode implementation has been extended to
provide support for supplementary characters that lie outside the Basic Multilingual Plane (BMP).
Noteworthy features:

• utf16 and utf32 character sets have been added. These correspond to the UTF-16 and UTF-32
encodings of the Unicode character set, and they both support supplementary characters.

• The utf8mb4 character set has been added. This is similar to utf8, but its encoding allows up to
four bytes per character to enable support for supplementary characters.

• The ucs2 character set is essentially unchanged except for the inclusion of some newer BMP
characters.

In most respects, upgrading to MySQL 5.5 should present few problems with regard to Unicode
usage, although there are some potential areas of incompatibility. These are the primary areas of
concern:

• For the variable-length character data types (VARCHAR and the TEXT types), the maximum length
in characters is less for utf8mb4 columns than for utf8 columns.

• For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of
characters that can be indexed is less for utf8mb4 columns than for utf8 columns.

Consequently, if you want to upgrade tables from utf8 to utf8mb4 to take advantage of
supplementary-character support, it may be necessary to change some column or index definitions.

For additional details about the new Unicode character sets and potential incompatibilities, see
Section 10.1.9, “Unicode Support”, and Section 10.1.9.7, “Converting Between 3-Byte and 4-Byte
Unicode Character Sets”.

• Incompatible change: As of MySQL 5.5.3, the server includes dtoa, a library for conversion
between strings and numbers by David M. Gay. In MySQL, this library provides the basis for
improved conversion between string or DECIMAL values and approximate-value (FLOAT or DOUBLE)
numbers.

Because the conversions produced by this library differ in some cases from previous results, the
potential exists for incompatibilities in applications that rely on previous results. For example,
applications that depend on a specific exact result from previous conversions might need adjustment
to accommodate additional precision.

For additional information about the properties of dtoa conversions, see Section 12.2, “Type
Conversion in Expression Evaluation”.

• Incompatible change: In MySQL 5.5, several changes were made regarding the language and
character set of error messages:

• The --language option for specifying the directory for the error message file is now deprecated.
The new lc_messages_dir and lc_messages system variables should be used instead, and
the server treats --language as an alias for lc_messages_dir.

• The language system variable has been removed and replaced with the new
lc_messages_dir and lc_messages system variables. lc_messages_dir has only a
global value and is read only. lc_messages has global and session values and can be modified
at runtime, so the error message language can be changed while the server is running, and
individual clients each can have a different error message language by changing their session
lc_messages value to a different locale name.



Upgrading MySQL

198

• Error messages previously were constructed in a mix of character sets. This issue is resolved
by constructing error messages internally within the server using UTF-8 and returning them to
the client in the character set specified by the character_set_results system variable.
The content of error messages therefore may in some cases differ from the messages returned
previously.

For more information, see Section 10.2, “Setting the Error Message Language”, and Section 10.1.6,
“Error Message Character Set”.

• Incompatible change: MySQL 5.5 implements new functions used to calculate row placement for
tables partitioned by KEY and LINEAR KEY. Tables that were created using KEY or LINEAR KEY
partitioning in MySQL 5.1 can be upgraded in MySQL 5.5.31 and later using ALTER TABLE ...
PARTITION BY ALGORITHM=2 [LINEAR] KEY (...). (Bug #14521864, Bug #66462)

SQL Changes

• Incompatible change: Previously, the parser accepted an INTO clause in nested SELECT
statements, which is invalid because such statements must return their results to the outer context.
As of MySQL 5.5.3, this syntax is no longer permitted and statements that use it must be changed.

• Incompatible change: In MySQL 5.5.3, several changes were made to alias resolution in multiple-
table DELETE statements so that it is no longer possible to have inconsistent or ambiguous table
aliases.

• In MySQL 5.1.23, alias declarations outside the table_references part of the statement were
disallowed for the USING variant of multiple-table DELETE syntax, to reduce the possibility of
ambiguous aliases that could lead to ambiguous statements that have unexpected results such as
deleting rows from the wrong table.

As of MySQL 5.5.3, alias declarations outside table_references are disallowed for all multiple-
table DELETE statements. Alias declarations are permitted only in the table_references part.

Incorrect:

DELETE FROM t1 AS a2 USING t1 AS a1 INNER JOIN t2 AS a2;
DELETE t1 AS a2 FROM t1 AS a1 INNER JOIN t2 AS a2;

Correct:

DELETE FROM t1 USING t1 AS a1 INNER JOIN t2 AS a2;
DELETE t1 FROM t1 AS a1 INNER JOIN t2 AS a2;

• Previously, for alias references in the list of tables from which to delete rows in a multiple-table
delete, the default database is used unless one is specified explicitly. For example, if the default
database is db1, the following statement does not work because the unqualified alias reference a2
is interpreted as having a database of db1:

DELETE a1, a2 FROM db1.t1 AS a1 INNER JOIN db2.t2 AS a2
WHERE a1.id=a2.id;

To correctly match an alias that refers to a table outside the default database, you must explicitly
qualify the reference with the name of the proper database:

DELETE a1, db2.a2 FROM db1.t1 AS a1 INNER JOIN db2.t2 AS a2
WHERE a1.id=a2.id;



Downgrading MySQL

199

As of MySQL 5.5.3, alias resolution does not require qualification and alias references should not
be qualified with the database name. Qualified names are interpreted as referring to tables, not
aliases.

Statements containing alias constructs that are no longer permitted must be rewritten.

• Some keywords may be reserved in MySQL 5.5 that were not reserved in MySQL 5.1. See
Section 9.3, “Keywords and Reserved Words”. This can cause words previously used as identifiers
to become illegal. To fix affected statements, use identifier quoting. See Section 9.2, “Schema Object
Names”.

2.11.2 Downgrading MySQL

This section describes how to downgrade to an older MySQL version.

• Supported Downgrade Methods

• Supported Downgrade Paths

• Before You Begin

• Performing an In-Place Downgrade

• Performing a Logical Downgrade

• Downgrade Troubleshooting

Note

In the following discussion, MySQL commands that must be run using a MySQL
account with administrative privileges include -u root on the command line
to specify the MySQL root user. Commands that require a password for root
also include a -p option. Because -p is followed by no option value, such
commands prompt for the password. Type the password when prompted and
press Enter.

SQL statements can be executed using the mysql command-line client
(connect as root to ensure that you have the necessary privileges).

Supported Downgrade Methods

Supported downgrade methods include:

• In-Place Downgrade: Involves shutting down the new MySQL version, replacing the new MySQL
binaries or packages with the old ones, and restarting the old MySQL version on the new data files.
In-place downgrades are supported for downgrades between GA versions within the same release
series. For example, in-place downgrades are supported for downgrades from 5.5.46 to 5.5.45.

• Logical Downgrade: Involves using mysqldump to dump all tables from the new MySQL version,
and then loading the dump file into the old MySQL version. Logical downgrades are supported for
downgrades between GA versions within the same release series and for downgrades between
release levels. For example, logical downgrades are supported for downgrades from 5.5.46 to 5.5.45
and for downgrades from 5.5 to 5.1.

For procedures, see Performing an In-Place Downgrade, and Performing a Logical Downgrade.

Supported Downgrade Paths

Unless otherwise documented, the following downgrade paths are supported:



Downgrading MySQL

200

• Downgrading from a release series version to an older release series version is supported using all
downgrade methods. For example, downgrading from 5.546 to 5.5.45 is supported. Skipping release
series versions is also supported. For example, downgrading from 5.5.46 to 5.5.44 is supported.

• Downgrading one release level is supported using the logical downgrade method. For example,
downgrading from 5.5 to 5.1 is supported.

• Downgrading more than one release level is supported using the logical downgrade method, but only
if you downgrade one release level at a time. For example, you can downgrade from 5.5 to 5.1, and
then to 5.0.

The following conditions apply to all downgrade paths:

• Downgrades between General Availability (GA) status releases are supported.

• Downgrades between milestone releases (or from a GA release to a milestone release) are not
supported. For example, downgrading from MySQL 5.5.8 to MySQL 5.5.7 is not supported, as 5.5.7
is not a GA status release.

Before You Begin

Before downgrading, the following steps are recommended:

• Review the Release Notes for the MySQL version you are downgrading from to ensure that there are
no features or fixes that you really need.

• Review Section 2.11.2.1, “Changes Affecting Downgrades from MySQL 5.5”. This section describes
changes that may require action before or after downgrading.

Note

The downgrade procedures described in the following sections assume
you are downgrading with data files created or modified by the newer
MySQL version. However, if you did not modify your data after upgrading,
downgrading using backups taken before upgrading to the new MySQL
version is recommended. Many of the changes described in Section 2.11.2.1,
“Changes Affecting Downgrades from MySQL 5.5” that require action before
or after downgrading are not applicable when downgrading using backups
taken before upgrading to the new MySQL version.

• Always back up your current databases and log files before downgrading. The backup should include
the mysql database, which contains the MySQL system tables. See Section 7.2, “Database Backup
Methods”.

• Use of new features, new configuration options, or new configuration option values that are not
supported by a previous release may cause downgrade errors or failures. Before downgrading,
it is recommended that you reverse changes resulting from the use of new features and remove
configuration settings that are not supported by the release you are downgrading to.

• If you use XA transactions with InnoDB, run XA RECOVER before downgrading to check for
uncommitted XA transactions. If results are returned, either commit or rollback the XA transactions
by issuing an XA COMMIT or XA ROLLBACK statement.

Performing an In-Place Downgrade

In-place downgrades are supported for downgrades between GA status releases within the same
release series. Before proceeding, review Before You Begin.

To perform an in-place downgrade:

1. Review the changes described in Section 2.11.2.1, “Changes Affecting Downgrades from MySQL
5.5” for steps to be performed before downgrading.

http://dev.mysql.com/doc/relnotes/mysql/5.5/en/


Downgrading MySQL

201

2. If you use InnoDB, configure MySQL to perform a slow shutdown by setting
innodb_fast_shutdown to 0. For example:

mysql -u root -p --execute="SET GLOBAL innodb_fast_shutdown=0"

With a slow shutdown, InnoDB performs a full purge and change buffer merge before shutting
down, which ensures that data files are fully prepared in case of file format differences between
releases.

3. Shut down the newer MySQL server. For example:

mysqladmin -u root -p shutdown

4. After the slow shutdown, remove the InnoDB redo log files (the ib_logfile* files) from the data
directory to avoid downgrade issues related to redo log file format changes that may have occurred
between releases.

rm ib_logfile*

5. Downgrade the MySQL binaries or packages in-place by replacing the newer binaries or packages
with the older ones.

6. Start the older (downgraded) MySQL server, using the existing data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

7. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

8. Shut down and restart the MySQL server to ensure that any changes made to the system tables
take effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

Performing a Logical Downgrade

Logical downgrades are supported for downgrades between releases within the same release series
and for downgrades to the previous release level. Only downgrades between General Availability (GA)
status releases are supported. Before proceeding, review Before You Begin.

To perform a logical downgrade:

1. Review the changes described in Section 2.11.2.1, “Changes Affecting Downgrades from MySQL
5.5” for steps to be performed before downgrading.

2. Dump all databases. For example:

mysqldump -u root -p
  --add-drop-table --routines --events
  --all-databases --force > data-for-downgrade.sql

3. Shut down the newer MySQL server. For example:

mysqladmin -u root -p shutdown

4. Initialize an older MySQL instance, with a new data directory. For example:



Downgrading MySQL

202

scripts/mysql_install_db --user=mysql

5. Start the older MySQL server, using the new data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/new-datadir

6. Load the dump file into the older MySQL server. For example:

mysql -u root -p --force < data-for-upgrade.sql

7. Run mysql_upgrade. For example:

mysql_upgrade -u root -p

8. Shut down and restart the MySQL server to ensure that any changes made to the system tables
take effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/new-datadir

Downgrade Troubleshooting

If you downgrade from one release series to another, there may be incompatibilities in table storage
formats. In this case, use mysqldump to dump your tables before downgrading. After downgrading,
reload the dump file using mysql or mysqlimport to re-create your tables. For examples, see
Section 2.11.4, “Copying MySQL Databases to Another Machine”.

A typical symptom of a downward-incompatible table format change when you downgrade is that you
cannot open tables. In that case, use the following procedure:

1. Stop the older MySQL server that you are downgrading to.

2. Restart the newer MySQL server you are downgrading from.

3. Dump any tables that were inaccessible to the older server by using mysqldump to create a dump
file.

4. Stop the newer MySQL server and restart the older one.

5. Reload the dump file into the older server. Your tables should be accessible.

2.11.2.1 Changes Affecting Downgrades from MySQL 5.5

Before downgrading from MySQL 5.5, review the changes described in this section. Some changes
may require action before or after downgrading.

• System Tables.  The mysql.proc.comment column definition changed between MySQL
5.1 and 5.5. After downgrading from 5.5 to 5.1, this table is seen as corrupt and in need of repair.
Running mysql_upgrade from the version of MySQL to which you downgraded (as documented in
the downgrade procedures) reverts the mysql.proc.comment column definition.

• InnoDB.  MySQL 5.5 uses InnoDB Plugin as the built-in version of InnoDB. MySQL 5.1
includes InnoDB Plugin as of 5.1.38, but as an option that must be enabled explicitly. See the
Release Notes for MySQL 5.1.38.

• InnoDB.  In MySQL 5.5.14, the length limit for index prefix keys is increased from 767 bytes
to 3072 bytes, for InnoDB tables using ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED.
See Section 14.11.1.7, “Limits on InnoDB Tables” for details. If you downgrade from one of these

http://dev.mysql.com/doc/relnotes/mysql/5.5/en/


Downgrading MySQL

203

releases or higher, to an earlier release with a lower length limit, the index prefix keys could be
truncated at 767 bytes or the downgrade could fail. This issue could only occur if the configuration
option innodb_large_prefix was enabled on the server being downgraded.

• Tables partitioned by [LINEAR] KEY.  MySQL 5.5 implements new functions used to calculate
row placement for tables partitioned by KEY and LINEAR KEY. Tables that were created using
KEY or LINEAR KEY partitioning in MySQL 5.5 cannot be used by a MySQL 5.1 server. In MySQL
5.5.31 and later, you can downgrade such tables with ALTER TABLE ... PARTITION BY
ALGORITHM=1 [LINEAR] KEY (...) to make them compatible with MySQL 5.1.

2.11.2.2 Downgrading from MySQL Enterprise Edition to MySQL Community Server

This section describes the steps required to downgrade from MySQL Enterprise Edition to MySQL
Community Edition. This can be done at any time, and is required at the expiration of a MySQL
Enterprise Edition subscription if you wish to continue using MySQL Server.

When you perform such a downgrade, all commercially licensed components of the MySQL Enterprise
Edition subscription must be uninstalled. These components and related considerations are described
in the rest of this section.

Note

The issues described in this section are in addition to any that may be
encountered as a result of any upgrade or downgrade of the MySQL Server
version (such as between MySQL 5.5 and 5.1). Information about upgrading
and downgrading between MySQL release series can be found elsewhere
in this chapter; see Section 2.11.1, “Upgrading MySQL”, and Section 2.11.2,
“Downgrading MySQL”.

MySQL Enterprise Database Server.  All commercial versions of MySQL Database Server must be
uninstalled.

Commercially licensed extensions.  All commercially licensed MySQL Enterprise Database Server
extensions must be uninstalled. This includes the following commercial extensions:

• MySQL External Authentication for Windows: Following uninstallation of this plugin, existing MySQL
user accounts must be re-created using local authentication. See Section 6.3, “MySQL User Account
Management”, for more information.

• MySQL External Authentication for PAM: Following uninstallation of this plugin, existing MySQL user
accounts must be re-created using local authentication. See Section 6.3, “MySQL User Account
Management”, for more information.

• MySQL Enterprise Thread Pool: Following uninstallation of this plugin, existing MySQL servers revert
to default thread and connection handling.

• MySQL Enterprise Audit: Following uninstallation of this plugin, no logging of user logins or query
activity occurs.

• MySQL High Availability: Following uninstallation of this plugin, automated failover is no longer
available.

MySQL Enterprise Backup.  MySQL Enterprise Backup must be uninstalled. Uninstalling this
application has the effects listed here:

• Automated backup scripts no longer work.

• Existing backup images taken with MySQL Enterprise Backup can no longer be used for recovery.

• Third-party integration with multimedia systems such as NetBackup, Tivoli, and Oracle Secure
Backup no longer works.



Rebuilding or Repairing Tables or Indexes

204

MySQL Enterprise Monitor, MySQL Query Analyzer, agents.  MySQL Enterprise Monitor, MySQL
Query Analyzer, and all server-side agents must be uninstalled. Uninstalling these applications and
agents has the following effects:

• Automated SNMP and SMTP alerts no longer work.

• All historical MySQL, OS monitoring, query, and performance metrics as well as all trending data are
lost.

• All environment-specific monitoring templates, custom advisors, graphs and scripts are also lost.

2.11.3 Rebuilding or Repairing Tables or Indexes

This section describes how to rebuild or repair tables or indexes, which may be necessitated by:

• Changes to how MySQL handles data types or character sets. For example, an error in a collation
might have been corrected, necessitating a table rebuild to update the indexes for character columns
that use the collation.

• Required table repairs or upgrades reported by CHECK TABLE, mysqlcheck, or mysql_upgrade.

Methods for rebuilding a table include:

• Dump and Reload Method

• ALTER TABLE Method

• REPAIR TABLE Method

Dump and Reload Method

If you are rebuilding tables because a different version of MySQL will not handle them after a binary
(in-place) upgrade or downgrade, you must use the dump-and-reload method. Dump the tables
before upgrading or downgrading using your original version of MySQL. Then reload the tables after
upgrading or downgrading.

If you use the dump-and-reload method of rebuilding tables only for the purpose of rebuilding indexes,
you can perform the dump either before or after upgrading or downgrading. Reloading still must be
done afterward.

If you need to rebuild an InnoDB table because a CHECK TABLE operation indicates that a table
upgrade is required, use mysqldump to create a dump file and mysql to reload the file. If the CHECK
TABLE operation indicates that there is a corruption or causes InnoDB to fail, refer to Section 14.23.2,
“Forcing InnoDB Recovery” for information about using the innodb_force_recovery option to
restart InnoDB. To understand the type of problem that CHECK TABLE may be encountering, refer to
the InnoDB notes in Section 13.7.2.2, “CHECK TABLE Syntax”.

To rebuild a table by dumping and reloading it, use mysqldump to create a dump file and mysql to
reload the file:

mysqldump db_name t1 > dump.sql
mysql db_name < dump.sql

To rebuild all the tables in a single database, specify the database name without any following table
name:

mysqldump db_name > dump.sql
mysql db_name < dump.sql

To rebuild all tables in all databases, use the --all-databases option:



Copying MySQL Databases to Another Machine

205

mysqldump --all-databases > dump.sql
mysql < dump.sql

ALTER TABLE Method

To rebuild a table with ALTER TABLE, use a “null” alteration; that is, an ALTER TABLE statement that
“changes” the table to use the storage engine that it already has. For example, if t1 is an InnoDB
table, use this statement:

ALTER TABLE t1 ENGINE = InnoDB;

If you are not sure which storage engine to specify in the ALTER TABLE statement, use SHOW CREATE
TABLE to display the table definition.

REPAIR TABLE Method

The REPAIR TABLE method is only applicable to MyISAM, ARCHIVE, and CSV tables.

You can use REPAIR TABLE if the table checking operation indicates that there is a corruption or that
an upgrade is required. For example, to repair a MyISAM table, use this statement:

REPAIR TABLE t1;

mysqlcheck --repair provides command-line access to the REPAIR TABLE statement. This can
be a more convenient means of repairing tables because you can use the --databases or --all-
databases option to repair all tables in specific databases or all databases, respectively:

mysqlcheck --repair --databases db_name ...
mysqlcheck --repair --all-databases

2.11.4 Copying MySQL Databases to Another Machine

In cases where you need to transfer databases between different architectures, you can use
mysqldump to create a file containing SQL statements. You can then transfer the file to the other
machine and feed it as input to the mysql client.

Note

You can copy the .frm, .MYI, and .MYD files for MyISAM tables between
different architectures that support the same floating-point format. (MySQL
takes care of any byte-swapping issues.) See Section 15.3, “The MyISAM
Storage Engine”.

Use mysqldump --help to see what options are available.

The easiest (although not the fastest) way to move a database between two machines is to run the
following commands on the machine on which the database is located:

mysqladmin -h 'other_hostname' create db_name
mysqldump db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these
commands:

mysqladmin create db_name
mysqldump -h 'other_hostname' --compress db_name | mysql db_name

You can also store the dump in a file, transfer the file to the target machine, and then load the file
into the database there. For example, you can dump a database to a compressed file on the source
machine like this:



Perl Installation Notes

206

mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands
there:

mysqladmin create db_name
gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is
much faster than simply using mysqldump. In the following commands, DUMPDIR represents the full
path name of the directory you use to store the output from mysqldump.

First, create the directory for the output files and dump the database:

mkdir DUMPDIR
mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine
and load the files into MySQL there:

mysqladmin create db_name           # create database
cat DUMPDIR/*.sql | mysql db_name   # create tables in database
mysqlimport db_name DUMPDIR/*.txt   # load data into tables

Do not forget to copy the mysql database because that is where the grant tables are stored. You
might have to run commands as the MySQL root user on the new machine until you have the mysql
database in place.

After you import the mysql database on the new machine, execute mysqladmin flush-
privileges so that the server reloads the grant table information.

2.12 Perl Installation Notes
The Perl DBI module provides a generic interface for database access. You can write a DBI script
that works with many different database engines without change. To use DBI, you must install the DBI
module, as well as a DataBase Driver (DBD) module for each type of database server you want to
access. For MySQL, this driver is the DBD::mysql module.

Perl, and the DBD::MySQL module for DBI must be installed if you want to run the MySQL benchmark
scripts; see Section 8.13.2, “The MySQL Benchmark Suite”. They are also required for the NDB Cluster
ndb_size.pl utility; see Section 18.4.25, “ndb_size.pl — NDBCLUSTER Size Requirement
Estimator”.

Note

Perl support is not included with MySQL distributions. You can obtain the
necessary modules from http://search.cpan.org for Unix, or by using the
ActiveState ppm program on Windows. The following sections describe how to
do this.

The DBI/DBD interface requires Perl 5.6.0, and 5.6.1 or later is preferred. DBI does not work if you
have an older version of Perl. You should use DBD::mysql 4.009 or higher. Although earlier versions
are available, they do not support the full functionality of MySQL 5.5.

2.12.1 Installing Perl on Unix

MySQL Perl support requires that you have installed MySQL client programming support (libraries and
header files). Most installation methods install the necessary files. If you install MySQL from RPM files

http://search.cpan.org


Installing ActiveState Perl on Windows

207

on Linux, be sure to install the developer RPM as well. The client programs are in the client RPM, but
client programming support is in the developer RPM.

The files you need for Perl support can be obtained from the CPAN (Comprehensive Perl Archive
Network) at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shell> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local
MySQL server using the default user name and password. (The default user name is your login name
on Unix, and ODBC on Windows. The default password is “no password.”) If you cannot connect to
the server with those values (for example, if your account has a password), the tests fail. You can use
force install DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before
installing DBI.

It is also possible to download the module distributions in the form of compressed tar archives and
build the modules manually. For example, to unpack and build a DBI distribution, use a procedure such
as this:

1. Unpack the distribution into the current directory:

shell> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

2. Change location into the top-level directory of the unpacked distribution:

shell> cd DBI-VERSION

3. Build the distribution and compile everything:

shell> perl Makefile.PL
shell> make
shell> make test
shell> make install

The make test command is important because it verifies that the module is working. Note that when
you run that command during the DBD::mysql installation to exercise the interface code, the MySQL
server must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new
release of MySQL. This ensures that the latest versions of the MySQL client libraries are installed
correctly.

If you do not have access rights to install Perl modules in the system directory or if you want to install
local Perl modules, the following reference may be useful: http://learn.perl.org/faq/perlfaq8.html#How-
do-I-keep-my-own-module-library-directory-

2.12.2 Installing ActiveState Perl on Windows

On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

http://search.cpan.org
http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-my-own-module-library-directory-
http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-my-own-module-library-directory-
http://www.activestate.com/Products/ActivePerl/


Problems Using the Perl DBI/DBD Interface

208

2. Open a console window.

3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

C:\> set HTTP_proxy=my.proxy.com:3128

4. Start the PPM program:

C:\> C:\perl\bin\ppm.pl

5. If you have not previously done so, install DBI:

ppm> install DBI

6. If this succeeds, run the following command:

ppm> install DBD-mysql

This procedure should work with ActiveState Perl 5.6 or higher.

If you cannot get the procedure to work, you should install the ODBC driver instead and connect to the
MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
  die "Got error $DBI::errstr when connecting to $dsn\n";

2.12.3 Problems Using the Perl DBI/DBD Interface

If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl
cannot locate the libmysqlclient.so shared library. You should be able to fix this problem by one
of the following methods:

• Copy libmysqlclient.so to the directory where your other shared libraries are located (probably
/usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of
libmysqlclient.so.

• On Linux, you can add the path name of the directory where libmysqlclient.so is located to the
/etc/ld.so.conf file.

•     Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable. Some systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the linker fails to
find. For example, if the linker cannot find libc because it is in /lib and the link command specifies -
L/usr/lib, change the -L option to -L/lib or add -L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary
compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built
(check the output from make for mysql.so when you compile the Perl client). The -L option should
specify the path name of the directory where libgcc.a is located on your system.



Problems Using the Perl DBI/DBD Interface

209

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this
case, you can solve the mismatch by compiling both with gcc.



210



211

Chapter 3 Tutorial

Table of Contents
3.1 Connecting to and Disconnecting from the Server ................................................................. 211
3.2 Entering Queries ................................................................................................................. 212
3.3 Creating and Using a Database ........................................................................................... 215

3.3.1 Creating and Selecting a Database ........................................................................... 216
3.3.2 Creating a Table ...................................................................................................... 217
3.3.3 Loading Data into a Table ........................................................................................ 218
3.3.4 Retrieving Information from a Table ........................................................................... 219

3.4 Getting Information About Databases and Tables ................................................................. 232
3.5 Using mysql in Batch Mode ................................................................................................. 233
3.6 Examples of Common Queries ............................................................................................ 235

3.6.1 The Maximum Value for a Column ............................................................................ 235
3.6.2 The Row Holding the Maximum of a Certain Column ................................................. 235
3.6.3 Maximum of Column per Group ................................................................................ 236
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column .............................. 236
3.6.5 Using User-Defined Variables ................................................................................... 237
3.6.6 Using Foreign Keys .................................................................................................. 237
3.6.7 Searching on Two Keys ............................................................................................ 239
3.6.8 Calculating Visits Per Day ........................................................................................ 239
3.6.9 Using AUTO_INCREMENT ....................................................................................... 240

3.7 Using MySQL with Apache .................................................................................................. 242

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client
program to create and use a simple database. mysql (sometimes referred to as the “terminal monitor”
or just “monitor”) is an interactive program that enables you to connect to a MySQL server, run
queries, and view the results. mysql may also be used in batch mode: you place your queries in a file
beforehand, then tell mysql to execute the contents of the file. Both ways of using mysql are covered
here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available
to which you can connect. If this is not true, contact your MySQL administrator. (If you are the
administrator, you need to consult the relevant portions of this manual, such as Chapter 5, MySQL
Server Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only
in accessing an existing database, you may want to skip over the sections that describe how to create
the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant
sections of the manual for more information on the topics covered here.

3.1 Connecting to and Disconnecting from the Server

To connect to the server, you will usually need to provide a MySQL user name when you invoke mysql
and, most likely, a password. If the server runs on a machine other than the one where you log in,
you will also need to specify a host name. Contact your administrator to find out what connection
parameters you should use to connect (that is, what host, user name, and password to use). Once you
know the proper parameters, you should be able to connect like this:



Entering Queries

212

shell> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of
your MySQL account. Substitute appropriate values for your setup. The ******** represents your
password; enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 5.5.58-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter SQL statements.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply
use the following:

shell> mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't
connect to local MySQL server through socket '/tmp/mysql.sock' (2), it means
that the MySQL server daemon (Unix) or service (Windows) is not running. Consult the administrator
or see the section of Chapter 2, Installing and Upgrading MySQL that is appropriate to your operating
system.

For help with other problems often encountered when trying to log in, see Section B.5.2, “Common
Errors When Using MySQL Programs”.

Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server
running on the local host. If this is the case on your machine, you should be able to connect to that
server by invoking mysql without any options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the
mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control+D.

Most examples in the following sections assume that you are connected to the server. They indicate
this by the mysql> prompt.

3.2 Entering Queries

Make sure that you are connected to the server, as discussed in the previous section. Doing so does
not in itself select any database to work with, but that is okay. At this point, it is more important to find
out a little about how to issue queries than to jump right in creating tables, loading data into them, and
retrieving data from them. This section describes the basic principles of entering queries, using several
queries you can try out to familiarize yourself with how mysql works.



Entering Queries

213

Here is a simple query that asks the server to tell you its version number and the current date. Type it
in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+--------------+--------------+
| VERSION()    | CURRENT_DATE |
+--------------+--------------+
| 5.5.0-m2-log | 2009-05-04   |
+--------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

• A query normally consists of an SQL statement followed by a semicolon. (There are some
exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to
others later.)

• When you issue a query, mysql sends it to the server for execution and displays the results, then
prints another mysql> prompt to indicate that it is ready for another query.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for
the columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

• mysql shows how many rows were returned and how long the query took to execute, which gives
you a rough idea of server performance. These values are imprecise because they represent wall
clock time (not CPU or machine time), and because they are affected by factors such as server load
and network latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining
examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here is another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4)      | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 |      25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter
multiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+--------------+
| VERSION()    |
+--------------+
| 5.5.0-m2-log |
+--------------+
1 row in set (0.00 sec)

+---------------------+
| NOW()               |
+---------------------+
| 2009-05-04 15:15:00 |
+---------------------+



Entering Queries

214

1 row in set (0.00 sec)

A query need not be given all on a single line, so lengthy queries that require several lines are not a
problem. mysql determines where your statement ends by looking for the terminating semicolon, not
by looking for the end of the input line. (In other words, mysql accepts free-format input: it collects
input lines but does not execute them until it sees the semicolon.)

Here is a simple multiple-line statement:

mysql> SELECT
    -> USER()
    -> ,
    -> CURRENT_DATE;
+---------------+--------------+
| USER()        | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2005-10-11   |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a
multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a query that you are in the process of entering, cancel it by
typing \c:

mysql> SELECT
    -> USER()
    -> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to
indicate that mysql is ready for a new query.

The following table shows each of the prompts you may see and summarizes what they mean about
the state that mysql is in.

Prompt Meaning

mysql> Ready for new query

-> Waiting for next line of multiple-line query

'> Waiting for next line, waiting for completion of a string that began with a single quote (')

"> Waiting for next line, waiting for completion of a string that began with a double quote (")

`> Waiting for next line, waiting for completion of an identifier that began with a backtick (`)

/*> Waiting for next line, waiting for completion of a comment that began with /*

Multiple-line statements commonly occur by accident when you intend to issue a query on a single line,
but forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
    ->

If this happens to you (you think you've entered a statement but the only response is a -> prompt),
most likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you
might sit there for a while before realizing what you need to do. Enter a semicolon to complete the
statement, and mysql executes it:

mysql> SELECT USER()
    -> ;



Creating and Using a Database

215

+---------------+
| USER()        |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting
for completion of a string). In MySQL, you can write strings surrounded by either ' or " characters (for
example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When
you see a '> or "> prompt, it means that you have entered a line containing a string that begins with
a ' or " quote character, but have not yet entered the matching quote that terminates the string. This
often indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
    '>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead
of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that
mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The
string 'Smith is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the query. However, you cannot just type
\c in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter the
closing quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
    '> '\c
mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new query.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not
completed a backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter
an unterminated string, any further lines you type appear to be ignored by mysql—including a line
containing QUIT. This can be quite confusing, especially if you do not know that you need to supply the
terminating quote before you can cancel the current query.

3.3 Creating and Using a Database
Once you know how to enter SQL statements, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track
of various types of information about them. You can do so by creating tables to hold your data and
loading them with the desired information. Then you can answer different sorts of questions about
your animals by retrieving data from the tables. This section shows you how to perform the following
operations:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations
in which a similar type of database might be used. For example, a database like this could be used by
a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie



Creating and Selecting a Database

216

distribution containing some of the queries and sample data used in the following sections can be
obtained from the MySQL Web site. It is available in both compressed tar file and Zip formats at http://
dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql    |
| test     |
| tmp      |
+----------+

The mysql database describes user access privileges. The test database often is available as a
workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES
does not show databases that you have no privileges for if you do not have the SHOW DATABASES
privilege. See Section 13.7.5.15, “SHOW DATABASES Syntax”.

If the test database exists, try to access it:

mysql> USE test
Database changed

USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon
if you like; it does no harm.) The USE statement is special in another way, too: it must be given on a
single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you
create in that database can be removed by anyone else with access to it. For this reason, you should
probably ask your MySQL administrator for permission to use a database of your own. Suppose that
you want to call yours menagerie. The administrator needs to execute a statement like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the
host from which you connect to the server.

3.3.1 Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can begin
using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer
to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is
also true for table names. (Under Windows, this restriction does not apply, although you must refer to
databases and tables using the same lettercase throughout a given query. However, for a variety of
reasons, the recommended best practice is always to use the same lettercase that was used when the
database was created.)

Note

If you get an error such as ERROR 1044 (42000): Access denied
for user 'micah'@'localhost' to database 'menagerie' when
attempting to create a database, this means that your user account does not

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/


Creating a Table

217

have the necessary privileges to do so. Discuss this with the administrator or
see Section 6.2, “The MySQL Access Privilege System”.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the
current database, use this statement:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a
mysql session. You can do this by issuing a USE statement as shown in the example. Alternatively,
you can select the database on the command line when you invoke mysql. Just specify its name after
any connection parameters that you might need to provide. For example:

shell> mysql -h host -u user -p menagerie
Enter password: ********

Important

menagerie in the command just shown is not your password. If you want
to supply your password on the command line after the -p option, you must
do so with no intervening space (for example, as -pmypassword, not as -p
mypassword). However, putting your password on the command line is not
recommended, because doing so exposes it to snooping by other users logged
in on your machine.

Note

You can see at any time which database is currently selected using SELECT
DATABASE().

3.3.2 Creating a Table

Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and
what columns should be in each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and
it should contain, as a bare minimum, each animal's name. Because the name by itself is not very
interesting, the table should contain other information. For example, if more than one person in your
family keeps pets, you might want to list each animal's owner. You might also want to record some
basic descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age
changes as time passes, which means you'd have to update your records often. Instead, it is better
to store a fixed value such as date of birth. Then, whenever you need age, you can calculate it as
the difference between the current date and the birth date. MySQL provides functions for doing date
arithmetic, so this is not difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If
you think this type of query is somewhat silly, note that it is the same question you might ask in the
context of a business database to identify clients to whom you need to send out birthday greetings in
the current week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.



Loading Data into a Table

218

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
    -> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values
vary in length. The lengths in those column definitions need not all be the same, and need not be 20.
You can normally pick any length from 1 to 65535, whatever seems most reasonable to you. If you
make a poor choice and it turns out later that you need a longer field, MySQL provides an ALTER
TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or
perhaps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet                 |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field   | Type        | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
| name    | varchar(20) | YES  |     | NULL    |       |
| owner   | varchar(20) | YES  |     | NULL    |       |
| species | varchar(20) | YES  |     | NULL    |       |
| sex     | char(1)     | YES  |     | NULL    |       |
| birth   | date        | YES  |     | NULL    |       |
| death   | date        | YES  |     | NULL    |       |
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or
what types they have.

For more information about MySQL data types, see Chapter 11, Data Types.

3.3.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful
for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates
in 'YYYY-MM-DD' format; this may be different from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04  

Claws Gwen cat m 1994-03-17  

Buffy Harold dog f 1989-05-13  

Fang Benny dog m 1990-08-27  



Retrieving Information from a Table

219

name owner species sex birth death

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11  

Whistler Gwen bird  1997-12-09  

Slim Benny snake m 1996-04-29  

Because you are beginning with an empty table, an easy way to populate it is to create a text file
containing a row for each of your animals, then load the contents of the file into the table with a single
statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs,
and given in the order in which the columns were listed in the CREATE TABLE statement. For missing
values (such as unknown sexes or death dates for animals that are still living), you can use NULL
values. To represent these in your text file, use \N (backslash, capital-N). For example, the record for
Whistler the bird would look like this (where the whitespace between values is a single tab character):

Whistler        Gwen    bird    \N      1997-12-09      \N

To load the text file pet.txt into the pet table, use this statement:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

If you created the file on Windows with an editor that uses \r\n as a line terminator, you should use
this statement instead:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
    -> LINES TERMINATED BY '\r\n';

(On an Apple machine running OS X, you would likely want to use LINES TERMINATED BY '\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA
statement if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to
read the file pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled
by default. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”, for information on how to
change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest
form, you supply values for each column, in the order in which the columns were listed in the CREATE
TABLE statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new
record using an INSERT statement like this:

mysql> INSERT INTO pet
    -> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

String and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL
directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load
your records initially using several INSERT statements rather than a single LOAD DATA statement.

3.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select



Retrieving Information from a Table

220

FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause
is optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows must
satisfy to qualify for retrieval.

3.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name     | owner  | species | sex  | birth      | death      |
+----------+--------+---------+------+------------+------------+
| Fluffy   | Harold | cat     | f    | 1993-02-04 | NULL       |
| Claws    | Gwen   | cat     | m    | 1994-03-17 | NULL       |
| Buffy    | Harold | dog     | f    | 1989-05-13 | NULL       |
| Fang     | Benny  | dog     | m    | 1990-08-27 | NULL       |
| Bowser   | Diane  | dog     | m    | 1979-08-31 | 1995-07-29 |
| Chirpy   | Gwen   | bird    | f    | 1998-09-11 | NULL       |
| Whistler | Gwen   | bird    | NULL | 1997-12-09 | NULL       |
| Slim     | Benny  | snake   | m    | 1996-04-29 | NULL       |
| Puffball | Diane  | hamster | f    | 1999-03-30 | NULL       |
+----------+--------+---------+------+------------+------------+

This form of SELECT is useful if you want to review your entire table, for example, after you've just
loaded it with your initial data set. For example, you may happen to think that the birth date for Bowser
doesn't seem quite right. Consulting your original pedigree papers, you find that the correct birth year
should be 1989, not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD
DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.3.4.2 Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause
from the SELECT statement. But typically you don't want to see the entire table, particularly when it
becomes large. Instead, you're usually more interested in answering a particular question, in which
case you specify some constraints on the information you want. Let's look at some selection queries in
terms of questions about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that
you made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name   | owner | species | sex  | birth      | death      |



Retrieving Information from a Table

221

+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog     | m    | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser',
'BOWSER', and so forth. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which
animals were born during or after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name     | owner | species | sex  | birth      | death |
+----------+-------+---------+------+------------+-------+
| Chirpy   | Gwen  | bird    | f    | 1998-09-11 | NULL  |
| Puffball | Diane | hamster | f    | 1999-03-30 | NULL  |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name  | owner  | species | sex  | birth      | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog     | f    | 1989-05-13 | NULL  |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name     | owner | species | sex  | birth      | death |
+----------+-------+---------+------+------------+-------+
| Chirpy   | Gwen  | bird    | f    | 1998-09-11 | NULL  |
| Whistler | Gwen  | bird    | NULL | 1997-12-09 | NULL  |
| Slim     | Benny | snake   | m    | 1996-04-29 | NULL  |
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both
operators, it is a good idea to use parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
    -> OR (species = 'dog' AND sex = 'f');
+-------+--------+---------+------+------------+-------+
| name  | owner  | species | sex  | birth      | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen   | cat     | m    | 1994-03-17 | NULL  |
| Buffy | Harold | dog     | f    | 1989-05-13 | NULL  |
+-------+--------+---------+------+------------+-------+

3.3.4.3 Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are
interested, separated by commas. For example, if you want to know when your animals were born,
select the name and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name     | birth      |
+----------+------------+
| Fluffy   | 1993-02-04 |
| Claws    | 1994-03-17 |



Retrieving Information from a Table

222

| Buffy    | 1989-05-13 |
| Fang     | 1990-08-27 |
| Bowser   | 1989-08-31 |
| Chirpy   | 1998-09-11 |
| Whistler | 1997-12-09 |
| Slim     | 1996-04-29 |
| Puffball | 1999-03-30 |
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner  |
+--------+
| Harold |
| Gwen   |
| Harold |
| Benny  |
| Diane  |
| Gwen   |
| Gwen   |
| Benny  |
| Diane  |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear
more than once. To minimize the output, retrieve each unique output record just once by adding the
keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner  |
+--------+
| Benny  |
| Diane  |
| Gwen   |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth
dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
    -> WHERE species = 'dog' OR species = 'cat';
+--------+---------+------------+
| name   | species | birth      |
+--------+---------+------------+
| Fluffy | cat     | 1993-02-04 |
| Claws  | cat     | 1994-03-17 |
| Buffy  | dog     | 1989-05-13 |
| Fang   | dog     | 1990-08-27 |
| Bowser | dog     | 1989-08-31 |
+--------+---------+------------+

3.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular
order. It is often easier to examine query output when the rows are sorted in some meaningful way. To
sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+



Retrieving Information from a Table

223

| name     | birth      |
+----------+------------+
| Buffy    | 1989-05-13 |
| Bowser   | 1989-08-31 |
| Fang     | 1990-08-27 |
| Fluffy   | 1993-02-04 |
| Claws    | 1994-03-17 |
| Slim     | 1996-04-29 |
| Whistler | 1997-12-09 |
| Chirpy   | 1998-09-11 |
| Puffball | 1999-03-30 |
+----------+------------+

On character type columns, sorting—like all other comparison operations—is normally performed in a
case-insensitive fashion. This means that the order is undefined for columns that are identical except
for their case. You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY
BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order,
add the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name     | birth      |
+----------+------------+
| Puffball | 1999-03-30 |
| Chirpy   | 1998-09-11 |
| Whistler | 1997-12-09 |
| Slim     | 1996-04-29 |
| Claws    | 1994-03-17 |
| Fluffy   | 1993-02-04 |
| Fang     | 1990-08-27 |
| Bowser   | 1989-08-31 |
| Buffy    | 1989-05-13 |
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For
example, to sort by type of animal in ascending order, then by birth date within animal type in
descending order (youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
    -> ORDER BY species, birth DESC;
+----------+---------+------------+
| name     | species | birth      |
+----------+---------+------------+
| Chirpy   | bird    | 1998-09-11 |
| Whistler | bird    | 1997-12-09 |
| Claws    | cat     | 1994-03-17 |
| Fluffy   | cat     | 1993-02-04 |
| Fang     | dog     | 1990-08-27 |
| Bowser   | dog     | 1989-08-31 |
| Buffy    | dog     | 1989-05-13 |
| Puffball | hamster | 1999-03-30 |
| Slim     | snake   | 1996-04-29 |
+----------+---------+------------+

The DESC keyword applies only to the column name immediately preceding it (birth); it does not
affect the species column sort order.

3.3.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to
calculate ages or extract parts of dates.

To determine how many years old each of your pets is, use the TIMESTAMPDIFF() function. Its
arguments are the unit in which you want the result expressed, and the two date for which to take the



Retrieving Information from a Table

224

difference. The following query shows, for each pet, the birth date, the current date, and the age in
years. An alias (age) is used to make the final output column label more meaningful.

mysql> SELECT name, birth, CURDATE(),
    -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
    -> FROM pet;
+----------+------------+------------+------+
| name     | birth      | CURDATE()  | age  |
+----------+------------+------------+------+
| Fluffy   | 1993-02-04 | 2003-08-19 |   10 |
| Claws    | 1994-03-17 | 2003-08-19 |    9 |
| Buffy    | 1989-05-13 | 2003-08-19 |   14 |
| Fang     | 1990-08-27 | 2003-08-19 |   12 |
| Bowser   | 1989-08-31 | 2003-08-19 |   13 |
| Chirpy   | 1998-09-11 | 2003-08-19 |    4 |
| Whistler | 1997-12-09 | 2003-08-19 |    5 |
| Slim     | 1996-04-29 | 2003-08-19 |    7 |
| Puffball | 1999-03-30 | 2003-08-19 |    4 |
+----------+------------+------------+------+

The query works, but the result could be scanned more easily if the rows were presented in some
order. This can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
    -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
    -> FROM pet ORDER BY name;
+----------+------------+------------+------+
| name     | birth      | CURDATE()  | age  |
+----------+------------+------------+------+
| Bowser   | 1989-08-31 | 2003-08-19 |   13 |
| Buffy    | 1989-05-13 | 2003-08-19 |   14 |
| Chirpy   | 1998-09-11 | 2003-08-19 |    4 |
| Claws    | 1994-03-17 | 2003-08-19 |    9 |
| Fang     | 1990-08-27 | 2003-08-19 |   12 |
| Fluffy   | 1993-02-04 | 2003-08-19 |   10 |
| Puffball | 1999-03-30 | 2003-08-19 |    4 |
| Slim     | 1996-04-29 | 2003-08-19 |    7 |
| Whistler | 1997-12-09 | 2003-08-19 |    5 |
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
    -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
    -> FROM pet ORDER BY age;
+----------+------------+------------+------+
| name     | birth      | CURDATE()  | age  |
+----------+------------+------------+------+
| Chirpy   | 1998-09-11 | 2003-08-19 |    4 |
| Puffball | 1999-03-30 | 2003-08-19 |    4 |
| Whistler | 1997-12-09 | 2003-08-19 |    5 |
| Slim     | 1996-04-29 | 2003-08-19 |    7 |
| Claws    | 1994-03-17 | 2003-08-19 |    9 |
| Fluffy   | 1993-02-04 | 2003-08-19 |   10 |
| Fang     | 1990-08-27 | 2003-08-19 |   12 |
| Bowser   | 1989-08-31 | 2003-08-19 |   13 |
| Buffy    | 1989-05-13 | 2003-08-19 |   14 |
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine
which animals these are by checking whether the death value is NULL. Then, for those with non-NULL
values, compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
    -> TIMESTAMPDIFF(YEAR,birth,death) AS age
    -> FROM pet WHERE death IS NOT NULL ORDER BY age;
+--------+------------+------------+------+



Retrieving Information from a Table

225

| name   | birth      | death      | age  |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 |    5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special
value that cannot be compared using the usual comparison operators. This is discussed later. See
Section 3.3.4.6, “Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation,
year and day are irrelevant; you simply want to extract the month part of the birth column.
MySQL provides several functions for extracting parts of dates, such as YEAR(), MONTH(), and
DAYOFMONTH(). MONTH() is the appropriate function here. To see how it works, run a simple query
that displays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name     | birth      | MONTH(birth) |
+----------+------------+--------------+
| Fluffy   | 1993-02-04 |            2 |
| Claws    | 1994-03-17 |            3 |
| Buffy    | 1989-05-13 |            5 |
| Fang     | 1990-08-27 |            8 |
| Bowser   | 1989-08-31 |            8 |
| Chirpy   | 1998-09-11 |            9 |
| Whistler | 1997-12-09 |           12 |
| Slim     | 1996-04-29 |            4 |
| Puffball | 1999-03-30 |            3 |
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is
April. Then the month value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name  | birth      |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the
month number (12) and look for animals born in month 13, because there is no such month. Instead,
you look for animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to
use the number for a particular month. DATE_ADD() enables you to add a time interval to a given date.
If you add a month to the value of CURDATE(), then extract the month part with MONTH(), the result
produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet
    -> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after
using the modulo function (MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
    -> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between
0 and 11. So the addition has to be after the MOD(), otherwise we would go from November (11) to
January (1).

3.3.4.6 Working with NULL Values



Retrieving Information from a Table

226

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing
unknown value” and it is treated somewhat differently from other values.

To test for NULL, use the IS NULL and IS NOT NULL operators, as shown here:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
|         0 |             1 |
+-----------+---------------+

You cannot use arithmetic comparison operators such as =, <, or <> to test for NULL. To demonstrate
this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
|     NULL |      NULL |     NULL |     NULL |
+----------+-----------+----------+----------+

Because the result of any arithmetic comparison with NULL is also NULL, you cannot obtain any
meaningful results from such comparisons.

In MySQL, 0 or NULL means false and anything else means true. The default truth value from a
boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which
animals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if
you do ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an
empty string into a column defined as NOT NULL, but this is not the case. These are in fact values,
whereas NULL means “not having a value.” You can test this easily enough by using IS [NOT] NULL
as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
|         0 |             1 |          0 |              1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact
NOT NULL. See Section B.5.4.3, “Problems with NULL Values”.

3.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on
extended regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching enables you to use _ to match any single character and % to match an arbitrary
number of characters (including zero characters). In MySQL, SQL patterns are case-insensitive by
default. Some examples are shown here. You do not use = or <> when you use SQL patterns; use the
LIKE or NOT LIKE comparison operators instead.

To find names beginning with b:



Retrieving Information from a Table

227

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name   | owner  | species | sex  | birth      | death      |
+--------+--------+---------+------+------------+------------+
| Buffy  | Harold | dog     | f    | 1989-05-13 | NULL       |
| Bowser | Diane  | dog     | m    | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with fy:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name   | owner  | species | sex  | birth      | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat     | f    | 1993-02-04 | NULL  |
| Buffy  | Harold | dog     | f    | 1989-05-13 | NULL  |
+--------+--------+---------+------+------------+-------+

To find names containing a w:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name     | owner | species | sex  | birth      | death      |
+----------+-------+---------+------+------------+------------+
| Claws    | Gwen  | cat     | m    | 1994-03-17 | NULL       |
| Bowser   | Diane | dog     | m    | 1989-08-31 | 1995-07-29 |
| Whistler | Gwen  | bird    | NULL | 1997-12-09 | NULL       |
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the _ pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name  | owner  | species | sex  | birth      | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen   | cat     | m    | 1994-03-17 | NULL  |
| Buffy | Harold | dog     | f    | 1989-05-13 | NULL  |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you
test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and
NOT RLIKE, which are synonyms).

The following list describes some characteristics of extended regular expressions:

• . matches any single character.

• A character class [...] matches any character within the brackets. For example, [abc] matches
a, b, or c. To name a range of characters, use a dash. [a-z] matches any letter, whereas [0-9]
matches any digit.

• * matches zero or more instances of the thing preceding it. For example, x* matches any number of
x characters, [0-9]* matches any number of digits, and .* matches any number of anything.

• A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This
differs from a LIKE pattern match, which succeeds only if the pattern matches the entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use ^ at the
beginning or $ at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are
rewritten here to use REGEXP.

To find names beginning with b, use ^ to match the beginning of the name:



Retrieving Information from a Table

228

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name   | owner  | species | sex  | birth      | death      |
+--------+--------+---------+------+------------+------------+
| Buffy  | Harold | dog     | f    | 1989-05-13 | NULL       |
| Bowser | Diane  | dog     | m    | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

If you really want to force a REGEXP comparison to be case sensitive, use the BINARY keyword to
make one of the strings a binary string. This query matches only lowercase b at the beginning of a
name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY '^b';

To find names ending with fy, use $ to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name   | owner  | species | sex  | birth      | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat     | f    | 1993-02-04 | NULL  |
| Buffy  | Harold | dog     | f    | 1989-05-13 | NULL  |
+--------+--------+---------+------+------------+-------+

To find names containing a w, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name     | owner | species | sex  | birth      | death      |
+----------+-------+---------+------+------------+------------+
| Claws    | Gwen  | cat     | m    | 1994-03-17 | NULL       |
| Bowser   | Diane | dog     | m    | 1989-08-31 | 1995-07-29 |
| Whistler | Gwen  | bird    | NULL | 1997-12-09 | NULL       |
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in
the previous query to put a wildcard on either side of the pattern to get it to match the entire value like it
would be if you used an SQL pattern.

To find names containing exactly five characters, use ^ and $ to match the beginning and end of the
name, and five instances of . in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name  | owner  | species | sex  | birth      | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen   | cat     | m    | 1994-03-17 | NULL  |
| Buffy | Harold | dog     | f    | 1989-05-13 | NULL  |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name  | owner  | species | sex  | birth      | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen   | cat     | m    | 1994-03-17 | NULL  |
| Buffy | Harold | dog     | f    | 1989-05-13 | NULL  |
+-------+--------+---------+------+------------+-------+

Section 12.5.2, “Regular Expressions”, provides more information about the syntax for regular
expressions.



Retrieving Information from a Table

229

3.3.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a
table?” For example, you might want to know how many pets you have, or how many pets each owner
has, or you might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet
table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to
count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
|        9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to
find out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner  | COUNT(*) |
+--------+----------+
| Benny  |        2 |
| Diane  |        2 |
| Gwen   |        3 |
| Harold |        2 |
+--------+----------+

The preceding query uses GROUP BY to group all records for each owner. The use of COUNT()
in conjunction with GROUP BY is useful for characterizing your data under various groupings. The
following examples show different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
| bird    |        2 |
| cat     |        2 |
| dog     |        3 |
| hamster |        1 |
| snake   |        1 |
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex  | COUNT(*) |
+------+----------+
| NULL |        1 |
| f    |        4 |
| m    |        4 |
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+



Retrieving Information from a Table

230

| species | sex  | COUNT(*) |
+---------+------+----------+
| bird    | NULL |        1 |
| bird    | f    |        1 |
| cat     | f    |        1 |
| cat     | m    |        1 |
| dog     | f    |        1 |
| dog     | m    |        2 |
| hamster | f    |        1 |
| snake   | m    |        1 |
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when
performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
    -> WHERE species = 'dog' OR species = 'cat'
    -> GROUP BY species, sex;
+---------+------+----------+
| species | sex  | COUNT(*) |
+---------+------+----------+
| cat     | f    |        1 |
| cat     | m    |        1 |
| dog     | f    |        1 |
| dog     | m    |        2 |
+---------+------+----------+

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
    -> WHERE sex IS NOT NULL
    -> GROUP BY species, sex;
+---------+------+----------+
| species | sex  | COUNT(*) |
+---------+------+----------+
| bird    | f    |        1 |
| cat     | f    |        1 |
| cat     | m    |        1 |
| dog     | f    |        1 |
| dog     | m    |        2 |
| hamster | f    |        1 |
| snake   | m    |        1 |
+---------+------+----------+

If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present
that names those same columns. Otherwise, the following occurs:

• If the ONLY_FULL_GROUP_BY SQL mode is enabled, an error occurs:

mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT()...)
with no GROUP columns is illegal if there is no GROUP BY clause

• If ONLY_FULL_GROUP_BY is not enabled, the query is processed by treating all rows as a single
group, but the value selected for each named column is indeterminate. The server is free to select
the value from any row:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
+--------+----------+
| owner  | COUNT(*) |



Retrieving Information from a Table

231

+--------+----------+
| Harold |        8 |
+--------+----------+
1 row in set (0.00 sec)

See also Section 12.16.3, “MySQL Handling of GROUP BY”. See Section 12.16.1, “Aggregate
(GROUP BY) Function Descriptions” for information about COUNT(expr) behavior and related
optimizations.

3.3.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them,
such as events in their lives like visits to the vet or when litters are born, you need another table. What
should this table look like? It needs to contain the following information:

• The pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
    -> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file
containing the following information.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel  

Fang 1991-10-12 kennel  

Fang 1998-08-28 birthday Gave him a new chew toy

Claws 1998-03-17 birthday Gave him a new flea collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be
able to perform retrievals on the records in the event table; the principles are the same. But when is
the event table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to
calculate ages from two dates. The litter date of the mother is in the event table, but to calculate
her age on that date you need her birth date, which is stored in the pet table. This means the query
requires both tables:

mysql> SELECT pet.name,



Getting Information About Databases and Tables

232

    -> TIMESTAMPDIFF(YEAR,birth,date) AS age,
    -> remark
    -> FROM pet INNER JOIN event
    ->   ON pet.name = event.name
    -> WHERE event.type = 'litter';
+--------+------+-----------------------------+
| name   | age  | remark                      |
+--------+------+-----------------------------+
| Fluffy |    2 | 4 kittens, 3 female, 1 male |
| Buffy  |    4 | 5 puppies, 2 female, 3 male |
| Buffy  |    5 | 3 puppies, 3 female         |
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in one
table can be matched to records in the other. This is easy because they both have a name column.
The query uses an ON clause to match up records in the two tables based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN permits rows from either
table to appear in the result if and only if both tables meet the conditions specified in the ON clause.
In this example, the ON clause specifies that the name column in the pet table must match the name
column in the event table. If a name appears in one table but not the other, the row will not appear
in the result because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean
when referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself,
if you want to compare records in a table to other records in that same table. For example, to find
breeding pairs among your pets, you can join the pet table with itself to produce candidate pairs of
males and females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
    -> FROM pet AS p1 INNER JOIN pet AS p2
    ->   ON p1.species = p2.species AND p1.sex = 'f' AND p2.sex = 'm';
+--------+------+--------+------+---------+
| name   | sex  | name   | sex  | species |
+--------+------+--------+------+---------+
| Fluffy | f    | Claws  | m    | cat     |
| Buffy  | f    | Fang   | m    | dog     |
| Buffy  | f    | Bowser | m    | dog     |
+--------+------+--------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which
instance of the table each column reference is associated with.

3.4 Getting Information About Databases and Tables
What if you forget the name of a database or table, or what the structure of a given table is (for
example, what its columns are called)? MySQL addresses this problem through several statements
that provide information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To
find out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie  |
+------------+



Using mysql in Batch Mode

233

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the
name of a table), use this statement:

mysql> SHOW TABLES;
+---------------------+
| Tables_in_menagerie |
+---------------------+
| event               |
| pet                 |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name,
where db_name is the name of the database. See Section 13.7.5.38, “SHOW TABLES Syntax”, for
more information.

If you want to find out about the structure of a table, the DESCRIBE statement is useful; it displays
information about each of a table's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field   | Type        | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
| name    | varchar(20) | YES  |     | NULL    |       |
| owner   | varchar(20) | YES  |     | NULL    |       |
| species | varchar(20) | YES  |     | NULL    |       |
| sex     | char(1)     | YES  |     | NULL    |       |
| birth   | date        | YES  |     | NULL    |       |
| death   | date        | YES  |     | NULL    |       |
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the
column can contain NULL values, Key indicates whether the column is indexed, and Default specifies
the column's default value. Extra displays special information about columns: If a column was created
with the AUTO_INCREMENT option, the value will be auto_increment rather than empty.

DESC is a short form of DESCRIBE. See Section 13.8.1, “DESCRIBE Syntax”, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW
CREATE TABLE statement. See Section 13.7.5.12, “SHOW CREATE TABLE Syntax”.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See
Section 13.7.5.23, “SHOW INDEX Syntax”, for more about this statement.

3.5 Using mysql in Batch Mode
In the previous sections, you used mysql interactively to enter statements and view the results. You
can also run mysql in batch mode. To do this, put the statements you want to run in a file, then tell
mysql to read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause
problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

shell> mysql -h host -u user -p < batch-file
Enter password: ********



Using mysql in Batch Mode

234

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use
the --force command-line option.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script enables you to avoid
retyping it each time you execute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line
statements or multiple-statement sequences. If you make a mistake, you don't have to retype
everything. Just edit your script to correct the error, then tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

shell> mysql < batch-file | more

• You can catch the output in a file for further processing:

shell> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the statements.

• Some situations do not allow for interactive use, for example, when you run a query from a cron job.
In this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when
you use it interactively. For example, the output of SELECT DISTINCT species FROM pet looks
like this when mysql is run interactively:

+---------+
| species |
+---------+
| bird    |
| cat     |
| dog     |
| hamster |
| snake   |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output
the statements that are executed, use mysql -v.

You can also use scripts from the mysql prompt by using the source command or \. command:

mysql> source filename;
mysql> \. filename

See Section 4.5.1.5, “Executing SQL Statements from a Text File”, for more information.



Examples of Common Queries

235

3.6 Examples of Common Queries
Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain
traders (dealers). Supposing that each trader has a single fixed price per article, then (article,
dealer) is a primary key for the records.

Start the command-line tool mysql and select a database:

shell> mysql your-database-name

(In most MySQL installations, you can use the database named test).

You can create and populate the example table with these statements:

CREATE TABLE shop (
    article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
    dealer  CHAR(20)                 DEFAULT ''     NOT NULL,
    price   DOUBLE(16,2)             DEFAULT '0.00' NOT NULL,
    PRIMARY KEY(article, dealer));
INSERT INTO shop VALUES
    (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
    (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
|    0001 | A      |  3.45 |
|    0001 | B      |  3.99 |
|    0002 | A      | 10.99 |
|    0003 | B      |  1.45 |
|    0003 | C      |  1.69 |
|    0003 | D      |  1.25 |
|    0004 | D      | 19.95 |
+---------+--------+-------+

3.6.1 The Maximum Value for a Column

“What is the highest item number?”

SELECT MAX(article) AS article FROM shop;

+---------+
| article |
+---------+
|       4 |
+---------+

3.6.2 The Row Holding the Maximum of a Certain Column

Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

SELECT article, dealer, price
FROM   shop
WHERE  price=(SELECT MAX(price) FROM shop);



Maximum of Column per Group

236

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
|    0004 | D      | 19.95 |
+---------+--------+-------+

Other solutions are to use a LEFT JOIN or to sort all rows descending by price and get only the first
row using the MySQL-specific LIMIT clause:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.price < s2.price
WHERE s2.article IS NULL;

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the
LIMIT solution would show only one of them.

3.6.3 Maximum of Column per Group

Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM   shop
GROUP BY article;

+---------+-------+
| article | price |
+---------+-------+
|    0001 |  3.99 |
|    0002 | 10.99 |
|    0003 |  1.69 |
|    0004 | 19.95 |
+---------+-------+

3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM   shop s1
WHERE  price=(SELECT MAX(s2.price)
              FROM shop s2
              WHERE s1.article = s2.article);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
|    0001 | B      |  3.99 |
|    0002 | A      | 10.99 |
|    0003 | C      |  1.69 |
|    0004 | D      | 19.95 |
+---------+--------+-------+

The preceding example uses a correlated subquery, which can be inefficient (see Section 13.2.10.7,
“Correlated Subqueries”). Other possibilities for solving the problem are to use an uncorrelated
subquery in the FROM clause or a LEFT JOIN.



Using User-Defined Variables

237

Uncorrelated subquery:

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
  SELECT article, MAX(price) AS price
  FROM shop
  GROUP BY article) AS s2
  ON s1.article = s2.article AND s1.price = s2.price;

LEFT JOIN:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no
s2.price with a greater value and the s2 rows values will be NULL. See Section 13.2.9.2, “JOIN
Syntax”.

3.6.5 Using User-Defined Variables

You can employ MySQL user variables to remember results without having to store them in temporary
variables in the client. (See Section 9.4, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
|    0003 | D      |  1.25 |
|    0004 | D      | 19.95 |
+---------+--------+-------+

Note

It is also possible to store the name of a database object such as a table or a
column in a user variable and then to use this variable in an SQL statement;
however, this requires the use of a prepared statement. See Section 13.5,
“Prepared SQL Statement Syntax”, for more information.

3.6.6 Using Foreign Keys

In MySQL, InnoDB tables support checking of foreign key constraints. See Chapter 14, The InnoDB
Storage Engine, and Section 1.7.2.3, “Foreign Key Differences”.

A foreign key constraint is not required merely to join two tables. For storage engines other than
InnoDB, it is possible when defining a column to use a REFERENCES tbl_name(col_name) clause,
which has no actual effect, and serves only as a memo or comment to you that the column which
you are currently defining is intended to refer to a column in another table. It is extremely important to
realize when using this syntax that:

• MySQL does not perform any sort of CHECK to make sure that col_name actually exists in
tbl_name (or even that tbl_name itself exists).

• MySQL does not perform any sort of action on tbl_name such as deleting rows in response to
actions taken on rows in the table which you are defining; in other words, this syntax induces no
ON DELETE or ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON
UPDATE clause as part of the REFERENCES clause, it is also ignored.)



Using Foreign Keys

238

• This syntax creates a column; it does not create any sort of index or key.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
    id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
    name CHAR(60) NOT NULL,
    PRIMARY KEY (id)
);

CREATE TABLE shirt (
    id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
    style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
    color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
    owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
    PRIMARY KEY (id)
);

INSERT INTO person VALUES (NULL, 'Antonio Paz');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);

INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);

SELECT * FROM person;
+----+---------------------+
| id | name                |
+----+---------------------+
|  1 | Antonio Paz         |
|  2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style   | color  | owner |
+----+---------+--------+-------+
|  1 | polo    | blue   |     1 |
|  2 | dress   | white  |     1 |
|  3 | t-shirt | blue   |     1 |
|  4 | dress   | orange |     2 |
|  5 | polo    | red    |     2 |
|  6 | dress   | blue   |     2 |
|  7 | t-shirt | white  |     2 |
+----+---------+--------+-------+

SELECT s.* FROM person p INNER JOIN shirt s
   ON s.owner = p.id
 WHERE p.name LIKE 'Lilliana%'
   AND s.color <> 'white';

+----+-------+--------+-------+
| id | style | color  | owner |
+----+-------+--------+-------+
|  4 | dress | orange |     2 |
|  5 | polo  | red    |     2 |
|  6 | dress | blue   |     2 |
+----+-------+--------+-------+



Searching on Two Keys

239

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE
TABLE or DESCRIBE:

SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,
`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY  (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

The use of REFERENCES in this way as a comment or “reminder” in a column definition works with
MyISAM tables.

3.6.7 Searching on Two Keys

An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR  field2_index = '1'

This case is optimized. See Section 8.2.1.3, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNION that combines the output of two separate
SELECT statements. See Section 13.2.9.3, “UNION Syntax”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
    FROM test_table WHERE field1_index = '1'
UNION
SELECT field1_index, field2_index
    FROM test_table WHERE field2_index = '1';

3.6.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of days
per month a user has visited a Web page.

CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
             day INT(2) UNSIGNED ZEROFILL);
INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
            (2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To
determine how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
       GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 |    01 |    3 |
| 2000 |    02 |    2 |



Using AUTO_INCREMENT

240

+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination,
with automatic removal of duplicate entries.

3.6.9 Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
     id MEDIUMINT NOT NULL AUTO_INCREMENT,
     name CHAR(30) NOT NULL,
     PRIMARY KEY (id)
);

INSERT INTO animals (name) VALUES
    ('dog'),('cat'),('penguin'),
    ('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name    |
+----+---------+
|  1 | dog     |
|  2 | cat     |
|  3 | penguin |
|  4 | lax     |
|  5 | whale   |
|  6 | ostrich |
+----+---------+

No value was specified for the AUTO_INCREMENT column, so MySQL assigned sequence numbers
automatically. You can also explicitly assign 0 to the column to generate sequence numbers, unless
the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled. If the column is declared NOT NULL, it is also
possible to assign NULL to the column to generate sequence numbers. When you insert any other
value into an AUTO_INCREMENT column, the column is set to that value and the sequence is reset so
that the next automatically generated value follows sequentially from the largest column value.

You can retrieve the most recent automatically generated AUTO_INCREMENT value with the
LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. These functions
are connection-specific, so their return values are not affected by another connection which is also
performing inserts.

Use the smallest integer data type for the AUTO_INCREMENT column that is large enough to hold the
maximum sequence value you will need. When the column reaches the upper limit of the data type, the
next attempt to generate a sequence number fails. Use the UNSIGNED attribute if possible to allow a
greater range. For example, if you use TINYINT, the maximum permissible sequence number is 127.
For TINYINT UNSIGNED, the maximum is 255. See Section 11.2.1, “Integer Types (Exact Value) -
INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT” for the ranges of all the integer types.

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id()
actually return the AUTO_INCREMENT key from the first of the inserted rows.
This enables multiple-row inserts to be reproduced correctly on other servers in
a replication setup.

To start with an AUTO_INCREMENT value other than 1, set that value with CREATE TABLE or ALTER
TABLE, like this:



Using AUTO_INCREMENT

241

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

InnoDB Notes

For information about AUTO_INCREMENT usage specific to InnoDB, see Section 14.11.1.5,
“AUTO_INCREMENT Handling in InnoDB”.

MyISAM Notes

• For MyISAM tables, you can specify AUTO_INCREMENT on a secondary column in a multiple-
column index. In this case, the generated value for the AUTO_INCREMENT column is calculated as
MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when you
want to put data into ordered groups.

CREATE TABLE animals (
    grp ENUM('fish','mammal','bird') NOT NULL,
    id MEDIUMINT NOT NULL AUTO_INCREMENT,
    name CHAR(30) NOT NULL,
    PRIMARY KEY (grp,id)
) ENGINE=MyISAM;

INSERT INTO animals (grp,name) VALUES
    ('mammal','dog'),('mammal','cat'),
    ('bird','penguin'),('fish','lax'),('mammal','whale'),
    ('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp    | id | name    |
+--------+----+---------+
| fish   |  1 | lax     |
| mammal |  1 | dog     |
| mammal |  2 | cat     |
| mammal |  3 | whale   |
| bird   |  1 | penguin |
| bird   |  2 | ostrich |
+--------+----+---------+

In this case (when the AUTO_INCREMENT column is part of a multiple-column index),
AUTO_INCREMENT values are reused if you delete the row with the biggest AUTO_INCREMENT value
in any group. This happens even for MyISAM tables, for which AUTO_INCREMENT values normally
are not reused.

• If the AUTO_INCREMENT column is part of multiple indexes, MySQL generates sequence values
using the index that begins with the AUTO_INCREMENT column, if there is one. For example, if the
animals table contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would
ignore the PRIMARY KEY for generating sequence values. As a result, the table would contain a
single sequence, not a sequence per grp value.

Further Reading

More information about AUTO_INCREMENT is available here:

• How to assign the AUTO_INCREMENT attribute to a column: Section 13.1.17, “CREATE TABLE
Syntax”, and Section 13.1.7, “ALTER TABLE Syntax”.

• How AUTO_INCREMENT behaves depending on the NO_AUTO_VALUE_ON_ZERO SQL mode:
Section 5.1.8, “Server SQL Modes”.

• How to use the LAST_INSERT_ID() function to find the row that contains the most recent
AUTO_INCREMENT value: Section 12.14, “Information Functions”.



Using MySQL with Apache

242

• Setting the AUTO_INCREMENT value to be used: Section 5.1.5, “Server System Variables”.

• Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”

• AUTO_INCREMENT and replication: Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Section 5.1.5, “Server System
Variables”.

3.7 Using MySQL with Apache

There are programs that let you authenticate your users from a MySQL database and also let you write
your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the following
into the Apache configuration file:

LogFormat \
        "\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\",  \
        \"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line
writes to the log file.



243

Chapter 4 MySQL Programs

Table of Contents
4.1 Overview of MySQL Programs ............................................................................................. 244
4.2 Using MySQL Programs ...................................................................................................... 248

4.2.1 Invoking MySQL Programs ....................................................................................... 248
4.2.2 Connecting to the MySQL Server .............................................................................. 249
4.2.3 Specifying Program Options ...................................................................................... 252
4.2.4 Using Options on the Command Line ........................................................................ 253
4.2.5 Program Option Modifiers ......................................................................................... 255
4.2.6 Using Option Files .................................................................................................... 255
4.2.7 Command-Line Options that Affect Option-File Handling ............................................. 260
4.2.8 Using Options to Set Program Variables .................................................................... 261
4.2.9 Option Defaults, Options Expecting Values, and the = Sign ........................................ 262
4.2.10 Setting Environment Variables ................................................................................. 265

4.3 MySQL Server and Server-Startup Programs ....................................................................... 266
4.3.1 mysqld — The MySQL Server ................................................................................. 266
4.3.2 mysqld_safe — MySQL Server Startup Script ......................................................... 266
4.3.3 mysql.server — MySQL Server Startup Script ....................................................... 272
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ................................................. 274

4.4 MySQL Installation-Related Programs .................................................................................. 278
4.4.1 comp_err — Compile MySQL Error Message File .................................................... 278
4.4.2 mysqlbug — Generate Bug Report .......................................................................... 279
4.4.3 mysql_install_db — Initialize MySQL Data Directory ............................................ 279
4.4.4 mysql_plugin — Configure MySQL Server Plugins ................................................. 281
4.4.5 mysql_secure_installation — Improve MySQL Installation Security ................... 283
4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables ........................................... 284
4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables ........................................... 284

4.5 MySQL Client Programs ...................................................................................................... 289
4.5.1 mysql — The MySQL Command-Line Tool ............................................................... 289
4.5.2 mysqladmin — Client for Administering a MySQL Server .......................................... 311
4.5.3 mysqlcheck — A Table Maintenance Program ........................................................ 318
4.5.4 mysqldump — A Database Backup Program ............................................................ 325
4.5.5 mysqlimport — A Data Import Program ................................................................. 343
4.5.6 mysqlshow — Display Database, Table, and Column Information .............................. 349
4.5.7 mysqlslap — Load Emulation Client ....................................................................... 353

4.6 MySQL Administrative and Utility Programs .......................................................................... 360
4.6.1 innochecksum — Offline InnoDB File Checksum Utility ............................................ 360
4.6.2 myisam_ftdump — Display Full-Text Index information ............................................. 361
4.6.3 myisamchk — MyISAM Table-Maintenance Utility ..................................................... 362
4.6.4 myisamlog — Display MyISAM Log File Contents .................................................... 379
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables .......................... 380
4.6.6 mysqlaccess — Client for Checking Access Privileges ............................................. 386
4.6.7 mysqlbinlog — Utility for Processing Binary Log Files ............................................ 388
4.6.8 mysqldumpslow — Summarize Slow Query Log Files .............................................. 403
4.6.9 mysqlhotcopy — A Database Backup Program ....................................................... 404
4.6.10 mysql_convert_table_format — Convert Tables to Use a Given Storage
Engine .............................................................................................................................. 407
4.6.11 mysql_find_rows — Extract SQL Statements from Files ....................................... 408
4.6.12 mysql_fix_extensions — Normalize Table File Name Extensions ....................... 409
4.6.13 mysql_setpermission — Interactively Set Permissions in Grant Tables ................ 409
4.6.14 mysql_waitpid — Kill Process and Wait for Its Termination ................................... 410
4.6.15 mysql_zap — Kill Processes That Match a Pattern ................................................. 411

4.7 MySQL Program Development Utilities ................................................................................. 411
4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL .................................. 411



Overview of MySQL Programs

244

4.7.2 mysql_config — Display Options for Compiling Clients ........................................... 412
4.7.3 my_print_defaults — Display Options from Option Files ...................................... 413
4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols ............... 414

4.8 Miscellaneous Programs ...................................................................................................... 414
4.8.1 perror — Explain Error Codes ................................................................................ 414
4.8.2 replace — A String-Replacement Utility .................................................................. 415
4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa ................................. 416

4.9 MySQL Program Environment Variables ............................................................................... 417

This chapter provides a brief overview of the MySQL command-line programs provided by Oracle
Corporation. It also discusses the general syntax for specifying options when you run these programs.
Most programs have options that are specific to their own operation, but the option syntax is similar for
all of them. Finally, the chapter provides more detailed descriptions of individual programs, including
which options they recognize.

4.1 Overview of MySQL Programs

There are many different programs in a MySQL installation. This section provides a brief overview
of them. Later sections provide a more detailed description of each one, with the exception of NDB
Cluster programs. Each program's description indicates its invocation syntax and the options that it
supports. Chapter 18, MySQL NDB Cluster 7.2, describes programs specific to NDB Cluster.

Most MySQL distributions include all of these programs, except for those programs that are platform-
specific. (For example, the server startup scripts are not used on Windows.) The exception is that RPM
distributions are more specialized. There is one RPM for the server, another for client programs, and
so forth. If you appear to be missing one or more programs, see Chapter 2, Installing and Upgrading
MySQL, for information on types of distributions and what they contain. It may be that you have a
distribution that does not include all programs and you need to install an additional package.

Each MySQL program takes many different options. Most programs provide a --help option that you
can use to get a description of the program's different options. For example, try mysql --help.

You can override default option values for MySQL programs by specifying options on the command
line or in an option file. See Section 4.2, “Using MySQL Programs”, for general information on invoking
programs and specifying program options.

The MySQL server, mysqld, is the main program that does most of the work in a MySQL installation.
The server is accompanied by several related scripts that assist you in starting and stopping the server:

•  mysqld

The SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running,
because clients gain access to databases by connecting to the server. See Section 4.3.1, “mysqld
— The MySQL Server”.

•  mysqld_safe

A server startup script. mysqld_safe attempts to start mysqld. See Section 4.3.2, “mysqld_safe
— MySQL Server Startup Script”.

•  mysql.server

A server startup script. This script is used on systems that use System V-style run directories
containing scripts that start system services for particular run levels. It invokes mysqld_safe to start
the MySQL server. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

•  mysqld_multi

A server startup script that can start or stop multiple servers installed on the system. See
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”.



Overview of MySQL Programs

245

Several programs perform setup operations during MySQL installation or upgrading:

•  comp_err

This program is used during the MySQL build/installation process. It compiles error message files
from the error source files. See Section 4.4.1, “comp_err — Compile MySQL Error Message File”.

•  mysql_install_db

This program initializes the MySQL data directory, creates the mysql database, and initializes its
grant tables with default privileges. It is usually executed only once, when first installing MySQL
on a system. See Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”, and
Section 2.10, “Postinstallation Setup and Testing”.

•  mysql_plugin

This program configures MySQL server plugins. See Section 4.4.4, “mysql_plugin — Configure
MySQL Server Plugins”.

•  mysql_secure_installation

This program enables you to improve the security of your MySQL installation. See Section 4.4.5,
“mysql_secure_installation — Improve MySQL Installation Security”.

•  mysql_tzinfo_to_sql

This program loads the time zone tables in the mysql database using the contents of the
host system zoneinfo database (the set of files describing time zones). See Section 4.4.6,
“mysql_tzinfo_to_sql — Load the Time Zone Tables”.

•  mysql_upgrade

This program is used after a MySQL upgrade operation. It checks tables for incompatibilities and
repairs them if necessary, and updates the grant tables with any changes that have been made in
newer versions of MySQL. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL
Tables”.

MySQL client programs that connect to the MySQL server:

•  mysql

The command-line tool for interactively entering SQL statements or executing them from a file in
batch mode. See Section 4.5.1, “mysql — The MySQL Command-Line Tool”.

•  mysqladmin

A client that performs administrative operations, such as creating or dropping databases, reloading
the grant tables, flushing tables to disk, and reopening log files. mysqladmin can also be used to
retrieve version, process, and status information from the server. See Section 4.5.2, “mysqladmin
— Client for Administering a MySQL Server”.

•  mysqlcheck

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.

•  mysqldump

A client that dumps a MySQL database into a file as SQL, text, or XML. See Section 4.5.4,
“mysqldump — A Database Backup Program”.

•  mysqlimport



Overview of MySQL Programs

246

A client that imports text files into their respective tables using LOAD DATA INFILE. See
Section 4.5.5, “mysqlimport — A Data Import Program”.

•  mysqlshow

A client that displays information about databases, tables, columns, and indexes. See Section 4.5.6,
“mysqlshow — Display Database, Table, and Column Information”.

•  mysqlslap

A client that is designed to emulate client load for a MySQL server and report the timing of each
stage. It works as if multiple clients are accessing the server. See Section 4.5.7, “mysqlslap —
Load Emulation Client”.

MySQL administrative and utility programs:

•  innochecksum

An offline InnoDB offline file checksum utility. See Section 4.6.1, “innochecksum — Offline InnoDB
File Checksum Utility”.

•  myisam_ftdump

A utility that displays information about full-text indexes in MyISAM tables. See Section 4.6.2,
“myisam_ftdump — Display Full-Text Index information”.

•  myisamchk

A utility to describe, check, optimize, and repair MyISAM tables. See Section 4.6.3, “myisamchk —
MyISAM Table-Maintenance Utility”.

•  myisamlog

A utility that processes the contents of a MyISAM log file. See Section 4.6.4, “myisamlog — Display
MyISAM Log File Contents”.

•  myisampack

A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 4.6.5,
“myisampack — Generate Compressed, Read-Only MyISAM Tables”.

•  mysqlaccess

A script that checks the access privileges for a host name, user name, and database combination.
See Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”.

•  mysqlbinlog

A utility for reading statements from a binary log. The log of executed statements contained in the
binary log files can be used to help recover from a crash. See Section 4.6.7, “mysqlbinlog —
Utility for Processing Binary Log Files”.

•  mysqldumpslow

A utility to read and summarize the contents of a slow query log. See Section 4.6.8,
“mysqldumpslow — Summarize Slow Query Log Files”.

•  mysqlhotcopy

A utility that quickly makes backups of MyISAM tables while the server is running. See Section 4.6.9,
“mysqlhotcopy — A Database Backup Program”.

•  mysql_convert_table_format



Overview of MySQL Programs

247

A utility that converts tables in a database to use a given storage engine. See Section 4.6.10,
“mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”.

•  mysql_find_rows

A utility that reads files containing SQL statements (such as update logs) and extracts statements
that match a given regular expression. See Section 4.6.11, “mysql_find_rows — Extract SQL
Statements from Files”.

•  mysql_fix_extensions

A utility that converts the extensions for MyISAM table files to lowercase. This can be useful
after transferring the files from a system with case-insensitive file names to a system with case-
sensitive file names. See Section 4.6.12, “mysql_fix_extensions — Normalize Table File Name
Extensions”.

•  mysql_setpermission

A utility for interactively setting permissions in the MySQL grant tables. See Section 4.6.13,
“mysql_setpermission — Interactively Set Permissions in Grant Tables”.

•  mysql_waitpid

A utility that kills the process with a given process ID. See Section 4.6.14, “mysql_waitpid — Kill
Process and Wait for Its Termination”.

•  mysql_zap

A utility that kills processes that match a pattern. See Section 4.6.15, “mysql_zap — Kill Processes
That Match a Pattern”.

MySQL program-development utilities:

• msql2mysql

A shell script that converts mSQL programs to MySQL. It doesn't handle every case, but it gives a
good start when converting. See Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use
with MySQL”.

• mysql_config

A shell script that produces the option values needed when compiling MySQL programs. See
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”.

•  my_print_defaults

A utility that shows which options are present in option groups of option files. See Section 4.7.3,
“my_print_defaults — Display Options from Option Files”.

•  resolve_stack_dump

A utility program that resolves a numeric stack trace dump to symbols. See Section 4.7.4,
“resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”.

Miscellaneous utilities:

•  perror

A utility that displays the meaning of system or MySQL error codes. See Section 4.8.1, “perror —
Explain Error Codes”.

•  replace



Using MySQL Programs

248

A utility program that performs string replacement in the input text. See Section 4.8.2, “replace — A
String-Replacement Utility”.

•  resolveip

A utility program that resolves a host name to an IP address or vice versa. See Section 4.8.3,
“resolveip — Resolve Host name to IP Address or Vice Versa”.

Oracle Corporation also provides the MySQL Workbench GUI tool, which is used to administer MySQL
servers and databases, to create, execute, and evaluate queries, and to migrate schemas and data
from other relational database management systems for use with MySQL. Additional GUI tools include
MySQL Notifier MySQL for Excel.

MySQL client programs that communicate with the server using the MySQL client/server library use the
following environment variables.

Environment Variable Meaning

MYSQL_UNIX_PORT The default Unix socket file; used for connections to localhost

MYSQL_TCP_PORT The default port number; used for TCP/IP connections

MYSQL_PWD The default password

MYSQL_DEBUG Debug trace options when debugging

TMPDIR The directory where temporary tables and files are created

For a full list of environment variables used by MySQL programs, see Section 4.9, “MySQL Program
Environment Variables”.

Use of MYSQL_PWD is insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

4.2 Using MySQL Programs

4.2.1 Invoking MySQL Programs

To invoke a MySQL program from the command line (that is, from your shell or command prompt),
enter the program name followed by any options or other arguments needed to instruct the program
what you want it to do. The following commands show some sample program invocations. shell>
represents the prompt for your command interpreter; it is not part of what you type. The particular
prompt you see depends on your command interpreter. Typical prompts are $ for sh, ksh, or bash, %
for csh or tcsh, and C:\> for the Windows command.com or cmd.exe command interpreters.

shell> mysql --user=root test
shell> mysqladmin extended-status variables
shell> mysqlshow --help
shell> mysqldump -u root personnel

Arguments that begin with a single or double dash (-, --) specify program options. Options typically
indicate the type of connection a program should make to the server or affect its operational mode.
Option syntax is described in Section 4.2.3, “Specifying Program Options”.

Nonoption arguments (arguments with no leading dash) provide additional information to the program.
For example, the mysql program interprets the first nonoption argument as a database name, so the
command mysql --user=root test indicates that you want to use the test database.

Later sections that describe individual programs indicate which options a program supports and
describe the meaning of any additional nonoption arguments.

Some options are common to a number of programs. The most frequently used of these are the --
host (or -h), --user (or -u), and --password (or -p) options that specify connection parameters.

http://dev.mysql.com/doc/mysql-for-excel/en/


Connecting to the MySQL Server

249

They indicate the host where the MySQL server is running, and the user name and password of your
MySQL account. All MySQL client programs understand these options; they enable you to specify
which server to connect to and the account to use on that server. Other connection options are --port
(or -P) to specify a TCP/IP port number and --socket (or -S) to specify a Unix socket file on Unix (or
named pipe name on Windows). For more information on options that specify connection options, see
Section 4.2.2, “Connecting to the MySQL Server”.

You may find it necessary to invoke MySQL programs using the path name to the bin directory in
which they are installed. This is likely to be the case if you get a “program not found” error whenever
you attempt to run a MySQL program from any directory other than the bin directory. To make it more
convenient to use MySQL, you can add the path name of the bin directory to your PATH environment
variable setting. That enables you to run a program by typing only its name, not its entire path name.
For example, if mysql is installed in /usr/local/mysql/bin, you can run the program by invoking it
as mysql, and it is not necessary to invoke it as /usr/local/mysql/bin/mysql.

Consult the documentation for your command interpreter for instructions on setting your PATH variable.
The syntax for setting environment variables is interpreter-specific. (Some information is given in
Section 4.2.10, “Setting Environment Variables”.) After modifying your PATH setting, open a new
console window on Windows or log in again on Unix so that the setting goes into effect.

4.2.2 Connecting to the MySQL Server

This section describes how to establish a connection to the MySQL server. For additional information if
you are unable to connect, see Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”.

For a client program to be able to connect to the MySQL server, it must use the proper connection
parameters, such as the name of the host where the server is running and the user name and
password of your MySQL account. Each connection parameter has a default value, but you can
override them as necessary using program options specified either on the command line or in an option
file.

The examples here use the mysql client program, but the principles apply to other clients such as
mysqldump, mysqladmin, or mysqlshow.

This command invokes mysql without specifying any connection parameters explicitly:

shell> mysql

Because there are no parameter options, the default values apply:

• The default host name is localhost. On Unix, this has a special meaning, as described later.

• The default user name is ODBC on Windows or your Unix login name on Unix.

• No password is sent if neither -p nor --password is given.

• For mysql, the first nonoption argument is taken as the name of the default database. If there is no
such option, mysql does not select a default database.

To specify the host name and user name explicitly, as well as a password, supply appropriate options
on the command line:

shell> mysql --host=localhost --user=myname --password=mypass mydb
shell> mysql -h localhost -u myname -pmypass mydb

For password options, the password value is optional:

• If you use a -p or --password option and specify the password value, there must be no space
between -p or --password= and the password following it.



Connecting to the MySQL Server

250

• If you use a -p or --password option but do not specify the password value, the client program
prompts you to enter the password. The password is not displayed as you enter it. This is more
secure than giving the password on the command line. Other users on your system may be able to
see a password specified on the command line by executing a command such as ps auxw. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

As just mentioned, including the password value on the command line can be a security risk. To avoid
this problem, specify the --password or -p option without any following password value:

shell> mysql --host=localhost --user=myname --password mydb
shell> mysql -h localhost -u myname -p mydb

When the password option has no password value, the client program prints a prompt and waits for
you to enter the password. (In these examples, mydb is not interpreted as a password because it is
separated from the preceding password option by a space.)

On some systems, the library routine that MySQL uses to prompt for a password automatically limits
the password to eight characters. That is a problem with the system library, not with MySQL. Internally,
MySQL does not have any limit for the length of the password. To work around the problem, change
your MySQL password to a value that is eight or fewer characters long, or put your password in an
option file.

On Unix, MySQL programs treat the host name localhost specially, in a way that is likely different
from what you expect compared to other network-based programs. For connections to localhost,
MySQL programs attempt to connect to the local server by using a Unix socket file. This occurs even
if a --port or -P option is given to specify a port number. To ensure that the client makes a TCP/IP
connection to the local server, use --host or -h to specify a host name value of 127.0.0.1, or the
IP address or name of the local server. You can also specify the connection protocol explicitly, even for
localhost, by using the --protocol=TCP option. For example:

shell> mysql --host=127.0.0.1
shell> mysql --protocol=TCP

The --protocol option enables you to establish a particular type of connection even when the other
options would normally default to some other protocol.

If the server is configured to accept IPv6 connections, clients can connect over IPv6 using --
host=::1. See Section 5.1.9, “IPv6 Support”.

On Windows, you can force a MySQL client to use a named-pipe connection by specifying the --pipe
or --protocol=PIPE option, or by specifying . (period) as the host name. If named-pipe connections
are not enabled, an error occurs. Use the --socket option to specify the name of the pipe if you do
not want to use the default pipe name.

Connections to remote servers always use TCP/IP. This command connects to the server running on
remote.example.com using the default port number (3306):

shell> mysql --host=remote.example.com

To specify a port number explicitly, use the --port or -P option:

shell> mysql --host=remote.example.com --port=13306

You can specify a port number for connections to a local server, too. However, as indicated previously,
connections to localhost on Unix will use a socket file by default. You will need to force a TCP/IP
connection as already described or any option that specifies a port number will be ignored.

For this command, the program uses a socket file on Unix and the --port option is ignored:



Connecting to the MySQL Server

251

shell> mysql --port=13306 --host=localhost

To cause the port number to be used, invoke the program in either of these ways:

shell> mysql --port=13306 --host=127.0.0.1
shell> mysql --port=13306 --protocol=TCP

The following list summarizes the options that can be used to control how client programs connect to
the server:

•  --host=host_name, -h host_name

The host where the server is running. The default value is localhost.

•  --password[=pass_val], -p[pass_val]

The password of the MySQL account. As described earlier, the password value is optional, but if
given, there must be no space between -p or --password= and the password following it. The
default is to send no password.

•  --pipe, -W

On Windows, connect to the server using a named pipe. The server must be started with the --
enable-named-pipe option to enable named-pipe connections.

•  --port=port_num, -P port_num

The port number to use for the connection, for connections made using TCP/IP. The default port
number is 3306.

•  --protocol={TCP|SOCKET|PIPE|MEMORY}

This option explicitly specifies a protocol to use for connecting to the server. It is useful when the
other connection parameters normally would cause a protocol to be used other than the one you
want. For example, connections on Unix to localhost are made using a Unix socket file by default:

shell> mysql --host=localhost

To force a TCP/IP connection to be used instead, specify a --protocol option:

shell> mysql --host=localhost --protocol=TCP

The following table shows the permissible --protocol option values and indicates the platforms on
which each value may be used. The values are not case sensitive.

--protocol
Value

Connection Protocol Permissible Operating
Systems

TCP TCP/IP connection to local or remote server All

SOCKET Unix socket file connection to local server Unix only

PIPE Named-pipe connection to local or remote server Windows only

MEMORY Shared-memory connection to local server Windows only

•  --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.



Specifying Program Options

252

•  --socket=file_name, -S file_name

On Unix, the name of the Unix socket file to use, for connections made using a named pipe to a local
server. The default Unix socket file name is /tmp/mysql.sock.

On Windows, the name of the named pipe to use, for connections to a local server. The default
Windows pipe name is MySQL. The pipe name is not case sensitive.

The server must be started with the --enable-named-pipe option to enable named-pipe
connections.

•  --ssl*

Options that begin with --ssl are used for establishing a secure connection to the server using
SSL, if the server is configured with SSL support. For details, see Section 6.4.5, “Command Options
for Secure Connections”.

•  --user=user_name, -u user_name

The user name of the MySQL account you want to use. The default user name is ODBC on Windows
or your Unix login name on Unix.

It is possible to specify different default values to be used when you make a connection so that you
need not enter them on the command line each time you invoke a client program. This can be done in
a couple of ways:

•  You can specify connection parameters in the [client] section of an option file. The relevant
section of the file might look like this:

[client]
host=host_name
user=user_name
password=your_pass

Section 4.2.6, “Using Option Files”, discusses option files further.

•       You can specify some connection parameters using environment variables. The host can be
specified for mysql using MYSQL_HOST. The MySQL user name can be specified using USER (this is
for Windows only). The password can be specified using MYSQL_PWD, although this is insecure; see
Section 6.1.2.1, “End-User Guidelines for Password Security”. For a list of variables, see Section 4.9,
“MySQL Program Environment Variables”.

4.2.3 Specifying Program Options

There are several ways to specify options for MySQL programs:

• List the options on the command line following the program name. This is common for options that
apply to a specific invocation of the program.

• List the options in an option file that the program reads when it starts. This is common for options
that you want the program to use each time it runs.

• List the options in environment variables (see Section 4.2.10, “Setting Environment Variables”).
This method is useful for options that you want to apply each time the program runs. In practice,
option files are used more commonly for this purpose, but Section 5.6.3, “Running Multiple MySQL
Instances on Unix”, discusses one situation in which environment variables can be very helpful. It
describes a handy technique that uses such variables to specify the TCP/IP port number and Unix
socket file for the server and for client programs.

Options are processed in order, so if an option is specified multiple times, the last occurrence takes
precedence. The following command causes mysql to connect to the server running on localhost:



Using Options on the Command Line

253

shell> mysql -h example.com -h localhost

If conflicting or related options are given, later options take precedence over earlier options. The
following command runs mysql in “no column names” mode:

shell> mysql --column-names --skip-column-names

MySQL programs determine which options are given first by examining environment variables, then
by processing option files, and then by checking the command line. This means that environment
variables have the lowest precedence and command-line options the highest.

You can take advantage of the way that MySQL programs process options by specifying default option
values for a program in an option file. That enables you to avoid typing them each time you run the
program while enabling you to override the defaults if necessary by using command-line options.

An option can be specified by writing it in full or as any unambiguous prefix. For example, the --
compress option can be given to mysqldump as --compr, but not as --comp because the latter is
ambiguous:

shell> mysqldump --comp
mysqldump: ambiguous option '--comp' (compatible, compress)

Be aware that the use of option prefixes can cause problems in the event that new options are
implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.

Note

As of MySQL 5.5.33, unambiguous prefixes are deprecated. If an unambiguous
prefix is given, a warning occurs to provide feedback. Option prefixes are no
longer supported as of MySQL 5.7; only full options are accepted.

4.2.4 Using Options on the Command Line

Program options specified on the command line follow these rules:

• Options are given after the command name.

• An option argument begins with one dash or two dashes, depending on whether it is a short form or
long form of the option name. Many options have both short and long forms. For example, -? and --
help are the short and long forms of the option that instructs a MySQL program to display its help
message.

• Option names are case sensitive. -v and -V are both legal and have different meanings. (They are
the corresponding short forms of the --verbose and --version options.)

• Some options take a value following the option name. For example, -h localhost or --
host=localhost indicate the MySQL server host to a client program. The option value tells the
program the name of the host where the MySQL server is running.

• For a long option that takes a value, separate the option name and the value by an = sign. For a
short option that takes a value, the option value can immediately follow the option letter, or there
can be a space between: -hlocalhost and -h localhost are equivalent. An exception to this
rule is the option for specifying your MySQL password. This option can be given in long form as --
password=pass_val or as --password. In the latter case (with no password value given), the
program prompts you for the password. The password option also may be given in short form as -
ppass_val or as -p. However, for the short form, if the password value is given, it must follow the
option letter with no intervening space. The reason for this is that if a space follows the option letter,
the program has no way to tell whether a following argument is supposed to be the password value



Using Options on the Command Line

254

or some other kind of argument. Consequently, the following two commands have two completely
different meanings:

shell> mysql -ptest
shell> mysql -p test

The first command instructs mysql to use a password value of test, but specifies no default
database. The second instructs mysql to prompt for the password value and to use test as the
default database.

• Within option names, dash (-) and underscore (_) may be used interchangeably. For example, --
skip-grant-tables and --skip_grant_tables are equivalent. (However, the leading dashes
cannot be given as underscores.)

• For options that take a numeric value, the value can be given with a suffix of K, M, or G (either
uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 10243. For example, the following
command tells mysqladmin to ping the server 1024 times, sleeping 10 seconds between each ping:

shell> mysqladmin --count=1K --sleep=10 ping

• When specifying file names as option values, avoid the use of the ~ shell metacharacter because it
might not be interpreted as you expect.

Option values that contain spaces must be quoted when given on the command line. For example, the
--execute (or -e) option can be used with mysql to pass SQL statements to the server. When this
option is used, mysql executes the statements in the option value and exits. The statements must be
enclosed by quotation marks. For example, you can use the following command to obtain a list of user
accounts:

shell> mysql -u root -p --execute="SELECT User, Host FROM mysql.user"
Enter password: ******
+------+-----------+
| User | Host      |
+------+-----------+
|      | gigan     |
| root | gigan     |
|      | localhost |
| jon  | localhost |
| root | localhost |
+------+-----------+
shell>

Note

The long form (--execute) is followed by an equals sign (=).

If you wish to use quoted values within a statement, you will either need to escape the inner quotation
marks, or use a different type of quotation marks within the statement from those used to quote the
statement itself. The capabilities of your command processor dictate your choices for whether you can
use single or double quotation marks and the syntax for escaping quote characters. For example, if
your command processor supports quoting with single or double quotation marks, you can use double
quotation marks around the statement, and single quotation marks for any quoted values within the
statement.

Multiple SQL statements may be passed in the option value on the command line, separated by
semicolons:

shell> mysql -u root -p -e "SELECT VERSION();SELECT NOW()"
Enter password: ******
+------------------+



Program Option Modifiers

255

| VERSION()        |
+------------------+
| 5.5.46-debug-log |
+------------------+
+---------------------+
| NOW()               |
+---------------------+
| 2015-11-05 20:02:49 |
+---------------------+

4.2.5 Program Option Modifiers

Some options are “boolean” and control behavior that can be turned on or off. For example, the mysql
client supports a --column-names option that determines whether or not to display a row of column
names at the beginning of query results. By default, this option is enabled. However, you may want
to disable it in some instances, such as when sending the output of mysql into another program that
expects to see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

--disable-column-names
--skip-column-names
--column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the option
off.

The “enabled” form of the option may be specified in any of these ways:

--column-names
--enable-column-names
--column-names=1

As of MySQL 5.5.10, the values ON, TRUE, OFF, and FALSE are also recognized for boolean options
(not case sensitive).

If an option is prefixed by --loose, a program does not exit with an error if it does not recognize the
option, but instead issues only a warning:

shell> mysql --loose-no-such-option
mysql: WARNING: unknown option '--loose-no-such-option'

The --loose prefix can be useful when you run programs from multiple installations of MySQL on the
same machine and list options in an option file. An option that may not be recognized by all versions of
a program can be given using the --loose prefix (or loose in an option file). Versions of the program
that recognize the option process it normally, and versions that do not recognize it issue a warning and
ignore it.

The --maximum prefix is available for mysqld only and permits a limit to be placed on how large client
programs can set session system variables. To do this, use a --maximum prefix with the variable
name. For example, --maximum-max_heap_table_size=32M prevents any client from making the
heap table size limit larger than 32M.

The --maximum prefix is intended for use with system variables that have a session value. If applied
to a system variable that has only a global value, an error occurs. For example, with --maximum-
query_cache_size=4M, the server produces this error:

Maximum value of 'query_cache_size' cannot be set

4.2.6 Using Option Files



Using Option Files

256

Most MySQL programs can read startup options from option files (sometimes called configuration
files). Option files provide a convenient way to specify commonly used options so that they need not be
entered on the command line each time you run a program. For the MySQL server, MySQL provides a
number of preconfigured option files.

To determine whether a program reads option files, invoke it with the --help option. (For mysqld, use
--verbose and --help.) If the program reads option files, the help message indicates which files it
looks for and which option groups it recognizes.

Note

A MySQL program started with the --no-defaults option reads no option
files.

Option files are plain text files, created using any text editor.

MySQL looks for option files in the order described in the following discussion and reads any that exist.
If an option file you want to use does not exist, create it with a plain text editor.

Note

Option files used with NDB Cluster programs are covered in Section 18.3,
“Configuration of NDB Cluster”.

On Windows, MySQL programs read startup options from the files shown in the following table, in the
specified order (top files are read first, files read later take precedence).

Table 4.1 Option Files Read on Windows Systems

File Name Purpose

%PROGRAMDATA
%\MySQL\MySQL
Server 5.5\my.ini,
%PROGRAMDATA%\MySQL
\MySQL Server
5.5\my.cnf

Global options

%WINDIR%\my.ini,
%WINDIR%\my.cnf

Global options

C:\my.ini, C:\my.cnf Global options

BASEDIR\my.ini,
BASEDIR\my.cnf

Global options

defaults-extra-file The file specified with --defaults-extra-file, if any

In the preceding table, %PROGRAMDATA% represents the file system directory that contains application
data for all users on the host. This path defaults to C:\ProgramData on Microsoft Windows Vista and
greater, and C:\Documents and Settings\All Users\Application Data on older versions
of Microsoft Windows.

%WINDIR% represents the location of your Windows directory. This is commonly C:\WINDOWS. Use the
following command to determine its exact location from the value of the WINDIR environment variable:

C:\> echo %WINDIR%

%APPDATA% represents the value of the Windows application data directory. Use the following
command to determine its exact location from the value of the APPDATA environment variable:



Using Option Files

257

C:\> echo %APPDATA%

BASEDIR represents the MySQL base installation directory. When MySQL 5.5 has been installed
using MySQL Installer, this is typically C:\PROGRAMDIR\MySQL\MySQL 5.5 Server where
PROGRAMDIR represents the programs directory (usually Program Files on English-language
versions of Windows), See Section 2.3.3, “MySQL Installer for Windows”.

On Unix and Unix-like systems, MySQL programs read startup options from the files shown in the
following table, in the specified order (top files are read first, files read later take precedence).

Note

On Unix platforms, MySQL ignores configuration files that are world-writable.
This is intentional as a security measure.

Table 4.2 Option Files Read on Unix and Unix-Like Systems

File Name Purpose

/etc/my.cnf Global options

/etc/mysql/my.cnf Global options

SYSCONFDIR/my.cnf Global options

$MYSQL_HOME/my.cnf Server-specific options (server only)

defaults-extra-file The file specified with --defaults-extra-file, if any

~/.my.cnf User-specific options

In the preceding table, ~ represents the current user's home directory (the value of $HOME).

SYSCONFDIR represents the directory specified with the SYSCONFDIR option to CMake when MySQL
was built. By default, this is the etc directory located under the compiled-in installation directory.

MYSQL_HOME is an environment variable containing the path to the directory in which the
server-specific my.cnf file resides. If MYSQL_HOME is not set and you start the server using the
mysqld_safe program, mysqld_safe attempts to set MYSQL_HOME as follows:

• Let BASEDIR and DATADIR represent the path names of the MySQL base directory and data
directory, respectively.

• If there is a my.cnf file in DATADIR but not in BASEDIR, mysqld_safe sets MYSQL_HOME to
DATADIR.

• Otherwise, if MYSQL_HOME is not set and there is no my.cnf file in DATADIR, mysqld_safe sets
MYSQL_HOME to BASEDIR.

In MySQL 5.5, use of DATADIR as the location for my.cnf is deprecated.

DATADIR is commonly /usr/local/mysql/data, although this can vary per platform or installation
method. The value is the data directory location built in when MySQL was compiled, not the location
specified with the --datadir option when mysqld starts. Use of --datadir at runtime has no effect
on where the server looks for option files that it reads before processing any options.

If multiple instances of a given option are found, the last instance takes precedence, with one
exception: For mysqld, the first instance of the --user option is used as a security precaution, to
prevent a user specified in an option file from being overridden on the command line.

The following description of option file syntax applies to files that you edit manually. This excludes
.mylogin.cnf, which is created using mysql_config_editor and is encrypted.



Using Option Files

258

Any long option that may be given on the command line when running a MySQL program can be given
in an option file as well. To get the list of available options for a program, run it with the --help option.
(For mysqld, use --verbose and --help.)

The syntax for specifying options in an option file is similar to command-line syntax (see Section 4.2.4,
“Using Options on the Command Line”). However, in an option file, you omit the leading two dashes
from the option name and you specify only one option per line. For example, --quick and --
host=localhost on the command line should be specified as quick and host=localhost on
separate lines in an option file. To specify an option of the form --loose-opt_name in an option file,
write it as loose-opt_name.

Empty lines in option files are ignored. Nonempty lines can take any of the following forms:

• #comment, ;comment

Comment lines start with # or ;. A # comment can start in the middle of a line as well.

• [group]

group is the name of the program or group for which you want to set options. After a group line, any
option-setting lines apply to the named group until the end of the option file or another group line is
given. Option group names are not case sensitive.

• opt_name

This is equivalent to --opt_name on the command line.

• opt_name=value

This is equivalent to --opt_name=value on the command line. In an option file, you can have
spaces around the = character, something that is not true on the command line. The value optionally
can be enclosed within single quotation marks or double quotation marks, which is useful if the value
contains a # comment character.

Leading and trailing spaces are automatically deleted from option names and values.

You can use the escape sequences \b, \t, \n, \r, \\, and \s in option values to represent the
backspace, tab, newline, carriage return, backslash, and space characters. In option files, these
escaping rules apply:

• A backslash followed by a valid escape sequence character is converted to the character
represented by the sequence. For example, \s is converted to a space.

• A backslash not followed by a valid escape sequence character remains unchanged. For example,
\S is retained as is.

The preceding rules mean that a literal backslash can be given as \\, or as \ if it is not followed by a
valid escape sequence character.

The rules for escape sequences in option files differ slightly from the rules for escape sequences in
string literals in SQL statements. In the latter context, if “x” is not a valid escape sequence character,
\x becomes “x” rather than \x. See Section 9.1.1, “String Literals”.

The escaping rules for option file values are especially pertinent for Windows path names, which use \
as a path name separator. A separator in a Windows path name must be written as \\ if it is followed
by an escape sequence character. It can be written as \\ or \ if it is not. Alternatively, / may be used
in Windows path names and will be treated as \. Suppose that you want to specify a base directory of
C:\Program Files\MySQL\MySQL Server 5.5 in an option file. This can be done several ways.
Some examples:

basedir="C:\Program Files\MySQL\MySQL Server 5.5"



Using Option Files

259

basedir="C:\\Program Files\\MySQL\\MySQL Server 5.5"
basedir="C:/Program Files/MySQL/MySQL Server 5.5"
basedir=C:\\Program\sFiles\\MySQL\\MySQL\sServer\s5.5

If an option group name is the same as a program name, options in the group apply specifically to
that program. For example, the [mysqld] and [mysql] groups apply to the mysqld server and the
mysql client program, respectively.

The [client] option group is read by all client programs provided in MySQL distributions (but not by
mysqld). To understand how third-party client programs that use the C API can use option files, see
the C API documentation at Section 23.8.7.49, “mysql_options()”.

The [client] group enables you to specify options that apply to all clients. For example, [client]
is the appropriate group to use to specify the password for connecting to the server. (But make sure
that the option file is accessible only by yourself, so that other people cannot discover your password.)
Be sure not to put an option in the [client] group unless it is recognized by all client programs that
you use. Programs that do not understand the option quit after displaying an error message if you try to
run them.

Here is a typical global option file:

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M

[mysqldump]
quick

Here is a typical user option file:

[client]
# The following password will be sent to all standard MySQL clients
password="my password"

[mysql]
no-auto-rehash
connect_timeout=2

[mysqlhotcopy]
interactive-timeout

To create option groups to be read only by mysqld servers from specific MySQL release series, use
groups with names of [mysqld-5.1], [mysqld-5.5], and so forth. The following group indicates
that the sql_mode setting should be used only by MySQL servers with 5.5.x version numbers:

[mysqld-5.5]
sql_mode=TRADITIONAL

It is possible to use !include directives in option files to include other option files and !includedir
to search specific directories for option files. For example, to include the /home/mydir/myopt.cnf
file, use the following directive:

!include /home/mydir/myopt.cnf

To search the /home/mydir directory and read option files found there, use this directive:

!includedir /home/mydir



Command-Line Options that Affect Option-File Handling

260

MySQL makes no guarantee about the order in which option files in the directory will be read.

Note

Any files to be found and included using the !includedir directive on Unix
operating systems must have file names ending in .cnf. On Windows, this
directive checks for files with the .ini or .cnf extension.

Write the contents of an included option file like any other option file. That is, it should contain groups of
options, each preceded by a [group] line that indicates the program to which the options apply.

While an included file is being processed, only those options in groups that the current program is
looking for are used. Other groups are ignored. Suppose that a my.cnf file contains this line:

!include /home/mydir/myopt.cnf

And suppose that /home/mydir/myopt.cnf looks like this:

[mysqladmin]
force

[mysqld]
key_buffer_size=16M

If my.cnf is processed by mysqld, only the [mysqld] group in /home/mydir/myopt.cnf is used.
If the file is processed by mysqladmin, only the [mysqladmin] group is used. If the file is processed
by any other program, no options in /home/mydir/myopt.cnf are used.

The !includedir directive is processed similarly except that all option files in the named directory
are read.

If an option file contains !include or !includedir directives, files named by those directives are
processed whenever the option file is processed, no matter where they appear in the file.

4.2.7 Command-Line Options that Affect Option-File Handling

Most MySQL programs that support option files handle the following options. Because these options
affect option-file handling, they must be given on the command line and not in an option file. To work
properly, each of these options must be given before other options, with these exceptions:

• --print-defaults may be used immediately after --defaults-file or --defaults-extra-
file.

• On Windows, if the server is started with the --defaults-file and --install options, --
install must be first. See Section 2.3.7.7, “Starting MySQL as a Windows Service”.

When specifying file names as option values, avoid the use of the ~ shell metacharacter because it
might not be interpreted as you expect.

•  --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. (For
information about the order in which option files are used, see Section 4.2.6, “Using Option Files”.) If
the file does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative
to the current directory if given as a relative path name rather than a full path name.

•  --defaults-file=file_name

Read only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.



Using Options to Set Program Variables

261

•  --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, the mysql client normally reads the [client] and [mysql] groups. If the --
defaults-group-suffix=_other option is given, mysql also reads the [client_other] and
[mysql_other] groups.

•  --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•  --print-defaults

Print the program name and all options that it gets from option files.

4.2.8 Using Options to Set Program Variables

Many MySQL programs have internal variables that can be set at runtime using the SET statement.
See Section 13.7.4.1, “SET Syntax for Variable Assignment”, and Section 5.1.6, “Using System
Variables”.

Most of these program variables also can be set at server startup by using the same syntax that
applies to specifying program options. For example, mysql has a max_allowed_packet variable that
controls the maximum size of its communication buffer. To set the max_allowed_packet variable for
mysql to a value of 16MB, use either of the following commands:

shell> mysql --max_allowed_packet=16777216
shell> mysql --max_allowed_packet=16M

The first command specifies the value in bytes. The second specifies the value in megabytes. For
variables that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase
or lowercase) to indicate a multiplier of 1024, 10242 or 10243. (For example, when used to set
max_allowed_packet, the suffixes indicate units of kilobytes, megabytes, or gigabytes.)

In an option file, variable settings are given without the leading dashes:

[mysql]
max_allowed_packet=16777216

Or:

[mysql]
max_allowed_packet=16M

If you like, underscores in a variable name can be specified as dashes. The following option groups are
equivalent. Both set the size of the server's key buffer to 512MB:

[mysqld]
key_buffer_size=512M

[mysqld]
key-buffer-size=512M

A variable can be specified by writing it in full or as any unambiguous prefix. For example, the
max_allowed_packet variable can be set for mysql as --max_a, but not as --max because the
latter is ambiguous:

shell> mysql --max=1000000
mysql: ambiguous option '--max=1000000' (max_allowed_packet, max_join_size)



Option Defaults, Options Expecting Values, and the = Sign

262

Be aware that the use of variable prefixes can cause problems in the event that new variables are
implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not
to set the value with SET at runtime. On the other hand, with SET, you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first
of the following lines is legal at server startup, but the second is not:

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

4.2.9 Option Defaults, Options Expecting Values, and the = Sign

By convention, long forms of options that assign a value are written with an equals (=) sign, like this:

shell> mysql --host=tonfisk --user=jon

For options that require a value (that is, not having a default value), the equal sign is not required, and
so the following is also valid:

shell> mysql --host tonfisk --user jon

In both cases, the mysql client attempts to connect to a MySQL server running on the host named
“tonfisk” using an account with the user name “jon”.

Due to this behavior, problems can occasionally arise when no value is provided for an option that
expects one. Consider the following example, where a user connects to a MySQL server running on
host tonfisk as user jon:

shell> mysql --host 85.224.35.45 --user jon
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.5.58 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| jon@%          |
+----------------+
1 row in set (0.00 sec)

Omitting the required value for one of these option yields an error, such as the one shown here:

shell> mysql --host 85.224.35.45 --user
mysql: option '--user' requires an argument

In this case, mysql was unable to find a value following the --user option because nothing came
after it on the command line. However, if you omit the value for an option that is not the last option to
be used, you obtain a different error that you may not be expecting:

shell> mysql --host --user jon
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)



Option Defaults, Options Expecting Values, and the = Sign

263

Because mysql assumes that any string following --host on the command line is a host name, --
host --user is interpreted as --host=--user, and the client attempts to connect to a MySQL
server running on a host named “--user”.

Options having default values always require an equal sign when assigning a value; failing to do
so causes an error. For example, the MySQL server --log-error option has the default value
host_name.err, where host_name is the name of the host on which MySQL is running. Assume
that you are running MySQL on a computer whose host name is “tonfisk”, and consider the following
invocation of mysqld_safe:

shell> mysqld_safe &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>

After shutting down the server, restart it as follows:

shell> mysqld_safe --log-error &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>

The result is the same, since --log-error is not followed by anything else on the command line,
and it supplies its own default value. (The & character tells the operating system to run MySQL in the
background; it is ignored by MySQL itself.) Now suppose that you wish to log errors to a file named
my-errors.err. You might try starting the server with --log-error my-errors, but this does not
have the intended effect, as shown here:

shell> mysqld_safe --log-error my-errors &
[1] 31357
shell> 080111 22:53:31 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080111 22:53:32 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

[1]+  Done                    ./mysqld_safe --log-error my-errors

The server attempted to start using /usr/local/mysql/var/tonfisk.err as the error log, but
then shut down. Examining the last few lines of this file shows the reason:

shell> tail /usr/local/mysql/var/tonfisk.err
080111 22:53:32  InnoDB: Started; log sequence number 0 46409
/usr/local/mysql/libexec/mysqld: Too many arguments (first extra is 'my-errors').
Use --verbose --help to get a list of available options
080111 22:53:32 [ERROR] Aborting

080111 22:53:32  InnoDB: Starting shutdown...
080111 22:53:34  InnoDB: Shutdown completed; log sequence number 0 46409
080111 22:53:34 [Note] /usr/local/mysql/libexec/mysqld: Shutdown complete

080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

Because the --log-error option supplies a default value, you must use an equal sign to assign a
different value to it, as shown here:

shell> mysqld_safe --log-error=my-errors &
[1] 31437
shell> 080111 22:54:15 mysqld_safe Logging to '/usr/local/mysql/var/my-errors.err'.
080111 22:54:15 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var

shell>



Option Defaults, Options Expecting Values, and the = Sign

264

Now the server has been started successfully, and is logging errors to the file /usr/local/mysql/
var/my-errors.err.

Similar issues can arise when specifying option values in option files. For example, consider a my.cnf
file that contains the following:

[mysql]

host
user

When the mysql client reads this file, these entries are parsed as --host --user or --host=--
user, with the result shown here:

shell> mysql
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

However, in option files, an equal sign is not assumed. Suppose the my.cnf file is as shown here:

[mysql]

user jon

Trying to start mysql in this case causes a different error:

shell> mysql
mysql: unknown option '--user jon'

A similar error would occur if you were to write host tonfisk in the option file rather than
host=tonfisk. Instead, you must use the equal sign:

[mysql]

user=jon

Now the login attempt succeeds:

shell> mysql
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 5.5.58 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER()        |
+---------------+
| jon@localhost |
+---------------+
1 row in set (0.00 sec)

This is not the same behavior as with the command line, where the equals sign is not required:

shell> mysql --user jon --host tonfisk
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.5.58 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER()        |



Setting Environment Variables

265

+---------------+
| jon@tonfisk   |
+---------------+
1 row in set (0.00 sec)

Specifying an option requiring a value without a value in an option file causes the server to abort with
an error. Suppose that my.cnf contains the following:

[mysqld]
log_error
relay_log
relay_log_index

This causes the server to fail on startup, as shown here:

shell> mysqld_safe &

090514 09:48:39 mysqld_safe Logging to '/home/jon/bin/mysql/var/tonfisk.err'.
090514 09:48:39 mysqld_safe Starting mysqld daemon with databases from /home/jon/bin/mysql/var
090514 09:48:39 mysqld_safe mysqld from pid file /home/jon/bin/mysql/var/tonfisk.pid ended

The --log-error option does not require an argument; however, the --relay-log option
requires one, as shown in the error log (which in the absence of a specified value, defaults to
datadir/hostname.err):

shell> tail -n 3 ../var/tonfisk.err

090514 09:48:39 mysqld_safe Starting mysqld daemon with databases from /home/jon/bin/mysql/var
090514  9:48:39 [ERROR] /home/jon/bin/mysql/libexec/mysqld: option '--relay-log' requires an argument
090514  9:48:39 [ERROR] Aborting

This is a change from previous behavior, where the server would have interpreted the last two lines
in the example my.cnf file as --relay-log=relay_log_index and created a relay log file using
“relay_log_index” as the base name. (Bug #25192)

4.2.10 Setting Environment Variables

Environment variables can be set at the command prompt to affect the current invocation of your
command processor, or set permanently to affect future invocations. To set a variable permanently,
you can set it in a startup file or by using the interface provided by your system for this purpose.
Consult the documentation for your command interpreter for specific details. Section 4.9, “MySQL
Program Environment Variables”, lists all environment variables that affect MySQL program operation.

To specify a value for an environment variable, use the syntax appropriate for your command
processor. For example, on Windows, you can set the USER variable to specify your MySQL account
name. To do so, use this syntax:

SET USER=your_name

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number
using the MYSQL_TCP_PORT variable. Typical syntax (such as for sh, ksh, bash, zsh, and so on) is as
follows:

MYSQL_TCP_PORT=3306
export MYSQL_TCP_PORT

The first command sets the variable, and the export command exports the variable to the shell
environment so that its value becomes accessible to MySQL and other processes.

For csh and tcsh, use setenv to make the shell variable available to the environment:



MySQL Server and Server-Startup Programs

266

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect
immediately, but the settings persist only until you log out. To have the settings take effect each time
you log in, use the interface provided by your system or place the appropriate command or commands
in a startup file that your command interpreter reads each time it starts.

On Windows, you can set environment variables using the System Control Panel (under Advanced).

On Unix, typical shell startup files are .bashrc or .bash_profile for bash, or .tcshrc for tcsh.

Suppose that your MySQL programs are installed in /usr/local/mysql/bin and that you want to
make it easy to invoke these programs. To do this, set the value of the PATH environment variable to
include that directory. For example, if your shell is bash, add the following line to your .bashrc file:

PATH=${PATH}:/usr/local/mysql/bin

bash uses different startup files for login and nonlogin shells, so you might want to add the setting to
.bashrc for login shells and to .bash_profile for nonlogin shells to make sure that PATH is set
regardless.

If your shell is tcsh, add the following line to your .tcshrc file:

setenv PATH ${PATH}:/usr/local/mysql/bin

If the appropriate startup file does not exist in your home directory, create it with a text editor.

After modifying your PATH setting, open a new console window on Windows or log in again on Unix so
that the setting goes into effect.

4.3 MySQL Server and Server-Startup Programs
This section describes mysqld, the MySQL server, and several programs that are used to start the
server.

4.3.1 mysqld — The MySQL Server

mysqld, also known as MySQL Server, is the main program that does most of the work in a MySQL
installation. MySQL Server manages access to the MySQL data directory that contains databases and
tables. The data directory is also the default location for other information such as log files and status
files.

When MySQL server starts, it listens for network connections from client programs and manages
access to databases on behalf of those clients.

The mysqld program has many options that can be specified at startup. For a complete list of options,
run this command:

shell> mysqld --verbose --help

MySQL Server also has a set of system variables that affect its operation as it runs. System variables
can be set at server startup, and many of them can be changed at runtime to effect dynamic server
reconfiguration. MySQL Server also has a set of status variables that provide information about its
operation. You can monitor these status variables to access runtime performance characteristics.

For a full description of MySQL Server command options, system variables, and status variables, see
Section 5.1, “The MySQL Server”. For information about installing MySQL and setting up the initial
configuration, see Chapter 2, Installing and Upgrading MySQL.

4.3.2 mysqld_safe — MySQL Server Startup Script



mysqld_safe — MySQL Server Startup Script

267

mysqld_safe is the recommended way to start a mysqld server on Unix. mysqld_safe adds some
safety features such as restarting the server when an error occurs and logging runtime information to
an error log file. A description of error logging is given later in this section.

mysqld_safe tries to start an executable named mysqld. To override the default behavior and
specify explicitly the name of the server you want to run, specify a --mysqld or --mysqld-version
option to mysqld_safe. You can also use --ledir to indicate the directory where mysqld_safe
should look for the server.

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.1.4,
“Server Command Options”.

Options unknown to mysqld_safe are passed to mysqld if they are specified on the command line,
but ignored if they are specified in the [mysqld_safe] group of an option file. See Section 4.2.6,
“Using Option Files”.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in
option files. For example, if you specify a [mysqld] section like this, mysqld_safe will find and use
the --log-error option:

[mysqld]
log-error=error.log

For backward compatibility, mysqld_safe also reads [safe_mysqld] sections, but to be current you
should rename such sections to [mysqld_safe].

mysqld_safe supports the following options. It also reads option files and supports the options for
processing them described at Section 4.2.7, “Command-Line Options that Affect Option-File Handling”.

Table 4.3 mysqld_safe Options

Format Description Introduced

--basedir Path to MySQL installation directory  

--core-file-size Size of core file that mysqld should be able to create  

--datadir Path to data directory  

--defaults-extra-file Read named option file in addition to usual option files  

--defaults-file Read only named option file  

--help Display help message and exit  

--ledir Path to directory where server is located  

--log-error Write error log to named file  

--malloc-lib Alternative malloc library to use for mysqld  

--mysqld Name of server program to start (in ledir directory)  

--mysqld-version Suffix for server program name  

--nice Use nice program to set server scheduling priority  

--no-defaults Read no option files  

--open-files-limit Number of files that mysqld should be able to open  

--pid-file Path name of server process ID file  

--plugin-dir Directory where plugins are installed 5.5.3

--port Port number on which to listen for TCP/IP connections  

--skip-kill-mysqld Do not try to kill stray mysqld processes  

--skip-syslog Do not write error messages to syslog; use error log file  

--socket Socket file on which to listen for Unix socket connections  



mysqld_safe — MySQL Server Startup Script

268

Format Description Introduced

--syslog Write error messages to syslog  

--syslog-tag Tag suffix for messages written to syslog  

--timezone Set TZ time zone environment variable to named value  

--user Run mysqld as user having name user_name or numeric
user ID user_id

 

•   --help

Display a help message and exit.

•   --basedir=dir_name

The path to the MySQL installation directory.

•   --core-file-size=size

The size of the core file that mysqld should be able to create. The option value is passed to ulimit
-c.

•   --datadir=dir_name

The path to the data directory.

•   --defaults-extra-file=file_name

Read this option file in addition to the usual option files. If the file does not exist or is otherwise
inaccessible, the server will exit with an error. file_name is interpreted relative to the current
directory if given as a relative path name rather than a full path name. This must be the first option on
the command line if it is used.

For additional information about this option, see Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”.

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, the server will exit
with an error. file_name is interpreted relative to the current directory if given as a relative path
name rather than a full path name. This must be the first option on the command line if it is used.

For additional information about this option, see Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”.

•   --ledir=dir_name

If mysqld_safe cannot find the server, use this option to indicate the path name to the directory
where the server is located.

As of MySQL 5.5.54, this option is accepted only on the command line, not in option files.

•   --log-error=file_name

Write the error log to the given file. See Section 5.4.2, “The Error Log”.

•   --malloc-lib=[lib_name]

The name of the library to use for memory allocation instead of the system malloc() library. As of
MySQL 5.5.52, the option value must be one of the directories /usr/lib, /usr/lib64, /usr/
lib/i386-linux-gnu, or /usr/lib/x86_64-linux-gnu. Prior to MySQL 5.5.52, any library
can be used by specifying its path name, but there is a shortcut form to enable use of the tcmalloc
library that is shipped with binary MySQL distributions for Linux in MySQL 5.5. It is possible that the



mysqld_safe — MySQL Server Startup Script

269

shortcut form will not work under certain configurations, in which case you should specify a path
name instead.

Note

As of MySQL 5.5.50, MySQL distributions no longer include a tcmalloc
library.

The --malloc-lib option works by modifying the LD_PRELOAD environment value to affect
dynamic linking to enable the loader to find the memory-allocation library when mysqld runs:

• If the option is not given, or is given without a value (--malloc-lib=), LD_PRELOAD is not
modified and no attempt is made to use tcmalloc.

• If the option is given as --malloc-lib=tcmalloc, mysqld_safe looks for a tcmalloc library
in /usr/lib and then in the MySQL pkglibdir location (for example, /usr/local/mysql/
lib or whatever is appropriate). If tmalloc is found, its path name is added to the beginning of
the LD_PRELOAD value for mysqld. If tcmalloc is not found, mysqld_safe aborts with an error.

• If the option is given as --malloc-lib=/path/to/some/library, that full path is added to
the beginning of the LD_PRELOAD value. If the full path points to a nonexistent or unreadable file,
mysqld_safe aborts with an error.

• For cases where mysqld_safe adds a path name to LD_PRELOAD, it adds the path to the
beginning of any existing value the variable already has.

Linux users can use the libtcmalloc_minimal.so included in binary packages by adding these
lines to the my.cnf file:

[mysqld_safe]
malloc-lib=tcmalloc

Those lines also suffice for users on any platform who have installed a tcmalloc package in /usr/
lib. To use a specific tcmalloc library, specify its full path name. Example:

[mysqld_safe]
malloc-lib=/opt/lib/libtcmalloc_minimal.so

•   --mysqld=prog_name

The name of the server program (in the ledir directory) that you want to start. This option is
needed if you use the MySQL binary distribution but have the data directory outside of the binary
distribution. If mysqld_safe cannot find the server, use the --ledir option to indicate the path
name to the directory where the server is located.

As of MySQL 5.5.52, this option is accepted only on the command line, not in option files.

•   --mysqld-version=suffix

This option is similar to the --mysqld option, but you specify only the suffix for the server
program name. The base name is assumed to be mysqld. For example, if you use --mysqld-
version=debug, mysqld_safe starts the mysqld-debug program in the ledir directory. If the
argument to --mysqld-version is empty, mysqld_safe uses mysqld in the ledir directory.

As of MySQL 5.5.52, this option is accepted only on the command line, not in option files.

•   --nice=priority

Use the nice program to set the server's scheduling priority to the given value.

•   --no-defaults



mysqld_safe — MySQL Server Startup Script

270

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read. This must be the first option on
the command line if it is used.

For additional information about this option, see Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”.

•   --open-files-limit=count

The number of files that mysqld should be able to open. The option value is passed to ulimit -n.

Note

You must start mysqld_safe as root for this to function properly.

•   --pid-file=file_name

The path name that mysqld should use for its process ID file.

•   --plugin-dir=dir_name

The path name of the plugin directory. This option was added in MySQL 5.5.3.

•   --port=port_num

The port number that the server should use when listening for TCP/IP connections. The port number
must be 1024 or higher unless the server is started by the root system user.

•   --skip-kill-mysqld

Do not try to kill stray mysqld processes at startup. This option works only on Linux.

•   --socket=path

The Unix socket file that the server should use when listening for local connections.

•     --syslog, --skip-syslog

--syslog causes error messages to be sent to syslog on systems that support the logger
program. --skip-syslog suppresses the use of syslog; messages are written to an error log file.

When syslog is used, the daemon.err syslog facility/severity is used for all log messages.

•   --syslog-tag=tag

For logging to syslog, messages from mysqld_safe and mysqld are written with identifiers of
mysqld_safe and mysqld, respectively. To specify a suffix for the identifiers, use --syslog-
tag=tag, which modifies the identifiers to be mysqld_safe-tag and mysqld-tag.

•   --timezone=timezone

Set the TZ time zone environment variable to the given option value. Consult your operating system
documentation for legal time zone specification formats.

•   --user={user_name|user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

If you execute mysqld_safe with the --defaults-file or --defaults-extra-file option to
name an option file, the option must be the first one given on the command line or the option file will not
be used. For example, this command will not use the named option file:



mysqld_safe — MySQL Server Startup Script

271

mysql> mysqld_safe --port=port_num --defaults-file=file_name

Instead, use the following command:

mysql> mysqld_safe --defaults-file=file_name --port=port_num

The mysqld_safe script is written so that it normally can start a server that was installed from either
a source or a binary distribution of MySQL, even though these types of distributions typically install the
server in slightly different locations. (See Section 2.1.4, “Installation Layouts”.) mysqld_safe expects
one of the following conditions to be true:

• The server and databases can be found relative to the working directory (the directory from which
mysqld_safe is invoked). For binary distributions, mysqld_safe looks under its working directory
for bin and data directories. For source distributions, it looks for libexec and var directories. This
condition should be met if you execute mysqld_safe from your MySQL installation directory (for
example, /usr/local/mysql for a binary distribution).

• If the server and databases cannot be found relative to the working directory, mysqld_safe
attempts to locate them by absolute path names. Typical locations are /usr/local/libexec
and /usr/local/var. The actual locations are determined from the values configured into the
distribution at the time it was built. They should be correct if MySQL is installed in the location
specified at configuration time.

Because mysqld_safe tries to find the server and databases relative to its own working directory,
you can install a binary distribution of MySQL anywhere, as long as you run mysqld_safe from the
MySQL installation directory:

shell> cd mysql_installation_directory
shell> bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, specify the --ledir
and --datadir options to indicate the directories in which the server and databases are located on
your system.

Beginning with MySQL 5.5.21, mysqld_safe tries to use the sleep and date system utilities to
determine how many times it has attempted to start this second, and—if these are present and this is
greater than 5 times—is forced to wait 1 full second before starting again. This is intended to prevent
excessive CPU usage in the event of repeated failures. (Bug #11761530, Bug #54035)

When you use mysqld_safe to start mysqld, mysqld_safe arranges for error (and notice)
messages from itself and from mysqld to go to the same destination.

There are several mysqld_safe options for controlling the destination of these messages:

• --log-error=file_name: Write error messages to the named error file.

• --syslog: Write error messages to syslog on systems that support the logger program.

• --skip-syslog: Do not write error messages to syslog. Messages are written to the default error
log file (host_name.err in the data directory), or to a named file if the --log-error option is
given.

If none of these options is given, the default is --skip-syslog.

If --log-error and --syslog are both given, a warning is issued and --log-error takes
precedence.

When mysqld_safe writes a message, notices go to the logging destination (syslog or the error log
file) and stdout. Errors go to the logging destination and stderr.



mysql.server — MySQL Server Startup Script

272

Normally, you should not edit the mysqld_safe script. Instead, configure mysqld_safe by using
command-line options or options in the [mysqld_safe] section of a my.cnf option file. In rare cases,
it might be necessary to edit mysqld_safe to get it to start the server properly. However, if you do
this, your modified version of mysqld_safe might be overwritten if you upgrade MySQL in the future,
so you should make a copy of your edited version that you can reinstall.

4.3.3 mysql.server — MySQL Server Startup Script

MySQL distributions on Unix and Unix-like system include a script named mysql.server, which starts
the MySQL server using mysqld_safe. It can be used on systems such as Linux and Solaris that use
System V-style run directories to start and stop system services. It is also used by the macOS Startup
Item for MySQL.

mysql.server is the script name as used within the MySQL source tree. The installed name might be
different; for example, mysqld or mysql. In the following discussion, adjust the name mysql.server
as appropriate for your system.

To start or stop the server manually using the mysql.server script, invoke it from the command line
with start or stop arguments:

shell> mysql.server start
shell> mysql.server stop

mysql.server changes location to the MySQL installation directory, then invokes mysqld_safe.
To run the server as some specific user, add an appropriate user option to the [mysqld] group of
the global /etc/my.cnf option file, as shown later in this section. (It is possible that you must edit
mysql.server if you've installed a binary distribution of MySQL in a nonstandard location. Modify it
to change location into the proper directory before it runs mysqld_safe. If you do this, your modified
version of mysql.server may be overwritten if you upgrade MySQL in the future; make a copy of
your edited version that you can reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server
manually by executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you must add start and stop commands to the
appropriate places in your /etc/rc* files:

• If you use the Linux server RPM package (MySQL-server-VERSION.rpm), or a native Linux
package installation, the mysql.server script may be installed in the /etc/init.d directory with
the name mysqld or mysql. See Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”,
for more information on the Linux RPM packages.

• If you install MySQL from a source distribution or using a binary distribution format that does not
install mysql.server automatically, you can install the script manually. It can be found in the
support-files directory under the MySQL installation directory or in a MySQL source tree. Copy
the script to the /etc/init.d directory with the name mysql and make it executable:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

After installing the script, the commands needed to activate it to run at system startup depend on
your operating system. On Linux, you can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the
mysql script:

shell> chkconfig --level 345 mysql on



mysql.server — MySQL Server Startup Script

273

• On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. Install the
mysql.server script as /usr/local/etc/rc.d/mysql.server.sh to enable automatic
startup. The rc(8) manual page states that scripts in this directory are executed only if their base
name matches the *.sh shell file name pattern. Any other files or directories present within the
directory are silently ignored.

• As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /
etc/init.d/boot.local to start additional services on startup. To start up MySQL using this
method, append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

• For other systems, consult your operating system documentation to see how to install startup scripts.

mysql.server reads options from the [mysql.server] and [mysqld] sections of option files. For
backward compatibility, it also reads [mysql_server] sections, but to be current you should rename
such sections to [mysql.server].

You can add options for mysql.server in a global /etc/my.cnf file. A typical my.cnf file might
look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script supports the options shown in the following table. If specified, they must be
placed in an option file, not on the command line. mysql.server supports only start and stop as
command-line arguments.

Table 4.4 mysql.server Option-File Options

Option Name Description Type

basedir Path to MySQL installation directory directory
name

datadir Path to MySQL data directory directory
name

pid-file File in which server should write its process ID file name

service-
startup-
timeout

How long to wait for server startup integer

•   basedir=dir_name

The path to the MySQL installation directory.

•   datadir=dir_name

The path to the MySQL data directory.

•   pid-file=file_name

The path name of the file in which the server should write its process ID.

If this option is not given, mysql.server uses a default value of host_name.pid. The PID file
value passed to mysqld_safe overrides any value specified in the [mysqld_safe] option file



mysqld_multi — Manage Multiple MySQL Servers

274

group. Because mysql.server reads the [mysqld] option file group but not the [mysqld_safe]
group, you can ensure that mysqld_safe gets the same value when invoked from mysql.server
as when invoked manually by putting the same pid-file setting in both the [mysqld_safe] and
[mysqld] groups.

•   service-startup-timeout=seconds

How long in seconds to wait for confirmation of server startup. If the server does not start within this
time, mysql.server exits with an error. The default value is 900. A value of 0 means not to wait at
all for startup. Negative values mean to wait forever (no timeout).

4.3.4 mysqld_multi — Manage Multiple MySQL Servers

mysqld_multi is designed to manage several mysqld processes that listen for connections on
different Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status.

mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the --
defaults-file option). N can be any positive integer. This number is referred to in the following
discussion as the option group number, or GNR. Group numbers distinguish option groups from one
another and are used as arguments to mysqld_multi to specify which servers you want to start,
stop, or obtain a status report for. Options listed in these groups are the same that you would use in the
[mysqld] group used for starting mysqld. (See, for example, Section 2.10.5, “Starting and Stopping
MySQL Automatically”.) However, when using multiple servers, it is necessary that each one use its
own value for options such as the Unix socket file and TCP/IP port number. For more information on
which options must be unique per server in a multiple-server environment, see Section 5.6, “Running
Multiple MySQL Instances on One Machine”.

To invoke mysqld_multi, use the following syntax:

shell> mysqld_multi [options] {start|stop|report} [GNR[,GNR] ...]

start, stop, and report indicate which operation to perform. You can perform the designated
operation for a single server or multiple servers, depending on the GNR list that follows the option name.
If there is no list, mysqld_multi performs the operation for all servers in the option file.

Each GNR value represents an option group number or range of group numbers. The value should be
the number at the end of the group name in the option file. For example, the GNR for a group named
[mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The
GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group
ranges can be specified on the command line, separated by commas. There must be no whitespace
characters (spaces or tabs) in the GNR list; anything after a whitespace character is ignored.

This command starts a single server using option group [mysqld17]:

shell> mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through
[mysqld13]:

shell> mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

shell> mysqld_multi --example

mysqld_multi searches for option files as follows:

•   With --no-defaults, no option files are read.



mysqld_multi — Manage Multiple MySQL Servers

275

•   With --defaults-file=file_name, only the named file is read.

•   Otherwise, option files in the standard list of locations are read, including any file named by the --
defaults-extra-file=file_name option, if one is given. (If the option is given multiple times,
the last value is used.)

Option files read are searched for [mysqld_multi] and [mysqldN] option groups. The
[mysqld_multi] group can be used for options to mysqld_multi itself. [mysqldN] groups can be
used for options passed to specific mysqld instances.

The [mysqld] or [mysqld_safe] groups can be used for common options read by all instances
of mysqld or mysqld_safe. You can specify a --defaults-file=file_name option to use a
different configuration file for that instance, in which case the [mysqld] or [mysqld_safe] groups
from that file will be used for that instance.

mysqld_multi supports the following options.

•   --help

Display a help message and exit.

•   --config-file=file_name

This option is deprecated. If given, it is treated the same way as --defaults-extra-file,
described earlier. --config-file was removed in MySQL 5.5.3.

•   --example

Display a sample option file.

•   --log=file_name

Specify the name of the log file. If the file exists, log output is appended to it.

•   --mysqladmin=prog_name

The mysqladmin binary to be used to stop servers.

•   --mysqld=prog_name

The mysqld binary to be used. Note that you can specify mysqld_safe as the value for this option
also. If you use mysqld_safe to start the server, you can include the mysqld or ledir options
in the corresponding [mysqldN] option group. These options indicate the name of the server that
mysqld_safe should start and the path name of the directory where the server is located. (See the
descriptions for these options in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.)
Example:

[mysqld38]
mysqld = mysqld-debug
ledir  = /opt/local/mysql/libexec

•   --no-log

Print log information to stdout rather than to the log file. By default, output goes to the log file.

•   --password=password

The password of the MySQL account to use when invoking mysqladmin. The password value is not
optional for this option, unlike for other MySQL programs.

•   --silent

Silent mode; disable warnings.



mysqld_multi — Manage Multiple MySQL Servers

276

•   --tcp-ip

Connect to each MySQL server through the TCP/IP port instead of the Unix socket file. (If a socket
file is missing, the server might still be running, but accessible only through the TCP/IP port.) By
default, connections are made using the Unix socket file. This option affects stop and report
operations.

•   --user=user_name

The user name of the MySQL account to use when invoking mysqladmin.

•   --verbose

Be more verbose.

•   --version

Display version information and exit.

Some notes about mysqld_multi:

• Most important: Before using mysqld_multi be sure that you understand the meanings of the
options that are passed to the mysqld servers and why you would want to have separate mysqld
processes. Beware of the dangers of using multiple mysqld servers with the same data directory.
Use separate data directories, unless you know what you are doing. Starting multiple servers with
the same data directory does not give you extra performance in a threaded system. See Section 5.6,
“Running Multiple MySQL Instances on One Machine”.

Important

Make sure that the data directory for each server is fully accessible to the
Unix account that the specific mysqld process is started as. Do not use
the Unix root account for this, unless you know what you are doing. See
Section 6.1.5, “How to Run MySQL as a Normal User”.

• Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin
program) has the same user name and password for each server. Also, make sure that the account
has the SHUTDOWN privilege. If the servers that you want to manage have different user names or
passwords for the administrative accounts, you might want to create an account on each server that
has the same user name and password. For example, you might set up a common multi_admin
account by executing the following commands for each server:

shell> mysql -u root -S /tmp/mysql.sock -p
Enter password:
mysql> CREATE USER 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';
mysql> GRANT SHUTDOWN ON *.* TO 'multi_admin'@'localhost';

See Section 6.2, “The MySQL Access Privilege System”. You have to do this for each mysqld
server. Change the connection parameters appropriately when connecting to each one. Note that
the host name part of the account name must permit you to connect as multi_admin from the host
where you want to run mysqld_multi.

• The Unix socket file and the TCP/IP port number must be different for every mysqld. (Alternatively, if
the host has multiple network addresses, you can use --bind-address to cause different servers
to listen to different interfaces.)

• The --pid-file option is very important if you are using mysqld_safe to start mysqld (for
example, --mysqld=mysqld_safe) Every mysqld should have its own process ID file. The
advantage of using mysqld_safe instead of mysqld is that mysqld_safe monitors its mysqld
process and restarts it if the process terminates due to a signal sent using kill -9 or for other
reasons, such as a segmentation fault. Please note that the mysqld_safe script might require



mysqld_multi — Manage Multiple MySQL Servers

277

that you start it from a certain place. This means that you might have to change location to a
certain directory before running mysqld_multi. If you have problems starting, please see the
mysqld_safe script. Check especially the lines:

----------------------------------------------------------------
MY_PWD=`pwd`
# Check if we are starting this relative (for the binary release)
if test -d $MY_PWD/data/mysql -a \
   -f ./share/mysql/english/errmsg.sys -a \
   -x ./bin/mysqld
----------------------------------------------------------------

The test performed by these lines should be successful, or you might encounter problems. See
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.

• You might want to use the --user option for mysqld, but to do this you need to run the
mysqld_multi script as the Unix superuser (root). Having the option in the option file doesn't
matter; you just get a warning if you are not the superuser and the mysqld processes are started
under your own Unix account.

The following example shows how you might set up an option file for use with mysqld_multi. The
order in which the mysqld programs are started or stopped depends on the order in which they appear
in the option file. Group numbers need not form an unbroken sequence. The first and fifth [mysqldN]
groups were intentionally omitted from the example to illustrate that you can have “gaps” in the option
file. This gives you more flexibility.

# This is an example of a my.cnf file for mysqld_multi.
# Usually this file is located in home dir ~/.my.cnf or /etc/my.cnf

[mysqld_multi]
mysqld     = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user       = multi_admin
password   = my_password

[mysqld2]
socket     = /tmp/mysql.sock2
port       = 3307
pid-file   = /usr/local/mysql/data2/hostname.pid2
datadir    = /usr/local/mysql/data2
language   = /usr/local/mysql/share/mysql/english
user       = unix_user1

[mysqld3]
mysqld     = /path/to/mysqld_safe
ledir      = /path/to/mysqld-binary/
mysqladmin = /path/to/mysqladmin
socket     = /tmp/mysql.sock3
port       = 3308
pid-file   = /usr/local/mysql/data3/hostname.pid3
datadir    = /usr/local/mysql/data3
language   = /usr/local/mysql/share/mysql/swedish
user       = unix_user2

[mysqld4]
socket     = /tmp/mysql.sock4
port       = 3309
pid-file   = /usr/local/mysql/data4/hostname.pid4
datadir    = /usr/local/mysql/data4
language   = /usr/local/mysql/share/mysql/estonia
user       = unix_user3

[mysqld6]
socket     = /tmp/mysql.sock6
port       = 3311
pid-file   = /usr/local/mysql/data6/hostname.pid6
datadir    = /usr/local/mysql/data6



MySQL Installation-Related Programs

278

language   = /usr/local/mysql/share/mysql/japanese
user       = unix_user4

See Section 4.2.6, “Using Option Files”.

4.4 MySQL Installation-Related Programs
The programs in this section are used when installing or upgrading MySQL.

4.4.1 comp_err — Compile MySQL Error Message File

comp_err creates the errmsg.sys file that is used by mysqld to determine the error messages
to display for different error codes. comp_err normally is run automatically when MySQL is built. It
compiles the errmsg.sys file from the text file located at sql/share/errmsg-utf8.txt in MySQL
source distributions.

comp_err also generates mysqld_error.h, mysqld_ername.h, and sql_state.h header files.

For more information about how error messages are defined, see the MySQL Internals Manual.

Invoke comp_err like this:

shell> comp_err [options]

comp_err supports the following options.

•   --help, -?

Display a help message and exit.

•   --charset=dir_name, -C dir_name

The character set directory. The default is ../sql/share/charsets.

•   --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:O,file_name. The default is
d:t:O,/tmp/comp_err.trace.

•   --debug-info, -T

Print some debugging information when the program exits.

•   --header_file=file_name, -H file_name

The name of the error header file. The default is mysqld_error.h.

•   --in_file=file_name, -F file_name

The name of the input file. The default is ../sql/share/errmsg-utf8.txt.

•   --name_file=file_name, -N file_name

The name of the error name file. The default is mysqld_ername.h.

•   --out_dir=dir_name, -D dir_name

The name of the output base directory. The default is ../sql/share/.

•   --out_file=file_name, -O file_name

The name of the output file. The default is errmsg.sys.

http://dev.mysql.com/doc/internals/en


mysqlbug — Generate Bug Report

279

•   --statefile=file_name, -S file_name

The name for the SQLSTATE header file. The default is sql_state.h.

•   --version, -V

Display version information and exit.

4.4.2 mysqlbug — Generate Bug Report

This program is obsolete.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

4.4.3 mysql_install_db — Initialize MySQL Data Directory

mysql_install_db initializes the MySQL data directory and creates the system tables that it
contains, if they do not exist. mysql_install_db is a shell script and is available only on Unix
platforms. (As of MySQL 5.6, mysql_install_db is a Perl script and can be used on any system with
Perl installed.)

To invoke mysql_install_db, use the following syntax:

shell> mysql_install_db [options]

Because the MySQL server, mysqld, must access the data directory when it runs later, you
should either run mysql_install_db from the same system account that will be used for running
mysqld, or run it as root and specify the --user option to indicate the user name that mysqld
will run as. It might be necessary to specify other options such as --basedir or --datadir if
mysql_install_db does not use the correct locations for the installation directory or data directory.
For example:

shell> scripts/mysql_install_db --user=mysql \
         --basedir=/opt/mysql/mysql \
         --datadir=/opt/mysql/mysql/data

Note

If you have set a custom TMPDIR environment variable when performing the
installation, and the specified directory is not accessible, mysql_install_db
may fail. If so, unset TMPDIR or set TMPDIR to point to the system temporary
directory (usually /tmp).

mysql_install_db supports the following options, which can be specified on the command line or in
the [mysql_install_db] group of an option file. (Options that are common to mysqld can also be
specified in the [mysqld] group.) Other options are passed to mysqld. For information about option
files used by MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.5 mysql_install_db Options

Format Description

--basedir Path to base directory

--builddir Path to build directory (for out-of-source builds)

--cross-bootstrap For internal use

--datadir Path to data directory

http://bugs.mysql.com/


mysql_install_db — Initialize MySQL Data Directory

280

Format Description

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--force Run even if DNS does not work

--help Display help message and exit

--ldata Synonym for --datadir

--no-defaults Read no option files

--rpm For internal use

--skip-name-resolve Use IP addresses rather than host names in grant tables

--srcdir For internal use

--user System login user under which to execute mysqld

--verbose Verbose mode

--windows For internal use

•   --help

Display a help message and exit.

•   --basedir=dir_name

The path to the MySQL installation directory.

•   --builddir=dir_name

For use with --srcdir and out-of-source builds. Set this to the location of the directory where the
built files reside.

•   --cross-bootstrap

For internal use. This option is used for building system tables on one host intended for another.

•   --datadir=dir_name

The path to the MySQL data directory.

•  --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name.

•  --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

•   --force

Cause mysql_install_db to run even if DNS does not work. Grant table entries normally created
using host names will use IP addresses instead.

•   --ldata=dir_name

A synonym for --datadir.

•  --no-defaults



mysql_plugin — Configure MySQL Server Plugins

281

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•   --rpm

For internal use. This option is used during the MySQL installation process for install operations
performed using RPM packages.

•   --skip-name-resolve

Use IP addresses rather than host names when creating grant table entries. This option can be
useful if your DNS does not work.

•   --srcdir=dir_name

For internal use. This option specifies the directory under which mysql_install_db looks for
support files such as the error message file and the file for populating the help tables.

•   --user=user_name

The system (login) user name to use for running mysqld. Files and directories created by mysqld
will be owned by this user. You must be the system root user to use this option. By default, mysqld
runs using your current login name and files and directories that it creates will be owned by you.

•   --verbose

Verbose mode. Print more information about what the program does.

•   --windows

For internal use. This option is used for creating Windows distributions.

4.4.4 mysql_plugin — Configure MySQL Server Plugins

The mysql_plugin utility enables MySQL administrators to manage which plugins a MySQL server
loads. It provides an alternative to manually specifying the --plugin-load option at server startup
or using the INSTALL PLUGIN and UNINSTALL PLUGIN statements at runtime. mysql_plugin is
available as of MySQL 5.5.16.

Depending on whether mysql_plugin is invoked to enable or disable plugins, it inserts or deletes
rows in the mysql.plugin table that serves as a plugin registry. (To perform this operation,
mysql_plugin invokes the MySQL server in bootstrap mode. This means that the server must
not already be running.) For normal server startups, the server loads and enables plugins listed in
mysql.plugin automatically. For additional control over plugin activation, use --plugin_name
options named for specific plugins, as described in Section 5.5.2, “Installing and Uninstalling Plugins”.

Each invocation of mysql_plugin reads a configuration file to determine how to configure the plugins
contained in a single plugin library file. To invoke mysql_plugin, use this syntax:

mysql_plugin [options] plugin {ENABLE|DISABLE}

plugin is the name of the plugin to configure. ENABLE or DISABLE (not case sensitive) specify
whether to enable or disable components of the plugin library named in the configuration file. The order
of the plugin and ENABLE or DISABLE arguments does not matter.

For example, to configure components of a plugin library file named myplugins.so on Linux or
myplugins.dll on Windows, specify a plugin value of myplugins. Suppose that this plugin
library contains three plugins, plugin1, plugin2, and plugin3, all of which should be configured
under mysql_plugin control. By convention, configuration files have a suffix of .ini and the



mysql_plugin — Configure MySQL Server Plugins

282

same base name as the plugin library, so the default configuration file name for this plugin library is
myplugins.ini. The configuration file contents look like this:

myplugins
plugin1
plugin2
plugin3

The first line in the myplugins.ini file is the name of the library file, without any extension such as
.so or .dll. The remaining lines are the names of the components to be enabled or disabled. Each
value in the file should be on a separate line. Lines on which the first character is '#' are taken as
comments and ignored.

To enable the plugins listed in the configuration file, invoke mysql_plugin this way:

shell> mysql_plugin myplugins ENABLE

To disable the plugins, use DISABLE rather than ENABLE.

An error occurs if mysql_plugin cannot find the configuration file or plugin library file, or if
mysql_plugin cannot start the MySQL server.

mysql_plugin supports the following options, which can be specified on the command line or in
the [mysqld] group of any option file. For options specified in a [mysqld] group, mysql_plugin
recognizes the --basedir, --datadir, and --plugin-dir options and ignores others. For
information about option files used by MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.6 mysql_plugin Options

Format Description

--basedir The server base directory

--datadir The server data directory

--help Display help message and exit

--my-print-defaults Path to my_print_defaults

--mysqld Path to server

--no-defaults Do not read configuration file

--plugin-dir Directory where plugins are installed

--plugin-ini The plugin configuration file

--print-defaults Show configuration file defaults

--verbose Verbose mode

--version Display version information and exit

•   --help, -?

Display a help message and exit.

•   --basedir=dir_name, -b dir_name

The server base directory.

•   --datadir=dir_name, -d dir_name

The server data directory.

•   --my-print-defaults=file_name, -b file_name

The path to the my_print_defaults program.



mysql_secure_installation — Improve MySQL Installation Security

283

•   --mysqld=file_name, -b file_name

The path to the mysqld server.

•   --no-defaults, -p

Do not read values from the configuration file. This option enables an administrator to skip reading
defaults from the configuration file.

With mysql_plugin, this option need not be given first on the command line, unlike most other
MySQL programs that support --no-defaults.

•   --plugin-dir=dir_name, -p dir_name

The server plugin directory.

•   --plugin-ini=file_name, -i file_name

The mysql_plugin configuration file. Relative path names are interpreted relative to the current
directory. If this option is not given, the default is plugin.ini in the plugin directory, where plugin
is the plugin argument on the command line.

•   --print-defaults, -P

Display the default values from the configuration file. This option causes mysql_plugin to print the
defaults for --basedir, --datadir, and --plugin-dir if they are found in the configuration file.
If no value for a variable is found, nothing is shown.

With mysql_plugin, this option need not be given first on the command line, unlike most other
MySQL programs that support --print-defaults.

•   --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

•   --version, -V

Display version information and exit.

4.4.5 mysql_secure_installation — Improve MySQL Installation
Security

This program enables you to improve the security of your MySQL installation in the following ways:

• You can set a password for root accounts.

• You can remove root accounts that are accessible from outside the local host.

• You can remove anonymous-user accounts.

• You can remove the test database (which by default can be accessed by all users, even
anonymous users), and privileges that permit anyone to access databases with names that start with
test_.

mysql_secure_installation helps you implement security recommendations similar to those
described at Section 2.10.4, “Securing the Initial MySQL Accounts”.

Invoke mysql_secure_installation without arguments:

shell> mysql_secure_installation



mysql_tzinfo_to_sql — Load the Time Zone Tables

284

When executed, the script prompts you to determine which actions to perform.

4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables

The mysql_tzinfo_to_sql program loads the time zone tables in the mysql database. It is used
on systems that have a zoneinfo database (the set of files describing time zones). Examples of such
systems are Linux, FreeBSD, Solaris, and OS X. One likely location for these files is the /usr/share/
zoneinfo directory (/usr/share/lib/zoneinfo on Solaris). If your system does not have a
zoneinfo database, you can use the downloadable package described in Section 10.6, “MySQL Server
Time Zone Support”.

mysql_tzinfo_to_sql can be invoked several ways:

shell> mysql_tzinfo_to_sql tz_dir
shell> mysql_tzinfo_to_sql tz_file tz_name
shell> mysql_tzinfo_to_sql --leap tz_file

For the first invocation syntax, pass the zoneinfo directory path name to mysql_tzinfo_to_sql and
send the output into the mysql program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from
them. mysql processes those statements to load the time zone tables.

The second syntax causes mysql_tzinfo_to_sql to load a single time zone file tz_file that
corresponds to a time zone name tz_name:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

If your time zone needs to account for leap seconds, invoke mysql_tzinfo_to_sql using the third
syntax, which initializes the leap second information. tz_file is the name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to
use any previously cached time zone data.

4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL Server. mysql_upgrade also upgrades the system tables so that you can take advantage of
new privileges or capabilities that might have been added.

If mysql_upgrade finds that a table has a possible incompatibility, it performs a table check and,
if problems are found, attempts a table repair. If the table cannot be repaired, see Section 2.11.3,
“Rebuilding or Repairing Tables or Indexes” for manual table repair strategies.

You should execute mysql_upgrade each time you upgrade MySQL.

If you install MySQL from RPM packages on Linux, you must install the server and client RPMs.
mysql_upgrade is included in the server RPM but requires the client RPM because the latter includes
mysqlcheck. (See Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”.)

Note

On Windows Server 2008, Vista, and newer, you must run mysql_upgrade
with administrator privileges. You can do this by running a Command Prompt
as Administrator and running the command. Failure to do so may result in the
upgrade failing to execute correctly.



mysql_upgrade — Check and Upgrade MySQL Tables

285

Caution

You should always back up your current MySQL installation before performing
an upgrade. See Section 7.2, “Database Backup Methods”.

Some upgrade incompatibilities may require special handling before
you upgrade your MySQL installation and run mysql_upgrade. See
Section 2.11.1, “Upgrading MySQL”, for instructions on determining whether
any such incompatibilities apply to your installation and how to handle them.

To use mysql_upgrade, make sure that the server is running. Then invoke it like this:

shell> mysql_upgrade [options]

After running mysql_upgrade, stop the server and restart it so that any changes made to the system
tables take effect.

If you have multiple MySQL server instances running, invoke mysql_upgrade with connection
parameters appropriate for connecting to the desired server. For example, with servers running on the
local host on parts 3306 through 3308, upgrade each of them by connecting to the appropriate port:

shell> mysql_upgrade --protocol=tcp -P 3306 [other_options]
shell> mysql_upgrade --protocol=tcp -P 3307 [other_options]
shell> mysql_upgrade --protocol=tcp -P 3308 [other_options]

For local host connections on Unix, the --protocol=tcp option forces a connection using TCP/IP
rather than the Unix socket file.

mysql_upgrade executes the following commands to check and repair tables and to upgrade the
system tables:

mysqlcheck --no-defaults --all-databases
 --fix-db-names --fix-table-names
mysqlcheck --no-defaults --check-upgrade --all-databases
 --auto-repair
mysql < fix_priv_tables

Notes about the preceding commands:

• mysql_upgrade also adds --write-binlog or --skip-write-binlog to the mysqlcheck
commands, depending on whether the --write-binlog option was specified on the
mysql_upgrade command.

• Because mysql_upgrade invokes mysqlcheck with the --all-databases option, it processes
all tables in all databases, which might take a long time to complete. Each table is locked and
therefore unavailable to other sessions while it is being processed. Check and repair operations can
be time-consuming, particularly for large tables.

• For details about what checks the --check-upgrade option entails, see the description of the FOR
UPGRADE option of the CHECK TABLE statement (see Section 13.7.2.2, “CHECK TABLE Syntax”).

• fix_priv_tables represents a script generated internally by mysql_upgrade that contains SQL
statements to upgrade the tables in the mysql database.

All checked and repaired tables are marked with the current MySQL version number. This ensures that
next time you run mysql_upgrade with the same version of the server, it can tell whether there is any
need to check or repair the table again.

mysql_upgrade also saves the MySQL version number in a file named mysql_upgrade_info in
the data directory. This is used to quickly check whether all tables have been checked for this release
so that table-checking can be skipped. To ignore this file and perform the check regardless, use the --
force option.



mysql_upgrade — Check and Upgrade MySQL Tables

286

mysql_upgrade does not upgrade the contents of the help tables. For upgrade instructions, see
Section 5.1.10, “Server-Side Help”.

mysql_upgrade supports the following options, which can be specified on the command line or in
the [mysql_upgrade] and [client] groups of an option file. Unrecognized options are passed to
mysqlcheck. For information about option files, see Section 4.2.6, “Using Option Files”.

Table 4.7 mysql_upgrade Options

Format Description Introduced

--basedir Not used  

--character-sets-dir Directory where character sets are installed  

--compress Compress all information sent between client and server  

--datadir Not used  

--debug Write debugging log  

--debug-check Print debugging information when program exits  

--debug-info Print debugging information, memory, and CPU statistics
when program exits

 

--default-auth Authentication plugin to use 5.5.10

--default-character-set Specify default character set  

--defaults-extra-file Read named option file in addition to usual option files  

--defaults-file Read only named option file  

--defaults-group-suffix Option group suffix value  

--force Force execution even if mysql_upgrade has already been
executed for current version of MySQL

 

--help Display help message and exit  

--host Connect to MySQL server on given host  

--no-defaults Read no option files  

--password Password to use when connecting to server  

--pipe On Windows, connect to server using named pipe  

--plugin-dir Directory where plugins are installed 5.5.10

--port TCP/IP port number to use for connection  

--print-defaults Print default options  

--protocol Connection protocol to use  

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

 

--socket For connections to localhost, the Unix socket file to use  

--ssl Enable secure connection  

--ssl-ca Path of file that contains list of trusted SSL CAs  

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

 

--ssl-cert Path of file that contains X509 certificate in PEM format  

--ssl-cipher List of permitted ciphers to use for connection encryption  

--ssl-key Path of file that contains X509 key in PEM format  

--ssl-mode Security state of connection to server 5.5.49

--ssl-verify-server-cert Verify server certificate Common Name value against
host name used when connecting to server

 



mysql_upgrade — Check and Upgrade MySQL Tables

287

Format Description Introduced

--tmpdir Directory for temporary files  

--upgrade-system-tables Update only system tables, not data  

--user MySQL user name to use when connecting to server  

--verbose Verbose mode  

--version-check Check for proper server version 5.5.32

--write-binlog Write all statements to binary log  

•   --help

Display a short help message and exit.

•   --basedir=dir_name

The path to the MySQL installation directory. This option is accepted for backward compatibility but
ignored. It is removed in MySQL 5.7.

•   --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

•   --compress

Compress all information sent between the client and the server if both support compression.

•   --datadir=dir_name

The path to the data directory. This option is accepted for backward compatibility but ignored. It is
removed in MySQL 5.7.

•   --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:O,/tmp/mysql_upgrade.trace.

•   --debug-check

Print some debugging information when the program exits.

•   --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

•   --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. Before MySQL 5.5.8, file_name must be the
full path name to the file. As of MySQL 5.5.8, the name is interpreted relative to the current directory
if given as a relative path name.



mysql_upgrade — Check and Upgrade MySQL Tables

288

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
Before MySQL 5.5.8, file_name must be the full path name to the file. As of MySQL 5.5.8, the
name is interpreted relative to the current directory if given as a relative path name.

•   --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysql_upgrade normally reads the [client] and [mysql_upgrade] groups.
If the --defaults-group-suffix=_other option is given, mysql_upgrade also reads the
[client_other] and [mysql_upgrade_other] groups.

•   --force

Ignore the mysql_upgrade_info file and force execution even if mysql_upgrade has already
been executed for the current version of MySQL.

•   --host=host_name, -h host_name

Connect to the MySQL server on the given host.

•   --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•   --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysql_upgrade prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

•   --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but mysql_upgrade does not find it. See Section 6.3.6,
“Pluggable Authentication”.

This option was added in MySQL 5.5.10.

•   --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

•   --print-defaults

Print the program name and all options that it gets from option files.

•   --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.



MySQL Client Programs

289

•   --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

•   --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

•   --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.4.5, “Command Options for Secure
Connections”.

•   --tmpdir=dir_name, -t dir_name

The path name of the directory to use for creating temporary files.

•   --upgrade-system-tables, -s

Upgrade only the system tables, do not upgrade data.

•   --user=user_name, -u user_name

The MySQL user name to use when connecting to the server. The default user name is root.

•   --verbose

Verbose mode. Print more information about what the program does.

•   --version-check, -k

Check the version of the server to which mysql_upgrade is connecting to verify that it is the same
as the version for which mysql_upgrade was built. If not, mysql_upgrade exits. This option is
enabled by default; to disable the check, use --skip-version-check. This option was added in
MySQL 5.5.32.

•   --write-binlog

Cause binary logging to be enabled while mysql_upgrade runs. This is the default behavior; to
disable binary logging during the upgrade, use the inverse of this option (that is, start the program
with --skip-write-binlog).

4.5 MySQL Client Programs
This section describes client programs that connect to the MySQL server.

4.5.1 mysql — The MySQL Command-Line Tool

mysql is a simple SQL shell with input line editing capabilities. It supports interactive and
noninteractive use. When used interactively, query results are presented in an ASCII-table format.
When used noninteractively (for example, as a filter), the result is presented in tab-separated format.
The output format can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option.
This forces mysql to retrieve results from the server a row at a time rather than retrieving the
entire result set and buffering it in memory before displaying it. This is done by returning the



mysql — The MySQL Command-Line Tool

290

result set using the mysql_use_result() C API function in the client/server library rather than
mysql_store_result().

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

shell> mysql db_name

Or:

shell> mysql --user=user_name --password db_name
Enter password: your_password

Then type an SQL statement, end it with ;, \g, or \G and press Enter.

Typing Control+C causes mysql to attempt to kill the current statement. If this cannot be done, or
Control+C is typed again before the statement is killed, mysql exits.

You can execute SQL statements in a script file (batch file) like this:

shell> mysql db_name < script.sql > output.tab

On Unix, the mysql client logs statements executed interactively to a history file. See Section 4.5.1.3,
“mysql Logging”.

4.5.1.1 mysql Options

mysql supports the following options, which can be specified on the command line or in the [mysql]
and [client] groups of an option file. For information about option files used by MySQL programs,
see Section 4.2.6, “Using Option Files”.

Table 4.8 mysql Options

Format Description IntroducedRemoved

--auto-rehash Enable automatic rehashing   

--auto-vertical-output Enable automatic vertical result set display 5.5.3  

--batch Do not use history file   

--binary-as-hex Display binary values in hexadecimal notation 5.5.57  

--character-sets-dir Directory where character sets are installed   

--column-names Write column names in results   

--column-type-info Display result set metadata   

--comments Whether to retain or strip comments in statements
sent to the server

  

--compress Compress all information sent between client and
server

  

--connect_timeout Number of seconds before connection timeout   

--database The database to use   

--debug Write debugging log; supported only if MySQL was
built with debugging support

  

--debug-check Print debugging information when program exits   

--debug-info Print debugging information, memory, and CPU
statistics when program exits

  

--default-auth Authentication plugin to use 5.5.7  

--default-character-set Specify default character set   



mysql — The MySQL Command-Line Tool

291

Format Description IntroducedRemoved

--defaults-extra-file Read named option file in addition to usual option
files

  

--defaults-file Read only named option file   

--defaults-group-suffix Option group suffix value   

--delimiter Set the statement delimiter   

--enable-cleartext-plugin Enable cleartext authentication plugin 5.5.27  

--execute Execute the statement and quit   

--force Continue even if an SQL error occurs   

--help Display help message and exit   

--host Connect to MySQL server on given host   

--html Produce HTML output   

--ignore-spaces Ignore spaces after function names   

--init-command SQL statement to execute after connecting   

--line-numbers Write line numbers for errors   

--local-infile Enable or disable for LOCAL capability for LOAD
DATA INFILE

  

--max_allowed_packet Maximum packet length to send to or receive from
server

  

--max_join_size The automatic limit for rows in a join when using --
safe-updates

  

--named-commands Enable named mysql commands   

--net_buffer_length Buffer size for TCP/IP and socket communication   

--no-auto-rehash Disable automatic rehashing   

--no-beep Do not beep when errors occur   

--no-defaults Read no option files   

--no-named-commands Disable named mysql commands  5.5.3

--no-pager Deprecated form of --skip-pager  5.5.3

--no-tee Do not copy output to a file  5.5.3

--one-database Ignore statements except those for the default
database named on the command line

  

--pager Use the given command for paging query output   

--password Password to use when connecting to server   

--pipe On Windows, connect to server using named pipe   

--plugin-dir Directory where plugins are installed 5.5.7  

--port TCP/IP port number to use for connection   

--print-defaults Print default options   

--prompt Set the prompt to the specified format   

--protocol Connection protocol to use   

--quick Do not cache each query result   

--raw Write column values without escape conversion   

--reconnect If the connection to the server is lost, automatically
try to reconnect

  



mysql — The MySQL Command-Line Tool

292

Format Description IntroducedRemoved

--i-am-a-dummy, --safe-
updates

Allow only UPDATE and DELETE statements that
specify key values

  

--secure-auth Do not send passwords to server in old (pre-4.1)
format

  

--select_limit The automatic limit for SELECT statements when
using --safe-updates

  

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

  

--show-warnings Show warnings after each statement if there are
any

  

--sigint-ignore Ignore SIGINT signals (typically the result of typing
Control+C)

  

--silent Silent mode   

--skip-auto-rehash Disable automatic rehashing   

--skip-column-names Do not write column names in results   

--skip-line-numbers Skip line numbers for errors   

--skip-named-commands Disable named mysql commands   

--skip-pager Disable paging   

--skip-reconnect Disable reconnecting   

--socket For connections to localhost, the Unix socket file or
Windows named pipe to use

  

--ssl Enable secure connection   

--ssl-ca Path of file that contains list of trusted SSL CAs   

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

  

--ssl-cert Path of file that contains X509 certificate in PEM
format

  

--ssl-cipher List of permitted ciphers to use for connection
encryption

  

--ssl-key Path of file that contains X509 key in PEM format   

--ssl-mode Security state of connection to server 5.5.49  

--ssl-verify-server-cert Verify server certificate Common Name value
against host name used when connecting to server

  

--table Display output in tabular format   

--tee Append a copy of output to named file   

--unbuffered Flush the buffer after each query   

--user MySQL user name to use when connecting to
server

  

--verbose Verbose mode   

--version Display version information and exit   

--vertical Print query output rows vertically (one line per
column value)

  

--wait If the connection cannot be established, wait and
retry instead of aborting

  

--xml Produce XML output   



mysql — The MySQL Command-Line Tool

293

•   --help, -?

Display a help message and exit.

•   --auto-rehash

Enable automatic rehashing. This option is on by default, which enables database, table, and column
name completion. Use --disable-auto-rehash to disable rehashing. That causes mysql to
start faster, but you must issue the rehash command or its \# shortcut if you want to use name
completion.

To complete a name, enter the first part and press Tab. If the name is unambiguous, mysql
completes it. Otherwise, you can press Tab again to see the possible names that begin with what
you have typed so far. Completion does not occur if there is no default database.

Note

This feature requires a MySQL client that is compiled with the readline
library. Typically, the readline library is not available on Windows.

•   --auto-vertical-output

Cause result sets to be displayed vertically if they are too wide for the current window, and using
normal tabular format otherwise. (This applies to statements terminated by ; or \G.) This option was
added in MySQL 5.5.3.

•   --batch, -B

Print results using tab as the column separator, with each row on a new line. With this option, mysql
does not use the history file.

Batch mode results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

•   --binary-as-hex, -b

When this option is given, mysql displays binary data using hexadecimal notation (0xvalue). This
occurs whether the overall output dislay format is tabular, vertical, HTML, or XML.

This option was added in MySQL 5.5.57.

•   --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

This option is supported only in the version of the mysql client that is supplied with NDB Cluster. It is
not available in standard MySQL Server 5.5 releases.

•   --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

•   --column-names

Write column names in results.

•   --column-type-info

Display result set metadata.

•   --comments, -c



mysql — The MySQL Command-Line Tool

294

Whether to preserve comments in statements sent to the server. The default is --skip-comments
(discard comments), enable with --comments (preserve comments).

•   --compress, -C

Compress all information sent between the client and the server if both support compression.

•   --database=db_name, -D db_name

The database to use. This is useful primarily in an option file.

•   --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysql.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

•   --debug-check

Print some debugging information when the program exits.

•   --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

•   --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.7.

•   --default-character-set=charset_name

Use charset_name as the default character set for the client and connection.

This option can be useful if the operating system uses one character set and the mysql client by
default uses another. In this case, output may be formatted incorrectly. You can usually fix such
issues by using this option to force the client to use the system character set instead.

For more information, see Section 10.1.4, “Connection Character Sets and Collations”, and
Section 10.5, “Character Set Configuration”.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. Before MySQL 5.5.8, file_name must be the
full path name to the file. As of MySQL 5.5.8, the name is interpreted relative to the current directory
if given as a relative path name.

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
Before MySQL 5.5.8, file_name must be the full path name to the file. As of MySQL 5.5.8, the
name is interpreted relative to the current directory if given as a relative path name.

•   --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysql normally reads the [client] and [mysql] groups. If the --defaults-group-



mysql — The MySQL Command-Line Tool

295

suffix=_other option is given, mysql also reads the [client_other] and [mysql_other]
groups.

•   --delimiter=str

Set the statement delimiter. The default is the semicolon character (;).

•   --disable-named-commands

Disable named commands. Use the \* form only, or use named commands only at the beginning
of a line ending with a semicolon (;). mysql starts with this option enabled by default. However,
even with this option, long-format commands still work from the first line. See Section 4.5.1.2, “mysql
Commands”.

•   --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.5.1.3, “Client-
Side Cleartext Pluggable Authentication”.) This option was added in MySQL 5.5.27.

•   --execute=statement, -e statement

Execute the statement and quit. The default output format is like that produced with --batch. See
Section 4.2.4, “Using Options on the Command Line”, for some examples. With this option, mysql
does not use the history file.

•   --force, -f

Continue even if an SQL error occurs.

•   --host=host_name, -h host_name

Connect to the MySQL server on the given host.

•   --html, -H

Produce HTML output.

•   --ignore-spaces, -i

Ignore spaces after function names. The effect of this is described in the discussion for the
IGNORE_SPACE SQL mode (see Section 5.1.8, “Server SQL Modes”).

•   --init-command=str

SQL statement to execute after connecting to the server. If auto-reconnect is enabled, the statement
is executed again after reconnection occurs.

•   --line-numbers

Write line numbers for errors. Disable this with --skip-line-numbers.

•   --local-infile[={0|1}]

Enable or disable LOCAL capability for LOAD DATA INFILE. For mysql, this capability is disabled
by default. With no value, the option enables LOCAL. The option may be given as --local-
infile=0 or --local-infile=1 to explicitly disable or enable LOCAL. Enabling local data loading
also requires that the server permits it; see Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

•   --named-commands, -G

Enable named mysql commands. Long-format commands are permitted, not just short-format
commands. For example, quit and \q both are recognized. Use --skip-named-commands to
disable named commands. See Section 4.5.1.2, “mysql Commands”.



mysql — The MySQL Command-Line Tool

296

•   --no-auto-rehash, -A

This has the same effect as --skip-auto-rehash. See the description for --auto-rehash.

•   --no-beep, -b

Do not beep when errors occur.

•   --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•   --no-named-commands, -g

Deprecated, use --disable-named-commands instead. --no-named-commands was removed
in MySQL 5.5.3.

•   --no-pager

Deprecated form of --skip-pager. See the --pager option. --no-pager was removed in
MySQL 5.5.3.

•   --no-tee

Deprecated form of --skip-tee. See the --tee option. --no-tee is removed in MySQL 5.5.3.

•   --one-database, -o

Ignore statements except those that occur while the default database is the one named on the
command line. This option is rudimentary and should be used with care. Statement filtering is based
only on USE statements.

Initially, mysql executes statements in the input because specifying a database db_name on the
command line is equivalent to inserting USE db_name at the beginning of the input. Then, for each
USE statement encountered, mysql accepts or rejects following statements depending on whether
the database named is the one on the command line. The content of the statements is immaterial.

Suppose that mysql is invoked to process this set of statements:

DELETE FROM db2.t2;
USE db2;
DROP TABLE db1.t1;
CREATE TABLE db1.t1 (i INT);
USE db1;
INSERT INTO t1 (i) VALUES(1);
CREATE TABLE db2.t1 (j INT);

If the command line is mysql --force --one-database db1, mysql handles the input as
follows:

• The DELETE statement is executed because the default database is db1, even though the
statement names a table in a different database.

• The DROP TABLE and CREATE TABLE statements are not executed because the default database
is not db1, even though the statements name a table in db1.

• The INSERT and CREATE TABLE statements are executed because the default database is db1,
even though the CREATE TABLE statement names a table in a different database.

•   --pager[=command]



mysql — The MySQL Command-Line Tool

297

Use the given command for paging query output. If the command is omitted, the default pager is the
value of your PAGER environment variable. Valid pagers are less, more, cat [> filename],
and so forth. This option works only on Unix and only in interactive mode. To disable paging, use --
skip-pager. Section 4.5.1.2, “mysql Commands”, discusses output paging further.

•   --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysql prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

•   --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but mysql does not find it. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.7.

•    --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

•   --print-defaults

Print the program name and all options that it gets from option files.

•   --prompt=format_str

Set the prompt to the specified format. The default is mysql>. The special sequences that the
prompt can contain are described in Section 4.5.1.2, “mysql Commands”.

•   --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

•   --quick, -q

Do not cache each query result, print each row as it is received. This may slow down the server if the
output is suspended. With this option, mysql does not use the history file.

•   --raw, -r

For tabular output, the “boxing” around columns enables one column value to be distinguished from
another. For nontabular output (such as is produced in batch mode or when the --batch or --
silent option is given), special characters are escaped in the output so they can be identified
easily. Newline, tab, NUL, and backslash are written as \n, \t, \0, and \\. The --raw option
disables this character escaping.

The following example demonstrates tabular versus nontabular output and the use of raw mode to
disable escaping:



mysql — The MySQL Command-Line Tool

298

% mysql
mysql> SELECT CHAR(92);
+----------+
| CHAR(92) |
+----------+
| \        |
+----------+

% mysql -s
mysql> SELECT CHAR(92);
CHAR(92)
\\

% mysql -s -r
mysql> SELECT CHAR(92);
CHAR(92)
\

•   --reconnect

If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt
is made each time the connection is lost. To suppress reconnection behavior, use --skip-
reconnect.

•     --safe-updates, --i-am-a-dummy, -U

Permit only those UPDATE and DELETE statements that specify which rows to modify by using key
values. If you have set this option in an option file, you can override it by using --safe-updates on
the command line. See Section 4.5.1.6, “mysql Tips”, for more information about this option.

•   --secure-auth

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided.

•   --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

•   --show-warnings

Cause warnings to be shown after each statement if there are any. This option applies to interactive
and batch mode.

•   --sigint-ignore

Ignore SIGINT signals (typically the result of typing Control+C).

•   --silent, -s

Silent mode. Produce less output. This option can be given multiple times to produce less and less
output.



mysql — The MySQL Command-Line Tool

299

This option results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

•   --skip-column-names, -N

Do not write column names in results.

•   --skip-line-numbers, -L

Do not write line numbers for errors. Useful when you want to compare result files that include error
messages.

•   --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

•   --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.4.5, “Command Options for Secure
Connections”.

•   --table, -t

Display output in table format. This is the default for interactive use, but can be used to produce table
output in batch mode.

•   --tee=file_name

Append a copy of output to the given file. This option works only in interactive mode. Section 4.5.1.2,
“mysql Commands”, discusses tee files further.

•   --unbuffered, -n

Flush the buffer after each query.

•   --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

•   --verbose, -v

Verbose mode. Produce more output about what the program does. This option can be given
multiple times to produce more and more output. (For example, -v -v -v produces table output
format even in batch mode.)

•   --version, -V

Display version information and exit.

•   --vertical, -E

Print query output rows vertically (one line per column value). Without this option, you can specify
vertical output for individual statements by terminating them with \G.

•   --wait, -w

If the connection cannot be established, wait and retry instead of aborting.

•   --xml, -X

Produce XML output.



mysql — The MySQL Command-Line Tool

300

<field name="column_name">NULL</field>

The output when --xml is used with mysql matches that of mysqldump --xml. See Section 4.5.4,
“mysqldump — A Database Backup Program” for details.

The XML output also uses an XML namespace, as shown here:

shell> mysql --xml -uroot -e "SHOW VARIABLES LIKE 'version%'"
<?xml version="1.0"?>

<resultset statement="SHOW VARIABLES LIKE 'version%'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<row>
<field name="Variable_name">version</field>
<field name="Value">5.0.40-debug</field>
</row>

<row>
<field name="Variable_name">version_comment</field>
<field name="Value">Source distribution</field>
</row>

<row>
<field name="Variable_name">version_compile_machine</field>
<field name="Value">i686</field>
</row>

<row>
<field name="Variable_name">version_compile_os</field>
<field name="Value">suse-linux-gnu</field>
</row>
</resultset>

(See Bug #25946.)

You can also set the following variables by using --var_name=value. The --set-variable format
is deprecated and was removed in MySQL 5.5.3.

•   connect_timeout

The number of seconds before connection timeout. (Default value is 0.)

•  max_allowed_packet

The maximum size of the buffer for client/server communication. The default is 16MB, the maximum
is 1GB.

•  max_join_size

The automatic limit for rows in a join when using --safe-updates. (Default value is 1,000,000.)

•  net_buffer_length

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

•  select_limit

The automatic limit for SELECT statements when using --safe-updates. (Default value is 1,000.)

4.5.1.2 mysql Commands

mysql sends each SQL statement that you issue to the server to be executed. There is also a set of
commands that mysql itself interprets. For a list of these commands, type help or \h at the mysql>
prompt:



mysql — The MySQL Command-Line Tool

301

mysql> help

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
?         (\?) Synonym for `help'.
clear     (\c) Clear command.
connect   (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter.
edit      (\e) Edit command with $EDITOR.
ego       (\G) Send command to mysql server, display result vertically.
exit      (\q) Exit mysql. Same as quit.
go        (\g) Send command to mysql server.
help      (\h) Display this help.
nopager   (\n) Disable pager, print to stdout.
notee     (\t) Don't write into outfile.
pager     (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print     (\p) Print current command.
prompt    (\R) Change your mysql prompt.
quit      (\q) Quit mysql.
rehash    (\#) Rebuild completion hash.
source    (\.) Execute an SQL script file. Takes a file name as an argument.
status    (\s) Get status information from the server.
system    (\!) Execute a system shell command.
tee       (\T) Set outfile [to_outfile]. Append everything into given
               outfile.
use       (\u) Use another database. Takes database name as argument.
charset   (\C) Switch to another charset. Might be needed for processing
               binlog with multi-byte charsets.
warnings  (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.

For server side help, type 'help contents'

Each command has both a long and short form. The long form is not case sensitive; the short form is.
The long form can be followed by an optional semicolon terminator, but the short form should not.

The use of short-form commands within multiple-line /* ... */ comments is not supported.

•   help [arg], \h [arg], \? [arg], ? [arg]

Display a help message listing the available mysql commands.

If you provide an argument to the help command, mysql uses it as a search string to access
server-side help from the contents of the MySQL Reference Manual. For more information, see
Section 4.5.1.4, “mysql Server-Side Help”.

•   charset charset_name, \C charset_name

Change the default character set and issue a SET NAMES statement. This enables the character set
to remain synchronized on the client and server if mysql is run with auto-reconnect enabled (which
is not recommended), because the specified character set is used for reconnects.

•   clear, \c

Clear the current input. Use this if you change your mind about executing the statement that you are
entering.

•   connect [db_name host_name]], \r [db_name host_name]]

Reconnect to the server. The optional database name and host name arguments may be given to
specify the default database or the host where the server is running. If omitted, the current values are
used.

•   delimiter str, \d str

Change the string that mysql interprets as the separator between SQL statements. The default is
the semicolon character (;).



mysql — The MySQL Command-Line Tool

302

The delimiter string can be specified as an unquoted or quoted argument on the delimiter
command line. Quoting can be done with either single quote ('), double quote ("), or backtick (`)
characters. To include a quote within a quoted string, either quote the string with a different quote
character or escape the quote with a backslash (\) character. Backslash should be avoided outside
of quoted strings because it is the escape character for MySQL. For an unquoted argument, the
delimiter is read up to the first space or end of line. For a quoted argument, the delimiter is read up to
the matching quote on the line.

mysql interprets instances of the delimiter string as a statement delimiter anywhere it occurs, except
within quoted strings. Be careful about defining a delimiter that might occur within other words. For
example, if you define the delimiter as X, you will be unable to use the word INDEX in statements.
mysql interprets this as INDE followed by the delimiter X.

When the delimiter recognized by mysql is set to something other than the default of ;, instances of
that character are sent to the server without interpretation. However, the server itself still interprets
; as a statement delimiter and processes statements accordingly. This behavior on the server side
comes into play for multiple-statement execution (see Section 23.8.17, “C API Support for Multiple
Statement Execution”), and for parsing the body of stored procedures and functions, triggers, and
events (see Section 20.1, “Defining Stored Programs”).

•   edit, \e

Edit the current input statement. mysql checks the values of the EDITOR and VISUAL environment
variables to determine which editor to use. The default editor is vi if neither variable is set.

The edit command works only in Unix.

•   ego, \G

Send the current statement to the server to be executed and display the result using vertical format.

•   exit, \q

Exit mysql.

•   go, \g

Send the current statement to the server to be executed.

•   nopager, \n

Disable output paging. See the description for pager.

The nopager command works only in Unix.

•   notee, \t

Disable output copying to the tee file. See the description for tee.

•   nowarning, \w

Disable display of warnings after each statement.

•   pager [command], \P [command]

Enable output paging. By using the --pager option when you invoke mysql, it is possible to
browse or search query results in interactive mode with Unix programs such as less, more, or any
other similar program. If you specify no value for the option, mysql checks the value of the PAGER
environment variable and sets the pager to that. Pager functionality works only in interactive mode.

Output paging can be enabled interactively with the pager command and disabled with nopager.
The command takes an optional argument; if given, the paging program is set to that. With no



mysql — The MySQL Command-Line Tool

303

argument, the pager is set to the pager that was set on the command line, or stdout if no pager
was specified.

Output paging works only in Unix because it uses the popen() function, which does not exist on
Windows. For Windows, the tee option can be used instead to save query output, although it is not
as convenient as pager for browsing output in some situations.

•   print, \p

Print the current input statement without executing it.

•   prompt [str], \R [str]

Reconfigure the mysql prompt to the given string. The special character sequences that can be
used in the prompt are described later in this section.

If you specify the prompt command with no argument, mysql resets the prompt to the default of
mysql>.

•   quit, \q

Exit mysql.

•   rehash, \#

Rebuild the completion hash that enables database, table, and column name completion while you
are entering statements. (See the description for the --auto-rehash option.)

•   source file_name, \. file_name

Read the named file and executes the statements contained therein. On Windows, you can specify
path name separators as / or \\.

•   status, \s

Provide status information about the connection and the server you are using. If you are running in
--safe-updates mode, status also prints the values for the mysql variables that affect your
queries.

•   system command, \! command

Execute the given command using your default command interpreter.

The system command works only in Unix.

•   tee [file_name], \T [file_name]

By using the --tee option when you invoke mysql, you can log statements and their output. All the
data displayed on the screen is appended into a given file. This can be very useful for debugging
purposes also. mysql flushes results to the file after each statement, just before it prints its next
prompt. Tee functionality works only in interactive mode.

You can enable this feature interactively with the tee command. Without a parameter, the previous
file is used. The tee file can be disabled with the notee command. Executing tee again re-enables
logging.

•   use db_name, \u db_name

Use db_name as the default database.

•   warnings, \W

Enable display of warnings after each statement (if there are any).



mysql — The MySQL Command-Line Tool

304

Here are a few tips about the pager command:

• You can use it to write to a file and the results go only to the file:

mysql> pager cat > /tmp/log.txt

You can also pass any options for the program that you want to use as your pager:

mysql> pager less -n -i -S

• In the preceding example, note the -S option. You may find it very useful for browsing wide query
results. Sometimes a very wide result set is difficult to read on the screen. The -S option to less
can make the result set much more readable because you can scroll it horizontally using the left-
arrow and right-arrow keys. You can also use -S interactively within less to switch the horizontal-
browse mode on and off. For more information, read the less manual page:

shell> man less

• The -F and -X options may be used with less to cause it to exit if output fits on one screen, which
is convenient when no scrolling is necessary:

mysql> pager less -n -i -S -F -X

• You can specify very complex pager commands for handling query output:

mysql> pager cat | tee /dr1/tmp/res.txt \
          | tee /dr2/tmp/res2.txt | less -n -i -S

In this example, the command would send query results to two files in two different directories on two
different file systems mounted on /dr1 and /dr2, yet still display the results onscreen using less.

You can also combine the tee and pager functions. Have a tee file enabled and pager set to less,
and you are able to browse the results using the less program and still have everything appended
into a file the same time. The difference between the Unix tee used with the pager command and
the mysql built-in tee command is that the built-in tee works even if you do not have the Unix tee
available. The built-in tee also logs everything that is printed on the screen, whereas the Unix tee
used with pager does not log quite that much. Additionally, tee file logging can be turned on and
off interactively from within mysql. This is useful when you want to log some queries to a file, but not
others.

The prompt command reconfigures the default mysql> prompt. The string for defining the prompt can
contain the following special sequences.

Option Description

\c A counter that increments for each statement you issue

\D The full current date

\d The default database

\h The server host

\l The current delimiter

\m Minutes of the current time

\n A newline character

\O The current month in three-letter format (Jan, Feb, …)

\o The current month in numeric format



mysql — The MySQL Command-Line Tool

305

Option Description

\P am/pm

\p The current TCP/IP port or socket file

\R The current time, in 24-hour military time (0–23)

\r The current time, standard 12-hour time (1–12)

\S Semicolon

\s Seconds of the current time

\t A tab character

\U Your full user_name@host_name account name

\u Your user name

\v The server version

\w The current day of the week in three-letter format (Mon, Tue, …)

\Y The current year, four digits

\y The current year, two digits

\_ A space

\ A space (a space follows the backslash)

\' Single quote

\" Double quote

\\ A literal \ backslash character

\x x, for any “x” not listed above

You can set the prompt in several ways:

• Use an environment variable. You can set the MYSQL_PS1 environment variable to a prompt string.
For example:

shell> export MYSQL_PS1="(\u@\h) [\d]> "

• Use a command-line option. You can set the --prompt option on the command line to mysql. For
example:

shell> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>

• Use an option file. You can set the prompt option in the [mysql] group of any MySQL option file,
such as /etc/my.cnf or the .my.cnf file in your home directory. For example:

[mysql]
prompt=(\\u@\\h) [\\d]>\\_

In this example, note that the backslashes are doubled. If you set the prompt using the prompt
option in an option file, it is advisable to double the backslashes when using the special prompt
options. There is some overlap in the set of permissible prompt options and the set of special escape
sequences that are recognized in option files. (The rules for escape sequences in option files are
listed in Section 4.2.6, “Using Option Files”.) The overlap may cause you problems if you use single
backslashes. For example, \s is interpreted as a space rather than as the current seconds value.
The following example shows how to define a prompt within an option file to include the current time
in HH:MM:SS> format:

[mysql]
prompt="\\r:\\m:\\s> "



mysql — The MySQL Command-Line Tool

306

• Set the prompt interactively. You can change your prompt interactively by using the prompt (or \R)
command. For example:

mysql> prompt (\u@\h) [\d]>\_
PROMPT set to '(\u@\h) [\d]>\_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

4.5.1.3 mysql Logging

On Unix, the mysql client logs statements executed interactively to a history file. By default, this file
is named .mysql_history in your home directory. To specify a different file, set the value of the
MYSQL_HISTFILE environment variable.

How Logging Occurs

Statement logging occurs as follows:

• Statements are logged only when executed interactively. Statements are noninteractive, for example,
when read from a file or a pipe. It is also possible to suppress statement logging by using the --
batch or --execute option.

• mysql logs each nonempty statement line individually.

• If a statement spans multiple lines (not including the terminating delimiter), mysql concatenates the
lines to form the complete statement, maps newlines to spaces, and logs the result, plus a delimiter.

Consequently, an input statement that spans multiple lines can be logged twice. Consider this input:

mysql> SELECT
    -> 'Today is'
    -> ,
    -> CURDATE()
    -> ;

In this case, mysql logs the “SELECT”, “'Today is'”, “,”, “CURDATE()”, and “;” lines as it reads them.
It also logs the complete statement, after mapping SELECT\n'Today is'\n,\nCURDATE() to
SELECT 'Today is' , CURDATE(), plus a delimiter. Thus, these lines appear in logged output:

SELECT
'Today is'
,
CURDATE()
;
SELECT 'Today is' , CURDATE();

Controlling the History File

The .mysql_history file should be protected with a restrictive access mode because sensitive
information might be written to it, such as the text of SQL statements that contain passwords. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

If you do not want to maintain a history file, first remove .mysql_history if it exists. Then use either
of the following techniques to prevent it from being created again:

• Set the MYSQL_HISTFILE environment variable to /dev/null. To cause this setting to take effect
each time you log in, put it in one of your shell's startup files.

• Create .mysql_history as a symbolic link to /dev/null; this need be done only once:

shell> ln -s /dev/null $HOME/.mysql_history



mysql — The MySQL Command-Line Tool

307

4.5.1.4 mysql Server-Side Help

mysql> help search_string

If you provide an argument to the help command, mysql uses it as a search string to access server-
side help from the contents of the MySQL Reference Manual. The proper operation of this command
requires that the help tables in the mysql database be initialized with help topic information (see
Section 5.1.10, “Server-Side Help”).

If there is no match for the search string, the search fails:

mysql> help me

Nothing found
Please try to run 'help contents' for a list of all accessible topics

Use help contents to see a list of the help categories:

mysql> help contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the
following categories:
   Account Management
   Administration
   Data Definition
   Data Manipulation
   Data Types
   Functions
   Functions and Modifiers for Use with GROUP BY
   Geographic Features
   Language Structure
   Plugins
   Storage Engines
   Stored Routines
   Table Maintenance
   Transactions
   Triggers

If the search string matches multiple items, mysql shows a list of matching topics:

mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
   SHOW
   SHOW BINARY LOGS
   SHOW ENGINE
   SHOW LOGS

Use a topic as the search string to see the help entry for that topic:

mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-binary-logs], that shows how
to determine which logs can be purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name      | File_size |
+---------------+-----------+



mysql — The MySQL Command-Line Tool

308

| binlog.000015 |    724935 |
| binlog.000016 |    733481 |
+---------------+-----------+

The search string can contain the wildcard characters % and _. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. For example, HELP rep% returns a list
of topics that begin with rep:

mysql> HELP rep%
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following
topics:
   REPAIR TABLE
   REPEAT FUNCTION
   REPEAT LOOP
   REPLACE
   REPLACE FUNCTION

4.5.1.5 Executing SQL Statements from a Text File

The mysql client typically is used interactively, like this:

shell> mysql db_name

However, it is also possible to put your SQL statements in a file and then tell mysql to read its input
from that file. To do so, create a text file text_file that contains the statements you wish to execute.
Then invoke mysql as shown here:

shell> mysql db_name < text_file

If you place a USE db_name statement as the first statement in the file, it is unnecessary to specify the
database name on the command line:

shell> mysql < text_file

If you are already running mysql, you can execute an SQL script file using the source command or
\. command:

mysql> source file_name
mysql> \. file_name

Sometimes you may want your script to display progress information to the user. For this you can insert
statements like this:

SELECT '<info_to_display>' AS ' ';

The statement shown outputs <info_to_display>.

You can also invoke mysql with the --verbose option, which causes each statement to be displayed
before the result that it produces.

mysql ignores Unicode byte order mark (BOM) characters at the beginning of input files. Previously,
it read them and sent them to the server, resulting in a syntax error. Presence of a BOM does not
cause mysql to change its default character set. To do that, invoke mysql with an option such as --
default-character-set=utf8.

For more information about batch mode, see Section 3.5, “Using mysql in Batch Mode”.

4.5.1.6 mysql Tips

This section describes some techniques that can help you use mysql more effectively.



mysql — The MySQL Command-Line Tool

309

Input-Line Editing

mysql supports input-line editing, which enables you to modify the current input line in place or recall
previous input lines. For example, the left-arrow and right-arrow keys move horizontally within the
current input line, and the up-arrow and down-arrow keys move up and down through the set of
previously entered lines. Backspace deletes the character before the cursor and typing new characters
enters them at the cursor position. To enter the line, press Enter.

On Windows, the editing key sequences are the same as supported for command editing in console
windows. On Unix, the key sequences depend on the input library used to build mysql (for example,
the libedit or readline library).

Documentation for the libedit and readline libraries is available online. To change the set of key
sequences permitted by a given input library, define key bindings in the library startup file. This is a file
in your home directory: .editrc for libedit and .inputrc for readline.

For example, in libedit, Control+W deletes everything before the current cursor position and
Control+U deletes the entire line. In readline, Control+W deletes the word before the cursor and
Control+U deletes everything before the current cursor position. If mysql was built using libedit, a
user who prefers the readline behavior for these two keys can put the following lines in the .editrc
file (creating the file if necessary):

bind "^W" ed-delete-prev-word
bind "^U" vi-kill-line-prev

To see the current set of key bindings, temporarily put a line that says only bind at the end of
.editrc. mysql will show the bindings when it starts.

Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual
horizontal table format. Queries can be displayed vertically by terminating the query with \G instead of
a semicolon. For example, longer text values that include newlines often are much easier to read with
vertical output:

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G
*************************** 1. row ***************************
  msg_nro: 3068
     date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Monty
    reply: monty@no.spam.com
  mail_to: "Thimble Smith" <tim@no.spam.com>
      sbj: UTF-8
      txt: >>>>> "Thimble" == Thimble Smith writes:

Thimble> Hi.  I think this is a good idea.  Is anyone familiar
Thimble> with UTF-8 or Unicode? Otherwise, I'll put this on my
Thimble> TODO list and see what happens.

Yes, please do that.

Regards,
Monty
     file: inbox-jani-1
     hash: 190402944
1 row in set (0.09 sec)

Using the --safe-updates Option

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has
the same effect). It is helpful for cases when you might have issued a DELETE FROM tbl_name
statement but forgotten the WHERE clause. Normally, such a statement deletes all rows from the table.



mysql — The MySQL Command-Line Tool

310

With --safe-updates, you can delete rows only by specifying the key values that identify them. This
helps prevent accidents.

When you use the --safe-updates option, mysql issues the following statement when it connects
to the MySQL server:

SET sql_safe_updates=1, sql_select_limit=1000, sql_max_join_size=1000000;

See Section 5.1.5, “Server System Variables”.

The SET statement has the following effects:

• You are not permitted to execute an UPDATE or DELETE statement unless you specify a key
constraint in the WHERE clause or provide a LIMIT clause (or both). For example:

UPDATE tbl_name SET not_key_column=val WHERE key_column=val;

UPDATE tbl_name SET not_key_column=val LIMIT 1;

• The server limits all large SELECT results to 1,000 rows unless the statement includes a LIMIT
clause.

• The server aborts multiple-table SELECT statements that probably need to examine more than
1,000,000 row combinations.

To specify limits different from 1,000 and 1,000,000, you can override the defaults by using the --
select_limit and --max_join_size options:

shell> mysql --safe-updates --select_limit=500 --max_join_size=10000

Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a statement, it immediately and
automatically tries to reconnect once to the server and send the statement again. However, even if
mysql succeeds in reconnecting, your first connection has ended and all your previous session objects
and settings are lost: temporary tables, the autocommit mode, and user-defined and session variables.
Also, any current transaction rolls back. This behavior may be dangerous for you, as in the following
example where the server was shut down and restarted between the first and second statements
without you knowing it:

mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id:    1
Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> SELECT * FROM t;
+------+
| a    |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it
is important to have mysql terminate with an error if the connection has been lost, you can start the
mysql client with the --skip-reconnect option.



mysqladmin — Client for Administering a MySQL Server

311

For more information about auto-reconnect and its effect on state information when a reconnection
occurs, see Section 23.8.16, “Controlling Automatic Reconnection Behavior”.

4.5.2 mysqladmin — Client for Administering a MySQL Server

mysqladmin is a client for performing administrative operations. You can use it to check the server's
configuration and current status, to create and drop databases, and more.

Invoke mysqladmin like this:

shell> mysqladmin [options] command [command-arg] [command [command-arg]] ...

mysqladmin supports the following commands. Some of the commands take an argument following
the command name.

• create db_name

Create a new database named db_name.

• debug

Tell the server to write debug information to the error log. Format and content of this information is
subject to change.

This includes information about the Event Scheduler. See Section 20.4.5, “Event Scheduler Status”.

• drop db_name

Delete the database named db_name and all its tables.

• extended-status

Display the server status variables and their values.

• flush-hosts

Flush all information in the host cache.

• flush-logs

Flush all logs.

• flush-privileges

Reload the grant tables (same as reload).

• flush-status

Clear status variables.

• flush-tables

Flush all tables.

• flush-threads

Flush the thread cache.

• kill id,id,...

Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.

• old-password new_password



mysqladmin — Client for Administering a MySQL Server

312

This is like the password command but stores the password using the old (pre-4.1) password-
hashing format. (See Section 6.1.2.4, “Password Hashing in MySQL”.)

• password new_password

Set a new password. This changes the password to new_password for the account that you use
with mysqladmin for connecting to the server. Thus, the next time you invoke mysqladmin (or any
other client program) using the same account, you will need to specify the new password.

If the new_password value contains spaces or other characters that are special to your command
interpreter, you need to enclose it within quotation marks. On Windows, be sure to use double
quotation marks rather than single quotation marks; single quotation marks are not stripped from the
password, but rather are interpreted as part of the password. For example:

shell> mysqladmin password "my new password"

As of MySQL 5.5.3, the new password can be omitted following the password command. In this
case, mysqladmin prompts for the password value, which enables you to avoid specifying the
password on the command line. Omitting the password value should be done only if password is
the final command on the mysqladmin command line. Otherwise, the next argument is taken as the
password.

Caution

Do not use this command used if the server was started with the --skip-
grant-tables option. No password change will be applied. This is true
even if you precede the password command with flush-privileges
on the same command line to re-enable the grant tables because the flush
operation occurs after you connect. However, you can use mysqladmin
flush-privileges to re-enable the grant table and then use a separate
mysqladmin password command to change the password.

• ping

Check whether the server is available. The return status from mysqladmin is 0 if the server is
running, 1 if it is not. This is 0 even in case of an error such as Access denied, because this
means that the server is running but refused the connection, which is different from the server not
running.

• processlist

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement.
If the --verbose option is given, the output is like that of SHOW FULL PROCESSLIST. (See
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”.)

• reload

Reload the grant tables.

• refresh

Flush all tables and close and open log files.

• shutdown

Stop the server.

• start-slave

Start replication on a slave server.



mysqladmin — Client for Administering a MySQL Server

313

• status

Display a short server status message.

• stop-slave

Stop replication on a slave server.

• variables

Display the server system variables and their values.

• version

Display version information from the server.

All commands can be shortened to any unique prefix. For example:

shell> mysqladmin proc stat
+----+-------+-----------+----+---------+------+-------+------------------+
| Id | User  | Host      | db | Command | Time | State | Info             |
+----+-------+-----------+----+---------+------+-------+------------------+
| 51 | monty | localhost |    | Query   | 0    |       | show processlist |
+----+-------+-----------+----+---------+------+-------+------------------+
Uptime: 1473624  Threads: 1  Questions: 39487
Slow queries: 0  Opens: 541  Flush tables: 1
Open tables: 19  Queries per second avg: 0.0268

The mysqladmin status command result displays the following values:

•  Uptime

The number of seconds the MySQL server has been running.

•  Threads

The number of active threads (clients).

•  Questions

The number of questions (queries) from clients since the server was started.

•  Slow queries

The number of queries that have taken more than long_query_time seconds. See Section 5.4.5,
“The Slow Query Log”.

•  Opens

The number of tables the server has opened.

•   Flush tables

The number of flush-*, refresh, and reload commands the server has executed.

•  Open tables

The number of tables that currently are open.

•  Memory in use

The amount of memory allocated directly by mysqld. This value is displayed only when MySQL has
been compiled with safemalloc, which is available only before MySQL 5.5.6.



mysqladmin — Client for Administering a MySQL Server

314

•  Maximum memory used

The maximum amount of memory allocated directly by mysqld. This value is displayed only when
MySQL has been compiled with safemalloc, which is available only before MySQL 5.5.6.

If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file,
mysqladmin waits until the server's process ID file has been removed, to ensure that the server has
stopped properly.

mysqladmin supports the following options, which can be specified on the command line or in the
[mysqladmin] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.9 mysqladmin Options

Format Description Introduced

--compress Compress all information sent between client and server  

--connect_timeout Number of seconds before connection timeout  

--count Number of iterations to make for repeated command
execution

 

--debug Write debugging log  

--debug-check Print debugging information when program exits  

--debug-info Print debugging information, memory, and CPU statistics
when program exits

 

--default-auth Authentication plugin to use 5.5.9

--default-character-set Specify default character set  

--defaults-extra-file Read named option file in addition to usual option files  

--defaults-file Read only named option file  

--defaults-group-suffix Option group suffix value  

--enable-cleartext-plugin Enable cleartext authentication plugin 5.5.27

--force Continue even if an SQL error occurs  

--help Display help message and exit  

--host Connect to MySQL server on given host  

--no-beep Do not beep when errors occur  

--no-defaults Read no option files  

--password Password to use when connecting to server  

--pipe On Windows, connect to server using named pipe  

--plugin-dir Directory where plugins are installed 5.5.9

--port TCP/IP port number to use for connection  

--print-defaults Print default options  

--protocol Connection protocol to use  

--relative Show the difference between the current and previous
values when used with the --sleep option

 

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

 

--shutdown_timeout The maximum number of seconds to wait for server
shutdown

 

--silent Silent mode  



mysqladmin — Client for Administering a MySQL Server

315

Format Description Introduced

--sleep Execute commands repeatedly, sleeping for delay
seconds in between

 

--socket For connections to localhost, the Unix socket file to use  

--ssl Enable secure connection  

--ssl-ca Path of file that contains list of trusted SSL CAs  

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

 

--ssl-cert Path of file that contains X509 certificate in PEM format  

--ssl-cipher List of permitted ciphers to use for connection encryption  

--ssl-key Path of file that contains X509 key in PEM format  

--ssl-mode Security state of connection to server 5.5.49

--ssl-verify-server-cert Verify server certificate Common Name value against
host name used when connecting to server

 

--user MySQL user name to use when connecting to server  

--verbose Verbose mode  

--version Display version information and exit  

--vertical Print query output rows vertically (one line per column
value)

 

--wait If the connection cannot be established, wait and retry
instead of aborting

 

•   --help, -?

Display a help message and exit.

•   --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

This option is supported only in the version of mysqladmin that is supplied with NDB Cluster. It is
not available in standard MySQL Server 5.5 releases.

•   --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

•   --compress, -C

Compress all information sent between the client and the server if both support compression.

•   --count=N, -c N

The number of iterations to make for repeated command execution if the --sleep option is given.

•   --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqladmin.trace.

•   --debug-check

Print some debugging information when the program exits.

•   --debug-info



mysqladmin — Client for Administering a MySQL Server

316

Print debugging information and memory and CPU usage statistics when the program exits.

•   --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.9.

•   --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. Before MySQL 5.5.8, file_name must be the
full path name to the file. As of MySQL 5.5.8, the name is interpreted relative to the current directory
if given as a relative path name.

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
Before MySQL 5.5.8, file_name must be the full path name to the file. As of MySQL 5.5.8, the
name is interpreted relative to the current directory if given as a relative path name.

•   --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqladmin normally reads the [client] and [mysqladmin] groups.
If the --defaults-group-suffix=_other option is given, mysqladmin also reads the
[client_other] and [mysqladmin_other] groups.

•   --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.5.1.3, “Client-
Side Cleartext Pluggable Authentication”.) This option was added in MySQL 5.5.27.

•   --force, -f

Do not ask for confirmation for the drop db_name command. With multiple commands, continue
even if an error occurs.

•   --host=host_name, -h host_name

Connect to the MySQL server on the given host.

•   --no-beep, -b

Suppress the warning beep that is emitted by default for errors such as a failure to connect to the
server.

•   --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•   --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqladmin prompts for one.



mysqladmin — Client for Administering a MySQL Server

317

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

•   --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqladmin does not find it. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.9.

•   --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

•   --print-defaults

Print the program name and all options that it gets from option files.

•   --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

•   --relative, -r

Show the difference between the current and previous values when used with the --sleep option.
This option works only with the extended-status command.

•   --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

•   --silent, -s

Exit silently if a connection to the server cannot be established.

•   --sleep=delay, -i delay

Execute commands repeatedly, sleeping for delay seconds in between. The --count option
determines the number of iterations. If --count is not given, mysqladmin executes commands
indefinitely until interrupted.

•   --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

•   --ssl*



mysqlcheck — A Table Maintenance Program

318

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.4.5, “Command Options for Secure
Connections”.

•   --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

•   --verbose, -v

Verbose mode. Print more information about what the program does.

•   --version, -V

Display version information and exit.

•   --vertical, -E

Print output vertically. This is similar to --relative, but prints output vertically.

•   --wait[=count], -w[count]

If the connection cannot be established, wait and retry instead of aborting. If a count value is given,
it indicates the number of times to retry. The default is one time.

You can also set the following variables by using --var_name=value The --set-variable format
is deprecated and was removed in MySQL 5.5.3. syntax:

•   connect_timeout

The maximum number of seconds before connection timeout. The default value is 43200 (12 hours).

•   shutdown_timeout

The maximum number of seconds to wait for server shutdown. The default value is 3600 (1 hour).

4.5.3 mysqlcheck — A Table Maintenance Program

The mysqlcheck client performs table maintenance: It checks, repairs, optimizes, or analyzes tables.

Each table is locked and therefore unavailable to other sessions while it is being processed,
although for check operations, the table is locked with a READ lock only (see Section 13.3.5, “LOCK
TABLES and UNLOCK TABLES Syntax”, for more information about READ and WRITE locks).
Table maintenance operations can be time-consuming, particularly for large tables. If you use the
--databases or --all-databases option to process all tables in one or more databases, an
invocation of mysqlcheck might take a long time. (This is also true for mysql_upgrade because that
program invokes mysqlcheck to check all tables and repair them if necessary.)

mysqlcheck is similar in function to myisamchk, but works differently. The main operational
difference is that mysqlcheck must be used when the mysqld server is running, whereas
myisamchk should be used when it is not. The benefit of using mysqlcheck is that you do not have to
stop the server to perform table maintenance.

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and
OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the
operation you want to perform, and then sends the statements to the server to be executed. For details
about which storage engines each statement works with, see the descriptions for those statements in
Section 13.7.2, “Table Maintenance Statements”.

The MyISAM storage engine supports all four maintenance operations, so mysqlcheck can be
used to perform any of them on MyISAM tables. Other storage engines do not necessarily support all



mysqlcheck — A Table Maintenance Program

319

operations. In such cases, an error message is displayed. For example, if test.t is a MEMORY table,
an attempt to check it produces this result:

shell> mysqlcheck test t
test.t
note     : The storage engine for the table doesn't support check

If mysqlcheck is unable to repair a table, see Section 2.11.3, “Rebuilding or Repairing Tables or
Indexes” for manual table repair strategies. This will be the case, for example, for InnoDB tables,
which can be checked with CHECK TABLE, but not repaired with REPAIR TABLE.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible
causes include but are not limited to file system errors.

There are three general ways to invoke mysqlcheck:

shell> mysqlcheck [options] db_name [tbl_name ...]
shell> mysqlcheck [options] --databases db_name ...
shell> mysqlcheck [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or --all-
databases option, entire databases are checked.

mysqlcheck has a special feature compared to other client programs. The default behavior of
checking tables (--check) can be changed by renaming the binary. If you want to have a tool that
repairs tables by default, you should just make a copy of mysqlcheck named mysqlrepair, or make
a symbolic link to mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs tables.

The names shown in the following table can be used to change mysqlcheck default behavior.

Command Meaning

mysqlrepair The default option is --repair

mysqlanalyze The default option is --analyze

mysqloptimize The default option is --optimize

mysqlcheck supports the following options, which can be specified on the command line or in the
[mysqlcheck] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.10 mysqlcheck Options

Format Description Introduced

--all-databases Check all tables in all databases  

--all-in-1 Execute a single statement for each database that
names all the tables from that database

 

--analyze Analyze the tables  

--auto-repair If a checked table is corrupted, automatically fix it  

--character-sets-dir Directory where character sets are installed  

--check Check the tables for errors  

--check-only-changed Check only tables that have changed since the last check  

--check-upgrade Invoke CHECK TABLE with the FOR UPGRADE option  

--compress Compress all information sent between client and server  

--databases Interpret all arguments as database names  



mysqlcheck — A Table Maintenance Program

320

Format Description Introduced

--debug Write debugging log  

--debug-check Print debugging information when program exits  

--debug-info Print debugging information, memory, and CPU statistics
when program exits

 

--default-auth Authentication plugin to use 5.5.10

--default-character-set Specify default character set  

--defaults-extra-file Read named option file in addition to usual option files  

--defaults-file Read only named option file  

--defaults-group-suffix Option group suffix value  

--enable-cleartext-plugin Enable cleartext authentication plugin 5.5.47

--extended Check and repair tables  

--fast Check only tables that have not been closed properly  

--fix-db-names Convert database names to 5.1 format  

--fix-table-names Convert table names to 5.1 format  

--force Continue even if an SQL error occurs  

--help Display help message and exit  

--host Connect to MySQL server on given host  

--medium-check Do a check that is faster than an --extended operation  

--no-defaults Read no option files  

--optimize Optimize the tables  

--password Password to use when connecting to server  

--pipe On Windows, connect to server using named pipe  

--plugin-dir Directory where plugins are installed 5.5.10

--port TCP/IP port number to use for connection  

--print-defaults Print default options  

--protocol Connection protocol to use  

--quick The fastest method of checking  

--repair Perform a repair that can fix almost anything except
unique keys that are not unique

 

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

 

--silent Silent mode  

--socket For connections to localhost, the Unix socket file to use  

--ssl Enable secure connection  

--ssl-ca Path of file that contains list of trusted SSL CAs  

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

 

--ssl-cert Path of file that contains X509 certificate in PEM format  

--ssl-cipher List of permitted ciphers to use for connection encryption  

--ssl-key Path of file that contains X509 key in PEM format  

--ssl-mode Security state of connection to server 5.5.49



mysqlcheck — A Table Maintenance Program

321

Format Description Introduced

--ssl-verify-server-cert Verify server certificate Common Name value against
host name used when connecting to server

 

--tables Overrides the --databases or -B option  

--use-frm For repair operations on MyISAM tables  

--user MySQL user name to use when connecting to server  

--verbose Verbose mode  

--version Display version information and exit  

--write-binlog Log ANALYZE, OPTIMIZE, REPAIR statements to binary
log. --skip-write-binlog adds NO_WRITE_TO_BINLOG to
these statements.

 

•   --help, -?

Display a help message and exit.

•   --all-databases, -A

Check all tables in all databases. This is the same as using the --databases option and
naming all the databases on the command line, except that the INFORMATION_SCHEMA and
performace_schema databases are not checked. They can be checked by explicitly naming them
with the --databases option.

•   --all-in-1, -1

Instead of issuing a statement for each table, execute a single statement for each database that
names all the tables from that database to be processed.

•   --analyze, -a

Analyze the tables.

•   --auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables
have been checked.

•   --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

This option is supported only in the version of mysqlcheck that is supplied with NDB Cluster. It is
not available in standard MySQL Server 5.5 releases.

•   --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

•   --check, -c

Check the tables for errors. This is the default operation.

•   --check-only-changed, -C

Check only tables that have changed since the last check or that have not been closed properly.

•   --check-upgrade, -g



mysqlcheck — A Table Maintenance Program

322

Invoke CHECK TABLE with the FOR UPGRADE option to check tables for incompatibilities with the
current version of the server. This option automatically enables the --fix-db-names and --fix-
table-names options.

•   --compress

Compress all information sent between the client and the server if both support compression.

•   --databases, -B

Process all tables in the named databases. Normally, mysqlcheck treats the first name argument
on the command line as a database name and any following names as table names. With this option,
it treats all name arguments as database names.

•   --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

•   --debug-check

Print some debugging information when the program exits.

•   --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

•   --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. Before MySQL 5.5.8, file_name must be the
full path name to the file. As of MySQL 5.5.8, the name is interpreted relative to the current directory
if given as a relative path name.

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
Before MySQL 5.5.8, file_name must be the full path name to the file. As of MySQL 5.5.8, the
name is interpreted relative to the current directory if given as a relative path name.

•   --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqlcheck normally reads the [client] and [mysqlcheck] groups.
If the --defaults-group-suffix=_other option is given, mysqlcheck also reads the
[client_other] and [mysqlcheck_other] groups.

•   --extended, -e

If you are using this option to check tables, it ensures that they are 100% consistent but takes a long
time.

If you are using this option to repair tables, it runs an extended repair that may not only take a long
time to execute, but may produce a lot of garbage rows also!

•   --default-auth=plugin



mysqlcheck — A Table Maintenance Program

323

A hint about the client-side authentication plugin to use. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.5.1.3, “Client-
Side Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.5.47.

•   --fast, -F

Check only tables that have not been closed properly.

•   --fix-db-names

Convert database names to 5.1 format. Only database names that contain special characters are
affected.

•   --fix-table-names

Convert table names to 5.1 format. Only table names that contain special characters are affected.
This option also applies to views.

•   --force, -f

Continue even if an SQL error occurs.

•   --host=host_name, -h host_name

Connect to the MySQL server on the given host.

•   --medium-check, -m

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors, which
should be good enough in most cases.

•   --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•   --optimize, -o

Optimize the tables.

•   --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlcheck prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.



mysqlcheck — A Table Maintenance Program

324

•   --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlcheck does not find it. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

•   --print-defaults

Print the program name and all options that it gets from option files.

•   --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

•   --quick, -q

If you are using this option to check tables, it prevents the check from scanning the rows to check for
incorrect links. This is the fastest check method.

If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest
repair method.

•   --repair, -r

Perform a repair that can fix almost anything except unique keys that are not unique.

•   --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

•   --silent, -s

Silent mode. Print only error messages.

•   --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

•   --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.4.5, “Command Options for Secure
Connections”.

•   --tables

Override the --databases or -B option. All name arguments following the option are regarded as
table names.

•   --use-frm



mysqldump — A Database Backup Program

325

For repair operations on MyISAM tables, get the table structure from the .frm file so that the table
can be repaired even if the .MYI header is corrupted.

•   --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

•   --verbose, -v

Verbose mode. Print information about the various stages of program operation.

•   --version, -V

Display version information and exit.

•   --write-binlog

This option is enabled by default, so that ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements generated by mysqlcheck are written to the binary log. Use --skip-write-binlog
to cause NO_WRITE_TO_BINLOG to be added to the statements so that they are not logged. Use
the --skip-write-binlog when these statements should not be sent to replication slaves or run
when using the binary logs for recovery from backup.

4.5.4 mysqldump — A Database Backup Program

• Performance and Scalability Considerations

• Invocation Syntax

• Option Syntax - Alphabetical Summary

The mysqldump client utility performs logical backups, producing a set of SQL statements that can be
executed to reproduce the original database object definitions and table data. It dumps one or more
MySQL databases for backup or transfer to another SQL server. The mysqldump command can also
generate output in CSV, other delimited text, or XML format.

mysqldump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped views,
TRIGGER for dumped triggers, and LOCK TABLES if the --single-transaction option is not used.
Certain options might require other privileges as noted in the option descriptions.

To reload a dump file, you must have the privileges required to execute the statements that it contains,
such as the appropriate CREATE privileges for objects created by those statements.

mysqldump output can include ALTER DATABASE statements that change the database collation.
These may be used when dumping stored programs to preserve their character encodings. To reload a
dump file containing such statements, the ALTER privilege for the affected database is required.

If you are performing a backup on the server and your tables all are MyISAM tables, you can also use
mysqlhotcopy for this purpose.

Note

A dump made using PowerShell on Windows with output redirection creates a
file that has UTF-16 encoding:

shell> mysqldump [options] > dump.sql

However, UTF-16 is not permitted as a connection character set (see
Section 10.1.4, “Connection Character Sets and Collations”), so the dump file
will not load correctly. To work around this issue, use the --result-file
option, which creates the output in ASCII format:



mysqldump — A Database Backup Program

326

shell> mysqldump [options] --result-file=dump.sql

Performance and Scalability Considerations

mysqldump advantages include the convenience and flexibility of viewing or even editing the output
before restoring. You can clone databases for development and DBA work, or produce slight variations
of an existing database for testing. It is not intended as a fast or scalable solution for backing up
substantial amounts of data. With large data sizes, even if the backup step takes a reasonable time,
restoring the data can be very slow because replaying the SQL statements involves disk I/O for
insertion, index creation, and so on.

For large-scale backup and restore, a physical backup is more appropriate, to copy the data files in
their original format that can be restored quickly:

• If your tables are primarily InnoDB tables, or if you have a mix of InnoDB and MyISAM tables,
consider using the mysqlbackup command of the MySQL Enterprise Backup product. (Available
as part of the Enterprise subscription.) It provides the best performance for InnoDB backups
with minimal disruption; it can also back up tables from MyISAM and other storage engines; and
it provides a number of convenient options to accommodate different backup scenarios. See
Section 25.2, “MySQL Enterprise Backup Overview”.

• If your tables are primarily MyISAM tables, consider using the mysqlhotcopy instead, for
better performance than mysqldump of backup and restore operations. See Section 4.6.9,
“mysqlhotcopy — A Database Backup Program”.

mysqldump can retrieve and dump table contents row by row, or it can retrieve the entire content from
a table and buffer it in memory before dumping it. Buffering in memory can be a problem if you are
dumping large tables. To dump tables row by row, use the --quick option (or --opt, which enables
--quick). The --opt option (and hence --quick) is enabled by default, so to enable memory
buffering, use --skip-quick.

If you are using a recent version of mysqldump to generate a dump to be reloaded into a very old
MySQL server, use the --skip-opt option instead of the --opt or --extended-insert option.

For additional information about mysqldump, see Section 7.4, “Using mysqldump for Backups”.

Invocation Syntax

There are in general three ways to use mysqldump—in order to dump a set of one or more tables, a
set of one or more complete databases, or an entire MySQL server—as shown here:

shell> mysqldump [options] db_name [tbl_name ...]
shell> mysqldump [options] --databases db_name ...
shell> mysqldump [options] --all-databases

To dump entire databases, do not name any tables following db_name, or use the --databases or
--all-databases option.

mysqldump does not dump the INFORMATION_SCHEMA or performance_schema database by
default. To dump either of these, name it explicitly on the command line and also use the --skip-
lock-tables option. You can also name them with the --databases option. Before MySQL 5.5
mysqldump silently ignores INFORMATION_SCHEMA even if you name it explicitly on the command
line.

mysqldump does not dump the performance_schema database.

Before MySQL 5.5.25, mysqldump does not dump the general_log or slow_query_log tables for
dumps of the mysql database. As of 5.5.25, the dump includes statements to recreate those tables so
that they are not missing after reloading the dump file. Log table contents are not dumped.

mysqldump also does not dump the NDB Cluster ndbinfo information database.



mysqldump — A Database Backup Program

327

To see a list of the options your version of mysqldump supports, execute mysqldump --help.

Some mysqldump options are shorthand for groups of other options:

• Use of --opt is the same as specifying --add-drop-table, --add-locks, --create-
options, --disable-keys, --extended-insert, --lock-tables, --quick, and --set-
charset. All of the options that --opt stands for also are on by default because --opt is on by
default.

• Use of --compact is the same as specifying --skip-add-drop-table, --skip-add-locks,
--skip-comments, --skip-disable-keys, and --skip-set-charset options.

To reverse the effect of a group option, uses its --skip-xxx form (--skip-opt or --skip-
compact). It is also possible to select only part of the effect of a group option by following it with
options that enable or disable specific features. Here are some examples:

• To select the effect of --opt except for some features, use the --skip option for each feature. To
disable extended inserts and memory buffering, use --opt --skip-extended-insert --skip-
quick. (Actually, --skip-extended-insert --skip-quick is sufficient because --opt is on
by default.)

• To reverse --opt for all features except index disabling and table locking, use --skip-opt --
disable-keys --lock-tables.

When you selectively enable or disable the effect of a group option, order is important because options
are processed first to last. For example, --disable-keys --lock-tables --skip-opt would not
have the intended effect; it is the same as --skip-opt by itself.

mysqldump can retrieve and dump table contents row by row, or it can retrieve the entire content from
a table and buffer it in memory before dumping it. Buffering in memory can be a problem if you are
dumping large tables. To dump tables row by row, use the --quick option (or --opt, which enables
--quick). The --opt option (and hence --quick) is enabled by default, so to enable memory
buffering, use --skip-quick.

If you are using a recent version of mysqldump to generate a dump to be reloaded into a very old
MySQL server, you should not use the --opt or --extended-insert option. Use --skip-opt
instead.

For additional information about mysqldump, see Section 7.4, “Using mysqldump for Backups”.

Option Syntax - Alphabetical Summary

mysqldump supports the following options, which can be specified on the command line or in the
[mysqldump] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.11 mysqldump Options

Format Description IntroducedRemoved

--add-drop-database Add DROP DATABASE statement before each
CREATE DATABASE statement

  

--add-drop-table Add DROP TABLE statement before each
CREATE TABLE statement

  

--add-locks Surround each table dump with LOCK TABLES
and UNLOCK TABLES statements

  

--all-databases Dump all tables in all databases   

--allow-keywords Allow creation of column names that are keywords   

--apply-slave-statements Include STOP SLAVE prior to CHANGE MASTER
statement and START SLAVE at end of output

5.5.3  



mysqldump — A Database Backup Program

328

Format Description IntroducedRemoved

--bind-address Use specified network interface to connect to
MySQL Server

5.5.8  

--character-sets-dir Directory where character sets are installed   

--comments Add comments to dump file   

--compact Produce more compact output   

--compatible Produce output that is more compatible with other
database systems or with older MySQL servers

  

--complete-insert Use complete INSERT statements that include
column names

  

--compress Compress all information sent between client and
server

  

--create-options Include all MySQL-specific table options in
CREATE TABLE statements

  

--databases Interpret all name arguments as database names   

--debug Write debugging log   

--debug-check Print debugging information when program exits   

--debug-info Print debugging information, memory, and CPU
statistics when program exits

  

--default-auth Authentication plugin to use 5.5.9  

--default-character-set Specify default character set   

--defaults-extra-file Read named option file in addition to usual option
files

  

--defaults-file Read only named option file   

--defaults-group-suffix Option group suffix value   

--delayed-insert Write INSERT DELAYED statements rather than
INSERT statements

  

--delete-master-logs On a master replication server, delete the binary
logs after performing the dump operation

  

--disable-keys For each table, surround INSERT statements with
statements to disable and enable keys

  

--dump-date Include dump date as "Dump completed on"
comment if --comments is given

  

--dump-slave Include CHANGE MASTER statement that lists
binary log coordinates of slave's master

5.5.3  

--enable-cleartext-plugin Enable cleartext authentication plugin 5.5.47  

--events Dump events from dumped databases   

--extended-insert Use multiple-row INSERT syntax   

--fields-enclosed-by This option is used with the --tab option and has
the same meaning as the corresponding clause for
LOAD DATA INFILE

  

--fields-escaped-by This option is used with the --tab option and has
the same meaning as the corresponding clause for
LOAD DATA INFILE

  

--fields-optionally-
enclosed-by

This option is used with the --tab option and has
the same meaning as the corresponding clause for
LOAD DATA INFILE

  



mysqldump — A Database Backup Program

329

Format Description IntroducedRemoved

--fields-terminated-by This option is used with the --tab option and has
the same meaning as the corresponding clause for
LOAD DATA INFILE

  

--first-slave Deprecated; use --lock-all-tables instead  5.5.3

--flush-logs Flush MySQL server log files before starting dump   

--flush-privileges Emit a FLUSH PRIVILEGES statement after
dumping mysql database

  

--force Continue even if an SQL error occurs during a
table dump

  

--help Display help message and exit   

--hex-blob Dump binary columns using hexadecimal notation   

--host Host to connect to (IP address or hostname)   

--ignore-table Do not dump given table   

--include-master-host-port Include MASTER_HOST/MASTER_PORT options
in CHANGE MASTER statement produced with --
dump-slave

5.5.3  

--insert-ignore Write INSERT IGNORE rather than INSERT
statements

  

--lines-terminated-by This option is used with the --tab option and has
the same meaning as the corresponding clause for
LOAD DATA INFILE

  

--lock-all-tables Lock all tables across all databases   

--lock-tables Lock all tables before dumping them   

--log-error Append warnings and errors to named file   

--master-data Write the binary log file name and position to the
output

  

--max_allowed_packet Maximum packet length to send to or receive from
server

  

--net_buffer_length Buffer size for TCP/IP and socket communication   

--no-autocommit Enclose the INSERT statements for each dumped
table within SET autocommit = 0 and COMMIT
statements

  

--no-create-db Do not write CREATE DATABASE statements   

--no-create-info Do not write CREATE TABLE statements that re-
create each dumped table

  

--no-data Do not dump table contents   

--no-defaults Read no option files   

--no-set-names Same as --skip-set-charset   

--no-tablespaces Do not write any CREATE LOGFILE GROUP or
CREATE TABLESPACE statements in output

  

--opt Shorthand for --add-drop-table --add-locks --
create-options --disable-keys --extended-insert --
lock-tables --quick --set-charset.

  

--order-by-primary Dump each table's rows sorted by its primary key,
or by its first unique index

  

--password Password to use when connecting to server   



mysqldump — A Database Backup Program

330

Format Description IntroducedRemoved

--pipe On Windows, connect to server using named pipe   

--plugin-dir Directory where plugins are installed 5.5.9  

--port TCP/IP port number to use for connection   

--print-defaults Print default options   

--protocol Connection protocol to use   

--quick Retrieve rows for a table from the server a row at a
time

  

--quote-names Quote identifiers within backtick characters   

--replace Write REPLACE statements rather than INSERT
statements

  

--result-file Direct output to a given file   

--routines Dump stored routines (procedures and functions)
from dumped databases

  

--set-charset Add SET NAMES default_character_set to output   

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

  

--single-transaction Issue a BEGIN SQL statement before dumping
data from server

  

--skip-add-drop-table Do not add a DROP TABLE statement before each
CREATE TABLE statement

  

--skip-add-locks Do not add locks   

--skip-comments Do not add comments to dump file   

--skip-compact Do not produce more compact output   

--skip-disable-keys Do not disable keys   

--skip-extended-insert Turn off extended-insert   

--skip-opt Turn off options set by --opt   

--skip-quick Do not retrieve rows for a table from the server a
row at a time

  

--skip-quote-names Do not quote identifiers   

--skip-set-charset Do not write SET NAMES statement   

--skip-triggers Do not dump triggers   

--skip-tz-utc Turn off tz-utc   

--socket For connections to localhost, the Unix socket file to
use

  

--ssl Enable secure connection   

--ssl-ca Path of file that contains list of trusted SSL CAs   

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

  

--ssl-cert Path of file that contains X509 certificate in PEM
format

  

--ssl-cipher List of permitted ciphers to use for connection
encryption

  

--ssl-key Path of file that contains X509 key in PEM format   

--ssl-mode Security state of connection to server 5.5.49  



mysqldump — A Database Backup Program

331

Format Description IntroducedRemoved

--ssl-verify-server-cert Verify server certificate Common Name value
against host name used when connecting to server

  

--tab Produce tab-separated data files   

--tables Override --databases or -B option   

--triggers Dump triggers for each dumped table   

--tz-utc Add SET TIME_ZONE='+00:00' to dump file   

--user MySQL user name to use when connecting to
server

  

--verbose Verbose mode   

--version Display version information and exit   

--where Dump only rows selected by given WHERE
condition

  

--xml Produce XML output   

•   --help, -?

Display a help message and exit.

•   --add-drop-database

Write a DROP DATABASE statement before each CREATE DATABASE statement. This option is
typically used in conjunction with the --all-databases or --databases option because no
CREATE DATABASE statements are written unless one of those options is specified.

•   --add-drop-table

Write a DROP TABLE statement before each CREATE TABLE statement.

•   --add-drop-trigger

Write a DROP TRIGGER statement before each CREATE TRIGGER statement.

Note

This option is supported only by mysqldump as supplied with NDB Cluster. It
is not available when using MySQL Server 5.5.

•   --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in
faster inserts when the dump file is reloaded. See Section 8.2.4.1, “Optimizing INSERT Statements”.

•   --all-databases, -A

Dump all tables in all databases. This is the same as using the --databases option and naming all
the databases on the command line.

•   --all-tablespaces, -Y

Adds to a table dump all SQL statements needed to create any tablespaces used by an
NDBCLUSTER table. This information is not otherwise included in the output from mysqldump. This
option is currently relevant only to NDB Cluster tables.

•   --allow-keywords

Permit creation of column names that are keywords. This works by prefixing each column name with
the table name.



mysqldump — A Database Backup Program

332

•   --apply-slave-statements

For a slave dump produced with the --dump-slave option, add a STOP SLAVE statement before
the CHANGE MASTER TO statement and a START SLAVE statement at the end of the output. This
option was added in MySQL 5.5.3.

•   --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

This option is supported only in the version of mysqldump that is supplied with NDB Cluster. It is not
available in standard MySQL Server 5.5 releases.

•   --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

•   --comments, -i

Write additional information in the dump file such as program version, server version, and host. This
option is enabled by default. To suppress this additional information, use --skip-comments.

•   --compact

Produce more compact output. This option enables the --skip-add-drop-table, --skip-add-
locks, --skip-comments, --skip-disable-keys, and --skip-set-charset options.

•   --compatible=name

Produce output that is more compatible with other database systems or with older MySQL servers.
The value of name can be ansi, mysql323, mysql40, postgresql, oracle, mssql, db2, maxdb,
no_key_options, no_table_options, or no_field_options. To use several values, separate
them by commas. These values have the same meaning as the corresponding options for setting the
server SQL mode. See Section 5.1.8, “Server SQL Modes”.

This option does not guarantee compatibility with other servers. It only enables those SQL mode
values that are currently available for making dump output more compatible. For example, --
compatible=oracle does not map data types to Oracle types or use Oracle comment syntax.

This option requires a server version of 4.1.0 or higher. With older servers, it does nothing.

•   --complete-insert, -c

Use complete INSERT statements that include column names.

•   --compress, -C

Compress all information sent between the client and the server if both support compression.

•   --create-options

Include all MySQL-specific table options in the CREATE TABLE statements.

•   --databases, -B

Dump several databases. Normally, mysqldump treats the first name argument on the command
line as a database name and following names as table names. With this option, it treats all name
arguments as database names. CREATE DATABASE and USE statements are included in the output
before each new database.



mysqldump — A Database Backup Program

333

This option may be used to dump the INFORMATION_SCHEMA and performace_schema
databases, which normally are not dumped even with the --all-databases option. (Also use the
--skip-lock-tables option.)

•   --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default value is
d:t:o,/tmp/mysqldump.trace.

•   --debug-check

Print some debugging information when the program exits.

•   --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

•   --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.9.

•   --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”. If
no character set is specified, mysqldump uses utf8.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. Before MySQL 5.5.8, file_name must be the
full path name to the file. As of MySQL 5.5.8, the name is interpreted relative to the current directory
if given as a relative path name.

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
Before MySQL 5.5.8, file_name must be the full path name to the file. As of MySQL 5.5.8, the
name is interpreted relative to the current directory if given as a relative path name.

•   --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqldump normally reads the [client] and [mysqldump] groups. If the --
defaults-group-suffix=_other option is given, mysqldump also reads the [client_other]
and [mysqldump_other] groups.

•   --delayed-insert

Write INSERT DELAYED statements rather than INSERT statements.

•   --delete-master-logs

On a master replication server, delete the binary logs by sending a PURGE BINARY LOGS statement
to the server after performing the dump operation. This option automatically enables --master-
data.

•   --disable-keys, -K



mysqldump — A Database Backup Program

334

For each table, surround the INSERT statements with /*!40000 ALTER TABLE tbl_name
DISABLE KEYS */; and /*!40000 ALTER TABLE tbl_name ENABLE KEYS */; statements.
This makes loading the dump file faster because the indexes are created after all rows are inserted.
This option is effective only for nonunique indexes of MyISAM tables. It has no effect for other tables.

•   --dump-date

If the --comments option is given, mysqldump produces a comment at the end of the dump of the
following form:

-- Dump completed on DATE

However, the date causes dump files taken at different times to appear to be different, even if the
data are otherwise identical. --dump-date and --skip-dump-date control whether the date is
added to the comment. The default is --dump-date (include the date in the comment). --skip-
dump-date suppresses date printing.

•   --dump-slave[=value]

This option is similar to --master-data except that it is used to dump a replication slave server to
produce a dump file that can be used to set up another server as a slave that has the same master
as the dumped server. It causes the dump output to include a CHANGE MASTER TO statement that
indicates the binary log coordinates (file name and position) of the dumped slave's master. These are
the master server coordinates from which the slave should start replicating.

--dump-slave causes the coordinates from the master to be used rather than those of the dumped
server, as is done by the --master-data option. In addition, specfiying this option causes the --
master-data option to be overridden, if used, and effectively ignored.

The option value is handled the same way as for --master-data (setting no value or 1 causes
a CHANGE MASTER TO statement to be written to the dump, setting 2 causes the statement to be
written but encased in SQL comments) and has the same effect as --master-data in terms of
enabling or disabling other options and in how locking is handled.

This option causes mysqldump to stop the slave SQL thread before the dump and restart it again
after.

In conjunction with --dump-slave, the --apply-slave-statements and --include-
master-host-port options can also be used.

This option was added in MySQL 5.5.3.

•   --events, -E

Include Event Scheduler events for the dumped databases in the output. This option requires the
EVENT privileges for those databases.

•   --extended-insert, -e

Write INSERT statements using multiple-row syntax that includes several VALUES lists. This results
in a smaller dump file and speeds up inserts when the file is reloaded.

•   --fields-terminated-by=...,   --fields-enclosed-by=...,   --fields-
optionally-enclosed-by=...,   --fields-escaped-by=...

These options are used with the --tab option and have the same meaning as the corresponding
FIELDS clauses for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

•   --first-slave



mysqldump — A Database Backup Program

335

Deprecated. Use --lock-all-tables instead. --first-slave was removed in MySQL 5.5.3.

•   --flush-logs, -F

Flush the MySQL server log files before starting the dump. This option requires the RELOAD
privilege. If you use this option in combination with the --all-databases option, the logs are
flushed for each database dumped. The exception is when using --lock-all-tables, --
master-data, or (as of MySQL 5.5.21) --single-transaction: In this case, the logs are
flushed only once, corresponding to the moment that all tables are locked by FLUSH TABLES WITH
READ LOCK. If you want your dump and the log flush to happen at exactly the same moment, you
should use --flush-logs together with --lock-all-tables, --master-data, or --single-
transaction.

•   --flush-privileges

Add a FLUSH PRIVILEGES statement to the dump output after dumping the mysql database. This
option should be used any time the dump contains the mysql database and any other database that
depends on the data in the mysql database for proper restoration.

•   --force, -f

Continue even if an SQL error occurs during a table dump.

One use for this option is to cause mysqldump to continue executing even when it encounters a
view that has become invalid because the definition refers to a table that has been dropped. Without
--force, mysqldump exits with an error message. With --force, mysqldump prints the error
message, but it also writes an SQL comment containing the view definition to the dump output and
continues executing.

•   --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.5.1.3, “Client-
Side Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.5.47.

•   --host=host_name, -h host_name

Dump data from the MySQL server on the given host. The default host is localhost.

•   --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, the BLOB types, and BIT.

•   --include-master-host-port

For the CHANGE MASTER TO statement in a slave dump produced with the --dump-slave option,
add MASTER_HOST and MASTER_PORT options for the host name and TCP/IP port number of the
slave's master. This option was added in MySQL 5.5.3.

•   --ignore-table=db_name.tbl_name

Do not dump the given table, which must be specified using both the database and table names. To
ignore multiple tables, use this option multiple times. This option also can be used to ignore views.

•   --insert-ignore

Write INSERT IGNORE statements rather than INSERT statements.

•   --lines-terminated-by=...



mysqldump — A Database Backup Program

336

This option is used with the --tab option and has the same meaning as the corresponding LINES
clause for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

•   --lock-all-tables, -x

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration
of the whole dump. This option automatically turns off --single-transaction and --lock-
tables.

•   --lock-tables, -l

For each dumped database, lock all tables to be dumped before dumping them. The tables are
locked with READ LOCAL to permit concurrent inserts in the case of MyISAM tables. For transactional
tables such as InnoDB, --single-transaction is a much better option than --lock-tables
because it does not need to lock the tables at all.

Because --lock-tables locks tables for each database separately, this option does not guarantee
that the tables in the dump file are logically consistent between databases. Tables in different
databases may be dumped in completely different states.

Some options, such as --opt, automatically enable --lock-tables. If you want to override this,
use --skip-lock-tables at the end of the option list.

•   --log-error=file_name

Log warnings and errors by appending them to the named file. The default is to do no logging.

•   --master-data[=value]

Use this option to dump a master replication server to produce a dump file that can be used to set
up another server as a slave of the master. It causes the dump output to include a CHANGE MASTER
TO statement that indicates the binary log coordinates (file name and position) of the dumped server.
These are the master server coordinates from which the slave should start replicating after you load
the dump file into the slave.

If the option value is 2, the CHANGE MASTER TO statement is written as an SQL comment, and
thus is informative only; it has no effect when the dump file is reloaded. If the option value is 1, the
statement is not written as a comment and takes effect when the dump file is reloaded. If no option
value is specified, the default value is 1.

This option requires the RELOAD privilege and the binary log must be enabled.

The --master-data option automatically turns off --lock-tables. It also turns on --lock-
all-tables, unless --single-transaction also is specified, in which case, a global read lock
is acquired only for a short time at the beginning of the dump (see the description for --single-
transaction). In all cases, any action on logs happens at the exact moment of the dump.

It is also possible to set up a slave by dumping an existing slave of the master. In MySQL 5.5.3 and
higher, you can create such a dump using the --dump-slave option, which overrides --master-
data and causes it to be ignored if both options are used.

Before MySQL 5.5.3, use the following procedure on the existing slave:

1. Stop the slave's SQL thread and get its current status:

mysql> STOP SLAVE SQL_THREAD;
mysql> SHOW SLAVE STATUS;

2. From the output of the SHOW SLAVE STATUS statement, the binary log coordinates of
the master server from which the new slave should start replicating are the values of the



mysqldump — A Database Backup Program

337

Relay_Master_Log_File and Exec_Master_Log_Pos fields. Denote those values as
file_name and file_pos.

3. Dump the slave server:

shell> mysqldump --master-data=2 --all-databases > dumpfile

Using --master-data=2 works only if binary logging has been enabled on the slave.
Otherwise, mysqldump fails with the error Binlogging on server not active. In this case
you must handle any locking issues in another manner, using one or more of --add-locks,
--lock-tables, --lock-all-tables, or --single-transaction, as required by your
application and environment.

4. Restart the slave:

mysql> START SLAVE;

5. On the new slave, load the dump file:

shell> mysql < dumpfile

6. On the new slave, set the replication coordinates to those of the master server obtained earlier:

mysql> CHANGE MASTER TO
    -> MASTER_LOG_FILE = 'file_name', MASTER_LOG_POS = file_pos;

The CHANGE MASTER TO statement might also need other parameters, such as MASTER_HOST
to point the slave to the correct master server host. Add any such parameters as necessary.

•   --no-autocommit

Enclose the INSERT statements for each dumped table within SET autocommit = 0 and COMMIT
statements.

•   --no-create-db, -n

Suppress the CREATE DATABASE statements that are otherwise included in the output if the --
databases or --all-databases option is given.

•   --no-create-info, -t

Do not write CREATE TABLE statements that create each dumped table.

Note

This option does not exclude statements creating log file groups or
tablespaces from mysqldump output; however, you can use the --no-
tablespaces option for this purpose.

•   --no-data, -d

Do not write any table row information (that is, do not dump table contents). This is useful if you want
to dump only the CREATE TABLE statement for the table (for example, to create an empty copy of
the table by loading the dump file).

•   --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.



mysqldump — A Database Backup Program

338

•   --no-set-names, -N

This has the same effect as --skip-set-charset.

•   --no-tablespaces, -y

This option suppresses all CREATE LOGFILE GROUP and CREATE TABLESPACE statements in the
output of mysqldump.

•   --opt

This option is shorthand. It is the same as specifying --add-drop-table --add-locks --
create-options --disable-keys --extended-insert --lock-tables --quick --set-
charset. It should give you a fast dump operation and produce a dump file that can be reloaded
into a MySQL server quickly.

The --opt option is enabled by default. Use --skip-opt to disable it. See the discussion at
the beginning of this section for information about selectively enabling or disabling a subset of the
options affected by --opt.

•   --order-by-primary

Dump each table's rows sorted by its primary key, or by its first unique index, if such an index exists.
This is useful when dumping a MyISAM table to be loaded into an InnoDB table, but will make the
dump operation take considerably longer.

•   --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqldump prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

•   --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqldump does not find it. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.9.

•   --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

•   --print-defaults

Print the program name and all options that it gets from option files.

•   --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.



mysqldump — A Database Backup Program

339

•   --quick, -q

This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table from
the server a row at a time rather than retrieving the entire row set and buffering it in memory before
writing it out.

•   --quote-names, -Q

Quote identifiers (such as database, table, and column names) within ` characters. If the
ANSI_QUOTES SQL mode is enabled, identifiers are quoted within " characters. This option is
enabled by default. It can be disabled with --skip-quote-names, but this option should be given
after any option such as --compatible that may enable --quote-names.

•   --replace

Write REPLACE statements rather than INSERT statements.

•   --result-file=file_name, -r file_name

Direct output to the named file. The result file is created and its previous contents overwritten, even if
an error occurs while generating the dump.

This option should be used on Windows to prevent newline \n characters from being converted to
\r\n carriage return/newline sequences.

•   --routines, -R

Include stored routines (procedures and functions) for the dumped databases in the output. This
option requires the SELECT privilege for the mysql.proc table.

The output generated by using --routines contains CREATE PROCEDURE and CREATE
FUNCTION statements to create the routines. However, these statements do not include attributes
such as the routine creation and modification timestamps, so when the routines are reloaded, they
are created with timestamps equal to the reload time.

If you require routines to be created with their original timestamp attributes, do not use --routines.
Instead, dump and reload the contents of the mysql.proc table directly, using a MySQL account
that has appropriate privileges for the mysql database.

Prior to MySQL 5.5.21, this option had no effect when used together with the --xml option. (Bug
#11760384, Bug #52792)

•   --set-charset

Write SET NAMES default_character_set to the output. This option is enabled by default. To
suppress the SET NAMES statement, use --skip-set-charset.

•   --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

•   --single-transaction

This option sets the transaction isolation mode to REPEATABLE READ and sends a START
TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional
tables such as InnoDB, because then it dumps the consistent state of the database at the time when
START TRANSACTION was issued without blocking any applications.



mysqldump — A Database Backup Program

340

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent
state. For example, any MyISAM or MEMORY tables dumped while using this option may still change
state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table
contents and binary log coordinates), no other connection should use the following statements:
ALTER TABLE, CREATE TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent
read is not isolated from those statements, so use of them on a table to be dumped can cause the
SELECT that is performed by mysqldump to retrieve the table contents to obtain incorrect contents
or fail.

The --single-transaction option and the --lock-tables option are mutually exclusive
because LOCK TABLES causes any pending transactions to be committed implicitly.

This option is not supported for NDB Cluster tables; the results cannot be guaranteed to be
consistent due to the fact that the NDBCLUSTER storage engine supports only the READ_COMMITTED
transaction isolation level. You should always use NDB backup and restore instead.

To dump large tables, combine the --single-transaction option with the --quick option.

•   --skip-comments

See the description for the --comments option.

•   --skip-opt

See the description for the --opt option.

•   --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

•   --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.4.5, “Command Options for Secure
Connections”.

•   --tab=dir_name, -T dir_name

Produce tab-separated text-format data files. For each dumped table, mysqldump creates a
tbl_name.sql file that contains the CREATE TABLE statement that creates the table, and the
server writes a tbl_name.txt file that contains its data. The option value is the directory in which to
write the files.

Note

This option should be used only when mysqldump is run on the same
machine as the mysqld server. Because the server creates *.txt files in
the directory that you specify, the directory must be writable by the server
and the MySQL account that you use must have the FILE privilege. Because
mysqldump creates *.sql in the same directory, it must be writable by your
system login account.

By default, the .txt data files are formatted using tab characters between column values and a
newline at the end of each line. The format can be specified explicitly using the --fields-xxx and
--lines-terminated-by options.

Column values are converted to the character set specified by the --default-character-set
option.



mysqldump — A Database Backup Program

341

•   --tables

Override the --databases or -B option. mysqldump regards all name arguments following the
option as table names.

•   --triggers

Include triggers for each dumped table in the output. This option is enabled by default; disable it with
--skip-triggers.

To be able to dump a table's triggers, you must have the TRIGGER privilege for the table.

•   --tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers
in different time zones. mysqldump sets its connection time zone to UTC and adds SET
TIME_ZONE='+00:00' to the dump file. Without this option, TIMESTAMP columns are dumped and
reloaded in the time zones local to the source and destination servers, which can cause the values
to change if the servers are in different time zones. --tz-utc also protects against changes due to
daylight saving time. --tz-utc is enabled by default. To disable it, use --skip-tz-utc.

•   --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

•   --verbose, -v

Verbose mode. Print more information about what the program does.

•   --version, -V

Display version information and exit.

•   --where='where_condition', -w 'where_condition'

Dump only rows selected by the given WHERE condition. Quotes around the condition are mandatory
if it contains spaces or other characters that are special to your command interpreter.

Examples:

--where="user='jimf'"
-w"userid>1"
-w"userid<1"

•   --xml, -X

Write dump output as well-formed XML.

NULL, 'NULL', and Empty Values: For a column named column_name, the NULL value, an empty
string, and the string value 'NULL' are distinguished from one another in the output generated by
this option as follows.

Value: XML Representation:

NULL (unknown value) <field name="column_name"
xsi:nil="true" />

'' (empty string) <field name="column_name"></field>

'NULL' (string value) <field name="column_name">NULL</
field>

The output from the mysql client when run using the --xml option also follows the preceding rules.
(See Section 4.5.1.1, “mysql Options”.)



mysqldump — A Database Backup Program

342

XML output from mysqldump includes the XML namespace, as shown here:

shell> mysqldump --xml -u root world City
<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<database name="world">
<table_structure name="City">
<field Field="ID" Type="int(11)" Null="NO" Key="PRI" Extra="auto_increment" />
<field Field="Name" Type="char(35)" Null="NO" Key="" Default="" Extra="" />
<field Field="CountryCode" Type="char(3)" Null="NO" Key="" Default="" Extra="" />
<field Field="District" Type="char(20)" Null="NO" Key="" Default="" Extra="" />
<field Field="Population" Type="int(11)" Null="NO" Key="" Default="0" Extra="" />
<key Table="City" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="ID"
Collation="A" Cardinality="4079" Null="" Index_type="BTREE" Comment="" />
<options Name="City" Engine="MyISAM" Version="10" Row_format="Fixed" Rows="4079"
Avg_row_length="67" Data_length="273293" Max_data_length="18858823439613951"
Index_length="43008" Data_free="0" Auto_increment="4080"
Create_time="2007-03-31 01:47:01" Update_time="2007-03-31 01:47:02"
Collation="latin1_swedish_ci" Create_options="" Comment="" />
</table_structure>
<table_data name="City">
<row>
<field name="ID">1</field>
<field name="Name">Kabul</field>
<field name="CountryCode">AFG</field>
<field name="District">Kabol</field>
<field name="Population">1780000</field>
</row>

...

<row>
<field name="ID">4079</field>
<field name="Name">Rafah</field>
<field name="CountryCode">PSE</field>
<field name="District">Rafah</field>
<field name="Population">92020</field>
</row>
</table_data>
</database>
</mysqldump>

Prior to MySQL 5.5.21, this option prevented the --routines option from working correctly—that
is, no stored routines, triggers, or events could be dumped in XML format. (Bug #11760384, Bug
#52792)

You can also set the following variables by using --var_name=value syntax:

• max_allowed_packet

The maximum size of the buffer for client/server communication. The default is 24MB, the maximum
is 1GB.

• net_buffer_length

The initial size of the buffer for client/server communication. When creating multiple-row INSERT
statements (as with the --extended-insert or --opt option), mysqldump creates rows up
to net_buffer_length bytes long. If you increase this variable, ensure that the MySQL server
net_buffer_length system variable has a value at least this large.

A common use of mysqldump is for making a backup of an entire database:

shell> mysqldump db_name > backup-file.sql

You can load the dump file back into the server like this:



mysqlimport — A Data Import Program

343

shell> mysql db_name < backup-file.sql

Or like this:

shell> mysql -e "source /path-to-backup/backup-file.sql" db_name

mysqldump is also very useful for populating databases by copying data from one MySQL server to
another:

shell> mysqldump --opt db_name | mysql --host=remote_host -C db_name

It is possible to dump several databases with one command:

shell> mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql

To dump all databases, use the --all-databases option:

shell> mysqldump --all-databases > all_databases.sql

For InnoDB tables, mysqldump provides a way of making an online backup:

shell> mysqldump --all-databases --master-data --single-transaction > all_databases.sql

This backup acquires a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at
the beginning of the dump. As soon as this lock has been acquired, the binary log coordinates are read
and the lock is released. If long updating statements are running when the FLUSH statement is issued,
the MySQL server may get stalled until those statements finish. After that, the dump becomes lock free
and does not disturb reads and writes on the tables. If the update statements that the MySQL server
receives are short (in terms of execution time), the initial lock period should not be noticeable, even
with many updates.

For point-in-time recovery (also known as “roll-forward,” when you need to restore an old backup
and replay the changes that happened since that backup), it is often useful to rotate the binary log
(see Section 5.4.4, “The Binary Log”) or at least know the binary log coordinates to which the dump
corresponds:

shell> mysqldump --all-databases --master-data=2 > all_databases.sql

Or:

shell> mysqldump --all-databases --flush-logs --master-data=2
              > all_databases.sql

The --master-data and --single-transaction options can be used simultaneously, which
provides a convenient way to make an online backup suitable for use prior to point-in-time recovery if
tables are stored using the InnoDB storage engine.

For more information on making backups, see Section 7.2, “Database Backup Methods”, and
Section 7.3, “Example Backup and Recovery Strategy”.

If you encounter problems backing up views, please read the section that covers restrictions on views
which describes a workaround for backing up views when this fails due to insufficient privileges. See
Section C.5, “Restrictions on Views”.

4.5.5 mysqlimport — A Data Import Program

The mysqlimport client provides a command-line interface to the LOAD DATA INFILE SQL
statement. Most options to mysqlimport correspond directly to clauses of LOAD DATA INFILE
syntax. See Section 13.2.6, “LOAD DATA INFILE Syntax”.



mysqlimport — A Data Import Program

344

Invoke mysqlimport like this:

shell> mysqlimport [options] db_name textfile1 [textfile2 ...]

For each text file named on the command line, mysqlimport strips any extension from the file name
and uses the result to determine the name of the table into which to import the file's contents. For
example, files named patient.txt, patient.text, and patient all would be imported into a table
named patient.

mysqlimport supports the following options, which can be specified on the command line or in the
[mysqlimport] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.12 mysqlimport Options

Format Description Introduced

--columns This option takes a comma-separated list of column
names as its value

 

--compress Compress all information sent between client and server  

--debug Write debugging log  

--debug-check Print debugging information when program exits  

--debug-info Print debugging information, memory, and CPU statistics
when program exits

 

--default-auth Authentication plugin to use 5.5.10

--default-character-set Specify default character set  

--defaults-extra-file Read named option file in addition to usual option files  

--defaults-file Read only named option file  

--defaults-group-suffix Option group suffix value  

--delete Empty the table before importing the text file  

--enable-cleartext-plugin Enable cleartext authentication plugin 5.5.47

--fields-enclosed-by This option has the same meaning as the corresponding
clause for LOAD DATA INFILE

 

--fields-escaped-by This option has the same meaning as the corresponding
clause for LOAD DATA INFILE

 

--fields-optionally-enclosed-by This option has the same meaning as the corresponding
clause for LOAD DATA INFILE

 

--fields-terminated-by This option has the same meaning as the corresponding
clause for LOAD DATA INFILE

 

--force Continue even if an SQL error occurs  

--help Display help message and exit  

--host Connect to MySQL server on given host  

--ignore See the description for the --replace option  

--ignore-lines Ignore the first N lines of the data file  

--lines-terminated-by This option has the same meaning as the corresponding
clause for LOAD DATA INFILE

 

--local Read input files locally from the client host  

--lock-tables Lock all tables for writing before processing any text files  

--low-priority Use LOW_PRIORITY when loading the table.  

--no-defaults Read no option files  



mysqlimport — A Data Import Program

345

Format Description Introduced

--password Password to use when connecting to server  

--pipe On Windows, connect to server using named pipe  

--plugin-dir Directory where plugins are installed 5.5.10

--port TCP/IP port number to use for connection  

--print-defaults Print default options  

--protocol Connection protocol to use  

--replace The --replace and --ignore options control handling of
input rows that duplicate existing rows on unique key
values

 

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

 

--silent Produce output only when errors occur  

--socket For connections to localhost, the Unix socket file to use  

--ssl Enable secure connection  

--ssl-ca Path of file that contains list of trusted SSL CAs  

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

 

--ssl-cert Path of file that contains X509 certificate in PEM format  

--ssl-cipher List of permitted ciphers to use for connection encryption  

--ssl-key Path of file that contains X509 key in PEM format  

--ssl-mode Security state of connection to server 5.5.49

--ssl-verify-server-cert Verify server certificate Common Name value against
host name used when connecting to server

 

--use-threads Number of threads for parallel file-loading  

--user MySQL user name to use when connecting to server  

--verbose Verbose mode  

--version Display version information and exit  

•   --help, -?

Display a help message and exit.

The output generated by using --events contains CREATE EVENT statements to create the events.
However, these statements do not include attributes such as the event creation and modification
timestamps, so when the events are reloaded, they are created with timestamps equal to the reload
time.

If you require events to be created with their original timestamp attributes, do not use --events.
Instead, dump and reload the contents of the mysql.event table directly, using a MySQL account
that has appropriate privileges for the mysql database.

•   --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

This option is supported only in the version of mysqlimport that is supplied with NDB Cluster. It is
not available in standard MySQL Server 5.5 releases.

•   --character-sets-dir=dir_name



mysqlimport — A Data Import Program

346

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

•   --columns=column_list, -c column_list

This option takes a comma-separated list of column names as its value. The order of the column
names indicates how to match data file columns with table columns.

•   --compress, -C

Compress all information sent between the client and the server if both support compression.

•   --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

•   --debug-check

Print some debugging information when the program exits.

•   --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

•   --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

•   --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. Before MySQL 5.5.8, file_name must be the
full path name to the file. As of MySQL 5.5.8, the name is interpreted relative to the current directory
if given as a relative path name.

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
Before MySQL 5.5.8, file_name must be the full path name to the file. As of MySQL 5.5.8, the
name is interpreted relative to the current directory if given as a relative path name.

•   --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqlimport normally reads the [client] and [mysqlimport] groups.
If the --defaults-group-suffix=_other option is given, mysqlimport also reads the
[client_other] and [mysqlimport_other] groups.

•   --delete, -D

Empty the table before importing the text file.

•   --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.5.1.3, “Client-
Side Cleartext Pluggable Authentication”.)



mysqlimport — A Data Import Program

347

This option was added in MySQL 5.5.47.

•   --fields-terminated-by=...,   --fields-enclosed-by=...,   --fields-
optionally-enclosed-by=...,   --fields-escaped-by=...

These options have the same meaning as the corresponding clauses for LOAD DATA INFILE. See
Section 13.2.6, “LOAD DATA INFILE Syntax”.

•   --force, -f

Ignore errors. For example, if a table for a text file does not exist, continue processing any remaining
files. Without --force, mysqlimport exits if a table does not exist.

•   --host=host_name, -h host_name

Import data to the MySQL server on the given host. The default host is localhost.

•   --ignore, -i

See the description for the --replace option.

•   --ignore-lines=N

Ignore the first N lines of the data file.

•   --lines-terminated-by=...

This option has the same meaning as the corresponding clause for LOAD DATA INFILE. For
example, to import Windows files that have lines terminated with carriage return/linefeed pairs, use
--lines-terminated-by="\r\n". (You might have to double the backslashes, depending on
the escaping conventions of your command interpreter.) See Section 13.2.6, “LOAD DATA INFILE
Syntax”.

•   --local, -L

By default, files are read by the server on the server host. With this option, mysqlimport reads
input files locally on the client host. Enabling local data loading also requires that the server permits
it; see Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

•   --lock-tables, -l

Lock all tables for writing before processing any text files. This ensures that all tables are
synchronized on the server.

•   --low-priority

Use LOW_PRIORITY when loading the table. This affects only storage engines that use only table-
level locking (such as MyISAM, MEMORY, and MERGE).

•   --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•   --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlimport prompts for one.



mysqlimport — A Data Import Program

348

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

•   --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlimport does not find it. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

•   --print-defaults

Print the program name and all options that it gets from option files.

•   --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

•   --replace, -r

The --replace and --ignore options control handling of input rows that duplicate existing rows
on unique key values. If you specify --replace, new rows replace existing rows that have the same
unique key value. If you specify --ignore, input rows that duplicate an existing row on a unique key
value are skipped. If you do not specify either option, an error occurs when a duplicate key value is
found, and the rest of the text file is ignored.

•   --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

•   --silent, -s

Silent mode. Produce output only when errors occur.

•   --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

•   --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.4.5, “Command Options for Secure
Connections”.



mysqlshow — Display Database, Table, and Column Information

349

•   --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

•   --use-threads=N

Load files in parallel using N threads.

•   --verbose, -v

Verbose mode. Print more information about what the program does.

•   --version, -V

Display version information and exit.

Here is a sample session that demonstrates use of mysqlimport:

shell> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
shell> ed
a
100     Max Sydow
101     Count Dracula
.
w imptest.txt
32
q
shell> od -c imptest.txt
0000000   1   0   0  \t   M   a   x       S   y   d   o   w  \n   1   0
0000020   1  \t   C   o   u   n   t       D   r   a   c   u   l   a  \n
0000040
shell> mysqlimport --local test imptest.txt
test.imptest: Records: 2  Deleted: 0  Skipped: 0  Warnings: 0
shell> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id   | n             |
+------+---------------+
|  100 | Max Sydow     |
|  101 | Count Dracula |
+------+---------------+

4.5.6 mysqlshow — Display Database, Table, and Column Information

The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's
columns or indexes.

mysqlshow provides a command-line interface to several SQL SHOW statements. See Section 13.7.5,
“SHOW Syntax”. The same information can be obtained by using those statements directly. For
example, you can issue them from the mysql client program.

Invoke mysqlshow like this:

shell> mysqlshow [options] [db_name [tbl_name [col_name]]]

• If no database is given, a list of database names is shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

The output displays only the names of those databases, tables, or columns for which you have some
privileges.

If the last argument contains shell or SQL wildcard characters (*, ?, %, or _), only those names that are
matched by the wildcard are shown. If a database name contains any underscores, those should be
escaped with a backslash (some Unix shells require two) to get a list of the proper tables or columns.



mysqlshow — Display Database, Table, and Column Information

350

* and ? characters are converted into SQL % and _ wildcard characters. This might cause some
confusion when you try to display the columns for a table with a _ in the name, because in this case,
mysqlshow shows you only the table names that match the pattern. This is easily fixed by adding an
extra % last on the command line as a separate argument.

mysqlshow supports the following options, which can be specified on the command line or in the
[mysqlshow] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.13 mysqlshow Options

Format Description Introduced

--bind-address Use specified network interface to connect to MySQL
Server

5.5.8

--compress Compress all information sent between client and server  

--count Show the number of rows per table  

--debug Write debugging log  

--debug-check Print debugging information when program exits  

--debug-info Print debugging information, memory, and CPU statistics
when program exits

 

--default-auth Authentication plugin to use 5.5.10

--default-character-set Specify default character set  

--defaults-extra-file Read named option file in addition to usual option files  

--defaults-file Read only named option file  

--defaults-group-suffix Option group suffix value  

--enable-cleartext-plugin Enable cleartext authentication plugin 5.5.47

--help Display help message and exit  

--host Connect to MySQL server on given host  

--keys Show table indexes  

--no-defaults Read no option files  

--password Password to use when connecting to server  

--pipe On Windows, connect to server using named pipe  

--plugin-dir Directory where plugins are installed 5.5.10

--port TCP/IP port number to use for connection  

--print-defaults Print default options  

--protocol Connection protocol to use  

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

 

--show-table-type Show a column indicating the table type  

--socket For connections to localhost, the Unix socket file to use  

--ssl Enable secure connection  

--ssl-ca Path of file that contains list of trusted SSL CAs  

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

 

--ssl-cert Path of file that contains X509 certificate in PEM format  

--ssl-cipher List of permitted ciphers to use for connection encryption  

--ssl-key Path of file that contains X509 key in PEM format  



mysqlshow — Display Database, Table, and Column Information

351

Format Description Introduced

--ssl-mode Security state of connection to server 5.5.49

--ssl-verify-server-cert Verify server certificate Common Name value against
host name used when connecting to server

 

--status Display extra information about each table  

--user MySQL user name to use when connecting to server  

--verbose Verbose mode  

--version Display version information and exit  

•   --help, -?

Display a help message and exit.

•   --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

This option is supported only in the version of mysqlshow that is supplied with NDB Cluster. It is not
available in standard MySQL Server 5.5 releases.

•   --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

•   --compress, -C

Compress all information sent between the client and the server if both support compression.

•   --count

Show the number of rows per table. This can be slow for non-MyISAM tables.

•   --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

•   --debug-check

Print some debugging information when the program exits.

•   --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

•   --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

•   --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. Before MySQL 5.5.8, file_name must be the



mysqlshow — Display Database, Table, and Column Information

352

full path name to the file. As of MySQL 5.5.8, the name is interpreted relative to the current directory
if given as a relative path name.

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
Before MySQL 5.5.8, file_name must be the full path name to the file. As of MySQL 5.5.8, the
name is interpreted relative to the current directory if given as a relative path name.

•   --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlshow normally reads the [client] and [mysqlshow] groups. If the --
defaults-group-suffix=_other option is given, mysqlshow also reads the [client_other]
and [mysqlshow_other] groups.

•   --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.5.1.3, “Client-
Side Cleartext Pluggable Authentication”.)

This option was added in MySQL 5.5.47.

•   --host=host_name, -h host_name

Connect to the MySQL server on the given host.

•   --keys, -k

Show table indexes.

•   --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•   --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlshow prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

•   --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlshow does not find it. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --port=port_num, -P port_num

The TCP/IP port number to use for the connection.



mysqlslap — Load Emulation Client

353

•   --print-defaults

Print the program name and all options that it gets from option files.

•   --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

•   --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

•   --show-table-type, -t

Show a column indicating the table type, as in SHOW FULL TABLES. The type is BASE TABLE or
VIEW.

•   --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

•   --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.4.5, “Command Options for Secure
Connections”.

•   --status, -i

Display extra information about each table.

•   --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

•   --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

•   --version, -V

Display version information and exit.

4.5.7 mysqlslap — Load Emulation Client

mysqlslap is a diagnostic program designed to emulate client load for a MySQL server and to report
the timing of each stage. It works as if multiple clients are accessing the server.

Invoke mysqlslap like this:

shell> mysqlslap [options]

Some options such as --create or --query enable you to specify a string containing an SQL
statement or a file containing statements. If you specify a file, by default it must contain one statement
per line. (That is, the implicit statement delimiter is the newline character.) Use the --delimiter



mysqlslap — Load Emulation Client

354

option to specify a different delimiter, which enables you to specify statements that span multiple lines
or place multiple statements on a single line. You cannot include comments in a file; mysqlslap does
not understand them.

mysqlslap runs in three stages:

1. Create schema, table, and optionally any stored programs or data to use for the test. This stage
uses a single client connection.

2. Run the load test. This stage can use many client connections.

3. Clean up (disconnect, drop table if specified). This stage uses a single client connection.

Examples:

Supply your own create and query SQL statements, with 50 clients querying and 200 selects for each
(enter the command on a single line):

mysqlslap --delimiter=";"
  --create="CREATE TABLE a (b int);INSERT INTO a VALUES (23)"
  --query="SELECT * FROM a" --concurrency=50 --iterations=200

Let mysqlslap build the query SQL statement with a table of two INT columns and three VARCHAR
columns. Use five clients querying 20 times each. Do not create the table or insert the data (that is, use
the previous test's schema and data):

mysqlslap --concurrency=5 --iterations=20
  --number-int-cols=2 --number-char-cols=3
  --auto-generate-sql

Tell the program to load the create, insert, and query SQL statements from the specified files, where
the create.sql file has multiple table creation statements delimited by ';' and multiple insert
statements delimited by ';'. The --query file will have multiple queries delimited by ';'. Run all the
load statements, then run all the queries in the query file with five clients (five times each):

mysqlslap --concurrency=5
  --iterations=5 --query=query.sql --create=create.sql
  --delimiter=";"

mysqlslap supports the following options, which can be specified on the command line or in the
[mysqlslap] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.14 mysqlslap Options

Format Description Introduced

--auto-generate-sql Generate SQL statements automatically when they are
not supplied in files or using command options

 

--auto-generate-sql-add-
autoincrement

Add AUTO_INCREMENT column to automatically
generated tables

 

--auto-generate-sql-execute-
number

Specify how many queries to generate automatically  

--auto-generate-sql-guid-
primary

Add a GUID-based primary key to automatically
generated tables

 

--auto-generate-sql-load-type Specify the test load type  

--auto-generate-sql-secondary-
indexes

Specify how many secondary indexes to add to
automatically generated tables

 

--auto-generate-sql-unique-
query-number

How many different queries to generate for automatic
tests.

 



mysqlslap — Load Emulation Client

355

Format Description Introduced

--auto-generate-sql-unique-
write-number

How many different queries to generate for --auto-
generate-sql-write-number

 

--auto-generate-sql-write-
number

How many row inserts to perform on each thread  

--commit How many statements to execute before committing.  

--compress Compress all information sent between client and server  

--concurrency Number of clients to simulate when issuing the SELECT
statement

 

--create File or string containing the statement to use for creating
the table

 

--create-schema Schema in which to run the tests  

--csv Generate output in comma-separated values format  

--debug Write debugging log  

--debug-check Print debugging information when program exits  

--debug-info Print debugging information, memory, and CPU statistics
when program exits

 

--default-auth Authentication plugin to use 5.5.10

--defaults-extra-file Read named option file in addition to usual option files  

--defaults-file Read only named option file  

--defaults-group-suffix Option group suffix value  

--delimiter Delimiter to use in SQL statements  

--detach Detach (close and reopen) each connection after each N
statements

 

--enable-cleartext-plugin Enable cleartext authentication plugin 5.5.27

--engine Storage engine to use for creating the table  

--help Display help message and exit  

--host Connect to MySQL server on given host  

--iterations Number of times to run the tests  

--no-defaults Read no option files  

--no-drop Do not drop any schema created during the test run 5.5.12

--number-char-cols Number of VARCHAR columns to use if --auto-generate-
sql is specified

 

--number-int-cols Number of INT columns to use if --auto-generate-sql is
specified

 

--number-of-queries Limit each client to approximately this number of queries  

--only-print Do not connect to databases. mysqlslap only prints what
it would have done

 

--password Password to use when connecting to server  

--pipe On Windows, connect to server using named pipe  

--plugin-dir Directory where plugins are installed 5.5.10

--port TCP/IP port number to use for connection  

--post-query File or string containing the statement to execute after
the tests have completed

 



mysqlslap — Load Emulation Client

356

Format Description Introduced

--post-system String to execute using system() after the tests have
completed

 

--pre-query File or string containing the statement to execute before
running the tests

 

--pre-system String to execute using system() before running the tests  

--print-defaults Print default options  

--protocol Connection protocol to use  

--query File or string containing the SELECT statement to use for
retrieving data

 

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

 

--silent Silent mode  

--socket For connections to localhost, the Unix socket file to use  

--ssl Enable secure connection  

--ssl-ca Path of file that contains list of trusted SSL CAs  

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

 

--ssl-cert Path of file that contains X509 certificate in PEM format  

--ssl-cipher List of permitted ciphers to use for connection encryption  

--ssl-key Path of file that contains X509 key in PEM format  

--ssl-mode Security state of connection to server 5.5.49

--ssl-verify-server-cert Verify server certificate Common Name value against
host name used when connecting to server

 

--user MySQL user name to use when connecting to server  

--verbose Verbose mode  

--version Display version information and exit  

•   --help, -?

Display a help message and exit.

•   --auto-generate-sql, -a

Generate SQL statements automatically when they are not supplied in files or using command
options.

•   --auto-generate-sql-add-autoincrement

Add an AUTO_INCREMENT column to automatically generated tables.

•   --auto-generate-sql-execute-number=N

Specify how many queries to generate automatically.

•   --auto-generate-sql-guid-primary

Add a GUID-based primary key to automatically generated tables.

•   --auto-generate-sql-load-type=type



mysqlslap — Load Emulation Client

357

Specify the test load type. The permissible values are read (scan tables), write (insert into tables),
key (read primary keys), update (update primary keys), or mixed (half inserts, half scanning
selects). The default is mixed.

•   --auto-generate-sql-secondary-indexes=N

Specify how many secondary indexes to add to automatically generated tables. By default, none are
added.

•   --auto-generate-sql-unique-query-number=N

How many different queries to generate for automatic tests. For example, if you run a key test that
performs 1000 selects, you can use this option with a value of 1000 to run 1000 unique queries, or
with a value of 50 to perform 50 different selects. The default is 10.

•   --auto-generate-sql-unique-write-number=N

How many different queries to generate for --auto-generate-sql-write-number. The default
is 10.

•   --auto-generate-sql-write-number=N

How many row inserts to perform. The default is 100.

•   --commit=N

How many statements to execute before committing. The default is 0 (no commits are done).

•   --compress, -C

Compress all information sent between the client and the server if both support compression.

•   --concurrency=N, -c N

The number of parallel clients to simulate.

•   --create=value

The file or string containing the statement to use for creating the table.

•   --create-schema=value

The schema in which to run the tests.

Note

If the --auto-generate-sql option is also given, mysqlslap drops the
schema at the end of the test run. To avoid this, use the --no-drop option
as well.

•   --csv[=file_name]

Generate output in comma-separated values format. The output goes to the named file, or to the
standard output if no file is given.

•   --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqlslap.trace.

•   --debug-check

Print some debugging information when the program exits.



mysqlslap — Load Emulation Client

358

•   --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits.

•   --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. Before MySQL 5.5.8, file_name must be the
full path name to the file. As of MySQL 5.5.8, the name is interpreted relative to the current directory
if given as a relative path name.

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
Before MySQL 5.5.8, file_name must be the full path name to the file. As of MySQL 5.5.8, the
name is interpreted relative to the current directory if given as a relative path name.

•   --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlslap normally reads the [client] and [mysqlslap] groups. If the --
defaults-group-suffix=_other option is given, mysqlslap also reads the [client_other]
and [mysqlslap_other] groups.

•   --delimiter=str, -F str

The delimiter to use in SQL statements supplied in files or using command options.

•   --detach=N

Detach (close and reopen) each connection after each N statements. The default is 0 (connections
are not detached).

•   --enable-cleartext-plugin

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.5.1.3, “Client-
Side Cleartext Pluggable Authentication”.) This option was added in MySQL 5.5.27.

•   --engine=engine_name, -e engine_name

The storage engine to use for creating tables.

•   --host=host_name, -h host_name

Connect to the MySQL server on the given host.

•   --iterations=N, -i N

The number of times to run the tests.

•   --no-drop

Prevent mysqlslap from dropping any schema it creates during the test run. This option was added
in MySQL 5.5.12.

•   --no-defaults



mysqlslap — Load Emulation Client

359

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•   --number-char-cols=N, -x N

The number of VARCHAR columns to use if --auto-generate-sql is specified.

•   --number-int-cols=N, -y N

The number of INT columns to use if --auto-generate-sql is specified.

•   --number-of-queries=N

Limit each client to approximately this many queries. Query counting takes into account the
statement delimiter. For example, if you invoke mysqlslap as follows, the ; delimiter is recognized
so that each instance of the query string counts as two queries. As a result, 5 rows (not 10) are
inserted.

shell> mysqlslap --delimiter=";" --number-of-queries=10
         --query="use test;insert into t values(null)"

•   --only-print

Do not connect to databases. mysqlslap only prints what it would have done.

•   --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlslap prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server
supports named-pipe connections.

•   --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlslap does not find it. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

•   --post-query=value

The file or string containing the statement to execute after the tests have completed. This execution
is not counted for timing purposes.

•   --post-system=str

The string to execute using system() after the tests have completed. This execution is not counted
for timing purposes.



MySQL Administrative and Utility Programs

360

•   --pre-query=value

The file or string containing the statement to execute before running the tests. This execution is not
counted for timing purposes.

•   --pre-system=str

The string to execute using system() before running the tests. This execution is not counted for
timing purposes.

•   --print-defaults

Print the program name and all options that it gets from option files.

•   --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

•   --query=value, -q value

The file or string containing the SELECT statement to use for retrieving data.

•   --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. This option applies only if the server supports shared-memory connections.

•   --silent, -s

Silent mode. No output.

•   --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

•   --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.4.5, “Command Options for Secure
Connections”.

•   --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

•   --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

•   --version, -V

Display version information and exit.

4.6 MySQL Administrative and Utility Programs
This section describes administrative programs and programs that perform miscellaneous utility
operations.

4.6.1 innochecksum — Offline InnoDB File Checksum Utility



myisam_ftdump — Display Full-Text Index information

361

innochecksum prints checksums for InnoDB files. This tool reads an InnoDB tablespace file,
calculates the checksum for each page, compares the calculated checksum to the stored checksum,
and reports mismatches, which indicate damaged pages. It was originally developed to speed up
verifying the integrity of tablespace files after power outages but can also be used after file copies.
Because checksum mismatches cause InnoDB to deliberately shut down a running server, it may be
preferable to use this tool rather than waiting for an in-production server to encounter the damaged
pages. innochecksum supports files up to 2GB in size.

innochecksum does not support tablespaces that contain compressed pages.

innochecksum cannot be used on tablespace files that the server already has open. For such files,
you should use CHECK TABLE to check tables within the tablespace.

If checksum mismatches are found, you would normally restore the tablespace from backup or start the
server and attempt to use mysqldump to make a backup of the tables within the tablespace.

Invoke innochecksum like this:

shell> innochecksum [options] file_name

innochecksum supports the following options. For options that refer to page numbers, the numbers
are zero-based.

• -c

Print a count of the number of pages in the file.

• -d

Debug mode; prints checksums for each page.

• -e num

End at this page number.

• -p num

Check only this page number.

• -s num

Start at this page number.

• -v

Verbose mode; print a progress indicator every five seconds.

4.6.2 myisam_ftdump — Display Full-Text Index information

myisam_ftdump displays information about FULLTEXT indexes in MyISAM tables. It reads the
MyISAM index file directly, so it must be run on the server host where the table is located. Before using
myisam_ftdump, be sure to issue a FLUSH TABLES statement first if the server is running.

myisam_ftdump scans and dumps the entire index, which is not particularly fast. On the other hand,
the distribution of words changes infrequently, so it need not be run often.

Invoke myisam_ftdump like this:

shell> myisam_ftdump [options] tbl_name index_num

The tbl_name argument should be the name of a MyISAM table. You can also specify a table by
naming its index file (the file with the .MYI suffix). If you do not invoke myisam_ftdump in the



myisamchk — MyISAM Table-Maintenance Utility

362

directory where the table files are located, the table or index file name must be preceded by the path
name to the table's database directory. Index numbers begin with 0.

Example: Suppose that the test database contains a table named mytexttable that has the
following definition:

CREATE TABLE mytexttable
(
  id   INT NOT NULL,
  txt  TEXT NOT NULL,
  PRIMARY KEY (id),
  FULLTEXT (txt)
) ENGINE=MyISAM;

The index on id is index 0 and the FULLTEXT index on txt is index 1. If your working directory is the
test database directory, invoke myisam_ftdump as follows:

shell> myisam_ftdump mytexttable 1

If the path name to the test database directory is /usr/local/mysql/data/test, you can
also specify the table name argument using that path name. This is useful if you do not invoke
myisam_ftdump in the database directory:

shell> myisam_ftdump /usr/local/mysql/data/test/mytexttable 1

You can use myisam_ftdump to generate a list of index entries in order of frequency of occurrence
like this:

shell> myisam_ftdump -c mytexttable 1 | sort -r

myisam_ftdump supports the following options:

•   --help, -h -?

Display a help message and exit.

•   --count, -c

Calculate per-word statistics (counts and global weights).

•   --dump, -d

Dump the index, including data offsets and word weights.

•   --length, -l

Report the length distribution.

•   --stats, -s

Report global index statistics. This is the default operation if no other operation is specified.

•   --verbose, -v

Verbose mode. Print more output about what the program does.

4.6.3 myisamchk — MyISAM Table-Maintenance Utility

The myisamchk utility gets information about your database tables or checks, repairs, or optimizes
them. myisamchk works with MyISAM tables (tables that have .MYD and .MYI files for storing data
and indexes).



myisamchk — MyISAM Table-Maintenance Utility

363

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM
tables. See Section 13.7.2.2, “CHECK TABLE Syntax”, and Section 13.7.2.5, “REPAIR TABLE
Syntax”.

The use of myisamchk with partitioned tables is not supported.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible
causes include but are not limited to file system errors.

Invoke myisamchk like this:

shell> myisamchk [options] tbl_name ...

The options specify what you want myisamchk to do. They are described in the following sections.
You can also get a list of options by invoking myisamchk --help.

With no options, myisamchk simply checks your table as the default operation. To get more
information or to tell myisamchk to take corrective action, specify options as described in the following
discussion.

tbl_name is the database table you want to check or repair. If you run myisamchk somewhere
other than in the database directory, you must specify the path to the database directory, because
myisamchk has no idea where the database is located. In fact, myisamchk does not actually care
whether the files you are working on are located in a database directory. You can copy the files that
correspond to a database table into some other location and perform recovery operations on them
there.

You can name several tables on the myisamchk command line if you wish. You can also specify a
table by naming its index file (the file with the .MYI suffix). This enables you to specify all tables in a
directory by using the pattern *.MYI. For example, if you are in a database directory, you can check all
the MyISAM tables in that directory like this:

shell> myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the
directory:

shell> myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL
data directory:

shell> myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all MyISAM tables is:

shell> myisamchk --silent --fast /path/to/datadir/*/*.MYI

If you want to check all MyISAM tables and repair any that are corrupted, you can use the following
command:

shell> myisamchk --silent --force --fast --update-state \
          --key_buffer_size=64M --myisam_sort_buffer_size=64M \
          --read_buffer_size=1M --write_buffer_size=1M \
          /path/to/datadir/*/*.MYI

This command assumes that you have more than 64MB free. For more information about memory
allocation with myisamchk, see Section 4.6.3.6, “myisamchk Memory Usage”.



myisamchk — MyISAM Table-Maintenance Utility

364

For additional information about using myisamchk, see Section 7.6, “MyISAM Table Maintenance and
Crash Recovery”.

Important

You must ensure that no other program is using the tables while you are
running myisamchk. The most effective means of doing so is to shut down the
MySQL server while running myisamchk, or to lock all tables that myisamchk
is being used on.

Otherwise, when you run myisamchk, it may display the following error
message:

warning: clients are using or haven't closed the table properly

This means that you are trying to check a table that has been updated by
another program (such as the mysqld server) that hasn't yet closed the file or
that has died without closing the file properly, which can sometimes lead to the
corruption of one or more MyISAM tables.

If mysqld is running, you must force it to flush any table modifications that are
still buffered in memory by using FLUSH TABLES. You should then ensure that
no one is using the tables while you are running myisamchk

However, the easiest way to avoid this problem is to use CHECK TABLE instead
of myisamchk to check tables. See Section 13.7.2.2, “CHECK TABLE Syntax”.

myisamchk supports the following options, which can be specified on the command line or in the
[myisamchk] group of an option file. For information about option files used by MySQL programs, see
Section 4.2.6, “Using Option Files”.

Table 4.15 myisamchk Options

Format Description IntroducedDeprecated

--analyze Analyze the distribution of key values   

--backup Make a backup of the .MYD file as file_name-
time.BAK

  

--block-search Find the record that a block at the given offset
belongs to

  

--check Check the table for errors   

--check-only-changed Check only tables that have changed since the last
check

  

--correct-checksum Correct the checksum information for the table   

--data-file-length Maximum length of the data file (when re-creating
data file when it is full)

  

--debug Write debugging log   

--decode_bits Decode_bits   

--defaults-extra-file Read named option file in addition to usual option
files

  

--defaults-file Read only named option file   

--defaults-group-suffix Option group suffix value   

--description Print some descriptive information about the table   

--extend-check Do very thorough table check or repair that tries to
recover every possible row from the data file

  



myisamchk — MyISAM Table-Maintenance Utility

365

Format Description IntroducedDeprecated

--fast Check only tables that haven't been closed
properly

  

--force Do a repair operation automatically if myisamchk
finds any errors in the table

  

--force Overwrite old temporary files. For use with the -r or
-o option

  

--ft_max_word_len Maximum word length for FULLTEXT indexes   

--ft_min_word_len Minimum word length for FULLTEXT indexes   

--ft_stopword_file Use stopwords from this file instead of built-in list   

--HELP Display help message and exit   

--help Display help message and exit   

--information Print informational statistics about the table that is
checked

  

--key_buffer_size Size of buffer used for index blocks for MyISAM
tables

  

--keys-used A bit-value that indicates which indexes to update   

--max-record-length Skip rows larger than the given length if
myisamchk cannot allocate memory to hold them

  

--medium-check Do a check that is faster than an --extend-check
operation

  

--myisam_block_size Block size to be used for MyISAM index pages   

--myisam_sort_buffer_size The buffer that is allocated when sorting the index
when doing a REPAIR or when creating indexes
with CREATE INDEX or ALTER TABLE

5.5.29  

--no-defaults Read no option files   

--parallel-recover Uses the same technique as -r and -n, but creates
all the keys in parallel, using different threads
(beta)

  

--print-defaults Print default options   

--quick Achieve a faster repair by not modifying the data
file.

  

--read_buffer_size Each thread that does a sequential scan allocates
a buffer of this size for each table it scans

  

--read-only Do not mark the table as checked   

--recover Do a repair that can fix almost any problem except
unique keys that aren't unique

  

--safe-recover Do a repair using an old recovery method that
reads through all rows in order and updates all
index trees based on the rows found

  

--set-auto-increment Force AUTO_INCREMENT numbering for new
records to start at the given value

  

--set-collation Specify the collation to use for sorting table
indexes

  

--silent Silent mode   



myisamchk — MyISAM Table-Maintenance Utility

366

Format Description IntroducedDeprecated

--sort_buffer_size The buffer that is allocated when sorting the index
when doing a REPAIR or when creating indexes
with CREATE INDEX or ALTER TABLE

 5.5.29

--sort-index Sort the index tree blocks in high-low order   

--sort_key_blocks sort_key_blocks   

--sort-records Sort records according to a particular index   

--sort-recover Force myisamchk to use sorting to resolve the
keys even if the temporary files would be very
large

  

--stats_method Specifies how MyISAM index statistics collection
code should treat NULLs

  

--tmpdir Path of the directory to be used for storing
temporary files

  

--unpack Unpack a table that was packed with myisampack   

--update-state Store information in the .MYI file to indicate when
the table was checked and whether the table
crashed

  

--verbose Verbose mode   

--version Display version information and exit   

--write_buffer_size Write buffer size   

4.6.3.1 myisamchk General Options

The options described in this section can be used for any type of table maintenance operation
performed by myisamchk. The sections following this one describe options that pertain only to specific
operations, such as table checking or repairing.

•   --help, -?

Display a help message and exit. Options are grouped by type of operation.

•   --HELP, -H

Display a help message and exit. Options are presented in a single list.

•   --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/myisamchk.trace.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. Before MySQL 5.5.8, file_name must be the
full path name to the file. As of MySQL 5.5.8, the name is interpreted relative to the current directory
if given as a relative path name.

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
Before MySQL 5.5.8, file_name must be the full path name to the file. As of MySQL 5.5.8, the
name is interpreted relative to the current directory if given as a relative path name.

•   --defaults-group-suffix=str



myisamchk — MyISAM Table-Maintenance Utility

367

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, myisamchk normally reads the [myisamchk] group. If the --defaults-group-
suffix=_other option is given, myisamchk also reads the [myisamchk_other] group.

•   --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•   --print-defaults

Print the program name and all options that it gets from option files.

•   --silent, -s

Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myisamchk
very silent.

•   --verbose, -v

Verbose mode. Print more information about what the program does. This can be used with -d and -
e. Use -v multiple times (-vv, -vvv) for even more output.

•   --version, -V

Display version information and exit.

•   --wait, -w

Instead of terminating with an error if the table is locked, wait until the table is unlocked before
continuing. If you are running mysqld with external locking disabled, the table can be locked only by
another myisamchk command.

You can also set the following variables by using --var_name=value syntax:

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 523264

myisam_block_size 1024

myisam_sort_key_blocks 16

read_buffer_size 262136

sort_buffer_size 2097144

sort_key_blocks 16

stats_method nulls_unequal

write_buffer_size 262136

The possible myisamchk variables and their default values can be examined with myisamchk --
help:

sort_buffer_size is used when the keys are repaired by sorting keys, which is the normal
case when you use --recover. As of MySQL 5.5.29, myisam_sort_buffer_size is available
as an alternative name to sort_buffer_size. myisam_sort_buffer_size is preferable to



myisamchk — MyISAM Table-Maintenance Utility

368

sort_buffer_size because its name corresponds to the myisam_sort_buffer_size server
system variable that has a similar meaning. sort_buffer_size should be considered deprecated.

key_buffer_size is used when you are checking the table with --extend-check or when the keys
are repaired by inserting keys row by row into the table (like when doing normal inserts). Repairing
through the key buffer is used in the following cases:

• You use --safe-recover.

• The temporary files needed to sort the keys would be more than twice as big as when creating the
key file directly. This is often the case when you have large key values for CHAR, VARCHAR, or TEXT
columns, because the sort operation needs to store the complete key values as it proceeds. If you
have lots of temporary space and you can force myisamchk to repair by sorting, you can use the --
sort-recover option.

Repairing through the key buffer takes much less disk space than using sorting, but is also much
slower.

If you want a faster repair, set the key_buffer_size and myisam_sort_buffer_size variables to
about 25% of your available memory. You can set both variables to large values, because only one of
them is used at a time.

myisam_block_size is the size used for index blocks.

stats_method influences how NULL values are treated for index statistics collection when the
--analyze option is given. It acts like the myisam_stats_method system variable. For more
information, see the description of myisam_stats_method in Section 5.1.5, “Server System
Variables”, and Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length for
FULLTEXT indexes. ft_stopword_file names the stopword file. These need to be set under the
following circumstances.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze),
the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum and
maximum word length and the stopword file unless you specify otherwise. This can result in queries
failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length
or the stopword file in the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values to myisamchk that you use for mysqld. For example, if you have set the
minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can place
each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE
TABLE, or ALTER TABLE. These statements are performed by the server, which knows the proper full-
text parameter values to use.

4.6.3.2 myisamchk Check Options

myisamchk supports the following options for table checking operations:



myisamchk — MyISAM Table-Maintenance Utility

369

•   --check, -c

Check the table for errors. This is the default operation if you specify no option that selects an
operation type explicitly.

•   --check-only-changed, -C

Check only tables that have changed since the last check.

•   --extend-check, -e

Check the table very thoroughly. This is quite slow if the table has many indexes. This option should
only be used in extreme cases. Normally, myisamchk or myisamchk --medium-check should be
able to determine whether there are any errors in the table.

If you are using --extend-check and have plenty of memory, setting the key_buffer_size
variable to a large value helps the repair operation run faster.

See also the description of this option under table repair options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

•   --fast, -F

Check only tables that haven't been closed properly.

•   --force, -f

Do a repair operation automatically if myisamchk finds any errors in the table. The repair type is the
same as that specified with the --recover or -r option.

•   --information, -i

Print informational statistics about the table that is checked.

•   --medium-check, -m

Do a check that is faster than an --extend-check operation. This finds only 99.99% of all errors,
which should be good enough in most cases.

•   --read-only, -T

Do not mark the table as checked. This is useful if you use myisamchk to check a table that is in use
by some other application that does not use locking, such as mysqld when run with external locking
disabled.

•   --update-state, -U

Store information in the .MYI file to indicate when the table was checked and whether the table
crashed. This should be used to get full benefit of the --check-only-changed option, but you
shouldn't use this option if the mysqld server is using the table and you are running it with external
locking disabled.

4.6.3.3 myisamchk Repair Options

myisamchk supports the following options for table repair operations (operations performed when an
option such as --recover or --safe-recover is given):

•   --backup, -B

Make a backup of the .MYD file as file_name-time.BAK



myisamchk — MyISAM Table-Maintenance Utility

370

•   --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

•   --correct-checksum

Correct the checksum information for the table.

•   --data-file-length=len, -D len

The maximum length of the data file (when re-creating data file when it is “full”).

•   --extend-check, -e

Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot of
garbage rows. Do not use this option unless you are desperate.

See also the description of this option under table checking options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

•   --force, -f

Overwrite old intermediate files (files with names like tbl_name.TMD) instead of aborting.

•   --keys-used=val, -k val

For myisamchk, the option value is a bit value that indicates which indexes to update. Each binary
bit of the option value corresponds to a table index, where the first index is bit 0. An option value of 0
disables updates to all indexes, which can be used to get faster inserts. Deactivated indexes can be
reactivated by using myisamchk -r.

•   --no-symlinks, -l

Do not follow symbolic links. Normally myisamchk repairs the table that a symlink points to. This
option does not exist as of MySQL 4.0 because versions from 4.0 on do not remove symlinks during
repair operations.

•   --max-record-length=len

Skip rows larger than the given length if myisamchk cannot allocate memory to hold them.

•   --parallel-recover, -p

Use the same technique as -r and -n, but create all the keys in parallel, using different threads.
This is beta-quality code. Use at your own risk!

•   --quick, -q

Achieve a faster repair by modifying only the index file, not the data file. You can specify this option
twice to force myisamchk to modify the original data file in case of duplicate keys.

•   --recover, -r

Do a repair that can fix almost any problem except unique keys that are not unique (which is an
extremely unlikely error with MyISAM tables). If you want to recover a table, this is the option to try
first. You should try --safe-recover only if myisamchk reports that the table cannot be recovered
using --recover. (In the unlikely case that --recover fails, the data file remains intact.)

If you have lots of memory, you should increase the value of myisam_sort_buffer_size.

•   --safe-recover, -o



myisamchk — MyISAM Table-Maintenance Utility

371

Do a repair using an old recovery method that reads through all rows in order and updates all index
trees based on the rows found. This is an order of magnitude slower than --recover, but can
handle a couple of very unlikely cases that --recover cannot. This recovery method also uses
much less disk space than --recover. Normally, you should repair first using --recover, and
then with --safe-recover only if --recover fails.

If you have lots of memory, you should increase the value of key_buffer_size.

•   --set-collation=name

Specify the collation to use for sorting table indexes. The character set name is implied by the first
part of the collation name.

•   --sort-recover, -n

Force myisamchk to use sorting to resolve the keys even if the temporary files would be very large.

•   --tmpdir=dir_name, -t dir_name

The path of the directory to be used for storing temporary files. If this is not set, myisamchk uses
the value of the TMPDIR environment variable. --tmpdir can be set to a list of directory paths that
are used successively in round-robin fashion for creating temporary files. The separator character
between directory names is the colon (:) on Unix and the semicolon (;) on Windows.

•   --unpack, -u

Unpack a table that was packed with myisampack.

4.6.3.4 Other myisamchk Options

myisamchk supports the following options for actions other than table checks and repairs:

•   --analyze, -a

Analyze the distribution of key values. This improves join performance by enabling the join
optimizer to better choose the order in which to join the tables and which indexes it should use. To
obtain information about the key distribution, use a myisamchk --description --verbose
tbl_name command or the SHOW INDEX FROM tbl_name statement.

•   --block-search=offset, -b offset

Find the record that a block at the given offset belongs to.

•   --description, -d

Print some descriptive information about the table. Specifying the --verbose option once or twice
produces additional information. See Section 4.6.3.5, “Obtaining Table Information with myisamchk”.

•   --set-auto-increment[=value], -A[value]

Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if
there are existing records with AUTO_INCREMENT values this large). If value is not specified,
AUTO_INCREMENT numbers for new records begin with the largest value currently in the table, plus
one.

•   --sort-index, -S

Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use
indexes faster.

•   --sort-records=N, -R N



myisamchk — MyISAM Table-Maintenance Utility

372

Sort records according to a particular index. This makes your data much more localized and may
speed up range-based SELECT and ORDER BY operations that use this index. (The first time you
use this option to sort a table, it may be very slow.) To determine a table's index numbers, use SHOW
INDEX, which displays a table's indexes in the same order that myisamchk sees them. Indexes are
numbered beginning with 1.

If keys are not packed (PACK_KEYS=0), they have the same length, so when myisamchk sorts and
moves records, it just overwrites record offsets in the index. If keys are packed (PACK_KEYS=1),
myisamchk must unpack key blocks first, then re-create indexes and pack the key blocks again. (In
this case, re-creating indexes is faster than updating offsets for each index.)

4.6.3.5 Obtaining Table Information with myisamchk

To obtain a description of a MyISAM table or statistics about it, use the commands shown here. The
output from these commands is explained later in this section.

• myisamchk -d tbl_name

Runs myisamchk in “describe mode” to produce a description of your table. If you start the MySQL
server with external locking disabled, myisamchk may report an error for a table that is updated
while it runs. However, because myisamchk does not change the table in describe mode, there is no
risk of destroying data.

• myisamchk -dv tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about the table.
Adding -v a second time produces even more information.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must read
the entire table.

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

The tbl_name argument can be either the name of a MyISAM table or the name of its index file, as
described in Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Multiple tbl_name
arguments can be given.

Suppose that a table named person has the following structure. (The MAX_ROWS table option is
included so that in the example output from myisamchk shown later, some values are smaller and fit
the output format more easily.)

CREATE TABLE person
(
  id         INT NOT NULL AUTO_INCREMENT,
  last_name  VARCHAR(20) NOT NULL,
  first_name VARCHAR(20) NOT NULL,
  birth      DATE,
  death      DATE,
  PRIMARY KEY (id),
  INDEX (last_name, first_name),
  INDEX (birth)
) MAX_ROWS = 1000000 ENGINE=MYISAM;

Suppose also that the table has these data and index file sizes:

-rw-rw----  1 mysql  mysql  9347072 Aug 19 11:47 person.MYD



myisamchk — MyISAM Table-Maintenance Utility

373

-rw-rw----  1 mysql  mysql  6066176 Aug 19 11:47 person.MYI

Example of myisamchk -dvv output:

MyISAM file:         person
Record format:       Packed
Character set:       latin1_swedish_ci (8)
File-version:        1
Creation time:       2009-08-19 16:47:41
Recover time:        2009-08-19 16:47:56
Status:              checked,analyzed,optimized keys
Auto increment key:              1  Last value:                306688
Data records:               306688  Deleted blocks:                 0
Datafile parts:             306688  Deleted data:                   0
Datafile pointer (bytes):        4  Keyfile pointer (bytes):        3
Datafile length:           9347072  Keyfile length:           6066176
Max datafile length:    4294967294  Max keyfile length:   17179868159
Recordlength:                   54

table description:
Key Start Len Index   Type                 Rec/key         Root  Blocksize
1   2     4   unique  long                       1        99328       1024
2   6     20  multip. varchar prefix           512      3563520       1024
    27    20          varchar                  512
3   48    3   multip. uint24 NULL           306688      6065152       1024

Field Start Length Nullpos Nullbit Type
1     1     1
2     2     4                      no zeros
3     6     21                     varchar
4     27    21                     varchar
5     48    3      1       1       no zeros
6     51    3      1       2       no zeros

Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the
index file. “Record” and “row” are synonymous, as are “field” and “column.”

The initial part of the table description contains these values:

• MyISAM file

Name of the MyISAM (index) file.

• Record format

The format used to store table rows. The preceding examples use Fixed length. Other possible
values are Compressed and Packed. (Packed corresponds to what SHOW TABLE STATUS reports
as Dynamic.)

• Chararacter set

The table default character set.

• File-version

Version of MyISAM format. Always 1.

• Creation time

When the data file was created.

• Recover time

When the index/data file was last reconstructed.

• Status



myisamchk — MyISAM Table-Maintenance Utility

374

Table status flags. Possible values are crashed, open, changed, analyzed, optimized keys,
and sorted index pages.

• Auto increment key, Last value

The key number associated the table's AUTO_INCREMENT column, and the most recently generated
value for this column. These fields do not appear if there is no such column.

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile parts

For dynamic-row format, this indicates how many data blocks there are. For an optimized table
without fragmented rows, this is the same as Data records.

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with
2 bytes, but this cannot be controlled from MySQL yet. For fixed tables, this is a row address. For
dynamic tables, this is a byte address.

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2
bytes, but this is calculated automatically by MySQL. It is always a block address.

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

• Recordlength

How much space each row takes, in bytes.

The table description part of the output includes a list of all keys in the table. For each key,
myisamchk displays some low-level information:

• Key

This key's number. This value is shown only for the first column of the key. If this value is missing,
the line corresponds to the second or later column of a multiple-column key. For the table shown in
the example, there are two table description lines for the second index. This indicates that it is
a multiple-part index with two parts.

• Start

Where in the row this portion of the index starts.



myisamchk — MyISAM Table-Maintenance Utility

375

• Len

How long this portion of the index is. For packed numbers, this should always be the full length of the
column. For strings, it may be shorter than the full length of the indexed column, because you can
index a prefix of a string column. The total length of a multiple-part key is the sum of the Len values
for all key parts.

• Index

Whether a key value can exist multiple times in the index. Possible values are unique or multip.
(multiple).

• Type

What data type this portion of the index has. This is a MyISAM data type with the possible values
packed, stripped, or empty.

• Root

Address of the root index block.

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at compile time
when MySQL is built from source.

• Rec/key

This is a statistical value used by the optimizer. It tells how many rows there are per value for this
index. A unique index always has a value of 1. This may be updated after a table is loaded (or
greatly changed) with myisamchk -a. If this is not updated at all, a default value of 30 is given.

The last part of the output provides information about each column:

• Field

The column number.

• Start

The byte position of the column within table rows.

• Length

The length of the column in bytes.

• Nullpos, Nullbit

For columns that can be NULL, MyISAM stores NULL values as a flag in a byte. Depending on
how many nullable columns there are, there can be one or more bytes used for this purpose. The
Nullpos and Nullbit values, if nonempty, indicate which byte and bit contains that flag indicating
whether the column is NULL.

The position and number of bytes used to store NULL flags is shown in the line for field 1. This is why
there are six Field lines for the person table even though it has only five columns.

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.



myisamchk — MyISAM Table-Maintenance Utility

376

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

The Huff tree and Bits fields are displayed if the table has been compressed with myisampack.
See Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”, for an
example of this information.

Example of myisamchk -eiv output:

Checking MyISAM file: person
Data records:  306688   Deleted blocks:       0
- check file-size
- check record delete-chain
No recordlinks
- check key delete-chain
block_size 1024:
- check index reference
- check data record references index: 1
Key:  1:  Keyblocks used:  98%  Packed:    0%  Max levels:  3
- check data record references index: 2
Key:  2:  Keyblocks used:  99%  Packed:   97%  Max levels:  3
- check data record references index: 3
Key:  3:  Keyblocks used:  98%  Packed:  -14%  Max levels:  3
Total:    Keyblocks used:  98%  Packed:   89%

- check records and index references
*** LOTS OF ROW NUMBERS DELETED ***

Records:            306688  M.recordlength:       25  Packed:            83%
Recordspace used:       97% Empty space:           2% Blocks/Record:   1.00
Record blocks:      306688  Delete blocks:         0



myisamchk — MyISAM Table-Maintenance Utility

377

Record data:       7934464  Deleted data:          0
Lost space:         256512  Linkdata:        1156096

User time 43.08, System time 1.68
Maximum resident set size 0, Integral resident set size 0
Non-physical pagefaults 0, Physical pagefaults 0, Swaps 0
Blocks in 0 out 7, Messages in 0 out 0, Signals 0
Voluntary context switches 0, Involuntary context switches 0
Maximum memory usage: 1046926 bytes (1023k)

myisamchk -eiv output includes the following information:

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Key

The key number.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with
myisamchk, the values are very high (very near theoretical maximum).

• Packed

MySQL tries to pack key values that have a common suffix. This can only be used for indexes on
CHAR and VARCHAR columns. For long indexed strings that have similar leftmost parts, this can
significantly reduce the space used. In the preceding example, the second key is 40 bytes long and a
97% reduction in space is achieved.

• Max levels

How deep the B-tree for this key is. Large tables with long key values get high values.

• Records

How many rows are in the table.

• M.recordlength

The average row length. This is the exact row length for tables with fixed-length rows, because all
rows have the same length.

• Packed

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings
achieved by doing this.

• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

• Blocks/Record



myisamchk — MyISAM Table-Maintenance Utility

378

Average number of blocks per row (that is, how many links a fragmented row is composed of). This
is always 1.0 for fixed-format tables. This value should stay as close to 1.0 as possible. If it gets too
large, you can reorganize the table. See Section 7.6.4, “MyISAM Table Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in
bytes.

• Linkdata

When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each).
Linkdata is the sum of the amount of storage used by all such pointers.

4.6.3.6 myisamchk Memory Usage

Memory allocation is important when you run myisamchk. myisamchk uses no more memory than
its memory-related variables are set to. If you are going to use myisamchk on very large tables, you
should first decide how much memory you want it to use. The default is to use only about 3MB to
perform repairs. By using larger values, you can get myisamchk to operate faster. For example, if you
have more than 512MB RAM available, you could use options such as these (in addition to any other
options you might specify):

shell> myisamchk --myisam_sort_buffer_size=256M \
           --key_buffer_size=512M \
           --read_buffer_size=64M \
           --write_buffer_size=64M ...

Using --myisam_sort_buffer_size=16M is probably enough for most cases.

Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory file system,
out of memory errors can easily occur. If this happens, run myisamchk with the --tmpdir=dir_name
option to specify a directory located on a file system that has more space.

When performing repair operations, myisamchk also needs a lot of disk space:

• Twice the size of the data file (the original file and a copy). This space is not needed if you do a
repair with --quick; in this case, only the index file is re-created. This space must be available on
the same file system as the original data file, as the copy is created in the same directory as the
original.

• Space for the new index file that replaces the old one. The old index file is truncated at the start of
the repair operation, so you usually ignore this space. This space must be available on the same file
system as the original data file.



myisamlog — Display MyISAM Log File Contents

379

• When using --recover or --sort-recover (but not when using --safe-recover), you need
space on disk for sorting. This space is allocated in the temporary directory (specified by TMPDIR or
--tmpdir=dir_name). The following formula yields the amount of space required:

(largest_key + row_pointer_length) * number_of_rows * 2

You can check the length of the keys and the row_pointer_length with myisamchk -
dv tbl_name (see Section 4.6.3.5, “Obtaining Table Information with myisamchk”). The
row_pointer_length and number_of_rows values are the Datafile pointer and Data
records values in the table description. To determine the largest_key value, check the Key
lines in the table description. The Len column indicates the number of bytes for each key part. For a
multiple-column index, the key size is the sum of the Len values for all key parts.

If you have a problem with disk space during repair, you can try --safe-recover instead of --
recover.

4.6.4 myisamlog — Display MyISAM Log File Contents

myisamlog processes the contents of a MyISAM log file. To create such a file, start the server with a
--log-isam=log_file option.

Invoke myisamlog like this:

shell> myisamlog [options] [file_name [tbl_name] ...]

The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates
and deletes are done and errors are only counted. The default log file name is myisam.log if no
log_file argument is given. If tables are named on the command line, only those tables are updated.

myisamlog supports the following options:

• -?, -I

Display a help message and exit.

• -c N

Execute only N commands.

• -f N

Specify the maximum number of open files.

• -i

Display extra information before exiting.

• -o offset

Specify the starting offset.

• -p N

Remove N components from path.

• -r

Perform a recovery operation.

• -R record_pos_file record_pos

Specify record position file and record position.



myisampack — Generate Compressed, Read-Only MyISAM Tables

380

• -u

Perform an update operation.

• -v

Verbose mode. Print more output about what the program does. This option can be given multiple
times to produce more and more output.

• -w write_file

Specify the write file.

• -V

Display version information.

4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables

The myisampack utility compresses MyISAM tables. myisampack works by compressing each column
in the table separately. Usually, myisampack packs the data file 40% to 70%.

When the table is used later, the server reads into memory the information needed to decompress
columns. This results in much better performance when accessing individual rows, because you only
have to uncompress exactly one row.

MySQL uses mmap() when possible to perform memory mapping on compressed tables. If mmap()
does not work, MySQL falls back to normal read/write file operations.

Please note the following:

• If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke
myisampack if the table might be updated by the server during the packing process. It is safest to
compress tables with the server stopped.

• After packing a table, it becomes read only. This is generally intended (such as when accessing
packed tables on a CD).

• myisampack does not support partitioned tables.

Invoke myisampack like this:

shell> myisampack [options] file_name ...

Each file name argument should be the name of an index (.MYI) file. If you are not in the database
directory, you should specify the path name to the file. It is permissible to omit the .MYI extension.

After you compress a table with myisampack, use myisamchk -rq to rebuild its indexes.
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

myisampack supports the following options. It also reads option files and supports the options for
processing them described at Section 4.2.7, “Command-Line Options that Affect Option-File Handling”.

•   --help, -?

Display a help message and exit.

•   --backup, -b

Make a backup of each table's data file using the name tbl_name.OLD.

•   --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.



myisampack — Generate Compressed, Read-Only MyISAM Tables

381

•   --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

•   --force, -f

Produce a packed table even if it becomes larger than the original or if the intermediate file from
an earlier invocation of myisampack exists. (myisampack creates an intermediate file named
tbl_name.TMD in the database directory while it compresses the table. If you kill myisampack,
the .TMD file might not be deleted.) Normally, myisampack exits with an error if it finds that
tbl_name.TMD exists. With --force, myisampack packs the table anyway.

•   --join=big_tbl_name, -j big_tbl_name

Join all tables named on the command line into a single packed table big_tbl_name. All tables that
are to be combined must have identical structure (same column names and types, same indexes,
and so forth).

big_tbl_name must not exist prior to the join operation. All source tables named on the command
line to be merged into big_tbl_name must exist. The source tables are read for the join operation
but not modified.

•   --silent, -s

Silent mode. Write output only when errors occur.

•   --test, -t

Do not actually pack the table, just test packing it.

•   --tmpdir=dir_name, -T dir_name

Use the named directory as the location where myisampack creates temporary files.

•   --verbose, -v

Verbose mode. Write information about the progress of the packing operation and its result.

•   --version, -V

Display version information and exit.

•   --wait, -w

Wait and retry if the table is in use. If the mysqld server was invoked with external locking disabled,
it is not a good idea to invoke myisampack if the table might be updated by the server during the
packing process.

The following sequence of commands illustrates a typical table compression session:

shell> ls -l station.*
-rw-rw-r--   1 monty    my         994128 Apr 17 19:00 station.MYD
-rw-rw-r--   1 monty    my          53248 Apr 17 19:00 station.MYI
-rw-rw-r--   1 monty    my           5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file:     station
Isam-version:  2
Creation time: 1996-03-13 10:08:58
Recover time:  1997-02-02  3:06:43
Data records:              1192  Deleted blocks:              0
Datafile parts:            1192  Deleted data:                0



myisampack — Generate Compressed, Read-Only MyISAM Tables

382

Datafile pointer (bytes):     2  Keyfile pointer (bytes):     2
Max datafile length:   54657023  Max keyfile length:   33554431
Recordlength:               834
Record format: Fixed length

table description:
Key Start Len Index   Type                 Root  Blocksize    Rec/key
1   2     4   unique  unsigned long        1024       1024          1
2   32    30  multip. text                10240       1024          1

Field Start Length Type
1     1     1
2     2     4
3     6     4
4     10    1
5     11    20
6     31    1
7     32    30
8     62    35
9     97    35
10    132   35
11    167   4
12    171   16
13    187   35
14    222   4
15    226   16
16    242   20
17    262   20
18    282   20
19    302   30
20    332   4
21    336   4
22    340   1
23    341   8
24    349   8
25    357   8
26    365   2
27    367   2
28    369   4
29    373   4
30    377   1
31    378   2
32    380   8
33    388   4
34    392   4
35    396   4
36    400   4
37    404   1
38    405   4
39    409   4
40    413   4
41    417   4
42    421   4
43    425   4
44    429   20
45    449   30
46    479   1
47    480   1
48    481   79
49    560   79
50    639   79
51    718   79
52    797   8
53    805   1
54    806   1
55    807   20
56    827   4
57    831   4

shell> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics



myisampack — Generate Compressed, Read-Only MyISAM Tables

383

normal:     20  empty-space:   16  empty-zero:     12  empty-fill:  11
pre-space:   0  end-space:     12  table-lookups:   5  zero:         7
Original trees:  57  After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables

shell> myisamchk -rq station
- check record delete-chain
- recovering (with sort) MyISAM-table 'station'
Data records: 1192
- Fixing index 1
- Fixing index 2

shell> mysqladmin -uroot flush-tables

shell> ls -l station.*
-rw-rw-r--   1 monty    my         127874 Apr 17 19:00 station.MYD
-rw-rw-r--   1 monty    my          55296 Apr 17 19:04 station.MYI
-rw-rw-r--   1 monty    my           5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file:     station
Isam-version:  2
Creation time: 1996-03-13 10:08:58
Recover time:  1997-04-17 19:04:26
Data records:               1192  Deleted blocks:              0
Datafile parts:             1192  Deleted data:                0
Datafile pointer (bytes):      3  Keyfile pointer (bytes):     1
Max datafile length:    16777215  Max keyfile length:     131071
Recordlength:                834
Record format: Compressed

table description:
Key Start Len Index   Type                 Root  Blocksize    Rec/key
1   2     4   unique  unsigned long       10240       1024          1
2   32    30  multip. text                54272       1024          1

Field Start Length Type                         Huff tree  Bits
1     1     1      constant                             1     0
2     2     4      zerofill(1)                          2     9
3     6     4      no zeros, zerofill(1)                2     9
4     10    1                                           3     9
5     11    20     table-lookup                         4     0
6     31    1                                           3     9
7     32    30     no endspace, not_always              5     9
8     62    35     no endspace, not_always, no empty    6     9
9     97    35     no empty                             7     9
10    132   35     no endspace, not_always, no empty    6     9
11    167   4      zerofill(1)                          2     9
12    171   16     no endspace, not_always, no empty    5     9
13    187   35     no endspace, not_always, no empty    6     9
14    222   4      zerofill(1)                          2     9
15    226   16     no endspace, not_always, no empty    5     9
16    242   20     no endspace, not_always              8     9
17    262   20     no endspace, no empty                8     9
18    282   20     no endspace, no empty                5     9
19    302   30     no endspace, no empty                6     9
20    332   4      always zero                          2     9
21    336   4      always zero                          2     9
22    340   1                                           3     9
23    341   8      table-lookup                         9     0
24    349   8      table-lookup                        10     0
25    357   8      always zero                          2     9
26    365   2                                           2     9
27    367   2      no zeros, zerofill(1)                2     9
28    369   4      no zeros, zerofill(1)                2     9
29    373   4      table-lookup                        11     0
30    377   1                                           3     9



myisampack — Generate Compressed, Read-Only MyISAM Tables

384

31    378   2      no zeros, zerofill(1)                2     9
32    380   8      no zeros                             2     9
33    388   4      always zero                          2     9
34    392   4      table-lookup                        12     0
35    396   4      no zeros, zerofill(1)               13     9
36    400   4      no zeros, zerofill(1)                2     9
37    404   1                                           2     9
38    405   4      no zeros                             2     9
39    409   4      always zero                          2     9
40    413   4      no zeros                             2     9
41    417   4      always zero                          2     9
42    421   4      no zeros                             2     9
43    425   4      always zero                          2     9
44    429   20     no empty                             3     9
45    449   30     no empty                             3     9
46    479   1                                          14     4
47    480   1                                          14     4
48    481   79     no endspace, no empty               15     9
49    560   79     no empty                             2     9
50    639   79     no empty                             2     9
51    718   79     no endspace                         16     9
52    797   8      no empty                             2     9
53    805   1                                          17     1
54    806   1                                           3     9
55    807   20     no empty                             3     9
56    827   4      no zeros, zerofill(2)                2     9
57    831   4      no zeros, zerofill(1)                2     9

myisampack displays the following kinds of information:

• normal

The number of columns for which no extra packing is used.

• empty-space

The number of columns containing values that are only spaces. These occupy one bit.

• empty-zero

The number of columns containing values that are only binary zeros. These occupy one bit.

• empty-fill

The number of integer columns that do not occupy the full byte range of their type. These are
changed to a smaller type. For example, a BIGINT column (eight bytes) can be stored as a
TINYINT column (one byte) if all its values are in the range from -128 to 127.

• pre-space

The number of decimal columns that are stored with leading spaces. In this case, each value
contains a count for the number of leading spaces.

• end-space

The number of columns that have a lot of trailing spaces. In this case, each value contains a count
for the number of trailing spaces.

• table-lookup

The column had only a small number of different values, which were converted to an ENUM before
Huffman compression.

• zero

The number of columns for which all values are zero.

• Original trees



myisampack — Generate Compressed, Read-Only MyISAM Tables

385

The initial number of Huffman trees.

• After join

The number of distinct Huffman trees left after joining trees to save some header space.

After a table has been compressed, the Field lines displayed by myisamchk -dvv include additional
information about each column:

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

After you run myisampack, use myisamchk to re-create any indexes. At this time, you can also sort
the index blocks and create statistics needed for the MySQL optimizer to work more efficiently:

shell> myisamchk -rq --sort-index --analyze tbl_name.MYI

After you have installed the packed table into the MySQL database directory, you should execute
mysqladmin flush-tables to force mysqld to start using the new table.

To unpack a packed table, use the --unpack option to myisamchk.



mysqlaccess — Client for Checking Access Privileges

386

4.6.6 mysqlaccess — Client for Checking Access Privileges

mysqlaccess is a diagnostic tool that Yves Carlier has provided for the MySQL distribution. It checks
the access privileges for a host name, user name, and database combination. mysqlaccess checks
access using only the user, db, and host tables. It does not check table, column, or routine privileges
specified in the tables_priv, columns_priv, or procs_priv tables.

Invoke mysqlaccess like this:

shell> mysqlaccess [host_name [user_name [db_name]]] [options]

When mysqlaccess runs, it loads and executes the contents of its configuration file,
mysqlaccess.conf. mysqlaccess looks for the configuration file in these locations, in order:

• The directory named by the SYSCONFDIR option to CMake when MySQL was built. By default, this is
the etc directory located under the compiled-in installation directory.

• The /etc directory.

mysqlaccess supports the options shown in the following table.

Table 4.16 mysqlaccess Options

Format Description

--brief Generate reports in single-line tabular format

--commit Copy the new access privileges from the temporary tables to the
original grant tables

--copy Reload the temporary grant tables from original ones

--db Specify the database name

--debug Specify the debug level

--help Display help message and exit

--host Connect to MySQL server on given host

--howto Display some examples that show how to use mysqlaccess

--old_server Assume that the server is an old MySQL server (prior to MySQL
3.21)

--password Password to use when connecting to server

--plan Display suggestions and ideas for future releases

--preview Show the privilege differences after making changes to the
temporary grant tables

--relnotes Display release notes

--rhost Connect to MySQL server on given host

--rollback Undo the most recent changes to the temporary grant tables.

--spassword Password to use when connecting to server as the superuser

--superuser Specify the user name for connecting as the superuser

--table Generate reports in table format

--user MySQL user name to use when connecting to server

--version Display version information and exit

•   --help, -?

Display a help message and exit.



mysqlaccess — Client for Checking Access Privileges

387

•   --brief, -b

Generate reports in single-line tabular format.

•   --commit

Copy the new access privileges from the temporary tables to the original grant tables. The grant
tables must be flushed for the new privileges to take effect. (For example, execute a mysqladmin
reload command.)

•   --copy

Reload the temporary grant tables from original ones.

•   --db=db_name, -d db_name

Specify the database name.

•   --debug=N

Specify the debug level. N can be an integer from 0 to 3.

•   --host=host_name, -h host_name

The host name to use in the access privileges.

•   --howto

Display some examples that show how to use mysqlaccess.

•   --old_server

Assume that the server is an old MySQL server (before MySQL 3.21) that does not yet know how to
handle full WHERE clauses.

•   --password[=password], -p[password]

The password to use when connecting to the server. If you omit the password value following the
--password or -p option on the command line, mysqlaccess prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”.

•   --plan

Display suggestions and ideas for future releases.

•   --preview

Show the privilege differences after making changes to the temporary grant tables.

•   --relnotes

Display the release notes.

•   --rhost=host_name, -H host_name

Connect to the MySQL server on the given host.

•   --rollback

Undo the most recent changes to the temporary grant tables.

•   --spassword[=password], -P[password]



mysqlbinlog — Utility for Processing Binary Log Files

388

The password to use when connecting to the server as the superuser. If you omit the password
value following the --spassword or -p option on the command line, mysqlaccess prompts for
one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”.

•   --superuser=user_name, -U user_name

Specify the user name for connecting as the superuser.

•   --table, -t

Generate reports in table format.

•   --user=user_name, -u user_name

The user name to use in the access privileges.

•   --version, -v

Display version information and exit.

If your MySQL distribution is installed in some nonstandard location, you must change the location
where mysqlaccess expects to find the mysql client. Edit the mysqlaccess script at approximately
line 18. Search for a line that looks like this:

$MYSQL     = '/usr/local/bin/mysql';    # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do not do
this, a Broken pipe error will occur when you run mysqlaccess.

4.6.7 mysqlbinlog — Utility for Processing Binary Log Files

The server's binary log consists of files containing “events” that describe modifications to database
contents. The server writes these files in binary format. To display their contents in text format, use the
mysqlbinlog utility. You can also use mysqlbinlog to display the contents of relay log files written
by a slave server in a replication setup because relay logs have the same format as binary logs. The
binary log and relay log are discussed further in Section 5.4.4, “The Binary Log”, and Section 17.2.2,
“Replication Relay and Status Logs”.

Invoke mysqlbinlog like this:

shell> mysqlbinlog [options] log_file ...

For example, to display the contents of the binary log file named binlog.000003, use this command:

shell> mysqlbinlog binlog.0000003

The output includes events contained in binlog.000003. For statement-based logging, event
information includes the SQL statement, the ID of the server on which it was executed, the timestamp
when the statement was executed, how much time it took, and so forth. For row-based logging,
the event indicates a row change rather than an SQL statement. See Section 17.1.2, “Replication
Formats”, for information about logging modes.

Events are preceded by header comments that provide additional information. For example:

# at 141
#100309  9:28:36 server id 123  end_log_pos 245
  Query thread_id=3350  exec_time=11  error_code=0



mysqlbinlog — Utility for Processing Binary Log Files

389

In the first line, the number following at indicates the file offset, or starting position, of the event in the
binary log file.

The second line starts with a date and time indicating when the statement started on the server where
the event originated. For replication, this timestamp is propagated to slave servers. server id is
the server_id value of the server where the event originated. end_log_pos indicates where the
next event starts (that is, it is the end position of the current event + 1). thread_id indicates which
thread executed the event. exec_time is the time spent executing the event, on a master server. On
a slave, it is the difference of the end execution time on the slave minus the beginning execution time
on the master. The difference serves as an indicator of how much replication lags behind the master.
error_code indicates the result from executing the event. Zero means that no error occurred.

Note

When using event groups, the file offsets of events may be grouped together
and the comments of events may be grouped together. Do not mistake these
grouped events for blank file offsets.

The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql) to redo
the statements in the log. This is useful for recovery operations after a server crash. For other usage
examples, see the discussion later in this section and in Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

Normally, you use mysqlbinlog to read binary log files directly and apply them to the local MySQL
server. It is also possible to read binary logs from a remote server by using the --read-from-
remote-server option. To read remote binary logs, the connection parameter options can be given
to indicate how to connect to the server. These options are --host, --password, --port, --
protocol, --socket, and --user; they are ignored except when you also use the --read-from-
remote-server option.

When running mysqlbinlog against a large binary log, be careful that the filesystem has enough
space for the resulting files. To configure the directory that mysqlbinlog uses for temporary files, use
the TMPDIR environment variable.

mysqlbinlog supports the following options, which can be specified on the command line or in the
[mysqlbinlog] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.17 mysqlbinlog Options

Format Description IntroducedRemoved

--base64-output Print binary log entries using base-64 encoding   

--character-sets-dir Directory where character sets are installed   

--database List entries for just this database   

--debug Write debugging log   

--debug-check Print debugging information when program exits   

--debug-info Print debugging information, memory, and CPU
statistics when program exits

  

--default-auth Authentication plugin to use 5.5.10  

--defaults-extra-file Read named option file in addition to usual option
files

  

--defaults-file Read only named option file   

--defaults-group-suffix Option group suffix value   

--disable-log-bin Disable binary logging   

--force-if-open Read binary log files even if open or not closed
properly

  



mysqlbinlog — Utility for Processing Binary Log Files

390

Format Description IntroducedRemoved

--force-read If mysqlbinlog reads a binary log event that it does
not recognize, it prints a warning

  

--help Display help message and exit   

--hexdump Display a hex dump of the log in comments   

--host Connect to MySQL server on given host   

--local-load Prepare local temporary files for LOAD DATA
INFILE in the specified directory

  

--no-defaults Read no option files   

--offset Skip the first N entries in the log   

--password Password to use when connecting to server   

--plugin-dir Directory where plugins are installed 5.5.10  

--port TCP/IP port number to use for connection   

--position Deprecated. Use --start-position  5.5.3

--print-defaults Print default options   

--protocol Connection protocol to use   

--read-from-remote-server Read binary log from MySQL server rather than
local log file

  

--result-file Direct output to named file   

--server-id Extract only those events created by the server
having the given server ID

  

--server-id-bits Tell mysqlbinlog how to interpret server IDs in
binary log when log was written by a mysqld
having its server-id-bits set to less than the
maximum; supported only by MySQL Cluster
version of mysqlbinlog

  

--set-charset Add a SET NAMES charset_name statement to
the output

  

--shared-memory-base-
name

The name of shared memory to use for shared-
memory connections

  

--short-form Display only the statements contained in the log   

--socket For connections to localhost, the Unix socket file to
use

  

--ssl-mode Security state of connection to server 5.5.49  

--start-datetime Read binary log from first event with timestamp
equal to or later than datetime argument

  

--start-position Read binary log from first event with position equal
to or greater than argument

  

--stop-datetime Stop reading binary log at first event with
timestamp equal to or greater than datetime
argument

  

--stop-position Stop reading binary log at first event with position
equal to or greater than argument

  

--to-last-log Do not stop at the end of requested binary log from
a MySQL server, but rather continue printing to
end of last binary log

  



mysqlbinlog — Utility for Processing Binary Log Files

391

Format Description IntroducedRemoved

--user MySQL user name to use when connecting to
server

  

--verbose Reconstruct row events as SQL statements   

--version Display version information and exit   

•   --help, -?

Display a help message and exit.

•   --base64-output[=value]

This option determines when events should be displayed encoded as base-64 strings using BINLOG
statements. The option has these permissible values (not case sensitive):

• AUTO ("automatic") or UNSPEC ("unspecified") displays BINLOG statements automatically when
necessary (that is, for format description events and row events). If no --base64-output option
is given, the effect is the same as --base64-output=AUTO.

Note

Automatic BINLOG display is the only safe behavior if you intend to use the
output of mysqlbinlog to re-execute binary log file contents. The other
option values are intended only for debugging or testing purposes because
they may produce output that does not include all events in executable
form.

• ALWAYS displays BINLOG statements whenever possible. If the --base64-output option is
given without a value, the effect is the same as --base64-output=ALWAYS.

Note

Changes to replication in MySQL 5.6 make output generated by this option
unusable, so ALWAYS is deprecated as of MySQL 5.5.8 and will be an
invalid value in MySQL 5.6

• NEVER causes BINLOG statements not to be displayed. mysqlbinlog exits with an error if a row
event is found that must be displayed using BINLOG.

• DECODE-ROWS specifies to mysqlbinlog that you intend for row events to be decoded and
displayed as commented SQL statements by also specifying the --verbose option. Like NEVER,
DECODE-ROWS suppresses display of BINLOG statements, but unlike NEVER, it does not exit with
an error if a row event is found.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 4.6.7.2, “mysqlbinlog Row Event Display”.

•   --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

This option is supported beginning with MySQL 5.5.8.

•   --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

•   --database=db_name, -d db_name



mysqlbinlog — Utility for Processing Binary Log Files

392

This option causes mysqlbinlog to output entries from the binary log (local log only) that occur
while db_name is been selected as the default database by USE.

The --database option for mysqlbinlog is similar to the --binlog-do-db option for mysqld,
but can be used to specify only one database. If --database is given multiple times, only the last
instance is used.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --binlog-do-db depend on whether statement-based or
row-based logging is in use.

Statement-based logging.  The --database option works as follows:

• While db_name is the default database, statements are output whether they modify tables in
db_name or a different database.

• Unless db_name is selected as the default database, statements are not output, even if they
modify tables in db_name.

• There is an exception for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE. The
database being created, altered, or dropped is considered to be the default database when
determining whether to output the statement.

Suppose that the binary log was created by executing these statements using statement-based-
logging:

INSERT INTO test.t1 (i) VALUES(100);
INSERT INTO db2.t2 (j)  VALUES(200);
USE test;
INSERT INTO test.t1 (i) VALUES(101);
INSERT INTO t1 (i)      VALUES(102);
INSERT INTO db2.t2 (j)  VALUES(201);
USE db2;
INSERT INTO test.t1 (i) VALUES(103);
INSERT INTO db2.t2 (j)  VALUES(202);
INSERT INTO t2 (j)      VALUES(203);

mysqlbinlog --database=test does not output the first two INSERT statements because there
is no default database. It outputs the three INSERT statements following USE test, but not the
three INSERT statements following USE db2.

mysqlbinlog --database=db2 does not output the first two INSERT statements because there
is no default database. It does not output the three INSERT statements following USE test, but
does output the three INSERT statements following USE db2.

Row-based logging.  mysqlbinlog outputs only entries that change tables belonging to
db_name. The default database has no effect on this. Suppose that the binary log just described
was created using row-based logging rather than statement-based logging. mysqlbinlog --
database=test outputs only those entries that modify t1 in the test database, regardless of
whether USE was issued or what the default database is.

If a server is running with binlog_format set to MIXED and you want it to be possible to use
mysqlbinlog with the --database option, you must ensure that tables that are modified are in the
database selected by USE. (In particular, no cross-database updates should be used.)

Note

Prior to MySQL NDB Cluster 7.2.2, this option did not work correctly with NDB
Cluster tables unless, unless the binary log was generated using --log-
bin-use-v1-row-events=0. (Bug #13067813)



mysqlbinlog — Utility for Processing Binary Log Files

393

•   --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqlbinlog.trace.

•   --debug-check

Print some debugging information when the program exits.

•   --debug-info

Print debugging information and memory and CPU usage statistics when the program exits.

•   --default-auth=plugin

A hint about the client-side authentication plugin to use. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. Before MySQL 5.5.8, file_name must be the
full path name to the file. As of MySQL 5.5.8, the name is interpreted relative to the current directory
if given as a relative path name.

•   --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
Before MySQL 5.5.8, file_name must be the full path name to the file. As of MySQL 5.5.8, the
name is interpreted relative to the current directory if given as a relative path name.

•   --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqlbinlog normally reads the [client] and [mysqlbinlog] groups.
If the --defaults-group-suffix=_other option is given, mysqlbinlog also reads the
[client_other] and [mysqlbinlog_other] groups.

•   --disable-log-bin, -D

Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-
log option and are sending the output to the same MySQL server. This option also is useful when
restoring after a crash to avoid duplication of the statements you have logged.

This option requires that you have the SUPER privilege. It causes mysqlbinlog to include a SET
sql_log_bin = 0 statement in its output to disable binary logging of the remaining output. The
SET statement is ineffective unless you have the SUPER privilege.

•   --force-if-open, -F

Read binary log files even if they are open or were not closed properly.

•   --force-read, -f

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a
warning, ignores the event, and continues. Without this option, mysqlbinlog stops if it reads such
an event.

•   --hexdump, -H



mysqlbinlog — Utility for Processing Binary Log Files

394

Display a hex dump of the log in comments, as described in Section 4.6.7.1, “mysqlbinlog Hex Dump
Format”. The hex output can be helpful for replication debugging.

•   --host=host_name, -h host_name

Get the binary log from the MySQL server on the given host.

•   --local-load=dir_name, -l dir_name

Prepare local temporary files for LOAD DATA INFILE in the specified directory.

Important

These temporary files are not automatically removed by mysqlbinlog or
any other MySQL program.

•   --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

•   --offset=N, -o N

Skip the first N entries in the log.

•   --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --password or -p option on the command line, mysqlbinlog prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --plugin-dir=dir_name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlbinlog does not find it. See Section 6.3.6, “Pluggable
Authentication”.

This option was added in MySQL 5.5.10.

•   --port=port_num, -P port_num

The TCP/IP port number to use for connecting to a remote server.

•   --position=N

Deprecated. Use --start-position instead. --position was removed in MySQL 5.5.3.

•   --print-defaults

Print the program name and all options that it gets from option files.

•   --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on
the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

•   --read-from-remote-server, -R



mysqlbinlog — Utility for Processing Binary Log Files

395

Read the binary log from a MySQL server rather than reading a local log file. Any connection
parameter options are ignored unless this option is given as well. These options are --host, --
password, --port, --protocol, --socket, and --user.

This option requires that the remote server be running. It works only for binary log files on the remote
server, not relay log files.

•   --result-file=name, -r name

Direct output to the given file.

•   --server-id=id

Display only those events created by the server having the given server ID.

•   --server-id-bits=N

Use only the first N bits of the server_id to identify the server. If the binary log was written by a
mysqld with server-id-bits set to less than 32 and user data stored in the most significant bit, running
mysqlbinlog with --server-id-bits set to 32 enables this data to be seen.

This option is supported only by the versions of mysqlbinlog supplied with the NDB Cluster
distribution, or built from the NDB Cluster sources.

•   --set-charset=charset_name

Add a SET NAMES charset_name statement to the output to specify the character set to be used
for processing log files.

•   --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a
local server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory
connections.

•   --short-form, -s

Display only the statements contained in the log, without any extra information or row-based events.
This is for testing only, and should not be used in production systems.

•   --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

•   --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. See Section 6.4.5, “Command Options for Secure
Connections”.

•   --start-datetime=datetime

Start reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. The datetime value is relative to the local time zone on the machine where you run
mysqlbinlog. The value should be in a format accepted for the DATETIME or TIMESTAMP data
types. For example:

shell> mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003



mysqlbinlog — Utility for Processing Binary Log Files

396

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

•   --start-position=N, -j N

Start reading the binary log at the first event having a position equal to or greater than N. This option
applies to the first log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

•   --stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. This option is useful for point-in-time recovery. See the description of the --start-
datetime option for information about the datetime value.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

•   --stop-position=N

Stop reading the binary log at the first event having a position equal to or greater than N. This option
applies to the last log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

•   --to-last-log, -t

Do not stop at the end of the requested binary log from a MySQL server, but rather continue printing
until the end of the last binary log. If you send the output to the same MySQL server, this may lead to
an endless loop. This option requires --read-from-remote-server.

•   --user=user_name, -u user_name

The MySQL user name to use when connecting to a remote server.

•   --verbose, -v

Reconstruct row events and display them as commented SQL statements. If this option is given
twice, the output includes comments to indicate column data types and some metadata.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 4.6.7.2, “mysqlbinlog Row Event Display”.

•   --version, -V

Display version information and exit.

In MySQL 5.5, the version number shown for mysqlbinlog is always 3.3.

You can also set the following variable by using --var_name=value syntax:

•  open_files_limit

Specify the number of open file descriptors to reserve.

You can pipe the output of mysqlbinlog into the mysql client to execute the events contained in
the binary log. This technique is used to recover from a crash when you have an old backup (see
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”). For example:



mysqlbinlog — Utility for Processing Binary Log Files

397

shell> mysqlbinlog binlog.000001 | mysql -u root -p

Or:

shell> mysqlbinlog binlog.[0-9]* | mysql -u root -p

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the
statement log first (for example, to remove statements that you do not want to execute for some
reason). After editing the file, execute the statements that it contains by using it as input to the mysql
program:

shell> mysqlbinlog binlog.000001 > tmpfile
shell> ... edit tmpfile ...
shell> mysql -u root -p < tmpfile

When mysqlbinlog is invoked with the --start-position option, it displays only those events
with an offset in the binary log greater than or equal to a given position (the given position must match
the start of one event). It also has options to stop and start when it sees an event with a given date and
time. This enables you to perform point-in-time recovery using the --stop-datetime option (to be
able to say, for example, “roll forward my databases to how they were today at 10:30 a.m.”).

If you have more than one binary log to execute on the MySQL server, the safe method is to process
them all using a single connection to the server. Here is an example that demonstrates what may be
unsafe:

shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using multiple connections to the server causes problems if the first log
file contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that
uses the temporary table. When the first mysql process terminates, the server drops the temporary
table. When the second mysql process attempts to use the table, the server reports “unknown table.”

To avoid problems like this, use a single mysql process to execute the contents of all binary logs that
you want to process. Here is one way to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 >  /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"

mysqlbinlog can produce output that reproduces a LOAD DATA INFILE operation without the
original data file. mysqlbinlog copies the data to a temporary file and writes a LOAD DATA LOCAL
INFILE statement that refers to the file. The default location of the directory where these files are
written is system-specific. To specify a directory explicitly, use the --local-load option.

Because mysqlbinlog converts LOAD DATA INFILE statements to LOAD DATA LOCAL INFILE
statements (that is, it adds LOCAL), both the client and the server that you use to process the
statements must be configured with the LOCAL capability enabled. See Section 6.1.6, “Security Issues
with LOAD DATA LOCAL”.

Warning

The temporary files created for LOAD DATA LOCAL statements are not
automatically deleted because they are needed until you actually execute those
statements. You should delete the temporary files yourself after you no longer
need the statement log. The files can be found in the temporary file directory
and have names like original_file_name-#-#.



mysqlbinlog — Utility for Processing Binary Log Files

398

4.6.7.1 mysqlbinlog Hex Dump Format

The --hexdump option causes mysqlbinlog to produce a hex dump of the binary log contents:

shell> mysqlbinlog --hexdump master-bin.000001

The hex output consists of comment lines beginning with #, so the output might look like this for the
preceding command:

/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
# at 4
#051024 17:24:13 server id 1  end_log_pos 98
# Position  Timestamp   Type   Master ID        Size      Master Pos    Flags
# 00000004 9d fc 5c 43   0f   01 00 00 00   5e 00 00 00   62 00 00 00   00 00
# 00000017 04 00 35 2e 30 2e 31 35  2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
# 00000027 6f 67 00 00 00 00 00 00  00 00 00 00 00 00 00 00 |og..............|
# 00000037 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 |................|
# 00000047 00 00 00 00 9d fc 5c 43  13 38 0d 00 08 00 12 00 |.......C.8......|
# 00000057 04 04 04 04 12 00 00 4b  00 04 1a                |.......K...|
#       Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
#       at startup
ROLLBACK;

Hex dump output currently contains the elements in the following list. This format is subject to change.
(For more information about binary log format, see MySQL Internals: The Binary Log.

• Position: The byte position within the log file.

• Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the representation of
'051024 17:24:13' in hexadecimal.

• Type: The event type code. In the example shown, '0f' indicates a
FORMAT_DESCRIPTION_EVENT. The following table lists the possible type codes.

TypeName Meaning

00 UNKNOWN_EVENT This event should never be present in the log.

01 START_EVENT_V3 This indicates the start of a log file written by MySQL 4 or
earlier.

02 QUERY_EVENT The most common type of events. These contain
statements executed on the master.

03 STOP_EVENT Indicates that master has stopped.

04 ROTATE_EVENT Written when the master switches to a new log file.

05 INTVAR_EVENT Used for AUTO_INCREMENT values or when the
LAST_INSERT_ID() function is used in the statement.

06 LOAD_EVENT Used for LOAD DATA INFILE in MySQL 3.23.

07 SLAVE_EVENT Reserved for future use.

08 CREATE_FILE_EVENT Used for LOAD DATA INFILE statements. This indicates
the start of execution of such a statement. A temporary file
is created on the slave. Used in MySQL 4 only.

09 APPEND_BLOCK_EVENT Contains data for use in a LOAD DATA INFILE statement.
The data is stored in the temporary file on the slave.

0a EXEC_LOAD_EVENT Used for LOAD DATA INFILE statements. The contents of
the temporary file is stored in the table on the slave. Used
in MySQL 4 only.

0b DELETE_FILE_EVENT Rollback of a LOAD DATA INFILE statement. The
temporary file should be deleted on the slave.

http://dev.mysql.com/doc/internals/en/binary-log.html


mysqlbinlog — Utility for Processing Binary Log Files

399

TypeName Meaning

0c NEW_LOAD_EVENT Used for LOAD DATA INFILE in MySQL 4 and earlier.

0d RAND_EVENT Used to send information about random values if the
RAND() function is used in the statement.

0e USER_VAR_EVENT Used to replicate user variables.

0f FORMAT_DESCRIPTION_EVENT This indicates the start of a log file written by MySQL 5 or
later.

10 XID_EVENT Event indicating commit of an XA transaction.

11 BEGIN_LOAD_QUERY_EVENT Used for LOAD DATA INFILE statements in MySQL 5 and
later.

12 EXECUTE_LOAD_QUERY_EVENT Used for LOAD DATA INFILE statements in MySQL 5 and
later.

13 TABLE_MAP_EVENT Information about a table definition. Used in MySQL 5.1.5
and later.

14 PRE_GA_WRITE_ROWS_EVENT Row data for a single table that should be created. Used in
MySQL 5.1.5 to 5.1.17.

15 PRE_GA_UPDATE_ROWS_EVENT Row data for a single table that needs to be updated. Used
in MySQL 5.1.5 to 5.1.17.

16 PRE_GA_DELETE_ROWS_EVENT Row data for a single table that should be deleted. Used in
MySQL 5.1.5 to 5.1.17.

17 WRITE_ROWS_EVENT Row data for a single table that should be created. Used in
MySQL 5.1.18 and later.

18 UPDATE_ROWS_EVENT Row data for a single table that needs to be updated. Used
in MySQL 5.1.18 and later.

19 DELETE_ROWS_EVENT Row data for a single table that should be deleted. Used in
MySQL 5.1.18 and later.

1a INCIDENT_EVENT Something out of the ordinary happened. Added in MySQL
5.1.18.

• Master ID: The server ID of the master that created the event.

• Size: The size in bytes of the event.

• Master Pos: The position of the next event in the original master log file.

• Flags: 16 flags. The following flags are used. The others are reserved for future use.

Flag Name Meaning

01 LOG_EVENT_BINLOG_IN_USE_F Log file correctly closed. (Used only in
FORMAT_DESCRIPTION_EVENT.) If this flag is
set (if the flags are, for example, '01 00') in a
FORMAT_DESCRIPTION_EVENT, the log file has not been
properly closed. Most probably this is because of a master
crash (for example, due to power failure).

02  Reserved for future use.

04 LOG_EVENT_THREAD_SPECIFIC_FSet if the event is dependent on the connection it was
executed in (for example, '04 00'), for example, if the
event uses temporary tables.

08 LOG_EVENT_SUPPRESS_USE_F Set in some circumstances when the event is not
dependent on the default database.



mysqlbinlog — Utility for Processing Binary Log Files

400

4.6.7.2 mysqlbinlog Row Event Display

The following examples illustrate how mysqlbinlog displays row events that specify data
modifications. These correspond to events with the WRITE_ROWS_EVENT, UPDATE_ROWS_EVENT, and
DELETE_ROWS_EVENT type codes. The --base64-output=DECODE-ROWS and --verbose options
may be used to affect row event output.

Suppose that the server is using row-based binary logging and that you execute the following
sequence of statements:

CREATE TABLE t
(
  id   INT NOT NULL,
  name VARCHAR(20) NOT NULL,
  date DATE NULL
) ENGINE = InnoDB;

START TRANSACTION;
INSERT INTO t VALUES(1, 'apple', NULL);
UPDATE t SET name = 'pear', date = '2009-01-01' WHERE id = 1;
DELETE FROM t WHERE id = 1;
COMMIT;

By default, mysqlbinlog displays row events encoded as base-64 strings using BINLOG statements.
Omitting extraneous lines, the output for the row events produced by the preceding statement
sequence looks like this:

shell> mysqlbinlog log_file
...
# at 218
#080828 15:03:08 server id 1  end_log_pos 258   Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
...
# at 302
#080828 15:03:08 server id 1  end_log_pos 356   Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
...
# at 400
#080828 15:03:08 server id 1  end_log_pos 442   Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;

To see the row events as comments in the form of “pseudo-SQL” statements, run mysqlbinlog with
the --verbose or -v option. The output will contain lines beginning with ###:

shell> mysqlbinlog -v log_file
...
# at 218
#080828 15:03:08 server id 1  end_log_pos 258   Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
### INSERT INTO test.t



mysqlbinlog — Utility for Processing Binary Log Files

401

### SET
###   @1=1
###   @2='apple'
###   @3=NULL
...
# at 302
#080828 15:03:08 server id 1  end_log_pos 356   Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
### UPDATE test.t
### WHERE
###   @1=1
###   @2='apple'
###   @3=NULL
### SET
###   @1=1
###   @2='pear'
###   @3='2009:01:01'
...
# at 400
#080828 15:03:08 server id 1  end_log_pos 442   Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
### DELETE FROM test.t
### WHERE
###   @1=1
###   @2='pear'
###   @3='2009:01:01'

Specify --verbose or -v twice to also display data types and some metadata for each column. The
output will contain an additional comment following each column change:

shell> mysqlbinlog -vv log_file
...
# at 218
#080828 15:03:08 server id 1  end_log_pos 258   Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
### INSERT INTO test.t
### SET
###   @1=1 /* INT meta=0 nullable=0 is_null=0 */
###   @2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
###   @3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
...
# at 302
#080828 15:03:08 server id 1  end_log_pos 356   Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
### UPDATE test.t
### WHERE
###   @1=1 /* INT meta=0 nullable=0 is_null=0 */
###   @2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
###   @3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
### SET
###   @1=1 /* INT meta=0 nullable=0 is_null=0 */
###   @2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
###   @3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */
...
# at 400



mysqlbinlog — Utility for Processing Binary Log Files

402

#080828 15:03:08 server id 1  end_log_pos 442   Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
### DELETE FROM test.t
### WHERE
###   @1=1 /* INT meta=0 nullable=0 is_null=0 */
###   @2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
###   @3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

You can tell mysqlbinlog to suppress the BINLOG statements for row events by using the --
base64-output=DECODE-ROWS option. This is similar to --base64-output=NEVER but does not
exit with an error if a row event is found. The combination of --base64-output=DECODE-ROWS and
--verbose provides a convenient way to see row events only as SQL statements:

shell> mysqlbinlog -v --base64-output=DECODE-ROWS log_file
...
# at 218
#080828 15:03:08 server id 1  end_log_pos 258   Write_rows: table id 17 flags: STMT_END_F
### INSERT INTO test.t
### SET
###   @1=1
###   @2='apple'
###   @3=NULL
...
# at 302
#080828 15:03:08 server id 1  end_log_pos 356   Update_rows: table id 17 flags: STMT_END_F
### UPDATE test.t
### WHERE
###   @1=1
###   @2='apple'
###   @3=NULL
### SET
###   @1=1
###   @2='pear'
###   @3='2009:01:01'
...
# at 400
#080828 15:03:08 server id 1  end_log_pos 442   Delete_rows: table id 17 flags: STMT_END_F
### DELETE FROM test.t
### WHERE
###   @1=1
###   @2='pear'
###   @3='2009:01:01'

Note

You should not suppress BINLOG statements if you intend to re-execute
mysqlbinlog output.

The SQL statements produced by --verbose for row events are much more readable than the
corresponding BINLOG statements. However, they do not correspond exactly to the original SQL
statements that generated the events. The following limitations apply:

• The original column names are lost and replaced by @N, where N is a column number.

• Character set information is not available in the binary log, which affects string column display:

• There is no distinction made between corresponding binary and nonbinary string types (BINARY
and CHAR, VARBINARY and VARCHAR, BLOB and TEXT). The output uses a data type of STRING
for fixed-length strings and VARSTRING for variable-length strings.

• For multibyte character sets, the maximum number of bytes per character is not present in the
binary log, so the length for string types is displayed in bytes rather than in characters. For
example, STRING(4) will be used as the data type for values from either of these column types:



mysqldumpslow — Summarize Slow Query Log Files

403

CHAR(4) CHARACTER SET latin1
CHAR(2) CHARACTER SET ucs2

• Due to the storage format for events of type UPDATE_ROWS_EVENT, UPDATE statements are
displayed with the WHERE clause preceding the SET clause.

Proper interpretation of row events requires the information from the format description event at the
beginning of the binary log. Because mysqlbinlog does not know in advance whether the rest of the
log contains row events, by default it displays the format description event using a BINLOG statement
in the initial part of the output.

If the binary log is known not to contain any events requiring a BINLOG statement (that is, no row
events), the --base64-output=NEVER option can be used to prevent this header from being written.

4.6.8 mysqldumpslow — Summarize Slow Query Log Files

The MySQL slow query log contains information about queries that take a long time to execute (see
Section 5.4.5, “The Slow Query Log”). mysqldumpslow parses MySQL slow query log files and prints
a summary of their contents.

Normally, mysqldumpslow groups queries that are similar except for the particular values of number
and string data values. It “abstracts” these values to N and 'S' when displaying summary output. The
-a and -n options can be used to modify value abstracting behavior.

Invoke mysqldumpslow like this:

shell> mysqldumpslow [options] [log_file ...]

mysqldumpslow supports the following options.

Table 4.18 mysqldumpslow Options

Format Description

-a Do not abstract all numbers to N and strings to S

-n Abstract numbers with at least the specified digits

--debug Write debugging information

-g Only consider statements that match the pattern

--help Display help message and exit

-h Host name of the server in the log file name

-i Name of the server instance

-l Do not subtract lock time from total time

-r Reverse the sort order

-s How to sort output

-t Display only first num queries

--verbose Verbose mode

•   --help

Display a help message and exit.

• -a

Do not abstract all numbers to N and strings to 'S'.

•   --debug, -d



mysqlhotcopy — A Database Backup Program

404

Run in debug mode.

• -g pattern

Consider only queries that match the (grep-style) pattern.

• -h host_name

Host name of MySQL server for *-slow.log file name. The value can contain a wildcard. The
default is * (match all).

• -i name

Name of server instance (if using mysql.server startup script).

• -l

Do not subtract lock time from total time.

• -n N

Abstract numbers with at least N digits within names.

• -r

Reverse the sort order.

• -s sort_type

How to sort the output. The value of sort_type should be chosen from the following list:

• t, at: Sort by query time or average query time

• l, al: Sort by lock time or average lock time

• r, ar: Sort by rows sent or average rows sent

• c: Sort by count

By default, mysqldumpslow sorts by average query time (equivalent to -s at).

• -t N

Display only the first N queries in the output.

•   --verbose, -v

Verbose mode. Print more information about what the program does.

Example of usage:

shell> mysqldumpslow

Reading mysql slow query log from /usr/local/mysql/data/mysqld51-apple-slow.log
Count: 1  Time=4.32s (4s)  Lock=0.00s (0s)  Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1

Count: 3  Time=2.53s (7s)  Lock=0.00s (0s)  Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1 limit N

Count: 3  Time=2.13s (6s)  Lock=0.00s (0s)  Rows=0.0 (0), root[root]@localhost
 insert into t1 select * from t1

4.6.9 mysqlhotcopy — A Database Backup Program



mysqlhotcopy — A Database Backup Program

405

mysqlhotcopy is a Perl script that was originally written and contributed by Tim Bunce. It uses FLUSH
TABLES, LOCK TABLES, and cp or scp to make a database backup. It is a fast way to make a backup
of the database or single tables, but it can be run only on the same machine where the database
directories are located. mysqlhotcopy works only for backing up MyISAM and ARCHIVE tables. It
runs on Unix.

To use mysqlhotcopy, you must have read access to the files for the tables that you are backing up,
the SELECT privilege for those tables, the RELOAD privilege (to be able to execute FLUSH TABLES),
and the LOCK TABLES privilege (to be able to lock the tables).

shell> mysqlhotcopy db_name [/path/to/new_directory]

shell> mysqlhotcopy db_name_1 ... db_name_n /path/to/new_directory

Back up tables in the given database that match a regular expression:

shell> mysqlhotcopy db_name./regex/

The regular expression for the table name can be negated by prefixing it with a tilde (~):

shell> mysqlhotcopy db_name./~regex/

mysqlhotcopy supports the following options, which can be specified on the command line or in the
[mysqlhotcopy] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.19 mysqlhotcopy Options

Format Description Introduced

--addtodest Do not rename target directory (if it exists); merely add
files to it

 

--allowold Do not abort if a target exists; rename it by adding an
_old suffix

 

--checkpoint Insert checkpoint entries  

--chroot Base directory of the chroot jail in which mysqld operates  

--debug Write debugging log  

--dryrun Report actions without performing them  

--flushlog Flush logs after all tables are locked  

--help Display help message and exit  

--host Connect to MySQL server on given host  

--keepold Do not delete previous (renamed) target when done  

--method The method for copying files  

--noindices Do not include full index files in the backup  

--old_server Connect to server that does not support FLUSH TABLES
tbl_list WITH READ LOCK

5.5.3

--password Password to use when connecting to server  

--port TCP/IP port number to use for connection  

--quiet Be silent except for errors  

--regexp Copy all databases with names that match the given
regular expression

 

--resetmaster Reset the binary log after locking all the tables  



mysqlhotcopy — A Database Backup Program

406

Format Description Introduced

--resetslave Reset the master.info file after locking all the tables  

--socket For connections to localhost, the Unix socket file to use  

--tmpdir The temporary directory  

--user MySQL user name to use when connecting to server  

•   --help, -?

Display a help message and exit.

•   --addtodest

Do not rename target directory (if it exists); merely add files to it.

•   --allowold

Do not abort if a target exists; rename it by adding an _old suffix.

•   --checkpoint=db_name.tbl_name

Insert checkpoint entries into the specified database db_name and table tbl_name.

•   --chroot=dir_name

Base directory of the chroot jail in which mysqld operates. The dir_name value should match that
of the --chroot option given to mysqld.

•   --debug

Enable debug output.

•   --dryrun, -n

Report actions without performing them.

•   --flushlog

Flush logs after all tables are locked.

•   --host=host_name, -h host_name

The host name of the local host to use for making a TCP/IP connection to the local server. By
default, the connection is made to localhost using a Unix socket file.

•   --keepold

Do not delete previous (renamed) target when done.

•   --method=command

The method for copying files (cp or scp). The default is cp.

•   --noindices

Do not include full index files for MyISAM tables in the backup. This makes the backup smaller and
faster. The indexes for reloaded tables can be reconstructed later with myisamchk -rq.

•   --password=password, -ppassword

The password to use when connecting to the server. The password value is not optional for this
option, unlike for other MySQL programs.



mysql_convert_table_format — Convert Tables to Use a Given Storage Engine

407

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --port=port_num, -P port_num

The TCP/IP port number to use when connecting to the local server.

•   --old_server

As of MySQL 5.5.3, mysqlhotcopy uses FLUSH TABLES tbl_list WITH READ LOCK to flush
and lock tables. Use the --old_server option if the server is older than 5.5.3, which is when that
statement was introduced. This option was added in MySQL 5.5.3.

•   --quiet, -q

Be silent except for errors.

•   --record_log_pos=db_name.tbl_name

Record master and slave status in the specified database db_name and table tbl_name.

•   --regexp=expr

Copy all databases with names that match the given regular expression.

•   --resetmaster

Reset the binary log after locking all the tables.

•   --resetslave

Reset the master.info file after locking all the tables.

•   --socket=path, -S path

The Unix socket file to use for connections to localhost.

•   --suffix=str

The suffix to use for names of copied databases.

•   --tmpdir=dir_name

The temporary directory. The default is /tmp.

•   --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

Use perldoc for additional mysqlhotcopy documentation, including information about the structure
of the tables needed for the --checkpoint and --record_log_pos options:

shell> perldoc mysqlhotcopy

4.6.10 mysql_convert_table_format — Convert Tables to Use a Given
Storage Engine

mysql_convert_table_format converts the tables in a database to use a particular storage engine
(MyISAM by default). mysql_convert_table_format is written in Perl and requires that the DBI
and DBD::mysql Perl modules be installed (see Section 2.12, “Perl Installation Notes”).



mysql_find_rows — Extract SQL Statements from Files

408

Invoke mysql_convert_table_format like this:

shell> mysql_convert_table_format [options]db_name

The db_name argument indicates the database containing the tables to be converted.

mysql_convert_table_format supports the options described in the following list.

•   --help

Display a help message and exit.

•   --force

Continue even if errors occur.

•   --host=host_name

Connect to the MySQL server on the given host.

•   --password=password

The password to use when connecting to the server. The password value is not optional for this
option, unlike for other MySQL programs.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --port=port_num

The TCP/IP port number to use for the connection.

•   --socket=path

For connections to localhost, the Unix socket file to use.

•   --type=engine_name

Specify the storage engine that the tables should be converted to use. The default is MyISAM if this
option is not given.

•   --user=user_name

The MySQL user name to use when connecting to the server.

•   --verbose

Verbose mode. Print more information about what the program does.

•   --version

Display version information and exit.

4.6.11 mysql_find_rows — Extract SQL Statements from Files

mysql_find_rows reads files containing SQL statements and extracts statements that match a given
regular expression or that contain USE db_name or SET statements. The utility expects statements to
be terminated with semicolon (;) characters.

Invoke mysql_find_rows like this:



mysql_fix_extensions — Normalize Table File Name Extensions

409

shell> mysql_find_rows [options] [file_name ...]

Each file_name argument should be the name of file containing SQL statements. If no file names are
given, mysql_find_rows reads the standard input.

Examples:

mysql_find_rows --regexp=problem_table --rows=20 < update.log
mysql_find_rows --regexp=problem_table  update-log.1 update-log.2

mysql_find_rows supports the following options:

•   --help, --Information

Display a help message and exit.

•   --regexp=pattern

Display queries that match the pattern.

•   --rows=N

Quit after displaying N queries.

•   --skip-use-db

Do not include USE db_name statements in the output.

•   --start_row=N

Start output from this row.

4.6.12 mysql_fix_extensions — Normalize Table File Name Extensions

mysql_fix_extensions converts the extensions for MyISAM (or ISAM) table files to their canonical
forms. It looks for files with extensions matching any lettercase variant of .frm, .myd, .myi, .isd,
and .ism and renames them to have extensions of .frm, .MYD, .MYI, .ISD, and .ISM, respectively.
This can be useful after transferring the files from a system with case-insensitive file names (such as
Windows) to a system with case-sensitive file names.

Invoke mysql_fix_extensions like this, where data_dir is the path name to the MySQL data
directory.

shell> mysql_fix_extensions data_dir

4.6.13 mysql_setpermission — Interactively Set Permissions in Grant
Tables

mysql_setpermission is a Perl script that was originally written and contributed by Luuk de Boer.
It interactively sets permissions in the MySQL grant tables. mysql_setpermission is written in
Perl and requires that the DBI and DBD::mysql Perl modules be installed (see Section 2.12, “Perl
Installation Notes”).

Invoke mysql_setpermission like this:

shell> mysql_setpermission [options]

options should be either --help to display the help message, or options that indicate how to
connect to the MySQL server. The account used when you connect determines which permissions you
have when attempting to modify existing permissions in the grant tables.



mysql_waitpid — Kill Process and Wait for Its Termination

410

mysql_setpermissions also reads options from the [client] and [perl] groups in the
.my.cnf file in your home directory, if the file exists.

mysql_setpermission supports the following options:

•   --help

Display a help message and exit.

•   --host=host_name

Connect to the MySQL server on the given host.

•   --password=password

The password to use when connecting to the server. The password value is not optional for this
option, unlike for other MySQL programs.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line.

•   --port=port_num

The TCP/IP port number to use for the connection.

•   --socket=path

For connections to localhost, the Unix socket file to use.

•   --user=user_name

The MySQL user name to use when connecting to the server.

4.6.14 mysql_waitpid — Kill Process and Wait for Its Termination

mysql_waitpid signals a process to terminate and waits for the process to exit. It uses the kill()
system call and Unix signals, so it runs on Unix and Unix-like systems.

Invoke mysql_waitpid like this:

shell> mysql_waitpid [options] pid wait_time

mysql_waitpid sends signal 0 to the process identified by pid and waits up to wait_time seconds
for the process to terminate. pid and wait_time must be positive integers.

If process termination occurs within the wait time or the process does not exist, mysql_waitpid
returns 0. Otherwise, it returns 1.

If the kill() system call cannot handle signal 0, mysql_waitpid() uses signal 1 instead.

mysql_waitpid supports the following options:

•   --help, -?, -I

Display a help message and exit.

•   --verbose, -v

Verbose mode. Display a warning if signal 0 could not be used and signal 1 is used instead.

•   --version, -V



mysql_zap — Kill Processes That Match a Pattern

411

Display version information and exit.

4.6.15 mysql_zap — Kill Processes That Match a Pattern

mysql_zap kills processes that match a pattern. It uses the ps command and Unix signals, so it runs
on Unix and Unix-like systems.

Invoke mysql_zap like this:

shell> mysql_zap [-signal] [-?Ift] pattern

A process matches if its output line from the ps command contains the pattern. By default, mysql_zap
asks for confirmation for each process. Respond y to kill the process, or q to exit mysql_zap. For any
other response, mysql_zap does not attempt to kill the process.

If the -signal option is given, it specifies the name or number of the signal to send to each process.
Otherwise, mysql_zap tries first with TERM (signal 15) and then with KILL (signal 9).

mysql_zap supports the following additional options:

• --help, -?, -I

Display a help message and exit.

• -f

Force mode. mysql_zap attempts to kill each process without confirmation.

• -t

Test mode. Display information about each process but do not kill it.

4.7 MySQL Program Development Utilities

This section describes some utilities that you may find useful when developing MySQL programs.

In shell scripts, you can use the my_print_defaults program to parse option files and see
what options would be used by a given program. The following example shows the output that
my_print_defaults might produce when asked to show the options found in the [client] and
[mysql] groups:

shell> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

Note for developers: Option file handling is implemented in the C client library simply by processing
all options in the appropriate group or groups before any command-line arguments. This works well
for programs that use the last instance of an option that is specified multiple times. If you have a C or
C++ program that handles multiply specified options this way but that doesn't read option files, you
need add only two lines to give it that capability. Check the source code of any of the standard MySQL
clients to see how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of them
provide a way to access option file contents. These include Perl and Python. For details, see the
documentation for your preferred interface.

4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL



mysql_config — Display Options for Compiling Clients

412

Initially, the MySQL C API was developed to be very similar to that for the mSQL database system.
Because of this, mSQL programs often can be converted relatively easily for use with MySQL by
changing the names of the C API functions.

The msql2mysql utility performs the conversion of mSQL C API function calls to their MySQL
equivalents. msql2mysql converts the input file in place, so make a copy of the original before
converting it. For example, use msql2mysql like this:

shell> cp client-prog.c client-prog.c.orig
shell> msql2mysql client-prog.c
client-prog.c converted

Then examine client-prog.c and make any post-conversion revisions that may be necessary.

msql2mysql uses the replace utility to make the function name substitutions. See Section 4.8.2,
“replace — A String-Replacement Utility”.

4.7.2 mysql_config — Display Options for Compiling Clients

mysql_config provides you with useful information for compiling your MySQL client and connecting it
to MySQL. It is a shell script, so it is available only on Unix and Unix-like systems.

mysql_config supports the following options.

•   --cflags

Compiler flags to find include files and critical compiler flags and defines used when compiling the
libmysqlclient library. The options returned are tied to the specific compiler that was used when
the library was created and might clash with the settings for your own compiler. Use --include for
more portable options that contain only include paths.

•   --include

Compiler options to find MySQL include files.

•       --libmysqld-libs, --embedded-libs, --embedded

Libraries and options required to link with libmysqld, the MySQL embedded server.

•   --libs

Libraries and options required to link with the MySQL client library.

•   --libs_r

Libraries and options required to link with the thread-safe MySQL client library. In MySQL 5.5, all
client libraries are thread-safe, so this option need not be used. The --libs option can be used in
all cases.

•   --plugindir

The default plugin directory path name, defined when configuring MySQL.

•   --port

The default TCP/IP port number, defined when configuring MySQL.

•   --socket

The default Unix socket file, defined when configuring MySQL.

•   --variable=var_name



my_print_defaults — Display Options from Option Files

413

Display the value of the named configuration variable. Permitted var_name values are
pkgincludedir (the header file directory), pkglibdir (the library directory), and plugindir (the
plugin directory).

•   --version

Version number for the MySQL distribution.

If you invoke mysql_config with no options, it displays a list of all options that it supports, and their
values:

shell> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:
  --cflags         [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
  --include        [-I/usr/local/mysql/include/mysql]
  --libs           [-L/usr/local/mysql/lib/mysql -lmysqlclient
                    -lpthread -lm -lrt -lssl -lcrypto -ldl]
  --libs_r         [-L/usr/local/mysql/lib/mysql -lmysqlclient_r
                    -lpthread -lm -lrt -lssl -lcrypto -ldl]
  --plugindir      [/usr/local/mysql/lib/plugin]
  --socket         [/tmp/mysql.sock]
  --port           [3306]
  --version        [5.5.31]
  --libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld
                    -lpthread -lm -lrt -lssl -lcrypto -ldl -lcrypt]
  --variable=VAR   VAR is one of:
          pkgincludedir [/usr/local/mysql/include]
          pkglibdir     [/usr/local/mysql/lib]
          plugindir     [/usr/local/mysql/lib/plugin]

You can use mysql_config within a command line using backticks to include the output that it
produces for particular options. For example, to compile and link a MySQL client program, use
mysql_config as follows:

gcc -c `mysql_config --cflags` progname.c
gcc -o progname progname.o `mysql_config --libs`

4.7.3 my_print_defaults — Display Options from Option Files

my_print_defaults displays the options that are present in option groups of option files. The output
indicates what options will be used by programs that read the specified option groups. For example, the
mysqlcheck program reads the [mysqlcheck] and [client] option groups. To see what options
are present in those groups in the standard option files, invoke my_print_defaults like this:

shell> my_print_defaults mysqlcheck client
--user=myusername
--password=secret
--host=localhost

The output consists of options, one per line, in the form that they would be specified on the command
line.

my_print_defaults supports the following options.

•   --help, -?

Display a help message and exit.

•   --config-file=file_name,   --defaults-file=file_name, -c file_name

Read only the given option file.



resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

414

•   --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/my_print_defaults.trace.

•   --defaults-extra-file=file_name,   --extra-file=file_name, -e file_name

Read this option file after the global option file but (on Unix) before the user option file.

•   --defaults-group-suffix=suffix, -g suffix

In addition to the groups named on the command line, read groups that have the given suffix.

•   --no-defaults, -n

Return an empty string.

•   --verbose, -v

Verbose mode. Print more information about what the program does.

•   --version, -V

Display version information and exit.

4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to
Symbols

resolve_stack_dump resolves a numeric stack dump to symbols.

Invoke resolve_stack_dump like this:

shell> resolve_stack_dump [options] symbols_file [numeric_dump_file]

The symbols file should include the output from the nm --numeric-sort mysqld command. The
numeric dump file should contain a numeric stack track from mysqld. If no numeric dump file is named
on the command line, the stack trace is read from the standard input.

resolve_stack_dump supports the following options.

•   --help, -h

Display a help message and exit.

•   --numeric-dump-file=file_name, -n file_name

Read the stack trace from the given file.

•   --symbols-file=file_name, -s file_name

Use the given symbols file.

•   --version, -V

Display version information and exit.

For more information, see Section 24.5.1.5, “Using a Stack Trace”.

4.8 Miscellaneous Programs

4.8.1 perror — Explain Error Codes



replace — A String-Replacement Utility

415

For most system errors, MySQL displays, in addition to an internal text message, the system error code
in one of the following styles:

message ... (errno: #)
message ... (Errcode: #)

You can find out what the error code means by examining the documentation for your system or by
using the perror utility.

perror prints a description for a system error code or for a storage engine (table handler) error code.

Invoke perror like this:

shell> perror [options] errorcode ...

Example:

shell> perror 13 64
OS error code  13:  Permission denied
OS error code  64:  Machine is not on the network

To obtain the error message for an NDB Cluster error code, invoke perror with the --ndb option:

shell> perror --ndb errorcode

The meaning of system error messages may be dependent on your operating system. A given error
code may mean different things on different operating systems.

perror supports the following options.

•   --help, --info, -I, -?

Display a help message and exit.

•   --ndb

Print the error message for an NDB Cluster error code.

•   --silent, -s

Silent mode. Print only the error message.

•   --verbose, -v

Verbose mode. Print error code and message. This is the default behavior.

•   --version, -V

Display version information and exit.

4.8.2 replace — A String-Replacement Utility

The replace utility program changes strings in place in files or on the standard input.

Invoke replace in one of the following ways:

shell> replace from to [from to] ... -- file_name [file_name] ...
shell> replace from to [from to] ... < file_name



resolveip — Resolve Host name to IP Address or Vice Versa

416

from represents a string to look for and to represents its replacement. There can be one or more pairs
of strings.

Use the -- option to indicate where the string-replacement list ends and the file names begin. In this
case, any file named on the command line is modified in place, so you may want to make a copy of
the original before converting it. replace prints a message indicating which of the input files it actually
modifies.

If the -- option is not given, replace reads the standard input and writes to the standard output.

replace uses a finite state machine to match longer strings first. It can be used to swap strings. For
example, the following command swaps a and b in the given files, file1 and file2:

shell> replace a b b a -- file1 file2 ...

The replace program is used by msql2mysql. See Section 4.7.1, “msql2mysql — Convert mSQL
Programs for Use with MySQL”.

replace supports the following options.

• -?, -I

Display a help message and exit.

• -#debug_options

Enable debugging.

• -s

Silent mode. Print less information what the program does.

• -v

Verbose mode. Print more information about what the program does.

• -V

Display version information and exit.

4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa

The resolveip utility resolves host names to IP addresses and vice versa.

Invoke resolveip like this:

shell> resolveip [options] {host_name|ip-addr} ...

resolveip supports the following options.

•   --help, --info, -?, -I

Display a help message and exit.

•   --silent, -s

Silent mode. Produce less output.

•   --version, -V

Display version information and exit.



MySQL Program Environment Variables

417

4.9 MySQL Program Environment Variables
This section lists environment variables that are used directly or indirectly by MySQL. Most of these
can also be found in other places in this manual.

Options on the command line take precedence over values specified in option files and environment
variables, and values in option files take precedence over values in environment variables. In many
cases, it is preferable to use an option file instead of environment variables to modify the behavior of
MySQL. See Section 4.2.6, “Using Option Files”.

Variable Description

CXX The name of your C++ compiler (for running CMake).

CC The name of your C compiler (for running CMake).

DBI_USER The default user name for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

HOME The default path for the mysql history file is
$HOME/.mysql_history.

LD_RUN_PATH Used to specify the location of libmysqlclient.so.

LIBMYSQL_ENABLE_CLEARTEXT_PLUGINEnable mysql_clear_password authentication plugin;
see Section 6.5.1.3, “Client-Side Cleartext Pluggable
Authentication”.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_GROUP_SUFFIX Option group suffix value (like specifying --defaults-
group-suffix).

MYSQL_HISTFILE The path to the mysql history file. If this variable is set, its
value overrides the default for $HOME/.mysql_history.

MYSQL_HOME The path to the directory in which the server-specific
my.cnf file resides.

MYSQL_HOST The default host name used by the mysql command-line
client.

MYSQL_PS1 The command prompt to use in the mysql command-line
client.

MYSQL_PWD The default password when connecting to mysqld. Using
this is insecure. See Section 6.1.2.1, “End-User Guidelines
for Password Security”.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_UNIX_PORT The default Unix socket file name; used for connections to
localhost.

PATH Used by the shell to find MySQL programs.

TMPDIR The directory in which temporary files are created.

TZ This should be set to your local time zone. See
Section B.5.3.7, “Time Zone Problems”.

UMASK The user-file creation mode when creating files. See note
following table.

UMASK_DIR The user-directory creation mode when creating directories.
See note following table.

USER The default user name on Windows when connecting to
mysqld.

For information about the mysql history file, see Section 4.5.1.3, “mysql Logging”.



MySQL Program Environment Variables

418

The default UMASK and UMASK_DIR values are 0660 and 0700, respectively. MySQL assumes that the
value for UMASK or UMASK_DIR is in octal if it starts with a zero. For example, setting UMASK=0600 is
equivalent to UMASK=384 because 0600 octal is 384 decimal.

The UMASK and UMASK_DIR variables, despite their names, are used as modes, not masks:

• If UMASK is set, mysqld uses ($UMASK | 0600) as the mode for file creation, so that newly
created files have a mode in the range from 0600 to 0666 (all values octal).

• If UMASK_DIR is set, mysqld uses ($UMASK_DIR | 0700) as the base mode for directory
creation, which then is AND-ed with ~(~$UMASK & 0666), so that newly created directories have
a mode in the range from 0700 to 0777 (all values octal). The AND operation may remove read and
write permissions from the directory mode, but not execute permissions.



419

Chapter 5 MySQL Server Administration

Table of Contents
5.1 The MySQL Server ............................................................................................................. 420

5.1.1 Configuring the Server .............................................................................................. 420
5.1.2 Server Configuration Defaults ................................................................................... 422
5.1.3 Server Option and Variable Reference ...................................................................... 422
5.1.4 Server Command Options ......................................................................................... 450
5.1.5 Server System Variables .......................................................................................... 482
5.1.6 Using System Variables ............................................................................................ 592
5.1.7 Server Status Variables ............................................................................................ 605
5.1.8 Server SQL Modes ................................................................................................... 630
5.1.9 IPv6 Support ............................................................................................................ 638
5.1.10 Server-Side Help .................................................................................................... 642
5.1.11 Server Response to Signals .................................................................................... 643
5.1.12 The Server Shutdown Process ................................................................................ 643

5.2 The MySQL Data Directory .................................................................................................. 645
5.3 The mysql System Database ............................................................................................... 645
5.4 MySQL Server Logs ............................................................................................................ 647

5.4.1 Selecting General Query and Slow Query Log Output Destinations ............................. 648
5.4.2 The Error Log .......................................................................................................... 650
5.4.3 The General Query Log ............................................................................................ 652
5.4.4 The Binary Log ........................................................................................................ 653
5.4.5 The Slow Query Log ................................................................................................ 665
5.4.6 The DDL Log ........................................................................................................... 667
5.4.7 Server Log Maintenance ........................................................................................... 667

5.5 MySQL Server Plugins ........................................................................................................ 669
5.5.1 Server Plugins Available ........................................................................................... 669
5.5.2 Installing and Uninstalling Plugins ............................................................................. 669
5.5.3 Obtaining Server Plugin Information .......................................................................... 673
5.5.4 MySQL Enterprise Thread Pool ................................................................................. 674

5.6 Running Multiple MySQL Instances on One Machine ............................................................ 680
5.6.1 Setting Up Multiple Data Directories .......................................................................... 681
5.6.2 Running Multiple MySQL Instances on Windows ........................................................ 682
5.6.3 Running Multiple MySQL Instances on Unix .............................................................. 685
5.6.4 Using Client Programs in a Multiple-Server Environment ............................................ 686

5.7 Tracing mysqld Using DTrace .............................................................................................. 687
5.7.1 mysqld DTrace Probe Reference .............................................................................. 688

MySQL Server (mysqld) is the main program that does most of the work in a MySQL installation. This
chapter provides an overview of MySQL Server and covers general server administration:

• Server configuration

• The data directory, particularly the mysql system database

• The server log files

• Management of multiple servers on a single machine

For additional information on administrative topics, see also:

• Chapter 6, Security

• Chapter 7, Backup and Recovery

• Chapter 17, Replication



The MySQL Server

420

5.1 The MySQL Server
mysqld is the MySQL server. The following discussion covers these MySQL server configuration
topics:

• Startup options that the server supports. You can specify these options on the command line,
through configuration files, or both.

• Server system variables. These variables reflect the current state and values of the startup options,
some of which can be modified while the server is running.

• Server status variables. These variables contain counters and statistics about runtime operation.

• How to set the server SQL mode. This setting modifies certain aspects of SQL syntax and
semantics, for example for compatibility with code from other database systems, or to control the
error handling for particular situations.

• The server shutdown process. There are performance and reliability considerations depending on
the type of table (transactional or nontransactional) and whether you use replication.

Note

Not all storage engines are supported by all MySQL server binaries and
configurations. To find out how to determine which storage engines your
MySQL server installation supports, see Section 13.7.5.17, “SHOW ENGINES
Syntax”.

5.1.1 Configuring the Server

The MySQL server, mysqld, has many command options and system variables that can be set at
startup to configure its operation. To determine the command option and system variable values used
by the server, execute this command:

shell> mysqld --verbose --help

The command produces a list of all mysqld options and configurable system variables. Its output
includes the default option and variable values and looks something like this:

allow-suspicious-udfs             FALSE
archive                           ON
auto-increment-increment          1
auto-increment-offset             1
autocommit                        TRUE
automatic-sp-privileges           TRUE
back-log                          50
basedir                           /home/jon/bin/mysql-5.5/
...
tmpdir                            /tmp
transaction-alloc-block-size      8192
transaction-isolation             REPEATABLE-READ
transaction-prealloc-size         4096
updatable-views-with-limit        YES
verbose                           TRUE
wait-timeout                      28800

To see the current system variable values used by the server as it runs, connect to it and execute this
statement:

mysql> SHOW VARIABLES;

To see some statistical and status indicators for a running server, execute this statement:



Configuring the Server

421

mysql> SHOW STATUS;

System variable and status information also is available using the mysqladmin command:

shell> mysqladmin variables
shell> mysqladmin extended-status

For a full description of all command options, system variables, and status variables, see these
sections:

• Section 5.1.4, “Server Command Options”

• Section 5.1.5, “Server System Variables”

• Section 5.1.7, “Server Status Variables”

More detailed monitoring information is available from the Performance Schema; see Chapter 22,
MySQL Performance Schema.

MySQL uses algorithms that are very scalable, so you can usually run with very little memory.
However, normally better performance results from giving MySQL more memory.

When tuning a MySQL server, the two most important variables to configure are key_buffer_size
and table_open_cache. You should first feel confident that you have these set appropriately before
trying to change any other variables.

The following examples indicate some typical variable values for different runtime configurations.

• If you have at least 1-2GB of memory and many tables and want maximum performance with a
moderate number of clients, use something like this:

shell> mysqld_safe --key_buffer_size=384M --table_open_cache=4000 \
           --sort_buffer_size=4M --read_buffer_size=1M &

• If you have only 256MB of memory and only a few tables, but you still do a lot of sorting, you can use
something like this:

shell> mysqld_safe --key_buffer_size=64M --sort_buffer_size=1M

If there are very many simultaneous connections, swapping problems may occur unless mysqld has
been configured to use very little memory for each connection. mysqld performs better if you have
enough memory for all connections.

• With little memory and lots of connections, use something like this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=100K \
           --read_buffer_size=100K &

Or even this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=16K \
           --table_open_cache=32 --read_buffer_size=8K \
           --net_buffer_length=1K &

If you are performing GROUP BY or ORDER BY operations on tables that are much larger than your
available memory, increase the value of read_rnd_buffer_size to speed up the reading of rows
following sorting operations.

You can make use of the example option files included with your MySQL distribution; see
Section 5.1.2, “Server Configuration Defaults”.



Server Configuration Defaults

422

If you specify an option on the command line for mysqld or mysqld_safe, it remains in effect only for
that invocation of the server. To use the option every time the server runs, put it in an option file. See
Section 4.2.6, “Using Option Files”.

5.1.2 Server Configuration Defaults

The MySQL server has many operating parameters, which you can change at server startup using
command-line options or configuration files (option files). It is also possible to change many parameters
at runtime. For general instructions on setting parameters at startup or runtime, see Section 5.1.4,
“Server Command Options”, and Section 5.1.5, “Server System Variables”.

MySQL provides a number of preconfigured option files that can be used as a basis for tuning the
MySQL server. Look for files named my-small.cnf, my-medium.cnf, my-large.cnf, and my-
huge.cnf, which are sample option files for small, medium, large, and very large systems. On
Windows, the extension is .ini rather than .cnf.

Note

On Windows, the .ini or .cnf option file extension might not be displayed.

For a binary distribution, look for the sample files in or under your installation directory. If you have a
source distribution, look in the support-files directory. To use a sample file as a base configuration
file, rename a copy of it and place the copy in the appropriate location. Regarding names and
appropriate location, see the general information provided in Section 4.2.6, “Using Option Files”. That
section also describes option file format and syntax.

5.1.3 Server Option and Variable Reference

The following table provides a list of all the command line options, server and status variables
applicable within mysqld.

The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server
system variables (System Var), and status variables (Status var) in one unified list, with notification
of where each option/variable is valid. If a server option set on the command line or in an option file
differs from the name of the corresponding server system or status variable, the variable name is noted
immediately below the corresponding option. For status variables, the scope of the variable is shown
(Scope) as either global, session, or both. Please see the corresponding sections for details on setting
and using the options and variables. Where appropriate, a direct link to further information on the item
as available.

For a version of this table that is specific to NDB Cluster, see Section 18.3.2.5, “NDB Cluster mysqld
Option and Variable Reference”.

Table 5.1 Option/Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

abort-slave-
event-count

Yes Yes     

Aborted_clients    Yes Global No

Aborted_connects    Yes Global No

allow-suspicious-
udfs

Yes Yes     

ansi Yes Yes     

audit-log Yes Yes     

audit_log_buffer_sizeYes Yes Yes  Global No

audit_log_file Yes Yes Yes  Global No

audit_log_flush   Yes  Global Yes



Server Option and Variable Reference

423

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

audit_log_format Yes Yes Yes  Global No

audit_log_policy Yes Yes Yes  Global Yes

audit_log_rotate_on_sizeYes Yes Yes  Global Yes

audit_log_strategy Yes Yes Yes  Global No

authentication_windows_log_levelYes Yes     

authentication_windows_use_principal_nameYes Yes     

auto_increment_increment  Yes  Both Yes

auto_increment_offset  Yes  Both Yes

autocommit Yes Yes Yes  Varies Yes

automatic_sp_privileges  Yes  Global Yes

back_log   Yes  Global No

basedir Yes Yes Yes  Global No

big-tables Yes Yes   Varies Yes

- Variable:
big_tables

  Yes  Varies Yes

bind-address Yes Yes     

Binlog_cache_disk_use   Yes Global No

binlog_cache_sizeYes Yes Yes  Global Yes

Binlog_cache_use    Yes Global No

binlog_direct_non_transactional_updatesYes Yes Yes  Both Yes

binlog-do-db Yes Yes     

binlog-format Yes Yes   Both Yes

- Variable:
binlog_format

  Yes  Both Yes

binlog-ignore-db Yes Yes     

binlog-row-event-
max-size

Yes Yes     

Binlog_stmt_cache_disk_use   Yes Global No

binlog_stmt_cache_sizeYes Yes Yes  Global Yes

Binlog_stmt_cache_use   Yes Global No

bootstrap Yes Yes     

bulk_insert_buffer_sizeYes Yes Yes  Both Yes

Bytes_received    Yes Both No

Bytes_sent    Yes Both No

character_set_client  Yes  Both Yes

character-set-
client-handshake

Yes Yes     

character_set_connection  Yes  Both Yes

character_set_databasea  Yes  Both Yes

character-set-
filesystem

Yes Yes   Both Yes



Server Option and Variable Reference

424

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
character_set_filesystem

  Yes  Both Yes

character_set_results  Yes  Both Yes

character-set-
server

Yes Yes   Both Yes

- Variable:
character_set_server

  Yes  Both Yes

character_set_system  Yes  Global No

character-sets-dir Yes Yes   Global No

- Variable:
character_sets_dir

  Yes  Global No

chroot Yes Yes     

collation_connection  Yes  Both Yes

collation_databaseb  Yes  Both Yes

collation-server Yes Yes   Both Yes

- Variable:
collation_server

  Yes  Both Yes

Com_admin_commands   Yes Both No

Com_alter_db    Yes Both No

Com_alter_db_upgrade   Yes Both No

Com_alter_event    Yes Both No

Com_alter_function   Yes Both No

Com_alter_procedure   Yes Both No

Com_alter_server    Yes Both No

Com_alter_table    Yes Both No

Com_alter_tablespace   Yes Both No

Com_analyze    Yes Both No

Com_assign_to_keycache   Yes Both No

Com_begin    Yes Both No

Com_binlog    Yes Both No

Com_call_procedure   Yes Both No

Com_change_db    Yes Both No

Com_change_master   Yes Both No

Com_check    Yes Both No

Com_checksum    Yes Both No

Com_commit    Yes Both No

Com_create_db    Yes Both No

Com_create_event   Yes Both No

Com_create_function   Yes Both No

Com_create_index   Yes Both No

Com_create_procedure   Yes Both No

Com_create_server   Yes Both No



Server Option and Variable Reference

425

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_create_table    Yes Both No

Com_create_trigger   Yes Both No

Com_create_udf    Yes Both No

Com_create_user    Yes Both No

Com_create_view    Yes Both No

Com_dealloc_sql    Yes Both No

Com_delete    Yes Both No

Com_delete_multi    Yes Both No

Com_do    Yes Both No

Com_drop_db    Yes Both No

Com_drop_event    Yes Both No

Com_drop_function   Yes Both No

Com_drop_index    Yes Both No

Com_drop_procedure   Yes Both No

Com_drop_server    Yes Both No

Com_drop_table    Yes Both No

Com_drop_trigger    Yes Both No

Com_drop_user    Yes Both No

Com_drop_view    Yes Both No

Com_empty_query   Yes Both No

Com_execute_sql    Yes Both No

Com_flush    Yes Both No

Com_grant    Yes Both No

Com_ha_close    Yes Both No

Com_ha_open    Yes Both No

Com_ha_read    Yes Both No

Com_help    Yes Both No

Com_insert    Yes Both No

Com_insert_select   Yes Both No

Com_install_plugin   Yes Both No

Com_kill    Yes Both No

Com_load    Yes Both No

Com_lock_tables    Yes Both No

Com_optimize    Yes Both No

Com_preload_keys   Yes Both No

Com_prepare_sql    Yes Both No

Com_purge    Yes Both No

Com_purge_before_date   Yes Both No

Com_release_savepoint   Yes Both No

Com_rename_table   Yes Both No

Com_rename_user   Yes Both No



Server Option and Variable Reference

426

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_repair    Yes Both No

Com_replace    Yes Both No

Com_replace_select   Yes Both No

Com_reset    Yes Both No

Com_resignal    Yes Both No

Com_revoke    Yes Both No

Com_revoke_all    Yes Both No

Com_rollback    Yes Both No

Com_rollback_to_savepoint   Yes Both No

Com_savepoint    Yes Both No

Com_select    Yes Both No

Com_set_option    Yes Both No

Com_show_authors   Yes Both No

Com_show_binlog_events   Yes Both No

Com_show_binlogs   Yes Both No

Com_show_charsets   Yes Both No

Com_show_collations   Yes Both No

Com_show_contributors   Yes Both No

Com_show_create_db   Yes Both No

Com_show_create_event   Yes Both No

Com_show_create_func   Yes Both No

Com_show_create_proc   Yes Both No

Com_show_create_table   Yes Both No

Com_show_create_trigger   Yes Both No

Com_show_databases   Yes Both No

Com_show_engine_logs   Yes Both No

Com_show_engine_mutex   Yes Both No

Com_show_engine_status   Yes Both No

Com_show_errors    Yes Both No

Com_show_events   Yes Both No

Com_show_fields    Yes Both No

Com_show_function_code   Yes Both No

Com_show_function_status   Yes Both No

Com_show_grants   Yes Both No

Com_show_keys    Yes Both No

Com_show_master_status   Yes Both No

Com_show_ndb_status   Yes Both No

Com_show_new_master   Yes Both No

Com_show_open_tables   Yes Both No

Com_show_plugins   Yes Both No

Com_show_privileges   Yes Both No



Server Option and Variable Reference

427

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_show_procedure_code   Yes Both No

Com_show_procedure_status   Yes Both No

Com_show_processlist   Yes Both No

Com_show_profile   Yes Both No

Com_show_profiles   Yes Both No

Com_show_relaylog_events   Yes Both No

Com_show_slave_hosts   Yes Both No

Com_show_slave_status   Yes Both No

Com_show_status   Yes Both No

Com_show_storage_engines   Yes Both No

Com_show_table_status   Yes Both No

Com_show_tables   Yes Both No

Com_show_triggers   Yes Both No

Com_show_variables   Yes Both No

Com_show_warnings   Yes Both No

Com_signal    Yes Both No

Com_slave_start    Yes Both No

Com_slave_stop    Yes Both No

Com_stmt_close    Yes Both No

Com_stmt_execute   Yes Both No

Com_stmt_fetch    Yes Both No

Com_stmt_prepare   Yes Both No

Com_stmt_reprepare   Yes Both No

Com_stmt_reset    Yes Both No

Com_stmt_send_long_data   Yes Both No

Com_truncate    Yes Both No

Com_uninstall_plugin   Yes Both No

Com_unlock_tables   Yes Both No

Com_update    Yes Both No

Com_update_multi   Yes Both No

Com_xa_commit    Yes Both No

Com_xa_end    Yes Both No

Com_xa_prepare    Yes Both No

Com_xa_recover    Yes Both No

Com_xa_rollback    Yes Both No

Com_xa_start    Yes Both No

completion_type Yes Yes Yes  Both Yes

Compression    Yes Session No

concurrent_insert Yes Yes Yes  Global Yes

connect_timeout Yes Yes Yes  Global Yes

Connections    Yes Global No



Server Option and Variable Reference

428

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

console Yes Yes     

core-file Yes Yes     

Created_tmp_disk_tables   Yes Both No

Created_tmp_files    Yes Global No

Created_tmp_tables   Yes Both No

datadir Yes Yes Yes  Global No

date_format   Yes  Varies No

datetime_format   Yes  Varies No

debug Yes Yes Yes  Both Yes

debug_sync   Yes  Varies Yes

debug-sync-
timeout

Yes Yes     

default-character-
set

Yes Yes     

default-storage-
engine

Yes Yes   Both Yes

- Variable:
default_storage_engine

  Yes  Both Yes

default-time-zone Yes Yes     

default_week_formatYes Yes Yes  Both Yes

defaults-extra-file Yes      

defaults-file Yes      

defaults-group-
suffix

Yes      

delay-key-write Yes Yes   Global Yes

- Variable:
delay_key_write

  Yes  Global Yes

Delayed_errors    Yes Global No

delayed_insert_limitYes Yes Yes  Global Yes

Delayed_insert_threads   Yes Global No

delayed_insert_timeoutYes Yes Yes  Global Yes

delayed_queue_sizeYes Yes Yes  Global Yes

Delayed_writes    Yes Global No

des-key-file Yes Yes     

disconnect-slave-
event-count

Yes Yes     

div_precision_incrementYes Yes Yes  Both Yes

enable-locking Yes Yes     

enable-named-
pipe

Yes Yes     

- Variable:
named_pipe

      

enable-pstack Yes Yes     



Server Option and Variable Reference

429

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

engine-condition-
pushdown

Yes Yes   Both Yes

- Variable:
engine_condition_pushdown

  Yes  Both Yes

error_count   Yes  Session No

event-scheduler Yes Yes   Global Yes

- Variable:
event_scheduler

  Yes  Global Yes

exit-info Yes Yes     

expire_logs_days Yes Yes Yes  Global Yes

external-locking Yes Yes     

- Variable:
skip_external_locking

      

external_user   Yes  Session No

federated Yes Yes     

flush Yes Yes Yes  Global Yes

Flush_commands    Yes Global No

flush_time Yes Yes Yes  Global Yes

foreign_key_checks  Yes  Varies Yes

ft_boolean_syntax Yes Yes Yes  Global Yes

ft_max_word_len Yes Yes Yes  Global No

ft_min_word_len Yes Yes Yes  Global No

ft_query_expansion_limitYes Yes Yes  Global No

ft_stopword_file Yes Yes Yes  Global No

gdb Yes Yes     

general-log Yes Yes   Global Yes

- Variable:
general_log

  Yes  Global Yes

general_log_file Yes Yes Yes  Global Yes

group_concat_max_lenYes Yes Yes  Both Yes

Handler_commit    Yes Both No

Handler_delete    Yes Both No

Handler_discover    Yes Both No

Handler_prepare    Yes Both No

Handler_read_first   Yes Both No

Handler_read_key    Yes Both No

Handler_read_last    Yes Both No

Handler_read_next   Yes Both No

Handler_read_prev   Yes Both No

Handler_read_rnd    Yes Both No

Handler_read_rnd_next   Yes Both No

Handler_rollback    Yes Both No



Server Option and Variable Reference

430

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Handler_savepoint   Yes Both No

Handler_savepoint_rollback   Yes Both No

Handler_update    Yes Both No

Handler_write    Yes Both No

have_compress   Yes  Global No

have_crypt   Yes  Global No

have_csv   Yes  Global No

have_dynamic_loading  Yes  Global No

have_geometry   Yes  Global No

have_innodb   Yes  Global No

have_ndbcluster   Yes  Global No

have_openssl   Yes  Global No

have_partitioning   Yes  Global No

have_profiling   Yes  Global No

have_query_cache  Yes  Global No

have_rtree_keys   Yes  Global No

have_ssl   Yes  Global No

have_symlink   Yes  Global No

help Yes Yes     

hostname   Yes  Global No

identity   Yes  Session Yes

ignore-builtin-
innodb

Yes Yes   Global No

- Variable:
ignore_builtin_innodb

  Yes  Global No

init_connect Yes Yes Yes  Global Yes

init-file Yes Yes   Global No

- Variable:
init_file

  Yes  Global No

init-rpl-role Yes Yes     

init_slave Yes Yes Yes  Global Yes

innodb Yes Yes     

innodb_adaptive_flushingYes Yes Yes  Global Yes

innodb_adaptive_hash_indexYes Yes Yes  Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes  Global No

innodb_autoextend_incrementYes Yes Yes  Global Yes

innodb_autoinc_lock_modeYes Yes Yes  Global No

Innodb_buffer_pool_bytes_data   Yes Global No

Innodb_buffer_pool_bytes_dirty   Yes Global No

innodb_buffer_pool_instancesYes Yes Yes  Global No

Innodb_buffer_pool_pages_data   Yes Global No

Innodb_buffer_pool_pages_dirty   Yes Global No



Server Option and Variable Reference

431

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_buffer_pool_pages_flushed   Yes Global No

Innodb_buffer_pool_pages_free   Yes Global No

Innodb_buffer_pool_pages_latched   Yes Global No

Innodb_buffer_pool_pages_misc   Yes Global No

Innodb_buffer_pool_pages_total   Yes Global No

Innodb_buffer_pool_read_ahead   Yes Global No

Innodb_buffer_pool_read_ahead_evicted   Yes Global No

Innodb_buffer_pool_read_ahead_rnd   Yes Global No

Innodb_buffer_pool_read_requests   Yes Global No

Innodb_buffer_pool_reads   Yes Global No

innodb_buffer_pool_sizeYes Yes Yes  Global No

Innodb_buffer_pool_wait_free   Yes Global No

Innodb_buffer_pool_write_requests   Yes Global No

innodb_change_bufferingYes Yes Yes  Global Yes

innodb_change_buffering_debugYes Yes Yes  Global Yes

innodb_checksumsYes Yes Yes  Global No

innodb_commit_concurrencyYes Yes Yes  Global Yes

innodb_concurrency_ticketsYes Yes Yes  Global Yes

innodb_data_file_pathYes Yes Yes  Global No

Innodb_data_fsyncs   Yes Global No

innodb_data_home_dirYes Yes Yes  Global No

Innodb_data_pending_fsyncs   Yes Global No

Innodb_data_pending_reads   Yes Global No

Innodb_data_pending_writes   Yes Global No

Innodb_data_read    Yes Global No

Innodb_data_reads   Yes Global No

Innodb_data_writes   Yes Global No

Innodb_data_written   Yes Global No

Innodb_dblwr_pages_written   Yes Global No

Innodb_dblwr_writes   Yes Global No

innodb_doublewriteYes Yes Yes  Global No

innodb_fast_shutdownYes Yes Yes  Global Yes

innodb_file_formatYes Yes Yes  Global Yes

innodb_file_format_checkYes Yes Yes  Global Varies

innodb_file_format_maxYes Yes Yes  Global Yes

innodb_file_per_tableYes Yes Yes  Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes  Global Yes

innodb_flush_methodYes Yes Yes  Global No

innodb_force_load_corruptedYes Yes Yes  Global No

innodb_force_recoveryYes Yes Yes  Global No

Innodb_have_atomic_builtins   Yes Global No



Server Option and Variable Reference

432

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_io_capacityYes Yes Yes  Global Yes

innodb_large_prefixYes Yes Yes  Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes  Global Yes

innodb_lock_wait_timeoutYes Yes Yes  Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes  Global No

innodb_log_buffer_sizeYes Yes Yes  Global No

innodb_log_file_sizeYes Yes Yes  Global No

innodb_log_files_in_groupYes Yes Yes  Global No

innodb_log_group_home_dirYes Yes Yes  Global No

Innodb_log_waits    Yes Global No

Innodb_log_write_requests   Yes Global No

Innodb_log_writes    Yes Global No

innodb_max_dirty_pages_pctYes Yes Yes  Global Yes

innodb_max_purge_lagYes Yes Yes  Global Yes

innodb_mirrored_log_groupsYes Yes Yes  Global No

innodb_old_blocks_pctYes Yes Yes  Global Yes

innodb_old_blocks_timeYes Yes Yes  Global Yes

innodb_open_files Yes Yes Yes  Global No

Innodb_os_log_fsyncs   Yes Global No

Innodb_os_log_pending_fsyncs   Yes Global No

Innodb_os_log_pending_writes   Yes Global No

Innodb_os_log_written   Yes Global No

Innodb_page_size    Yes Global No

Innodb_pages_created   Yes Global No

Innodb_pages_read   Yes Global No

Innodb_pages_written   Yes Global No

innodb_print_all_deadlocksYes Yes Yes  Global Yes

innodb_purge_batch_sizeYes Yes Yes  Global Yes

innodb_purge_threadsYes Yes Yes  Global No

innodb_random_read_aheadYes Yes Yes  Global Yes

innodb_read_ahead_thresholdYes Yes Yes  Global Yes

innodb_read_io_threadsYes Yes Yes  Global No

innodb_replication_delayYes Yes Yes  Global Yes

innodb_rollback_on_timeoutYes Yes Yes  Global No

innodb_rollback_segmentsYes Yes Yes  Global Yes

Innodb_row_lock_current_waits   Yes Global No

Innodb_row_lock_time   Yes Global No

Innodb_row_lock_time_avg   Yes Global No

Innodb_row_lock_time_max   Yes Global No

Innodb_row_lock_waits   Yes Global No

Innodb_rows_deleted   Yes Global No



Server Option and Variable Reference

433

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_rows_inserted   Yes Global No

Innodb_rows_read   Yes Global No

Innodb_rows_updated   Yes Global No

innodb_spin_wait_delayYes Yes Yes  Global Yes

innodb_stats_methodYes Yes Yes  Global Yes

innodb_stats_on_metadataYes Yes Yes  Global Yes

innodb_stats_sample_pagesYes Yes Yes  Global Yes

innodb-status-file Yes Yes     

innodb_strict_modeYes Yes Yes  Both Yes

innodb_support_xaYes Yes Yes  Both Yes

innodb_sync_spin_loopsYes Yes Yes  Global Yes

innodb_table_locksYes Yes Yes  Both Yes

innodb_thread_concurrencyYes Yes Yes  Global Yes

innodb_thread_sleep_delayYes Yes Yes  Global Yes

Innodb_truncated_status_writes   Yes Global No

innodb_trx_purge_view_update_only_debugYes Yes Yes  Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes  Global Yes

innodb_use_native_aioYes Yes Yes  Global No

innodb_use_sys_mallocYes Yes Yes  Global No

innodb_version   Yes  Global No

innodb_write_io_threadsYes Yes Yes  Global No

insert_id   Yes  Session Yes

install Yes      

install-manual Yes      

interactive_timeoutYes Yes Yes  Both Yes

join_buffer_size Yes Yes Yes  Both Yes

keep_files_on_createYes Yes Yes  Both Yes

Key_blocks_not_flushed   Yes Global No

Key_blocks_unused   Yes Global No

Key_blocks_used    Yes Global No

key_buffer_size Yes Yes Yes  Global Yes

key_cache_age_thresholdYes Yes Yes  Global Yes

key_cache_block_sizeYes Yes Yes  Global Yes

key_cache_division_limitYes Yes Yes  Global Yes

Key_read_requests   Yes Global No

Key_reads    Yes Global No

Key_write_requests   Yes Global No

Key_writes    Yes Global No

language Yes Yes Yes  Global No

large_files_support  Yes  Global No

large_page_size   Yes  Global No



Server Option and Variable Reference

434

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

large-pages Yes Yes   Global No

- Variable:
large_pages

  Yes  Global No

last_insert_id   Yes  Session Yes

Last_query_cost    Yes Session No

lc-messages Yes Yes   Both Yes

- Variable:
lc_messages

  Yes  Both Yes

lc-messages-dir Yes Yes   Global No

- Variable:
lc_messages_dir

  Yes  Global No

lc_time_names   Yes  Both Yes

license   Yes  Global No

local_infile   Yes  Global Yes

local-service Yes      

lock_wait_timeout Yes Yes Yes  Both Yes

locked_in_memory  Yes  Global No

log Yes Yes Yes  Global Yes

log-bin Yes Yes Yes  Global No

log_bin   Yes  Global No

log-bin-index Yes Yes     

log-bin-trust-
function-creators

Yes Yes   Global Yes

- Variable:
log_bin_trust_function_creators

  Yes  Global Yes

log-bin-trust-
routine-creators

Yes Yes   Global Yes

- Variable:
log_bin_trust_routine_creators

  Yes  Global Yes

log-bin-use-v1-
row-events

Yes Yes   Global No

- Variable:
log_bin_use_v1_row_events

  Yes  Global No

log_bin_use_v1_row_eventsYes Yes Yes  Global No

log-error Yes Yes   Global No

- Variable:
log_error

  Yes  Global No

log-isam Yes Yes     

log-output Yes Yes   Global Yes

- Variable:
log_output

  Yes  Global Yes

log-queries-not-
using-indexes

Yes Yes   Global Yes

- Variable:
log_queries_not_using_indexes

  Yes  Global Yes



Server Option and Variable Reference

435

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

log-short-format Yes Yes     

log-slave-
updates

Yes Yes   Global No

- Variable:
log_slave_updates

  Yes  Global No

log_slave_updatesYes Yes Yes  Global No

log-slow-admin-
statements

Yes Yes     

log-slow-queries Yes Yes   Global Yes

- Variable:
log_slow_queries

  Yes  Global Yes

log-slow-slave-
statements

Yes Yes     

log-tc Yes Yes     

log-tc-size Yes Yes     

log-warnings Yes Yes   Both Yes

- Variable:
log_warnings

  Yes  Both Yes

long_query_time Yes Yes Yes  Both Yes

low-priority-
updates

Yes Yes   Both Yes

- Variable:
low_priority_updates

  Yes  Both Yes

lower_case_file_system  Yes  Global No

lower_case_table_namesYes Yes Yes  Global No

master-connect-
retry

Yes Yes     

master-host Yes Yes     

master-info-file Yes Yes     

master-password Yes Yes     

master-port Yes Yes     

master-retry-
count

Yes Yes     

master-ssl Yes Yes     

master-ssl-ca Yes Yes     

master-ssl-
capath

Yes Yes     

master-ssl-cert Yes Yes     

master-ssl-cipher Yes Yes     

master-ssl-key Yes Yes     

master-user Yes Yes     

max_allowed_packetYes Yes Yes  Both Yes

max_binlog_cache_sizeYes Yes Yes  Global Yes



Server Option and Variable Reference

436

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

max-binlog-
dump-events

Yes Yes     

max_binlog_size Yes Yes Yes  Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes  Global Yes

max_connect_errorsYes Yes Yes  Global Yes

max_connections Yes Yes Yes  Global Yes

max_delayed_threadsYes Yes Yes  Both Yes

max_error_count Yes Yes Yes  Both Yes

max_heap_table_sizeYes Yes Yes  Both Yes

max_insert_delayed_threads  Yes  Both Yes

max_join_size Yes Yes Yes  Both Yes

max_length_for_sort_dataYes Yes Yes  Both Yes

max_long_data_sizeYes Yes Yes  Global No

max_prepared_stmt_countYes Yes Yes  Global Yes

max_relay_log_sizeYes Yes Yes  Global Yes

max_seeks_for_keyYes Yes Yes  Both Yes

max_sort_length Yes Yes Yes  Both Yes

max_sp_recursion_depthYes Yes Yes  Both Yes

max_tmp_tables   Yes  Both Yes

Max_used_connections   Yes Global No

max_user_connectionsYes Yes Yes  Both Yes

max_write_lock_countYes Yes Yes  Global Yes

memlock Yes Yes     

- Variable:
locked_in_memory

      

metadata_locks_cache_size  Yes  Global No

min-examined-
row-limit

Yes Yes Yes  Both Yes

multi_range_countYes Yes Yes  Both Yes

myisam-block-
size

Yes Yes     

myisam_data_pointer_sizeYes Yes Yes  Global Yes

myisam_max_sort_file_sizeYes Yes Yes  Global Yes

myisam_mmap_sizeYes Yes Yes  Global No

myisam-recover Yes Yes     

- Variable:
myisam_recover_options

      

myisam-recover-
options

Yes Yes     

- Variable:
myisam_recover_options

      

myisam_recover_options  Yes  Global No

myisam_repair_threadsYes Yes Yes  Both Yes



Server Option and Variable Reference

437

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

myisam_sort_buffer_sizeYes Yes Yes  Both Yes

myisam_stats_methodYes Yes Yes  Both Yes

myisam_use_mmapYes Yes Yes  Global Yes

named_pipe   Yes  Global No

Ndb_api_bytes_received_count   Yes Global No

Ndb_api_bytes_received_count_session   Yes Session No

Ndb_api_bytes_received_count_slave   Yes Global No

Ndb_api_bytes_sent_count   Yes Global No

Ndb_api_bytes_sent_count_session   Yes Session No

Ndb_api_bytes_sent_count_slave   Yes Global No

Ndb_api_event_bytes_count   Yes Global No

Ndb_api_event_bytes_count_injector   Yes Global No

Ndb_api_event_data_count   Yes Global No

Ndb_api_event_data_count_injector   Yes Global No

Ndb_api_event_nondata_count   Yes Global No

Ndb_api_event_nondata_count_injector   Yes Global No

Ndb_api_pk_op_count   Yes Global No

Ndb_api_pk_op_count_session   Yes Session No

Ndb_api_pk_op_count_slave   Yes Global No

Ndb_api_pruned_scan_count   Yes Global No

Ndb_api_pruned_scan_count_session   Yes Session No

Ndb_api_pruned_scan_count_slave   Yes Global No

Ndb_api_range_scan_count   Yes Global No

Ndb_api_range_scan_count_session   Yes Session No

Ndb_api_range_scan_count_slave   Yes Global No

Ndb_api_read_row_count   Yes Global No

Ndb_api_read_row_count_session   Yes Session No

Ndb_api_read_row_count_slave   Yes Global No

Ndb_api_scan_batch_count   Yes Global No

Ndb_api_scan_batch_count_session   Yes Session No

Ndb_api_scan_batch_count_slave   Yes Global No

Ndb_api_table_scan_count   Yes Global No

Ndb_api_table_scan_count_session   Yes Session No

Ndb_api_table_scan_count_slave   Yes Global No

Ndb_api_trans_abort_count   Yes Global No

Ndb_api_trans_abort_count_session   Yes Session No

Ndb_api_trans_abort_count_slave   Yes Global No

Ndb_api_trans_close_count   Yes Global No

Ndb_api_trans_close_count_session   Yes Session No

Ndb_api_trans_close_count_slave   Yes Global No

Ndb_api_trans_commit_count   Yes Global No



Server Option and Variable Reference

438

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_api_trans_commit_count_session   Yes Session No

Ndb_api_trans_commit_count_slave   Yes Global No

Ndb_api_trans_local_read_row_count   Yes Global No

Ndb_api_trans_local_read_row_count_session   Yes Session No

Ndb_api_trans_local_read_row_count_slave   Yes Global No

Ndb_api_trans_start_count   Yes Global No

Ndb_api_trans_start_count_session   Yes Session No

Ndb_api_trans_start_count_slave   Yes Global No

Ndb_api_uk_op_count   Yes Global No

Ndb_api_uk_op_count_session   Yes Session No

Ndb_api_uk_op_count_slave   Yes Global No

Ndb_api_wait_exec_complete_count   Yes Global No

Ndb_api_wait_exec_complete_count_session   Yes Session No

Ndb_api_wait_exec_complete_count_slave   Yes Global No

Ndb_api_wait_meta_request_count   Yes Global No

Ndb_api_wait_meta_request_count_session   Yes Session No

Ndb_api_wait_meta_request_count_slave   Yes Global No

Ndb_api_wait_nanos_count   Yes Global No

Ndb_api_wait_nanos_count_session   Yes Session No

Ndb_api_wait_nanos_count_slave   Yes Global No

Ndb_api_wait_scan_result_count   Yes Global No

Ndb_api_wait_scan_result_count_session   Yes Session No

Ndb_api_wait_scan_result_count_slave   Yes Global No

ndb_autoincrement_prefetch_szYes Yes Yes  Both Yes

ndb-batch-size Yes Yes Yes  Global No

ndb-blob-read-
batch-bytes

Yes Yes Yes  Both Yes

ndb-blob-write-
batch-bytes

Yes Yes Yes  Both Yes

ndb_cache_check_timeYes Yes Yes  Global Yes

ndb-cluster-
connection-pool

Yes Yes Yes  Global No

Ndb_cluster_node_id   Yes Both No

Ndb_config_from_host   Yes Both No

Ndb_config_from_port   Yes Both No

Ndb_conflict_fn_epoch   Yes Global No

Ndb_conflict_fn_epoch_trans   Yes Global No

Ndb_conflict_fn_max   Yes Global No

Ndb_conflict_fn_old   Yes Global No

Ndb_conflict_trans_conflict_commit_count   Yes Global No

Ndb_conflict_trans_detect_iter_count   Yes Global No

Ndb_conflict_trans_reject_count   Yes Global No



Server Option and Variable Reference

439

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_conflict_trans_row_reject_count   Yes Global No

ndb-
connectstring

Yes Yes     

ndb-deferred-
constraints

Yes Yes   Both Yes

- Variable:
ndb_deferred_constraints

  Yes  Both Yes

ndb_deferred_constraintsYes Yes Yes  Both Yes

ndb-distribution Yes Yes   Global Yes

- Variable:
ndb_distribution

  Yes  Global Yes

ndb_distribution Yes Yes Yes  Global Yes

ndb_eventbuffer_max_allocYes Yes Yes  Global Yes

Ndb_execute_count   Yes Global No

ndb_extra_loggingYes Yes Yes  Global Yes

ndb_force_send Yes Yes Yes  Both Yes

ndb_index_stat_cache_entriesYes Yes Yes  Both Yes

ndb_index_stat_enableYes Yes Yes  Both Yes

ndb_index_stat_optionYes Yes Yes  Both Yes

ndb_index_stat_update_freqYes Yes Yes  Both Yes

ndb_join_pushdown  Yes  Both Yes

ndb-log-apply-
status

Yes Yes   Global No

- Variable:
ndb_log_apply_status

  Yes  Global No

ndb_log_apply_statusYes Yes Yes  Global No

ndb_log_bin Yes  Yes  Both Yes

ndb_log_binlog_indexYes  Yes  Global Yes

ndb-log-empty-
epochs

Yes Yes Yes  Global Yes

ndb_log_empty_epochsYes Yes Yes  Global Yes

ndb-log-empty-
update

Yes Yes Yes  Global Yes

ndb_log_empty_updateYes Yes Yes  Global Yes

ndb-log-orig Yes Yes   Global No

- Variable:
ndb_log_orig

  Yes  Global No

ndb_log_orig Yes Yes Yes  Global No

ndb-log-
transaction-id

Yes Yes   Global No

- Variable:
ndb_log_transaction_id

  Yes  Global No

ndb_log_transaction_id  Yes  Global No



Server Option and Variable Reference

440

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ndb-log-update-
as-write

Yes Yes Yes  Global Yes

ndb_log_updated_onlyYes Yes Yes  Global Yes

ndb-mgmd-host Yes Yes     

ndb-nodeid Yes Yes  Yes Global No

Ndb_number_of_data_nodes   Yes Global No

ndb_optimization_delay  Yes  Global Yes

ndb_optimized_node_selectionYes Yes Yes  Global No

Ndb_pruned_scan_count   Yes Global No

Ndb_pushed_queries_defined   Yes Global No

Ndb_pushed_queries_dropped   Yes Global No

Ndb_pushed_queries_executed   Yes Global No

Ndb_pushed_reads   Yes Global No

ndb_report_thresh_binlog_epoch_slipYes Yes Yes  Global Yes

ndb_report_thresh_binlog_mem_usageYes Yes Yes  Global Yes

Ndb_scan_count    Yes Global No

ndb_table_no_logging  Yes  Session Yes

ndb_table_temporary  Yes  Session Yes

ndb-transid-
mysql-
connection-map

Yes      

ndb_use_copying_alter_table  Yes  Both No

ndb_use_exact_count  Yes  Both Yes

ndb_use_transactionsYes Yes Yes  Both Yes

ndb_version   Yes  Global No

ndb_version_string  Yes  Global No

ndb-wait-
connected

Yes Yes Yes  Global No

ndb-wait-setup Yes Yes Yes  Global No

ndbcluster Yes Yes     

- Variable:
have_ndbcluster

      

ndbinfo_database   Yes  Global No

ndbinfo_max_bytesYes  Yes  Both Yes

ndbinfo_max_rowsYes  Yes  Both Yes

ndbinfo_offline   Yes  Global Yes

ndbinfo_show_hiddenYes  Yes  Both Yes

ndbinfo_table_prefixYes  Yes  Both Yes

ndbinfo_version   Yes  Global No

net_buffer_length Yes Yes Yes  Both Yes

net_read_timeout Yes Yes Yes  Both Yes

net_retry_count Yes Yes Yes  Both Yes



Server Option and Variable Reference

441

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

net_write_timeout Yes Yes Yes  Both Yes

new Yes Yes Yes  Both Yes

no-defaults Yes      

Not_flushed_delayed_rows   Yes Global No

old Yes Yes Yes  Global No

old-alter-table Yes Yes   Both Yes

- Variable:
old_alter_table

  Yes  Both Yes

old_passwords   Yes  Both Yes

old-style-user-
limits

Yes Yes     

one-thread Yes Yes     

Open_files    Yes Global No

open-files-limit Yes Yes   Global No

- Variable:
open_files_limit

  Yes  Global No

Open_streams    Yes Global No

Open_table_definitions   Yes Global No

Open_tables    Yes Both No

Opened_files    Yes Global No

Opened_table_definitions   Yes Both No

Opened_tables    Yes Both No

optimizer_prune_levelYes Yes Yes  Both Yes

optimizer_search_depthYes Yes Yes  Both Yes

optimizer_switch Yes Yes Yes  Both Yes

partition Yes Yes     

- Variable:
have_partitioning

      

performance_schemaYes Yes Yes  Global No

Performance_schema_cond_classes_lost   Yes Global No

Performance_schema_cond_instances_lost   Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes  Global No

performance_schema_events_waits_history_sizeYes Yes Yes  Global No

Performance_schema_file_classes_lost   Yes Global No

Performance_schema_file_handles_lost   Yes Global No

Performance_schema_file_instances_lost   Yes Global No

Performance_schema_locker_lost   Yes Global No

performance_schema_max_cond_classesYes Yes Yes  Global No

performance_schema_max_cond_instancesYes Yes Yes  Global No

performance_schema_max_file_classesYes Yes Yes  Global No

performance_schema_max_file_handlesYes Yes Yes  Global No

performance_schema_max_file_instancesYes Yes Yes  Global No



Server Option and Variable Reference

442

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_max_mutex_classesYes Yes Yes  Global No

performance_schema_max_mutex_instancesYes Yes Yes  Global No

performance_schema_max_rwlock_classesYes Yes Yes  Global No

performance_schema_max_rwlock_instancesYes Yes Yes  Global No

performance_schema_max_table_handlesYes Yes Yes  Global No

performance_schema_max_table_instancesYes Yes Yes  Global No

performance_schema_max_thread_classesYes Yes Yes  Global No

performance_schema_max_thread_instancesYes Yes Yes  Global No

Performance_schema_mutex_classes_lost   Yes Global No

Performance_schema_mutex_instances_lost   Yes Global No

Performance_schema_rwlock_classes_lost   Yes Global No

Performance_schema_rwlock_instances_lost   Yes Global No

Performance_schema_table_handles_lost   Yes Global No

Performance_schema_table_instances_lost   Yes Global No

Performance_schema_thread_classes_lost   Yes Global No

Performance_schema_thread_instances_lost   Yes Global No

pid-file Yes Yes   Global No

- Variable:
pid_file

  Yes  Global No

plugin Yes Yes     

plugin_dir Yes Yes Yes  Global No

plugin-load Yes Yes     

port Yes Yes Yes  Global No

port-open-
timeout

Yes Yes     

preload_buffer_sizeYes Yes Yes  Both Yes

Prepared_stmt_count   Yes Global No

print-defaults Yes      

profiling   Yes  Varies Yes

profiling_history_sizeYes Yes Yes  Both Yes

protocol_version   Yes  Global No

proxy_user   Yes  Session No

pseudo_slave_mode  Yes  Session Yes

pseudo_thread_id   Yes  Session Yes

Qcache_free_blocks   Yes Global No

Qcache_free_memory   Yes Global No

Qcache_hits    Yes Global No

Qcache_inserts    Yes Global No

Qcache_lowmem_prunes   Yes Global No

Qcache_not_cached   Yes Global No

Qcache_queries_in_cache   Yes Global No



Server Option and Variable Reference

443

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Qcache_total_blocks   Yes Global No

Queries    Yes Both No

query_alloc_block_sizeYes Yes Yes  Both Yes

query_cache_limit Yes Yes Yes  Global Yes

query_cache_min_res_unitYes Yes Yes  Global Yes

query_cache_size Yes Yes Yes  Global Yes

query_cache_type Yes Yes Yes  Both Yes

query_cache_wlock_invalidateYes Yes Yes  Both Yes

query_prealloc_sizeYes Yes Yes  Both Yes

Questions    Yes Both No

rand_seed1   Yes  Session Yes

rand_seed2   Yes  Session Yes

range_alloc_block_sizeYes Yes Yes  Both Yes

read_buffer_size Yes Yes Yes  Both Yes

read_only Yes Yes Yes  Global Yes

read_rnd_buffer_sizeYes Yes Yes  Both Yes

relay-log Yes Yes   Global No

- Variable:
relay_log

  Yes  Global No

relay-log-index Yes Yes   Global No

- Variable:
relay_log_index

  Yes  Global No

relay_log_index Yes Yes Yes  Global No

relay-log-info-file Yes Yes     

- Variable:
relay_log_info_file

      

relay_log_info_file Yes Yes Yes  Global No

relay_log_purge Yes Yes Yes  Global Yes

relay-log-
recovery

Yes Yes     

- Variable:
relay_log_recovery

      

relay_log_recoveryYes Yes Yes  Global Yes

relay_log_space_limitYes Yes Yes  Global No

remove Yes      

replicate-do-db Yes Yes     

replicate-do-table Yes Yes     

replicate-ignore-
db

Yes Yes     

replicate-ignore-
table

Yes Yes     

replicate-rewrite-
db

Yes Yes     



Server Option and Variable Reference

444

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

replicate-same-
server-id

Yes Yes     

replicate-wild-do-
table

Yes Yes     

replicate-wild-
ignore-table

Yes Yes     

report-host Yes Yes   Global No

- Variable:
report_host

  Yes  Global No

report-password Yes Yes   Global No

- Variable:
report_password

  Yes  Global No

report-port Yes Yes   Global No

- Variable:
report_port

  Yes  Global No

report-user Yes Yes   Global No

- Variable:
report_user

  Yes  Global No

rpl_recovery_rank   Yes  Global Yes

Rpl_semi_sync_master_clients   Yes Global No

rpl_semi_sync_master_enabled  Yes  Global Yes

Rpl_semi_sync_master_net_avg_wait_time   Yes Global No

Rpl_semi_sync_master_net_wait_time   Yes Global No

Rpl_semi_sync_master_net_waits   Yes Global No

Rpl_semi_sync_master_no_times   Yes Global No

Rpl_semi_sync_master_no_tx   Yes Global No

Rpl_semi_sync_master_status   Yes Global No

Rpl_semi_sync_master_timefunc_failures   Yes Global No

rpl_semi_sync_master_timeout  Yes  Global Yes

rpl_semi_sync_master_trace_level  Yes  Global Yes

Rpl_semi_sync_master_tx_avg_wait_time   Yes Global No

Rpl_semi_sync_master_tx_wait_time   Yes Global No

Rpl_semi_sync_master_tx_waits   Yes Global No

rpl_semi_sync_master_wait_no_slave  Yes  Global Yes

Rpl_semi_sync_master_wait_pos_backtraverse   Yes Global No

Rpl_semi_sync_master_wait_sessions   Yes Global No

Rpl_semi_sync_master_yes_tx   Yes Global No

rpl_semi_sync_slave_enabled  Yes  Global Yes

Rpl_semi_sync_slave_status   Yes Global No

rpl_semi_sync_slave_trace_level  Yes  Global Yes

Rpl_status    Yes Global No

safe-mode Yes Yes     



Server Option and Variable Reference

445

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

safe-show-
database

Yes Yes     

safe-user-create Yes Yes     

safemalloc-mem-
limit

Yes Yes     

secure-auth Yes Yes   Global Yes

- Variable:
secure_auth

  Yes  Global Yes

secure-file-priv Yes Yes   Global No

- Variable:
secure_file_priv

  Yes  Global No

Select_full_join    Yes Both No

Select_full_range_join   Yes Both No

Select_range    Yes Both No

Select_range_check   Yes Both No

Select_scan    Yes Both No

server-id Yes Yes   Global Yes

- Variable:
server_id

  Yes  Global Yes

server-id-bits Yes Yes   Global No

- Variable:
server_id_bits

  Yes  Global No

server_id_bits Yes Yes Yes  Global No

set-variable Yes Yes     

shared_memory Yes Yes Yes  Global No

shared_memory_base_nameYes Yes Yes  Global No

show-slave-auth-
info

Yes Yes     

skip-character-
set-client-
handshake

Yes Yes     

skip-concurrent-
insert

Yes Yes     

- Variable:
concurrent_insert

      

skip-event-
scheduler

Yes Yes     

skip_external_lockingYes Yes Yes  Global No

skip-grant-tables Yes Yes     

skip-host-cache Yes Yes     

skip-locking Yes Yes     

skip-name-
resolve

Yes Yes   Global No

- Variable:
skip_name_resolve

  Yes  Global No



Server Option and Variable Reference

446

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

skip-ndbcluster Yes Yes     

skip-networking Yes Yes   Global No

- Variable:
skip_networking

  Yes  Global No

skip-new Yes Yes     

skip-partition Yes Yes     

skip-safemalloc Yes Yes     

skip-show-
database

Yes Yes   Global No

- Variable:
skip_show_database

  Yes  Global No

skip-slave-start Yes Yes     

skip-ssl Yes Yes     

skip-stack-trace Yes Yes     

skip-symlink Yes Yes     

skip-thread-
priority

Yes Yes     

slave_allow_batchingYes Yes Yes  Global Yes

slave_compressed_protocolYes Yes Yes  Global Yes

slave_exec_mode Yes Yes Yes  Global Yes

Slave_heartbeat_period   Yes Global No

slave-load-tmpdir Yes Yes   Global No

- Variable:
slave_load_tmpdir

  Yes  Global No

slave-max-
allowed-packet

Yes Yes     

- Variable:
slave_max_allowed_packet

      

slave_max_allowed_packet  Yes  Global Yes

slave-net-timeout Yes Yes   Global Yes

- Variable:
slave_net_timeout

  Yes  Global Yes

Slave_open_temp_tables   Yes Global No

Slave_received_heartbeats   Yes Global No

Slave_retried_transactions   Yes Global No

Slave_running    Yes Global No

slave-skip-errors Yes Yes   Global No

- Variable:
slave_skip_errors

  Yes  Global No

slave_transaction_retriesYes Yes Yes  Global Yes

slave_type_conversionsYes Yes Yes  Global No

Slow_launch_threads   Yes Both No

slow_launch_time Yes Yes Yes  Global Yes



Server Option and Variable Reference

447

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Slow_queries    Yes Both No

slow-query-log Yes Yes   Global Yes

- Variable:
slow_query_log

  Yes  Global Yes

slow_query_log_fileYes Yes Yes  Global Yes

slow-start-
timeout

Yes Yes     

socket Yes Yes Yes  Global No

sort_buffer_size Yes Yes Yes  Both Yes

Sort_merge_passes   Yes Both No

Sort_range    Yes Both No

Sort_rows    Yes Both No

Sort_scan    Yes Both No

sporadic-binlog-
dump-fail

Yes Yes     

sql_auto_is_null   Yes  Varies Yes

sql_big_selects   Yes  Varies Yes

sql_big_tables   Yes  Varies Yes

sql_buffer_result   Yes  Varies Yes

sql_log_bin   Yes  Varies Yes

sql_log_off   Yes  Varies Yes

sql_log_update   Yes  Session Yes

sql_low_priority_updates  Yes  Both Yes

sql_max_join_size   Yes  Both Yes

sql-mode Yes Yes   Both Yes

- Variable:
sql_mode

  Yes  Both Yes

sql_notes   Yes  Varies Yes

sql_quote_show_create  Yes  Varies Yes

sql_safe_updates   Yes  Varies Yes

sql_select_limit   Yes  Both Yes

sql_slave_skip_counter  Yes  Global Yes

sql_warnings   Yes  Varies Yes

ssl Yes Yes     

Ssl_accept_renegotiates   Yes Global No

Ssl_accepts    Yes Global No

ssl-ca Yes Yes   Global No

- Variable: ssl_ca   Yes  Global No

Ssl_callback_cache_hits   Yes Global No

ssl-capath Yes Yes   Global No

- Variable:
ssl_capath

  Yes  Global No



Server Option and Variable Reference

448

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ssl-cert Yes Yes   Global No

- Variable:
ssl_cert

  Yes  Global No

Ssl_cipher    Yes Both No

ssl-cipher Yes Yes   Global No

- Variable:
ssl_cipher

  Yes  Global No

Ssl_cipher_list    Yes Both No

Ssl_client_connects   Yes Global No

Ssl_connect_renegotiates   Yes Global No

Ssl_ctx_verify_depth   Yes Global No

Ssl_ctx_verify_mode   Yes Global No

Ssl_default_timeout   Yes Both No

Ssl_finished_accepts   Yes Global No

Ssl_finished_connects   Yes Global No

ssl-key Yes Yes   Global No

- Variable:
ssl_key

  Yes  Global No

Ssl_session_cache_hits   Yes Global No

Ssl_session_cache_misses   Yes Global No

Ssl_session_cache_mode   Yes Global No

Ssl_session_cache_overflows   Yes Global No

Ssl_session_cache_size   Yes Global No

Ssl_session_cache_timeouts   Yes Global No

Ssl_sessions_reused   Yes Both No

Ssl_used_session_cache_entries   Yes Global No

Ssl_verify_depth    Yes Both No

Ssl_verify_mode    Yes Both No

Ssl_version    Yes Both No

standalone Yes Yes     

storage_engine   Yes  Both Yes

stored_program_cacheYes Yes Yes  Global Yes

super-large-
pages

Yes Yes     

symbolic-links Yes Yes     

sync_binlog Yes Yes Yes  Global Yes

sync_frm Yes Yes Yes  Global Yes

sync_master_info Yes Yes Yes  Global Yes

sync_relay_log Yes Yes Yes  Global Yes

sync_relay_log_infoYes Yes Yes  Global Yes

sysdate-is-now Yes Yes     

system_time_zone  Yes  Global No



Server Option and Variable Reference

449

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

table_definition_cache  Yes  Global Yes

table_lock_wait_timeoutYes Yes Yes  Global Yes

Table_locks_immediate   Yes Global No

Table_locks_waited   Yes Global No

table_open_cache   Yes  Global Yes

table_type   Yes  Both Yes

tc-heuristic-
recover

Yes Yes     

Tc_log_max_pages_used   Yes Global No

Tc_log_page_size    Yes Global No

Tc_log_page_waits   Yes Global No

temp-pool Yes Yes     

thread_cache_sizeYes Yes Yes  Global Yes

thread_concurrencyYes Yes Yes  Global No

thread_handling Yes Yes Yes  Global No

thread_pool_algorithmYes Yes Yes  Global No

thread_pool_high_priority_connectionYes Yes Yes  Both Yes

thread_pool_max_unused_threadsYes Yes Yes  Global Yes

thread_pool_prio_kickup_timerYes Yes Yes  Both Yes

thread_pool_size Yes Yes Yes  Global No

thread_pool_stall_limitYes Yes Yes  Global Yes

thread_stack Yes Yes Yes  Global No

Threads_cached    Yes Global No

Threads_connected   Yes Global No

Threads_created    Yes Global No

Threads_running    Yes Global No

time_format   Yes  Varies No

time_zone   Yes  Both Yes

timed_mutexes Yes Yes Yes  Global Yes

timestamp   Yes  Session Yes

tmp_table_size Yes Yes Yes  Both Yes

tmpdir Yes Yes Yes  Global No

transaction_alloc_block_sizeYes Yes Yes  Both Yes

transaction_allow_batching  Yes  Session Yes

transaction-
isolation

Yes Yes     

- Variable:
tx_isolation

      

transaction_prealloc_sizeYes Yes Yes  Both Yes

tx_isolation   Yes  Both Yes

unique_checks   Yes  Varies Yes

updatable_views_with_limitYes Yes Yes  Both Yes



Server Command Options

450

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Uptime    Yes Global No

Uptime_since_flush_status   Yes Global No

user Yes Yes     

verbose Yes Yes     

version   Yes  Global No

version_comment   Yes  Global No

version_compile_machine  Yes  Global No

version_compile_os  Yes  Global No

wait_timeout Yes Yes Yes  Both Yes

warning_count   Yes  Session No
aThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.
bThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.

5.1.4 Server Command Options

When you start the mysqld server, you can specify program options using any of the methods
described in Section 4.2.3, “Specifying Program Options”. The most common methods are to provide
options in an option file or on the command line. However, in most cases it is desirable to make sure
that the server uses the same options each time it runs. The best way to ensure this is to list them in an
option file. See Section 4.2.6, “Using Option Files”. That section also describes option file format and
syntax.

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options from
the [mysqld], [server], [mysqld_safe], and [safe_mysqld] groups. mysql.server reads
options from the [mysqld] and [mysql.server] groups.

An embedded MySQL server usually reads options from the [server], [embedded], and
[xxxxx_SERVER] groups, where xxxxx is the name of the application into which the server is
embedded.

mysqld accepts many command options. For a brief summary, execute this command:

mysqld --help

To see the full list, use this command:

mysqld --verbose --help

Some of the items in the list are actually system variables that can be set at server startup. These
can be displayed at runtime using the SHOW VARIABLES statement. Some items displayed by the
preceding mysqld command do not appear in SHOW VARIABLES output; this is because they are
options only and not system variables.

The following list shows some of the most common server options. Additional options are described in
other sections:

• Options that affect security: See Section 6.1.4, “Security-Related mysqld Options and Variables”.

• SSL-related options: See Section 6.4.5, “Command Options for Secure Connections”.

• Binary log control options: See Section 5.4.4, “The Binary Log”.

• Replication-related options: See Section 17.1.3, “Replication and Binary Logging Options and
Variables”.



Server Command Options

451

• Options for loading plugins such as pluggable storage engines: See Section 5.5.2, “Installing and
Uninstalling Plugins”.

• Options specific to particular storage engines: See Section 14.17, “InnoDB Startup Options and
System Variables”, Section 15.3.1, “MyISAM Startup Options”, and MySQL Server Options for NDB
Cluster.

Some options control the size of buffers or caches. For a given buffer, the server might need to allocate
internal data structures. These structures typically are allocated from the total memory allocated to
the buffer, and the amount of space required might be platform dependent. This means that when you
assign a value to an option that controls a buffer size, the amount of space actually available might
differ from the value assigned. In some cases, the amount might be less than the value assigned. It is
also possible that the server will adjust a value upward. For example, if you assign a value of 0 to an
option for which the minimal value is 1024, the server will set the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some options take file name values. Unless otherwise specified, the default file location is the data
directory if the value is a relative path name. To specify the location explicitly, use an absolute path
name. Suppose that the data directory is /var/mysql/data. If a file-valued option is given as a
relative path name, it will be located under /var/mysql/data. If the value is an absolute path name,
its location is as given by the path name.

You can also set the values of server system variables at server startup by using variable names as
options. To assign a value to a server system variable, use an option of the form --var_name=value.
For example, --key_buffer_size=32M sets the key_buffer_size variable to a value of 32MB.

When you assign a value to a variable, MySQL might automatically correct the value to stay within a
given range, or adjust the value to the closest permissible value if only certain values are permitted.

To restrict the maximum value to which a system variable can be set at runtime with the SET
statement, specify this maximum by using an option of the form --maximum-var_name=value at
server startup.

You can change the values of most system variables at runtime with the SET statement. See
Section 13.7.4.1, “SET Syntax for Variable Assignment”.

Section 5.1.5, “Server System Variables”, provides a full description for all variables, and additional
information for setting them at server startup and runtime. For information on changing system
variables, see Section 5.1.1, “Configuring the Server”.

•   --help, -?

Command-Line Format --help

Display a short help message and exit. Use both the --verbose and --help options to see the full
message.

•   --allow-suspicious-udfs

Command-Line Format --allow-suspicious-udfs

Type booleanPermitted Values

Default FALSE

This option controls whether user-defined functions that have only an xxx symbol for the main
function can be loaded. By default, the option is off and only UDFs that have at least one auxiliary
symbol can be loaded; this prevents attempts at loading functions from shared object files other than
those containing legitimate UDFs. See Section 24.4.2.6, “UDF Security Precautions”.

•   --ansi



Server Command Options

452

Command-Line Format --ansi

Use standard (ANSI) SQL syntax instead of MySQL syntax. For more precise control over the server
SQL mode, use the --sql-mode option instead. See Section 1.7, “MySQL Standards Compliance”,
and Section 5.1.8, “Server SQL Modes”.

•   --basedir=dir_name, -b dir_name

Command-Line Format --basedir=dir_name

Name basedir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path to the MySQL installation directory. This option sets the basedir system variable.

•   --big-tables

Command-Line Format --big-tables

Name big_tables

Variable
Scope

Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name big_tables

Variable
Scope

Global, Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Enable large result sets by saving all temporary sets in files. This option prevents most “table full”
errors, but also slows down queries for which in-memory tables would suffice. The server is able to
handle large result sets automatically by using memory for small temporary tables and switching to
disk tables where necessary.

•   --bind-address=addr

Command-Line Format --bind-address=addr

Type stringPermitted Values

Default 0.0.0.0

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound
to a single address, but it is possible for an address to map onto multiple network interfaces. The
default address is 0.0.0.0. To specify an address explicitly, use the --bind-address=addr
option at server startup, where addr is an IPv4 or IPv6 address or a host name. (IPv6 addresses are
not supported before MySQL 5.5.3.) If addr is a host name, the server resolves the name to an IP
address and binds to that address.



Server Command Options

453

The server treats different types of addresses as follows:

• If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4
interfaces.

• If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6
interfaces. Use this address to permit both IPv4 and IPv6 connections on all server interfaces.

• If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that
address, in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1,
clients can connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts
TCP/IP connections only for that IPv4 or IPv6 address.

If you intend to bind the server to a specific address, be sure that the mysql.user grant table
contains an account with administrative privileges that you can use to connect to that address.
Otherwise, you will not be able to shut down the server. For example, if you bind the server to
::, you can connect to it using all existing accounts. But if you bind the server to ::1, it accepts
connections only on that address. In that case, first make sure that the 'root'@'::1' account is
present in the mysql.user table so you can still connect to the server to shut it down.

•   --binlog-format={ROW|STATEMENT|MIXED}

Command-Line Format --binlog-format=format

Name binlog_format

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default STATEMENT

ROW

STATEMENT

Permitted Values

Valid
Values

MIXED

Type enumeration

Default STATEMENT

ROW

STATEMENT

Permitted Values (>=
5.5.15-ndb-7.2.1, <=
5.5.30-ndb-7.2.12)

Valid
Values

MIXED

Type enumeration

Default MIXED

ROW

STATEMENT

Permitted Values (>=
5.5.31-ndb-7.2.13)

Valid
Values

MIXED

Specify whether to use row-based, statement-based, or mixed replication. Statement-based is the
default in MySQL 5.5. This is also true for MySQL NDB Cluster 7.2.1 and later. See Section 17.1.2,
“Replication Formats”.



Server Command Options

454

Under some conditions, changing this variable at runtime is not possible, or causes replication to fail.
See Section 5.4.4.2, “Setting The Binary Log Format”, for more information.

Prior to MySQL 5.5, setting the binary logging format without enabling binary logging prevented the
MySQL server from starting. In MySQL 5.5, the server starts in such cases, the binlog_format
global system variable is set, and a warning is logged instead of an error. (Bug #42928)

•   --bootstrap

Command-Line Format --bootstrap

This option is used by the mysql_install_db program to create the MySQL privilege tables
without having to start a full MySQL server.

When the server operates in bootstap mode, some functionality is unavailable that limits the
statements permitted in any file named by the --init-file option. For more information, see the
description of that option.

•   --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Name character_sets_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

•   --character-set-client-handshake

Command-Line Format --character-set-client-handshake

Type booleanPermitted Values

Default TRUE

Do not ignore character set information sent by the client. To ignore client information and use the
default server character set, use --skip-character-set-client-handshake; this makes
MySQL behave like MySQL 4.0.

•   --character-set-filesystem=charset_name

Command-Line Format --character-set-filesystem=name

Name character_set_filesystem

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default binary

The file system character set. This option sets the character_set_filesystem system variable.

•   --character-set-server=charset_name, -C charset_name



Server Command Options

455

Command-Line Format --character-set-server

Name character_set_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1

Use charset_name as the default server character set. See Section 10.5, “Character Set
Configuration”. If you use this option to specify a nondefault character set, you should also use --
collation-server to specify the collation.

•   --chroot=dir_name, -r dir_name

Command-Line Format --chroot=dir_name

Permitted Values Type directory name

Put the mysqld server in a closed environment during startup by using the chroot() system call.
This is a recommended security measure. Use of this option somewhat limits LOAD DATA INFILE
and SELECT ... INTO OUTFILE.

•   --collation-server=collation_name

Command-Line Format --collation-server

Name collation_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1_swedish_ci

Use collation_name as the default server collation. See Section 10.5, “Character Set
Configuration”.

•   --console

Command-Line Format --console

Platform Specific Windows

(Windows only.) Write error log messages to stderr and stdout. mysqld does not close the
console window if this option is used.

As of MySQL 5.5.3, if both --log-error and --console are specified, --log-error takes
precedence. The server writes to the log file, but not to the console. Before 5.5.3, whichever option is
given last takes precedence.

•   --core-file

Command-Line Format --core-file

Type booleanPermitted Values

Default OFF



Server Command Options

456

Write a core file if mysqld dies. The name and location of the core file is system dependent. On
Linux, a core file named core.pid is written to the current working directory of the process, which
for mysqld is the data directory. pid represents the process ID of the server process. On OS
X, a core file named core.pid is written to the /cores directory. On Solaris, use the coreadm
command to specify where to write the core file and how to name it.

For some systems, to get a core file you must also specify the --core-file-size option to
mysqld_safe. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”. On some
systems, such as Solaris, you do not get a core file if you are also using the --user option. There
might be additional restrictions or limitations. For example, it might be necessary to execute ulimit
-c unlimited before starting the server. Consult your system documentation.

•   --datadir=dir_name, -h dir_name

Command-Line Format --datadir=dir_name

Name datadir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path to the MySQL server data directory. This option sets the datadir system variable. See the
description of that variable.

•   --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Name debug

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values (Unix)

Default d:t:i:o,/tmp/mysqld.trace

Type stringPermitted Values
(Windows) Default d:t:i:O,\mysqld.trace

If MySQL is configured with the -DWITH_DEBUG=1 CMake option, you can use this option to get a
trace file of what mysqld is doing. A typical debug_options string is d:t:o,file_name. The
default is d:t:i:o,/tmp/mysqld.trace on Unix and d:t:i:O,\mysqld.trace on Windows.

Using -DWITH_DEBUG=1 to configure MySQL with debugging support enables you to use the --
debug="d,parser_debug" option when you start the server. This causes the Bison parser that
is used to process SQL statements to dump a parser trace to the server's standard error output.
Typically, this output is written to the error log.

This option may be given multiple times. Values that begin with + or - are added to or subtracted
from the previous value. For example, --debug=T --debug=+P sets the value to P:T.

For more information, see Section 24.5.3, “The DBUG Package”.

•   --debug-sync-timeout[=N]



Server Command Options

457

Command-Line Format --debug-sync-timeout[=#]

Permitted Values Type integer

Controls whether the Debug Sync facility for testing and debugging is enabled. Use of Debug
Sync requires that MySQL be configured with the -DENABLE_DEBUG_SYNC=1 CMake option (see
Section 2.9.4, “MySQL Source-Configuration Options”). If Debug Sync is not compiled in, this option
is not available. The option value is a timeout in seconds. The default value is 0, which disables
Debug Sync. To enable it, specify a value greater than 0; this value also becomes the default timeout
for individual synchronization points. If the option is given without a value, the timeout is set to 300
seconds.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

For additional information about this option, see Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”.

•   --default-character-set=charset_name

Deprecated 5.0.0

Removed 5.5.3

Command-Line Format --default-character-set=name

Permitted Values Type string

Use charset_name as the default character set. This option is deprecated in favor of --
character-set-server. See Section 10.5, “Character Set Configuration”. --default-
character-set was removed in MySQL 5.5.3.

•   --default-collation=collation_name

Deprecated 4.1.3

Command-Line Format --default-collation=name

Permitted Values Type string

Use collation_name as the default collation. This option is deprecated in favor of --collation-
server. See Section 10.5, “Character Set Configuration”. --default-collation was removed in
MySQL 5.5.3.

•   --default-storage-engine=type

Command-Line Format --default-storage-engine=name

Name storage_engine

Variable
Scope

Global, Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name default_storage_engine

Variable
Scope

Global, Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

Permitted Values (<=
5.5.4)

Type enumeration

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html


Server Command Options

458

Default MyISAM

Type enumerationPermitted Values (>=
5.5.5) Default InnoDB

Set the default storage engine (table type) for tables. See Chapter 15, Alternative Storage Engines.

If you disable the default storage engine at server startup, you must set the default engine to a
different engine or the server will not start.

•   --default-time-zone=timezone

Command-Line Format --default-time-zone=name

Permitted Values Type string

Set the default server time zone. This option sets the global time_zone system variable. If this
option is not given, the default time zone is the same as the system time zone (given by the value of
the system_time_zone system variable.

•   --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file
does not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the
current directory if given as a relative path name rather than a full path name. This must be the first
option on the command line if it is used.

For additional information about this option, see Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”.

•   --defaults-file=file_name

Read only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

Note

This must be the first option on the command line if it is used, except that if
the server is started with the --defaults-file and --install (or --
install-manual) options, --install (or --install-manual) must be
first.

For additional information about this option, see Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”.

•   --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysqld normally reads the [mysqld] group. If the --defaults-group-
suffix=_other option is given, mysqld also reads the [mysqld_other] group.

•   --delay-key-write[={OFF|ON|ALL}]

Command-Line Format --delay-key-write[=name]

Name delay_key_write

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes



Server Command Options

459

Type enumeration

Default ON

ON

OFF

Permitted Values

Valid
Values

ALL

Specify how to use delayed key writes. Delayed key writing causes key buffers not to be flushed
between writes for MyISAM tables. OFF disables delayed key writes. ON enables delayed key writes
for those tables that were created with the DELAY_KEY_WRITE option. ALL delays key writes for all
MyISAM tables. See Section 5.1.1, “Configuring the Server”, and Section 15.3.1, “MyISAM Startup
Options”.

Note

If you set this variable to ALL, you should not use MyISAM tables from within
another program (such as another MySQL server or myisamchk) when the
tables are in use. Doing so leads to index corruption.

For additional information about this option, see Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”.

•   --des-key-file=file_name

Command-Line Format --des-key-file=file_name

Read the default DES keys from this file. These keys are used by the DES_ENCRYPT() and
DES_DECRYPT() functions.

For additional information about this option, see Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”.

• --enable-locking

This option is deprecated and was removed in MySQL 5.5.3. Use --external-locking instead.

•   --enable-named-pipe

Command-Line Format --enable-named-pipe

Platform Specific Windows

Enable support for named pipes. This option applies only on Windows.

•   --enable-pstack

Deprecated 5.1.54

Removed 5.5.7

Command-Line Format --enable-pstack

Type booleanPermitted Values

Default FALSE

This option is nonfunctional before MySQL 5.5.7 and removed in 5.5.7.

• --engine-condition-pushdown={ON|OFF}

Deprecated 5.5.3, by optimizer_switch

Command-Line Format --engine-condition-pushdown



Server Command Options

460

Name engine_condition_pushdown

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Sets the engine_condition_pushdown system variable. For more information, see
Section 8.2.1.4, “Engine Condition Pushdown Optimization”.

•   --event-scheduler[=value]

Command-Line Format --event-scheduler[=value]

Name event_scheduler

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default OFF

ON

OFF

Permitted Values

Valid
Values

DISABLED

Enable or disable, and start or stop, the event scheduler.

For detailed information, see The --event-scheduler Option.

•   --exit-info[=flags], -T [flags]

Command-Line Format --exit-info[=flags]

Permitted Values Type integer

This is a bitmask of different flags that you can use for debugging the mysqld server. Do not use this
option unless you know exactly what it does!

•     --external-locking

Command-Line Format --external-locking

Type booleanPermitted Values

Default FALSE

Enable external locking (system locking), which is disabled by default. If you use this option on a
system on which lockd does not fully work (such as Linux), it is easy for mysqld to deadlock.

To disable external locking explicitly, use --skip-external-locking.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.11.5, “External Locking”.

•   --flush



Server Command Options

461

Command-Line Format --flush

Name flush

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Flush (synchronize) all changes to disk after each SQL statement. Normally, MySQL does a write
of all changes to disk only after each SQL statement and lets the operating system handle the
synchronizing to disk. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

•   --gdb

Command-Line Format --gdb

Type booleanPermitted Values

Default FALSE

Install an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and
disable stack tracing and core file handling. See Section 24.5, “Debugging and Porting MySQL”.

•   --general-log[={0|1}]

Command-Line Format --general-log

Name general_log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Specify the initial general query log state. With no argument or an argument of 1, the --general-
log option enables the log. If omitted or given with an argument of 0, the option disables the log.

•   --init-file=file_name

Command-Line Format --init-file=file_name

Name init_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Read SQL statements from this file at startup. Each statement must be on a single line and should
not include comments.

If the server is started with the --bootstrap option, it operates in bootstap mode and some
functionality is unavailable that limits the statements permitted in the file. These include statements
that relate to account management (such as CREATE USER or GRANT).



Server Command Options

462

• --innodb-xxx

Set an option for the InnoDB storage engine. The InnoDB options are listed in Section 14.17,
“InnoDB Startup Options and System Variables”.

•   --install [service_name]

Command-Line Format --install [service_name]

Platform Specific Windows

(Windows only) Install the server as a Windows service that starts automatically during Windows
startup. The default service name is MySQL if no service_name value is given. For more
information, see Section 2.3.7.7, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install options,
--install must be first.

•   --install-manual [service_name]

Command-Line Format --install-manual [service_name]

Platform Specific Windows

(Windows only) Install the server as a Windows service that must be started manually. It does not
start automatically during Windows startup. The default service name is MySQL if no service_name
value is given. For more information, see Section 2.3.7.7, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install-manual
options, --install-manual must be first.

•   --language=lang_name, -L lang_name

Deprecated 5.5.0, by lc-messages-dir

Command-Line Format --language=name

Name language

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default /usr/local/mysql/share/mysql/english/

The language to use for error messages. lang_name can be given as the language name or as the
full path name to the directory where the language files are installed. See Section 10.2, “Setting the
Error Message Language”.

As of MySQL 5.5, --lc-messages-dir and --lc-messages should be used rather than --
language, which is deprecated and handled as an alias for --lc-messages-dir.

•   --large-pages

Command-Line Format --large-pages

System Variable Name large_pages



Server Command Options

463

Variable
Scope

Global

Dynamic
Variable

No

Platform Specific Linux

Type booleanPermitted Values (Linux)

Default FALSE

Some hardware/operating system architectures support memory pages greater than the default
(usually 4KB). The actual implementation of this support depends on the underlying hardware and
operating system. Applications that perform a lot of memory accesses may obtain performance
improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

MySQL supports the Linux implementation of large page support (which is called HugeTLB in Linux).
See Section 8.12.4.2, “Enabling Large Page Support”. For Solaris support of large pages, see the
description of the --super-large-pages option.

--large-pages is disabled by default.

•   --lc-messages=locale_name

Command-Line Format --lc-messages=name

Name lc_messages

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default en_US

The locale to use for error messages. The default is en_US. The server converts the argument to a
language name and combines it with the value of --lc-messages-dir to produce the location for
the error message file. See Section 10.2, “Setting the Error Message Language”.

•   --lc-messages-dir=dir_name

Command-Line Format --lc-messages-dir=dir_name

Name lc_messages_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory where error messages are located. The server uses the value together with the value
of --lc-messages to produce the location for the error message file. See Section 10.2, “Setting the
Error Message Language”.

•   --local-service

Command-Line Format --local-service

(Windows only) A --local-service option following the service name causes the server to run
using the LocalService Windows account that has limited system privileges. This account is



Server Command Options

464

available only for Windows XP or newer. If both --defaults-file and --local-service are
given following the service name, they can be in any order. See Section 2.3.7.7, “Starting MySQL as
a Windows Service”.

•   --log[=file_name], -l [file_name]

Deprecated 5.1.29, by general-log

Command-Line Format --log[=file_name]

Name log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type file name

This option enables logging to the general query log, which contains entries that record client
connections and SQL statements received from clients. The log output destination can be selected
with the --log-output option. If you omit the file name, MySQL uses host_name.log as the file
name. See Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”, and
Section 5.4.3, “The General Query Log”.

The --log option is deprecated and is removed (along with the log system variable) in MySQL
5.6. Instead, use the --general_log option to enable the general query log and the --
general_log_file=file_name option to set the general query log file name.

•   --log-error[=file_name]

Command-Line Format --log-error[=file_name]

Name log_error

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Log errors and startup messages to this file. See Section 5.4.2, “The Error Log”. If the file name has
no extension, the server adds an extension of .err. If you omit the file name, the default log file on
Unix and Unix-like systems is host_name.err in the data directory. The default on Windows is
host_name.err in the data directory, unless the --pid-file option is specified. In that case, the
default name is the PID file base name with a suffix of .err in the data directory.

•   --log-isam[=file_name]

Command-Line Format --log-isam[=file_name]

Permitted Values Type file name

Log all MyISAM changes to this file (used only when debugging MyISAM).

•   --log-long-format

Deprecated 4.1.0

Command-Line Format --log-long-format

Log extra information to the binary log and slow query log, if they have been activated. For example,
the user name and timestamp are logged for all queries. This option is deprecated, as it now



Server Command Options

465

represents the default logging behavior. (See the description for --log-short-format.) The --
log-queries-not-using-indexes option is available for the purpose of logging queries that do
not use indexes to the slow query log. --log-long-format was removed in MySQL 5.5.3.

•   --log-output=value,...

Command-Line Format --log-output=name

Name log_output

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type set

Default FILE

TABLE

FILE

Permitted Values

Valid
Values

NONE

This option determines the destination for general query log and slow query log output. The option
value can be given as one or more of the words TABLE, FILE, or NONE. TABLE select logging to the
general_log and slow_log tables in the mysql database as a destination. FILE selects logging
to log files as a destination. NONE disables logging. If NONE is present in the option value, it takes
precedence over any other words that are present. TABLE and FILE can both be given to select to
both log output destinations.

This option selects log output destinations, but does not enable log output. To do that, use the --
general_log and --slow_query_log options. For FILE logging, the --general_log_file
and -slow_query_log_file options determine the log file location. For more information, see
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”.

•   --log-queries-not-using-indexes

Command-Line Format --log-queries-not-using-indexes

Name log_queries_not_using_indexes

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If you are using this option with the slow query log enabled, queries that are expected to retrieve all
rows are logged. See Section 5.4.5, “The Slow Query Log”. This option does not necessarily mean
that no index is used. For example, a query that uses a full index scan uses an index but would be
logged because the index would not limit the number of rows.

•   --log-short-format

Command-Line Format --log-short-format

Type booleanPermitted Values

Default FALSE

Log less information to the slow query log, if it has been activated.



Server Command Options

466

•   --log-slow-admin-statements

Command-Line Format --log-slow-admin-statements

Type booleanPermitted Values

Default OFF

Include slow administrative statements in the statements written to the slow query log. Administrative
statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP
INDEX, OPTIMIZE TABLE, and REPAIR TABLE.

•   --log-slow-queries[=file_name]

Deprecated 5.1.29, by slow-query-log

Command-Line Format --log-slow-queries[=name]

Name log_slow_queries

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

This option enables logging to the slow query log, which contains entries for all queries that have
taken more than long_query_time seconds to execute. See the descriptions of the --log-
long-format and --log-short-format options for details. The log output destination can
be selected with the --log-output option. If you omit the file name, MySQL uses host_name-
slow.log as the file name. See Section 5.4.1, “Selecting General Query and Slow Query Log
Output Destinations”, and Section 5.4.5, “The Slow Query Log”.

The --log-slow-queries option is deprecated and is removed (along with the
log_slow_queries system variable) in MySQL 5.6. Instead, use the --slow_query_log option
to enable the slow query log and the --slow_query_log_file=file_name option to set the slow
query log file name.

•   --log-tc=file_name

Command-Line Format --log-tc=file_name

Type file namePermitted Values

Default tc.log

The name of the memory-mapped transaction coordinator log file (for XA transactions that affect
multiple storage engines when the binary log is disabled). The default name is tc.log. The file is
created under the data directory if not given as a full path name. This option is unused.

•   --log-tc-size=size

Command-Line Format --log-tc-size=#

Type integer

Default 24576

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integerPermitted Values (64-bit
platforms, <= 5.5.2) Default 24576



Server Command Options

467

Max
Value

18446744073709547520

Type integer

Default 24576

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

The size in bytes of the memory-mapped transaction coordinator log. The default size is 24KB.

•   --log-warnings[=level], -W [level]

Command-Line Format --log-warnings[=#]

Name log_warnings

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

Print out warnings such as Aborted connection... to the error log. This option is enabled (1)
by default. To disable it, use --log-warnings=0. Specifying the option without a level value
increments the current value by 1. Enabling this option by setting it greater than 0 is recommended,
for example, if you use replication (you get more information about what is happening, such
as messages about network failures and reconnections). If the value is greater than 1, aborted
connections are written to the error log, and access-denied errors for new connection attempts are
written. See Section B.5.2.11, “Communication Errors and Aborted Connections”.

If a slave server was started with --log-warnings enabled, the slave prints messages to the error
log to provide information about its status, such as the binary log and relay log coordinates where it
starts its job, when it is switching to another relay log, when it reconnects after a disconnect, and so
forth. The server logs messages about statements that are unsafe for statement-based logging if --
log-warnings is greater than 0.

•   --low-priority-updates



Server Command Options

468

Command-Line Format --low-priority-updates

Name low_priority_updates

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

Give table-modifying operations (INSERT, REPLACE, DELETE, UPDATE) lower priority than selects.
This can also be done using {INSERT | REPLACE | DELETE | UPDATE} LOW_PRIORITY ...
to lower the priority of only one query, or by SET LOW_PRIORITY_UPDATES=1 to change the priority
in one thread. This affects only storage engines that use only table-level locking (MyISAM, MEMORY,
MERGE). See Section 8.11.2, “Table Locking Issues”.

•   --min-examined-row-limit=number

Command-Line Format --min-examined-row-limit=#

Name min_examined_row_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

When this option is set, queries which examine fewer than number rows are not written to the slow
query log. The default is 0.

•   --memlock

Command-Line Format --memlock

Permitted Values Type boolean



Server Command Options

469

Default FALSE

Lock the mysqld process in memory. This option might help if you have a problem where the
operating system is causing mysqld to swap to disk.

--memlock works on systems that support the mlockall() system call; this includes Solaris,
most Linux distributions that use a 2.4 or higher kernel, and perhaps other Unix systems. On Linux
systems, you can tell whether or not mlockall() (and thus this option) is supported by checking to
see whether or not it is defined in the system mman.h file, like this:

shell> grep mlockall /usr/include/sys/mman.h

If mlockall() is supported, you should see in the output of the previous command something like
the following:

extern int mlockall (int __flags) __THROW;

Important

Use of this option may require you to run the server as root, which, for
reasons of security, is normally not a good idea. See Section 6.1.5, “How to
Run MySQL as a Normal User”.

On Linux and perhaps other systems, you can avoid the need to run the
server as root by changing the limits.conf file. See the notes regarding
the memlock limit in Section 8.12.4.2, “Enabling Large Page Support”.

You must not try to use this option on a system that does not support the
mlockall() system call; if you do so, mysqld will very likely crash as soon
as you try to start it.

•   --myisam-block-size=N

Command-Line Format --myisam-block-size=#

Type integer

Default 1024

Min
Value

1024

Permitted Values

Max
Value

16384

The block size to be used for MyISAM index pages.

•   --myisam-recover[=option[,option]...]]

This option is renamed as of MySQL 5.5.3 to --myisam-recover-options. See the description of
that option for more information.

•   --myisam-recover-options[=option[,option]...]]

Introduced 5.5.3

Command-Line Format --myisam-recover-options[=name]

Type enumeration

Default OFF

Permitted Values

Valid
Values

OFF



Server Command Options

470

DEFAULT

BACKUP

FORCE

QUICK

Set the MyISAM storage engine recovery mode. The option value is any combination of the values
of OFF, DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by
commas. Specifying the option with no argument is the same as specifying DEFAULT, and specifying
with an explicit value of "" disables recovery (same as a value of OFF). If recovery is enabled, each
time mysqld opens a MyISAM table, it checks whether the table is marked as crashed or was not
closed properly. (The last option works only if you are running with external locking disabled.) If this
is the case, mysqld runs a check on the table. If the table was corrupted, mysqld attempts to repair
it.

The following options affect how the repair works.

Option Description

OFF No recovery.

DEFAULT Recovery without backup, forcing, or quick checking.

BACKUP If the data file was changed during recovery, save a backup of the
tbl_name.MYD file as tbl_name-datetime.BAK.

FORCE Run recovery even if we would lose more than one row from the .MYD file.

QUICK Do not check the rows in the table if there are not any delete blocks.

Before the server automatically repairs a table, it writes a note about the repair to the error log. If you
want to be able to recover from most problems without user intervention, you should use the options
BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but it keeps the
old data file as a backup so that you can later examine what happened.

This option was named --myisam-recover, before MySQL 5.5.3. The old option name still
works because it is recognized as an unambiguous prefix of the new name, --myisam-recover-
options. (Option prefix recognition occurs as described in Section 4.2.3, “Specifying Program
Options”.)

The option value OFF is available as of MySQL 5.5.3.

See Section 15.3.1, “MyISAM Startup Options”.

•   --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read. This must be the first option on
the command line if it is used.

For additional information about this option, see Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”.

•   --old-alter-table

Command-Line Format --old-alter-table

Name old_alter_table

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes



Server Command Options

471

Type booleanPermitted Values

Default OFF

When this option is given, the server does not use the optimized method of processing an ALTER
TABLE operation. It reverts to using a temporary table, copying over the data, and then renaming
the temporary table to the original, as used by MySQL 5.0 and earlier. For more information on the
operation of ALTER TABLE, see Section 13.1.7, “ALTER TABLE Syntax”.

•   --old-style-user-limits

Command-Line Format --old-style-user-limits

Type booleanPermitted Values

Default FALSE

Enable old-style user limits. (Before MySQL 5.0.3, account resource limits were counted separately
for each host from which a user connected rather than per account row in the user table.) See
Section 6.3.4, “Setting Account Resource Limits”.

•   --one-thread

Command-Line Format --one-thread

Only use one thread (for debugging under Linux). This option is available only if the server is built
with debugging enabled. See Section 24.5, “Debugging and Porting MySQL”.

This option is deprecated and is removed in MySQL 5.6. Use --thread_handling=no-threads
instead.

•   --open-files-limit=count

Command-Line Format --open-files-limit=#

Name open_files_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

platform dependent

Changes the number of file descriptors available to mysqld. You should try increasing the value
of this option if mysqld gives you the error Too many open files. mysqld uses the option
value to reserve descriptors with setrlimit(). Internally, the maximum value for this option is the
maximum unsigned integer value, but the actual maximum is platform dependent. If the requested
number of file descriptors cannot be allocated, mysqld writes a warning to the error log.

mysqld may attempt to allocate more than the requested number of descriptors (if they are
available), using the values of max_connections and table_open_cache to estimate whether
more descriptors will be needed.

On Unix, the value cannot be set greater than ulimit -n.



Server Command Options

472

•   --partition[=value]

Command-Line Format --partition

Disabled by skip-partition

Type booleanPermitted Values

Default ON

Enables or disables user-defined partitioning support in the MySQL Server.

•   --pid-file=file_name

Command-Line Format --pid-file=file_name

Name pid_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The path name of the process ID file. The server creates the file in the data directory unless an
absolute path name is given to specify a different directory. This file is used by other programs such
as mysqld_safe to determine the server's process ID.

•   --plugin-xxx

Specifies an option that pertains to a server plugin. For example, many storage engines can be
built as plugins, and for such engines, options for them can be specified with a --plugin prefix.
Thus, the --innodb_file_per_table option for InnoDB can be specified as --plugin-
innodb_file_per_table.

For boolean options that can be enabled or disabled, the --skip prefix and other alternative formats
are supported as well (see Section 4.2.5, “Program Option Modifiers”). For example, --skip-
plugin-innodb_file_per_table disables innodb_file_per_table.

The rationale for the --plugin prefix is that it enables plugin options to be specified unambiguously
if there is a name conflict with a built-in server option. For example, were a plugin writer to name a
plugin “sql” and implement a “mode” option, the option name might be --sql-mode, which would
conflict with the built-in option of the same name. In such cases, references to the conflicting name
are resolved in favor of the built-in option. To avoid the ambiguity, users can specify the plugin option
as --plugin-sql-mode. Use of the --plugin prefix for plugin options is recommended to avoid
any question of ambiguity.

•   --plugin-load=plugin_list

Command-Line Format --plugin-load=plugin_list

Permitted Values Type string

This option tells the server to load the named plugins at startup. All plugins to load must be named in
the same --plugin-load option. If multiple --plugin-load options are given, only the last one
is used.

The option value is a semicolon-separated list of name=plugin_library and plugin_library
values. Each name is the name of a plugin to load, and plugin_library is the name of the library
file that contains the plugin code. If a plugin library is named without any preceding plugin name, the
server loads all plugins in the library. The server looks for plugin library files in the directory named
by the plugin_dir system variable.



Server Command Options

473

For example, if plugins named myplug1 and myplug2 have library files myplug1.so and
myplug2.so, use this option to perform an early plugin load:

shell> mysqld --plugin-load="myplug1=myplug1.so;myplug2=myplug2.so"

Quotes are used around the argument value here because otherwise semicolon (;) is interpreted as
a special character by some command interpreters. (Unix shells treat it as a command terminator, for
example.)

Each named plugin is loaded for a single invocation of mysqld only. After a restart, the plugin is
not loaded unless --plugin-load is used again. This is in contrast to INSTALL PLUGIN, which
adds an entry to the mysql.plugins table to cause the plugin to be loaded for every normal server
startup.

Under normal startup, the server determines which plugins to load by reading the mysql.plugins
system table. If the server is started with the --skip-grant-tables option, it does not consult the
mysql.plugins table and does not load plugins listed there. --plugin-load enables plugins to
be loaded even when --skip-grant-tables is given. --plugin-load also enables plugins to
be loaded at startup under configurations when plugins cannot be loaded at runtime.

For additional information about plugin loading, see Section 5.5.2, “Installing and Uninstalling
Plugins”.

•   --port=port_num, -P port_num

Command-Line Format --port=#

Name port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 3306

Min
Value

0

Permitted Values

Max
Value

65535

The port number to use when listening for TCP/IP connections. On Unix and Unix-like systems, the
port number must be 1024 or higher unless the server is started by the root system user.

•   --port-open-timeout=num

Command-Line Format --port-open-timeout=#

Type integerPermitted Values

Default 0

On some systems, when the server is stopped, the TCP/IP port might not become available
immediately. If the server is restarted quickly afterward, its attempt to reopen the port can fail. This
option indicates how many seconds the server should wait for the TCP/IP port to become free if it
cannot be opened. The default is not to wait.

•   --print-defaults



Server Command Options

474

Print the program name and all options that it gets from option files. This must be the first option on
the command line if it is used, except that it may be used immediately after --defaults-file or
--defaults-extra-file.

For additional information about this option, see Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”.

•   --remove [service_name]

Command-Line Format --remove [service_name]

Platform Specific Windows

(Windows only) Remove a MySQL Windows service. The default service name is MySQL if no
service_name value is given. For more information, see Section 2.3.7.7, “Starting MySQL as a
Windows Service”.

•   --safe-mode

Deprecated 5.5.26

Command-Line Format --safe-mode

Skip some optimization stages. This option is deprecated and is removed in MySQL 5.6.

•   --safe-show-database

Deprecated 4.0.2

Removed 5.5.3

Command-Line Format --safe-show-database

Permitted Values Type boolean

This option is deprecated and does not do anything because there is a SHOW DATABASES privilege
that can be used to control access to database names on a per-account basis. See Section 6.2.1,
“Privileges Provided by MySQL”. --safe-show-database was removed in MySQL 5.5.3.

•   --safe-user-create

Command-Line Format --safe-user-create

Type booleanPermitted Values

Default FALSE

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement
unless the user has the INSERT privilege for the mysql.user table or any column in the table. If
you want a user to have the ability to create new users that have those privileges that the user has
the right to grant, you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT
statement to give privileges to other users.

•   --secure-auth

Command-Line Format --secure-auth

System Variable Name secure_auth



Server Command Options

475

Variable
Scope

Global

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

This option causes the server to block connections by clients that attempt to use accounts that have
passwords stored in the old (pre-4.1) format. Use it to prevent all use of passwords employing the old
format (and hence insecure communication over the network).

Server startup fails with an error if this option is enabled and the privilege tables are in pre-4.1
format. See Section B.5.2.4, “Client does not support authentication protocol”.

The mysql client also has a --secure-auth option, which prevents connections to a server if the
server requires a password in old format for the client account.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided.

•   --secure-file-priv=dir_name

Command-Line Format --secure-file-priv=dir_name

Name secure_file_priv

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default empty

empty

Permitted Values (<=
5.5.52)

Valid
Values dirname

Type string

Default platform specific

empty

dirname

Permitted Values (>=
5.5.53)

Valid
Values

NULL

This option sets the secure_file_priv system variable, which is used to limit the effect of data
import and export operations, such as those performed by the LOAD DATA and SELECT ... INTO
OUTFILE statements and the LOAD_FILE() function. For more information, see the description of
secure_file_priv.

•   --shared-memory

Command-Line Format --shared-memory[={0,1}]

Name shared_memorySystem Variable

Variable
Scope

Global



Server Command Options

476

Dynamic
Variable

No

Platform Specific Windows

Type booleanPermitted Values

Default FALSE

Enable shared-memory connections by local clients. This option is available only on Windows.

•   --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Name shared_memory_base_name

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type stringPermitted Values

Default MYSQL

The name of shared memory to use for shared-memory connections. This option is available only on
Windows. The default name is MYSQL. The name is case sensitive.

•   --skip-concurrent-insert

Turn off the ability to select and insert at the same time on MyISAM tables. (This is to be used only if
you think you have found a bug in this feature.) See Section 8.11.3, “Concurrent Inserts”.

•   --skip-event-scheduler

Command-Line Format --skip-event-scheduler

 --disable-event-scheduler

Turns the Event Scheduler OFF. This is not the same as disabling the Event Scheduler, which
requires setting --event-scheduler=DISABLED; see The --event-scheduler Option, for
more information.

•   --skip-grant-tables

This option causes the server to start without using the privilege system at all, which gives anyone
with access to the server unrestricted access to all databases. You can cause a running server to
start using the grant tables again by executing mysqladmin flush-privileges or mysqladmin
reload command from a system shell, or by issuing a MySQL FLUSH PRIVILEGES statement after
connecting to the server.

This option also causes the server to suppress during its startup sequence the loading of user-
defined functions (UDFs), scheduled events, and plugins that were installed with the INSTALL
PLUGIN statement. To cause plugins to be loaded anyway, use the --plugin-load option.

FLUSH PRIVILEGES might be executed implicitly by other actions performed after startup. For
example, mysql_upgrade flushes the privileges during the upgrade procedure.

•   --skip-host-cache



Server Command Options

477

Disable use of the internal host cache for faster name-to-IP resolution. In this case, the server
performs a DNS lookup every time a client connects. See Section 8.12.5.2, “DNS Lookup
Optimization and the Host Cache”.

•   --skip-innodb

Disable the InnoDB storage engine. In this case, if the default storage engine is InnoDB, the server
will not start unless you also use --default-storage-engine to set the default to some other
engine.

•   --skip-name-resolve

Do not resolve host names when checking client connections. Use only IP addresses. If you use
this option, all Host column values in the grant tables must be IP addresses or localhost. See
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”.

Depending on the network configuration of your system and the Host values for your accounts,
clients may need to connect using an explicit --host option, such as --host=localhost, --
host=127.0.0.1, or --host=::1.

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account.
However, this fails if the server is run with the --skip-name-resolve option, so make sure that an
account exists that can accept a connection. For example, to be able to connect as root using --
host=127.0.0.1 or --host=::1, create these accounts:

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

•   --skip-networking

Do not listen for TCP/IP connections at all. All interaction with mysqld must be made using
named pipes or shared memory (on Windows) or Unix socket files (on Unix). This option is highly
recommended for systems where only local clients are permitted. See Section 8.12.5.2, “DNS
Lookup Optimization and the Host Cache”.

•   --skip-partition

Command-Line Format --skip-partition

 --disable-partition

Disables user-defined partitioning. Partitioned tables can be seen using SHOW TABLES
or by querying the INFORMATION_SCHEMA.TABLES table, but cannot be created or
modified, nor can data in such tables be accessed. All partition-specific columns in the
INFORMATION_SCHEMA.PARTITIONS table display NULL.

Since DROP TABLE removes table definition (.frm) files, this statement works on partitioned tables
even when partitioning is disabled using the option. The statement, however, does not remove .par
files associated with partitioned tables in such cases. For this reason, you should avoid dropping
partitioned tables with partitioning disabled, or take action to remove the orphaned .par files
manually.

•   --ssl*

Options that begin with --ssl specify whether to permit clients to connect using SSL and indicate
where to find SSL keys and certificates. See Section 6.4.5, “Command Options for Secure
Connections”.

•   --standalone



Server Command Options

478

Command-Line Format --standalone

Platform Specific Windows

Available on Windows only; instructs the MySQL server not to run as a service.

•   --super-large-pages

Introduced 5.5.3

Command-Line Format --super-large-pages

Platform Specific Solaris

Type booleanPermitted Values
(Solaris) Default FALSE

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available
for recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or
--skip-super-large-pages option.

•     --symbolic-links, --skip-symbolic-links

Command-Line Format --symbolic-links

Type booleanPermitted Values

Default ON

Enable or disable symbolic link support. This option has different effects on Windows and Unix:

• On Windows, enabling symbolic links enables you to establish a symbolic link to a database
directory by creating a db_name.sym file that contains the path to the real directory. See
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”.

• On Unix, enabling symbolic links means that you can link a MyISAM index file or data file to
another directory with the INDEX DIRECTORY or DATA DIRECTORY options of the CREATE
TABLE statement. If you delete or rename the table, the files that its symbolic links point to also are
deleted or renamed. See Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”.

•   --skip-safemalloc

Removed 5.5.6

Command-Line Format --skip-safemalloc

Previously, if MySQL was configured with full debugging support, all MySQL programs check for
memory overruns during each memory allocation and memory freeing operation. This checking
is very slow, so for the server you can avoid it when you do not need it by using the --skip-
safemalloc option.

safemalloc, along with this option, was removed in MySQL 5.5.6.

•   --skip-show-database

Command-Line Format --skip-show-database

Name skip_show_databaseSystem Variable

Variable
Scope

Global



Server Command Options

479

Dynamic
Variable

No

This option sets the skip_show_database system variable that controls who is permitted to use
the SHOW DATABASES statement. See Section 5.1.5, “Server System Variables”.

•   --skip-stack-trace

Command-Line Format --skip-stack-trace

Do not write stack traces. This option is useful when you are running mysqld under a debugger. On
some systems, you also must use this option to get a core file. See Section 24.5, “Debugging and
Porting MySQL”.

•   --skip-thread-priority

Deprecated 5.1.29

Command-Line Format --skip-thread-priority

Disable using thread priorities for faster response time. This option is deprecated and is removed in
MySQL 5.6.

•   --slow-query-log[={0|1}]

Command-Line Format --slow-query-log

Name slow_query_log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Specify the initial slow query log state. With no argument or an argument of 1, the --slow-query-
log option enables the log. If omitted or given with an argument of 0, the option disables the log.

•   --slow-start-timeout=timeout

Introduced 5.5.20

Command-Line Format --slow-start-timeout=#

Type integerPermitted Values
(Windows) Default 15000

This option controls the Windows service control manager's service start timeout. The value is the
maximum number of milliseconds that the service control manager waits before trying to kill the
windows service during startup. The default value is 15000 (15 seconds). If the MySQL service takes
too long to start, you may need to increase this value. A value of 0 means there is no timeout.

•   --socket=path

Command-Line Format --socket={file_name|pipe_name}

Name socketSystem Variable

Variable
Scope

Global



Server Command Options

480

Dynamic
Variable

No

Type stringPermitted Values

Default /tmp/mysql.sock

On Unix, this option specifies the Unix socket file to use when listening for local connections. The
default value is /tmp/mysql.sock. If this option is given, the server creates the file in the data
directory unless an absolute path name is given to specify a different directory. On Windows, the
option specifies the pipe name to use when listening for local connections that use a named pipe.
The default value is MySQL (not case sensitive).

•   --sql-mode=value[,value[,value...]]

Command-Line Format --sql-mode=name

Name sql_mode

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type set

Default ''

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

Permitted Values

Valid
Values

STRICT_TRANS_TABLES

Set the SQL mode. See Section 5.1.8, “Server SQL Modes”.



Server Command Options

481

Note

MySQL installation programs may configure the SQL mode during the
installation process. If the SQL mode differs from the default or from what you
expect, check for a setting in an option file that the server reads at startup.

•   --sysdate-is-now

Command-Line Format --sysdate-is-now

Type booleanPermitted Values

Default FALSE

SYSDATE() by default returns the time at which it executes, not the time at which the statement
in which it occurs begins executing. This differs from the behavior of NOW(). This option causes
SYSDATE() to be an alias for NOW(). For information about the implications for binary logging and
replication, see the description for SYSDATE() in Section 12.7, “Date and Time Functions” and for
SET TIMESTAMP in Section 5.1.5, “Server System Variables”.

•   --tc-heuristic-recover={COMMIT|ROLLBACK}

Command-Line Format --tc-heuristic-recover=name

Type enumeration

Default COMMIT

COMMIT

Permitted Values

Valid
Values ROLLBACK

The type of decision to use in the heuristic recovery process. To use this option, two or more storage
engines that support XA transactions must be installed.

•   --temp-pool

Command-Line Format --temp-pool

Type booleanPermitted Values

Default TRUE

This option causes most temporary files created by the server to use a small set of names, rather
than a unique name for each new file. This works around a problem in the Linux kernel dealing with
creating many new files with different names. With the old behavior, Linux seems to “leak” memory,
because it is being allocated to the directory entry cache rather than to the disk cache. This option is
ignored except on Linux.

•   --transaction-isolation=level

Command-Line Format --transaction-isolation=name

Type enumeration

Default REPEATABLE-READ

READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

Permitted Values

Valid
Values

SERIALIZABLE



Server System Variables

482

Sets the default transaction isolation level. The level value can be READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 13.3.6, “SET TRANSACTION
Syntax”.

The default transaction isolation level can also be set at runtime using the SET TRANSACTION
statement or by setting the tx_isolation system variable.

•   --tmpdir=dir_name, -t dir_name

Command-Line Format --tmpdir=dir_name

Name tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path of the directory to use for creating temporary files. It might be useful if your default /tmp
directory resides on a partition that is too small to hold temporary tables. This option accepts several
paths that are used in round-robin fashion. Paths should be separated by colon characters (:) on
Unix and semicolon characters (;) on Windows. If the MySQL server is acting as a replication slave,
you should not set --tmpdir to point to a directory on a memory-based file system or to a directory
that is cleared when the server host restarts. For more information about the storage location of
temporary files, see Section B.5.3.5, “Where MySQL Stores Temporary Files”. A replication slave
needs some of its temporary files to survive a machine restart so that it can replicate temporary
tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost when the
server restarts, replication fails.

•   --user={user_name|user_id}, -u {user_name|user_id}

Command-Line Format --user=name

Permitted Values Type string

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

This option is mandatory when starting mysqld as root. The server changes its user ID during its
startup sequence, causing it to run as that particular user rather than as root. See Section 6.1.1,
“Security Guidelines”.

To avoid a possible security hole where a user adds a --user=root option to a my.cnf file
(thus causing the server to run as root), mysqld uses only the first --user option specified
and produces a warning if there are multiple --user options. Options in /etc/my.cnf and
$MYSQL_HOME/my.cnf are processed before command-line options, so it is recommended that you
put a --user option in /etc/my.cnf and specify a value other than root. The option in /etc/
my.cnf is found before any other --user options, which ensures that the server runs as a user
other than root, and that a warning results if any other --user option is found.

•   --verbose, -v

Use this option with the --help option for detailed help.

•   --version, -V

Display version information and exit.

5.1.5 Server System Variables



Server System Variables

483

The MySQL server maintains many system variables that indicate how it is configured. Each system
variable has a default value. System variables can be set at server startup using options on the
command line or in an option file. Most of them can be changed dynamically at runtime using the
SET statement, which enables you to modify operation of the server without having to stop and
restart it. Setting the global value of a system variable requires the SUPER privilege. For some system
variables, setting the session value also requires the SUPER privilege; if so, it is indicated in the variable
description. You can also use system variable values in expressions.

There are several ways to see the names and values of system variables:

• To see the values that a server will use based on its compiled-in defaults and any option files that it
reads, use this command:

mysqld --verbose --help

• To see the values that a server will use based on its compiled-in defaults, ignoring the settings in any
option files, use this command:

mysqld --no-defaults --verbose --help

• To see the current values used by a running server, use the SHOW VARIABLES statement.

This section includes a table that lists all system variables and following the table provides a
description of each one. Variables with no version indicated are present in all MySQL 5.5 releases. For
more information about manipulation of system variables, see Section 5.1.6, “Using System Variables”.

Table 5.2 System Variable Summary

Name Cmd-Line Option File System Var Var Scope Dynamic

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_file Yes Yes Yes Global No

audit_log_flush   Yes Global Yes

audit_log_format Yes Yes Yes Global No

audit_log_policy Yes Yes Yes Global Yes

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_strategy Yes Yes Yes Global No

auto_increment_increment  Yes Both Yes

auto_increment_offset  Yes Both Yes

autocommit Yes Yes Yes Varies Yes

automatic_sp_privileges  Yes Global Yes

back_log   Yes Global No

basedir Yes Yes Yes Global No

big-tables Yes Yes   Yes

- Variable:
big_tables

  Yes Varies Yes

binlog_cache_size Yes Yes Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog-format Yes Yes   Yes

- Variable:
binlog_format

  Yes Both Yes

binlog_stmt_cache_sizeYes Yes Yes Global Yes



Server System Variables

484

Name Cmd-Line Option File System Var Var Scope Dynamic

bulk_insert_buffer_sizeYes Yes Yes Both Yes

character_set_client   Yes Both Yes

character_set_connection  Yes Both Yes

character_set_databasea  Yes Both Yes

character-set-
filesystem

Yes Yes   Yes

- Variable:
character_set_filesystem

  Yes Both Yes

character_set_results  Yes Both Yes

character-set-server Yes Yes   Yes

- Variable:
character_set_server

  Yes Both Yes

character_set_system  Yes Global No

character-sets-dir Yes Yes   No

- Variable:
character_sets_dir

  Yes Global No

collation_connection   Yes Both Yes

collation_databaseb   Yes Both Yes

collation-server Yes Yes   Yes

- Variable:
collation_server

  Yes Both Yes

completion_type Yes Yes Yes Both Yes

concurrent_insert Yes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

datadir Yes Yes Yes Global No

date_format   Yes Varies No

datetime_format   Yes Varies No

debug Yes Yes Yes Both Yes

debug_sync   Yes Varies Yes

default-storage-
engine

Yes Yes   Yes

- Variable:
default_storage_engine

  Yes Both Yes

default_week_format Yes Yes Yes Both Yes

delay-key-write Yes Yes   Yes

- Variable:
delay_key_write

  Yes Global Yes

delayed_insert_limit Yes Yes Yes Global Yes

delayed_insert_timeoutYes Yes Yes Global Yes

delayed_queue_size Yes Yes Yes Global Yes

div_precision_incrementYes Yes Yes Both Yes

engine-condition-
pushdown

Yes Yes   Yes



Server System Variables

485

Name Cmd-Line Option File System Var Var Scope Dynamic

- Variable:
engine_condition_pushdown

  Yes Both Yes

error_count   Yes Session No

event-scheduler Yes Yes   Yes

- Variable:
event_scheduler

  Yes Global Yes

expire_logs_days Yes Yes Yes Global Yes

external_user   Yes Session No

flush Yes Yes Yes Global Yes

flush_time Yes Yes Yes Global Yes

foreign_key_checks   Yes Varies Yes

ft_boolean_syntax Yes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

general-log Yes Yes   Yes

- Variable:
general_log

  Yes Global Yes

general_log_file Yes Yes Yes Global Yes

group_concat_max_lenYes Yes Yes Both Yes

have_compress   Yes Global No

have_crypt   Yes Global No

have_csv   Yes Global No

have_dynamic_loading  Yes Global No

have_geometry   Yes Global No

have_innodb   Yes Global No

have_ndbcluster   Yes Global No

have_openssl   Yes Global No

have_partitioning   Yes Global No

have_profiling   Yes Global No

have_query_cache   Yes Global No

have_rtree_keys   Yes Global No

have_ssl   Yes Global No

have_symlink   Yes Global No

hostname   Yes Global No

identity   Yes Session Yes

ignore-builtin-innodb Yes Yes   No

- Variable:
ignore_builtin_innodb

  Yes Global No

init_connect Yes Yes Yes Global Yes

init-file Yes Yes   No



Server System Variables

486

Name Cmd-Line Option File System Var Var Scope Dynamic

- Variable: init_file   Yes Global No

init_slave Yes Yes Yes Global Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global No

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checksums Yes Yes Yes Global No

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

innodb_data_home_dirYes Yes Yes Global No

innodb_doublewrite Yes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_file_format Yes Yes Yes Global Yes

innodb_file_format_checkYes Yes Yes Global Varies

innodb_file_format_maxYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_io_capacity Yes Yes Yes Global Yes

innodb_large_prefix Yes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_file_size Yes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_mirrored_log_groupsYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_open_files Yes Yes Yes Global No



Server System Variables

487

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_sample_pagesYes Yes Yes Global Yes

innodb_strict_mode Yes Yes Yes Both Yes

innodb_support_xa Yes Yes Yes Both Yes

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locks Yes Yes Yes Both Yes

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_use_native_aioYes Yes Yes Global No

innodb_use_sys_mallocYes Yes Yes Global No

innodb_version   Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

insert_id   Yes Session Yes

interactive_timeout Yes Yes Yes Both Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

language Yes Yes Yes Global No

large_files_support   Yes Global No

large_page_size   Yes Global No

large-pages Yes Yes   No

- Variable:
large_pages

  Yes Global No

last_insert_id   Yes Session Yes

lc-messages Yes Yes   Yes



Server System Variables

488

Name Cmd-Line Option File System Var Var Scope Dynamic

- Variable:
lc_messages

  Yes Both Yes

lc-messages-dir Yes Yes   No

- Variable:
lc_messages_dir

  Yes Global No

lc_time_names   Yes Both Yes

license   Yes Global No

local_infile   Yes Global Yes

lock_wait_timeout Yes Yes Yes Both Yes

locked_in_memory   Yes Global No

log Yes Yes Yes Global Yes

log-bin Yes Yes Yes Global No

log_bin   Yes Global No

log-bin-trust-
function-creators

Yes Yes   Yes

- Variable:
log_bin_trust_function_creators

  Yes Global Yes

log-bin-trust-routine-
creators

Yes Yes   Yes

- Variable:
log_bin_trust_routine_creators

  Yes Global Yes

log-bin-use-v1-row-
events

Yes Yes   No

- Variable:
log_bin_use_v1_row_events

  Yes Global No

log_bin_use_v1_row_eventsYes Yes Yes Global No

log-error Yes Yes   No

- Variable: log_error   Yes Global No

log-output Yes Yes   Yes

- Variable:
log_output

  Yes Global Yes

log-queries-not-
using-indexes

Yes Yes   Yes

- Variable:
log_queries_not_using_indexes

  Yes Global Yes

log-slave-updates Yes Yes   No

- Variable:
log_slave_updates

  Yes Global No

log_slave_updates Yes Yes Yes Global No

log-slow-queries Yes Yes   Yes

- Variable:
log_slow_queries

  Yes Global Yes

log-warnings Yes Yes   Yes

- Variable:
log_warnings

  Yes Both Yes



Server System Variables

489

Name Cmd-Line Option File System Var Var Scope Dynamic

long_query_time Yes Yes Yes Both Yes

low-priority-updates Yes Yes   Yes

- Variable:
low_priority_updates

  Yes Both Yes

lower_case_file_system  Yes Global No

lower_case_table_namesYes Yes Yes Global No

max_allowed_packet Yes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max_binlog_size Yes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errors Yes Yes Yes Global Yes

max_connections Yes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_error_count Yes Yes Yes Both Yes

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads  Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_long_data_size Yes Yes Yes Global No

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_size Yes Yes Yes Global Yes

max_seeks_for_key Yes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_tmp_tables   Yes Both Yes

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

metadata_locks_cache_size  Yes Global No

min-examined-row-
limit

Yes Yes Yes Both Yes

multi_range_count Yes Yes Yes Both Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_size Yes Yes Yes Global No

myisam_recover_options  Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmap Yes Yes Yes Global Yes

named_pipe   Yes Global No

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes



Server System Variables

490

Name Cmd-Line Option File System Var Var Scope Dynamic

ndb-batch-size Yes Yes Yes Global No

ndb-blob-read-
batch-bytes

Yes Yes Yes Both Yes

ndb-blob-write-
batch-bytes

Yes Yes Yes Both Yes

ndb_cache_check_timeYes Yes Yes Global Yes

ndb-cluster-
connection-pool

Yes Yes Yes Global No

ndb-deferred-
constraints

Yes Yes   Yes

- Variable:
ndb_deferred_constraints

  Yes Both Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb-distribution Yes Yes   Yes

- Variable:
ndb_distribution

  Yes Global Yes

ndb_distribution Yes Yes Yes Global Yes

ndb_eventbuffer_max_allocYes Yes Yes Global Yes

ndb_extra_logging Yes Yes Yes Global Yes

ndb_force_send Yes Yes Yes Both Yes

ndb_index_stat_cache_entriesYes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_optionYes Yes Yes Both Yes

ndb_index_stat_update_freqYes Yes Yes Both Yes

ndb_join_pushdown   Yes Both Yes

ndb-log-apply-status Yes Yes   No

- Variable:
ndb_log_apply_status

  Yes Global No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_bin Yes  Yes Both Yes

ndb_log_binlog_indexYes  Yes Global Yes

ndb-log-empty-
epochs

Yes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb-log-empty-
update

Yes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb-log-orig Yes Yes   No

- Variable:
ndb_log_orig

  Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb-log-transaction-
id

Yes Yes   No



Server System Variables

491

Name Cmd-Line Option File System Var Var Scope Dynamic

- Variable:
ndb_log_transaction_id

  Yes Global No

ndb_log_transaction_id  Yes Global No

ndb-log-update-as-
write

Yes Yes Yes Global Yes

ndb_log_updated_onlyYes Yes Yes Global Yes

ndb_optimization_delay  Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global No

ndb_report_thresh_binlog_epoch_slipYes Yes Yes Global Yes

ndb_report_thresh_binlog_mem_usageYes Yes Yes Global Yes

ndb_table_no_logging  Yes Session Yes

ndb_table_temporary   Yes Session Yes

ndb_use_copying_alter_table  Yes Both No

ndb_use_exact_count  Yes Both Yes

ndb_use_transactionsYes Yes Yes Both Yes

ndb_version   Yes Global No

ndb_version_string   Yes Global No

ndb-wait-connected Yes Yes Yes Global No

ndb-wait-setup Yes Yes Yes Global No

ndbinfo_database   Yes Global No

ndbinfo_max_bytes Yes  Yes Both Yes

ndbinfo_max_rows Yes  Yes Both Yes

ndbinfo_offline   Yes Global Yes

ndbinfo_show_hiddenYes  Yes Both Yes

ndbinfo_table_prefix Yes  Yes Both Yes

ndbinfo_version   Yes Global No

net_buffer_length Yes Yes Yes Both Yes

net_read_timeout Yes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeout Yes Yes Yes Both Yes

new Yes Yes Yes Both Yes

old Yes Yes Yes Global No

old-alter-table Yes Yes   Yes

- Variable:
old_alter_table

  Yes Both Yes

old_passwords   Yes Both Yes

open-files-limit Yes Yes   No

- Variable:
open_files_limit

  Yes Global No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switch Yes Yes Yes Both Yes



Server System Variables

492

Name Cmd-Line Option File System Var Var Scope Dynamic

performance_schemaYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

pid-file Yes Yes   No

- Variable: pid_file   Yes Global No

plugin_dir Yes Yes Yes Global No

port Yes Yes Yes Global No

preload_buffer_size Yes Yes Yes Both Yes

profiling   Yes Varies Yes

profiling_history_size Yes Yes Yes Both Yes

protocol_version   Yes Global No

proxy_user   Yes Session No

pseudo_slave_mode   Yes Session Yes

pseudo_thread_id   Yes Session Yes

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limit Yes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_size Yes Yes Yes Global Yes

query_cache_type Yes Yes Yes Both Yes

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_size Yes Yes Yes Both Yes

rand_seed1   Yes Session Yes

rand_seed2   Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_size Yes Yes Yes Both Yes

relay-log Yes Yes   No



Server System Variables

493

Name Cmd-Line Option File System Var Var Scope Dynamic

- Variable: relay_log   Yes Global No

relay-log-index Yes Yes   No

- Variable:
relay_log_index

  Yes Global No

relay_log_index Yes Yes Yes Global No

relay_log_info_file Yes Yes Yes Global No

relay_log_purge Yes Yes Yes Global Yes

relay_log_recovery Yes Yes Yes Global Yes

relay_log_space_limitYes Yes Yes Global No

report-host Yes Yes   No

- Variable:
report_host

  Yes Global No

report-password Yes Yes   No

- Variable:
report_password

  Yes Global No

report-port Yes Yes   No

- Variable:
report_port

  Yes Global No

report-user Yes Yes   No

- Variable:
report_user

  Yes Global No

rpl_recovery_rank   Yes Global Yes

rpl_semi_sync_master_enabled  Yes Global Yes

rpl_semi_sync_master_timeout  Yes Global Yes

rpl_semi_sync_master_trace_level  Yes Global Yes

rpl_semi_sync_master_wait_no_slave  Yes Global Yes

rpl_semi_sync_slave_enabled  Yes Global Yes

rpl_semi_sync_slave_trace_level  Yes Global Yes

secure-auth Yes Yes   Yes

- Variable:
secure_auth

  Yes Global Yes

secure-file-priv Yes Yes   No

- Variable:
secure_file_priv

  Yes Global No

server-id Yes Yes   Yes

- Variable: server_id   Yes Global Yes

server-id-bits Yes Yes   No

- Variable:
server_id_bits

  Yes Global No

server_id_bits Yes Yes Yes Global No

shared_memory Yes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

skip_external_lockingYes Yes Yes Global No



Server System Variables

494

Name Cmd-Line Option File System Var Var Scope Dynamic

skip-name-resolve Yes Yes   No

- Variable:
skip_name_resolve

  Yes Global No

skip-networking Yes Yes   No

- Variable:
skip_networking

  Yes Global No

skip-show-database Yes Yes   No

- Variable:
skip_show_database

  Yes Global No

slave_allow_batchingYes Yes Yes Global Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_mode Yes Yes Yes Global Yes

slave-load-tmpdir Yes Yes   No

- Variable:
slave_load_tmpdir

  Yes Global No

slave_max_allowed_packet  Yes Global Yes

slave-net-timeout Yes Yes   Yes

- Variable:
slave_net_timeout

  Yes Global Yes

slave-skip-errors Yes Yes   No

- Variable:
slave_skip_errors

  Yes Global No

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global No

slow_launch_time Yes Yes Yes Global Yes

slow-query-log Yes Yes   Yes

- Variable:
slow_query_log

  Yes Global Yes

slow_query_log_file Yes Yes Yes Global Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

sql_auto_is_null   Yes Varies Yes

sql_big_selects   Yes Varies Yes

sql_big_tables   Yes Varies Yes

sql_buffer_result   Yes Varies Yes

sql_log_bin   Yes Varies Yes

sql_log_off   Yes Varies Yes

sql_log_update   Yes Session Yes

sql_low_priority_updates  Yes Both Yes

sql_max_join_size   Yes Both Yes

sql-mode Yes Yes   Yes

- Variable: sql_mode   Yes Both Yes

sql_notes   Yes Varies Yes



Server System Variables

495

Name Cmd-Line Option File System Var Var Scope Dynamic

sql_quote_show_create  Yes Varies Yes

sql_safe_updates   Yes Varies Yes

sql_select_limit   Yes Both Yes

sql_slave_skip_counter  Yes Global Yes

sql_warnings   Yes Varies Yes

ssl-ca Yes Yes   No

- Variable: ssl_ca   Yes Global No

ssl-capath Yes Yes   No

- Variable:
ssl_capath

  Yes Global No

ssl-cert Yes Yes   No

- Variable: ssl_cert   Yes Global No

ssl-cipher Yes Yes   No

- Variable:
ssl_cipher

  Yes Global No

ssl-key Yes Yes   No

- Variable: ssl_key   Yes Global No

storage_engine   Yes Both Yes

stored_program_cacheYes Yes Yes Global Yes

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

sync_master_info Yes Yes Yes Global Yes

sync_relay_log Yes Yes Yes Global Yes

sync_relay_log_info Yes Yes Yes Global Yes

system_time_zone   Yes Global No

table_definition_cache  Yes Global Yes

table_lock_wait_timeoutYes Yes Yes Global Yes

table_open_cache   Yes Global Yes

table_type   Yes Both Yes

thread_cache_size Yes Yes Yes Global Yes

thread_concurrency Yes Yes Yes Global No

thread_handling Yes Yes Yes Global No

thread_pool_algorithmYes Yes Yes Global No

thread_pool_high_priority_connectionYes Yes Yes Both Yes

thread_pool_max_unused_threadsYes Yes Yes Global Yes

thread_pool_prio_kickup_timerYes Yes Yes Both Yes

thread_pool_size Yes Yes Yes Global No

thread_pool_stall_limitYes Yes Yes Global Yes

thread_stack Yes Yes Yes Global No

time_format   Yes Varies No

time_zone   Yes Both Yes



Server System Variables

496

Name Cmd-Line Option File System Var Var Scope Dynamic

timed_mutexes Yes Yes Yes Global Yes

timestamp   Yes Session Yes

tmp_table_size Yes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_allow_batching  Yes Session Yes

transaction_prealloc_sizeYes Yes Yes Both Yes

tx_isolation   Yes Both Yes

unique_checks   Yes Varies Yes

updatable_views_with_limitYes Yes Yes Both Yes

version   Yes Global No

version_comment   Yes Global No

version_compile_machine  Yes Global No

version_compile_os   Yes Global No

wait_timeout Yes Yes Yes Both Yes

warning_count   Yes Session No
aThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.
bThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.

For additional system variable information, see these sections:

• Section 5.1.6, “Using System Variables”, discusses the syntax for setting and displaying system
variable values.

• Section 5.1.6.2, “Dynamic System Variables”, lists the variables that can be set at runtime.

• Information on tuning system variables can be found in Section 5.1.1, “Configuring the Server”.

• Section 14.17, “InnoDB Startup Options and System Variables”, lists InnoDB system variables.

• NDB Cluster System Variables, lists system variables which are specific to NDB Cluster.

• For information on server system variables specific to replication, see Section 17.1.3, “Replication
and Binary Logging Options and Variables”.

Note

Some of the following variable descriptions refer to “enabling” or “disabling”
a variable. These variables can be enabled with the SET statement by
setting them to ON or 1, or disabled by setting them to OFF or 0. However,
before MySQL 5.5.10, to set such a variable on the command line or in an
option file, you must set it to 1 or 0; setting it to ON or OFF will not work. For
example, on the command line, --delay_key_write=1 works but --
delay_key_write=ON does not. As of MySQL 5.5.10, boolean variables can
be set at startup to the values ON, TRUE, OFF, and FALSE (not case sensitive).
See Section 4.2.5, “Program Option Modifiers”.

Some system variables control the size of buffers or caches. For a given buffer, the server might need
to allocate internal data structures. These structures typically are allocated from the total memory
allocated to the buffer, and the amount of space required might be platform dependent. This means
that when you assign a value to a system variable that controls a buffer size, the amount of space
actually available might differ from the value assigned. In some cases, the amount might be less than
the value assigned. It is also possible that the server will adjust a value upward. For example, if you



Server System Variables

497

assign a value of 0 to a variable for which the minimal value is 1024, the server will set the value to
1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some system variables take file name values. Unless otherwise specified, the default file location is
the data directory if the value is a relative path name. To specify the location explicitly, use an absolute
path name. Suppose that the data directory is /var/mysql/data. If a file-valued variable is given
as a relative path name, it will be located under /var/mysql/data. If the value is an absolute path
name, its location is as given by the path name.

•   authentication_windows_log_level

Introduced 5.5.16

Command-Line Format --authentication-windows-log-level

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4

This variable is available only if the authentication_windows Windows authentication plugin is
enabled and debugging code is enabled. See Section 6.5.1.5, “Windows Pluggable Authentication”.

This variable sets the logging level for the Windows authentication plugin. The following table shows
the permitted values.

Value Description

0 No logging

1 Log only error messages

2 Log level 1 messages and warning messages

3 Log level 2 messages and information notes

4 Log level 3 messages and debug messages

This variable was added in MySQL 5.5.16.

•   authentication_windows_use_principal_name

Introduced 5.5.16

Command-Line Format --authentication-windows-use-principal-name

Type booleanPermitted Values

Default ON

This variable is available only if the authentication_windows Windows authentication plugin is
enabled. See Section 6.5.1.5, “Windows Pluggable Authentication”.

A client that authenticates using the InitSecurityContext() function should provide a string
identifying the service to which it connects (targetName). MySQL uses the principal name (UPN) of
the account under which the server is running. The UPN has the form user_id@computer_name
and need not be registered anywhere to be used. This UPN is sent by the server at the beginning of
authentication handshake.



Server System Variables

498

This variable controls whether the server sends the UPN in the initial challenge. By default, the
variable is enabled. For security reasons, it can be disabled to avoid sending the server's account
name to a client in clear text. If the variable is disabled, the server always sends a 0x00 byte in the
first challenge, the client does not specify targetName, and as a result, NTLM authentication is
used.

If the server fails to obtain its UPN (which will happen primarily in environments that do not support
Kerberos authentication), the UPN is not sent by the server and NTLM authentication is used.

This variable was added in MySQL 5.5.16.

•   autocommit

Command-Line Format --autocommit[=#] (>= 5.5.8)

Name autocommit

Variable
Scope

Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name autocommit

Variable
Scope

Global, Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

The autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0, you
must use COMMIT to accept a transaction or ROLLBACK to cancel it. If autocommit is 0 and you
change it to 1, MySQL performs an automatic COMMIT of any open transaction. Another way to begin
a transaction is to use a START TRANSACTION or BEGIN statement. See Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Syntax”.

By default, client connections begin with autocommit set to 1. To cause clients to begin with a
default of 0, set the global autocommit value by starting the server with the --autocommit=0
option. To set the variable using an option file, include these lines:

[mysqld]
autocommit=0

Before MySQL 5.5.8, the global autocommit value cannot be set at startup. As a workaround, set
the init_connect system variable:

SET GLOBAL init_connect='SET autocommit=0';

The init_connect variable can also be set on the command line or in an option file. To set the
variable as just shown using an option file, include these lines:

[mysqld]
init_connect='SET autocommit=0'

For users that have the SUPER privilege, the content of init_connect is not executed (unlike the
effect of setting the global autocommit value at startup).

•   automatic_sp_privileges



Server System Variables

499

Name automatic_sp_privileges

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

When this variable has a value of 1 (the default), the server automatically grants the EXECUTE and
ALTER ROUTINE privileges to the creator of a stored routine, if the user cannot already execute
and alter or drop the routine. (The ALTER ROUTINE privilege is required to drop the routine.) The
server also automatically drops those privileges from the creator when the routine is dropped. If
automatic_sp_privileges is 0, the server does not automatically add or drop these privileges.

The creator of a routine is the account used to execute the CREATE statement for it. This might not
be the same as the account named as the DEFINER in the routine definition.

See also Section 20.2.2, “Stored Routines and MySQL Privileges”.

•   back_log

Name back_log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 50

Min
Value

1

Permitted Values

Max
Value

65535

The number of outstanding connection requests MySQL can have. This comes into play when the
main MySQL thread gets very many connection requests in a very short time. It then takes some
time (although very little) for the main thread to check the connection and start a new thread. The
back_log value indicates how many requests can be stacked during this short time before MySQL
momentarily stops answering new requests. You need to increase this only if you expect a large
number of connections in a short period of time.

In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your
operating system has its own limit on the size of this queue. The manual page for the Unix
listen() system call should have more details. Check your OS documentation for the maximum
value for this variable. back_log cannot be set higher than your operating system limit.

•   basedir

Command-Line Format --basedir=dir_name

Name basedir

Variable
Scope

Global

System Variable

Dynamic
Variable

No



Server System Variables

500

Permitted Values Type directory name

The path to the MySQL installation base directory.

•   big_tables

Command-Line Format --big-tables

Name big_tables

Variable
Scope

Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name big_tables

Variable
Scope

Global, Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If set to 1, all temporary tables are stored on disk rather than in memory. This is a little slower, but
the error The table tbl_name is full does not occur for SELECT operations that require a
large temporary table. The default value for a new connection is 0 (use in-memory temporary tables).
Normally, you should never need to set this variable, because in-memory tables are automatically
converted to disk-based tables as required.

Note

This variable was formerly named sql_big_tables.

•   bulk_insert_buffer_size

Command-Line Format --bulk-insert-buffer-size=#

Name bulk_insert_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8388608

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 8388608

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520



Server System Variables

501

Type integer

Default 8388608

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT,
INSERT ... VALUES (...), (...), ..., and LOAD DATA INFILE when adding data to
nonempty tables. This variable limits the size of the cache tree in bytes per thread. Setting it to 0
disables this optimization. The default value is 8MB.

•   character_set_client

Name character_set_client

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The character set for statements that arrive from the client. The session value of this variable is
set using the character set requested by the client when the client connects to the server. (Many
clients support a --default-character-set option to enable this character set to be specified
explicitly. See also Section 10.1.4, “Connection Character Sets and Collations”.) The global value of
the variable is used to set the session value in cases when the client-requested value is unknown or
not available, or the server is configured to ignore client requests:

• The client is from a version of MySQL older than MySQL 4.1, and thus does not request a
character set.

• The client requests a character set not known to the server. For example, a Japanese-enabled
client requests sjis when connecting to a server not configured with sjis support.

• mysqld was started with the --skip-character-set-client-handshake option, which
causes it to ignore client character set configuration. This reproduces MySQL 4.0 behavior and is
useful should you wish to upgrade the server without upgrading all the clients.

ucs2, utf16, and utf32 cannot be used as a client character set, which means that they also do
not work for SET NAMES or SET CHARACTER SET.

•   character_set_connection

Name character_set_connection

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The character set used for literals that do not have a character set introducer and for number-
to-string conversion. For information about introducers, see Section 10.1.3.8, “Character Set
Introducers”.

•   character_set_database



Server System Variables

502

Name character_set_database

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1

Footnote This option is dynamic, but only the server should set this information.
You should not set the value of this variable manually.

The character set used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
character_set_server.

•   character_set_filesystem

Command-Line Format --character-set-filesystem=name

Name character_set_filesystem

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default binary

The file system character set. This variable is used to interpret string literals that refer to file
names, such as in the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements
and the LOAD_FILE() function. Such file names are converted from character_set_client
to character_set_filesystem before the file opening attempt occurs. The default value is
binary, which means that no conversion occurs. For systems on which multibyte file names are
permitted, a different value may be more appropriate. For example, if the system represents file
names using UTF-8, set character_set_filesystem to 'utf8'.

•   character_set_results

Name character_set_results

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The character set used for returning query results such as result sets or error messages to the client.

•   character_set_server

Command-Line Format --character-set-server

Name character_set_serverSystem Variable

Variable
Scope

Global, Session



Server System Variables

503

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1

The server's default character set.

•   character_set_system

Name character_set_system

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default utf8

The character set used by the server for storing identifiers. The value is always utf8.

•   character_sets_dir

Command-Line Format --character-sets-dir=dir_name

Name character_sets_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory where character sets are installed.

•   collation_connection

Name collation_connection

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The collation of the connection character set.

•   collation_database

Name collation_database

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1_swedish_ci



Server System Variables

504

Footnote This option is dynamic, but only the server should set this information.
You should not set the value of this variable manually.

The collation used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
collation_server.

•   collation_server

Command-Line Format --collation-server

Name collation_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1_swedish_ci

The server's default collation.

•   completion_type

Command-Line Format --completion-type=#

Name completion_type

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

0

1

Permitted Values (<=
5.5.2)

Valid
Values

2

Type enumeration

Default NO_CHAIN

NO_CHAIN

CHAIN

RELEASE

0

1

Permitted Values (>=
5.5.3)

Valid
Values

2

The transaction completion type. This variable can take the values shown in the following table. As
of MySQL 5.5.3, the variable can be assigned using either the name values or corresponding integer
values. Before 5.5.3, only the integer values can be used.

Value Description

NO_CHAIN
(or 0)

COMMIT and ROLLBACK are unaffected. This is the default value.



Server System Variables

505

Value Description

CHAIN (or
1)

COMMIT and ROLLBACK are equivalent to COMMIT AND CHAIN and ROLLBACK AND
CHAIN, respectively. (A new transaction starts immediately with the same isolation level
as the just-terminated transaction.)

RELEASE
(or 2)

COMMIT and ROLLBACK are equivalent to COMMIT RELEASE and ROLLBACK
RELEASE, respectively. (The server disconnects after terminating the transaction.)

completion_type affects transactions that begin with START TRANSACTION or BEGIN and end
with COMMIT or ROLLBACK. It does not apply to implicit commits resulting from execution of the
statements listed in Section 13.3.3, “Statements That Cause an Implicit Commit”. It also does not
apply for XA COMMIT, XA ROLLBACK, or when autocommit=1.

•   concurrent_insert

Command-Line Format --concurrent-insert[=#]

Name concurrent_insert

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

0

1

Permitted Values (<=
5.5.2)

Valid
Values

2

Type enumeration

Default AUTO

NEVER

AUTO

ALWAYS

0

1

Permitted Values (>=
5.5.3)

Valid
Values

2

If AUTO (the default), MySQL permits INSERT and SELECT statements to run concurrently for
MyISAM tables that have no free blocks in the middle of the data file. If you start mysqld with --
skip-new, this variable is set to NEVER.

This variable can take the values shown in the following table. As of MySQL 5.5.3, the variable can
be assigned using either the name values or corresponding integer values. Before 5.5.3, only the
integer values can be used.

Value Description

NEVER (or
0)

Disables concurrent inserts

AUTO (or
1)

(Default) Enables concurrent insert for MyISAM tables that do not have holes

ALWAYS
(or 2)

Enables concurrent inserts for all MyISAM tables, even those that have holes. For a
table with a hole, new rows are inserted at the end of the table if it is in use by another



Server System Variables

506

Value Description
thread. Otherwise, MySQL acquires a normal write lock and inserts the row into the
hole.

See also Section 8.11.3, “Concurrent Inserts”.

•    connect_timeout

Command-Line Format --connect-timeout=#

Name connect_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

2

Permitted Values

Max
Value

31536000

The number of seconds that the mysqld server waits for a connect packet before responding with
Bad handshake. The default value is 10 seconds.

Increasing the connect_timeout value might help if clients frequently encounter errors of the form
Lost connection to MySQL server at 'XXX', system error: errno.

•   datadir

Command-Line Format --datadir=dir_name

Name datadir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path to the MySQL server data directory. Relative paths are resolved with respect to the current
directory. If the server will be started automatically (that is, in contexts for which you cannot assume
what the current directory will be), it is best to specify the datadir value as an absolute path.

•   date_format

This variable is unused.

•   datetime_format

This variable is unused.

•   debug

Command-Line Format --debug[=debug_options]

System Variable Name debug



Server System Variables

507

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type stringPermitted Values (Unix)

Default d:t:i:o,/tmp/mysqld.trace

Type stringPermitted Values
(Windows) Default d:t:i:O,\mysqld.trace

This variable indicates the current debugging settings. It is available only for servers built with
debugging support. The initial value comes from the value of instances of the --debug option
given at server startup. The global and session values may be set at runtime; the SUPER privilege is
required, even for the session value.

Assigning a value that begins with + or - cause the value to added to or subtracted from the current
value:

mysql> SET debug = 'T';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T       |
+---------+

mysql> SET debug = '+P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| P:T     |
+---------+

mysql> SET debug = '-P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T       |
+---------+

For more information, see Section 24.5.3, “The DBUG Package”.

•   debug_sync

Name debug_sync

Variable
Scope

Global, Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name debug_sync

Variable
Scope

Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

Permitted Values Type string



Server System Variables

508

This variable is the user interface to the Debug Sync facility. Use of Debug Sync requires that
MySQL be configured with the -DENABLE_DEBUG_SYNC=1 CMake option (see Section 2.9.4,
“MySQL Source-Configuration Options”). If Debug Sync is not compiled in, this system variable is not
available.

The global variable value is read only and indicates whether the facility is enabled. By default, Debug
Sync is disabled and the value of debug_sync is OFF. If the server is started with --debug-sync-
timeout=N, where N is a timeout value greater than 0, Debug Sync is enabled and the value of
debug_sync is ON - current signal followed by the signal name. Also, N becomes the default
timeout for individual synchronization points.

The session value can be read by any user and will have the same value as the global variable. The
session value can be set by users that have the SUPER privilege to control synchronization points.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

•   default_storage_engine

Command-Line Format --default-storage-engine=name

Name storage_engine

Variable
Scope

Global, Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name default_storage_engine

Variable
Scope

Global, Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

Type enumerationPermitted Values (<=
5.5.4) Default MyISAM

Type enumerationPermitted Values (>=
5.5.5) Default InnoDB

The default storage engine. To set the storage engine at server startup, use the --default-
storage-engine option. See Section 5.1.4, “Server Command Options”.

To see which storage engines are available and enabled, use the SHOW ENGINES statement or
query the INFORMATION_SCHEMA ENGINES table.

If you disable the default storage engine at server startup, you must set the default engine to a
different engine or the server will not start.

This variable is to be used in preference to storage_engine, which is now deprecated.

•   default_week_format

Command-Line Format --default-week-format=#

Name default_week_formatSystem Variable

Variable
Scope

Global, Session

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html


Server System Variables

509

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

7

The default mode value to use for the WEEK() function. See Section 12.7, “Date and Time
Functions”.

•   delay_key_write

Command-Line Format --delay-key-write[=name]

Name delay_key_write

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default ON

ON

OFF

Permitted Values

Valid
Values

ALL

This option applies only to MyISAM tables. It can have one of the following values to affect handling
of the DELAY_KEY_WRITE table option that can be used in CREATE TABLE statements.

Option Description

OFF DELAY_KEY_WRITE is ignored.

ON MySQL honors any DELAY_KEY_WRITE option specified in CREATE TABLE
statements. This is the default value.

ALL All new opened tables are treated as if they were created with the DELAY_KEY_WRITE
option enabled.

If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on every
index update, but only when the table is closed. This speeds up writes on keys a lot, but if
you use this feature, you should add automatic checking of all MyISAM tables by starting the
server with the --myisam-recover-options option (for example, --myisam-recover-
options=BACKUP,FORCE). See Section 5.1.4, “Server Command Options”, and Section 15.3.1,
“MyISAM Startup Options”.

Warning

If you enable external locking with --external-locking, there is no
protection against index corruption for tables that use delayed key writes.

•   delayed_insert_limit

Command-Line Format --delayed-insert-limit=#

System Variable Name delayed_insert_limit



Server System Variables

510

Variable
Scope

Global

Dynamic
Variable

Yes

Type integer

Default 100

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 100

Min
Value

1

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 100

Min
Value

1

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

After inserting delayed_insert_limit delayed rows, the INSERT DELAYED handler thread
checks whether there are any SELECT statements pending. If so, it permits them to execute before
continuing to insert delayed rows.

•   delayed_insert_timeout

Command-Line Format --delayed-insert-timeout=#

Name delayed_insert_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 300

How many seconds an INSERT DELAYED handler thread should wait for INSERT statements before
terminating.

•   delayed_queue_size

Command-Line Format --delayed-queue-size=#

Name delayed_queue_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes



Server System Variables

511

Type integer

Default 1000

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1000

Min
Value

1

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 1000

Min
Value

1

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

This is a per-table limit on the number of rows to queue when handling INSERT DELAYED
statements. If the queue becomes full, any client that issues an INSERT DELAYED statement waits
until there is room in the queue again.

•   div_precision_increment

Command-Line Format --div-precision-increment=#

Name div_precision_increment

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4

Min
Value

0

Permitted Values

Max
Value

30

This variable indicates the number of digits by which to increase the scale of the result of division
operations performed with the / operator. The default value is 4. The minimum and maximum values
are 0 and 30, respectively. The following example illustrates the effect of increasing the default value.

mysql> SELECT 1/7;
+--------+
| 1/7    |
+--------+
| 0.1429 |
+--------+
mysql> SET div_precision_increment = 12;
mysql> SELECT 1/7;
+----------------+
| 1/7            |
+----------------+



Server System Variables

512

| 0.142857142857 |
+----------------+

•   engine_condition_pushdown

Deprecated 5.5.3, by optimizer_switch

Command-Line Format --engine-condition-pushdown

Name engine_condition_pushdown

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

The engine condition pushdown optimization enables processing for certain comparisons to be
“pushed down” to the storage engine level for more efficient execution. For more information, see
Section 8.2.1.4, “Engine Condition Pushdown Optimization”.

Engine condition pushdown is used only by the NDBCLUSTER storage engine. Enabling this
optimization on a MySQL Server acting as an NDB Cluster SQL node causes WHERE conditions on
unindexed columns to be evaluated on the cluster's data nodes and only the rows that match to be
sent back to the SQL node that issued the query. This greatly reduces the amount of cluster data
that must be sent over the network, increasing the efficiency with which results are returned.

The engine_condition_pushdown variable controls whether engine condition pushdown is
enabled. By default, this variable is ON (1). Setting it to OFF (0) disables pushdown.

This variable is deprecated as of MySQL 5.5.3 and is removed in MySQL 5.6. Use the
engine_condition_pushdown flag of the optimizer_switch variable instead. See
Section 8.9.2, “Switchable Optimizations”.

•   error_count

The number of errors that resulted from the last statement that generated messages. This variable is
read only. See Section 13.7.5.18, “SHOW ERRORS Syntax”.

•   event_scheduler

Command-Line Format --event-scheduler[=value]

Name event_scheduler

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default OFF

ON

OFF

Permitted Values

Valid
Values

DISABLED

This variable indicates the status of the Event Scheduler; possible values are ON, OFF, and
DISABLED, with the default being OFF. This variable and its effects on the Event Scheduler's
operation are discussed in greater detail in the Overview section of the Events chapter.



Server System Variables

513

•   expire_logs_days

Command-Line Format --expire-logs-days=#

Name expire_logs_days

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

99

The number of days for automatic binary log file removal. The default is 0, which means “no
automatic removal.” Possible removals happen at startup and when the binary log is flushed. Log
flushing occurs as indicated in Section 5.4, “MySQL Server Logs”.

To remove binary log files manually, use the PURGE BINARY LOGS statement. See
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

•   external_user

Introduced 5.5.7

Name external_user

Variable
Scope

Session

System Variable

Dynamic
Variable

No

Permitted Values Type string

The external user name used during the authentication process, as set by the plugin used to
authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set the
value, this variable is NULL. See Section 6.3.7, “Proxy Users”.

•   flush

Command-Line Format --flush

Name flush

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If ON, the server flushes (synchronizes) all changes to disk after each SQL statement. Normally,
MySQL does a write of all changes to disk only after each SQL statement and lets the operating
system handle the synchronizing to disk. See Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”. This variable is set to ON if you start mysqld with the --flush option.

•   flush_time



Server System Variables

514

Command-Line Format --flush-time=#

Name flush_time

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Min
Value

0

Type integer

Default 1800

Permitted Values
(Windows)

Min
Value

0

If this is set to a nonzero value, all tables are closed every flush_time seconds to free up
resources and synchronize unflushed data to disk. This option is best used only on systems with
minimal resources.

•   foreign_key_checks

If set to 1 (the default), foreign key constraints for InnoDB tables are checked. If set to 0, foreign key
constraints are ignored, with a couple of exceptions. When re-creating a table that was dropped, an
error is returned if the table definition does not conform to the foreign key constraints referencing the
table. Likewise, an ALTER TABLE operation returns an error if a foreign key definition is incorrectly
formed. For more information, see Section 13.1.17.6, “Using FOREIGN KEY Constraints”.

Disabling foreign key checking can be useful for reloading InnoDB tables in an order different from
that required by their parent/child relationships. See Section 14.11.1.6, “InnoDB and FOREIGN KEY
Constraints”.

Setting foreign_key_checks to 0 also affects data definition statements: DROP SCHEMA drops
a schema even if it contains tables that have foreign keys that are referred to by tables outside the
schema, and DROP TABLE drops tables that have foreign keys that are referred to by other tables.

Note

Setting foreign_key_checks to 1 does not trigger a scan of
the existing table data. Therefore, rows added to the table while
foreign_key_checks=0 will not be verified for consistency.

Warning

With foreign_key_checks=0, dropping an index required by a foreign key
constraint places the table in an inconsistent state and causes the foreign
key check that occurs at table load to fail. To avoid this problem, remove the
foreign key constraint before dropping the index (Bug #70260).

•   ft_boolean_syntax

Command-Line Format --ft-boolean-syntax=name

Name ft_boolean_syntaxSystem Variable

Variable
Scope

Global



Server System Variables

515

Dynamic
Variable

Yes

Type stringPermitted Values

Default + -><()~*:""&|

The list of operators supported by boolean full-text searches performed using IN BOOLEAN MODE.
See Section 12.9.2, “Boolean Full-Text Searches”.

The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as follows:

• Operator function is determined by position within the string.

• The replacement value must be 14 characters.

• Each character must be an ASCII nonalphanumeric character.

• Either the first or second character must be a space.

• No duplicates are permitted except the phrase quoting operators in positions 11 and 12. These two
characters are not required to be the same, but they are the only two that may be.

• Positions 10, 13, and 14 (which by default are set to :, &, and |) are reserved for future
extensions.

•   ft_max_word_len

Command-Line Format --ft-max-word-len=#

Name ft_max_word_len

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Min
Value

10

The maximum length of the word to be included in a FULLTEXT index.

Note

FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR
TABLE tbl_name QUICK.

•   ft_min_word_len

Command-Line Format --ft-min-word-len=#

Name ft_min_word_len

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 4



Server System Variables

516

Min
Value

1

The minimum length of the word to be included in a FULLTEXT index.

Note

FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR
TABLE tbl_name QUICK.

•   ft_query_expansion_limit

Command-Line Format --ft-query-expansion-limit=#

Name ft_query_expansion_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 20

Min
Value

0

Permitted Values

Max
Value

1000

The number of top matches to use for full-text searches performed using WITH QUERY EXPANSION.

•   ft_stopword_file

Command-Line Format --ft-stopword-file=file_name

Name ft_stopword_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The file from which to read the list of stopwords for full-text searches. The server looks for the file in
the data directory unless an absolute path name is given to specify a different directory. All the words
from the file are used; comments are not honored. By default, a built-in list of stopwords is used (as
defined in the storage/myisam/ft_static.c file). Setting this variable to the empty string ('')
disables stopword filtering. See also Section 12.9.4, “Full-Text Stopwords”.

Note

FULLTEXT indexes must be rebuilt after changing this variable or the contents
of the stopword file. Use REPAIR TABLE tbl_name QUICK.

•   general_log

Command-Line Format --general-log

Name general_logSystem Variable

Variable
Scope

Global



Server System Variables

517

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether the general query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON)
to enable the log. The default value depends on whether the --general_log option is given. The
destination for log output is controlled by the log_output system variable; if that value is NONE, no
log entries are written even if the log is enabled.

•   general_log_file

Command-Line Format --general-log-file=file_name

Name general_log_file

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type file namePermitted Values

Default host_name.log

The name of the general query log file. The default value is host_name.log, but the initial value
can be changed with the --general_log_file option.

•   group_concat_max_len

Command-Line Format --group-concat-max-len=#

Name group_concat_max_len

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

4

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1024

Min
Value

4

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 1024

Min
Value

4

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615



Server System Variables

518

The maximum permitted result length in bytes for the GROUP_CONCAT() function. The default is
1024.

•   have_compress

YES if the zlib compression library is available to the server, NO if not. If not, the COMPRESS() and
UNCOMPRESS() functions cannot be used.

•   have_crypt

YES if the crypt() system call is available to the server, NO if not. If not, the ENCRYPT() function
cannot be used.

•   have_csv

YES if mysqld supports CSV tables, NO if not.

This variable is deprecated and is removed in MySQL 5.6. Use SHOW ENGINES instead.

•   have_dynamic_loading

YES if mysqld supports dynamic loading of plugins, NO if not. If the value is NO, you cannot use
options such as --plugin-load to load plugins at server startup, or the INSTALL PLUGIN
statement to load plugins at runtime.

•   have_geometry

YES if the server supports spatial data types, NO if not.

•   have_innodb

YES if mysqld supports InnoDB tables. DISABLED if --skip-innodb is used.

This variable is deprecated and is removed in MySQL 5.6. Use SHOW ENGINES instead.

•   have_openssl

This variable is an alias for have_ssl.

•   have_partitioning

YES if mysqld supports partitioning.

This variable is deprecated and is removed in MySQL 5.6. Use SHOW PLUGINS instead. For more
information, see Chapter 19, Partitioning.

•   have_profiling

YES if statement profiling capability is present, NO if not. If present, the profiling system variable
controls whether this capability is enabled or disabled. See Section 13.7.5.32, “SHOW PROFILES
Syntax”.

•   have_query_cache

YES if mysqld supports the query cache, NO if not.

•   have_rtree_keys

YES if RTREE indexes are available, NO if not. (These are used for spatial indexes in MyISAM tables.)

•   have_ssl



Server System Variables

519

YES if mysqld supports SSL connections, NO if not. DISABLED indicates that the server was
compiled with SSL support, but was not started with the appropriate --ssl-xxx options. For more
information, see Section 6.4.2, “Building MySQL with Support for Secure Connections”.

•   have_symlink

YES if symbolic link support is enabled, NO if not. This is required on Unix for support of the DATA
DIRECTORY and INDEX DIRECTORY table options, and on Windows for support of data directory
symlinks. If the server is started with the --skip-symbolic-links option, the value is DISABLED.

•   hostname

Name hostname

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The server sets this variable to the server host name at startup.

•   identity

This variable is a synonym for the last_insert_id variable. It exists for compatibility with
other database systems. You can read its value with SELECT @@identity, and set it using SET
identity.

•   init_connect

Command-Line Format --init-connect=name

Name init_connect

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

A string to be executed by the server for each client that connects. The string consists of one or more
SQL statements, separated by semicolon characters. For example, each client session begins by
default with autocommit mode enabled. For older servers (before MySQL 5.5.8), there is no global
autocommit system variable to specify that autocommit should be disabled by default, but as a
workaround init_connect can be used to achieve the same effect:

SET GLOBAL init_connect='SET autocommit=0';

The init_connect variable can also be set on the command line or in an option file. To set the
variable as just shown using an option file, include these lines:

[mysqld]
init_connect='SET autocommit=0'

For users that have the SUPER privilege, the content of init_connect is not executed. This is
done so that an erroneous value for init_connect does not prevent all clients from connecting.
For example, the value might contain a statement that has a syntax error, thus causing client



Server System Variables

520

connections to fail. Not executing init_connect for users that have the SUPER privilege enables
them to open a connection and fix the init_connect value.

The server discards any result sets produced by statements in the value of of init_connect.

•   init_file

Command-Line Format --init-file=file_name

Name init_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name of the file specified with the --init-file option when you start the server. This should
be a file containing SQL statements that you want the server to execute when it starts. Each
statement must be on a single line and should not include comments. For more information, see the
description of --init-file.

• innodb_xxx

InnoDB system variables are listed in Section 14.17, “InnoDB Startup Options and System
Variables”. These variables control many aspects of storage, memory use, and I/O patterns for
InnoDB tables, and are especially important now that InnoDB is the default storage engine.

•   insert_id

The value to be used by the following INSERT or ALTER TABLE statement when inserting an
AUTO_INCREMENT value. This is mainly used with the binary log.

•   interactive_timeout

Command-Line Format --interactive-timeout=#

Name interactive_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 28800

Permitted Values

Min
Value

1

The number of seconds the server waits for activity on an interactive connection before closing
it. An interactive client is defined as a client that uses the CLIENT_INTERACTIVE option to
mysql_real_connect(). See also wait_timeout.

•   join_buffer_size

Command-Line Format --join-buffer-size=#

Name join_buffer_sizeSystem Variable

Variable
Scope

Global, Session



Server System Variables

521

Dynamic
Variable

Yes

Type integer

Default 131072

Min
Value

128

Permitted Values
(Windows, >= 5.5.3)

Max
Value

4294967295

Type integer

Default 131072

Min
Value

8200

Permitted Values
(Windows, 32-bit
platforms, <= 5.5.2)

Max
Value

4294967295

Type integer

Default 131072

Min
Value

8228

Permitted Values
(Windows, 64-bit
platforms, <= 5.5.2)

Max
Value

4294967295

Type integer

Default 131072

Min
Value

8200

Permitted Values (Other,
32-bit platforms, <= 5.5.2)

Max
Value

4294967295

Type integer

Default 131072

Min
Value

128

Permitted Values (Other,
32-bit platforms, >= 5.5.3)

Max
Value

4294967295

Type integer

Default 131072

Min
Value

8228

Permitted Values (Other,
64-bit platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 131072

Min
Value

128

Permitted Values (Other,
64-bit platforms, >= 5.5.3)

Max
Value

18446744073709547520

The minimum size of the buffer that is used for plain index scans, range index scans, and joins that
do not use indexes and thus perform full table scans. Normally, the best way to get fast joins is to



Server System Variables

522

add indexes. Increase the value of join_buffer_size to get a faster full join when adding indexes
is not possible. One join buffer is allocated for each full join between two tables. For a complex join
between several tables for which indexes are not used, multiple join buffers might be necessary.

There is no gain from setting the buffer larger than required to hold each matching row, and all joins
allocate at least the minimum size, so use caution in setting this variable to a large value globally.
It is better to keep the global setting small and change to a larger setting only in sessions that are
doing large joins. Memory allocation time can cause substantial performance drops if the global size
is larger than needed by most queries that use it.

The maximum permissible setting for join_buffer_size is 4GB−1. Larger values are permitted
for 64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB−1 with a
warning).

Prior to MySQL 5.5.3, the minimum allowed value for this variable was 8200 for 32-bit platforms and
8228 for 64-bit platforms. In MySQL 5.5.3 and later, the minimum is 128 for all platforms.

For additional information about join buffering, see Section 8.2.1.5, “Nested-Loop Join Algorithms”.

•   keep_files_on_create

Command-Line Format --keep-files-on-create=#

Name keep_files_on_create

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the
database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it.
The same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress
this behavior, set the keep_files_on_create variable to ON (1), in which case MyISAM will not
overwrite existing files and returns an error instead. The default value is OFF (0).

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified
directory.

•    key_buffer_size

Command-Line Format --key-buffer-size=#

Name key_buffer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 8388608

Min
Value

8

Permitted Values (32-bit
platforms)

Max
Value

4294967295



Server System Variables

523

Type integer

Default 8388608

Min
Value

8

Permitted Values (64-bit
platforms)

Max
Value

OS_PER_PROCESS_LIMIT

Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is
the size of the buffer used for index blocks. The key buffer is also known as the key cache.

The maximum permissible setting for key_buffer_size is 4GB−1 on 32-bit platforms. Larger
values are permitted for 64-bit platforms. The effective maximum size might be less, depending
on your available physical RAM and per-process RAM limits imposed by your operating system or
hardware platform. The value of this variable indicates the amount of memory requested. Internally,
the server allocates as much memory as possible up to this amount, but the actual allocation might
be less.

You can increase the value to get better index handling for all reads and multiple writes; on a system
whose primary function is to run MySQL using the MyISAM storage engine, 25% of the machine's
total memory is an acceptable value for this variable. However, you should be aware that, if you
make the value too large (for example, more than 50% of the machine's total memory), your system
might start to page and become extremely slow. This is because MySQL relies on the operating
system to perform file system caching for data reads, so you must leave some room for the file
system cache. You should also consider the memory requirements of any other storage engines that
you may be using in addition to MyISAM.

For even more speed when writing many rows at the same time, use LOCK TABLES. See
Section 8.2.4.1, “Optimizing INSERT Statements”.

You can check the performance of the key buffer by issuing a SHOW STATUS statement and
examining the Key_read_requests, Key_reads, Key_write_requests, and Key_writes
status variables. (See Section 13.7.5, “SHOW Syntax”.) The Key_reads/Key_read_requests
ratio should normally be less than 0.01. The Key_writes/Key_write_requests ratio is usually
near 1 if you are using mostly updates and deletes, but might be much smaller if you tend to do
updates that affect many rows at the same time or if you are using the DELAY_KEY_WRITE table
option.

The fraction of the key buffer in use can be determined using key_buffer_size in conjunction
with the Key_blocks_unused status variable and the buffer block size, which is available from the
key_cache_block_size system variable:

1 - ((Key_blocks_unused * key_cache_block_size) / key_buffer_size)

This value is an approximation because some space in the key buffer is allocated internally for
administrative structures. Factors that influence the amount of overhead for these structures
include block size and pointer size. As block size increases, the percentage of the key buffer lost to
overhead tends to decrease. Larger blocks results in a smaller number of read operations (because
more keys are obtained per read), but conversely an increase in reads of keys that are not examined
(if not all keys in a block are relevant to a query).

It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache
individually, not as a group. See Section 8.10.2, “The MyISAM Key Cache”.

•   key_cache_age_threshold

Command-Line Format --key-cache-age-threshold=#

System Variable Name key_cache_age_threshold



Server System Variables

524

Variable
Scope

Global

Dynamic
Variable

Yes

Type integer

Default 300

Min
Value

100

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 300

Min
Value

100

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 300

Min
Value

100

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

This value controls the demotion of buffers from the hot sublist of a key cache to the warm sublist.
Lower values cause demotion to happen more quickly. The minimum value is 100. The default value
is 300. See Section 8.10.2, “The MyISAM Key Cache”.

•   key_cache_block_size

Command-Line Format --key-cache-block-size=#

Name key_cache_block_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

512

Permitted Values

Max
Value

16384

The size in bytes of blocks in the key cache. The default value is 1024. See Section 8.10.2, “The
MyISAM Key Cache”.

•   key_cache_division_limit

Command-Line Format --key-cache-division-limit=#

System Variable Name key_cache_division_limit



Server System Variables

525

Variable
Scope

Global

Dynamic
Variable

Yes

Type integer

Default 100

Min
Value

1

Permitted Values

Max
Value

100

The division point between the hot and warm sublists of the key cache buffer list. The value is the
percentage of the buffer list to use for the warm sublist. Permissible values range from 1 to 100. The
default value is 100. See Section 8.10.2, “The MyISAM Key Cache”.

•   language

Deprecated 5.5.0, by lc-messages-dir

Command-Line Format --language=name

Name language

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default /usr/local/mysql/share/mysql/english/

The directory where error messages are located. See Section 10.2, “Setting the Error Message
Language”.

The language system variable is removed as of MySQL 5.5.0 (although the --language
command-line option can still be used). Similar information is available from the lc_messages_dir
and lc_messages variables.

•   large_files_support

Name large_files_support

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Whether mysqld was compiled with options for large file support.

•   large_pages

Command-Line Format --large-pages

Name large_pages

Variable
Scope

Global

System Variable

Dynamic
Variable

No



Server System Variables

526

Platform Specific Linux

Type booleanPermitted Values (Linux)

Default FALSE

Whether large page support is enabled (via the --large-pages option). See Section 8.12.4.2,
“Enabling Large Page Support”.

•   large_page_size

Name large_page_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (Linux)

Default 0

If large page support is enabled, this shows the size of memory pages. Large memory pages
are supported only on Linux; on other platforms, the value of this variable is always 0. See
Section 8.12.4.2, “Enabling Large Page Support”.

•   last_insert_id

The value to be returned from LAST_INSERT_ID(). This is stored in the binary log when you use
LAST_INSERT_ID() in a statement that updates a table. Setting this variable does not update the
value returned by the mysql_insert_id() C API function.

•   lc_messages

Command-Line Format --lc-messages=name

Name lc_messages

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default en_US

The locale to use for error messages. The default is en_US. The server converts the argument to a
language name and combines it with the value of lc_messages_dir to produce the location for the
error message file. See Section 10.2, “Setting the Error Message Language”.

•   lc_messages_dir

Command-Line Format --lc-messages-dir=dir_name

Name lc_messages_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name



Server System Variables

527

The directory where error messages are located. The server uses the value together with the value
of lc_messages to produce the location for the error message file. See Section 10.2, “Setting the
Error Message Language”.

•   lc_time_names

Name lc_time_names

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

This variable specifies the locale that controls the language used to display day and month names
and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and
MONTHNAME() functions. Locale names are POSIX-style values such as 'ja_JP' or 'pt_BR'.
The default value is 'en_US' regardless of your system's locale setting. For further information, see
Section 10.7, “MySQL Server Locale Support”.

•   license

Name license

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default GPL

The type of license the server has.

•   local_infile

Name local_infile

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

This variable controls server-side LOCAL capability for LOAD DATA statements. Depending on the
local_infile setting, the server refuses or permits local data loading by clients that have LOCAL
enabled on the client side.

To explicitly cause the server to refuse or permit LOAD DATA LOCAL statements (regardless
of how client programs and libraries are configured at build time or runtime), start mysqld with
local_infile disabled or enabled, respectively. local_infile can also be set at runtime. For
more information, see Section 6.1.6, “Security Issues with LOAD DATA LOCAL”.

•   lock_wait_timeout

Introduced 5.5.3



Server System Variables

528

Command-Line Format --lock-wait-timeout=#

Name lock_wait_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 31536000

Min
Value

1

Permitted Values

Max
Value

31536000

This variable specifies the timeout in seconds for attempts to acquire metadata locks. The
permissible values range from 1 to 31536000 (1 year). The default is 31536000.

This timeout applies to all statements that use metadata locks. These include DML and DDL
operations on tables, views, stored procedures, and stored functions, as well as LOCK TABLES,
FLUSH TABLES WITH READ LOCK, and HANDLER statements.

This timeout does not apply to implicit accesses to system tables in the mysql database, such as
grant tables modified by GRANT or REVOKE statements or table logging statements. The timeout does
apply to system tables accessed directly, such as with SELECT or UPDATE.

The timeout value applies separately for each metadata lock attempt. A given statement can
require more than one lock, so it is possible for the statement to block for longer than the
lock_wait_timeout value before reporting a timeout error. When lock timeout occurs,
ER_LOCK_WAIT_TIMEOUT is reported.

lock_wait_timeout does not apply to delayed inserts, which always execute with a timeout of
1 year. This is done to avoid unnecessary timeouts because a session that issues a delayed insert
receives no notification of delayed insert timeouts.

•   locked_in_memory

Name locked_in_memory

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Whether mysqld was locked in memory with --memlock.

•   log

Deprecated 5.1.29, by general-log

Command-Line Format --log[=file_name]

Name log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type file name



Server System Variables

529

Whether logging of all statements to the general query log is enabled. See Section 5.4.3, “The
General Query Log”.

This variable is deprecated and is removed in MySQL 5.6. Use general_log instead.

•   log_bin_trust_function_creators

Command-Line Format --log-bin-trust-function-creators

Name log_bin_trust_function_creators

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

This variable applies when binary logging is enabled. It controls whether stored function creators
can be trusted not to create stored functions that will cause unsafe events to be written to the binary
log. If set to 0 (the default), users are not permitted to create or alter stored functions unless they
have the SUPER privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A
setting of 0 also enforces the restriction that a function must be declared with the DETERMINISTIC
characteristic, or with the READS SQL DATA or NO SQL characteristic. If the variable is set to 1,
MySQL does not enforce these restrictions on stored function creation. This variable also applies to
trigger creation. See Section 20.7, “Binary Logging of Stored Programs”.

•   log_bin_trust_routine_creators

This is the old name for log_bin_trust_function_creators. This variable is deprecated and
was removed in MySQL 5.5.3.

•   log_error

Command-Line Format --log-error[=file_name]

Name log_error

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The location of the error log, or empty if the server is writing error message to the standard error
output. See Section 5.4.2, “The Error Log”.

•   log_output

Command-Line Format --log-output=name

Name log_output

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type setPermitted Values

Default FILE



Server System Variables

530

TABLE

FILE

Valid
Values

NONE

The destination for general query log and slow query log output. The value can be a comma-
separated list of one or more of the words TABLE (log to tables), FILE (log to files), or NONE (do not
log to tables or files). The default value is FILE. NONE, if present, takes precedence over any other
specifiers. If the value is NONE log entries are not written even if the logs are enabled. If the logs are
not enabled, no logging occurs even if the value of log_output is not NONE. For more information,
see Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”.

•   log_queries_not_using_indexes

Command-Line Format --log-queries-not-using-indexes

Name log_queries_not_using_indexes

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether queries that do not use indexes are logged to the slow query log. See Section 5.4.5, “The
Slow Query Log”.

•   log_slow_queries

Deprecated 5.1.29, by slow-query-log

Command-Line Format --log-slow-queries[=name]

Name log_slow_queries

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

Whether slow queries should be logged. “Slow” is determined by the value of the
long_query_time variable. See Section 5.4.5, “The Slow Query Log”.

This variable is deprecated and is removed in MySQL 5.6. Use slow_query_log instead.

•   log_warnings

Command-Line Format --log-warnings[=#]

Name log_warnings

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values (32-bit
platforms) Default 1



Server System Variables

531

Min
Value

0

Max
Value

4294967295

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

Whether to produce additional warning messages to the error log. This variable is enabled (1) by
default and can be disabled by setting it to 0. The server logs messages about statements that are
unsafe for statement-based logging if the value is greater than 0. Aborted connections and access-
denied errors for new connection attempts are logged if the value is greater than 1.

•   long_query_time

Command-Line Format --long-query-time=#

Name long_query_time

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type numeric

Default 10

Permitted Values

Min
Value

0

If a query takes longer than this many seconds, the server increments the Slow_queries status
variable. If the slow query log is enabled, the query is logged to the slow query log file. This value
is measured in real time, not CPU time, so a query that is under the threshold on a lightly loaded
system might be above the threshold on a heavily loaded one. The minimum and default values
of long_query_time are 0 and 10, respectively. The value can be specified to a resolution of
microseconds. For logging to a file, times are written including the microseconds part. For logging to
tables, only integer times are written; the microseconds part is ignored. See Section 5.4.5, “The Slow
Query Log”.

•   low_priority_updates

Command-Line Format --low-priority-updates

Name low_priority_updatesSystem Variable

Variable
Scope

Global, Session



Server System Variables

532

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until there is no
pending SELECT or LOCK TABLE READ on the affected table. This affects only storage engines that
use only table-level locking (such as MyISAM, MEMORY, and MERGE). This variable previously was
named sql_low_priority_updates.

•   lower_case_file_system

Name lower_case_file_system

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type boolean

This variable describes the case sensitivity of file names on the file system where the data directory
is located. OFF means file names are case sensitive, ON means they are not case sensitive. This
variable is read only because it reflects a file system attribute and setting it would have no effect on
the file system.

•   lower_case_table_names

Command-Line Format --lower-case-table-names[=#]

Name lower_case_table_names

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

2

If set to 0, table names are stored as specified and comparisons are case sensitive. If set to 1, table
names are stored in lowercase on disk and comparisons are not case sensitive. If set to 2, table
names are stored as given but compared in lowercase. This option also applies to database names
and table aliases. For additional information, see Section 9.2.2, “Identifier Case Sensitivity”.

On Windows the default value is 1. On OS X, the default value is 2.

You should not set lower_case_table_names to 0 if you are running MySQL on a system where
the data directory resides on a case-insensitive file system (such as on Windows or OS X). It is an
unsupported combination that could result in a hang condition when running an INSERT INTO ...
SELECT ... FROM tbl_name operation with the wrong tbl_name letter case. With MyISAM,
accessing table names using different letter cases could cause index corruption.

As of MySQL 5.5.46, an error message is printed and the server exits if you attempt to start the
server with --lower_case_table_names=0 on a case-insensitive file system.



Server System Variables

533

If you are using InnoDB tables, you should set this variable to 1 on all platforms to force names to be
converted to lowercase.

The setting of this variable has no effect on replication filtering options. This is a known issue which
is fixed in MySQL 5.6. See Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”, for
more information.

You should not use different settings for lower_case_table_names on replication masters
and slaves. In particular, you should not do this when the slave uses a case-sensitive file system,
as this can cause replication to fail. This is a known issue which is fixed in MySQL 5.6. For more
information, see Section 17.4.1.38, “Replication and Variables”.

•   max_allowed_packet

Command-Line Format --max-allowed-packet=#

Name max_allowed_packet

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1048576

Min
Value

1024

Permitted Values

Max
Value

1073741824

The maximum size of one packet or any generated/intermediate string.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to
max_allowed_packet bytes when needed. This value by default is small, to catch large (possibly
incorrect) packets.

You must increase this value if you are using large BLOB columns or long strings. It should be as
big as the largest BLOB you want to use. The protocol limit for max_allowed_packet is 1GB. The
value should be a multiple of 1024; nonmultiples are rounded down to the nearest multiple.

When you change the message buffer size by changing the value of the max_allowed_packet
variable, you should also change the buffer size on the client side if your client program permits
it. The default max_allowed_packet value built in to the client library is 1GB, but individual
client programs might override this. For example, mysql and mysqldump have defaults of
16MB and 24MB, respectively. They also enable you to change the client-side value by setting
max_allowed_packet on the command line or in an option file.

The session value of this variable is read only. The client can receive up to as many bytes as the
session value. However, the server will not send to the client more bytes than the current global
max_allowed_packet value. (The global value could be less than the session value if the global
value is changed after the client connects.)

•   max_connect_errors

Command-Line Format --max-connect-errors=#

Name max_connect_errorsSystem Variable

Variable
Scope

Global



Server System Variables

534

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10

Min
Value

1

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 10

Min
Value

1

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

If more than this many successive connection requests from a host are interrupted without a
successful connection, the server blocks that host from further connections. You can unblock
blocked hosts by flushing the host cache. To do so, issue a FLUSH HOSTS statement or execute a
mysqladmin flush-hosts command. If a connection is established successfully within fewer than
max_connect_errors attempts after a previous connection was interrupted, the error count for the
host is cleared to zero. However, once a host is blocked, flushing the host cache is the only way to
unblock it.

•   max_connections

Command-Line Format --max-connections=#

Name max_connections

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 151

Min
Value

1

Permitted Values

Max
Value

100000

The maximum permitted number of simultaneous client connections. By default, this is 151. See
Section B.5.2.7, “Too many connections”, for more information.

Increasing this value increases the number of file descriptors that mysqld requires. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”, for comments on file descriptor limits.



Server System Variables

535

mysqld actually permits max_connections+1 clients to connect. The extra connection is reserved
for use by accounts that have the SUPER privilege. By granting the SUPER privilege to administrators
and not to normal users (who should not need it), an administrator can connect to the server and use
SHOW PROCESSLIST to diagnose problems even if the maximum number of unprivileged clients are
connected. See Section 13.7.5.30, “SHOW PROCESSLIST Syntax”.

•   max_delayed_threads

Command-Line Format --max-delayed-threads=#

Name max_delayed_threads

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 20

Min
Value

0

Permitted Values

Max
Value

16384

Do not start more than this number of threads to handle INSERT DELAYED statements. If you try to
insert data into a new table after all INSERT DELAYED threads are in use, the row is inserted as if
the DELAYED attribute was not specified. If you set this to 0, MySQL never creates a thread to handle
DELAYED rows; in effect, this disables DELAYED entirely.

For the SESSION value of this variable, the only valid values are 0 or the GLOBAL value.

•   max_error_count

Command-Line Format --max-error-count=#

Name max_error_count

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 64

Min
Value

0

Permitted Values

Max
Value

65535

The maximum number of error, warning, and note messages to be stored for display by the SHOW
ERRORS and SHOW WARNINGS statements.

•   max_heap_table_size

Command-Line Format --max-heap-table-size=#

Name max_heap_table_sizeSystem Variable

Variable
Scope

Global, Session



Server System Variables

536

Dynamic
Variable

Yes

Type integer

Default 16777216

Min
Value

16384

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 16777216

Min
Value

16384

Permitted Values (64-bit
platforms)

Max
Value

1844674407370954752

This variable sets the maximum size to which user-created MEMORY tables are permitted to grow.
The value of the variable is used to calculate MEMORY table MAX_ROWS values. Setting this variable
has no effect on any existing MEMORY table, unless the table is re-created with a statement such as
CREATE TABLE or altered with ALTER TABLE or TRUNCATE TABLE. A server restart also sets the
maximum size of existing MEMORY tables to the global max_heap_table_size value.

This variable is also used in conjunction with tmp_table_size to limit the size of internal in-
memory tables. See Section 8.4.4, “Internal Temporary Table Use in MySQL”.

max_heap_table_size is not replicated. See Section 17.4.1.23, “Replication and MEMORY
Tables”, and Section 17.4.1.38, “Replication and Variables”, for more information.

•   max_insert_delayed_threads

Name max_insert_delayed_threads

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

This variable is a synonym for max_delayed_threads.

•   max_join_size

Command-Line Format --max-join-size=#

Name max_join_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 18446744073709551615

Permitted Values

Min
Value

1



Server System Variables

537

Max
Value

18446744073709551615

Do not permit statements that probably need to examine more than max_join_size rows (for
single-table statements) or row combinations (for multiple-table statements) or that are likely to do
more than max_join_size disk seeks. By setting this value, you can catch statements where keys
are not used properly and that would probably take a long time. Set it if your users tend to perform
joins that lack a WHERE clause, that take a long time, or that return millions of rows.

Setting this variable to a value other than DEFAULT resets the value of sql_big_selects to 0. If
you set the sql_big_selects value again, the max_join_size variable is ignored.

If a query result is in the query cache, no result size check is performed, because the result has
previously been computed and it does not burden the server to send it to the client.

This variable previously was named sql_max_join_size.

•   max_length_for_sort_data

Command-Line Format --max-length-for-sort-data=#

Name max_length_for_sort_data

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

4

Permitted Values

Max
Value

8388608

The cutoff on the size of index values that determines which filesort algorithm to use. See
Section 8.2.1.10, “ORDER BY Optimization”.

•   max_long_data_size

Introduced 5.5.11

Deprecated 5.5.11

Command-Line Format --max-long-data-size=#

Name max_long_data_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1048576

Min
Value

1024

Permitted Values

Max
Value

4294967295



Server System Variables

538

The maximum size of parameter values that can be sent with the
mysql_stmt_send_long_data() C API function. If not set at server startup, the default is the
value of the max_allowed_packet system variable. This variable is deprecated. In MySQL 5.6, it is
removed and the maximum parameter size is controlled by max_allowed_packet.

•   max_prepared_stmt_count

Command-Line Format --max-prepared-stmt-count=#

Name max_prepared_stmt_count

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 16382

Min
Value

0

Permitted Values

Max
Value

1048576

This variable limits the total number of prepared statements in the server. (The sum of the number of
prepared statements across all sessions.) It can be used in environments where there is the potential
for denial-of-service attacks based on running the server out of memory by preparing huge numbers
of statements. If the value is set lower than the current number of prepared statements, existing
statements are not affected and can be used, but no new statements can be prepared until the
current number drops below the limit. The default value is 16,382. The permissible range of values is
from 0 to 1 million. Setting the value to 0 disables prepared statements.

•   max_relay_log_size

Command-Line Format --max-relay-log-size=#

Name max_relay_log_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1073741824

If a write by a replication slave to its relay log causes the current log file size to exceed the value
of this variable, the slave rotates the relay logs (closes the current file and opens the next one).
If max_relay_log_size is 0, the server uses max_binlog_size for both the binary log and
the relay log. If max_relay_log_size is greater than 0, it constrains the size of the relay log,
which enables you to have different sizes for the two logs. You must set max_relay_log_size
to between 4096 bytes and 1GB (inclusive), or to 0. The default value is 0. See Section 17.2.1,
“Replication Implementation Details”.

•   max_seeks_for_key



Server System Variables

539

Command-Line Format --max-seeks-for-key=#

Name max_seeks_for_key

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4294967295

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 18446744073709547520

Min
Value

1

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 18446744073709551615

Min
Value

1

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

Limit the assumed maximum number of seeks when looking up rows based on a key. The MySQL
optimizer assumes that no more than this number of key seeks are required when searching for
matching rows in a table by scanning an index, regardless of the actual cardinality of the index (see
Section 13.7.5.23, “SHOW INDEX Syntax”). By setting this to a low value (say, 100), you can force
MySQL to prefer indexes instead of table scans.

•   max_sort_length

Command-Line Format --max-sort-length=#

Name max_sort_length

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

4

Permitted Values

Max
Value

8388608

The number of bytes to use when sorting data values. The server uses only the first
max_sort_length bytes of each value and ignores the rest. Consequently, values that differ



Server System Variables

540

only after the first max_sort_length bytes compare as equal for GROUP BY, ORDER BY, and
DISTINCT operations.

Increasing the value of max_sort_length may require increasing the value of
sort_buffer_size as well. For details, see Section 8.2.1.10, “ORDER BY Optimization”

•   max_sp_recursion_depth

Command-Line Format --max-sp-recursion-depth[=#]

Name max_sp_recursion_depth

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Max
Value

255

The number of times that any given stored procedure may be called recursively. The default value
for this option is 0, which completely disables recursion in stored procedures. The maximum value is
255.

Stored procedure recursion increases the demand on thread stack space. If you increase the value
of max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the
value of thread_stack at server startup.

•   max_tmp_tables

This variable is unused.

•     max_user_connections

Command-Line Format --max-user-connections=#

Name max_user_connections

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

The maximum number of simultaneous connections permitted to any given MySQL user account. A
value of 0 (the default) means “no limit.”

This variable has a global value that can be set at server startup or runtime. It also has a read-only
session value that indicates the effective simultaneous-connection limit that applies to the account
associated with the current session. The session value is initialized as follows:

• If the user account has a nonzero MAX_USER_CONNECTIONS resource limit, the session
max_user_connections value is set to that limit.



Server System Variables

541

• Otherwise, the session max_user_connections value is set to the global value.

Account resource limits are specified using the GRANT statement. See Section 6.3.4, “Setting
Account Resource Limits”, and Section 13.7.1.3, “GRANT Syntax”.

•   max_write_lock_count

Command-Line Format --max-write-lock-count=#

Name max_write_lock_count

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 4294967295

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 18446744073709547520

Min
Value

1

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 18446744073709551615

Min
Value

1

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

After this many write locks, permit some pending read lock requests to be processed in between.

•   metadata_locks_cache_size

Introduced 5.5.19

Name metadata_locks_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1024

Min
Value

1

Permitted Values

Max
Value

1048576



Server System Variables

542

The size of the metadata locks cache. The server uses this cache to avoid creation and destruction
of synchronization objects. This is particularly helpful on systems where such operations are
expensive, such as Windows XP. This variable was added in MySQL 5.5.19.

•   min_examined_row_limit

Command-Line Format --min-examined-row-limit=#

Name min_examined_row_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

Queries that examine fewer than this number of rows are not logged to the slow query log.

• multi_range_count

Command-Line Format --multi-range-count=#

Name multi_range_count

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 256

Min
Value

1

Permitted Values

Max
Value

4294967295



Server System Variables

543

The maximum number of ranges to send to a table handler at once during range selects. The default
value is 256. Sending multiple ranges to a handler at once can improve the performance of certain
selects dramatically. This is especially true for the NDBCLUSTER table handler, which needs to send
the range requests to all nodes. Sending a batch of those requests at once reduces communication
costs significantly.

This variable is deprecated in MySQL 5.1, and is no longer supported in MySQL 5.5, in which
arbitrarily long lists of ranges can be processed.

•   myisam_data_pointer_size

Command-Line Format --myisam-data-pointer-size=#

Name myisam_data_pointer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 6

Min
Value

2

Permitted Values

Max
Value

7

The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no
MAX_ROWS option is specified. This variable cannot be less than 2 or larger than 7. The default value
is 6. See Section B.5.2.12, “The table is full”.

•   myisam_max_sort_file_size

Command-Line Format --myisam-max-sort-file-size=#

Name myisam_max_sort_file_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values (32-bit
platforms) Default 2147483648

Type integerPermitted Values (64-bit
platforms) Default 9223372036854775807

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be
larger than this value, the index is created using the key cache instead, which is slower. The value is
given in bytes.

If MyISAM index files exceed this size and disk space is available, increasing the value may help
performance. The space must be available in the file system containing the directory where the
original index file is located.

•   myisam_mmap_size

Introduced 5.5.1



Server System Variables

544

Command-Line Format --myisam-mmap-size=#

Name myisam_mmap_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4294967295

Min
Value

7

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 18446744073709547520

Min
Value

7

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 18446744073709551615

Min
Value

7

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

The maximum amount of memory to use for memory mapping compressed MyISAM files. If many
compressed MyISAM tables are used, the value can be decreased to reduce the likelihood of
memory-swapping problems.

•   myisam_recover_options

Name myisam_recover_options

Variable
Scope

Global

System Variable

Dynamic
Variable

No

The value of the --myisam-recover-options option. See Section 5.1.4, “Server Command
Options”.

•   myisam_repair_threads

Command-Line Format --myisam-repair-threads=#

Name myisam_repair_threads

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values (32-bit
platforms) Default 1



Server System Variables

545

Min
Value

1

Max
Value

4294967295

Type integer

Default 1

Min
Value

1

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 1

Min
Value

1

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own
thread) during the Repair by sorting process. The default value is 1.

Note

Multi-threaded repair is still beta-quality code.

•   myisam_sort_buffer_size

Command-Line Format --myisam-sort-buffer-size=#

Name myisam_sort_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8388608

Min
Value

4096

Permitted Values
(Windows, 32-bit
platforms)

Max
Value

4294967295

Type integer

Default 8388608

Min
Value

4096

Permitted Values
(Windows, 64-bit
platforms, <= 5.5.21)

Max
Value

4294967295

Type integer

Default 8388608

Permitted Values
(Windows, 64-bit
platforms, >= 5.5.22)

Min
Value

4096



Server System Variables

546

Max
Value

18446744073709551615

Type integer

Default 8388608

Min
Value

4096

Permitted Values (Other,
32-bit platforms)

Max
Value

4294967295

Type integer

Default 8388608

Min
Value

4096

Permitted Values (Other,
64-bit platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 8388608

Min
Value

4096

Permitted Values (Other,
64-bit platforms, >= 5.5.3)

Max
Value

18446744073709551615

The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or
when creating indexes with CREATE INDEX or ALTER TABLE.

The maximum permissible setting for myisam_sort_buffer_size is 4GB−1. Larger values are
permitted for 64-bit platforms (except 64-bit Windows prior to MySQL 5.5.222, for which large values
are truncated to 4GB−1 with a warning).

•   myisam_stats_method

Command-Line Format --myisam-stats-method=name

Name myisam_stats_method

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default nulls_unequal

nulls_equal

nulls_unequal

Permitted Values

Valid
Values

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for MyISAM tables. This variable has three possible values, nulls_equal, nulls_unequal, and
nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single
value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values
are considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored,
NULL values are ignored.

The method that is used for generating table statistics influences how the optimizer chooses indexes
for query execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.



Server System Variables

547

•   myisam_use_mmap

Command-Line Format --myisam-use-mmap

Name myisam_use_mmap

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Use memory mapping for reading and writing MyISAM tables.

•   named_pipe

Name named_pipe

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type booleanPermitted Values
(Windows) Default OFF

(Windows only.) Indicates whether the server supports connections over named pipes.

•   net_buffer_length

Command-Line Format --net-buffer-length=#

Name net_buffer_length

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 16384

Min
Value

1024

Permitted Values

Max
Value

1048576

Each client thread is associated with a connection buffer and result buffer. Both begin with a size
given by net_buffer_length but are dynamically enlarged up to max_allowed_packet bytes
as needed. The result buffer shrinks to net_buffer_length after each SQL statement.

This variable should not normally be changed, but if you have very little memory, you can set it to the
expected length of statements sent by clients. If statements exceed this length, the connection buffer
is automatically enlarged. The maximum value to which net_buffer_length can be set is 1MB.

The session value of this variable is read only.

•   net_read_timeout



Server System Variables

548

Command-Line Format --net-read-timeout=#

Name net_read_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 30

Permitted Values

Min
Value

1

The number of seconds to wait for more data from a connection before aborting the read. When the
server is reading from the client, net_read_timeout is the timeout value controlling when to abort.
When the server is writing to the client, net_write_timeout is the timeout value controlling when
to abort. See also slave_net_timeout.

•   net_retry_count

Command-Line Format --net-retry-count=#

Name net_retry_count

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10

Min
Value

1

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 10

Min
Value

1

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

If a read or write on a communication port is interrupted, retry this many times before giving up. This
value should be set quite high on FreeBSD because internal interrupts are sent to all threads.

•   net_write_timeout

Command-Line Format --net-write-timeout=#



Server System Variables

549

Name net_write_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 60

Permitted Values

Min
Value

1

The number of seconds to wait for a block to be written to a connection before aborting the write.
See also net_read_timeout.

•   new

Command-Line Format --new

Name new

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Disabled by skip-new

Type booleanPermitted Values

Default FALSE

This variable was used in MySQL 4.0 to turn on some 4.1 behaviors, and is retained for backward
compatibility. Its value is always OFF.

In NDB Cluster, setting this variable to ON makes it possible to employ partitioning types other
than KEY or LINEAR KEY with NDB tables. This feature is experimental only, and not supported in
production. For additional information, see User-defined partitioning and the NDB storage engine
(NDB Cluster).

•   old

Command-Line Format --old

Name old

Variable
Scope

Global

System Variable

Dynamic
Variable

No

old is a compatibility variable. It is disabled by default, but can be enabled at startup to revert the
server to behaviors present in older versions.

When old is enabled, it changes the default scope of index hints to that used prior to MySQL 5.1.17.
That is, index hints with no FOR clause apply only to how indexes are used for row retrieval and not
to resolution of ORDER BY or GROUP BY clauses. (See Section 8.9.3, “Index Hints”.) Take care about
enabling this in a replication setup. With statement-based binary logging, having different modes for
the master and slaves might lead to replication errors.

•   old_alter_table



Server System Variables

550

Command-Line Format --old-alter-table

Name old_alter_table

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When this variable is enabled, the server does not use the optimized method of processing
an ALTER TABLE operation. It reverts to using a temporary table, copying over the data, and
then renaming the temporary table to the original, as used by MySQL 5.0 and earlier. For more
information on the operation of ALTER TABLE, see Section 13.1.7, “ALTER TABLE Syntax”.

•   old_passwords

Name old_passwords

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 0

This variable controls the password hashing method used by the PASSWORD() function. It also
influences password hashing performed by CREATE USER and GRANT statements that specify a
password using an IDENTIFIED BY clause.

The following table shows the permitted values of old_passwords, the password hashing method
for each value, and which authentication plugins use passwords hashed with each method.

Value Password Hashing Method Associated Authentication Plugin

0 or OFF MySQL 4.1 native hashing mysql_native_password

1 or ON Pre-4.1 (“old”) hashing mysql_old_password

If old_passwords=1, PASSWORD(str) returns the same value as OLD_PASSWORD(str). The
latter function is not affected by the value of old_passwords.

For additional information about authentication plugins and hashing formats, see Section 6.3.6,
“Pluggable Authentication”, and Section 6.1.2.4, “Password Hashing in MySQL”.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided.

•   one_shot

This is not a variable, but it can be used when setting some variables. It is described in
Section 13.7.4.1, “SET Syntax for Variable Assignment”.

•   open_files_limit



Server System Variables

551

Command-Line Format --open-files-limit=#

Name open_files_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

platform dependent

The number of files that the operating system permits mysqld to open. This is the real value
permitted by the system and might be different from the value you gave using the --open-files-
limit option to mysqld or mysqld_safe. The value is 0 on systems where MySQL cannot change
the number of open files.

•   optimizer_prune_level

Command-Line Format --optimizer-prune-level[=#]

Name optimizer_prune_level

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

Controls the heuristics applied during query optimization to prune less-promising partial plans
from the optimizer search space. A value of 0 disables heuristics so that the optimizer performs an
exhaustive search. A value of 1 causes the optimizer to prune plans based on the number of rows
retrieved by intermediate plans.

•   optimizer_search_depth

Command-Line Format --optimizer-search-depth[=#]

Name optimizer_search_depth

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 62

Min
Value

0

Permitted Values

Max
Value

63



Server System Variables

552

The maximum depth of search performed by the query optimizer. Values larger than the number of
relations in a query result in better query plans, but take longer to generate an execution plan for
a query. Values smaller than the number of relations in a query return an execution plan quicker,
but the resulting plan may be far from being optimal. If set to 0, the system automatically picks a
reasonable value. If set to 63, the optimizer switches to the algorithm used in MySQL 5.0.0 (and
previous versions) for performing searches. The value of 63 is deprecated and will be treated as
invalid in a future MySQL release.

•   optimizer_switch

Command-Line Format --optimizer-switch=value

Name optimizer_switch

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type set

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

Permitted Values (<=
5.5.2) Valid

Values

index_merge_union={on|off}

Type set

engine_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

Permitted Values (>=
5.5.3) Valid

Values

index_merge_union={on|off}

The optimizer_switch system variable enables control over optimizer behavior. The value
of this variable is a set of flags, each of which has a value of on or off to indicate whether the
corresponding optimizer behavior is enabled or disabled. This variable has global and session values
and can be changed at runtime. The global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
                    index_merge_sort_union=on,
                    index_merge_intersection=on,
                    engine_condition_pushdown=on

For more information about the syntax of this variable and the optimizer behaviors that it controls,
see Section 8.9.2, “Switchable Optimizations”.

• performance_schema_xxx

Performance Schema system variables are listed in Section 22.11, “Performance Schema System
Variables”. These variables may be used to configure Performance Schema operation.

•   pid_file

Command-Line Format --pid-file=file_name



Server System Variables

553

Name pid_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The path name of the process ID (PID) file. This variable can be set with the --pid-file option.

•   plugin_dir

Command-Line Format --plugin-dir=dir_name

Name plugin_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values (>=
5.5.5) Default BASEDIR/lib/plugin

Type directory namePermitted Values
(Windows, <= 5.5.4) Default BASEDIR/lib/plugin

Type directory namePermitted Values (Other,
<= 5.5.4) Default BASEDIR/lib/mysql/plugin

The path name of the plugin directory.

If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting --secure-file-priv to a directory where
SELECT writes can be made safely.

•   port

Command-Line Format --port=#

Name port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 3306

Min
Value

0

Permitted Values

Max
Value

65535

The number of the port on which the server listens for TCP/IP connections. This variable can be set
with the --port option.

•   preload_buffer_size



Server System Variables

554

Command-Line Format --preload-buffer-size=#

Name preload_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 32768

Min
Value

1024

Permitted Values

Max
Value

1073741824

The size of the buffer that is allocated when preloading indexes.

•   profiling

If set to 0 or OFF (the default), statement profiling is disabled. If set to 1 or ON, statement profiling
is enabled and the SHOW PROFILE and SHOW PROFILES statements provide access to profiling
information. See Section 13.7.5.32, “SHOW PROFILES Syntax”.

•   profiling_history_size

The number of statements for which to maintain profiling information if profiling is enabled. The
default value is 15. The maximum value is 100. Setting the value to 0 effectively disables profiling.
See Section 13.7.5.32, “SHOW PROFILES Syntax”.

•   protocol_version

Name protocol_version

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type integer

The version of the client/server protocol used by the MySQL server.

•   proxy_user

Introduced 5.5.7

Name proxy_user

Variable
Scope

Session

System Variable

Dynamic
Variable

No

Permitted Values Type string

If the current client is a proxy for another user, this variable is the proxy user account name.
Otherwise, this variable is NULL. See Section 6.3.7, “Proxy Users”.

•   pseudo_slave_mode



Server System Variables

555

Introduced 5.5.30

Name pseudo_slave_mode

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

This variable is for internal server use. It was added in MySQL 5.5.30.

•   pseudo_thread_id

Name pseudo_thread_id

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

This variable is for internal server use.

•   query_alloc_block_size

Command-Line Format --query-alloc-block-size=#

Name query_alloc_block_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8192

Min
Value

1024

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

Type integer

Default 8192

Min
Value

1024

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms, <= 5.5.2)

Block
Size

1024

Type integerPermitted Values (64-bit
platforms, >= 5.5.3) Default 8192



Server System Variables

556

Min
Value

1024

Max
Value

18446744073709551615

Block
Size

1024

The allocation size of memory blocks that are allocated for objects created during statement parsing
and execution. If you have problems with memory fragmentation, it might help to increase this
parameter.

•   query_cache_limit

Command-Line Format --query-cache-limit=#

Name query_cache_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1048576

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1048576

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 1048576

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

Do not cache results that are larger than this number of bytes. The default value is 1MB.

•   query_cache_min_res_unit

Command-Line Format --query-cache-min-res-unit=#

Name query_cache_min_res_unit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values (32-bit
platforms) Default 4096



Server System Variables

557

Min
Value

512

Max
Value

4294967295

Type integer

Default 4096

Min
Value

512

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 4096

Min
Value

512

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

The minimum size (in bytes) for blocks allocated by the query cache. The default value is 4096
(4KB). Tuning information for this variable is given in Section 8.10.3.3, “Query Cache Configuration”.

•   query_cache_size

Command-Line Format --query-cache-size=#

Name query_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615



Server System Variables

558

The amount of memory allocated for caching query results. The default value is 0, which
disables the query cache. To reduce overhead significantly, you should also start the server with
query_cache_type=0 if you will not be using the query cache.

The permissible values are multiples of 1024; other values are rounded down to the nearest multiple.
For nonzero values of query_cache_size, that many bytes of memory are allocated even if
query_cache_type=0. See Section 8.10.3.3, “Query Cache Configuration”, for more information.

The query cache needs a minimum size of about 40KB to allocate its structures. (The exact size
depends on system architecture.) If you set the value of query_cache_size too small, a warning
will occur, as described in Section 8.10.3.3, “Query Cache Configuration”.

•   query_cache_type

Command-Line Format --query-cache-type=#

Name query_cache_type

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default 1

0

1

Permitted Values

Valid
Values

2

Set the query cache type. Setting the GLOBAL value sets the type for all clients that connect
thereafter. Individual clients can set the SESSION value to affect their own use of the query cache.
Possible values are shown in the following table.

Option Description

0 or OFF Do not cache results in or retrieve results from the query cache. Note that
this does not deallocate the query cache buffer. To do that, you should set
query_cache_size to 0.

1 or ON Cache all cacheable query results except for those that begin with SELECT
SQL_NO_CACHE.

2 or DEMAND Cache results only for cacheable queries that begin with SELECT SQL_CACHE.

This variable defaults to ON.

If the server is started with query_cache_type set to 0, it does not acquire the query cache
mutex at all, which means that the query cache cannot be enabled at runtime and there is reduced
overhead in query execution.

•   query_cache_wlock_invalidate

Command-Line Format --query-cache-wlock-invalidate

Name query_cache_wlock_invalidate

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes



Server System Variables

559

Type booleanPermitted Values

Default FALSE

Normally, when one client acquires a WRITE lock on a MyISAM table, other clients are not blocked
from issuing statements that read from the table if the query results are present in the query cache.
Setting this variable to 1 causes acquisition of a WRITE lock for a table to invalidate any queries in
the query cache that refer to the table. This forces other clients that attempt to access the table to
wait while the lock is in effect.

•   query_prealloc_size

Command-Line Format --query-prealloc-size=#

Name query_prealloc_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8192

Min
Value

8192

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

Type integer

Default 8192

Min
Value

8192

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms, <= 5.5.2)

Block
Size

1024

Type integer

Default 8192

Min
Value

8192

Max
Value

18446744073709551615

Permitted Values (64-bit
platforms, >= 5.5.3)

Block
Size

1024

The size of the persistent buffer used for statement parsing and execution. This buffer is not freed
between statements. If you are running complex queries, a larger query_prealloc_size value
might be helpful in improving performance, because it can reduce the need for the server to perform
memory allocation during query execution operations.

•   rand_seed1

The rand_seed1 and rand_seed2 variables exist as session variables only, and can be set but not
read. The variables—but not their values—are shown in the output of SHOW VARIABLES.



Server System Variables

560

The purpose of these variables is to support replication of the RAND() function. For statements
that invoke RAND(), the master passes two values to the slave, where they are used to seed the
random number generator. The slave uses these values to set the session variables rand_seed1
and rand_seed2 so that RAND() on the slave generates the same value as on the master.

•   rand_seed2

See the description for rand_seed1.

•   range_alloc_block_size

Command-Line Format --range-alloc-block-size=#

Name range_alloc_block_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4096

Min
Value

4096

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

Type integer

Default 4096

Min
Value

4096

Max
Value

18446744073709551615

Permitted Values (64-bit
platforms, >= 5.5.3)

Block
Size

1024

The size of blocks that are allocated when doing range optimization.

•   read_buffer_size

Command-Line Format --read-buffer-size=#

Name read_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 131072

Min
Value

8200

Permitted Values

Max
Value

2147479552



Server System Variables

561

Each thread that does a sequential scan for a MyISAM table allocates a buffer of this size (in bytes)
for each table it scans. If you do many sequential scans, you might want to increase this value, which
defaults to 131072. The value of this variable should be a multiple of 4KB. If it is set to a value that is
not a multiple of 4KB, its value will be rounded down to the nearest multiple of 4KB.

This option is also used in the following context for all storage engines:

• For caching the indexes in a temporary file (not a temporary table), when sorting rows for ORDER
BY.

• For bulk insert into partitions.

• For caching results of nested queries.

and in one other storage engine-specific way: to determine the memory block size for MEMORY
tables.

The maximum permissible setting for read_buffer_size is 2GB.

For more information about memory use during different operations, see Section 8.12.4.1, “How
MySQL Uses Memory”.

•   read_only

Command-Line Format --read-only

Name read_only

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When the read_only system variable is enabled, the server permits no client updates except from
users who have the SUPER privilege. This variable is disabled by default.

Even with read_only enabled, the server permits these operations:

• Updates performed by slave threads, if the server is a replication slave. In replication setups, it can
be useful to enable read_only on slave servers to ensure that slaves accept updates only from
the master server and not from clients.

• Use of ANALYZE TABLE or OPTIMIZE TABLE statements. The purpose of read-only mode is to
prevent changes to table structure or contents. Analysis and optimization do not qualify as such
changes. This means, for example, that consistency checks on read-only replication slaves can be
performed with mysqlcheck --all-databases --analyze.

• Operations on TEMPORARY tables.

• Inserts into the log tables (mysql.general_log and mysql.slow_log; see Section 5.4.1,
“Selecting General Query and Slow Query Log Output Destinations”).

read_only exists only as a GLOBAL variable, so changes to its value require the SUPER privilege.
Changes to read_only on a master server are not replicated to slave servers. The value can be set
on a slave server independent of the setting on the master.

The following conditions apply to attempts to enable read_only:



Server System Variables

562

• The attempt fails and an error occurs if you have any explicit locks (acquired with LOCK TABLES)
or have a pending transaction.

• The attempt blocks while other clients hold explicit table locks or have pending transactions,
until the locks are released and the transactions end. While the attempt to enable read_only
is pending, requests by other clients for table locks or to begin transactions also block until
read_only has been set.

• As of MySQL 5.5.3, the attempt blocks if there are active transactions that hold metadata locks,
until those transactions end.

• read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES
WITH READ LOCK) because that does not involve table locks.

•   read_rnd_buffer_size

Command-Line Format --read-rnd-buffer-size=#

Name read_rnd_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 262144

Min
Value

8200

Permitted Values (<=
5.5.2)

Max
Value

2147483647

Type integer

Default 262144

Min
Value

1

Permitted Values (>=
5.5.3)

Max
Value

2147483647

When reading rows from a MyISAM table in sorted order following a key-sorting operation, the rows
are read through this buffer to avoid disk seeks. See Section 8.2.1.10, “ORDER BY Optimization”.
Setting the variable to a large value can improve ORDER BY performance by a lot. However, this is
a buffer allocated for each client, so you should not set the global variable to a large value. Instead,
change the session variable only from within those clients that need to run large queries.

The maximum permissible setting for read_rnd_buffer_size is 2GB.

For more information about memory use during different operations, see Section 8.12.4.1, “How
MySQL Uses Memory”.

•   relay_log_purge

Command-Line Format --relay-log-purge

Name relay_log_purgeSystem Variable

Variable
Scope

Global



Server System Variables

563

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

Disables or enables automatic purging of relay log files as soon as they are not needed any more.
The default value is 1 (ON).

•   relay_log_space_limit

Command-Line Format --relay-log-space-limit=#

Name relay_log_space_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

The maximum amount of space to use for all relay logs.

•   report_host

Command-Line Format --report-host=host_name

Name report_host

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The value of the --report-host option.

•   report_password



Server System Variables

564

Command-Line Format --report-password=name

Name report_password

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The value of the --report-password option. Not the same as the password used for the MySQL
replication user account.

•   report_port

Command-Line Format --report-port=#

Name report_port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 3306

Min
Value

0

Permitted Values (<=
5.5.22)

Max
Value

65535

Type integer

Default 0

Min
Value

0

Permitted Values (>=
5.5.23)

Max
Value

65535

The value of the --report-port option.

•   report_user

Command-Line Format --report-user=name

Name report_user

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The value of the --report-user option. Not the same as the name for the MySQL replication user
account.

•   rpl_semi_sync_master_enabled

System Variable Name rpl_semi_sync_master_enabled



Server System Variables

565

Variable
Scope

Global

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Controls whether semisynchronous replication is enabled on the master. To enable or disable the
plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   rpl_semi_sync_master_timeout

Name rpl_semi_sync_master_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 10000

A value in milliseconds that controls how long the master waits on a commit for acknowledgment
from a slave before timing out and reverting to asynchronous replication. The default value is 10000
(10 seconds).

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   rpl_semi_sync_master_trace_level

Name rpl_semi_sync_master_trace_level

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 32

The semisynchronous replication debug trace level on the master. Four levels are defined:

• 1 = general level (for example, time function failures)

• 16 = detail level (more verbose information)

• 32 = net wait level (more information about network waits)

• 64 = function level (information about function entry and exit)

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   rpl_semi_sync_master_wait_no_slave

Name rpl_semi_sync_master_wait_no_slaveSystem Variable

Variable
Scope

Global



Server System Variables

566

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

With semisynchronous replication, for each transaction, the master waits until timeout for
acknowledgment of receipt from some semisynchronous slave. If no response occurs during this
period, the master reverts to normal replication. This variable controls whether the master waits
for the timeout to expire before reverting to normal replication even if the slave count drops to zero
during the timeout period.

If the value is ON (the default), it is permissible for the slave count to drop to zero during the timeout
period (for example, if slaves disconnect). The master still waits for the timeout, so as long as some
slave reconnects and acknowledges the transaction within the timeout interval, semisynchronous
replication continues.

If the value is OFF, the master reverts to normal replication if the slave count drops to zero during the
timeout period.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   rpl_semi_sync_slave_enabled

Name rpl_semi_sync_slave_enabled

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Controls whether semisynchronous replication is enabled on the slave. To enable or disable the
plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the slave-side semisynchronous replication plugin is installed.

•   rpl_semi_sync_slave_trace_level

Name rpl_semi_sync_slave_trace_level

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 32

The semisynchronous replication debug trace level on the slave. See
rpl_semi_sync_master_trace_level for the permissible values.

This variable is available only if the slave-side semisynchronous replication plugin is installed.

•   secure_auth

Command-Line Format --secure-auth

System Variable Name secure_auth



Server System Variables

567

Variable
Scope

Global

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If this variable is enabled, the server blocks connections by clients that attempt to use accounts that
have passwords stored in the old (pre-4.1) format.

Enable this variable to prevent all use of passwords employing the old format (and hence insecure
communication over the network).

Server startup fails with an error if this variable is enabled and the privilege tables are in pre-4.1
format. See Section B.5.2.4, “Client does not support authentication protocol”.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided.

•   secure_file_priv

Command-Line Format --secure-file-priv=dir_name

Name secure_file_priv

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default empty

empty

Permitted Values (<=
5.5.52)

Valid
Values dirname

Type string

Default platform specific

empty

dirname

Permitted Values (>=
5.5.53)

Valid
Values

NULL

This variable is used to limit the effect of data import and export operations, such as those performed
by the LOAD DATA and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function.
These operations are permitted only to users who have the FILE privilege.

secure_file_priv may be set as follows:

• If empty, the variable has no effect. This is not a secure setting.

• If set to the name of a directory, the server limits import and export operations to work only with
files in that directory. The directory must exist; the server will not create it.

• If set to NULL, the server disables import and export operations. This value is permitted as of
MySQL 5.5.53.



Server System Variables

568

Before MySQL 5.5.53, this variable is empty by default. As of 5.5.53, the default value is platform
specific and depends on the value of the INSTALL_LAYOUT CMake option, as shown in the following
table. To specify the default secure_file_priv value explicitly if you are building from source, use
the INSTALL_SECURE_FILE_PRIVDIR CMake option.

INSTALL_LAYOUT Value Default secure_file_priv Value

STANDALONE, WIN NULL

DEB, RPM, SLES, SVR4 /var/lib/mysql-files

Otherwise mysql-files under the CMAKE_INSTALL_PREFIX value

To set the default secure_file_priv value for the libmysqld embedded server, use the
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR CMake option. The default value for this option is
NULL.

As of MySQL 5.5.53, the server checks the value of secure_file_priv at startup and writes
a warning to the error log if the value is insecure. A non-NULL value is considered insecure if it is
empty, or the value is the data directory or a subdirectory of it, or a directory that is accessible by all
users. If secure_file_priv is set to a nonexistent path, the server writes an error message to the
error log and exits.

•   server_id

Command-Line Format --server-id=#

Name server_id

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

The server ID, used in replication to give each master and slave a unique identity. This variable is set
by the --server-id option. For each server participating in replication, you should pick a positive
integer in the range from 1 to 232 − 1 to act as that server's ID.

•   shared_memory

Command-Line Format --shared-memory[={0,1}]

Name shared_memory

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type booleanPermitted Values

Default FALSE

(Windows only.) Whether the server permits shared-memory connections.



Server System Variables

569

•   shared_memory_base_name

Command-Line Format --shared-memory-base-name=name

Name shared_memory_base_name

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type stringPermitted Values

Default MYSQL

(Windows only.) The name of shared memory to use for shared-memory connections. This is useful
when running multiple MySQL instances on a single physical machine. The default name is MYSQL.
The name is case sensitive.

•     skip_external_locking

Command-Line Format --skip-external-locking

Name skip_external_locking

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

This is OFF if mysqld uses external locking (system locking), ON if external locking is disabled. This
affects only MyISAM table access.

This variable is set by the --external-locking or --skip-external-locking option.
External locking is disabled by default.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.11.5, “External Locking”.

•   skip_name_resolve

Command-Line Format --skip-name-resolve

Name skip_name_resolve

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

This variable is set from the value of the --skip-name-resolve option. If it is OFF, mysqld
resolves host names when checking client connections. If it is ON, mysqld uses only IP numbers;
in this case, all Host column values in the grant tables must be IP addresses or localhost. See
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”.

•   skip_networking



Server System Variables

570

Command-Line Format --skip-networking

Name skip_networking

Variable
Scope

Global

System Variable

Dynamic
Variable

No

This is ON if the server permits only local (non-TCP/IP) connections. On Unix, local connections
use a Unix socket file. On Windows, local connections use a named pipe or shared memory. This
variable can be set to ON with the --skip-networking option.

•   skip_show_database

Command-Line Format --skip-show-database

Name skip_show_database

Variable
Scope

Global

System Variable

Dynamic
Variable

No

This prevents people from using the SHOW DATABASES statement if they do not have the SHOW
DATABASES privilege. This can improve security if you have concerns about users being able to see
databases belonging to other users. Its effect depends on the SHOW DATABASES privilege: If the
variable value is ON, the SHOW DATABASES statement is permitted only to users who have the SHOW
DATABASES privilege, and the statement displays all database names. If the value is OFF, SHOW
DATABASES is permitted to all users, but displays the names of only those databases for which the
user has the SHOW DATABASES or other privilege. (Note that any global privilege is considered a
privilege for the database.)

•   slow_launch_time

Command-Line Format --slow-launch-time=#

Name slow_launch_time

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 2

If creating a thread takes longer than this many seconds, the server increments the
Slow_launch_threads status variable.

•   slow_query_log

Command-Line Format --slow-query-log

Name slow_query_log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean



Server System Variables

571

Default OFF

Whether the slow query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to
enable the log. The default value depends on whether the --slow_query_log option is given. The
destination for log output is controlled by the log_output system variable; if that value is NONE, no
log entries are written even if the log is enabled.

“Slow” is determined by the value of the long_query_time variable. See Section 5.4.5, “The Slow
Query Log”.

•   slow_query_log_file

Command-Line Format --slow-query-log-file=file_name

Name slow_query_log_file

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type file namePermitted Values

Default host_name-slow.log

The name of the slow query log file. The default value is host_name-slow.log, but the initial value
can be changed with the --slow_query_log_file option.

•   socket

Command-Line Format --socket={file_name|pipe_name}

Name socket

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default /tmp/mysql.sock

On Unix platforms, this variable is the name of the socket file that is used for local client connections.
The default is /tmp/mysql.sock. (For some distribution formats, the directory might be different,
such as /var/lib/mysql for RPMs.)

On Windows, this variable is the name of the named pipe that is used for local client connections.
The default value is MySQL (not case sensitive).

•   sort_buffer_size

Command-Line Format --sort-buffer-size=#

Name sort_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values
(Windows) Default 2097144



Server System Variables

572

Min
Value

32768

Max
Value

4294967295

Type integer

Default 2097144

Min
Value

32768

Permitted Values (Other,
32-bit platforms)

Max
Value

4294967295

Type integer

Default 2097144

Min
Value

32768

Permitted Values (Other,
64-bit platforms)

Max
Value

18446744073709551615

Each session that must perform a sort allocates a buffer of this size. sort_buffer_size is
not specific to any storage engine and applies in a general manner for optimization. At minimum
the sort_buffer_size value must be large enough to accommodate fifteen tuples in the sort
buffer. Also, increasing the value of max_sort_length may require increasing the value of
sort_buffer_size. For more information, see Section 8.2.1.10, “ORDER BY Optimization”

If you see many Sort_merge_passes per second in SHOW GLOBAL STATUS output, you can
consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations
that cannot be improved with query optimization or improved indexing. The entire buffer is allocated
even if it is not all needed, so setting it larger than required globally will slow down most queries that
sort. It is best to increase it as a session setting, and only for the sessions that need a larger size.
On Linux, there are thresholds of 256KB and 2MB where larger values may significantly slow down
memory allocation, so you should consider staying below one of those values. Experiment to find the
best value for your workload. See Section B.5.3.5, “Where MySQL Stores Temporary Files”.

The maximum permissible setting for sort_buffer_size is 4GB−1. Larger values are permitted
for 64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB−1 with a
warning).

•     sql_auto_is_null

Name sql_auto_is_null

Variable
Scope

Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name sql_auto_is_null

Variable
Scope

Global, Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

Type booleanPermitted Values (<=
5.5.2) Default 1

Permitted Values (>=
5.5.3)

Type boolean



Server System Variables

573

Default 0

If this variable is set to 1, then after a statement that successfully inserts an automatically generated
AUTO_INCREMENT value, you can find that value by issuing a statement of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert, see
Section 12.14, “Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the
SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison is used by
some ODBC programs, such as Access. See Obtaining Auto-Increment Values. This behavior can
be disabled by setting sql_auto_is_null to 0.

The default value of sql_auto_is_null is 0 as of MySQL 5.5.3, and 1 for earlier versions.

•   sql_big_selects

Name sql_big_selects

Variable
Scope

Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name sql_big_selects

Variable
Scope

Global, Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

If set to 0, MySQL aborts SELECT statements that are likely to take a very long time to execute (that
is, statements for which the optimizer estimates that the number of examined rows exceeds the
value of max_join_size). This is useful when an inadvisable WHERE statement has been issued.
The default value for a new connection is 1, which permits all SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT, sql_big_selects
is set to 0.

•   sql_buffer_result

Name sql_buffer_result

Variable
Scope

Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name sql_buffer_result

Variable
Scope

Global, Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html


Server System Variables

574

Type booleanPermitted Values

Default 0

If set to 1, sql_buffer_result forces results from SELECT statements to be put into temporary
tables. This helps MySQL free the table locks early and can be beneficial in cases where it takes a
long time to send results to the client. The default value is 0.

•   sql_log_bin

Name sql_log_bin

Variable
Scope

Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name sql_log_bin

Variable
Scope

Global, Session

System Variable (>=
5.5.3, <= 5.5.40)

Dynamic
Variable

Yes

Name sql_log_bin

Variable
Scope

Session

System Variable (>=
5.5.41)

Dynamic
Variable

Yes

Permitted Values Type boolean

This variable controls whether logging to the binary log is done. The default value is 1 (do logging).
To change logging for the current session, change the session value of this variable. The session
user must have the SUPER privilege to set this variable.

Beginning with MySQL 5.5.5, it is no longer possible to set @@session.sql_log_bin within a
transaction or subquery. (Bug #53437)

•   sql_log_off

Name sql_log_off

Variable
Scope

Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name sql_log_off

Variable
Scope

Global, Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 0

This variable controls whether logging to the general query log is done. The default value is 0 (do
logging). To change logging for the current session, change the session value of this variable. The
session user must have the SUPER privilege to set this option. The default value is 0.



Server System Variables

575

•   sql_log_update

Deprecated 5.0.0, by sql_log_bin

Removed 5.5.3

Name sql_log_update

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

This variable is deprecated, and is mapped to sql_log_bin. It was removed in MySQL 5.5.3.

•   sql_mode

Command-Line Format --sql-mode=name

Name sql_mode

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type set

Default ''

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

Permitted Values

Valid
Values

STRICT_TRANS_TABLES



Server System Variables

576

The current server SQL mode, which can be set dynamically. For details, see Section 5.1.8, “Server
SQL Modes”.

Note

MySQL installation programs may configure the SQL mode during the
installation process. If the SQL mode differs from the default or from what you
expect, check for a setting in an option file that the server reads at startup.

•   sql_notes

If set to 1 (the default), warnings of Note level increment warning_count and the server records
them. If set to 0, Note warnings do not increment warning_count and the server does not record
them. mysqldump includes output to set this variable to 0 so that reloading the dump file does not
produce warnings for events that do not affect the integrity of the reload operation.

•   sql_quote_show_create

If set to 1 (the default), the server quotes identifiers for SHOW CREATE TABLE and SHOW CREATE
DATABASE statements. If set to 0, quoting is disabled. This option is enabled by default so that
replication works for identifiers that require quoting. See Section 13.7.5.12, “SHOW CREATE TABLE
Syntax”, and Section 13.7.5.8, “SHOW CREATE DATABASE Syntax”.

•   sql_safe_updates

If set to 1, MySQL aborts UPDATE or DELETE statements that do not use a key in the WHERE clause
or a LIMIT clause. (Specifically, UPDATE statements must have a WHERE clause that uses a key or a
LIMIT clause, or both. DELETE statements must have both.) This makes it possible to catch UPDATE
or DELETE statements where keys are not used properly and that would probably change or delete a
large number of rows. The default value is 0.

•   sql_select_limit

Name sql_select_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

The maximum number of rows to return from SELECT statements. The default value for a new
connection is the maximum number of rows that the server permits per table. Typical default values
are (232)−1 or (264)−1. If you have changed the limit, the default value can be restored by assigning a
value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of
sql_select_limit.

•   sql_warnings

This variable controls whether single-row INSERT statements produce an information string if
warnings occur. The default is 0. Set the value to 1 to produce an information string.

•   ssl_ca

Command-Line Format --ssl-ca=file_name

System Variable Name ssl_ca



Server System Variables

577

Variable
Scope

Global

Dynamic
Variable

No

Permitted Values Type file name

The path to a file with a list of trusted SSL CAs.

•   ssl_capath

Command-Line Format --ssl-capath=dir_name

Name ssl_capath

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path to a directory that contains trusted SSL CA certificates in PEM format.

•   ssl_cert

Command-Line Format --ssl-cert=file_name

Name ssl_cert

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name of the SSL certificate file to use for establishing a secure connection.

•   ssl_cipher

Command-Line Format --ssl-cipher=name

Name ssl_cipher

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

A list of permissible ciphers to use for SSL encryption.

•   ssl_key

Command-Line Format --ssl-key=file_name

Name ssl_key

Variable
Scope

Global

System Variable

Dynamic
Variable

No



Server System Variables

578

Permitted Values Type file name

The name of the SSL key file to use for establishing a secure connection.

•   storage_engine

Name storage_engine

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumerationPermitted Values (<=
5.5.4) Default MyISAM

Type enumerationPermitted Values (>=
5.5.5) Default InnoDB

The default storage engine (table type). To set the storage engine at server startup, use the --
default-storage-engine option. See Section 5.1.4, “Server Command Options”.

This variable is deprecated as of MySQL 5.5.3. Use default_storage_engine instead.

•   stored_program_cache

Introduced 5.5.21

Command-Line Format --stored-program-cache=#

Name stored_program_cache

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 256

Min
Value

256

Permitted Values

Max
Value

524288

Sets a soft upper limit for the number of cached stored routines per connection. The value of
this variable is specified in terms of the number of stored routines held in each of the two caches
maintained by the MySQL Server for, respectively, stored procedures and stored functions.

Whenever a stored routine is executed this cache size is checked before the first or top-level
statement in the routine is parsed; if the number of routines of the same type (stored procedures or
stored functions according to which is being executed) exceeds the limit specified by this variable,
the corresponding cache is flushed and memory previously allocated for cached objects is freed.
This allows the cache to be flushed safely, even when there are dependencies between stored
routines.

•   sync_frm

Command-Line Format --sync-frm

System Variable Name sync_frm



Server System Variables

579

Variable
Scope

Global

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

If this variable is set to 1, when any nontemporary table is created its .frm file is synchronized to
disk (using fdatasync()). This is slower but safer in case of a crash. The default is 1.

•   system_time_zone

Name system_time_zone

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The server system time zone. When the server begins executing, it inherits a time zone setting from
the machine defaults, possibly modified by the environment of the account used for running the
server or the startup script. The value is used to set system_time_zone. Typically the time zone is
specified by the TZ environment variable. It also can be specified using the --timezone option of
the mysqld_safe script.

The system_time_zone variable differs from time_zone. Although they might have the same
value, the latter variable is used to initialize the time zone for each client that connects. See
Section 10.6, “MySQL Server Time Zone Support”.

•   table_definition_cache

Name table_definition_cache

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 400

Min
Value

400

Permitted Values

Max
Value

524288

The number of table definitions (from .frm files) that can be stored in the definition cache. If you use
a large number of tables, you can create a large table definition cache to speed up opening of tables.
The table definition cache takes less space and does not use file descriptors, unlike the normal table
cache. The minimum and default values are both 400.

•   table_lock_wait_timeout

Removed 5.5.3

Command-Line Format --table-lock-wait-timeout=#

System Variable Name table_lock_wait_timeout



Server System Variables

580

Variable
Scope

Global

Dynamic
Variable

Yes

Type integer

Default 50

Min
Value

1

Permitted Values

Max
Value

1073741824

This variable is unused. It was removed in 5.5.3.

•   table_open_cache

Name table_open_cache

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 400

Min
Value

1

Permitted Values

Max
Value

524288

The number of open tables for all threads. Increasing this value increases the number of file
descriptors that mysqld requires. You can check whether you need to increase the table cache by
checking the Opened_tables status variable. See Section 5.1.7, “Server Status Variables”. If the
value of Opened_tables is large and you do not use FLUSH TABLES often (which just forces all
tables to be closed and reopened), then you should increase the value of the table_open_cache
variable. For more information about the table cache, see Section 8.4.3.1, “How MySQL Opens and
Closes Tables”.

•   table_type

This variable was removed in MySQL 5.5.3. Use storage_engine instead.

•   thread_cache_size

Command-Line Format --thread-cache-size=#

Name thread_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Min
Value

0



Server System Variables

581

Max
Value

16384

How many threads the server should cache for reuse. When a client disconnects, the client's
threads are put in the cache if there are fewer than thread_cache_size threads there. Requests
for threads are satisfied by reusing threads taken from the cache if possible, and only when the
cache is empty is a new thread created. This variable can be increased to improve performance
if you have a lot of new connections. Normally, this does not provide a notable performance
improvement if you have a good thread implementation. However, if your server sees hundreds of
connections per second you should normally set thread_cache_size high enough so that most
new connections use cached threads. By examining the difference between the Connections and
Threads_created status variables, you can see how efficient the thread cache is. For details, see
Section 5.1.7, “Server Status Variables”.

•   thread_concurrency

Command-Line Format --thread-concurrency=#

Name thread_concurrency

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 10

Min
Value

1

Permitted Values

Max
Value

512

This variable is specific to Solaris 8 and earlier systems, for which mysqld invokes the
thr_setconcurrency() function with the variable value. This function enables applications to
give the threads system a hint about the desired number of threads that should be run at the same
time. Current Solaris versions document this as having no effect.

•   thread_handling

Command-Line Format --thread-handling=name

Name thread_handling

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type enumeration

Default one-thread-per-connection

no-threads

Permitted Values (<=
5.5.13)

Valid
Values one-thread-per-connection

Type enumeration

Default one-thread-per-connection

no-threads

one-thread-per-connection

Permitted Values (>=
5.5.16)

Valid
Values

dynamically-loaded



Server System Variables

582

The thread-handling model used by the server for connection threads. The permissible user-settable
values are no-threads (the server uses a single thread to handle one connection) and one-
thread-per-connection (the server uses one thread to handle each client connection; this is
the default). no-threads is useful for debugging under Linux; see Section 24.5, “Debugging and
Porting MySQL”.

If the thread pool plugin is enabled, the server sets the thread_handling value to dynamically-
loaded. See Section 5.5.4.2, “Thread Pool Installation”.

•   thread_pool_algorithm

Introduced 5.5.16

Command-Line Format --thread-pool-algorithm=#

Name thread_pool_algorithm

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1

This variable controls which algorithm the thread pool plugin uses:

• A value of 0 (the default) uses a conservative low-concurrency algorithm which is most well tested
and is known to produce very good results.

• A value of 1 increases the concurrency and uses a more aggressive algorithm which at times has
been known to perform 5–10% better on optimal thread counts, but has degrading performance
as the number of connections increases. Its use should be considered as experimental and not
supported.

This variable was added in MySQL 5.5.16. It is available only if the thread pool plugin is enabled.
See Section 5.5.4, “MySQL Enterprise Thread Pool”

•   thread_pool_high_priority_connection

Introduced 5.5.16

Command-Line Format --thread-pool-high-priority-connection=#

Name thread_pool_high_priority_connection

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Min
Value

0



Server System Variables

583

Max
Value

1

This variable affects queuing of new statements prior to execution. If the value is 0 (false, the
default), statement queuing uses both the low-priority and high-priority queues. If the value is 1
(true), queued statements always go to the high-priority queue.

This variable was added in MySQL 5.5.16. It is available only if the thread pool plugin is enabled.
See Section 5.5.4, “MySQL Enterprise Thread Pool”

•   thread_pool_max_unused_threads

Introduced 5.5.16

Command-Line Format --thread-pool-max-unused-threads=#

Name thread_pool_max_unused_threads

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4096

The maximum permitted number of unused threads in the thread pool. This variable makes it
possible to limit the amount of memory used by sleeping threads.

A value of 0 (the default) means no limit on the number of sleeping threads. A value of N where N is
greater than 0 means 1 consumer thread and N−1 reserve threads. In this case, if a thread is ready
to sleep but the number of sleeping threads is already at the maximum, the thread exits rather than
going to sleep.

A sleeping thread is either sleeping as a consumer thread or a reserve thread. The thread pool
permits one thread to be the consumer thread when sleeping. If a thread goes to sleep and there
is no existing consumer thread, it will sleep as a consumer thread. When a thread must be woken
up, a consumer thread is selected if there is one. A reserve thread is selected only when there is no
consumer thread to wake up.

This variable was added in MySQL 5.5.16. It is available only if the thread pool plugin is enabled.
See Section 5.5.4, “MySQL Enterprise Thread Pool”

•   thread_pool_prio_kickup_timer

Introduced 5.5.16

Command-Line Format --thread-pool-prio-kickup-timer=#

Name thread_pool_prio_kickup_timer

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer



Server System Variables

584

Default 1000

Min
Value

0

Max
Value

4294967294

This variable affects statements waiting for execution in the low-priority queue. The value is the
number of milliseconds before a waiting statement is moved to the high-priority queue. The default is
1000 (1 second). The range of values is 0 to 232 − 2.

This variable was added in MySQL 5.5.16. It is available only if the thread pool plugin is enabled.
See Section 5.5.4, “MySQL Enterprise Thread Pool”

•   thread_pool_size

Introduced 5.5.16

Command-Line Format --thread-pool-size=#

Name thread_pool_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 16

Min
Value

1

Permitted Values

Max
Value

64

The number of thread groups in the thread pool. This is the most important parameter controlling
thread pool performance. It affects how many statements can execute simultaneously. The default
value is 16, with a range from 1 to 64 of permissible values. If a value outside this range is specified,
the thread pool plugin does not load and the server writes a message to the error log.

This variable was added in MySQL 5.5.16. It is available only if the thread pool plugin is enabled.
See Section 5.5.4, “MySQL Enterprise Thread Pool”

•   thread_pool_stall_limit

Introduced 5.5.16

Command-Line Format --thread-pool-stall-limit=#

Name thread_pool_stall_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 6

Permitted Values

Min
Value

4



Server System Variables

585

Max
Value

600

This variable affects executing statements. The value is the amount of time a statement has to finish
after starting to execute before it becomes defined as stalled, at which point the thread pool permits
the thread group to begin executing another statement. The value is measured in 10 millisecond
units, so a value of 6 (the default) means 60ms. The range of values is 4 to 600 (40ms to 6s). Short
wait values permit threads to start more quickly. Short values are also better for avoiding deadlock
situations. Long wait values are useful for workloads that include long-running statements, to avoid
starting too many new statements while the current ones execute.

This variable was added in MySQL 5.5.16. It is available only if the thread pool plugin is enabled.
See Section 5.5.4, “MySQL Enterprise Thread Pool”

•   thread_stack

Command-Line Format --thread-stack=#

Name thread_stack

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 196608

Min
Value

131072

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

Type integer

Default 262144

Min
Value

131072

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms, <= 5.5.2)

Block
Size

1024

Type integer

Default 262144

Min
Value

131072

Max
Value

18446744073709551615

Permitted Values (64-bit
platforms, >= 5.5.3)

Block
Size

1024

The stack size for each thread. Many of the limits detected by the crash-me test are dependent on
this value. See Section 8.13.2, “The MySQL Benchmark Suite”. The default of 192KB (256KB for
64-bit systems) is large enough for normal operation. If the thread stack size is too small, it limits



Server System Variables

586

the complexity of the SQL statements that the server can handle, the recursion depth of stored
procedures, and other memory-consuming actions.

•   time_format

This variable is unused.

•   time_zone

Name time_zone

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The current time zone. This variable is used to initialize the time zone for each client that
connects. By default, the initial value of this is 'SYSTEM' (which means, “use the value of
system_time_zone”). The value can be specified explicitly at server startup with the --default-
time-zone option. See Section 10.6, “MySQL Server Time Zone Support”.

•   timed_mutexes

Deprecated 5.5.39

Command-Line Format --timed-mutexes

Name timed_mutexes

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

This variable is deprecated; it has no use. It will be removed in a future MySQL release.

•   timestamp

Name timestamp

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type numeric

Set the time for this client. This is used to get the original timestamp if you use the binary log to
restore rows. timestamp_value should be a Unix epoch timestamp (a value like that returned by
UNIX_TIMESTAMP(), not a value in 'YYYY-MM-DD hh:mm:ss' format) or DEFAULT.

Setting timestamp to a constant value causes it to retain that value until it is changed again.
Setting timestamp to DEFAULT causes its value to be the current date and time as of the time it is
accessed.

SET timestamp affects the value returned by NOW() but not by SYSDATE(). This means that
timestamp settings in the binary log have no effect on invocations of SYSDATE(). The server can be



Server System Variables

587

started with the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW(), in which
case SET timestamp affects both functions.

•   tmp_table_size

Command-Line Format --tmp-table-size=#

Name tmp_table_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 16777216

Min
Value

1024

Permitted Values

Max
Value

18446744073709551615

The maximum size of internal in-memory temporary tables. This variable does not apply to user-
created MEMORY tables.

The actual limit is determined from whichever of the values of tmp_table_size and
max_heap_table_size is smaller. If an in-memory temporary table exceeds the limit, MySQL
automatically converts it to an on-disk MyISAM table. Increase the value of tmp_table_size (and
max_heap_table_size if necessary) if you do many advanced GROUP BY queries and you have
lots of memory.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

•   tmpdir

Command-Line Format --tmpdir=dir_name

Name tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory used for temporary files and temporary tables. This variable can be set to a list of
several paths that are used in round-robin fashion. Paths should be separated by colon characters
(:) on Unix and semicolon characters (;) on Windows.

The multiple-directory feature can be used to spread the load between several physical disks. If
the MySQL server is acting as a replication slave, you should not set tmpdir to point to a directory
on a memory-based file system or to a directory that is cleared when the server host restarts. A
replication slave needs some of its temporary files to survive a machine restart so that it can replicate
temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost
when the server restarts, replication fails. You can set the slave's temporary directory using the
slave_load_tmpdir variable. In that case, the slave will not use the general tmpdir value and
you can set tmpdir to a nonpermanent location.



Server System Variables

588

•   transaction_alloc_block_size

Command-Line Format --transaction-alloc-block-size=#

Name transaction_alloc_block_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8192

Min
Value

1024

Max
Value

131072

Permitted Values (>=
5.5.43)

Block
Size

1024

Type integer

Default 8192

Min
Value

1024

Max
Value

4294967295

Permitted Values (32-bit
platforms, <= 5.5.42)

Block
Size

1024

Type integer

Default 8192

Min
Value

1024

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms, <= 5.5.2)

Block
Size

1024

Type integer

Default 8192

Min
Value

1024

Max
Value

18446744073709551615

Permitted Values (64-
bit platforms, >= 5.5.3, <=
5.5.42)

Block
Size

1024

The amount in bytes by which to increase a per-transaction memory pool which needs memory. See
the description of transaction_prealloc_size.

•   transaction_prealloc_size

Command-Line Format --transaction-prealloc-size=#

System Variable Name transaction_prealloc_size



Server System Variables

589

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type integer

Default 4096

Min
Value

1024

Max
Value

131072

Permitted Values (>=
5.5.43)

Block
Size

1024

Type integer

Default 4096

Min
Value

1024

Max
Value

4294967295

Permitted Values (32-bit
platforms, <= 5.5.42)

Block
Size

1024

Type integer

Default 4096

Min
Value

1024

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms, <= 5.5.2)

Block
Size

1024

Type integer

Default 4096

Min
Value

1024

Max
Value

18446744073709551615

Permitted Values (64-
bit platforms, >= 5.5.3, <=
5.5.42)

Block
Size

1024

There is a per-transaction memory pool from which various transaction-related allocations take
memory. The initial size of the pool in bytes is transaction_prealloc_size. For every
allocation that cannot be satisfied from the pool because it has insufficient memory available, the
pool is increased by transaction_alloc_block_size bytes. When the transaction ends, the
pool is truncated to transaction_prealloc_size bytes.

By making transaction_prealloc_size sufficiently large to contain all statements within a
single transaction, you can avoid many malloc() calls.

•   tx_isolation

System Variable Name tx_isolation



Server System Variables

590

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type enumeration

Default REPEATABLE-READ

READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

Permitted Values

Valid
Values

SERIALIZABLE

The default transaction isolation level. Defaults to REPEATABLE-READ.

This variable can be set directly, or indirectly using the SET TRANSACTION statement. See
Section 13.3.6, “SET TRANSACTION Syntax”. If you set tx_isolation directly to an isolation level
name that contains a space, the name should be enclosed within quotation marks, with the space
replaced by a dash. For example:

SET tx_isolation = 'READ-COMMITTED';

Any unique prefix of a valid value may be used to set the value of this variable.

The default transaction isolation level can also be set at startup using the --transaction-
isolation server option.

•   unique_checks

Name unique_checks

Variable
Scope

Session

System Variable (<=
5.5.2)

Dynamic
Variable

Yes

Name unique_checks

Variable
Scope

Global, Session

System Variable (>=
5.5.3)

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are performed. If
set to 0, storage engines are permitted to assume that duplicate keys are not present in input data.
If you know for certain that your data does not contain uniqueness violations, you can set this to 0 to
speed up large table imports to InnoDB.

Setting this variable to 0 does not require storage engines to ignore duplicate keys. An engine is still
permitted to check for them and issue duplicate-key errors if it detects them.

•   updatable_views_with_limit

Command-Line Format --updatable-views-with-limit=#

System Variable Name updatable_views_with_limit



Server System Variables

591

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

This variable controls whether updates to a view can be made when the view does not contain
all columns of the primary key defined in the underlying table, if the update statement contains a
LIMIT clause. (Such updates often are generated by GUI tools.) An update is an UPDATE or DELETE
statement. Primary key here means a PRIMARY KEY, or a UNIQUE index in which no column can
contain NULL.

The variable can have two values:

• 1 or YES: Issue a warning only (not an error message). This is the default value.

• 0 or NO: Prohibit the update.

•   version

The version number for the server. The value might also include a suffix indicating server build or
configuration information. -log indicates that one or more of the general log, slow query log, or
binary log are enabled. -debug indicates that the server was built with debugging support enabled.

•   version_comment

Name version_comment

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The CMake configuration program has a COMPILATION_COMMENT option that permits a comment
to be specified when building MySQL. This variable contains the value of that comment. See
Section 2.9.4, “MySQL Source-Configuration Options”.

•   version_compile_machine

Name version_compile_machine

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The type of machine or architecture on which MySQL was built.

•   version_compile_os

Name version_compile_osSystem Variable

Variable
Scope

Global



Using System Variables

592

Dynamic
Variable

No

Permitted Values Type string

The type of operating system on which MySQL was built.

•   wait_timeout

Command-Line Format --wait-timeout=#

Name wait_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 28800

Min
Value

1

Permitted Values
(Windows)

Max
Value

2147483

Type integer

Default 28800

Min
Value

1

Permitted Values (Other)

Max
Value

31536000

The number of seconds the server waits for activity on a noninteractive connection before closing it.

On thread startup, the session wait_timeout value is initialized from the global wait_timeout
value or from the global interactive_timeout value, depending on the type of client (as
defined by the CLIENT_INTERACTIVE connect option to mysql_real_connect()). See also
interactive_timeout.

•   warning_count

The number of errors, warnings, and notes that resulted from the last statement that generated
messages. This variable is read only. See Section 13.7.5.41, “SHOW WARNINGS Syntax”.

5.1.6 Using System Variables

The MySQL server maintains many system variables that indicate how it is configured. Section 5.1.5,
“Server System Variables”, describes the meaning of these variables. Each system variable has a
default value. System variables can be set at server startup using options on the command line or in
an option file. Most of them can be changed dynamically while the server is running by means of the
SET statement, which enables you to modify operation of the server without having to stop and restart
it. You can also use system variable values in expressions.

There are two scopes in which system variables exist. Global variables affect the overall operation
of the server. Session variables affect its operation for individual client connections. A given system
variable can have both a global and a session value. Global and session system variables are related
as follows:



Using System Variables

593

• When the server starts, it initializes each global variable to its default value. These defaults can
be changed by options specified on the command line or in an option file. (See Section 4.2.3,
“Specifying Program Options”.)

• The server also maintains a set of session variables for each client that connects. The client's
session variables are initialized at connect time using the current values of the corresponding global
variables. For example, a client's SQL mode is controlled by the session sql_mode value, which is
initialized when the client connects to the value of the global sql_mode value.

For some system variables, the session value is not initialized from the corresponding global value; if
so, that is indicated in the variable description.

System variable values can be set globally at server startup by using options on the command line or
in an option file. When you use a startup option to set a variable that takes a numeric value, the value
can be given with a suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024,
10242 or 10243; that is, units of kilobytes, megabytes, or gigabytes, respectively. Thus, the following
command starts the server with a query cache size of 16 megabytes and a maximum packet size of
one gigabyte:

mysqld --query_cache_size=16M --max_allowed_packet=1G

Within an option file, those variables are set like this:

[mysqld]
query_cache_size=16M
max_allowed_packet=1G

The lettercase of suffix letters does not matter; 16M and 16m are equivalent, as are 1G and 1g.

To restrict the maximum value to which a system variable can be set at runtime with the SET
statement, specify this maximum by using an option of the form --maximum-var_name=value at
server startup. For example, to prevent the value of query_cache_size from being increased to
more than 32MB at runtime, use the option --maximum-query_cache_size=32M.

Many system variables are dynamic and can be changed at runtime by using the SET statement. For a
list, see Section 5.1.6.2, “Dynamic System Variables”. To change a system variable with SET, refer to it
by name, optionally preceded by a modifier:

• To indicate that a variable is a global variable, precede its name by the GLOBAL keyword or the
@@global. qualifier:

SET GLOBAL max_connections = 1000;
SET @@global.max_connections = 1000;

The SUPER privilege is required to set global variables.

• To indicate that a variable is a session variable, precede its name by the SESSION keyword or either
the @@session. or @@ qualifier:

SET SESSION sql_mode = 'TRADITIONAL';
SET @@session.sql_mode = 'TRADITIONAL';
SET @@sql_mode = 'TRADITIONAL';

Setting a session variable normally requires no special privilege, although there are exceptions that
require the SUPER privilege (such as sql_log_bin). A client can change its own session variables,
but not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.



Using System Variables

594

• An error occurs under these circumstances:

• Use of SET GLOBAL (or @@global.) when setting a variable that has only a session value:

mysql> SET GLOBAL sql_log_bin = ON;
ERROR 1231 (42000): Variable 'sql_log_bin' can't be
set to the value of 'ON'

• Omission of GLOBAL (or @@global.) when setting a variable that has only a global value:

mysql> SET max_connections = 1000;
ERROR 1229 (HY000): Variable 'max_connections' is a
GLOBAL variable and should be set with SET GLOBAL

• Use of SET SESSION (or @@SESSION.) when setting a variable that has only a global value:

mysql> SET SESSION max_connections = 1000;
ERROR 1229 (HY000): Variable 'max_connections' is a
GLOBAL variable and should be set with SET GLOBAL

The preceding modifiers apply only to system variables. An error occurs for attempts to apply them to
user-defined variables, stored procedure or function parameters, or stored program local variables.

A SET statement can contain multiple variable assignments, separated by commas. This statement
assigns values to a user-defined variable and a system variable:

SET @x = 1, SESSION sql_mode = '';

If you set multiple system variables, the most recent GLOBAL or SESSION modifier in the statement is
used for following assignments that have no modifier specified.

Examples of multiple-variable assignment:

SET GLOBAL sort_buffer_size = 1000000, SESSION sort_buffer_size = 1000000;
SET @@global.sort_buffer_size = 1000000, @@local.sort_buffer_size = 1000000;
SET GLOBAL max_connections = 1000, sort_buffer_size = 1000000;

If any variable assignment in a SET statement fails, the entire statement fails and no variables are
changed.

If you change a session system variable, the value remains in effect within your session until you
change the variable to a different value or the session ends. The change has no effect on other
sessions.

If you change a global system variable, the value is remembered and used for new sessions until
you change the variable to a different value or the server exits. The change is visible to any client
that accesses the global variable. However, the change affects the corresponding session variable
only for clients that connect after the change. The global variable change does not affect the session
variable for any current client sessions (not even the session within which the SET GLOBAL statement
occurred).

To make a global system variable setting permanent so that it applies across server restarts, you
should also set it in an option file.

To set a GLOBAL value to the compiled-in MySQL default value or a SESSION variable to the current
corresponding GLOBAL value, set the variable to the value DEFAULT. For example, the following two
statements are identical in setting the session value of max_join_size to the current global value:

SET @@session.max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;



Using System Variables

595

Not all system variables can be set to DEFAULT. In such cases, assigning DEFAULT results in an error.

It is not permitted to assign DEFAULT to user-defined variables, and not supported for stored procedure
or function parameters or stored program local variables. This results in an error for user-defined
variables, and the results are undefined for parameters or local variables.

To refer to the value of a system variable in expressions, use one of the @@-modifiers. For example,
you can retrieve values in a SELECT statement like this:

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

For a reference to a system variable in an expression as @@var_name (rather than with @@global. or
@@session.), MySQL returns the session value if it exists and the global value otherwise. This differs
from SET @@var_name = expr, which always refers to the session value.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not
to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first
of the following lines is legal at server startup, but the second is not:

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

Note

Some system variables can be enabled with the SET statement by setting
them to ON or 1, or disabled by setting them to OFF or 0. However, to set such
a variable on the command line or in an option file, you must set it to 1 or 0;
setting it to ON or OFF will not work. For example, on the command line, --
delay_key_write=1 works but --delay_key_write=ON does not.

To display system variable names and values, use the SHOW VARIABLES statement:

mysql> SHOW VARIABLES;
+---------------------------------+-----------------------------------+
| Variable_name                   | Value                             |
+---------------------------------+-----------------------------------+
| auto_increment_increment        | 1                                 |
| auto_increment_offset           | 1                                 |
| automatic_sp_privileges         | ON                                |
| back_log                        | 50                                |
| basedir                         | /home/mysql/                      |
| binlog_cache_size               | 32768                             |
| bulk_insert_buffer_size         | 8388608                           |
| character_set_client            | utf8                              |
| character_set_connection        | utf8                              |
| character_set_database          | latin1                            |
| character_set_filesystem        | binary                            |
| character_set_results           | utf8                              |
| character_set_server            | latin1                            |
| character_set_system            | utf8                              |
| character_sets_dir              | /home/mysql/share/mysql/charsets/ |
| collation_connection            | utf8_general_ci                   |
| collation_database              | latin1_swedish_ci                 |
| collation_server                | latin1_swedish_ci                 |
...
| innodb_additional_mem_pool_size | 1048576                           |
| innodb_autoextend_increment     | 8                                 |
| innodb_buffer_pool_size         | 8388608                           |



Using System Variables

596

| innodb_checksums                | ON                                |
| innodb_commit_concurrency       | 0                                 |
| innodb_concurrency_tickets      | 500                               |
| innodb_data_file_path           | ibdata1:10M:autoextend            |
| innodb_data_home_dir            |                                   |
...
| version                         | 5.5.56-log                        |
| version_comment                 | Source distribution               |
| version_compile_machine         | i686                              |
| version_compile_os              | suse-linux                        |
| wait_timeout                    | 28800                             |
+---------------------------------+-----------------------------------+

With a LIKE clause, the statement displays only those variables that match the pattern. To obtain a
specific variable name, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the % wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because _ is a wildcard that matches any single character, you should escape it as \_ to match it
literally. In practice, this is rarely necessary.

For SHOW VARIABLES, if you specify neither GLOBAL nor SESSION, MySQL returns SESSION values.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when
retrieving them is to prevent problems in the future:

• Were we to remove a SESSION variable that has the same name as a GLOBAL variable, a client with
the SUPER privilege might accidentally change the GLOBAL variable rather than just the SESSION
variable for its own connection.

• Were we to add a SESSION variable with the same name as a GLOBAL variable, a client that intends
to change the GLOBAL variable might find only its own SESSION variable changed.

5.1.6.1 Structured System Variables

A structured variable differs from a regular system variable in two respects:

• Its value is a structure with components that specify server parameters considered to be closely
related.

• There might be several instances of a given type of structured variable. Each one has a different
name and refers to a different resource maintained by the server.

MySQL supports one structured variable type, which specifies parameters governing the operation of
key caches. A key cache structured variable has these components:

• key_buffer_size

• key_cache_block_size

• key_cache_division_limit

• key_cache_age_threshold

This section describes the syntax for referring to structured variables. Key cache variables are used
for syntax examples, but specific details about how key caches operate are found elsewhere, in
Section 8.10.2, “The MyISAM Key Cache”.



Using System Variables

597

To refer to a component of a structured variable instance, you can use a compound name in
instance_name.component_name format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If
you refer to a component of a structured variable without any instance name, the default instance
is used. Thus, default.key_buffer_size and key_buffer_size both refer to the same system
variable.

Structured variable instances and components follow these naming rules:

• For a given type of structured variable, each instance must have a name that is unique within
variables of that type. However, instance names need not be unique across structured variable
types. For example, each structured variable has an instance named default, so default is not
unique across variable types.

• The names of the components of each structured variable type must be unique across all system
variable names. If this were not true (that is, if two different types of structured variables could
share component member names), it would not be clear which default structured variable to use for
references to member names that are not qualified by an instance name.

• If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted
identifier using backticks. For example, hot-cache is not legal, but `hot-cache` is.

• global, session, and local are not legal instance names. This avoids a conflict with notation
such as @@global.var_name for referring to nonstructured system variables.

Currently, the first two rules have no possibility of being violated because the only structured variable
type is the one for key caches. These rules will assume greater significance if some other type of
structured variable is created in the future.

With one exception, you can refer to structured variable components using compound names in any
context where simple variable names can occur. For example, you can assign a value to a structured
variable using a command-line option:

shell> mysqld --hot_cache.key_buffer_size=64K

In an option file, use this syntax:

[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with this option, it creates a key cache named hot_cache with a size of 64KB in
addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

shell> mysqld --key_buffer_size=256K \
         --extra_cache.key_buffer_size=128K \
         --extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written
--default.key_buffer_size=256K.) In addition, the server creates a second key cache named
extra_cache that has a size of 128KB, with the size of block buffers for caching table index blocks
set to 2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:



Using System Variables

598

shell> mysqld --key_buffer_size=6M \
         --hot_cache.key_buffer_size=2M \
         --cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache
named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@global.hot_cache.key_buffer_size = 10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@global.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a compound name,
but as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';

This is the exception to being able to use structured variable names anywhere a simple variable name
may occur.

5.1.6.2 Dynamic System Variables

Many server system variables are dynamic and can be set at runtime using SET GLOBAL or SET
SESSION. You can also obtain their values using SELECT. See Section 5.1.6, “Using System
Variables”.

The following table shows the full list of all dynamic system variables. The last column indicates for
each variable whether GLOBAL or SESSION (or both) apply. The table also lists session options that
can be set with the SET statement. Section 5.1.5, “Server System Variables”, discusses these options.

Variables that have a type of “string” take a string value. Variables that have a type of “numeric” take
a numeric value. Variables that have a type of “boolean” can be set to 0, 1, ON or OFF. (If you set
them on the command line or in an option file, use the numeric values.) Variables that are marked
as “enumeration” normally should be set to one of the available values for the variable, but can also
be set to the number that corresponds to the desired enumeration value. For enumerated system
variables, the first enumeration value corresponds to 0. This differs from ENUM columns, for which the
first enumeration value corresponds to 1.

Table 5.3 Dynamic Variable Summary

Variable Name Variable Type Variable Scope

audit_log_flush boolean GLOBAL

audit_log_policy enumeration GLOBAL

audit_log_rotate_on_size integer GLOBAL

auto_increment_increment integer GLOBAL | SESSION

auto_increment_offset integer GLOBAL | SESSION

autocommit boolean GLOBAL | SESSION

automatic_sp_privileges boolean GLOBAL

big_tables boolean GLOBAL | SESSION

binlog_cache_size integer GLOBAL

binlog_direct_non_transactional_updatesboolean GLOBAL | SESSION

binlog_format enumeration GLOBAL | SESSION

binlog_stmt_cache_size integer GLOBAL

bulk_insert_buffer_size integer GLOBAL | SESSION



Using System Variables

599

Variable Name Variable Type Variable Scope

character_set_client string GLOBAL | SESSION

character_set_connection string GLOBAL | SESSION

character_set_database string GLOBAL | SESSION

character_set_filesystem string GLOBAL | SESSION

character_set_results string GLOBAL | SESSION

character_set_server string GLOBAL | SESSION

collation_connection string GLOBAL | SESSION

collation_database string GLOBAL | SESSION

collation_server string GLOBAL | SESSION

completion_type enumeration GLOBAL | SESSION

concurrent_insert enumeration GLOBAL

connect_timeout integer GLOBAL

debug string GLOBAL | SESSION

debug_sync string SESSION

default_storage_engine enumeration GLOBAL | SESSION

default_week_format integer GLOBAL | SESSION

delay_key_write enumeration GLOBAL

delayed_insert_limit integer GLOBAL

delayed_insert_timeout integer GLOBAL

delayed_queue_size integer GLOBAL

div_precision_increment integer GLOBAL | SESSION

engine_condition_pushdown boolean GLOBAL | SESSION

event_scheduler enumeration GLOBAL

expire_logs_days integer GLOBAL

flush boolean GLOBAL

flush_time integer GLOBAL

foreign_key_checks boolean GLOBAL | SESSION

ft_boolean_syntax string GLOBAL

general_log boolean GLOBAL

general_log_file filename GLOBAL

group_concat_max_len integer GLOBAL | SESSION

identity integer SESSION

init_connect string GLOBAL

init_slave string GLOBAL

innodb_adaptive_flushing boolean GLOBAL

innodb_adaptive_hash_index boolean GLOBAL

innodb_autoextend_increment integer GLOBAL

innodb_change_buffering enumeration GLOBAL

innodb_change_buffering_debug integer GLOBAL

innodb_commit_concurrency integer GLOBAL

innodb_concurrency_tickets integer GLOBAL



Using System Variables

600

Variable Name Variable Type Variable Scope

innodb_fast_shutdown integer GLOBAL

innodb_file_format string GLOBAL

innodb_file_format_check boolean GLOBAL

innodb_file_format_max string GLOBAL

innodb_file_per_table boolean GLOBAL

innodb_flush_log_at_trx_commit enumeration GLOBAL

innodb_io_capacity integer GLOBAL

innodb_large_prefix boolean GLOBAL

innodb_limit_optimistic_insert_debug integer GLOBAL

innodb_lock_wait_timeout integer GLOBAL | SESSION

innodb_max_dirty_pages_pct numeric GLOBAL

innodb_max_purge_lag integer GLOBAL

innodb_old_blocks_pct integer GLOBAL

innodb_old_blocks_time integer GLOBAL

innodb_print_all_deadlocks boolean GLOBAL

innodb_purge_batch_size integer GLOBAL

innodb_random_read_ahead boolean GLOBAL

innodb_read_ahead_threshold integer GLOBAL

innodb_replication_delay integer GLOBAL

innodb_rollback_segments integer GLOBAL

innodb_spin_wait_delay integer GLOBAL

innodb_stats_method enumeration GLOBAL

innodb_stats_on_metadata boolean GLOBAL

innodb_stats_sample_pages integer GLOBAL

innodb_strict_mode boolean GLOBAL | SESSION

innodb_support_xa boolean GLOBAL | SESSION

innodb_sync_spin_loops integer GLOBAL

innodb_table_locks boolean GLOBAL | SESSION

innodb_thread_concurrency integer GLOBAL

innodb_thread_sleep_delay integer GLOBAL

innodb_trx_purge_view_update_only_debugboolean GLOBAL

innodb_trx_rseg_n_slots_debug integer GLOBAL

insert_id integer SESSION

interactive_timeout integer GLOBAL | SESSION

join_buffer_size integer GLOBAL | SESSION

keep_files_on_create boolean GLOBAL | SESSION

key_buffer_size integer GLOBAL

key_cache_age_threshold integer GLOBAL

key_cache_block_size integer GLOBAL

key_cache_division_limit integer GLOBAL

last_insert_id integer SESSION



Using System Variables

601

Variable Name Variable Type Variable Scope

lc_messages string GLOBAL | SESSION

lc_time_names string GLOBAL | SESSION

local_infile boolean GLOBAL

lock_wait_timeout integer GLOBAL | SESSION

log filename GLOBAL

log_bin_trust_function_creators boolean GLOBAL

log_bin_trust_routine_creators boolean GLOBAL

log_output set GLOBAL

log_queries_not_using_indexes boolean GLOBAL

log_slow_queries boolean GLOBAL

log_warnings integer GLOBAL | SESSION

long_query_time numeric GLOBAL | SESSION

low_priority_updates boolean GLOBAL | SESSION

max_allowed_packet integer GLOBAL | SESSION

max_binlog_cache_size integer GLOBAL

max_binlog_size integer GLOBAL

max_binlog_stmt_cache_size integer GLOBAL

max_connect_errors integer GLOBAL

max_connections integer GLOBAL

max_delayed_threads integer GLOBAL | SESSION

max_error_count integer GLOBAL | SESSION

max_heap_table_size integer GLOBAL | SESSION

max_insert_delayed_threads integer GLOBAL | SESSION

max_join_size integer GLOBAL | SESSION

max_length_for_sort_data integer GLOBAL | SESSION

max_prepared_stmt_count integer GLOBAL

max_relay_log_size integer GLOBAL

max_seeks_for_key integer GLOBAL | SESSION

max_sort_length integer GLOBAL | SESSION

max_sp_recursion_depth integer GLOBAL | SESSION

max_tmp_tables integer GLOBAL | SESSION

max_user_connections integer GLOBAL | SESSION

max_write_lock_count integer GLOBAL

min_examined_row_limit integer GLOBAL | SESSION

multi_range_count integer GLOBAL | SESSION

myisam_data_pointer_size integer GLOBAL

myisam_max_sort_file_size integer GLOBAL

myisam_repair_threads integer GLOBAL | SESSION

myisam_sort_buffer_size integer GLOBAL | SESSION

myisam_stats_method enumeration GLOBAL | SESSION

myisam_use_mmap boolean GLOBAL



Using System Variables

602

Variable Name Variable Type Variable Scope

ndb_autoincrement_prefetch_sz integer GLOBAL | SESSION

ndb_blob_read_batch_bytes integer GLOBAL | SESSION

ndb_blob_write_batch_bytes integer GLOBAL | SESSION

ndb_cache_check_time integer GLOBAL

ndb_deferred_constraints integer GLOBAL | SESSION

ndb_deferred_constraints integer GLOBAL | SESSION

ndb_distribution enumeration GLOBAL

ndb_distribution={KEYHASH|LINHASH} enumeration GLOBAL

ndb_eventbuffer_max_alloc integer GLOBAL

ndb_extra_logging integer GLOBAL

ndb_force_send boolean GLOBAL | SESSION

ndb_index_stat_cache_entries integer GLOBAL | SESSION

ndb_index_stat_enable boolean GLOBAL | SESSION

ndb_index_stat_option string GLOBAL | SESSION

ndb_index_stat_update_freq integer GLOBAL | SESSION

ndb_join_pushdown boolean GLOBAL | SESSION

ndb_log_bin boolean GLOBAL | SESSION

ndb_log_binlog_index boolean GLOBAL

ndb_log_empty_epochs boolean GLOBAL

ndb_log_empty_epochs boolean GLOBAL

ndb_log_empty_update boolean GLOBAL

ndb_log_empty_update boolean GLOBAL

ndb_log_update_as_write boolean GLOBAL

ndb_log_updated_only boolean GLOBAL

ndb_optimization_delay integer GLOBAL

ndb_report_thresh_binlog_epoch_slip integer GLOBAL

ndb_report_thresh_binlog_mem_usage integer GLOBAL

ndb_table_no_logging boolean SESSION

ndb_table_temporary boolean SESSION

ndb_use_exact_count boolean GLOBAL | SESSION

ndb_use_transactions boolean GLOBAL | SESSION

ndbinfo_max_bytes integer GLOBAL | SESSION

ndbinfo_max_rows integer GLOBAL | SESSION

ndbinfo_offline boolean GLOBAL

ndbinfo_show_hidden boolean GLOBAL | SESSION

ndbinfo_table_prefix string GLOBAL | SESSION

net_buffer_length integer GLOBAL | SESSION

net_read_timeout integer GLOBAL | SESSION

net_retry_count integer GLOBAL | SESSION

net_write_timeout integer GLOBAL | SESSION

new boolean GLOBAL | SESSION



Using System Variables

603

Variable Name Variable Type Variable Scope

old_alter_table boolean GLOBAL | SESSION

old_passwords boolean GLOBAL | SESSION

optimizer_prune_level boolean GLOBAL | SESSION

optimizer_search_depth integer GLOBAL | SESSION

optimizer_switch set GLOBAL | SESSION

preload_buffer_size integer GLOBAL | SESSION

profiling boolean GLOBAL | SESSION

profiling_history_size integer GLOBAL | SESSION

pseudo_slave_mode integer SESSION

pseudo_thread_id integer SESSION

query_alloc_block_size integer GLOBAL | SESSION

query_cache_limit integer GLOBAL

query_cache_min_res_unit integer GLOBAL

query_cache_size integer GLOBAL

query_cache_type enumeration GLOBAL | SESSION

query_cache_wlock_invalidate boolean GLOBAL | SESSION

query_prealloc_size integer GLOBAL | SESSION

rand_seed1 integer SESSION

rand_seed2 integer SESSION

range_alloc_block_size integer GLOBAL | SESSION

read_buffer_size integer GLOBAL | SESSION

read_only boolean GLOBAL

read_rnd_buffer_size integer GLOBAL | SESSION

relay_log_purge boolean GLOBAL

relay_log_recovery boolean GLOBAL

rpl_recovery_rank integer GLOBAL

rpl_semi_sync_master_enabled boolean GLOBAL

rpl_semi_sync_master_timeout integer GLOBAL

rpl_semi_sync_master_trace_level integer GLOBAL

rpl_semi_sync_master_wait_no_slave boolean GLOBAL

rpl_semi_sync_slave_enabled boolean GLOBAL

rpl_semi_sync_slave_trace_level integer GLOBAL

secure_auth boolean GLOBAL

server_id integer GLOBAL

slave_allow_batching boolean GLOBAL

slave_compressed_protocol boolean GLOBAL

slave_exec_mode enumeration GLOBAL

slave_max_allowed_packet integer GLOBAL

slave_net_timeout integer GLOBAL

slave_transaction_retries integer GLOBAL

slow_launch_time integer GLOBAL



Using System Variables

604

Variable Name Variable Type Variable Scope

slow_query_log boolean GLOBAL

slow_query_log_file filename GLOBAL

sort_buffer_size integer GLOBAL | SESSION

sql_auto_is_null boolean GLOBAL | SESSION

sql_big_selects boolean GLOBAL | SESSION

sql_big_tables boolean GLOBAL | SESSION

sql_buffer_result boolean GLOBAL | SESSION

sql_log_bin boolean SESSION

sql_log_off boolean GLOBAL | SESSION

sql_log_update boolean SESSION

sql_low_priority_updates boolean GLOBAL | SESSION

sql_max_join_size integer GLOBAL | SESSION

sql_mode set GLOBAL | SESSION

sql_notes boolean GLOBAL | SESSION

sql_quote_show_create boolean GLOBAL | SESSION

sql_safe_updates boolean GLOBAL | SESSION

sql_select_limit integer GLOBAL | SESSION

sql_slave_skip_counter integer GLOBAL

sql_warnings boolean GLOBAL | SESSION

storage_engine enumeration GLOBAL | SESSION

stored_program_cache integer GLOBAL

sync_binlog integer GLOBAL

sync_frm boolean GLOBAL

sync_master_info integer GLOBAL

sync_relay_log integer GLOBAL

sync_relay_log_info integer GLOBAL

table_definition_cache integer GLOBAL

table_lock_wait_timeout integer GLOBAL

table_open_cache integer GLOBAL

table_type enumeration GLOBAL | SESSION

thread_cache_size integer GLOBAL

thread_pool_high_priority_connection integer GLOBAL | SESSION

thread_pool_max_unused_threads integer GLOBAL

thread_pool_prio_kickup_timer integer GLOBAL | SESSION

thread_pool_stall_limit integer GLOBAL

time_zone string GLOBAL | SESSION

timed_mutexes boolean GLOBAL

timestamp numeric SESSION

tmp_table_size integer GLOBAL | SESSION

transaction_alloc_block_size integer GLOBAL | SESSION

transaction_allow_batching boolean SESSION



Server Status Variables

605

Variable Name Variable Type Variable Scope

transaction_prealloc_size integer GLOBAL | SESSION

tx_isolation enumeration GLOBAL | SESSION

unique_checks boolean GLOBAL | SESSION

updatable_views_with_limit boolean GLOBAL | SESSION

wait_timeout integer GLOBAL | SESSION

5.1.7 Server Status Variables

The MySQL server maintains many status variables that provide information about its operation.
You can view these variables and their values by using the SHOW [GLOBAL | SESSION] STATUS
statement (see Section 13.7.5.36, “SHOW STATUS Syntax”). The optional GLOBAL keyword
aggregates the values over all connections, and SESSION shows the values for the current connection.

mysql> SHOW GLOBAL STATUS;
+-----------------------------------+------------+
| Variable_name                     | Value      |
+-----------------------------------+------------+
| Aborted_clients                   | 0          |
| Aborted_connects                  | 0          |
| Bytes_received                    | 155372598  |
| Bytes_sent                        | 1176560426 |
...
| Connections                       | 30023      |
| Created_tmp_disk_tables           | 0          |
| Created_tmp_files                 | 3          |
| Created_tmp_tables                | 2          |
...
| Threads_created                   | 217        |
| Threads_running                   | 88         |
| Uptime                            | 1389872    |
+-----------------------------------+------------+

Several status variables provide statement counts. To determine the number of statements executed,
use these relationships:

  SUM(Com_xxx) + Qcache_hits
= Questions + statements executed within stored programs
= Queries

Many status variables are reset to 0 by the FLUSH STATUS statement.

The following table lists all available server status variables:

Table 5.4 Status Variable Summary

Variable Name Variable Type Variable Scope

Aborted_clients integer GLOBAL

Aborted_connects integer GLOBAL

Binlog_cache_disk_use integer GLOBAL

Binlog_cache_use integer GLOBAL

Binlog_stmt_cache_disk_use integer GLOBAL

Binlog_stmt_cache_use integer GLOBAL

Bytes_received integer GLOBAL | SESSION

Bytes_sent integer GLOBAL | SESSION

Com_admin_commands integer GLOBAL | SESSION



Server Status Variables

606

Variable Name Variable Type Variable Scope

Com_alter_db integer GLOBAL | SESSION

Com_alter_db_upgrade integer GLOBAL | SESSION

Com_alter_event integer GLOBAL | SESSION

Com_alter_function integer GLOBAL | SESSION

Com_alter_procedure integer GLOBAL | SESSION

Com_alter_server integer GLOBAL | SESSION

Com_alter_table integer GLOBAL | SESSION

Com_alter_tablespace integer GLOBAL | SESSION

Com_analyze integer GLOBAL | SESSION

Com_assign_to_keycache integer GLOBAL | SESSION

Com_begin integer GLOBAL | SESSION

Com_binlog integer GLOBAL | SESSION

Com_call_procedure integer GLOBAL | SESSION

Com_change_db integer GLOBAL | SESSION

Com_change_master integer GLOBAL | SESSION

Com_check integer GLOBAL | SESSION

Com_checksum integer GLOBAL | SESSION

Com_commit integer GLOBAL | SESSION

Com_create_db integer GLOBAL | SESSION

Com_create_event integer GLOBAL | SESSION

Com_create_function integer GLOBAL | SESSION

Com_create_index integer GLOBAL | SESSION

Com_create_procedure integer GLOBAL | SESSION

Com_create_server integer GLOBAL | SESSION

Com_create_table integer GLOBAL | SESSION

Com_create_trigger integer GLOBAL | SESSION

Com_create_udf integer GLOBAL | SESSION

Com_create_user integer GLOBAL | SESSION

Com_create_view integer GLOBAL | SESSION

Com_dealloc_sql integer GLOBAL | SESSION

Com_delete integer GLOBAL | SESSION

Com_delete_multi integer GLOBAL | SESSION

Com_do integer GLOBAL | SESSION

Com_drop_db integer GLOBAL | SESSION

Com_drop_event integer GLOBAL | SESSION

Com_drop_function integer GLOBAL | SESSION

Com_drop_index integer GLOBAL | SESSION

Com_drop_procedure integer GLOBAL | SESSION

Com_drop_server integer GLOBAL | SESSION

Com_drop_table integer GLOBAL | SESSION

Com_drop_trigger integer GLOBAL | SESSION



Server Status Variables

607

Variable Name Variable Type Variable Scope

Com_drop_user integer GLOBAL | SESSION

Com_drop_view integer GLOBAL | SESSION

Com_empty_query integer GLOBAL | SESSION

Com_execute_sql integer GLOBAL | SESSION

Com_flush integer GLOBAL | SESSION

Com_grant integer GLOBAL | SESSION

Com_ha_close integer GLOBAL | SESSION

Com_ha_open integer GLOBAL | SESSION

Com_ha_read integer GLOBAL | SESSION

Com_help integer GLOBAL | SESSION

Com_insert integer GLOBAL | SESSION

Com_insert_select integer GLOBAL | SESSION

Com_install_plugin integer GLOBAL | SESSION

Com_kill integer GLOBAL | SESSION

Com_load integer GLOBAL | SESSION

Com_lock_tables integer GLOBAL | SESSION

Com_optimize integer GLOBAL | SESSION

Com_preload_keys integer GLOBAL | SESSION

Com_prepare_sql integer GLOBAL | SESSION

Com_purge integer GLOBAL | SESSION

Com_purge_before_date integer GLOBAL | SESSION

Com_release_savepoint integer GLOBAL | SESSION

Com_rename_table integer GLOBAL | SESSION

Com_rename_user integer GLOBAL | SESSION

Com_repair integer GLOBAL | SESSION

Com_replace integer GLOBAL | SESSION

Com_replace_select integer GLOBAL | SESSION

Com_reset integer GLOBAL | SESSION

Com_resignal integer GLOBAL | SESSION

Com_revoke integer GLOBAL | SESSION

Com_revoke_all integer GLOBAL | SESSION

Com_rollback integer GLOBAL | SESSION

Com_rollback_to_savepoint integer GLOBAL | SESSION

Com_savepoint integer GLOBAL | SESSION

Com_select integer GLOBAL | SESSION

Com_set_option integer GLOBAL | SESSION

Com_show_authors integer GLOBAL | SESSION

Com_show_binlog_events integer GLOBAL | SESSION

Com_show_binlogs integer GLOBAL | SESSION

Com_show_charsets integer GLOBAL | SESSION

Com_show_collations integer GLOBAL | SESSION



Server Status Variables

608

Variable Name Variable Type Variable Scope

Com_show_contributors integer GLOBAL | SESSION

Com_show_create_db integer GLOBAL | SESSION

Com_show_create_event integer GLOBAL | SESSION

Com_show_create_func integer GLOBAL | SESSION

Com_show_create_proc integer GLOBAL | SESSION

Com_show_create_table integer GLOBAL | SESSION

Com_show_create_trigger integer GLOBAL | SESSION

Com_show_databases integer GLOBAL | SESSION

Com_show_engine_logs integer GLOBAL | SESSION

Com_show_engine_mutex integer GLOBAL | SESSION

Com_show_engine_status integer GLOBAL | SESSION

Com_show_errors integer GLOBAL | SESSION

Com_show_events integer GLOBAL | SESSION

Com_show_fields integer GLOBAL | SESSION

Com_show_function_code integer GLOBAL | SESSION

Com_show_function_status integer GLOBAL | SESSION

Com_show_grants integer GLOBAL | SESSION

Com_show_keys integer GLOBAL | SESSION

Com_show_master_status integer GLOBAL | SESSION

Com_show_ndb_status integer GLOBAL | SESSION

Com_show_new_master integer GLOBAL | SESSION

Com_show_open_tables integer GLOBAL | SESSION

Com_show_plugins integer GLOBAL | SESSION

Com_show_privileges integer GLOBAL | SESSION

Com_show_procedure_code integer GLOBAL | SESSION

Com_show_procedure_status integer GLOBAL | SESSION

Com_show_processlist integer GLOBAL | SESSION

Com_show_profile integer GLOBAL | SESSION

Com_show_profiles integer GLOBAL | SESSION

Com_show_relaylog_events integer GLOBAL | SESSION

Com_show_slave_hosts integer GLOBAL | SESSION

Com_show_slave_status integer GLOBAL | SESSION

Com_show_status integer GLOBAL | SESSION

Com_show_storage_engines integer GLOBAL | SESSION

Com_show_table_status integer GLOBAL | SESSION

Com_show_tables integer GLOBAL | SESSION

Com_show_triggers integer GLOBAL | SESSION

Com_show_variables integer GLOBAL | SESSION

Com_show_warnings integer GLOBAL | SESSION

Com_signal integer GLOBAL | SESSION

Com_slave_start integer GLOBAL | SESSION



Server Status Variables

609

Variable Name Variable Type Variable Scope

Com_slave_stop integer GLOBAL | SESSION

Com_stmt_close integer GLOBAL | SESSION

Com_stmt_execute integer GLOBAL | SESSION

Com_stmt_fetch integer GLOBAL | SESSION

Com_stmt_prepare integer GLOBAL | SESSION

Com_stmt_reprepare integer GLOBAL | SESSION

Com_stmt_reset integer GLOBAL | SESSION

Com_stmt_send_long_data integer GLOBAL | SESSION

Com_truncate integer GLOBAL | SESSION

Com_uninstall_plugin integer GLOBAL | SESSION

Com_unlock_tables integer GLOBAL | SESSION

Com_update integer GLOBAL | SESSION

Com_update_multi integer GLOBAL | SESSION

Com_xa_commit integer GLOBAL | SESSION

Com_xa_end integer GLOBAL | SESSION

Com_xa_prepare integer GLOBAL | SESSION

Com_xa_recover integer GLOBAL | SESSION

Com_xa_rollback integer GLOBAL | SESSION

Com_xa_start integer GLOBAL | SESSION

Compression integer SESSION

Connections integer GLOBAL

Created_tmp_disk_tables integer GLOBAL | SESSION

Created_tmp_files integer GLOBAL

Created_tmp_tables integer GLOBAL | SESSION

Delayed_errors integer GLOBAL

Delayed_insert_threads integer GLOBAL

Delayed_writes integer GLOBAL

Flush_commands integer GLOBAL

Handler_commit integer GLOBAL | SESSION

Handler_delete integer GLOBAL | SESSION

Handler_discover integer GLOBAL | SESSION

Handler_prepare integer GLOBAL | SESSION

Handler_read_first integer GLOBAL | SESSION

Handler_read_key integer GLOBAL | SESSION

Handler_read_last integer GLOBAL | SESSION

Handler_read_next integer GLOBAL | SESSION

Handler_read_prev integer GLOBAL | SESSION

Handler_read_rnd integer GLOBAL | SESSION

Handler_read_rnd_next integer GLOBAL | SESSION

Handler_rollback integer GLOBAL | SESSION

Handler_savepoint integer GLOBAL | SESSION



Server Status Variables

610

Variable Name Variable Type Variable Scope

Handler_savepoint_rollback integer GLOBAL | SESSION

Handler_update integer GLOBAL | SESSION

Handler_write integer GLOBAL | SESSION

Innodb_buffer_pool_bytes_data integer GLOBAL

Innodb_buffer_pool_bytes_dirty integer GLOBAL

Innodb_buffer_pool_pages_data integer GLOBAL

Innodb_buffer_pool_pages_dirty integer GLOBAL

Innodb_buffer_pool_pages_flushed integer GLOBAL

Innodb_buffer_pool_pages_free integer GLOBAL

Innodb_buffer_pool_pages_latched integer GLOBAL

Innodb_buffer_pool_pages_misc integer GLOBAL

Innodb_buffer_pool_pages_total integer GLOBAL

Innodb_buffer_pool_read_ahead integer GLOBAL

Innodb_buffer_pool_read_ahead_evicted integer GLOBAL

Innodb_buffer_pool_read_ahead_rnd integer GLOBAL

Innodb_buffer_pool_read_requests integer GLOBAL

Innodb_buffer_pool_reads integer GLOBAL

Innodb_buffer_pool_wait_free integer GLOBAL

Innodb_buffer_pool_write_requests integer GLOBAL

Innodb_data_fsyncs integer GLOBAL

Innodb_data_pending_fsyncs integer GLOBAL

Innodb_data_pending_reads integer GLOBAL

Innodb_data_pending_writes integer GLOBAL

Innodb_data_read integer GLOBAL

Innodb_data_reads integer GLOBAL

Innodb_data_writes integer GLOBAL

Innodb_data_written integer GLOBAL

Innodb_dblwr_pages_written integer GLOBAL

Innodb_dblwr_writes integer GLOBAL

Innodb_have_atomic_builtins integer GLOBAL

Innodb_log_waits integer GLOBAL

Innodb_log_write_requests integer GLOBAL

Innodb_log_writes integer GLOBAL

Innodb_os_log_fsyncs integer GLOBAL

Innodb_os_log_pending_fsyncs integer GLOBAL

Innodb_os_log_pending_writes integer GLOBAL

Innodb_os_log_written integer GLOBAL

Innodb_page_size integer GLOBAL

Innodb_pages_created integer GLOBAL

Innodb_pages_read integer GLOBAL

Innodb_pages_written integer GLOBAL



Server Status Variables

611

Variable Name Variable Type Variable Scope

Innodb_row_lock_current_waits integer GLOBAL

Innodb_row_lock_time integer GLOBAL

Innodb_row_lock_time_avg integer GLOBAL

Innodb_row_lock_time_max integer GLOBAL

Innodb_row_lock_waits integer GLOBAL

Innodb_rows_deleted integer GLOBAL

Innodb_rows_inserted integer GLOBAL

Innodb_rows_read integer GLOBAL

Innodb_rows_updated integer GLOBAL

Innodb_truncated_status_writes integer GLOBAL

Key_blocks_not_flushed integer GLOBAL

Key_blocks_unused integer GLOBAL

Key_blocks_used integer GLOBAL

Key_read_requests integer GLOBAL

Key_reads integer GLOBAL

Key_write_requests integer GLOBAL

Key_writes integer GLOBAL

Last_query_cost numeric SESSION

Max_used_connections integer GLOBAL

Ndb_api_bytes_received_count integer GLOBAL

Ndb_api_bytes_received_count_session integer SESSION

Ndb_api_bytes_received_count_slave integer GLOBAL

Ndb_api_bytes_sent_count integer GLOBAL

Ndb_api_bytes_sent_count_session integer SESSION

Ndb_api_bytes_sent_count_slave integer GLOBAL

Ndb_api_event_bytes_count integer GLOBAL

Ndb_api_event_bytes_count_injector integer GLOBAL

Ndb_api_event_data_count integer GLOBAL

Ndb_api_event_data_count_injector integer GLOBAL

Ndb_api_event_nondata_count integer GLOBAL

Ndb_api_event_nondata_count_injector integer GLOBAL

Ndb_api_pk_op_count integer GLOBAL

Ndb_api_pk_op_count_session integer SESSION

Ndb_api_pk_op_count_slave integer GLOBAL

Ndb_api_pruned_scan_count integer GLOBAL

Ndb_api_pruned_scan_count_session integer SESSION

Ndb_api_pruned_scan_count_slave integer GLOBAL

Ndb_api_range_scan_count integer GLOBAL

Ndb_api_range_scan_count_session integer SESSION

Ndb_api_range_scan_count_slave integer GLOBAL

Ndb_api_read_row_count integer GLOBAL



Server Status Variables

612

Variable Name Variable Type Variable Scope

Ndb_api_read_row_count_session integer SESSION

Ndb_api_read_row_count_slave integer GLOBAL

Ndb_api_scan_batch_count integer GLOBAL

Ndb_api_scan_batch_count_session integer SESSION

Ndb_api_scan_batch_count_slave integer GLOBAL

Ndb_api_table_scan_count integer GLOBAL

Ndb_api_table_scan_count_session integer SESSION

Ndb_api_table_scan_count_slave integer GLOBAL

Ndb_api_trans_abort_count integer GLOBAL

Ndb_api_trans_abort_count_session integer SESSION

Ndb_api_trans_abort_count_slave integer GLOBAL

Ndb_api_trans_close_count integer GLOBAL

Ndb_api_trans_close_count_session integer SESSION

Ndb_api_trans_close_count_slave integer GLOBAL

Ndb_api_trans_commit_count integer GLOBAL

Ndb_api_trans_commit_count_session integer SESSION

Ndb_api_trans_commit_count_slave integer GLOBAL

Ndb_api_trans_local_read_row_count integer GLOBAL

Ndb_api_trans_local_read_row_count_sessioninteger SESSION

Ndb_api_trans_local_read_row_count_slaveinteger GLOBAL

Ndb_api_trans_start_count integer GLOBAL

Ndb_api_trans_start_count_session integer SESSION

Ndb_api_trans_start_count_slave integer GLOBAL

Ndb_api_uk_op_count integer GLOBAL

Ndb_api_uk_op_count_session integer SESSION

Ndb_api_uk_op_count_slave integer GLOBAL

Ndb_api_wait_exec_complete_count integer GLOBAL

Ndb_api_wait_exec_complete_count_sessioninteger SESSION

Ndb_api_wait_exec_complete_count_slaveinteger GLOBAL

Ndb_api_wait_meta_request_count integer GLOBAL

Ndb_api_wait_meta_request_count_sessioninteger SESSION

Ndb_api_wait_meta_request_count_slave integer GLOBAL

Ndb_api_wait_nanos_count integer GLOBAL

Ndb_api_wait_nanos_count_session integer SESSION

Ndb_api_wait_nanos_count_slave integer GLOBAL

Ndb_api_wait_scan_result_count integer GLOBAL

Ndb_api_wait_scan_result_count_sessioninteger SESSION

Ndb_api_wait_scan_result_count_slave integer GLOBAL

Ndb_cluster_node_id integer GLOBAL | SESSION

Ndb_config_from_host integer GLOBAL | SESSION

Ndb_config_from_port integer GLOBAL | SESSION



Server Status Variables

613

Variable Name Variable Type Variable Scope

Ndb_conflict_fn_epoch integer GLOBAL

Ndb_conflict_fn_epoch_trans integer GLOBAL

Ndb_conflict_fn_max integer GLOBAL

Ndb_conflict_fn_old integer GLOBAL

Ndb_conflict_trans_conflict_commit_countinteger GLOBAL

Ndb_conflict_trans_detect_iter_count integer GLOBAL

Ndb_conflict_trans_reject_count integer GLOBAL

Ndb_conflict_trans_row_reject_count integer GLOBAL

Ndb_execute_count integer GLOBAL

Ndb_cluster_node_id integer GLOBAL

Ndb_number_of_data_nodes integer GLOBAL

Ndb_pruned_scan_count integer GLOBAL

Ndb_pushed_queries_defined integer GLOBAL

Ndb_pushed_queries_dropped integer GLOBAL

Ndb_pushed_queries_executed integer GLOBAL

Ndb_pushed_reads integer GLOBAL

Ndb_scan_count integer GLOBAL

Not_flushed_delayed_rows integer GLOBAL

Open_files integer GLOBAL

Open_streams integer GLOBAL

Open_table_definitions integer GLOBAL

Open_tables integer GLOBAL | SESSION

Opened_files integer GLOBAL

Opened_table_definitions integer GLOBAL | SESSION

Opened_tables integer GLOBAL | SESSION

Performance_schema_cond_classes_lost integer GLOBAL

Performance_schema_cond_instances_lostinteger GLOBAL

Performance_schema_file_classes_lost integer GLOBAL

Performance_schema_file_handles_lost integer GLOBAL

Performance_schema_file_instances_lostinteger GLOBAL

Performance_schema_locker_lost integer GLOBAL

Performance_schema_mutex_classes_lost integer GLOBAL

Performance_schema_mutex_instances_lostinteger GLOBAL

Performance_schema_rwlock_classes_lostinteger GLOBAL

Performance_schema_rwlock_instances_lostinteger GLOBAL

Performance_schema_table_handles_lost integer GLOBAL

Performance_schema_table_instances_lostinteger GLOBAL

Performance_schema_thread_classes_lostinteger GLOBAL

Performance_schema_thread_instances_lostinteger GLOBAL

Prepared_stmt_count integer GLOBAL

Qcache_free_blocks integer GLOBAL



Server Status Variables

614

Variable Name Variable Type Variable Scope

Qcache_free_memory integer GLOBAL

Qcache_hits integer GLOBAL

Qcache_inserts integer GLOBAL

Qcache_lowmem_prunes integer GLOBAL

Qcache_not_cached integer GLOBAL

Qcache_queries_in_cache integer GLOBAL

Qcache_total_blocks integer GLOBAL

Queries integer GLOBAL | SESSION

Questions integer GLOBAL | SESSION

Rpl_semi_sync_master_clients integer GLOBAL

Rpl_semi_sync_master_net_avg_wait_timeinteger GLOBAL

Rpl_semi_sync_master_net_wait_time integer GLOBAL

Rpl_semi_sync_master_net_waits integer GLOBAL

Rpl_semi_sync_master_no_times integer GLOBAL

Rpl_semi_sync_master_no_tx integer GLOBAL

Rpl_semi_sync_master_status boolean GLOBAL

Rpl_semi_sync_master_timefunc_failuresinteger GLOBAL

Rpl_semi_sync_master_tx_avg_wait_time integer GLOBAL

Rpl_semi_sync_master_tx_wait_time integer GLOBAL

Rpl_semi_sync_master_tx_waits integer GLOBAL

Rpl_semi_sync_master_wait_pos_backtraverseinteger GLOBAL

Rpl_semi_sync_master_wait_sessions integer GLOBAL

Rpl_semi_sync_master_yes_tx integer GLOBAL

Rpl_semi_sync_slave_status boolean GLOBAL

Rpl_status string GLOBAL

Select_full_join integer GLOBAL | SESSION

Select_full_range_join integer GLOBAL | SESSION

Select_range integer GLOBAL | SESSION

Select_range_check integer GLOBAL | SESSION

Select_scan integer GLOBAL | SESSION

Slave_heartbeat_period numeric GLOBAL

Slave_open_temp_tables integer GLOBAL

Slave_received_heartbeats  GLOBAL

Slave_retried_transactions integer GLOBAL

Slave_running boolean GLOBAL

Slow_launch_threads integer GLOBAL | SESSION

Slow_queries integer GLOBAL | SESSION

Sort_merge_passes integer GLOBAL | SESSION

Sort_range integer GLOBAL | SESSION

Sort_rows integer GLOBAL | SESSION

Sort_scan integer GLOBAL | SESSION



Server Status Variables

615

Variable Name Variable Type Variable Scope

Ssl_accept_renegotiates integer GLOBAL

Ssl_accepts integer GLOBAL

Ssl_callback_cache_hits integer GLOBAL

Ssl_cipher string GLOBAL | SESSION

Ssl_cipher_list string GLOBAL | SESSION

Ssl_client_connects integer GLOBAL

Ssl_connect_renegotiates integer GLOBAL

Ssl_ctx_verify_depth integer GLOBAL

Ssl_ctx_verify_mode integer GLOBAL

Ssl_default_timeout integer GLOBAL | SESSION

Ssl_finished_accepts integer GLOBAL

Ssl_finished_connects integer GLOBAL

Ssl_session_cache_hits integer GLOBAL

Ssl_session_cache_misses integer GLOBAL

Ssl_session_cache_mode string GLOBAL

Ssl_session_cache_overflows integer GLOBAL

Ssl_session_cache_size integer GLOBAL

Ssl_session_cache_timeouts integer GLOBAL

Ssl_sessions_reused integer GLOBAL | SESSION

Ssl_used_session_cache_entries integer GLOBAL

Ssl_verify_depth integer GLOBAL | SESSION

Ssl_verify_mode integer GLOBAL | SESSION

Ssl_version string GLOBAL | SESSION

Table_locks_immediate integer GLOBAL

Table_locks_waited integer GLOBAL

Tc_log_max_pages_used integer GLOBAL

Tc_log_page_size integer GLOBAL

Tc_log_page_waits integer GLOBAL

Threads_cached integer GLOBAL

Threads_connected integer GLOBAL

Threads_created integer GLOBAL

Threads_running integer GLOBAL

Uptime integer GLOBAL

Uptime_since_flush_status integer GLOBAL

The status variables have the following meanings. For meanings of status variables specific to NDB
Cluster, see NDB Cluster Status Variables.

• Aborted_clients

The number of connections that were aborted because the client died without closing the connection
properly. See Section B.5.2.11, “Communication Errors and Aborted Connections”.

• Aborted_connects



Server Status Variables

616

The number of failed attempts to connect to the MySQL server. See Section B.5.2.11,
“Communication Errors and Aborted Connections”.

• Binlog_cache_disk_use

The number of transactions that used the binary log cache but that exceeded the value of
binlog_cache_size and used a temporary file to store changes from the transaction.

In MySQL versions 5.5.3 through 5.5.8, this variable also included the number of nontransactional
statements that caused the binary log transaction cache to be written to disk. Beginning with
MySQL 5.5.9, the number of such nontransactional statements is tracked separately in the
Binlog_stmt_cache_disk_use status variable.

• Binlog_cache_use

The number of transactions that used the binary log cache.

• Binlog_stmt_cache_disk_use

The number of nontransaction statements that used the binary log statement cache but that
exceeded the value of binlog_stmt_cache_size and used a temporary file to store those
statements.

• Binlog_stmt_cache_use

The number of nontransactional statements that used the binary log statement cache.

• Bytes_received

The number of bytes received from all clients.

• Bytes_sent

The number of bytes sent to all clients.

• Com_xxx

The Com_xxx statement counter variables indicate the number of times each xxx statement has
been executed. There is one status variable for each type of statement. For example, Com_delete
and Com_update count DELETE and UPDATE statements, respectively. Com_delete_multi and
Com_update_multi are similar but apply to DELETE and UPDATE statements that use multiple-
table syntax.

If a query result is returned from query cache, the server increments the Qcache_hits status
variable, not Com_select. See Section 8.10.3.4, “Query Cache Status and Maintenance”.

The discussion at the beginning of this section indicates how to relate these statement-counting
status variables to other such variables.

All of the Com_stmt_xxx variables are increased even if a prepared statement argument is
unknown or an error occurred during execution. In other words, their values correspond to the
number of requests issued, not to the number of requests successfully completed.

The Com_stmt_xxx status variables are as follows:

• Com_stmt_prepare

• Com_stmt_execute

• Com_stmt_fetch

• Com_stmt_send_long_data



Server Status Variables

617

• Com_stmt_reset

• Com_stmt_close

Those variables stand for prepared statement commands. Their names refer to the COM_xxx
command set used in the network layer. In other words, their values increase whenever prepared
statement API calls such as mysql_stmt_prepare(), mysql_stmt_execute(), and so forth
are executed. However, Com_stmt_prepare, Com_stmt_execute and Com_stmt_close
also increase for PREPARE, EXECUTE, or DEALLOCATE PREPARE, respectively. Additionally, the
values of the older statement counter variables Com_prepare_sql, Com_execute_sql, and
Com_dealloc_sql increase for the PREPARE, EXECUTE, and DEALLOCATE PREPARE statements.
Com_stmt_fetch stands for the total number of network round-trips issued when fetching from
cursors.

Com_stmt_reprepare indicates the number of times statements were automatically reprepared
by the server after metadata changes to tables or views referred to by the statement. A reprepare
operation increments Com_stmt_reprepare, and also Com_stmt_prepare.

• Compression

Whether the client connection uses compression in the client/server protocol.

• Connections

The number of connection attempts (successful or not) to the MySQL server.

• Created_tmp_disk_tables

The number of internal on-disk temporary tables created by the server while executing statements.

If an internal temporary table is created initially as an in-memory table but becomes too large,
MySQL automatically converts it to an on-disk table. The maximum size for in-memory temporary
tables is the minimum of the tmp_table_size and max_heap_table_size values. If
Created_tmp_disk_tables is large, you may want to increase the tmp_table_size or
max_heap_table_size value to lessen the likelihood that internal temporary tables in memory will
be converted to on-disk tables.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• Created_tmp_files

How many temporary files mysqld has created.

• Created_tmp_tables

The number of internal temporary tables created by the server while executing statements.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments
the global Created_tmp_tables value.

• Delayed_errors



Server Status Variables

618

The number of rows written with INSERT DELAYED for which some error occurred (probably
duplicate key).

• Delayed_insert_threads

The number of INSERT DELAYED handler threads in use.

• Delayed_writes

The number of INSERT DELAYED rows written.

• Flush_commands

The number of times the server flushes tables, whether because a user executed a FLUSH TABLES
statement or due to internal server operation. It is also incremented by receipt of a COM_REFRESH
packet. This is in contrast to Com_flush, which indicates how many FLUSH statements have been
executed, whether FLUSH TABLES, FLUSH LOGS, and so forth.

• Handler_commit

The number of internal COMMIT statements.

• Handler_delete

The number of times that rows have been deleted from tables.

• Handler_prepare

A counter for the prepare phase of two-phase commit operations.

• Handler_read_first

The number of times the first entry in an index was read. If this value is high, it suggests that the
server is doing a lot of full index scans; for example, SELECT col1 FROM foo, assuming that col1
is indexed.

• Handler_read_key

The number of requests to read a row based on a key. If this value is high, it is a good indication that
your tables are properly indexed for your queries.

• Handler_read_last

The number of requests to read the last key in an index. With ORDER BY, the server will issue a first-
key request followed by several next-key requests, whereas with ORDER BY DESC, the server will
issue a last-key request followed by several previous-key requests.

• Handler_read_next

The number of requests to read the next row in key order. This value is incremented if you are
querying an index column with a range constraint or if you are doing an index scan.

• Handler_read_prev

The number of requests to read the previous row in key order. This read method is mainly used to
optimize ORDER BY ... DESC.

• Handler_read_rnd

The number of requests to read a row based on a fixed position. This value is high if you are doing a
lot of queries that require sorting of the result. You probably have a lot of queries that require MySQL
to scan entire tables or you have joins that do not use keys properly.



Server Status Variables

619

• Handler_read_rnd_next

The number of requests to read the next row in the data file. This value is high if you are doing a lot
of table scans. Generally this suggests that your tables are not properly indexed or that your queries
are not written to take advantage of the indexes you have.

• Handler_rollback

The number of requests for a storage engine to perform a rollback operation.

• Handler_savepoint

The number of requests for a storage engine to place a savepoint.

• Handler_savepoint_rollback

The number of requests for a storage engine to roll back to a savepoint.

• Handler_update

The number of requests to update a row in a table.

• Handler_write

The number of requests to insert a row in a table.

• Innodb_buffer_pool_bytes_data

The total number of bytes in the InnoDB buffer pool containing data. The number includes
both dirty and clean pages. For more accurate memory usage calculations than with
Innodb_buffer_pool_pages_data, when compressed tables cause the buffer pool to hold
pages of different sizes.

• Innodb_buffer_pool_pages_data

The number of pages in the InnoDB buffer pool containing data. The number includes both dirty and
clean pages. When using compressed tables, the reported Innodb_buffer_pool_pages_data
value may be larger than Innodb_buffer_pool_pages_total (Bug #59550).

• Innodb_buffer_pool_bytes_dirty

The total current number of bytes held in dirty pages in the InnoDB buffer pool. For more accurate
memory usage calculations than with Innodb_buffer_pool_pages_dirty, when compressed
tables cause the buffer pool to hold pages of different sizes.

• Innodb_buffer_pool_pages_dirty

The number of pages currently dirty.

• Innodb_buffer_pool_pages_flushed

The number of buffer pool page-flush requests.

• Innodb_buffer_pool_pages_free

The number of free pages.

• Innodb_buffer_pool_pages_latched

The number of latched pages in InnoDB buffer pool. These are pages currently being read or written
or that cannot be flushed or removed for some other reason. Calculation of this variable is expensive,
so it is available only when the UNIV_DEBUG system is defined at server build time.

• Innodb_buffer_pool_pages_misc



Server Status Variables

620

The number of pages that are busy because they have been allocated for administrative
overhead such as row locks or the adaptive hash index. This value can also be calculated
as Innodb_buffer_pool_pages_total − Innodb_buffer_pool_pages_free
− Innodb_buffer_pool_pages_data. When using compressed tables,
Innodb_buffer_pool_pages_misc may report an out-of-bounds value (Bug #59550).

• Innodb_buffer_pool_pages_total

The total size of the InnoDB buffer pool, in pages. When using compressed tables,
the reported Innodb_buffer_pool_pages_data value may be larger than
Innodb_buffer_pool_pages_total (Bug #59550)

• Innodb_buffer_pool_read_ahead

The number of pages read into the InnoDB buffer pool by the read-ahead background thread.

• Innodb_buffer_pool_read_ahead_evicted

The number of pages read into the InnoDB buffer pool by the read-ahead background thread that
were subsequently evicted without having been accessed by queries.

• Innodb_buffer_pool_read_ahead_rnd

The number of “random” read-aheads initiated by InnoDB. This happens when a query scans a
large portion of a table but in random order.

• Innodb_buffer_pool_read_requests

The number of logical read requests.

• Innodb_buffer_pool_reads

The number of logical reads that InnoDB could not satisfy from the buffer pool, and had to read
directly from the disk.

• Innodb_buffer_pool_wait_free

Normally, writes to the InnoDB buffer pool happen in the background. However, if it is necessary
to read or create a page and no clean pages are available, it is also necessary to wait for pages to
be flushed first. This counter counts instances of these waits. If the buffer pool size has been set
properly, this value should be small.

• Innodb_buffer_pool_write_requests

The number writes done to the InnoDB buffer pool.

• Innodb_data_fsyncs

The number of fsync() operations so far.

• Innodb_data_pending_fsyncs

The current number of pending fsync() operations.

• Innodb_data_pending_reads

The current number of pending reads.

• Innodb_data_pending_writes

The current number of pending writes.

• Innodb_data_read



Server Status Variables

621

The amount of data read since the server was started (in bytes).

• Innodb_data_reads

The total number of data reads (OS file reads).

• Innodb_data_writes

The total number of data writes.

• Innodb_data_written

The amount of data written so far, in bytes.

• Innodb_dblwr_pages_written

The number of pages that have been written for doublewrite operations. See Section 14.15.1,
“InnoDB Disk I/O”.

• Innodb_dblwr_writes

The number of doublewrite operations that have been performed. See Section 14.15.1, “InnoDB Disk
I/O”.

• Innodb_have_atomic_builtins

Indicates whether the server was built with atomic instructions.

• Innodb_log_waits

The number of times that the log buffer was too small and a wait was required for it to be flushed
before continuing.

• Innodb_log_write_requests

The number of log write requests.

• Innodb_log_writes

The number of physical writes to the log file.

• Innodb_os_log_fsyncs

The number of fsync() writes done to the log file.

• Innodb_os_log_pending_fsyncs

The number of pending log file fsync() operations.

• Innodb_os_log_pending_writes

The number of pending log file writes.

• Innodb_os_log_written

The number of bytes written to the log file.

• Innodb_page_size

The compiled-in InnoDB page size (default 16KB). Many values are counted in pages; the page size
enables them to be easily converted to bytes.

• Innodb_pages_created



Server Status Variables

622

The number of pages created.

• Innodb_pages_read

The number of pages read from the InnoDB buffer pool by operations on InnoDB tables.

• Innodb_pages_written

The number of pages written.

• Innodb_row_lock_current_waits

The number of row locks currently being waited for.

• Innodb_row_lock_time

The total time spent in acquiring row locks, in milliseconds.

• Innodb_row_lock_time_avg

The average time to acquire a row lock, in milliseconds.

• Innodb_row_lock_time_max

The maximum time to acquire a row lock, in milliseconds.

• Innodb_row_lock_waits

The number of times a row lock had to be waited for.

• Innodb_rows_deleted

The number of rows deleted from InnoDB tables.

• Innodb_rows_inserted

The number of rows inserted into InnoDB tables.

• Innodb_rows_read

The number of rows read from InnoDB tables.

• Innodb_rows_updated

The number of rows updated in InnoDB tables.

• Innodb_truncated_status_writes

The number of times output from the SHOW ENGINE INNODB STATUS is truncated. Monitoring
applications that parse the output from this command can test this value before and after issuing the
SHOW ENGINE command, to confirm if the output is complete or not.

• Key_blocks_not_flushed

The number of key blocks in the key cache that have changed but have not yet been flushed to disk.

• Key_blocks_unused

The number of unused blocks in the key cache. You can use this value to determine how much of
the key cache is in use; see the discussion of key_buffer_size in Section 5.1.5, “Server System
Variables”.

• Key_blocks_used



Server Status Variables

623

The number of used blocks in the key cache. This value is a high-water mark that indicates the
maximum number of blocks that have ever been in use at one time.

• Key_read_requests

The number of requests to read a key block from the cache.

• Key_reads

The number of physical reads of a key block from disk. If Key_reads is large, then your
key_buffer_size value is probably too small. The cache miss rate can be calculated as
Key_reads/Key_read_requests.

• Key_write_requests

The number of requests to write a key block to the cache.

• Key_writes

The number of physical writes of a key block to disk.

• Last_query_cost

The total cost of the last compiled query as computed by the query optimizer. This is useful for
comparing the cost of different query plans for the same query. The default value of 0 means that no
query has been compiled yet. The default value is 0. Last_query_cost has session scope.

The Last_query_cost value can be computed accurately only for simple “flat” queries, not
complex queries such as those with subqueries or UNION. For the latter, the value is set to 0.

• Max_used_connections

The maximum number of connections that have been in use simultaneously since the server started.

• Not_flushed_delayed_rows

The number of rows waiting to be written in INSERT DELAYED queues.

• Open_files

The number of files that are open. This count includes regular files opened by the server. It does
not include other types of files such as sockets or pipes. Also, the count does not include files that
storage engines open using their own internal functions rather than asking the server level to do so.

• Open_streams

The number of streams that are open (used mainly for logging).

• Open_table_definitions

The number of cached .frm files.

• Open_tables

The number of tables that are open.

• Opened_files

The number of files that have been opened with my_open() (a mysys library function). Parts of the
server that open files without using this function do not increment the count.

• Opened_table_definitions



Server Status Variables

624

The number of .frm files that have been cached.

• Opened_tables

The number of tables that have been opened. If Opened_tables is big, your table_open_cache
value is probably too small.

• Performance_schema_xxx

Performance Schema status variables are listed in Section 22.12, “Performance Schema Status
Variables”. These variables provide information about instrumentation that could not be loaded or
created due to memory constraints.

• Prepared_stmt_count

The current number of prepared statements. (The maximum number of statements is given by the
max_prepared_stmt_count system variable.)

• Qcache_free_blocks

The number of free memory blocks in the query cache.

• Qcache_free_memory

The amount of free memory for the query cache.

• Qcache_hits

The number of query cache hits.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

• Qcache_inserts

The number of queries added to the query cache.

• Qcache_lowmem_prunes

The number of queries that were deleted from the query cache because of low memory.

• Qcache_not_cached

The number of noncached queries (not cacheable, or not cached due to the query_cache_type
setting).

• Qcache_queries_in_cache

The number of queries registered in the query cache.

• Qcache_total_blocks

The total number of blocks in the query cache.

• Queries

The number of statements executed by the server. This variable includes statements executed within
stored programs, unlike the Questions variable. It does not count COM_PING or COM_STATISTICS
commands.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.



Server Status Variables

625

• Questions

The number of statements executed by the server. This includes only statements sent to the server
by clients and not statements executed within stored programs, unlike the Queries variable. This
variable does not count COM_PING, COM_STATISTICS, COM_STMT_PREPARE, COM_STMT_CLOSE,
or COM_STMT_RESET commands.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

•   Rpl_semi_sync_master_clients

The number of semisynchronous slaves.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_net_avg_wait_time

The average time in microseconds the master waited for a slave reply.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_net_wait_time

The total time in microseconds the master waited for slave replies.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_net_waits

The total number of times the master waited for slave replies.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_no_times

The number of times the master turned off semisynchronous replication.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a slave.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the master. The value is ON if the
plugin has been enabled and a commit acknowledgment has occurred. It is OFF if the plugin is not
enabled or the master has fallen back to asynchronous replication due to commit acknowledgment
timeout.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_timefunc_failures

The number of times the master failed when calling time functions such as gettimeofday().

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_tx_avg_wait_time

The average time in microseconds the master waited for each transaction.



Server Status Variables

626

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_tx_wait_time

The total time in microseconds the master waited for transactions.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_tx_waits

The total number of times the master waited for transactions.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_wait_pos_backtraverse

The total number of times the master waited for an event with binary coordinates lower than events
waited for previously. This can occur when the order in which transactions start waiting for a reply is
different from the order in which their binary log events are written.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_wait_sessions

The number of sessions currently waiting for slave replies.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a slave.

This variable is available only if the master-side semisynchronous replication plugin is installed.

•   Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the slave. This is ON if the plugin
has been enabled and the slave I/O thread is running, OFF otherwise.

This variable is available only if the slave-side semisynchronous replication plugin is installed.

•   Rpl_status

The status of fail-safe replication (not implemented). This variable is unused and is removed in
MySQL 5.6.

• Select_full_join

The number of joins that perform table scans because they do not use indexes. If this value is not 0,
you should carefully check the indexes of your tables.

• Select_full_range_join

The number of joins that used a range search on a reference table.

• Select_range

The number of joins that used ranges on the first table. This is normally not a critical issue even if the
value is quite large.

• Select_range_check



Server Status Variables

627

The number of joins without keys that check for key usage after each row. If this is not 0, you should
carefully check the indexes of your tables.

• Select_scan

The number of joins that did a full scan of the first table.

• Slave_heartbeat_period

Shows the replication heartbeat interval (in seconds) on a replication slave.

• Slave_open_temp_tables

The number of temporary tables that the slave SQL thread currently has open. If the value is greater
than zero, it is not safe to shut down the slave; see Section 17.4.1.24, “Replication and Temporary
Tables”.

• Slave_received_heartbeats

This counter increments with each replication heartbeat received by a replication slave since the last
time that the slave was restarted or reset, or a CHANGE MASTER TO statement was issued.

• Slave_retried_transactions

The total number of times since startup that the replication slave SQL thread has retried transactions.

• Slave_running

This is ON if this server is a replication slave that is connected to a replication master, and both the I/
O and SQL threads are running; otherwise, it is OFF.

• Slow_launch_threads

The number of threads that have taken more than slow_launch_time seconds to create.

• Slow_queries

The number of queries that have taken more than long_query_time seconds. This counter
increments regardless of whether the slow query log is enabled. For information about that log, see
Section 5.4.5, “The Slow Query Log”.

• Sort_merge_passes

The number of merge passes that the sort algorithm has had to do. If this value is large, you should
consider increasing the value of the sort_buffer_size system variable.

• Sort_range

The number of sorts that were done using ranges.

• Sort_rows

The number of sorted rows.

• Sort_scan

The number of sorts that were done by scanning the table.

• Ssl_accept_renegotiates

The number of negotiates needed to establish the connection.

• Ssl_accepts



Server Status Variables

628

The number of accepted SSL connections.

• Ssl_callback_cache_hits

The number of callback cache hits.

• Ssl_cipher

The current encryption cipher (empty for unencrypted connections).

• Ssl_cipher_list

The list of possible SSL ciphers (empty for non-SSL connections).

• Ssl_client_connects

The number of SSL connection attempts to an SSL-enabled master.

• Ssl_connect_renegotiates

The number of negotiates needed to establish the connection to an SSL-enabled master.

• Ssl_ctx_verify_depth

The SSL context verification depth (how many certificates in the chain are tested).

• Ssl_ctx_verify_mode

The SSL context verification mode.

• Ssl_default_timeout

The default SSL timeout.

• Ssl_finished_accepts

The number of successful SSL connections to the server.

• Ssl_finished_connects

The number of successful slave connections to an SSL-enabled master.

• Ssl_session_cache_hits

The number of SSL session cache hits.

• Ssl_session_cache_misses

The number of SSL session cache misses.

• Ssl_session_cache_mode

The SSL session cache mode.

• Ssl_session_cache_overflows

The number of SSL session cache overflows.

• Ssl_session_cache_size

The SSL session cache size.

• Ssl_session_cache_timeouts

The number of SSL session cache timeouts.



Server Status Variables

629

• Ssl_sessions_reused

How many SSL connections were reused from the cache.

• Ssl_used_session_cache_entries

How many SSL session cache entries were used.

• Ssl_verify_depth

The verification depth for replication SSL connections.

• Ssl_verify_mode

The verification mode for replication SSL connections.

• Ssl_version

The SSL protocol version of the connection; for example, TLSv1. If the connection is not encrypted,
the value is empty.

• Table_locks_immediate

The number of times that a request for a table lock could be granted immediately.

• Table_locks_waited

The number of times that a request for a table lock could not be granted immediately and a wait was
needed. If this is high and you have performance problems, you should first optimize your queries,
and then either split your table or tables or use replication.

• Tc_log_max_pages_used

For the memory-mapped implementation of the log that is used by mysqld when it acts as
the transaction coordinator for recovery of internal XA transactions, this variable indicates
the largest number of pages used for the log since the server started. If the product of
Tc_log_max_pages_used and Tc_log_page_size is always significantly less than the log
size, the size is larger than necessary and can be reduced. (The size is set by the --log-tc-
size option. This variable is unused: It is unneeded for binary log-based recovery, and the memory-
mapped recovery log method is not used unless the number of storage engines that are capable
of two-phase commit and that support XA transactions is greater than one. (InnoDB is the only
applicable engine.)

• Tc_log_page_size

The page size used for the memory-mapped implementation of the XA recovery log. The default
value is determined using getpagesize(). This variable is unused for the same reasons as
described for Tc_log_max_pages_used.

• Tc_log_page_waits

For the memory-mapped implementation of the recovery log, this variable increments each time
the server was not able to commit a transaction and had to wait for a free page in the log. If this
value is large, you might want to increase the log size (with the --log-tc-size option). For binary
log-based recovery, this variable increments each time the binary log cannot be closed because
there are two-phase commits in progress. (The close operation waits until all such transactions are
finished.)

• Threads_cached

The number of threads in the thread cache.

• Threads_connected



Server SQL Modes

630

The number of currently open connections.

• Threads_created

The number of threads created to handle connections. If Threads_created is big, you may
want to increase the thread_cache_size value. The cache miss rate can be calculated as
Threads_created/Connections.

• Threads_running

The number of threads that are not sleeping.

• Uptime

The number of seconds that the server has been up.

• Uptime_since_flush_status

The number of seconds since the most recent FLUSH STATUS statement.

5.1.8 Server SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sql_mode system variable. DBAs can set the global
SQL mode to match site server operating requirements, and each application can set its session SQL
mode to its own requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes
it easier to use MySQL in different environments and to use MySQL together with other database
servers.

• Setting the SQL Mode

• The Most Important SQL Modes

• Full List of SQL Modes

• Combination SQL Modes

• Strict SQL Mode

For answers to questions often asked about server SQL modes in MySQL, see Section A.3, “MySQL
5.5 FAQ: Server SQL Mode”.

When working with InnoDB tables, consider also the innodb_strict_mode system variable. It
enables additional error checks for InnoDB tables.

Setting the SQL Mode

The default SQL mode is empty (no modes set).

To set the SQL mode at server startup, use the --sql-mode="modes" option on the command
line, or sql-mode="modes" in an option file such as my.cnf (Unix operating systems) or my.ini
(Windows). modes is a list of different modes separated by commas. To clear the SQL mode explicitly,
set it to an empty string using --sql-mode="" on the command line, or sql-mode="" in an option
file.

Note

MySQL installation programs may configure the SQL mode during the
installation process. If the SQL mode differs from the default or from what you
expect, check for a setting in an option file that the server reads at startup.



Server SQL Modes

631

To change the SQL mode at runtime, set the global or session sql_mode system variable using a SET
statement:

SET GLOBAL sql_mode = 'modes';
SET SESSION sql_mode = 'modes';

Setting the GLOBAL variable requires the SUPER privilege and affects the operation of all clients that
connect from that time on. Setting the SESSION variable affects only the current client. Each client can
change its session sql_mode value at any time.

To determine the current global or session sql_mode value, use the following statements:

SELECT @@GLOBAL.sql_mode;
SELECT @@SESSION.sql_mode;

Important

SQL mode and user-defined partitioning.  Changing the server SQL
mode after creating and inserting data into partitioned tables can cause major
changes in the behavior of such tables, and could lead to loss or corruption of
data. It is strongly recommended that you never change the SQL mode once
you have created tables employing user-defined partitioning.

When replicating partitioned tables, differing SQL modes on master and slave
can also lead to problems. For best results, you should always use the same
server SQL mode on the master and on the slave.

See Section 19.5, “Restrictions and Limitations on Partitioning”, for more
information.

The Most Important SQL Modes

The most important sql_mode values are probably these:

•   ANSI

This mode changes syntax and behavior to conform more closely to standard SQL. It is one of the
special combination modes listed at the end of this section.

•   STRICT_TRANS_TABLES

If a value could not be inserted as given into a transactional table, abort the statement. For a
nontransactional table, abort the statement if the value occurs in a single-row statement or the first
row of a multiple-row statement. More details are given later in this section.

•   TRADITIONAL

Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is
“give an error instead of a warning” when inserting an incorrect value into a column. It is one of the
special combination modes listed at the end of this section.

Note

The INSERT or UPDATE aborts as soon as the error is noticed. This may
not be what you want if you are using a nontransactional storage engine,
because data changes made prior to the error may not be rolled back,
resulting in a “partially done” update.

When this manual refers to “strict mode,” it means a mode with either or both STRICT_TRANS_TABLES
or STRICT_ALL_TABLES enabled.



Server SQL Modes

632

Full List of SQL Modes

The following list describes all supported SQL modes:

•   ALLOW_INVALID_DATES

Do not perform full checking of dates. Check only that the month is in the range from 1 to 12 and the
day is in the range from 1 to 31. This is very convenient for Web applications where you obtain year,
month, and day in three different fields and you want to store exactly what the user inserted (without
date validation). This mode applies to DATE and DATETIME columns. It does not apply TIMESTAMP
columns, which always require a valid date.

The server requires that month and day values be legal, and not merely in the range 1 to 12 and 1
to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted
to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate an
error. To permit such dates, enable ALLOW_INVALID_DATES.

•   ANSI_QUOTES

Treat " as an identifier quote character (like the ` quote character) and not as a string quote
character. You can still use ` to quote identifiers with this mode enabled. With ANSI_QUOTES
enabled, you cannot use double quotation marks to quote literal strings, because it is interpreted as
an identifier.

•   ERROR_FOR_DIVISION_BY_ZERO

The ERROR_FOR_DIVISION_BY_ZERO mode affects handling of division by zero, which includes
MOD(N,0). For data-change operations (INSERT, UPDATE), its effect also depends on whether strict
SQL mode is enabled.

• If this mode is not enabled, division by zero inserts NULL and produces no warning.

• If this mode is enabled, division by zero inserts NULL and produces a warning.

• If this mode and strict mode are enabled, division by zero produces an error, unless IGNORE is
given as well. For INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and
produces a warning.

For SELECT, division by zero returns NULL. Enabling ERROR_FOR_DIVISION_BY_ZERO causes a
warning to be produced as well, regardless of whether strict mode is enabled.

•   HIGH_NOT_PRECEDENCE

The precedence of the NOT operator is such that expressions such as NOT a BETWEEN b AND c
are parsed as NOT (a BETWEEN b AND c). In some older versions of MySQL, the expression was
parsed as (NOT a) BETWEEN b AND c. The old higher-precedence behavior can be obtained by
enabling the HIGH_NOT_PRECEDENCE SQL mode.

mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
        -> 0
mysql> SET sql_mode = 'HIGH_NOT_PRECEDENCE';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
        -> 1

•   IGNORE_SPACE

Permit spaces between a function name and the ( character. This causes built-in function names
to be treated as reserved words. As a result, identifiers that are the same as function names must
be quoted as described in Section 9.2, “Schema Object Names”. For example, because there is a
COUNT() function, the use of count as a table name in the following statement causes an error:



Server SQL Modes

633

mysql> CREATE TABLE count (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax

The table name should be quoted:

mysql> CREATE TABLE `count` (i INT);
Query OK, 0 rows affected (0.00 sec)

The IGNORE_SPACE SQL mode applies to built-in functions, not to user-defined functions or stored
functions. It is always permissible to have spaces after a UDF or stored function name, regardless of
whether IGNORE_SPACE is enabled.

For further discussion of IGNORE_SPACE, see Section 9.2.4, “Function Name Parsing and
Resolution”.

•   NO_AUTO_CREATE_USER

Prevent the GRANT statement from automatically creating new users if it would otherwise do so,
unless authentication information is specified. The statement must specify a nonempty password
using IDENTIFIED BY or an authentication plugin using IDENTIFIED WITH.

•   NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally, you
generate the next sequence number for the column by inserting either NULL or 0 into it.
NO_AUTO_VALUE_ON_ZERO suppresses this behavior for 0 so that only NULL generates the next
sequence number.

This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (Storing 0
is not a recommended practice, by the way.) For example, if you dump the table with mysqldump
and then reload it, MySQL normally generates new sequence numbers when it encounters the
0 values, resulting in a table with contents different from the one that was dumped. Enabling
NO_AUTO_VALUE_ON_ZERO before reloading the dump file solves this problem. mysqldump now
automatically includes in its output a statement that enables NO_AUTO_VALUE_ON_ZERO, to avoid
this problem.

•   NO_BACKSLASH_ESCAPES

Disable the use of the backslash character (\) as an escape character within strings. With this mode
enabled, backslash becomes an ordinary character like any other.

•   NO_DIR_IN_CREATE

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This option
is useful on slave replication servers.

•   NO_ENGINE_SUBSTITUTION

Control automatic substitution of the default storage engine when a statement such as CREATE
TABLE or ALTER TABLE specifies a storage engine that is disabled or not compiled in.

Because storage engines can be pluggable at runtime, unavailable engines are treated the same
way:

With NO_ENGINE_SUBSTITUTION disabled, for CREATE TABLE the default engine is used and a
warning occurs if the desired engine is unavailable. For ALTER TABLE, a warning occurs and the
table is not altered.

With NO_ENGINE_SUBSTITUTION enabled, an error occurs and the table is not created or altered if
the desired engine is unavailable.



Server SQL Modes

634

•   NO_FIELD_OPTIONS

Do not print MySQL-specific column options in the output of SHOW CREATE TABLE. This mode is
used by mysqldump in portability mode.

•   NO_KEY_OPTIONS

Do not print MySQL-specific index options in the output of SHOW CREATE TABLE. This mode is used
by mysqldump in portability mode.

•   NO_TABLE_OPTIONS

Do not print MySQL-specific table options (such as ENGINE) in the output of SHOW CREATE TABLE.
This mode is used by mysqldump in portability mode.

•   NO_UNSIGNED_SUBTRACTION

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result
by default. Prior to MySQL 5.5.5, if the result would otherwise have been negative, it becomes the
maximum integer value:

mysql> SET sql_mode = '';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
|    18446744073709551615 |
+-------------------------+

As of MySQL 5.5.5, if the result would otherwise have been negative, an error results:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
|                      -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped
to the maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is
enabled. If strict SQL mode is enabled, an error occurs and the column remains unchanged.

When NO_UNSIGNED_SUBTRACTION is enabled, the subtraction result is signed, even if any
operand is unsigned. For example, compare the type of column c2 in table t1 with that of column c2
in table t2:

mysql> SET sql_mode='';
mysql> CREATE TABLE test (c1 BIGINT UNSIGNED NOT NULL);
mysql> CREATE TABLE t1 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t1;
+-------+---------------------+------+-----+---------+-------+
| Field | Type                | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+



Server SQL Modes

635

| c2    | bigint(21) unsigned | NO   |     | 0       |       |
+-------+---------------------+------+-----+---------+-------+

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
mysql> CREATE TABLE t2 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t2;
+-------+------------+------+-----+---------+-------+
| Field | Type       | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| c2    | bigint(21) | NO   |     | 0       |       |
+-------+------------+------+-----+---------+-------+

This means that BIGINT UNSIGNED is not 100% usable in all contexts. See Section 12.10, “Cast
Functions and Operators”.

•   NO_ZERO_DATE

The NO_ZERO_DATE mode affects whether the server permits '0000-00-00' as a valid date. Its
effect also depends on whether strict SQL mode is enabled.

• If this mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If this mode is enabled, '0000-00-00' is permitted and inserts produce a warning.

• If this mode and strict mode are enabled, '0000-00-00' is not permitted and inserts produce
an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE,
'0000-00-00' is permitted and inserts produce a warning.

•   NO_ZERO_IN_DATE

The NO_ZERO_IN_DATE mode affects whether the server permits dates in which the year part
is nonzero but the month or day part is 0. (This mode affects dates such as '2010-00-01' or
'2010-01-00', but not '0000-00-00'. To control whether the server permits '0000-00-00',
use the NO_ZERO_DATE mode.) The effect of NO_ZERO_IN_DATE also depends on whether strict
SQL mode is enabled.

• If this mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If this mode is enabled, dates with zero parts are inserted as '0000-00-00' and produce a
warning.

• If this mode and strict mode are enabled, dates with zero parts are not permitted and inserts
produce an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE,
dates with zero parts are inserted as '0000-00-00' and produce a warning.

•   ONLY_FULL_GROUP_BY

Reject queries for which the select list or HAVING condition refer to nonaggregated columns that are
not named in the GROUP BY clause.

A MySQL extension to standard SQL permits references in the HAVING clause to aliased
expressions in the select list. Enabling ONLY_FULL_GROUP_BY disables this extension, thus
requiring the HAVING clause to be written using unaliased expressions.

For additional discussion and examples, see Section 12.16.3, “MySQL Handling of GROUP BY”.

•   PAD_CHAR_TO_FULL_LENGTH

By default, trailing spaces are trimmed from CHAR column values on retrieval. If
PAD_CHAR_TO_FULL_LENGTH is enabled, trimming does not occur and retrieved CHAR values are
padded to their full length. This mode does not apply to VARCHAR columns, for which trailing spaces
are retained on retrieval.



Server SQL Modes

636

mysql> CREATE TABLE t1 (c1 CHAR(10));
Query OK, 0 rows affected (0.37 sec)

mysql> INSERT INTO t1 (c1) VALUES('xy');
Query OK, 1 row affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------+-----------------+
| c1   | CHAR_LENGTH(c1) |
+------+-----------------+
| xy   |               2 |
+------+-----------------+
1 row in set (0.00 sec)

mysql> SET sql_mode = 'PAD_CHAR_TO_FULL_LENGTH';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------------+-----------------+
| c1         | CHAR_LENGTH(c1) |
+------------+-----------------+
| xy         |              10 |
+------------+-----------------+
1 row in set (0.00 sec)

•   PIPES_AS_CONCAT

Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for OR.

•   REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT. By default, MySQL treats REAL as a synonym for DOUBLE.

•   STRICT_ALL_TABLES

Enable strict SQL mode for all storage engines. Invalid data values are rejected. For details, see
Strict SQL Mode.

•   STRICT_TRANS_TABLES

Enable strict SQL mode for transactional storage engines, and when possible for nontransactional
storage engines. For details, see Strict SQL Mode.

Combination SQL Modes

The following special modes are provided as shorthand for combinations of mode values from the
preceding list.

•   ANSI

Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE.

ANSI mode also causes the server to return an error for queries where a set function S with an
outer reference S(outer_ref) cannot be aggregated in the outer query against which the outer
reference has been resolved. This is such a query:

SELECT * FROM t1 WHERE t1.a IN (SELECT MAX(t1.b) FROM t2 WHERE ...);

Here, MAX(t1.b) cannot aggregated in the outer query because it appears in the WHERE clause of
that query. Standard SQL requires an error in this situation. If ANSI mode is not enabled, the server
treats S(outer_ref) in such queries the same way that it would interpret S(const).



Server SQL Modes

637

See Section 1.7, “MySQL Standards Compliance”.

•   DB2

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

•   MAXDB

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

•   MSSQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

•   MYSQL323

Equivalent to MYSQL323, HIGH_NOT_PRECEDENCE. This means HIGH_NOT_PRECEDENCE plus
some SHOW CREATE TABLE behaviors specific to MYSQL323:

• TIMESTAMP column display does not include DEFAULT or ON UPDATE attributes that were
introduced in MySQL 4.1.

• String column display does not include character set and collation attributes that were introduced
in MySQL 4.1. For CHAR and VARCHAR columns, if the collation is binary, BINARY is appended to
the column type.

• The ENGINE=engine_name table option displays as TYPE=engine+name.

• For MEMORY tables, the storage engine is displayed as HEAP.

•   MYSQL40

Equivalent to MYSQL40, HIGH_NOT_PRECEDENCE. This means HIGH_NOT_PRECEDENCE plus some
behaviors specific to MYSQL40. These are the same as for MYSQL323, except that SHOW CREATE
TABLE does not display HEAP as the storage engine for MEMORY tables.

•   ORACLE

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

•   POSTGRESQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

•   TRADITIONAL

Equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE,
NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, and
NO_ENGINE_SUBSTITUTION.

Strict SQL Mode

Strict mode controls how MySQL handles invalid or missing values in data-change statements such as
INSERT or UPDATE. A value can be invalid for several reasons. For example, it might have the wrong
data type for the column, or it might be out of range. A value is missing when a new row to be inserted
does not contain a value for a non-NULL column that has no explicit DEFAULT clause in its definition.
(For a NULL column, NULL is inserted if the value is missing.)



IPv6 Support

638

If strict mode is not in effect, MySQL inserts adjusted values for invalid or missing values and produces
warnings (see Section 13.7.5.41, “SHOW WARNINGS Syntax”). In strict mode, you can produce this
behavior by using INSERT IGNORE or UPDATE IGNORE.

For statements such as SELECT that do not change data, invalid values generate a warning in strict
mode, not an error.

Strict mode does not affect whether foreign key constraints are checked. foreign_key_checks can
be used for that. (See Section 5.1.5, “Server System Variables”.)

Strict SQL mode is in effect if either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled,
although the effects of these modes differ somewhat:

• For transactional tables, an error occurs for invalid or missing values in a data-change statement
when either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled. The statement is
aborted and rolled back.

• For nontransactional tables, the behavior is the same for either mode if the bad value occurs in the
first row to be inserted or updated: The statement is aborted and the table remains unchanged. If the
statement inserts or modifies multiple rows and the bad value occurs in the second or later row, the
result depends on which strict mode is enabled:

• For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However,
because the earlier rows have been inserted or updated, the result is a partial update. To avoid
this, use single-row statements, which can be aborted without changing the table.

• For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the
column and inserts the adjusted value. If a value is missing, MySQL inserts the implicit default
value for the column data type. In either case, MySQL generates a warning rather than an error
and continues processing the statement. Implicit defaults are described in Section 11.6, “Data
Type Default Values”.

Strict mode also affects handling of division by zero, zero dates, and zeros in dates, in conjunction with
the ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. For details,
see the descriptions of those modes.

5.1.9 IPv6 Support

As of MySQL 5.5.3, support for IPv6 includes these capabilities:

• MySQL Server can accept TCP/IP connections from clients connecting over IPv6. For example, this
command connects over IPv6 to the MySQL server on the local host:

shell> mysql -h ::1

To use this capability, two things must be true:

• Your system must be configured to support IPv6. See Section 5.1.9.1, “Verifying System Support
for IPv6”.

• The default MySQL server configuration permits only IPv4 connections, so the server must be
configured for IPv6 connections. To permit IPv6 connections in addition to or instead of IPv4
connections, start the server with an appropriate --bind-address option. See Section 5.1.5,
“Server System Variables”.

• MySQL account names permit IPv6 addresses to enable DBAs to specify privileges for clients that
connect to the server over IPv6. See Section 6.2.3, “Specifying Account Names”. IPv6 addresses
can be specified in account names in statements such as CREATE USER, GRANT, and REVOKE. For
example:



IPv6 Support

639

mysql> CREATE USER 'bill'@'::1' IDENTIFIED BY 'secret';
mysql> GRANT SELECT ON mydb.* TO 'bill'@'::1';

The following sections describe how to set up MySQL so that clients can connect to the server over
IPv6.

5.1.9.1 Verifying System Support for IPv6

Before MySQL Server can accept IPv6 connections, the operating system on your server host must
support IPv6. As a simple test to determine whether that is true, try this command:

shell> ping6 ::1
16 bytes from ::1, icmp_seq=0 hlim=64 time=0.171 ms
16 bytes from ::1, icmp_seq=1 hlim=64 time=0.077 ms
...

To produce a description of your system's network interfaces, invoke ifconfig -a and look for IPv6
addresses in the output.

If your host does not support IPv6, consult your system documentation for instructions on enabling it.
It might be that you need only reconfigure an existing network interface to add an IPv6 address. Or a
more extensive change might be needed, such as rebuilding the kernel with IPv6 options enabled.

These links may be helpful in setting up IPv6 on various platforms:

• Windows XP

• Gentoo Linux

• Ubuntu Linux

• Linux (Generic)

• OS X

5.1.9.2 Configuring the MySQL Server to Permit IPv6 Connections

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound
to a single address, but it is possible for an address to map onto multiple network interfaces. The
default address is 0.0.0.0. To specify an address explicitly, use the --bind-address=addr option
at server startup, where addr is an IPv4 or IPv6 address or a host name. (IPv6 addresses are not
supported before MySQL 5.5.3.) If addr is a host name, the server resolves the name to an IP address
and binds to that address.

The server treats different types of addresses as follows:

• If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4 interfaces.

• If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6
interfaces. Use this address to permit both IPv4 and IPv6 connections on all server interfaces.

• If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that address,
in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1, clients can
connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts
TCP/IP connections only for that IPv4 or IPv6 address.

If you intend to bind the server to a specific address, be sure that the mysql.user grant table contains
an account with administrative privileges that you can use to connect to that address. Otherwise, you
will not be able to shut down the server. For example, if you bind the server to ::, you can connect

http://support.microsoft.com/kb/2478747
http://www.gentoo.org/doc/en/ipv6.xml
https://wiki.ubuntu.com/IPv6
http://www.tldp.org/HOWTO/Linux+IPv6-HOWTO/
http://support.apple.com/kb/HT4667?viewlocale=en_US


IPv6 Support

640

to it using all existing accounts. But if you bind the server to ::1, it accepts connections only on that
address. In that case, first make sure that the 'root'@'::1' account is present in the mysql.user
table so you can still connect to the server to shut it down.

5.1.9.3 Connecting Using the IPv6 Local Host Address

The following procedure shows how to configure MySQL to permit IPv6 connections by clients that
connect to the local server using the ::1 local host address. The instructions given here assume that
your system supports IPv6.

1. Start the MySQL server with an appropriate --bind-address option to permit it to accept IPv6
connections. For example, put the following lines in your server option file and restart the server:

[mysqld]
bind-address = ::

Alternatively, you can bind the server to ::1, but that makes the server more restrictive for
TCP/IP connections. It accepts only IPv6 connections for that single address and rejects IPv4
connections. For more information, see Section 5.1.9.2, “Configuring the MySQL Server to Permit
IPv6 Connections”.

2. As an administrator, connect to the server and create an account for a local user who will connect
from the ::1 local IPv6 host address:

mysql> CREATE USER 'ipv6user'@'::1' IDENTIFIED BY 'ipv6pass';

For the permitted syntax of IPv6 addresses in account names, see Section 6.2.3, “Specifying
Account Names”. In addition to the CREATE USER statement, you can issue GRANT statements that
give specific privileges to the account, although that is not necessary for the remaining steps in this
procedure.

3. Invoke the mysql client to connect to the server using the new account:

shell> mysql -h ::1 -u ipv6user -pipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection:   ::1 via TCP/IP
...

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| ipv6user@::1   |
+----------------+

5.1.9.4 Connecting Using IPv6 Nonlocal Host Addresses

The following procedure shows how to configure MySQL to permit IPv6 connections by remote clients.
It is similar to the preceding procedure for local clients, but the server and client hosts are distinct and
each has its own nonlocal IPv6 address. The example uses these addresses:

Server host: 2001:db8:0:f101::1
Client host: 2001:db8:0:f101::2

These addresses are chosen from the nonroutable address range recommended by IANA for
documentation purposes and suffice for testing on your local network. To accept IPv6 connections from

http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xml


IPv6 Support

641

clients outside the local network, the server host must have a public address. If your network provider
assigns you an IPv6 address, you can use that. Otherwise, another way to obtain an address is to use
an IPv6 broker; see Section 5.1.9.5, “Obtaining an IPv6 Address from a Broker”.

1. Start the MySQL server with an appropriate --bind-address option to permit it to accept IPv6
connections. For example, put the following lines in your server option file and restart the server:

[mysqld]
bind-address = ::

Alternatively, you can bind the server to 2001:db8:0:f101::1, but that makes the server more
restrictive for TCP/IP connections. It accepts only IPv6 connections for that single address and
rejects IPv4 connections. For more information, see Section 5.1.9.2, “Configuring the MySQL
Server to Permit IPv6 Connections”.

2. On the server host (2001:db8:0:f101::1), create an account for a user who will connect from
the client host (2001:db8:0:f101::2):

mysql> CREATE USER 'remoteipv6user'@'2001:db8:0:f101::2' IDENTIFIED BY 'remoteipv6pass';

3. On the client host (2001:db8:0:f101::2), invoke the mysql client to connect to the server using
the new account:

shell> mysql -h 2001:db8:0:f101::1 -u remoteipv6user -premoteipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection:   2001:db8:0:f101::1 via TCP/IP
...

mysql> SELECT CURRENT_USER();
+-----------------------------------+
| CURRENT_USER()                    |
+-----------------------------------+
| remoteipv6user@2001:db8:0:f101::2 |
+-----------------------------------+

5.1.9.5 Obtaining an IPv6 Address from a Broker

If you do not have a public IPv6 address that enables your system to communicate over IPv6 outside
your local network, you can obtain one from an IPv6 broker. The Wikipedia IPv6 Tunnel Broker
page lists several brokers and their features, such as whether they provide static addresses and the
supported routing protocols.

After configuring your server host to use a broker-supplied IPv6 address, start the MySQL server with
an appropriate --bind-address option to permit the server to accept IPv6 connections. For example,
put the following lines in the server option file and restart the server:

[mysqld]
bind-address = ::

Alternatively, you can bind the server to the specific IPv6 address provided by the broker, but that
makes the server more restrictive for TCP/IP connections. It accepts only IPv6 connections for that
single address and rejects IPv4 connections. For more information, see Section 5.1.9.2, “Configuring
the MySQL Server to Permit IPv6 Connections”. In addition, if the broker allocates dynamic addresses,
the address provided for your system might change the next time you connect to the broker. If so, any
accounts you create that name the original address become invalid. To bind to a specific address but

http://en.wikipedia.org/wiki/List_of_IPv6_tunnel_brokers
http://en.wikipedia.org/wiki/List_of_IPv6_tunnel_brokers


Server-Side Help

642

avoid this change-of-address problem, you may be able to arrange with the broker for a static IPv6
address.

The following example shows how to use Freenet6 as the broker and the gogoc IPv6 client package
on Gentoo Linux.

1. Create an account at Freenet6 by visiting this URL and signing up:

http://gogonet.gogo6.com

2. After creating the account, go to this URL, sign in, and create a user ID and password for the IPv6
broker:

http://gogonet.gogo6.com/page/freenet6-registration

3. As root, install gogoc:

shell> emerge gogoc

4. Edit /etc/gogoc/gogoc.conf to set the userid and password values. For example:

userid=gogouser
passwd=gogopass

5. Start gogoc:

shell> /etc/init.d/gogoc start

To start gogoc each time your system boots, execute this command:

shell> rc-update add gogoc default

6. Use ping6 to try to ping a host:

shell> ping6 ipv6.google.com

7. To see your IPv6 address:

shell> ifconfig tun

5.1.10 Server-Side Help

MySQL Server supports a HELP statement that returns information from the MySQL Reference
manual (see Section 13.8.3, “HELP Syntax”). Several tables in the mysql system database contain
the information needed to support this statement (see Section 5.3, “The mysql System Database”).
The proper operation of this statement requires that these help tables be initialized, which is done by
processing the contents of the fill_help_tables.sql script.

If you install MySQL using a binary or source distribution on Unix, help table content initialization
occurs when you initialize the data directory (see Section 2.10.1, “Initializing the Data Directory”). For
an RPM distribution on Linux or binary distribution on Windows, content initialization occurs as part of
the MySQL installation process.

If you upgrade MySQL using a binary distribution, help table content is not upgraded automatically, but
you can upgrade it manually. Locate the fill_help_tables.sql file in the share or share/mysql
directory. Change location into that directory and process the file with the mysql client as follows:

http://gogonet.gogo6.com
http://gogonet.gogo6.com/page/freenet6-registration


Server Response to Signals

643

shell> mysql -u root mysql < fill_help_tables.sql

You can also obtain the latest fill_help_tables.sql at any time to upgrade your help tables.
Download the proper file for your version of MySQL from http://dev.mysql.com/doc/index-other.html.
After downloading and uncompressing the file, process it with mysql as described previously.

If you are working with Git and a MySQL development source tree, you must use a downloaded copy of
the fill_help_tables.sql file because the source tree contains only a “stub” version.

Note

For a server that participates in replication, the help table content upgrade
process involves multiple servers. For details, see Section 17.4.1.30,
“Replication of Server-Side Help Tables”.

5.1.11 Server Response to Signals

On Unix, signals can be sent to processes. mysqld responds to signals sent to it as follows:

• SIGTERM causes the server to shut down.

• SIGHUP causes the server to reload the grant tables and to flush tables, logs, the thread cache, and
the host cache. These actions are like various forms of the FLUSH statement. The server also writes
a status report to the error log that has this format:

Status information:

Current dir: /var/mysql/data/
Running threads: 0  Stack size: 196608
Current locks:

Key caches:
default
Buffer_size:       8388600
Block_size:           1024
Division_limit:        100
Age_limit:             300
blocks used:             0
not flushed:             0
w_requests:              0
writes:                  0
r_requests:              0
reads:                   0

handler status:
read_key:            0
read_next:           0
read_rnd             0
read_first:          1
write:               0
delete               0
update:              0

Table status:
Opened tables:          5
Open tables:            0
Open files:             7
Open streams:           0

Alarm status:
Active alarms:   1
Max used alarms: 2
Next alarm time: 67

5.1.12 The Server Shutdown Process

http://dev.mysql.com/doc/index-other.html


The Server Shutdown Process

644

The server shutdown process takes place as follows:

1. The shutdown process is initiated.

This can occur initiated several ways. For example, a user with the SHUTDOWN privilege can
execute a mysqladmin shutdown command. mysqladmin can be used on any platform
supported by MySQL. Other operating system-specific shutdown initiation methods are possible
as well: The server shuts down on Unix when it receives a SIGTERM signal. A server running as a
service on Windows shuts down when the services manager tells it to.

2. The server creates a shutdown thread if necessary.

Depending on how shutdown was initiated, the server might create a thread to handle the shutdown
process. If shutdown was requested by a client, a shutdown thread is created. If shutdown is the
result of receiving a SIGTERM signal, the signal thread might handle shutdown itself, or it might
create a separate thread to do so. If the server tries to create a shutdown thread and cannot (for
example, if memory is exhausted), it issues a diagnostic message that appears in the error log:

Error: Can't create thread to kill server

3. The server stops accepting new connections.

To prevent new activity from being initiated during shutdown, the server stops accepting new
client connections by closing the handlers for the network interfaces to which it normally listens for
connections: the TCP/IP port, the Unix socket file, the Windows named pipe, and shared memory
on Windows.

4. The server terminates current activity.

For each thread associated with a client connection, the server breaks the connection to the client
and marks the thread as killed. Threads die when they notice that they are so marked. Threads
for idle connections die quickly. Threads that currently are processing statements check their
state periodically and take longer to die. For additional information about thread termination, see
Section 13.7.6.4, “KILL Syntax”, in particular for the instructions about killed REPAIR TABLE or
OPTIMIZE TABLE operations on MyISAM tables.

For threads that have an open transaction, the transaction is rolled back. If a thread is updating a
nontransactional table, an operation such as a multiple-row UPDATE or INSERT may leave the table
partially updated because the operation can terminate before completion.

If the server is a master replication server, it treats threads associated with currently connected
slaves like other client threads. That is, each one is marked as killed and exits when it next checks
its state.

If the server is a slave replication server, it stops the I/O and SQL threads, if they are active, before
marking client threads as killed. The SQL thread is permitted to finish its current statement (to avoid
causing replication problems), and then stops. If the SQL thread is in the middle of a transaction at
this point, the server waits until the current replication event group (if any) has finished executing, or
until the user issues a KILL QUERY or KILL CONNECTION statement. See also Section 13.4.2.6,
“STOP SLAVE Syntax”.

If the slave is updating a nontransactional table when it is forcibly killed, the slave's data may
become inconsistent with the master.

5. The server shuts down or closes storage engines.

At this stage, the server flushes the table cache and closes all open tables.

Each storage engine performs any actions necessary for tables that it manages. For example,
MyISAM flushes any pending index writes for a table. InnoDB flushes its buffer pool to disk (unless



The MySQL Data Directory

645

innodb_fast_shutdown is 2), writes the current LSN to the tablespace, and terminates its own
internal threads.

6. The server exits.

5.2 The MySQL Data Directory
Information managed by the MySQL server is stored under a directory known as the data directory.
The following list briefly describes the items typically found in the data directory, with cross references
for additional information:

• Data directory subdirectories. Each subdirectory of the data directory is a database directory and
corresponds to a database managed by the server. All MySQL installations have certain standard
databases:

• The mysql directory corresponds to the mysql system database, which contains information
required by the MySQL server as it runs. See Section 5.3, “The mysql System Database”.

• The performance_schema directory corresponds to the Performance Schema, which provides
information used to inspect the internal execution of the server at runtime. See Chapter 22,
MySQL Performance Schema.

• The ndbinfo directory corresponds to the ndbinfo database that stores information specific
to NDB Cluster (present only for installations built to include NDB Cluster). See Section 18.5.10,
“ndbinfo: The NDB Cluster Information Database”.

Other subdirectories correspond to databases created by users or applications.

Note

INFORMATION_SCHEMA is a standard database, but its implementation uses
no corresponding database directory.

• Log files written by the server. See Section 5.4, “MySQL Server Logs”.

• InnoDB tablespace and log files. See Chapter 14, The InnoDB Storage Engine.

• The server process ID file (while the server is running).

Some items in the preceding list can be relocated elsewhere by reconfiguring the server. In addition,
the --datadir option enables the location of the data directory itself to be changed. For a given
MySQL installation, check the server configuration to determine whether items have been moved.

5.3 The mysql System Database
The mysql database is the system database. It contains tables that store information required by the
MySQL server as it runs.

Tables in the mysql database fall into these categories:

• Grant System Tables

• Object Information System Tables

• Log System Tables

• Server-Side Help System Tables

• Time Zone System Tables

• Replication System Tables

• Miscellaneous System Tables



Grant System Tables

646

The remainder of this section enumerates the tables in each category, with cross references for
additional information. System tables use the MyISAM storage engine.

Grant System Tables

These system tables contain grant information about user accounts and the privileges held by them:

• user: User accounts, global privileges, and other non-privilege columns.

• db: Database-level privileges.

• host: Obsolete.

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

• procs_priv: Stored procedure and function privileges.

• proxies_priv: Proxy-user privileges.

For more information about the structure, contents, and purpose of the grant tables, see Section 6.2.2,
“Grant Tables”.

Object Information System Tables

These system tables contain information about stored programs, user-defined functions, and server-
side plugins:

• event: Information about Event Scheduler events. See Section 20.4, “Using the Event Scheduler”.
The server loads events listed in this table during its startup sequence, unless started with the --
skip-grant-tables option.

• func: Information about user-defined functions (UDFs). See Section 24.4, “Adding New Functions to
MySQL”. The server loads UDFs listed in this table during its startup sequence, unless started with
the --skip-grant-tables option.

• plugin: Information about server-side plugins. See Section 5.5.2, “Installing and Uninstalling
Plugins”, and Section 24.2, “The MySQL Plugin API”. The server loads plugins listed in this table
during its startup sequence, unless started with the --skip-grant-tables option.

• proc: Information about stored procedures and functions. See Section 20.2, “Using Stored Routines
(Procedures and Functions)”.

Log System Tables

The server uses these system tables for logging:

•   general_log: The general query log table.

•   slow_log: The slow query log table.

Log tables use the CSV storage engine.

For more information, see Section 5.4, “MySQL Server Logs”.

Server-Side Help System Tables

These system tables contain server-side help information:

•   help_category: Information about help categories.

•   help_keyword: Keywords associated with help topics.



Time Zone System Tables

647

•   help_relation: Mappings between help keywords and topics.

•   help_topic: Help topic contents.

For more information, see Section 5.1.10, “Server-Side Help”.

Time Zone System Tables

These system tables contain time zone information:

•   time_zone: Time zone IDs and whether they use leap seconds.

•   time_zone_leap_second: When leap seconds occur.

•   time_zone_name: Mappings between time zone IDs and names.

•     time_zone_transition, time_zone_transition_type: Time zone descriptions.

For more information, see Section 10.6, “MySQL Server Time Zone Support”.

Replication System Tables

The server uses the ndb_binlog_index system table to store binary log information for NDB Cluster
replication. See Section 18.6.4, “NDB Cluster Replication Schema and Tables”.

Miscellaneous System Tables

Other system tables do not fall into the preceding categories:

•   servers: Used by the FEDERATED storage engine. See Section 15.9.2.2, “Creating a
FEDERATED Table Using CREATE SERVER”.

5.4 MySQL Server Logs
MySQL Server has several logs that can help you find out what activity is taking place.

Log Type Information Written to Log

Error log Problems encountered starting, running, or stopping mysqld

General query log Established client connections and statements received from clients

Binary log Statements that change data (also used for replication)

Relay log Data changes received from a replication master server

Slow query log Queries that took more than long_query_time seconds to execute

DDL log (metadata log) Metadata operations performed by DDL statements

By default, no logs are enabled, except the error log on Windows. (The DDL log is always created
when required, and has no user-configurable options; see Section 5.4.6, “The DDL Log”.) The following
log-specific sections provide information about the server options that enable logging.

By default, the server writes files for all enabled logs in the data directory. You can force the server
to close and reopen the log files (or in some cases switch to a new log file) by flushing the logs. Log
flushing occurs when you issue a FLUSH LOGS statement; execute mysqladmin with a flush-logs
or refresh argument; or execute mysqldump with a --flush-logs or --master-data option. See
Section 13.7.6.3, “FLUSH Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL
Server”, and Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is
flushed when its size reaches the value of the max_binlog_size system variable.

You can control the general query and slow query logs during runtime. You can enable or disable
logging, or change the log file name. You can tell the server to write general query and slow query
entries to log tables, log files, or both. For details, see Section 5.4.1, “Selecting General Query and



Selecting General Query and Slow Query Log Output Destinations

648

Slow Query Log Output Destinations”, Section 5.4.3, “The General Query Log”, and Section 5.4.5, “The
Slow Query Log”.

The relay log is used only on slave replication servers, to hold data changes from the master server
that must also be made on the slave. For discussion of relay log contents and configuration, see
Section 17.2.2.1, “The Slave Relay Log”.

For information about log maintenance operations such as expiration of old log files, see Section 5.4.7,
“Server Log Maintenance”.

For information about keeping logs secure, see Section 6.1.2.3, “Passwords and Logging”.

5.4.1 Selecting General Query and Slow Query Log Output Destinations

MySQL Server provides flexible control over the destination of output to the general query log and
the slow query log, if those logs are enabled. Possible destinations for log entries are log files or the
general_log and slow_log tables in the mysql database. Either or both destinations can be
selected.

Before MySQL 5.5.7, logging to tables incurs significantly more server overhead than logging to files.
If you enable the general log or slow query log and require highest performance, you should use file
logging, not table logging.

Log control at server startup. The --log-output option specifies the destination for log output.
This option does not in itself enable the logs. Its syntax is --log-output[=value,...]:

• If --log-output is given with a value, the value should be a comma-separated list of one or more
of the words TABLE (log to tables), FILE (log to files), or NONE (do not log to tables or files). NONE, if
present, takes precedence over any other specifiers.

• If --log-output is omitted, the default logging destination is FILE.

The general_log system variable controls logging to the general query log for the selected log
destinations. If specified at server startup, general_log takes an optional argument of 1 or 0
to enable or disable the log. To specify a file name other than the default for file logging, set the
general_log_file variable. Similarly, the slow_query_log variable controls logging to the slow
query log for the selected destinations and setting slow_query_log_file specifies a file name
for file logging. If either log is enabled, the server opens the corresponding log file and writes startup
messages to it. However, further logging of queries to the file does not occur unless the FILE log
destination is selected.

Examples:

• To write general query log entries to the log table and the log file, use --log-output=TABLE,FILE
to select both log destinations and --general_log to enable the general query log.

• To write general and slow query log entries only to the log tables, use --log-output=TABLE to
select tables as the log destination and --general_log and --slow_query_log to enable both
logs.

• To write slow query log entries only to the log file, use --log-output=FILE to select files as the
log destination and --slow_query_log to enable the slow query log. (In this case, because the
default log destination is FILE, you could omit the --log-output option.)

Log control at runtime. The system variables associated with log tables and files enable runtime
control over logging:

• The global log_output system variable indicates the current logging destination. It can be modified
at runtime to change the destination.

• The global general_log and slow_query_log variables indicate whether the general query log
and slow query log are enabled (ON) or disabled (OFF). You can set these variables at runtime to
control whether the logs are enabled.



Selecting General Query and Slow Query Log Output Destinations

649

• The global general_log_file and slow_query_log_file variables indicate the names of the
general query log and slow query log files. You can set these variables at server startup or at runtime
to change the names of the log files.

• To disable or enable general query logging for the current connection, set the session sql_log_off
variable to ON or OFF.

The use of tables for log output offers the following benefits:

• Log entries have a standard format. To display the current structure of the log tables, use these
statements:

SHOW CREATE TABLE mysql.general_log;
SHOW CREATE TABLE mysql.slow_log;

• Log contents are accessible through SQL statements. This enables the use of queries that select
only those log entries that satisfy specific criteria. For example, to select log contents associated with
a particular client (which can be useful for identifying problematic queries from that client), it is easier
to do this using a log table than a log file.

• Logs are accessible remotely through any client that can connect to the server and issue queries (if
the client has the appropriate log table privileges). It is not necessary to log in to the server host and
directly access the file system.

The log table implementation has the following characteristics:

• In general, the primary purpose of log tables is to provide an interface for users to observe the
runtime execution of the server, not to interfere with its runtime execution.

• CREATE TABLE, ALTER TABLE, and DROP TABLE are valid operations on a log table. For ALTER
TABLE and DROP TABLE, the log table cannot be in use and must be disabled, as described later.

• By default, the log tables use the CSV storage engine that writes data in comma-separated values
format. For users who have access to the .CSV files that contain log table data, the files are easy to
import into other programs such as spreadsheets that can process CSV input.

The log tables can be altered to use the MyISAM storage engine. You cannot use ALTER TABLE to
alter a log table that is in use. The log must be disabled first. No engines other than CSV or MyISAM
are legal for the log tables.

• To disable logging so that you can alter (or drop) a log table, you can use the following strategy.
The example uses the general query log; the procedure for the slow query log is similar but uses the
slow_log table and slow_query_log system variable.

SET @old_log_state = @@global.general_log;
SET GLOBAL general_log = 'OFF';
ALTER TABLE mysql.general_log ENGINE = MyISAM;
SET GLOBAL general_log = @old_log_state;

• TRUNCATE TABLE is a valid operation on a log table. It can be used to expire log entries.

• RENAME TABLE is a valid operation on a log table. You can atomically rename a log table (to
perform log rotation, for example) using the following strategy:

USE mysql;
DROP TABLE IF EXISTS general_log2;
CREATE TABLE general_log2 LIKE general_log;
RENAME TABLE general_log TO general_log_backup, general_log2 TO general_log;

• As of MySQL 5.5.7, CHECK TABLE is a valid operation on a log table.

• LOCK TABLES cannot be used on a log table.



The Error Log

650

• INSERT, DELETE, and UPDATE cannot be used on a log table. These operations are permitted only
internally to the server itself.

• FLUSH TABLES WITH READ LOCK and the state of the read_only system variable have no effect
on log tables. The server can always write to the log tables.

• Entries written to the log tables are not written to the binary log and thus are not replicated to slave
servers.

• To flush the log tables or log files, use FLUSH TABLES or FLUSH LOGS, respectively.

• Partitioning of log tables is not permitted.

• Before MySQL 5.5.25, mysqldump does not dump the general_log or slow_query_log tables
for dumps of the mysql database. As of 5.5.25, the dump includes statements to recreate those
tables so that they are not missing after reloading the dump file. Log table contents are not dumped.

5.4.2 The Error Log

The error log contains information about mysqld startup and shutdown times, progress notes that
occur during startup and shutdown, and critical errors that occur while the server is running. If mysqld
notices a table that needs to be automatically checked or repaired, it writes a message to the error log.

On some operating systems, the error log contains a stack trace if mysqld exits abnormally. The trace
can be used to determine where mysqld exited. See Section 24.5, “Debugging and Porting MySQL”.

Interpretation of error logging options differs somewhat for Windows and Unix systems, so be sure to
use the information appropriate to your system.

mysqld_safe may write messages to the error log if it is used to start mysqld. For example, when
mysqld_safe notices abnormal mysqld exits, it restarts mysqld and writes a mysqld restarted
message to the error log.

In the following discussion, “console” means stderr, the standard error output. This is your terminal
or console window unless the standard error output has been redirected. (For example, if invoked
with the --syslog option, mysqld_safe arranges for the server's stderr to be sent to syslog, as
described later.)

• Error Logging on Windows

• Error Logging on Unix and Unix-Like Systems

• Using Syslog for the Error Log

• Error Log Verbosity

• Flushing and Renaming the Error Log File

Error Logging on Windows

On Windows, the --log-error, --pid-file, and --console options affect error logging:

• Without --log-error, mysqld writes error messages to the default log file.

• With --log-error[=file_name], mysqld writes error messages to an error log file. If no file is
named, mysqld writes to the default log file. If a file is named, mysqld writes to it, creating it in the
data directory unless an absolute path name is given to specify a different directory.

• The default log file is host_name.err in the data directory, unless the --pid-file option is
specified. In that case, the default name is the PID file base name with a suffix of .err in the data
directory. This default is used if --log-error is not given, or is given without naming a log file.

• With --console, mysqld writes error messages to the console, unless --log-error is also
given. If both options are present, --console is ignored and has no effect. Their order does not



The Error Log

651

matter: --log-error takes precedence and error messages go to a log file. (Before MySQL 5.5.3,
if both options are given, the last one takes precedence.)

In addition, on Windows, the server by default writes events and error messages to the Windows Event
Log within the Application log.

• Entries marked as Error, Warning, and Note are written to the Event Log, but not informational
messages such as information statements from individual storage engines.

• These log entries have a source of MySQL.

• You cannot disable writing information to the Windows Event Log.

The log_error system variable indicates the error log file name if error output is written to a file.

Error Logging on Unix and Unix-Like Systems

On Unix and Unix-like systems, mysqld writes error log messages as follows:

• Without --log-error, mysqld writes error messages to the console.

• With --log-error[=file_name], mysqld writes error messages to an error log file. If no file is
named, mysqld writes to the default log file. If a file is named, mysqld writes to it, creating it in the
data directory unless an absolute path name is given to specify a different directory.

Note

It is common for Yum or APT package installations to configure the error log
location to be under /var/log with an entry like log-error=/var/log/
mysqld.log in a server configuration file; removing the file name from the
entry causes the default log file to be used.

• The default log file is host_name.err in the data directory. This default is used if --log-error is
given without naming a log file.

The log_error system variable indicates the error log file name if error output is written to a file.

If you specify --log-error in an option file in a [mysqld], [server], or [mysqld_safe] section,
mysqld_safe finds and uses the option.

Using Syslog for the Error Log

If you use mysqld_safe to start mysqld, mysqld_safe arranges for mysqld to write error
messages to a log file or to syslog. mysqld_safe has three error-logging options, --syslog, --
skip-syslog, and --log-error. The default with no logging options or with --skip-syslog is to
use the default log file. To explicitly specify use of an error log file, specify --log-error=file_name
to mysqld_safe, and mysqld_safe will arrange for mysqld to write messages to a log file. To use
syslog instead, specify the --syslog option.

Error Log Verbosity

The --log-warnings option or log_warnings system variable controls warning logging to the
error log. The default value is enabled (1). To disable warning logging, set --log-warnings or
log_warnings to 0. If the value is greater than 1, aborted connections are written to the error log, and
access-denied errors for new connection attempts are written. See Section B.5.2.11, “Communication
Errors and Aborted Connections”.

Flushing and Renaming the Error Log File

If you flush the logs using FLUSH LOGS or mysqladmin flush-logs and mysqld is writing the
error log to a file (for example, if it was started with the --log-error option), the effect is version
dependent:



The General Query Log

652

• As of MySQL 5.5.7, the server closes and reopens the log file. To rename the file, do so manually
before flushing. Flushing the logs then reopens a new file with the original file name. For example,
to rename the file and create a new one, use the following commands (assuming a log file name of
host_name.err):

shell> mv host_name.err host_name.err-old
shell> mysqladmin flush-logs
shell> mv host_name.err-old backup-directory

On Windows, use rename rather than mv.

• Prior to MySQL 5.5.7, the server renames the current log file with the suffix -old, then creates a
new empty log file. Be aware that a second log-flushing operation thus causes the original error log
file to be lost unless you save it under a different name. On Windows, you cannot rename the error
log while the server has it open before MySQL 5.5.7. To avoid a restart, flush the logs first to cause
the server to rename the original file and create a new one, then save the renamed file. That also
works on Unix, or you can use the commands shown earlier.

If the location of the error file is not writable by the server, the log-flushing operation will fail to create a
new log file. For example, on Linux, the server might write the error log as /var/log/mysqld.log,
where /var/log is owned by root and not writable by mysqld. For information about handling this
case, see Section 5.4.7, “Server Log Maintenance”.

If the server is not writing to a named file, no error log renaming occurs when the logs are flushed.

5.4.3 The General Query Log

The general query log is a general record of what mysqld is doing. The server writes information to
this log when clients connect or disconnect, and it logs each SQL statement received from clients. The
general query log can be very useful when you suspect an error in a client and want to know exactly
what the client sent to mysqld.

mysqld writes statements to the query log in the order that it receives them, which might differ from the
order in which they are executed. This logging order is in contrast with that of the binary log, for which
statements are written after they are executed but before any locks are released. In addition, the query
log may contain statements that only select data while such statements are never written to the binary
log.

When using statement-based binary logging on a replication master server, statements received by its
slaves are written to the query log of each slave. Statements are written to the query log of the master
server if a client reads events with the mysqlbinlog utility and passes them to the server.

However, when using row-based binary logging, updates are sent as row changes rather than SQL
statements, and thus these statements are never written to the query log when binlog_format is
ROW. A given update also might not be written to the query log when this variable is set to MIXED,
depending on the statement used. See Section 17.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”, for more information.

By default, the general query log is disabled. To specify the initial general query log state explicitly,
use --general_log[={0|1}]. With no argument or an argument of 1, --general_log enables
the log. With an argument of 0, this option disables the log. To specify a log file name, use --
general_log_file=file_name. To specify the log destination, use --log-output (as described
in Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”). The older
options to enable the general query log, --log and -l, are deprecated.

If you specify no name for the general query log file, the default name is host_name.log. The server
creates the file in the data directory unless an absolute path name is given to specify a different
directory.

To disable or enable the general query log or change the log file name at runtime, use the global
general_log and general_log_file system variables. Set general_log to 0 (or OFF) to disable



The Binary Log

653

the log or to 1 (or ON) to enable it. Set general_log_file to specify the name of the log file. If a log
file already is open, it is closed and the new file is opened.

When the general query log is enabled, the server writes output to any destinations specified by the
--log-output option or log_output system variable. If you enable the log, the server opens
the log file and writes startup messages to it. However, further logging of queries to the file does not
occur unless the FILE log destination is selected. If the destination is NONE, the server writes no
queries even if the general log is enabled. Setting the log file name has no effect on logging if the log
destination value does not contain FILE.

Server restarts and log flushing do not cause a new general query log file to be generated (although
flushing closes and reopens it). To rename the file and create a new one, use the following commands:

shell> mv host_name.log host_name-old.log
shell> mysqladmin flush-logs
shell> mv host_name-old.log backup-directory

On Windows, use rename rather than mv.

You can also rename the general query log file at runtime by disabling the log:

SET GLOBAL general_log = 'OFF';

With the log disabled, rename the log file externally; for example, from the command line. Then enable
the log again:

SET GLOBAL general_log = 'ON';

This method works on any platform and does not require a server restart.

The session sql_log_off variable can be set to ON or OFF to disable or enable general query logging
for the current connection.

The general query log should be protected because logged statements might contain passwords. See
Section 6.1.2.3, “Passwords and Logging”.

5.4.4 The Binary Log

The binary log contains “events” that describe database changes such as table creation operations or
changes to table data. It also contains events for statements that potentially could have made changes
(for example, a DELETE which matched no rows), unless row-based logging is used. The binary log
also contains information about how long each statement took that updated data. The binary log has
two important purposes:

• For replication, the binary log on a master replication server provides a record of the data changes to
be sent to slave servers. The master server sends the events contained in its binary log to its slaves,
which execute those events to make the same data changes that were made on the master. See
Section 17.2, “Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 7.5, “Point-in-Time
(Incremental) Recovery Using the Binary Log”.

The binary log is not used for statements such as SELECT or SHOW that do not modify data. To log all
statements (for example, to identify a problem query), use the general query log. See Section 5.4.3,
“The General Query Log”.

Running a server with binary logging enabled makes performance slightly slower. However, the
benefits of the binary log in enabling you to set up replication and for restore operations generally
outweigh this minor performance decrement.



The Binary Log

654

The binary log should be protected because logged statements might contain passwords. See
Section 6.1.2.3, “Passwords and Logging”.

The following discussion describes some of the server options and variables that affect the operation of
binary logging. For a complete list, see Section 17.1.3.4, “Binary Log Options and Variables”.

To enable the binary log, start the server with the --log-bin[=base_name] option. If no
base_name value is given, the default name is the value of the pid-file option (which by default is
the name of host machine) followed by -bin. If the base name is given, the server writes the file in the
data directory unless the base name is given with a leading absolute path name to specify a different
directory. It is recommended that you specify a base name explicitly rather than using the default of the
host name; see Section B.5.7, “Known Issues in MySQL”, for the reason.

If you supply an extension in the log name (for example, --log-bin=base_name.extension), the
extension is silently removed and ignored.

mysqld appends a numeric extension to the binary log base name to generate binary log file names.
The number increases each time the server creates a new log file, thus creating an ordered series of
files. The server creates a new file in the series each time it starts or flushes the logs. The server also
creates a new binary log file automatically after the current log's size reaches max_binlog_size. A
binary log file may become larger than max_binlog_size if you are using large transactions because
a transaction is written to the file in one piece, never split between files.

To keep track of which binary log files have been used, mysqld also creates a binary log index file
that contains the names of all used binary log files. By default, this has the same base name as the
binary log file, with the extension '.index'. You can change the name of the binary log index file with
the --log-bin-index[=file_name] option. You should not manually edit this file while mysqld is
running; doing so would confuse mysqld.

The term “binary log file” generally denotes an individual numbered file containing database events.
The term “binary log” collectively denotes the set of numbered binary log files plus the index file.

A client that has the SUPER privilege can disable binary logging of its own statements by using a SET
sql_log_bin=0 statement. See Section 5.1.5, “Server System Variables”.

The format of the events recorded in the binary log is dependent on the binary logging format. Three
format types are supported, row-based logging, statement-based logging and mixed-base logging. The
binary logging format used depends on the MySQL version. For general descriptions of the logging
formats, see Section 5.4.4.1, “Binary Logging Formats”. For detailed information about the format of the
binary log, see MySQL Internals: The Binary Log.

The server evaluates the --binlog-do-db and --binlog-ignore-db options in the same way
as it does the --replicate-do-db and --replicate-ignore-db options. For information about
how this is done, see Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging
Options”.

If you are replicating from an NDB Cluster to a standalone MySQL Server, you should be aware that
the NDB storage engine uses default values for some binary logging options (including options specific
to NDB such as --ndb-log-update-as-write) that differ from those used by other storage engines.
If not corrected for, these differences can lead to divergence of the master's and slave's binary logs.
For more information, see Replication from NDB to other storage engines. In particular, if you are
using a nontransactional storage engine such as MyISAM on the slave, see Replication from NDB to a
nontransactional storage engine.

A replication slave server by default does not write to its own binary log any data modifications that
are received from the replication master. To log these modifications, start the slave with the --log-
slave-updates option in addition to the --log-bin option (see Section 17.1.3.3, “Replication Slave
Options and Variables”). This is done when a slave is also to act as a master to other slaves in chained
replication.

http://dev.mysql.com/doc/internals/en/binary-log.html


The Binary Log

655

You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE
BINARY LOGS. See Section 13.7.6.6, “RESET Syntax”, and Section 13.4.1.1, “PURGE BINARY LOGS
Syntax”.

If you are using replication, you should not delete old binary log files on the master until you are sure
that no slave still needs to use them. For example, if your slaves never run more than three days
behind, once a day you can execute mysqladmin flush-logs on the master and then remove any
logs that are more than three days old. You can remove the files manually, but it is preferable to use
PURGE BINARY LOGS, which also safely updates the binary log index file for you (and which can take
a date argument). See Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

You can display the contents of binary log files with the mysqlbinlog utility. This can be useful when
you want to reprocess statements in the log for a recovery operation. For example, you can update a
MySQL server from the binary log as follows:

shell> mysqlbinlog log_file | mysql -h server_name

mysqlbinlog also can be used to display replication slave relay log file contents because they are
written using the same format as binary log files. For more information on the mysqlbinlog utility and
how to use it, see Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”. For more
information about the binary log and recovery operations, see Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

Binary logging is done immediately after a statement or transaction completes but before any locks are
released or any commit is done. This ensures that the log is logged in commit order.

Updates to nontransactional tables are stored in the binary log immediately after execution.

Within an uncommitted transaction, all updates (UPDATE, DELETE, or INSERT) that change
transactional tables such as InnoDB tables are cached until a COMMIT statement is received by the
server. At that point, mysqld writes the entire transaction to the binary log before the COMMIT is
executed.

Modifications to nontransactional tables cannot be rolled back. If a transaction that is rolled back
includes modifications to nontransactional tables, the entire transaction is logged with a ROLLBACK
statement at the end to ensure that the modifications to those tables are replicated.

When a thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to
buffer statements. If a statement is bigger than this, the thread opens a temporary file to store the
transaction. The temporary file is deleted when the thread ends.

The Binlog_cache_use status variable shows the number of transactions that used this buffer (and
possibly a temporary file) for storing statements. The Binlog_cache_disk_use status variable
shows how many of those transactions actually had to use a temporary file. These two variables can be
used for tuning binlog_cache_size to a large enough value that avoids the use of temporary files.

The max_binlog_cache_size system variable (default 4GB, which is also the maximum) can be
used to restrict the total size used to cache a multiple-statement transaction. If a transaction is larger
than this many bytes, it fails and rolls back. The minimum value is 4096.

If you are using the binary log and row based logging, concurrent inserts are converted to normal
inserts for CREATE ... SELECT or INSERT ... SELECT statements. This is done to ensure that
you can re-create an exact copy of your tables by applying the log during a backup operation. If you are
using statement-based logging, the original statement is written to the log.

The binary log format has some known limitations that can affect recovery from backups. See
Section 17.4.1, “Replication Features and Issues”.

Binary logging for stored programs is done as described in Section 20.7, “Binary Logging of Stored
Programs”.



The Binary Log

656

Note that the binary log format differs in MySQL 5.5 from previous versions of MySQL, due to
enhancements in replication. See Section 17.4.2, “Replication Compatibility Between MySQL
Versions”.

Writes to the binary log file and binary log index file are handled in the same way as writes to MyISAM
tables. See Section B.5.3.4, “How MySQL Handles a Full Disk”.

By default, the binary log is not synchronized to disk at each write. So if the operating system or
machine (not only the MySQL server) crashes, there is a chance that the last statements of the
binary log are lost. To prevent this, you can make the binary log be synchronized to disk after every N
writes to the binary log, with the sync_binlog system variable. See Section 5.1.5, “Server System
Variables”. 1 is the safest value for sync_binlog, but also the slowest. Even with sync_binlog
set to 1, there is still the chance of an inconsistency between the table content and binary log
content in case of a crash. For example, if you are using InnoDB tables and the MySQL server
processes a COMMIT statement, it writes the whole transaction to the binary log and then commits
this transaction into InnoDB. If the server crashes between those two operations, the transaction is
rolled back by InnoDB at restart but still exists in the binary log. To resolve this, you should set --
innodb_support_xa to 1. Although this option is related to the support of XA transactions in InnoDB,
it also ensures that the binary log and InnoDB data files are synchronized.

For this option to provide a greater degree of safety, the MySQL server should also be configured to
synchronize the binary log and the InnoDB logs to disk at every transaction. The InnoDB logs are
synchronized by default, and sync_binlog=1 can be used to synchronize the binary log. The effect of
this option is that at restart after a crash, after doing a rollback of transactions, the MySQL server scans
the latest binary log file to collect transaction xid values and calculate the last valid position in the
binary log file. The MySQL server then tells InnoDB to complete any prepared transactions that were
successfully written to the to the binary log, and truncates the binary log to the last valid position. This
ensures that the binary log reflects the exact data of InnoDB tables, and so, that the slave remains in
synchrony with the master (not receiving a statement which has been rolled back).

If the MySQL server discovers at crash recovery that the binary log is shorter than it should have
been, it lacks at least one successfully committed InnoDB transaction. This should not happen if
sync_binlog=1 and the disk/file system do an actual sync when they are requested to (some do
not), so the server prints an error message The binary log file_name is shorter than its
expected size. In this case, this binary log is not correct and replication should be restarted from a
fresh snapshot of the master's data.

The session values of the following system variables are written to the binary log and honored by the
replication slave when parsing the binary log:

• sql_mode (except that the NO_DIR_IN_CREATE mode is not replicated; see Section 17.4.1.38,
“Replication and Variables”)

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

5.4.4.1 Binary Logging Formats

The server uses several logging formats to record information in the binary log. The exact format
employed depends on the version of MySQL being used. There are three logging formats:



The Binary Log

657

• Replication capabilities in MySQL originally were based on propagation of SQL statements from
master to slave. This is called statement-based logging. You can cause this format to be used by
starting the server with --binlog-format=STATEMENT.

• In row-based logging, the master writes events to the binary log that indicate how individual table
rows are affected. You can cause the server to use row-based logging by starting it with --binlog-
format=ROW.

• A third option is also available: mixed logging. With mixed logging, statement-based logging is used
by default, but the logging mode switches automatically to row-based in certain cases as described
below. You can cause MySQL to use mixed logging explicitly by starting mysqld with the option --
binlog-format=MIXED.

In MySQL 5.5, the default binary logging format is STATEMENT.

The logging format can also be set or limited by the storage engine being used. This helps to eliminate
issues when replicating certain statements between a master and slave which are using different
storage engines.

With statement-based replication, there may be issues with replicating nondeterministic statements. In
deciding whether or not a given statement is safe for statement-based replication, MySQL determines
whether it can guarantee that the statement can be replicated using statement-based logging. If
MySQL cannot make this guarantee, it marks the statement as potentially unreliable and issues the
warning, Statement may not be safe to log in statement format.

You can avoid these issues by using MySQL's row-based replication instead.

5.4.4.2 Setting The Binary Log Format

You can select the binary logging format explicitly by starting the MySQL server with --binlog-
format=type. The supported values for type are:

• STATEMENT causes logging to be statement based.

• ROW causes logging to be row based.

• MIXED causes logging to use mixed format.

In MySQL 5.5, the default binary logging format is STATEMENT. This includes MySQL NDB Cluster
7.2.1 and later MySQL NDB Cluster 7.2 releases, which are based on MySQL 5.5.

The logging format also can be switched at runtime. To specify the format globally for all clients, set the
global value of the binlog_format system variable:

mysql> SET GLOBAL binlog_format = 'STATEMENT';
mysql> SET GLOBAL binlog_format = 'ROW';
mysql> SET GLOBAL binlog_format = 'MIXED';

An individual client can control the logging format for its own statements by setting the session value of
binlog_format:

mysql> SET SESSION binlog_format = 'STATEMENT';
mysql> SET SESSION binlog_format = 'ROW';
mysql> SET SESSION binlog_format = 'MIXED';

Note

Each MySQL Server can set its own and only its own binary logging format (true
whether binlog_format is set with global or session scope). This means
that changing the logging format on a replication master does not cause a
slave to change its logging format to match. (When using STATEMENT mode,



The Binary Log

658

the binlog_format system variable is not replicated; when using MIXED or
ROW logging mode, it is replicated but is ignored by the slave.) Changing the
binary logging format on the master while replication is ongoing, or without also
changing it on the slave can cause replication to fail with errors such as Error
executing row event: 'Cannot execute statement: impossible
to write to binary log since statement is in row format and
BINLOG_FORMAT = STATEMENT.'

To change the global or session binlog_format value, you must have the SUPER privilege.

There are several reasons why a client might want to set binary logging on a per-session basis:

• A session that makes many small changes to the database might want to use row-based logging.

• A session that performs updates that match many rows in the WHERE clause might want to use
statement-based logging because it will be more efficient to log a few statements than many rows.

• Some statements require a lot of execution time on the master, but result in just a few rows being
modified. It might therefore be beneficial to replicate them using row-based logging.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger

• If the NDBCLUSTER storage engine is enabled

• If the session is currently in row-based replication mode and has open temporary tables

Trying to switch the format in any of these cases results in an error.

If you are using InnoDB tables and the transaction isolation level is READ COMMITTED or READ
UNCOMMITTED, only row-based logging can be used. It is possible to change the logging format to
STATEMENT, but doing so at runtime leads very rapidly to errors because InnoDB can no longer
perform inserts.

Switching the replication format at runtime is not recommended when any temporary tables exist,
because temporary tables are logged only when using statement-based replication, whereas with row-
based replication they are not logged. With mixed replication, temporary tables are usually logged;
exceptions happen with user-defined functions (UDFs) and with the UUID() function.

With the binary log format set to ROW, many changes are written to the binary log using the row-based
format. Some changes, however, still use the statement-based format. Examples include all DDL (data
definition language) statements such as CREATE TABLE, ALTER TABLE, or DROP TABLE.

The --binlog-row-event-max-size option is available for servers that are capable of row-based
replication. Rows are stored into the binary log in chunks having a size in bytes not exceeding the
value of this option. The value must be a multiple of 256. The default value is 1024.

Warning

When using statement-based logging for replication, it is possible for the data
on the master and slave to become different if a statement is designed in such
a way that the data modification is nondeterministic; that is, it is left to the will
of the query optimizer. In general, this is not a good practice even outside of
replication. For a detailed explanation of this issue, see Section B.5.7, “Known
Issues in MySQL”.

5.4.4.3 Mixed Binary Logging Format

When running in MIXED logging format, the server automatically switches from statement-based to
row-based logging under the following conditions:



The Binary Log

659

• When a DML statement updates an NDBCLUSTER table.

• When a function contains UUID().

• When one or more tables with AUTO_INCREMENT columns are updated and a trigger or stored
function is invoked. Like all other unsafe statements, this generates a warning if binlog_format =
STATEMENT.

For more information, see Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• When any INSERT DELAYED is executed.

• When the body of a view requires row-based replication, the statement creating the view also uses it.
For example, this occurs when the statement creating a view uses the UUID() function.

• When a call to a UDF is involved.

• If a statement is logged by row and the session that executed the statement has any temporary
tables, logging by row is used for all subsequent statements (except for those accessing temporary
tables) until all temporary tables in use by that session are dropped.

This is true whether or not any temporary tables are actually logged.

Temporary tables cannot be logged using row-based format; thus, once row-based logging is used,
all subsequent statements using that table are unsafe. The server approximates this condition by
treating all statements executed during the session as unsafe until the session no longer holds any
temporary tables.

• When FOUND_ROWS() or ROW_COUNT() is used. (Bug #12092, Bug #30244)

• When USER(), CURRENT_USER(), or CURRENT_USER is used. (Bug #28086)

• When a statement refers to one or more system variables. (Bug #31168)

Exception.  The following system variables, when used with session scope (only), do not cause
the logging format to switch:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id



The Binary Log

660

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

For information about determining system variable scope, see Section 5.1.6, “Using System
Variables”.

For information about how replication treats sql_mode, see Section 17.4.1.38, “Replication and
Variables”.

• When one of the tables involved is a log table in the mysql database.

• When the LOAD_FILE() function is used. (Bug #39701)

Note

A warning is generated if you try to execute a statement using statement-based
logging that should be written using row-based logging. The warning is shown
both in the client (in the output of SHOW WARNINGS) and through the mysqld
error log. A warning is added to the SHOW WARNINGS table each time such a
statement is executed. However, only the first statement that generated the
warning for each client session is written to the error log to prevent flooding the
log.

In addition to the decisions above, individual engines can also determine the logging format used when
information in a table is updated. The logging capabilities of an individual engine can be defined as
follows:

• If an engine supports row-based logging, the engine is said to be row-logging capable.

• If an engine supports statement-based logging, the engine is said to be statement-logging capable.

A given storage engine can support either or both logging formats. The following table lists the formats
supported by each engine.

Storage Engine Row Logging
Supported

Statement Logging
Supported

ARCHIVE Yes Yes

BLACKHOLE Yes Yes

CSV Yes Yes

EXAMPLE Yes No

FEDERATED Yes Yes

HEAP Yes Yes

InnoDB Yes Yes when the
transaction
isolation level is
REPEATABLE READ or
SERIALIZABLE; No
otherwise.

MyISAM Yes Yes

MERGE Yes Yes

NDBCLUSTER Yes No



The Binary Log

661

In MySQL 5.5.3 and later, whether a statement is to be logged and the logging mode to be used is
determined according to the type of statement (safe, unsafe, or binary injected), the binary logging
format (STATEMENT, ROW, or MIXED), and the logging capabilities of the storage engine (statement
capable, row capable, both, or neither). (Binary injection refers to logging a change that must be logged
using ROW format.)

Statements may be logged with or without a warning; failed statements are not logged, but generate
errors in the log. This is shown in the following decision table, where SLC stands for “statement-logging
capable” and RLC stands for “row-logging capable”.

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as

* * No No Error: Cannot
execute
statement:
Binary logging is
impossible since at
least one engine
is involved that is
both row-incapable
and statement-
incapable.

-

Safe STATEMENT Yes No - STATEMENT

Safe MIXED Yes No - STATEMENT

Safe ROW Yes No Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= ROW and at least
one table uses a
storage engine that
is not capable of
row-based logging.

-

Unsafe STATEMENT Yes No Warning:
Unsafe
statement
binlogged
in statement
format, since
BINLOG_FORMAT
= STATEMENT

STATEMENT

Unsafe MIXED Yes No Error: Cannot
execute
statement:
Binary logging
of an unsafe
statement is
impossible when
the storage
engine is limited to
statement-based
logging, even if
BINLOG_FORMAT
= MIXED.

-



The Binary Log

662

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as

Unsafe ROW Yes No Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= ROW and at least
one table uses a
storage engine that
is not capable of
row-based logging.

-

Row
Injection

STATEMENT Yes No Error: Cannot
execute row
injection:
Binary logging is
not possible since
at least one table
uses a storage
engine that is not
capable of row-
based logging.

-

Row
Injection

MIXED Yes No Error: Cannot
execute row
injection:
Binary logging is
not possible since
at least one table
uses a storage
engine that is not
capable of row-
based logging.

-

Row
Injection

ROW Yes No Error: Cannot
execute row
injection:
Binary logging is
not possible since
at least one table
uses a storage
engine that is not
capable of row-
based logging.

-

Safe STATEMENT No Yes Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= STATEMENT and
at least one table
uses a storage
engine that is
not capable of

-



The Binary Log

663

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as
statement-based
logging.

Safe MIXED No Yes - ROW

Safe ROW No Yes - ROW

Unsafe STATEMENT No Yes Error: Cannot
execute
statement:
Binary logging is
impossible since
BINLOG_FORMAT
= STATEMENT and
at least one table
uses a storage
engine that is
not capable of
statement-based
logging.

-

Unsafe MIXED No Yes - ROW

Unsafe ROW No Yes - ROW

Row
Injection

STATEMENT No Yes Error: Cannot
execute row
injection:
Binary logging is
not possible since
BINLOG_FORMAT
= STATEMENT.

-

Row
Injection

MIXED No Yes - ROW

Row
Injection

ROW No Yes - ROW

Safe STATEMENT Yes Yes - STATEMENT

Safe MIXED Yes Yes - STATEMENT

Safe ROW Yes Yes - ROW

Unsafe STATEMENT Yes Yes Warning:
Unsafe
statement
binlogged
in statement
format since
BINLOG_FORMAT
= STATEMENT.

STATEMENT

Unsafe MIXED Yes Yes - ROW

Unsafe ROW Yes Yes - ROW

Row
Injection

STATEMENT Yes Yes Error: Cannot
execute row
injection:
Binary logging
is not possible
because

-



The Binary Log

664

Condition Action

Type binlog_format SLC RLC Error / Warning Logged as
BINLOG_FORMAT
= STATEMENT.

Row
Injection

MIXED Yes Yes - ROW

Row
Injection

ROW Yes Yes - ROW

Handling of mixed-format logging in MySQL 5.5.2 and earlier.  The decision-making process for
binary logging changed in MySQL 5.5.3, due to the fix for Bug #39934. Prior to MySQL 5.5.3, when
determining the logging mode to be used, the capabilities of all the tables affected by the event are
combined, and the set of affected tables is then marked according to these rules:

• A set of tables is defined as row-logging restricted if the tables are row-logging capable but not
statement-logging capable.

• A set of tables is defined as statement-logging restricted if the tables are statement-logging capable
but not row-logging capable.

Once the determination of the possible logging formats required by the statement is complete it is
compared to the current binlog_format setting. The following table is used in MySQL 5.5.2 and
earlier to decide how the information is recorded in the binary log or, if appropriate, whether an error is
raised. In the table, a safe operation is defined as one that is deterministic.

In MySQL 5.5.2 and earlier, several rules decide whether the statement is deterministic, as shown
in the following table, where SLR stands for “statement-logging restricted” and RLR stands for “row-
logging restricted”. A statement is statement-logging restricted if one or more of the tables it accesses
is not row-logging capable. Similarly, a statement is row-logging restricted if any table accessed by the
statement is not statement-logging capable.

Condition Action

Safe/
unsafe

binlog_format SLR RLR Error/Warning Logged as

Safe STATEMENT Yes Yes Error: not
loggable

 

Safe STATEMENT Yes No  STATEMENT

Safe STATEMENT No Yes Error: not
loggable

 

Safe STATEMENT No No  STATEMENT

Safe MIXED Yes Yes Error: not
loggable

 

Safe MIXED Yes No  STATEMENT

Safe MIXED No Yes  ROW

Safe MIXED No No  STATEMENT

Safe ROW Yes Yes Error: not
loggable

 

Safe ROW Yes No Error: not
loggable

 

Safe ROW No Yes  ROW

Safe ROW No No  ROW



The Slow Query Log

665

Condition Action

Safe/
unsafe

binlog_format SLR RLR Error/Warning Logged as

Unsafe STATEMENT Yes Yes Error: not
loggable

 

Unsafe STATEMENT Yes No Warning:
unsafe

STATEMENT

Unsafe STATEMENT No Yes Error: not
loggable

 

Unsafe STATEMENT No No Warning:
unsafe

STATEMENT

Unsafe MIXED Yes Yes Error: not
loggable

 

Unsafe MIXED Yes No Error: not
loggable

 

Unsafe MIXED No Yes  ROW

Unsafe MIXED No No  ROW

Unsafe ROW Yes Yes Error: not
loggable

 

Unsafe ROW Yes No Error: not
loggable

 

Unsafe ROW No Yes  ROW

Unsafe ROW No No  ROW

In all MySQL 5.5 releases, when a warning is produced by the determination, a standard MySQL
warning is produced (and is available using SHOW WARNINGS). The information is also written to the
mysqld error log. Only one error for each error instance per client connection is logged to prevent
flooding the log. The log message includes the SQL statement that was attempted.

If a slave server was started with --log-warnings enabled, the slave prints messages to the error
log to provide information about its status, such as the binary log and relay log coordinates where it
starts its job, when it is switching to another relay log, when it reconnects after a disconnect, and so
forth.

5.4.4.4 Logging Format for Changes to mysql Database Tables

The contents of the grant tables in the mysql database can be modified directly (for example, with
INSERT or DELETE) or indirectly (for example, with GRANT or CREATE USER). Statements that affect
mysql database tables are written to the binary log using the following rules:

• Data manipulation statements that change data in mysql database tables directly are logged
according to the setting of the binlog_format system variable. This pertains to statements such as
INSERT, UPDATE, DELETE, REPLACE, DO, LOAD DATA INFILE, SELECT, and TRUNCATE TABLE.

• Statements that change the mysql database indirectly are logged as statements regardless of the
value of binlog_format. This pertains to statements such as GRANT, REVOKE, SET PASSWORD,
RENAME USER, CREATE (all forms except CREATE TABLE ... SELECT), ALTER (all forms), and
DROP (all forms).

CREATE TABLE ... SELECT is a combination of data definition and data manipulation. The CREATE
TABLE part is logged using statement format and the SELECT part is logged according to the value of
binlog_format.

5.4.5 The Slow Query Log



The Slow Query Log

666

The slow query log consists of SQL statements that took more than long_query_time seconds
to execute and required at least min_examined_row_limit rows to be examined. The minimum
and default values of long_query_time are 0 and 10, respectively. The value can be specified to a
resolution of microseconds. For logging to a file, times are written including the microseconds part. For
logging to tables, only integer times are written; the microseconds part is ignored.

By default, administrative statements are not logged, nor are queries that do not use indexes
for lookups. This behavior can be changed using --log-slow-admin-statements and
log_queries_not_using_indexes, as described later.

The time to acquire the initial locks is not counted as execution time. mysqld writes a statement to the
slow query log after it has been executed and after all locks have been released, so log order might
differ from execution order.

By default, the slow query log is disabled. To specify the initial slow query log state explicitly, use
--slow_query_log[={0|1}]. With no argument or an argument of 1, --slow_query_log
enables the log. With an argument of 0, this option disables the log. To specify a log file name, use
--slow_query_log_file=file_name. To specify the log destination, use --log-output (as
described in Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”). The
older option to enable the slow query log file, --log-slow-queries, is deprecated.

If you specify no name for the slow query log file, the default name is host_name-slow.log. The
server creates the file in the data directory unless an absolute path name is given to specify a different
directory.

To disable or enable the slow query log or change the log file name at runtime, use the global
slow_query_log and slow_query_log_file system variables. Set slow_query_log to 0 (or
OFF) to disable the log or to 1 (or ON) to enable it. Set slow_query_log_file to specify the name of
the log file. If a log file already is open, it is closed and the new file is opened.

When the slow query log is enabled, the server writes output to any destinations specified by the --
log-output option or log_output system variable. If you enable the log, the server opens the log
file and writes startup messages to it. However, further logging of queries to the file does not occur
unless the FILE log destination is selected. If the destination is NONE, the server writes no queries
even if the slow query log is enabled. Setting the log file name has no effect on logging if the log
destination value does not contain FILE.

The server writes less information to the slow query log if you use the --log-short-format option.

To include slow administrative statements in the statements written to the slow query log, use the --
log-slow-admin-statements server option. Administrative statements include ALTER TABLE,
ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, and REPAIR
TABLE.

To include queries that do not use indexes for row lookups in the statements written to the slow query
log, enable the log_queries_not_using_indexes system variable. When such queries are
logged, the slow query log may grow quickly.

The server uses the controlling parameters in the following order to determine whether to write a query
to the slow query log:

1. The query must either not be an administrative statement, or --log-slow-admin-statements
must have been specified.

2. The query must have taken at least long_query_time seconds, or
log_queries_not_using_indexes must be enabled and the query used no indexes for row
lookups.

3. The query must have examined at least min_examined_row_limit rows.



The DDL Log

667

The server does not write queries handled by the query cache to the slow query log, nor queries that
would not benefit from the presence of an index because the table has zero rows or one row.

By default, a replication slave does not write replicated queries to the slow query log. To change this,
use the --log-slow-slave-statements server option.

The slow query log should be protected because logged statements might contain passwords. See
Section 6.1.2.3, “Passwords and Logging”.

The slow query log can be used to find queries that take a long time to execute and are therefore
candidates for optimization. However, examining a long slow query log can become a difficult task.
To make this easier, you can process a slow query log file using the mysqldumpslow command to
summarize the queries that appear in the log. See Section 4.6.8, “mysqldumpslow — Summarize
Slow Query Log Files”.

5.4.6 The DDL Log

The DDL log, or metadata log, records metadata operations generated by data definition statements
such as DROP TABLE and ALTER TABLE. MySQL uses this log to recover from crashes occurring in
the middle of a metadata operation. When executing the statement DROP TABLE t1, t2, we need to
ensure that both t1 and t2 are dropped, and that each table drop is complete. Another example of this
type of SQL statement is ALTER TABLE t3 DROP PARTITION p2, where we must make certain that
the partition is completely dropped and that its definition is removed from the list of partitions for table
t3.

A record of metadata operations such as those just described are written to the file ddl_log.log, in
the MySQL data directory. This is a binary file; it is not intended to be human-readable, and you should
not attempt to modify its contents in any way.

ddl_log.log is not created until it is actually needed for recording metadata statements, and is
removed following a successful start of mysqld. Thus, it is possible for this file not to be present on a
MySQL server that is functioning in a completely normal manner.

Currently, ddl_log.log can hold up to 1048573 entries, equivalent 4 GB in size. Once this limit is
exceeded, you must rename or remove the file before it is possible to execute any additional DDL
statements. This is a known issue which we are working to resolve (Bug #83708).

There are no user-configurable server options or variables associated with this file.

5.4.7 Server Log Maintenance

As described in Section 5.4, “MySQL Server Logs”, MySQL Server can create several different log files
to help you see what activity is taking place. However, you must clean up these files regularly to ensure
that the logs do not take up too much disk space.

When using MySQL with logging enabled, you may want to back up and remove old log files from time
to time and tell MySQL to start logging to new files. See Section 7.2, “Database Backup Methods”.

On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for this. If you installed
MySQL from an RPM distribution, this script should have been installed automatically. Be careful with
this script if you are using the binary log for replication. You should not remove binary logs until you are
certain that their contents have been processed by all slaves.

On other systems, you must install a short script yourself that you start from cron (or its equivalent) for
handling log files.

For the binary log, you can set the expire_logs_days system variable to expire binary log files
automatically after a given number of days (see Section 5.1.5, “Server System Variables”). If you
are using replication, you should set the variable no lower than the maximum number of days your
slaves might lag behind the master. To remove binary logs on demand, use the PURGE BINARY LOGS
statement (see Section 13.4.1.1, “PURGE BINARY LOGS Syntax”).



Server Log Maintenance

668

You can force MySQL to start using new log files by flushing the logs. Log flushing occurs when you
issue a FLUSH LOGS statement or execute a mysqladmin flush-logs, mysqladmin refresh,
mysqldump --flush-logs, or mysqldump --master-data command. See Section 13.7.6.3,
“FLUSH Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”, and
Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is flushed
when its size reaches the value of the max_binlog_size system variable.

As of MySQL 5.5.3, FLUSH LOGS supports optional modifiers to enable selective flushing of individual
logs (for example, FLUSH BINARY LOGS).

A log-flushing operation does the following:

• If general query logging or slow query logging to a log file is enabled, the server closes and reopens
the general query log file or slow query log file.

• If binary logging is enabled, the server closes the current binary log file and opens a new log file with
the next sequence number.

• If the server was started with the --log-error option to cause the error log to be written to a file,
the result of a log-flushing operation is version dependent:

• As of MySQL 5.5.7, the server closes and reopens the log file.

• Prior to MySQL 5.5.7, the server renames the current log file with the suffix -old, then creates a
new empty log file.

The server creates a new binary log file when you flush the logs. However, it just closes and reopens
the general and slow query log files. To cause new files to be created on Unix, rename the current log
files before flushing them. At flush time, the server opens new log files with the original names. For
example, if the general and slow query log files are named mysql.log and mysql-slow.log, you
can use a series of commands like this:

shell> cd mysql-data-directory
shell> mv mysql.log mysql.old
shell> mv mysql-slow.log mysql-slow.old
shell> mysqladmin flush-logs

On Windows, use rename rather than mv.

At this point, you can make a backup of mysql.old and mysql-slow.old and then remove them
from disk.

A similar strategy can be used to back up the error log file, if there is one, except that, on Windows,
you cannot rename the error log file while the server has it open before MySQL 5.5.7. To rename the
error log file, a stop and restart can be avoided by flushing the logs to cause the server to rename the
current log file with the suffix -old and create a new empty error log file. For further information, see
Section 5.4.2, “The Error Log”.

You can rename the general query log or slow query log at runtime by disabling the log:

SET GLOBAL general_log = 'OFF';
SET GLOBAL slow_query_log = 'OFF';

With the logs disabled, rename the log files externally; for example, from the command line. Then
enable the logs again:

SET GLOBAL general_log = 'ON';
SET GLOBAL slow_query_log = 'ON';

This method works on any platform and does not require a server restart.



MySQL Server Plugins

669

Note

For the server to recreate a given log file after you have renamed the file
externally, the file location must be writable by the server. This may not always
be the case. For example, on Linux, the server might write the error log as /
var/log/mysqld.log, where /var/log is owned by root and not writable
by mysqld. In this case, the log-flushing operation will fail to create a new log
file.

To handle this situation, you must manually create the new log file with the
proper ownershiop after renaming the original log file. For example, execute
these commands as root:

shell> mv /var/log/mysqld.log /var/log/mysqld.log.old
shell> install -omysql -gmysql -m0644 /dev/null /var/log/mysqld.log

5.5 MySQL Server Plugins
MySQL supports a plugin API that enables creation of server components. Plugins can be loaded
at server startup, or loaded and unloaded at runtime without restarting the server. The components
supported by this interface include, but are not limited to, storage engines, INFORMATION_SCHEMA
tables, full-text parser plugins, partitioning support, and server extensions.

5.5.1 Server Plugins Available

MySQL distributions include several plugins that implement server extensions:

• Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available for
several authentication protocols. See Section 6.3.6, “Pluggable Authentication”.

• Semisynchronous replication plugins implement an interface to replication capabilities that permit
the master to proceed as long as at least one slave has responded to each transaction. See
Section 17.3.8, “Semisynchronous Replication”.

• MySQL Enterprise Edition includes a thread pool plugin that manages connection threads to
increase server performance by efficiently managing statement execution threads for large numbers
of client connections. See Section 5.5.4, “MySQL Enterprise Thread Pool”.

• MySQL Enterprise Edition includes an audit plugin for monitoring and logging of connection and
query activity. See Section 6.5.2, “MySQL Enterprise Audit”.

The following sections describe how to install and uninstall plugins, and how to determine at runtime
which plugins are installed and obtain information about them. For information about writing plugins,
see Section 24.2, “The MySQL Plugin API”.

5.5.2 Installing and Uninstalling Plugins

Server plugins must be loaded into the server before they can be used. MySQL supports plugin loading
at server startup and runtime. It is also possible to control the activation state of loaded plugins at
startup, and to unload them at runtime.

• Installing plugins

• Controlling plugin activation state

• Uninstalling plugins

While a plugin is loaded, information about it is available at runtime from the
INFORMATION_SCHEMA.PLUGINS table and the SHOW PLUGINS statement. See Section 5.5.3,
“Obtaining Server Plugin Information”.



Installing and Uninstalling Plugins

670

Installing Plugins

Before a server plugin can be used, it must be installed using one of the following methods. In the
descriptions, plugin_name stands for a plugin name such as innodb or csv.

Built-in plugins:

A built-in plugin is known by the server automatically. Normally, the server enables
the plugin at startup. Some built-in plugins permit this to be changed with the
--plugin_name[=activation_state] option.

Plugins registered in the mysql.plugin system table:

The mysql.plugin table serves as a registry of plugins (other than built-in plugins, which need not
be registered). At startup, the server loads each plugin listed in the table. Normally, for a plugin loaded
from the mysql.plugin table, the server also enables the plugin. This can be changed with the
--plugin_name[=activation_state] option.

If the server is started with the --skip-grant-tables option, it does not consult the
mysql.plugin table and does not load the plugins listed there.

Plugins named with the --plugin-load option:

A plugin located in a plugin library file can be loaded at server startup with the --plugin-load option.
Normally, for a plugin loaded at startup, the server also enables the plugin. This can be changed with
the --plugin_name[=activation_state] option.

The value of each plugin-loading option is a semicolon-separated list of name=plugin_library and
plugin_library values. Each name is the name of a plugin to load, and plugin_library is the
name of the library file that contains the plugin code. If a plugin library is named without any preceding
plugin name, the server loads all plugins in the library. The server looks for plugin library files in the
directory named by the plugin_dir system variable.

Plugin-loading options do not register any plugin in the mysql.plugin table. For subsequent restarts,
the server loads the plugin again only if --plugin-load is given again. That is, the option produces a
one-time plugin-installation operation that persists for a single server invocation.

--plugin-load enables plugins to be loaded even when --skip-grant-tables is given (which
causes the server to ignore the mysql.plugin table). --plugin-load also enables plugins to be
loaded at startup under configurations when plugins cannot be loaded at runtime.

Plugins installed with the INSTALL PLUGIN statement:

A plugin located in a plugin library file can be loaded at runtime with the INSTALL PLUGIN statement.
The statement also registers the plugin in the mysql.plugin table to cause the server to load it
on subsequent restarts. For this reason, INSTALL PLUGIN requires the INSERT privilege for the
mysql.plugin table.

The plugin library file base name depends on your platform. Common suffixes are .so for Unix and
Unix-like systems, .dll for Windows.

Example: The --plugin-load option installs a plugin at server startup. To install a plugin named
myplugin from a plugin library file named somepluglib.so, use these lines in a my.cnf file:

[mysqld]
plugin-load=myplugin=somepluglib.so

In this case, the plugin is not registered in mysql.plugin. Restarting the server without the --
plugin-load option causes the plugin not to be loaded at startup.



Installing and Uninstalling Plugins

671

Alternatively, the INSTALL PLUGIN statement causes the server to load the plugin code from the
library file at runtime:

INSTALL PLUGIN myplugin SONAME 'somepluglib.so';

INSTALL PLUGIN also causes “permanent” plugin registration: The plugin is listed in the
mysql.plugin table to ensure that the server loads it on subsequent restarts.

Many plugins can be loaded either at server startup or at runtime. However, if a plugin is designed such
that it must be loaded and initialized during server startup, attempts to load it at runtime using INSTALL
PLUGIN produce an error:

mysql> INSTALL PLUGIN myplugin SONAME 'somepluglib.so';
ERROR 1721 (HY000): Plugin 'myplugin' is marked as not dynamically
installable. You have to stop the server to install it.

In this case, you must use --plugin-load.

Many plugins can be loaded either at server startup or at runtime. However, if a plugin is designed such
that it must be loaded and initialized during server startup, use --plugin-load rather than INSTALL
PLUGIN.

If a plugin is named both using a --plugin-load option and (as a result of an earlier INSTALL
PLUGIN statement) in the mysql.plugin table, the server starts but writes these messages to the
error log:

[ERROR] Function 'plugin_name' already exists
[Warning] Couldn't load plugin named 'plugin_name'
with soname 'plugin_object_file'.

Controlling Plugin Activation State

If the server knows about a plugin when it starts (for example, because the plugin is named using
a --plugin-load option or is registered in the mysql.plugin table), the server loads and
enables the plugin by default. It is possible to control activation state for such a plugin using a
--plugin_name[=activation_state] startup option, where plugin_name is the name of
the plugin to affect, such as innodb or csv. As with other options, dashes and underscores are
interchangeable in option names. Also, activation state values are not case sensitive. For example, --
my_plugin=ON and --my-plugin=on are equivalent.

• --plugin_name=OFF

Tells the server to disable the plugin. This may not be possible for certain built-in plugins, such as
mysql_native_password.

• --plugin_name[=ON]

Tells the server to enable the plugin. (Specifying the option as --plugin_name without a value has
the same effect.) If the plugin fails to initialize, the server runs with the plugin disabled.

• --plugin_name=FORCE

Tells the server to enable the plugin, but if plugin initialization fails, the server does not start. In other
words, this option forces the server to run with the plugin enabled or not at all.

• --plugin_name=FORCE_PLUS_PERMANENT

Like FORCE, but in addition prevents the plugin from being unloaded at runtime. If a user attempts to
do so with UNINSTALL PLUGIN, an error occurs. This value is available as of MySQL 5.5.7.



Installing and Uninstalling Plugins

672

Plugin activation states are visible in the LOAD_OPTION column of the
INFORMATION_SCHEMA.PLUGINS table.

Suppose that CSV, BLACKHOLE, and ARCHIVE are built-in pluggable storage engines and that you
want the server to load them at startup, subject to these conditions: The server is permitted to run
if CSV initialization fails, must require that BLACKHOLE initialization succeeds, and should disable
ARCHIVE. To accomplish that, use these lines in an option file:

[mysqld]
csv=ON
blackhole=FORCE
archive=OFF

The --enable-plugin_name option format is a synonym for --plugin_name=ON. The
--disable-plugin_name and --skip-plugin_name option formats are synonyms for
--plugin_name=OFF.

Before MySQL 5.1.36, plugin options are boolean options (see Section 4.2.5, “Program Option
Modifiers”). That is, any of these options enable the plugin:

--plugin_name
--plugin_name=1
--enable-plugin_name

And these options disable the plugin:

--plugin_name=0
--disable-plugin_name
--skip-plugin_name

If you upgrade to MySQL 5.5 from a version older than 5.1.36 and previously used options of the form
--plugin_name=0 or --plugin_name=1, the equivalent options are now --plugin_name=OFF
and --plugin_name=ON, respectively. You also have the choice of requiring plugins to start
successfully by using --plugin_name=FORCE or --plugin_name=FORCE_PLUS_PERMANENT.

If a plugin is disabled, either explicitly with OFF or implicitly because it was enabled with ON but failed
to initialize, aspects of server operation that require the plugin will change. For example, if the plugin
implements a storage engine, existing tables for the storage engine become inaccessible, and attempts
to create new tables for the storage engine result in tables that use the default storage engine unless
the NO_ENGINE_SUBSTITUTION SQL mode is enabled to cause an error to occur instead.

Disabling a plugin may require adjustment to other options. For example, if you start the server using
--skip-innodb to disable InnoDB, other innodb_xxx options likely will need to be omitted at
startup. In addition, because InnoDB is the default storage engine, it will not start unless you specify
another available storage engine with --default-storage-engine.

Uninstalling Plugins

At runtime, the UNINSTALL PLUGIN statement disables and uninstalls a plugin known to the server.
The statement unloads the plugin and removes it from the mysql.plugin table, if it is registered
there. For this reason, UNINSTALL PLUGIN statement requires the DELETE privilege for the
mysql.plugin table. With the plugin no longer registered in the table, the server will not load the
plugin automatically for subsequent restarts.

UNINSTALL PLUGIN can unload a plugin regardless of whether it was loaded at runtime with
INSTALL PLUGIN or at startup with a plugin-loading option, subject to these conditions:

• It cannot unload plugins that are built in to the server. These can be identified as those that have a
library name of NULL in the output from INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.



Obtaining Server Plugin Information

673

• It cannot unload plugins for which the server was started with
--plugin_name=FORCE_PLUS_PERMANENT, which prevents plugin unloading at runtime. These
can be identified from the LOAD_OPTION column of the INFORMATION_SCHEMA.PLUGINS table.

To uninstall a plugin that currently is loaded at server startup with a plugin-loading option, use this
procedure.

1. Remove any options related to the plugin from the my.cnf file.

2. Restart the server.

3. Plugins normally are installed using either a plugin-loading option at startup or with INSTALL
PLUGIN at runtime, but not both. However, removing options for a plugin from the my.cnf file
may not be sufficient to uninstall it if at some point INSTALL PLUGIN has also been used. If the
plugin still appears in the output from INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS, use
UNINSTALL PLUGIN to remove it from the mysql.plugin table. Then restart the server again.

5.5.3 Obtaining Server Plugin Information

There are several ways to determine which plugins are installed in the server:

• The INFORMATION_SCHEMA.PLUGINS table contains a row for each loaded plugin. Any that have a
PLUGIN_LIBRARY value of NULL are built in and cannot be unloaded.

mysql> SELECT * FROM information_schema.PLUGINS\G
*************************** 1. row ***************************
           PLUGIN_NAME: binlog
        PLUGIN_VERSION: 1.0
         PLUGIN_STATUS: ACTIVE
           PLUGIN_TYPE: STORAGE ENGINE
   PLUGIN_TYPE_VERSION: 50158.0
        PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
         PLUGIN_AUTHOR: MySQL AB
    PLUGIN_DESCRIPTION: This is a pseudo storage engine to represent the binlog in a transaction
        PLUGIN_LICENSE: GPL
           LOAD_OPTION: FORCE
...
*************************** 10. row ***************************
           PLUGIN_NAME: InnoDB
        PLUGIN_VERSION: 1.0
         PLUGIN_STATUS: ACTIVE
           PLUGIN_TYPE: STORAGE ENGINE
   PLUGIN_TYPE_VERSION: 50158.0
        PLUGIN_LIBRARY: ha_innodb_plugin.so
PLUGIN_LIBRARY_VERSION: 1.0
         PLUGIN_AUTHOR: Innobase Oy
    PLUGIN_DESCRIPTION: Supports transactions, row-level locking,
                        and foreign keys
        PLUGIN_LICENSE: GPL
           LOAD_OPTION: ON
...

• The SHOW PLUGINS statement displays a row for each loaded plugin. Any that have a Library
value of NULL are built in and cannot be unloaded.

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
   Name: binlog
 Status: ACTIVE
   Type: STORAGE ENGINE
Library: NULL
License: GPL
...
*************************** 10. row ***************************
   Name: InnoDB



MySQL Enterprise Thread Pool

674

 Status: ACTIVE
   Type: STORAGE ENGINE
Library: ha_innodb_plugin.so
License: GPL
...

• The mysql.plugin table shows which plugins have been registered with INSTALL PLUGIN. The
table contains only plugin names and library file names, so it does not provide as much information
as the PLUGINS table or the SHOW PLUGINS statement.

5.5.4 MySQL Enterprise Thread Pool

Note

MySQL Enterprise Thread Pool is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, http://
www.mysql.com/products/.

As of MySQL 5.5.16, MySQL Enterprise Edition includes MySQL Enterprise Thread Pool, implemented
using a server plugin. The default thread-handling model in MySQL Server executes statements using
one thread per client connection. As more clients connect to the server and execute statements, overall
performance degrades. The thread pool plugin provides an alternative thread-handling model designed
to reduce overhead and improve performance. The plugin implements a thread pool that increases
server performance by efficiently managing statement execution threads for large numbers of client
connections.

The thread pool addresses several problems of the one thread per connection model:

• Too many thread stacks make CPU caches almost useless in highly parallel execution workloads.
The thread pool promotes thread stack reuse to minimize the CPU cache footprint.

• With too many threads executing in parallel, context switching overhead is high. This also presents
a challenging task to the operating system scheduler. The thread pool controls the number of active
threads to keep the parallelism within the MySQL server at a level that it can handle and that is
appropriate for the server host on which MySQL is executing.

• Too many transactions executing in parallel increases resource contention. In InnoDB, this
increases the time spent holding central mutexes. The thread pool controls when transactions start to
ensure that not too many execute in parallel.

The thread pool plugin is included only in MySQL Enterprise Edition. It is not included in MySQL
community distributions.

On Windows, the thread pool plugin requires Windows Vista or newer. On Linux, the plugin requires
kernel 2.6.9 or higher.

Additional Resources

Section A.14, “MySQL 5.5 FAQ: MySQL Enterprise Thread Pool”

5.5.4.1 Thread Pool Components

The thread pool feature comprises these components:

• A plugin library file contains a plugin for the thread pool code and plugins for several
INFORMATION_SCHEMA tables.

For a detailed description of how the thread pool works, see Section 5.5.4.3, “Thread Pool
Operation”.

The INFORMATION_SCHEMA tables are named TP_THREAD_STATE, TP_THREAD_GROUP_STATE,
and TP_THREAD_GROUP_STATS. These tables provide information about thread pool operation. For
more information, see Section 21.30, “Thread Pool INFORMATION_SCHEMA Tables”.

http://www.mysql.com/products/
http://www.mysql.com/products/


MySQL Enterprise Thread Pool

675

• Several system variables are related to the thread pool. The thread_handling system variable
has a value of loaded-dynamically when the server successfully loads the thread pool plugin.

The other related variables are implemented by the thread pool plugin; they are not available unless
it is enabled:

• thread_pool_algorithm: The concurrency algorithm to use for scheduling.

• thread_pool_high_priority_connection: How to schedule statement execution for a
session.

• thread_pool_prio_kickup_timer: How long before the thread pool moves a statement
awaiting execution from the low-priority queue to the high-priority queue.

• thread_pool_max_unused_threads: How many sleeping threads to permit.

• thread_pool_size: The number of thread groups in the thread pool. This is the most important
parameter controlling thread pool performance.

• thread_pool_stall_limit: The time before an executing statement is considered to be
stalled.

If any variable implemented by the plugin is set to an illegal value at startup, plugin initialization fails
and the plugin does not load.

For information about setting thread pool parameters, see Section 5.5.4.4, “Thread Pool Tuning”.

• The Performance Schema exposes information about the thread pool and may be used to
investigate operational performance. For more information, see Chapter 22, MySQL Performance
Schema.

5.5.4.2 Thread Pool Installation

This section describes how to install MySQL Enterprise Thread Pool. For general information about
installing plugins, see Section 5.5.2, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at
server startup to tell the server the plugin directory location.

The plugin library file base name is thread_pool. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To enable thread pool capability, load the plugins to be used by starting the server with the --plugin-
load option. For example, if you name just the plugin library file, the server loads all plugins that it
contains (that is, the thread pool plugin and all the INFORMATION_SCHEMA tables). To do this, put
these lines in your my.cnf file (adjust the .so suffix for your platform as necessary):

[mysqld]
plugin-load=thread_pool.so

That is equivalent to loading all thread pool plugins by naming them individually:

[mysqld]
plugin-load=thread_pool=thread_pool.so;tp_thread_state=thread_pool.so;tp_thread_group_state=thread_pool.so;tp_thread_group_stats=thread_pool.so

If desired, you can load individual plugins from the library file. To load the thread pool plugin but not the
INFORMATION_SCHEMA tables, use an option like this:

[mysqld]



MySQL Enterprise Thread Pool

676

plugin-load=thread_pool=thread_pool.so

To load the thread pool plugin and only the TP_THREAD_STATE INFORMATION_SCHEMA table, use an
option like this:

[mysqld]
plugin-load=thread_pool=thread_pool.so;tp_thread_state=thread_pool.so

Note

If you do not load all the INFORMATION_SCHEMA tables, some or all MySQL
Enterprise Monitor thread pool graphs will be empty.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement (see Section 5.5.3, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
       FROM INFORMATION_SCHEMA.PLUGINS
       WHERE PLUGIN_NAME LIKE 'thread%' OR PLUGIN_NAME LIKE 'tp%';
+-----------------------+---------------+
| PLUGIN_NAME           | PLUGIN_STATUS |
+-----------------------+---------------+
| thread_pool           | ACTIVE        |
| TP_THREAD_STATE       | ACTIVE        |
| TP_THREAD_GROUP_STATE | ACTIVE        |
| TP_THREAD_GROUP_STATS | ACTIVE        |
+-----------------------+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

If the server loads the thread pool plugin successfully, it sets the thread_handling system variable
to dynamically-loaded.

5.5.4.3 Thread Pool Operation

The thread pool consists of a number of thread groups, each of which manages a set of client
connections. As connections are established, the thread pool assigns them to thread groups in round-
robin fashion.

The number of thread groups is configurable using the thread_pool_size system variable. The
default number of groups is 16. For guidelines on setting this variable, see Section 5.5.4.4, “Thread
Pool Tuning”.

The maximum number of threads per group is 4096 (or 4095 on some systems where one thread is
used internally).

The thread pool separates connections and threads, so there is no fixed relationship between
connections and the threads that execute statements received from those connections. This differs
from the default thread-handling model that associates one thread with one connection such that the
thread executes all statements from the connection.

The thread pool tries to ensure a maximum of one thread executing in each group at any time, but
sometimes permits more threads to execute temporarily for best performance. The algorithm works in
the following manner:

• Each thread group has a listener thread that listens for incoming statements from the connections
assigned to the group. When a statement arrives, the thread group either begins executing it
immediately or queues it for later execution:

• Immediate execution occurs if the statement is the only one received and no statements are
queued or currently executing.



MySQL Enterprise Thread Pool

677

• Queuing occurs if the statement cannot begin executing immediately.

• If immediate execution occurs, execution is performed by the listener thread. (This means that
temporarily no thread in the group is listening.) If the statement finishes quickly, the executing thread
returns to listening for statements. Otherwise, the thread pool considers the statement stalled and
starts another thread as a listener thread (creating it if necessary). To ensure that no thread group
becomes blocked by stalled statements, the thread pool has a background thread that regularly
monitors thread group states.

By using the listening thread to execute a statement that can begin immediately, there is no need to
create an additional thread if the statement finishes quickly. This ensures the most efficient execution
possible in the case of a low number of concurrent threads.

When the thread pool plugin starts, it creates one thread per group (the listener thread), plus the
background thread. Additional threads are created as necessary to execute statements.

• The value of the thread_pool_stall_limit system variable determines the meaning of “finishes
quickly” in the previous item. The default time before threads are considered stalled is 60ms but
can be set to a maximum of 6s. This parameter is configurable to enable you to strike a balance
appropriate for the server work load. Short wait values permit threads to start more quickly. Short
values are also better for avoiding deadlock situations. Long wait values are useful for workloads that
include long-running statements, to avoid starting too many new statements while the current ones
execute.

• The thread pool focuses on limiting the number of concurrent short-running statements. Before an
executing statement reaches the stall time, it prevents other statements from beginning to execute.
If the statement executes past the stall time, it is permitted to continue but no longer prevents other
statements from starting. In this way, the thread pool tries to ensure that in each thread group there
is never more than one short-running statement, although there might be multiple long-running
statements. It is undesirable to let long-running statements prevent other statements from executing
because there is no limit on the amount of waiting that might be necessary. For example, on a
replication master, a thread that is sending binary log events to a slave effectively runs forever.

• A statement becomes blocked if it encounters a disk I/O operation or a user level lock (row lock
or table lock). The block would cause the thread group to become unused, so there are callbacks
to the thread pool to ensure that the thread pool can immediately start a new thread in this group
to execute another statement. When a blocked thread returns, the thread pool permits it to restart
immediately.

• There are two queues, a high-priority queue and a low-priority queue. The first statement in a
transaction goes to the low-priority queue. Any following statements for the transaction go to
the high-priority queue if the transaction is ongoing (statements for it have begun executing),
or to the low-priority queue otherwise. Queue assignment can be affected by enabling the
thread_pool_high_priority_connection system variable, which causes all queued
statements for a session to go into the high-priority queue.

Statements for a nontransactional storage engine, or a transactional engine if autocommit is
enabled, are treated as low-priority statements because in this case each statement is a transaction.
Thus, given a mix of statements for InnoDB and MyISAM tables, the thread pool prioritizes those
for InnoDB over those for MyISAM unless autocommit is enabled. With autocommit enabled, all
statements will be low priority.

• When the thread group selects a queued statement for execution, it first looks in the high-priority
queue, then in the low-priority queue. If a statement is found, it is removed from its queue and begins
to execute.

• If a statement stays in the low-priority queue too long, the thread pool moves to the high-priority
queue. The value of the thread_pool_prio_kickup_timer system variable controls the time
before movement. For each thread group, a maximum of one statement per 10ms or 100 per second
will be moved from the low-priority queue to the high-priority queue.



MySQL Enterprise Thread Pool

678

• The thread pool reuses the most active threads to obtain a much better use of CPU caches. This is a
small adjustment that has a great impact on performance.

• While a thread executes a statement from a user connection, Performance Schema instrumentation
accounts thread activity to the user connection. Otherwise, Performance Schema accounts activity to
the thread pool.

Here are examples of conditions under which a thread group might have multiple threads started to
execute statements:

• One thread begins executing a statement, but runs long enough to be considered stalled. The thread
group permits another thread to begin executing another statement even through the first thread is
still executing.

• One thread begins executing a statement, then becomes blocked and reports this back to the thread
pool. The thread group permits another thread to begin executing another statement.

• One thread begins executing a statement, becomes blocked, but does not report back that it is
blocked because the block does not occur in code that has been instrumented with thread pool
callbacks. In this case, the thread appears to the thread group to be still running. If the block lasts
long enough for the statement to be considered stalled, the group permits another thread to begin
executing another statement.

The thread pool is designed to be scalable across an increasing number of connections. It is also
designed to avoid deadlocks that can arise from limiting the number of actively executing statements.
It is important that threads that do not report back to the thread pool do not prevent other statements
from executing and thus cause the thread pool to become deadlocked. Examples of such statements
follow:

• Long-running statements. These would lead to all resources used by only a few statements and they
could prevent all others from accessing the server.

• Binary log dump threads that read the binary log and send it to slaves. This is a kind of long-
running “statement” that runs for a very long time, and that should not prevent other statements from
executing.

• Statements blocked on a row lock, table lock, sleep, or any other blocking activity that has not been
reported back to the thread pool by MySQL Server or a storage engine.

In each case, to prevent deadlock, the statement is moved to the stalled category when it does not
complete quickly, so that the thread group can permit another statement to begin executing. With this
design, when a thread executes or becomes blocked for an extended time, the thread pool moves the
thread to the stalled category and for the rest of the statement's execution, it does not prevent other
statements from executing.

The maximum number of threads that can occur is the sum of max_connections and
thread_pool_size. This can happen in a situation where all connections are in execution mode and
an extra thread is created per group to listen for more statements. This is not necessarily a state that
happens often, but it is theoretically possible.

5.5.4.4 Thread Pool Tuning

This section provides guidelines on setting thread pool system variables for best performance,
measured using a metric such as transactions per second.

thread_pool_size is the most important parameter controlling thread pool performance. It can be
set only at server startup. Our experience in testing the thread pool indicates the following:

• If the primary storage engine is InnoDB, the optimal thread_pool_size setting is likely to be
between 16 and 36, with the most common optimal values tending to be from 24 to 36. We have
not seen any situation where the setting has been optimal beyond 36. There may be special cases
where a value smaller than 16 is optimal.



MySQL Enterprise Thread Pool

679

For workloads such as DBT2 and Sysbench, the optimum for InnoDB seems to be usually around
36. For very write-intensive workloads, the optimal setting can sometimes be lower.

• If the primary storage engine is MyISAM, the thread_pool_size setting should be fairly low. We
tend to get optimal performance for values from 4 to 8. Higher values tend to have a slightly negative
but not dramatic impact on performance.

Another system variable, thread_pool_stall_limit, is important for handling of blocked and
long-running statements. If all calls that block the MySQL Server are reported to the thread pool, it
would always know when execution threads are blocked. However, this may not always be true. For
example, blocks could occur in code that has not been instrumented with thread pool callbacks. For
such cases, the thread pool must be able to identify threads that appear to be blocked. This is done by
means of a timeout, the length of which can be tuned using the thread_pool_stall_limit system
variable. This parameter ensures that the server does not become completely blocked. The value of
thread_pool_stall_limit has an upper limit of 6 seconds to prevent the risk of a deadlocked
server.

thread_pool_stall_limit also enables the thread pool to handle long-running statements. If a
long-running statement was permitted to block a thread group, all other connections assigned to the
group would be blocked and unable to start execution until the long-running statement completed. In
the worst case, this could take hours or even days.

The value of thread_pool_stall_limit should be chosen such that statements that execute
longer than its value are considered stalled. Stalled statements generate a lot of extra overhead since
they involve extra context switches and in some cases even extra thread creations. On the other hand,
setting the thread_pool_stall_limit parameter too high means that long-running statements will
block a number of short-running statements for longer than necessary. Short wait values permit threads
to start more quickly. Short values are also better for avoiding deadlock situations. Long wait values are
useful for workloads that include long-running statements, to avoid starting too many new statements
while the current ones execute.

Suppose a server executes a workload where 99.9% of the statements complete within 100ms even
when the server is loaded, and the remaining statements take between 100ms and 2 hours fairly
evenly spread. In this case, it would make sense to set thread_pool_stall_limit to 10 (meaning
100ms). The default value of 60ms is okay for servers that primarily execute very simple statements.

The thread_pool_stall_limit parameter can be changed at runtime to enable you to strike a
balance appropriate for the server work load. Assuming that the TP_THREAD_GROUP_STATS table is
enabled, you can use the following query to determine the fraction of executed statements that stalled:

SELECT SUM(STALLED_QUERIES_EXECUTED) / SUM(QUERIES_EXECUTED)
FROM information_schema.TP_THREAD_GROUP_STATS;

This number should be as low as possible. To decrease the likelihood of statements stalling, increase
the value of thread_pool_stall_limit.

When a statement arrives, what is the maximum time it can be delayed before it actually starts
executing? Suppose that the following conditions apply:

• There are 200 statements queued in the low-priority queue.

• There are 10 statements queued in the high-priority queue.

• thread_pool_prio_kickup_timer is set to 10000 (10 seconds).

• thread_pool_stall_limit is set to 100 (1 second).

In the worst case, the 10 high-priority statements represent 10 transactions that continue executing for
a long time. Thus, in the worst case, no statements will be moved to the high-priority queue because
it will always already contain statements awaiting execution. After 10 seconds, the new statement is



Running Multiple MySQL Instances on One Machine

680

eligible to be moved to the high-priority queue. However, before it can be moved, all the statements
before it must be moved as well. This could take another 2 seconds because a maximum of 100
statements per second are moved to the high-priority queue. Now when the statement reaches the
high-priority queue, there could potentially be many long-running statements ahead of it. In the worst
case, every one of those will become stalled and it will take 1 second for each statement before the
next statement is retrieved from the high-priority queue. Thus, in this scenario, it will take 222 seconds
before the new statement starts executing.

This example shows a worst case for an application. How to handle it depends on the application. If
the application has high requirements for the response time, it should most likely throttle users at a
higher level itself. Otherwise, it can use the thread pool configuration parameters to set some kind of a
maximum waiting time.

5.6 Running Multiple MySQL Instances on One Machine

In some cases, you might want to run multiple instances of MySQL on a single machine. You might
want to test a new MySQL release while leaving an existing production setup undisturbed. Or you
might want to give different users access to different mysqld servers that they manage themselves.
(For example, you might be an Internet Service Provider that wants to provide independent MySQL
installations for different customers.)

It is possible to use a different MySQL server binary per instance, or use the same binary for multiple
instances, or any combination of the two approaches. For example, you might run a server from
MySQL 5.1 and one from MySQL 5.5, to see how different versions handle a given workload. Or
you might run multiple instances of the current production version, each managing a different set of
databases.

Whether or not you use distinct server binaries, each instance that you run must be configured with
unique values for several operating parameters. This eliminates the potential for conflict between
instances. Parameters can be set on the command line, in option files, or by setting environment
variables. See Section 4.2.3, “Specifying Program Options”. To see the values used by a given
instance, connect to it and execute a SHOW VARIABLES statement.

The primary resource managed by a MySQL instance is the data directory. Each instance should use a
different data directory, the location of which is specified using the --datadir=dir_name option. For
methods of configuring each instance with its own data directory, and warnings about the dangers of
failing to do so, see Section 5.6.1, “Setting Up Multiple Data Directories”.

In addition to using different data directories, several other options must have different values for each
server instance:

• --port=port_num

--port controls the port number for TCP/IP connections. Alternatively, if the host has multiple
network addresses, you can use --bind-address to cause each server to listen to a different
address.

• --socket={file_name|pipe_name}

--socket controls the Unix socket file path on Unix or the named pipe name on Windows. On
Windows, it is necessary to specify distinct pipe names only for those servers configured to permit
named-pipe connections.

• --shared-memory-base-name=name

This option is used only on Windows. It designates the shared-memory name used by a Windows
server to permit clients to connect using shared memory. It is necessary to specify distinct shared-
memory names only for those servers configured to permit shared-memory connections.

• --pid-file=file_name



Setting Up Multiple Data Directories

681

This option indicates the path name of the file in which the server writes its process ID.

If you use the following log file options, their values must differ for each server:

• --general_log_file=file_name

• --log-bin[=file_name]

• --slow_query_log_file=file_name

• --log-error[=file_name]

For further discussion of log file options, see Section 5.4, “MySQL Server Logs”.

To achieve better performance, you can specify the following option differently for each server, to
spread the load between several physical disks:

• --tmpdir=dir_name

Having different temporary directories also makes it easier to determine which MySQL server created
any given temporary file.

If you have multiple MySQL installations in different locations, you can specify the base directory for
each installation with the --basedir=dir_name option. This causes each instance to automatically
use a different data directory, log files, and PID file because the default for each of those parameters
is relative to the base directory. In that case, the only other options you need to specify are the --
socket and --port options. Suppose that you install different versions of MySQL using tar file
binary distributions. These install in different locations, so you can start the server for each installation
using the command bin/mysqld_safe under its corresponding base directory. mysqld_safe
determines the proper --basedir option to pass to mysqld, and you need specify only the --
socket and --port options to mysqld_safe.

As discussed in the following sections, it is possible to start additional servers by specifying appropriate
command options or by setting environment variables. However, if you need to run multiple servers
on a more permanent basis, it is more convenient to use option files to specify for each server those
option values that must be unique to it. The --defaults-file option is useful for this purpose.

5.6.1 Setting Up Multiple Data Directories

Each MySQL Instance on a machine should have its own data directory. The location is specified using
the --datadir=dir_name option.

There are different methods of setting up a data directory for a new instance:

• Create a new data directory.

• Copy an existing data directory.

The following discussion provides more detail about each method.

Warning

Normally, you should never have two servers that update data in the same
databases. This may lead to unpleasant surprises if your operating system does
not support fault-free system locking. If (despite this warning) you run multiple
servers using the same data directory and they have logging enabled, you must
use the appropriate options to specify log file names that are unique to each
server. Otherwise, the servers try to log to the same files.

Even when the preceding precautions are observed, this kind of setup works
only with MyISAM and MERGE tables, and not with any of the other storage



Running Multiple MySQL Instances on Windows

682

engines. Also, this warning against sharing a data directory among servers
always applies in an NFS environment. Permitting multiple MySQL servers
to access a common data directory over NFS is a very bad idea. The primary
problem is that NFS is the speed bottleneck. It is not meant for such use.
Another risk with NFS is that you must devise a way to ensure that two or more
servers do not interfere with each other. Usually NFS file locking is handled
by the lockd daemon, but at the moment there is no platform that performs
locking 100% reliably in every situation.

Create a New Data Directory

With this method, the data directory will be in the same state as when you first install MySQL. It will
have the default set of MySQL accounts and no user data.

On Unix, initialize the data directory. See Section 2.10, “Postinstallation Setup and Testing”.

On Windows, the data directory is included in the MySQL distribution:

• MySQL Zip archive distributions for Windows contain an unmodified data directory. You can unpack
such a distribution into a temporary location, then copy it data directory to where you are setting up
the new instance.

• As of MySQL 5.5.5, Windows MSI package installers create and set up the data directory that the
installed server will use, but also create a pristine “template” data directory named data under the
installation directory. After an installation has been performed using an MSI package, the template
data directory can be copied to set up additional MySQL instances.

Copy an Existing Data Directory

With this method, any MySQL accounts or user data present in the data directory are carried over to
the new data directory.

1. Stop the existing MySQL instance using the data directory. This must be a clean shutdown so that
the instance flushes any pending changes to disk.

2. Copy the data directory to the location where the new data directory should be.

3. Copy the my.cnf or my.ini option file used by the existing instance. This serves as a basis for
the new instance.

4. Modify the new option file so that any pathnames referring to the original data directory refer to the
new data directory. Also, modify any other options that must be unique per instance, such as the
TCP/IP port number and the log files. For a list of parameters that must be unique per instance, see
Section 5.6, “Running Multiple MySQL Instances on One Machine”.

5. Start the new instance, telling it to use the new option file.

5.6.2 Running Multiple MySQL Instances on Windows

You can run multiple servers on Windows by starting them manually from the command line, each with
appropriate operating parameters, or by installing several servers as Windows services and running
them that way. General instructions for running MySQL from the command line or as a service are
given in Section 2.3, “Installing MySQL on Microsoft Windows”. The following sections describe how
to start each server with different values for those options that must be unique per server, such as the
data directory. These options are listed in Section 5.6, “Running Multiple MySQL Instances on One
Machine”.

5.6.2.1 Starting Multiple MySQL Instances at the Windows Command Line

The procedure for starting a single MySQL server manually from the command line is described in
Section 2.3.7.5, “Starting MySQL from the Windows Command Line”. To start multiple servers this way,



Running Multiple MySQL Instances on Windows

683

you can specify the appropriate options on the command line or in an option file. It is more convenient
to place the options in an option file, but it is necessary to make sure that each server gets its own set
of options. To do this, create an option file for each server and tell the server the file name with a --
defaults-file option when you run it.

Suppose that you want to run one instance of mysqld on port 3307 with a data directory of C:
\mydata1, and another instance on port 3308 with a data directory of C:\mydata2. Use this
procedure:

1. Make sure that each data directory exists, including its own copy of the mysql database that
contains the grant tables.

2. Create two option files. For example, create one file named C:\my-opts1.cnf that looks like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named C:\my-opts2.cnf that looks like this:

[mysqld]
datadir = C:/mydata2
port = 3308

3. Use the --defaults-file option to start each server with its own option file:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts2.cnf

Each server starts in the foreground (no new prompt appears until the server exits later), so you will
need to issue those two commands in separate console windows.

To shut down the servers, connect to each using the appropriate port number:

C:\> C:\mysql\bin\mysqladmin --port=3307 --host=127.0.0.1 --user=root --password shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 --host=127.0.0.1 --user=root --password shutdown

Servers configured as just described permit clients to connect over TCP/IP. If your version of Windows
supports named pipes and you also want to permit named-pipe connections, specify options that
enable the named pipe and specify its name. Each server that supports named-pipe connections must
use a unique pipe name. For example, the C:\my-opts1.cnf file might be written like this:

[mysqld]
datadir = C:/mydata1
port = 3307
enable-named-pipe
socket = mypipe1

Modify C:\my-opts2.cnf similarly for use by the second server. Then start the servers as described
previously.

A similar procedure applies for servers that you want to permit shared-memory connections. Enable
such connections with the --shared-memory option and specify a unique shared-memory name for
each server with the --shared-memory-base-name option.

5.6.2.2 Starting Multiple MySQL Instances as Windows Services

On Windows, a MySQL server can run as a Windows service. The procedures for installing, controlling,
and removing a single MySQL service are described in Section 2.3.7.7, “Starting MySQL as a Windows
Service”.



Running Multiple MySQL Instances on Windows

684

To set up multiple MySQL services, you must make sure that each instance uses a different service
name in addition to the other parameters that must be unique per instance.

For the following instructions, suppose that you want to run the mysqld server from two different
versions of MySQL that are installed at C:\mysql-5.1.55 and C:\mysql-5.5.58, respectively.
(This might be the case if you are running 5.1.55 as your production server, but also want to conduct
tests using 5.5.58.)

To install MySQL as a Windows service, use the --install or --install-manual option. For
information about these options, see Section 2.3.7.7, “Starting MySQL as a Windows Service”.

Based on the preceding information, you have several ways to set up multiple services. The following
instructions describe some examples. Before trying any of them, shut down and remove any existing
MySQL services.

• Approach 1: Specify the options for all services in one of the standard option files. To do this, use
a different service name for each server. Suppose that you want to run the 5.1.55 mysqld using the
service name of mysqld1 and the 5.5.58 mysqld using the service name mysqld2. In this case,
you can use the [mysqld1] group for 5.1.55 and the [mysqld2] group for 5.5.58. For example,
you can set up C:\my.cnf like this:

# options for mysqld1 service
[mysqld1]
basedir = C:/mysql-5.1.55
port = 3307
enable-named-pipe
socket = mypipe1

# options for mysqld2 service
[mysqld2]
basedir = C:/mysql-5.5.58
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server path names to ensure that Windows registers the
correct executable program for each service:

C:\> C:\mysql-5.1.55\bin\mysqld --install mysqld1
C:\> C:\mysql-5.5.58\bin\mysqld --install mysqld2

To start the services, use the services manager, or use NET START with the appropriate service
names:

C:\> NET START mysqld1
C:\> NET START mysqld2

To stop the services, use the services manager, or use NET STOP with the appropriate service
names:

C:\> NET STOP mysqld1
C:\> NET STOP mysqld2

• Approach 2: Specify options for each server in separate files and use --defaults-file when
you install the services to tell each server what file to use. In this case, each file should list options
using a [mysqld] group.

With this approach, to specify options for the 5.1.55 mysqld, create a file C:\my-opts1.cnf that
looks like this:



Running Multiple MySQL Instances on Unix

685

[mysqld]
basedir = C:/mysql-5.1.55
port = 3307
enable-named-pipe
socket = mypipe1

For the 5.5.58 mysqld, create a file C:\my-opts2.cnf that looks like this:

[mysqld]
basedir = C:/mysql-5.5.58
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):

C:\> C:\mysql-5.1.55\bin\mysqld --install mysqld1
           --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql-5.5.58\bin\mysqld --install mysqld2
           --defaults-file=C:\my-opts2.cnf

When you install a MySQL server as a service and use a --defaults-file option, the service
name must precede the option.

After installing the services, start and stop them the same way as in the preceding example.

To remove multiple services, use mysqld --remove for each one, specifying a service name
following the --remove option. If the service name is the default (MySQL), you can omit it.

5.6.3 Running Multiple MySQL Instances on Unix

One way is to run multiple MySQL instances on Unix is to compile different servers with different
default TCP/IP ports and Unix socket files so that each one listens on different network interfaces.
Compiling in different base directories for each installation also results automatically in a separate,
compiled-in data directory, log file, and PID file location for each server.

Assume that an existing 5.1 server is configured for the default TCP/IP port number (3306) and
Unix socket file (/tmp/mysql.sock). To configure a new 5.5.58 server to have different operating
parameters, use a CMake command something like this:

shell> cmake . -DMYSQL_TCP_PORT=port_number \
             -DMYSQL_UNIX_ADDR=file_name \
             -DCMAKE_INSTALL_PREFIX=/usr/local/mysql-5.5.58

Here, port_number and file_name must be different from the default TCP/IP port number and Unix
socket file path name, and the CMAKE_INSTALL_PREFIX value should specify an installation directory
different from the one under which the existing MySQL installation is located.

If you have a MySQL server listening on a given port number, you can use the following command to
find out what operating parameters it is using for several important configurable variables, including the
base directory and Unix socket file name:

shell> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to use when
configuring an additional server.

If you specify localhost as the host name, mysqladmin defaults to using a Unix socket
file connection rather than TCP/IP. To explicitly specify the connection protocol, use the --
protocol={TCP|SOCKET|PIPE|MEMORY} option.



Using Client Programs in a Multiple-Server Environment

686

You need not compile a new MySQL server just to start with a different Unix socket file and TCP/IP port
number. It is also possible to use the same server binary and start each invocation of it with different
parameter values at runtime. One way to do so is by using command-line options:

shell> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a --
datadir=dir_name option to mysqld_safe so that the server uses a different data directory.

Alternatively, put the options for each server in a different option file, then start each server using a --
defaults-file option that specifies the path to the appropriate option file. For example, if the option
files for two server instances are named /usr/local/mysql/my.cnf and /usr/local/mysql/
my.cnf2, start the servers like this: command:

shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf
shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf2

Another way to achieve a similar effect is to use environment variables to set the Unix socket file name
and TCP/IP port number:

shell> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
shell> MYSQL_TCP_PORT=3307
shell> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
shell> mysql_install_db --user=mysql
shell> mysqld_safe --datadir=/path/to/datadir &

This is a quick way of starting a second server to use for testing. The nice thing about this method is
that the environment variable settings apply to any client programs that you invoke from the same shell.
Thus, connections for those clients are automatically directed to the second server.

Section 4.9, “MySQL Program Environment Variables”, includes a list of other environment variables
you can use to affect MySQL programs.

On Unix, the mysqld_multi script provides another way to start multiple servers. See Section 4.3.4,
“mysqld_multi — Manage Multiple MySQL Servers”.

5.6.4 Using Client Programs in a Multiple-Server Environment

To connect with a client program to a MySQL server that is listening to different network interfaces from
those compiled into your client, you can use one of the following methods:

• Start the client with --host=host_name --port=port_number to connect using TCP/IP to a
remote server, with --host=127.0.0.1 --port=port_number to connect using TCP/IP to a
local server, or with --host=localhost --socket=file_name to connect to a local server using
a Unix socket file or a Windows named pipe.

• Start the client with --protocol=TCP to connect using TCP/IP, --protocol=SOCKET to
connect using a Unix socket file, --protocol=PIPE to connect using a named pipe, or --
protocol=MEMORY to connect using shared memory. For TCP/IP connections, you may also need
to specify --host and --port options. For the other types of connections, you may need to specify
a --socket option to specify a Unix socket file or Windows named-pipe name, or a --shared-
memory-base-name option to specify the shared-memory name. Shared-memory connections are
supported only on Windows.

•     On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point to the
Unix socket file and TCP/IP port number before you start your clients. If you normally use a specific
socket file or port number, you can place commands to set these environment variables in your
.login file so that they apply each time you log in. See Section 4.9, “MySQL Program Environment
Variables”.



Tracing mysqld Using DTrace

687

•   Specify the default Unix socket file and TCP/IP port number in the [client] group of an option
file. For example, you can use C:\my.cnf on Windows, or the .my.cnf file in your home directory
on Unix. See Section 4.2.6, “Using Option Files”.

• In a C program, you can specify the socket file or port number arguments in the
mysql_real_connect() call. You can also have the program read option files by calling
mysql_options(). See Section 23.8.7, “C API Function Descriptions”.

• If you are using the Perl DBD::mysql module, you can read options from MySQL option files. For
example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
        . "mysql_read_default_file=/usr/local/mysql/data/my.cnf";
$dbh = DBI->connect($dsn, $user, $password);

See Section 23.10, “MySQL Perl API”.

Other programming interfaces may provide similar capabilities for reading option files.

5.7 Tracing mysqld Using DTrace

The DTrace probes in the MySQL server are designed to provide information about the execution of
queries within MySQL and the different areas of the system being utilized during that process. The
organization and triggering of the probes means that the execution of an entire query can be monitored
with one level of probes (query-start and query-done) but by monitoring other probes you can get
successively more detailed information about the execution of the query in terms of the locks used, sort
methods and even row-by-row and storage-engine level execution information.

The DTrace probes are organized so that you can follow the entire query process, from the point
of connection from a client, through the query execution, row-level operations, and back out again.
You can think of the probes as being fired within a specific sequence during a typical client connect/
execute/disconnect sequence, as shown in the following figure.

Figure 5.1 The MySQL Architecture Using Pluggable Storage Engines

Global information is provided in the arguments to the DTrace probes at various levels. Global
information, that is, the connection ID and user/host and where relevant the query string, is provided at
key levels (connection-start, command-start, query-start, and query-exec-start). As
you go deeper into the probes, it is assumed either you are only interested in the individual executions
(row-level probes provide information on the database and table name only), or that you will combine
the row-level probes with the notional parent probes to provide the information about a specific query.
Examples of this will be given as the format and arguments of each probe are provided.

MySQL includes support for DTrace probes on these platforms:



Additional Resources

688

• Solaris 10 Update 5 (Solaris 5/08) on SPARC, x86 and x86_64 platforms

• OS X 10.4 and higher

Enabling the probes should be automatic on these platforms. To explicitly enable or disable the probes
during building, use the -DENABLE_DTRACE=1 or -DENABLE_DTRACE=0 option to CMake.

If a non-Solaris platform includes DTrace support, building mysqld on that platform will include DTrace
support.

Additional Resources

• For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.

• For an introduction to DTrace, see the MySQL Dev Zone article Getting started with DTracing
MySQL.

5.7.1 mysqld DTrace Probe Reference

MySQL supports the following static probes, organized into groups of functionality.

Table 5.5 MySQL DTrace Probes

Group Probes

Connection connection-start, connection-done

Command command-start, command-done

Query query-start, query-done

Query Parsing query-parse-start, query-parse-done

Query Cache query-cache-hit, query-cache-miss

Query Execution query-exec-start, query-exec-done

Row Level insert-row-start, insert-row-done

 update-row-start, update-row-done

 delete-row-start, delete-row-done

Row Reads read-row-start, read-row-done

Index Reads index-read-row-start, index-read-row-done

Lock handler-rdlock-start, handler-rdlock-done

 handler-wrlock-start, handler-wrlock-done

 handler-unlock-start, handler-unlock-done

Filesort filesort-start, filesort-done

Statement select-start, select-done

 insert-start, insert-done

 insert-select-start, insert-select-done

 update-start, update-done

 multi-update-start, multi-update-done

 delete-start, delete-done

 multi-delete-start, multi-delete-done

Network net-read-start, net-read-done, net-write-start, net-write-done

Keycache keycache-read-start, keycache-read-block, keycache-read-done,
keycache-read-hit, keycache-read-miss, keycache-write-start,
keycache-write-block, keycache-write-done

http://docs.oracle.com/cd/E19253-01/819-5488/
http://dev.mysql.com/tech-resources/articles/mysql-cluster-7.2.html
http://dev.mysql.com/tech-resources/articles/mysql-cluster-7.2.html


mysqld DTrace Probe Reference

689

Note

When extracting the argument data from the probes, each argument is available
as argN, starting with arg0. To identify each argument within the definitions
they are provided with a descriptive name, but you must access the information
using the corresponding argN parameter.

5.7.1.1 Connection Probes

The connection-start and connection-done probes enclose a connection from a client,
regardless of whether the connection is through a socket or network connection.

connection-start(connectionid, user, host)
connection-done(status, connectionid)

• connection-start: Triggered after a connection and successful login/authentication have been
completed by a client. The arguments contain the connection information:

• connectionid: An unsigned long containing the connection ID. This is the same as the
process ID shown as the Id value in the output from SHOW PROCESSLIST.

• user: The username used when authenticating. The value will be blank for the anonymous user.

• host: The host of the client connection. For a connection made using Unix sockets, the value will
be blank.

• connection-done: Triggered just as the connection to the client has been closed. The arguments
are:

• status: The status of the connection when it was closed. A logout operation will have a value of
0; any other termination of the connection has a nonzero value.

• connectionid: The connection ID of the connection that was closed.

The following D script will quantify and summarize the average duration of individual connections, and
provide a count, dumping the information every 60 seconds:

#!/usr/sbin/dtrace -s

mysql*:::connection-start
{
  self->start = timestamp;
}

mysql*:::connection-done
/self->start/
{
  @ = quantize(((timestamp - self->start)/1000000));
  self->start = 0;
}

tick-60s
{
  printa(@);
}

When executed on a server with a large number of clients you might see output similar to this:

  1  57413                        :tick-60s

           value  ------------- Distribution ------------- count
              -1 |                                         0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 30011
               1 |                                         59
               2 |                                         5



mysqld DTrace Probe Reference

690

               4 |                                         20
               8 |                                         29
              16 |                                         18
              32 |                                         27
              64 |                                         30
             128 |                                         11
             256 |                                         10
             512 |                                         1
            1024 |                                         6
            2048 |                                         8
            4096 |                                         9
            8192 |                                         8
           16384 |                                         2
           32768 |                                         1
           65536 |                                         1
          131072 |                                         0
          262144 |                                         1
          524288 |                                         0        

5.7.1.2 Command Probes

The command probes are executed before and after a client command is executed, including any
SQL statement that might be executed during that period. Commands include operations such as the
initialization of the DB, use of the COM_CHANGE_USER operation (supported by the MySQL protocol),
and manipulation of prepared statements. Many of these commands are used only by the MySQL client
API from various connectors such as PHP and Java.

command-start(connectionid, command, user, host)
command-done(status)

• command-start: Triggered when a command is submitted to the server.

• connectionid: The connection ID of the client executing the command.

• command: An integer representing the command that was executed. Possible values are shown in
the following table.

Value Name Description

00 COM_SLEEP Internal thread state

01 COM_QUIT Close connection

02 COM_INIT_DB Select database (USE ...)

03 COM_QUERY Execute a query

04 COM_FIELD_LIST Get a list of fields

05 COM_CREATE_DBCreate a database (deprecated)

06 COM_DROP_DB Drop a database (deprecated)

07 COM_REFRESH Refresh connection

08 COM_SHUTDOWNShutdown server

09 COM_STATISTICSGet statistics

10 COM_PROCESS_INFOGet processes (SHOW PROCESSLIST)

11 COM_CONNECT Initialize connection

12 COM_PROCESS_KILLKill process

13 COM_DEBUG Get debug information

14 COM_PING Ping

15 COM_TIME Internal thread state

16 COM_DELAYED_INSERTInternal thread state

17 COM_CHANGE_USERChange user



mysqld DTrace Probe Reference

691

Value Name Description

18 COM_BINLOG_DUMPUsed by a replication slave or mysqlbinlog to initiate a binary log
read

19 COM_TABLE_DUMPUsed by a replication slave to get the master table information

20 COM_CONNECT_OUTUsed by a replication slave to log a connection to the server

21 COM_REGISTER_SLAVEUsed by a replication slave during registration

22 COM_STMT_PREPAREPrepare a statement

23 COM_STMT_EXECUTEExecute a statement

24 COM_STMT_SEND_LONG_DATAUsed by a client when requesting extended data

25 COM_STMT_CLOSEClose a prepared statement

26 COM_STMT_RESETReset a prepared statement

27 COM_SET_OPTIONSet a server option

28 COM_STMT_FETCHFetch a prepared statement

• user: The user executing the command.

• host: The client host.

• command-done: Triggered when the command execution completes. The status argument
contains 0 if the command executed successfully, or 1 if the statement was terminated before normal
completion.

The command-start and command-done probes are best used when combined with the statement
probes to get an idea of overall execution time.

5.7.1.3 Query Probes

The query-start and query-done probes are triggered when a specific query is received by the
server and when the query has been completed and the information has been successfully sent to the
client.

query-start(query, connectionid, database, user, host)
query-done(status)

• query-start: Triggered after the query string has been received from the client. The arguments
are:

• query: The full text of the submitted query.

• connectionid: The connection ID of the client that submitted the query. The connection ID
equals the connection ID returned when the client first connects and the Id value in the output
from SHOW PROCESSLIST.

• database: The database name on which the query is being executed.

• user: The username used to connect to the server.

• host: The hostname of the client.

• query-done: Triggered once the query has been executed and the information has been returned
to the client. The probe includes a single argument, status, which returns 0 when the query is
successfully executed and 1 if there was an error.

You can get a simple report of the execution time for each query using the following D script:

#!/usr/sbin/dtrace -s

#pragma D option quiet



mysqld DTrace Probe Reference

692

dtrace:::BEGIN
{
   printf("%-20s %-20s %-40s %-9s\n", "Who", "Database", "Query", "Time(ms)");
}

mysql*:::query-start
{
   self->query = copyinstr(arg0);
   self->connid = arg1;
   self->db    = copyinstr(arg2);
   self->who   = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
   self->querystart = timestamp;
}

mysql*:::query-done
{
   printf("%-20s %-20s %-40s %-9d\n",self->who,self->db,self->query,
          (timestamp - self->querystart) / 1000000);
}

When executing the above script you should get a basic idea of the execution time of your queries:

shell> ./query.d
Who                  Database             Query                                    Time(ms)
root@localhost       test                 select * from t1 order by i limit 10     0
root@localhost       test                 set global query_cache_size=0            0
root@localhost       test                 select * from t1 order by i limit 10     776
root@localhost       test                 select * from t1 order by i limit 10     773
root@localhost       test                 select * from t1 order by i desc limit 10 795 

5.7.1.4 Query Parsing Probes

The query parsing probes are triggered before the original SQL statement is parsed and when the
parsing of the statement and determination of the execution model required to process the statement
has been completed:

query-parse-start(query)
query-parse-done(status)

• query-parse-start: Triggered just before the statement is parsed by the MySQL query parser.
The single argument, query, is a string containing the full text of the original query.

• query-parse-done: Triggered when the parsing of the original statement has been completed.
The status is an integer describing the status of the operation. A 0 indicates that the query was
successfully parsed. A 1 indicates that the parsing of the query failed.

For example, you could monitor the execution time for parsing a given query using the following D
script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::query-parse-start
{
   self->parsestart = timestamp;
   self->parsequery = copyinstr(arg0);
}

mysql*:::query-parse-done
/arg0 == 0/
{
   printf("Parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));
}

mysql*:::query-parse-done
/arg0 != 0/
{
   printf("Error parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));



mysqld DTrace Probe Reference

693

}

In the above script a predicate is used on query-parse-done so that different output is generated
based on the status value of the probe.

When running the script and monitoring the execution:

shell> ./query-parsing.d
Error parsing select from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 36 ms
Parsing select * from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 176 ms

5.7.1.5 Query Cache Probes

The query cache probes are fired when executing any query. The query-cache-hit query
is triggered when a query exists in the query cache and can be used to return the query cache
information. The arguments contain the original query text and the number of rows returned from the
query cache for the query. If the query is not within the query cache, or the query cache is not enabled,
then the query-cache-miss probe is triggered instead.

query-cache-hit(query, rows)
query-cache-miss(query)

• query-cache-hit: Triggered when the query has been found within the query cache. The first
argument, query, contains the original text of the query. The second argument, rows, is an integer
containing the number of rows in the cached query.

• query-cache-miss: Triggered when the query is not found within the query cache. The first
argument, query, contains the original text of the query.

The query cache probes are best combined with a probe on the main query so that you can determine
the differences in times between using or not using the query cache for specified queries. For example,
in the following D script, the query and query cache information are combined into the information
output during monitoring:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
   printf("%-20s %-20s %-40s %2s %-9s\n", "Who", "Database", "Query", "QC", "Time(ms)");
}

mysql*:::query-start
{
   self->query = copyinstr(arg0);
   self->connid = arg1;
   self->db    = copyinstr(arg2);
   self->who   = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
   self->querystart = timestamp;
   self->qc = 0;
}

mysql*:::query-cache-hit
{
   self->qc = 1;
}

mysql*:::query-cache-miss
{
   self->qc = 0;
}

mysql*:::query-done
{
   printf("%-20s %-20s %-40s %-2s %-9d\n",self->who,self->db,self->query,(self->qc ? "Y" : "N"),
          (timestamp - self->querystart) / 1000000);
}



mysqld DTrace Probe Reference

694

When executing the script you can see the effects of the query cache. Initially the query cache is
disabled. If you set the query cache size and then execute the query multiple times you should see that
the query cache is being used to return the query data:

shell> ./query-cache.d
root@localhost       test                 select * from t1 order by i limit 10     N  1072
root@localhost                            set global query_cache_size=262144       N  0
root@localhost       test                 select * from t1 order by i limit 10     N  781
root@localhost       test                 select * from t1 order by i limit 10     Y  0 

5.7.1.6 Query Execution Probes

The query execution probe is triggered when the actual execution of the query starts, after the parsing
and checking the query cache but before any privilege checks or optimization. By comparing the
difference between the start and done probes you can monitor the time actually spent servicing the
query (instead of just handling the parsing and other elements of the query).

query-exec-start(query, connectionid, database, user, host, exec_type)
query-exec-done(status)

Note

The information provided in the arguments for query-start and query-
exec-start are almost identical and designed so that you can choose to
monitor either the entire query process (using query-start) or only the
execution (using query-exec-start) while exposing the core information
about the user, client, and query being executed.

• query-exec-start: Triggered when the execution of a individual query is started. The arguments
are:

• query: The full text of the submitted query.

• connectionid: The connection ID of the client that submitted the query. The connection ID
equals the connection ID returned when the client first connects and the Id value in the output
from SHOW PROCESSLIST.

• database: The database name on which the query is being executed.

• user: The username used to connect to the server.

• host: The hostname of the client.

• exec_type: The type of execution. Execution types are determined based on the contents of the
query and where it was submitted. The values for each type are shown in the following table.

Value Description

0 Executed query from sql_parse, top-level query.

1 Executed prepared statement

2 Executed cursor statement

3 Executed query in stored procedure

• query-exec-done: Triggered when the execution of the query has completed. The probe includes
a single argument, status, which returns 0 when the query is successfully executed and 1 if there
was an error.

5.7.1.7 Row-Level Probes

The *row-{start,done} probes are triggered each time a row operation is pushed down to a
storage engine. For example, if you execute an INSERT statement with 100 rows of data, then the



mysqld DTrace Probe Reference

695

insert-row-start and insert-row-done probes will be triggered 100 times each, for each row
insert.

insert-row-start(database, table)
insert-row-done(status)

update-row-start(database, table)
update-row-done(status)

delete-row-start(database, table)
delete-row-done(status)

• insert-row-start: Triggered before a row is inserted into a table.

• insert-row-done: Triggered after a row is inserted into a table.

• update-row-start: Triggered before a row is updated in a table.

• update-row-done: Triggered before a row is updated in a table.

• delete-row-start: Triggered before a row is deleted from a table.

• delete-row-done: Triggered before a row is deleted from a table.

The arguments supported by the probes are consistent for the corresponding start and done probes
in each case:

• database: The database name.

• table: The table name.

• status: The status; 0 for success or 1 for failure.

Because the row-level probes are triggered for each individual row access, these probes can be
triggered many thousands of times each second, which may have a detrimental effect on both the
monitoring script and MySQL. The DTrace environment should limit the triggering on these probes
to prevent the performance being adversely affected. Either use the probes sparingly, or use counter
or aggregation functions to report on these probes and then provide a summary when the script
terminates or as part of a query-done or query-exec-done probes.

The following example script summarizes the duration of each row operation within a larger query:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
   printf("%-2s %-10s %-10s %9s %9s %-s \n",
          "St", "Who", "DB", "ConnID", "Dur ms", "Query");
}

mysql*:::query-start
{
   self->query = copyinstr(arg0);
   self->who   = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
   self->db    = copyinstr(arg2);
   self->connid = arg1;
   self->querystart = timestamp;
   self->rowdur = 0;
}

mysql*:::query-done
{
   this->elapsed = (timestamp - self->querystart) /1000000;
   printf("%2d %-10s %-10s %9d %9d %s\n",
          arg0, self->who, self->db,



mysqld DTrace Probe Reference

696

          self->connid, this->elapsed, self->query);
}

mysql*:::query-done
/ self->rowdur /
{
   printf("%34s %9d %s\n", "", (self->rowdur/1000000), "-> Row ops");
}

mysql*:::insert-row-start
{
   self->rowstart = timestamp;
}

mysql*:::delete-row-start
{
   self->rowstart = timestamp;
}

mysql*:::update-row-start
{
   self->rowstart = timestamp;
}

mysql*:::insert-row-done
{
   self->rowdur += (timestamp-self->rowstart);
}

mysql*:::delete-row-done
{
   self->rowdur += (timestamp-self->rowstart);
}

mysql*:::update-row-done
{
   self->rowdur += (timestamp-self->rowstart);
}

Running the above script with a query that inserts data into a table, you can monitor the exact time
spent performing the raw row insertion:

St Who        DB            ConnID    Dur ms Query
 0 @localhost test              13     20767 insert into t1(select * from t2)
                                        4827 -> Row ops

5.7.1.8 Read Row Probes

The read row probes are triggered at a storage engine level each time a row read operation occurs.
These probes are specified within each storage engine (as opposed to the *row-start probes which
are in the storage engine interface). These probes can therefore be used to monitor individual storage
engine row-level operations and performance. Because these probes are triggered around the storage
engine row read interface, they may be hit a significant number of times during a basic query.

read-row-start(database, table, scan_flag)
read-row-done(status)

• read-row-start: Triggered when a row is read by the storage engine from the specified
database and table. The scan_flag is set to 1 (true) when the read is part of a table scan (that
is, a sequential read), or 0 (false) when the read is of a specific record.

• read-row-done: Triggered when a row read operation within a storage engine completes. The
status returns 0 on success, or a positive value on failure.

5.7.1.9 Index Probes

The index probes are triggered each time a row is read using one of the indexes for the specified table.
The probe is triggered within the corresponding storage engine for the table.



mysqld DTrace Probe Reference

697

index-read-row-start(database, table)
index-read-row-done(status)

• index-read-row-start: Triggered when a row is read by the storage engine from the specified
database and table.

• index-read-row-done: Triggered when an indexed row read operation within a storage engine
completes. The status returns 0 on success, or a positive value on failure.

5.7.1.10 Lock Probes

The lock probes are called whenever an external lock is requested by MySQL for a table using the
corresponding lock mechanism on the table as defined by the table's engine type. There are three
different types of lock, the read lock, write lock, and unlock operations. Using the probes you can
determine the duration of the external locking routine (that is, the time taken by the storage engine to
implement the lock, including any time waiting for another lock to become free) and the total duration of
the lock/unlock process.

handler-rdlock-start(database, table)
handler-rdlock-done(status)

handler-wrlock-start(database, table)
handler-wrlock-done(status)

handler-unlock-start(database, table)
handler-unlock-done(status)

• handler-rdlock-start: Triggered when a read lock is requested on the specified database and
table.

• handler-wrlock-start: Triggered when a write lock is requested on the specified database
and table.

• handler-unlock-start: Triggered when an unlock request is made on the specified database
and table.

• handler-rdlock-done: Triggered when a read lock request completes. The status is 0 if the
lock operation succeeded, or >0 on failure.

• handler-wrlock-done: Triggered when a write lock request completes. The status is 0 if the
lock operation succeeded, or >0 on failure.

• handler-unlock-done: Triggered when an unlock request completes. The status is 0 if the
unlock operation succeeded, or >0 on failure.

You can use arrays to monitor the locking and unlocking of individual tables and then calculate the
duration of the entire table lock using the following script:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::handler-rdlock-start
{
   self->rdlockstart = timestamp;
   this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
   self->lockmap[this->lockref] = self->rdlockstart;
   printf("Start: Lock->Read   %s.%s\n",copyinstr(arg0),copyinstr(arg1));
}

mysql*:::handler-wrlock-start
{
   self->wrlockstart = timestamp;
   this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
   self->lockmap[this->lockref] = self->rdlockstart;
   printf("Start: Lock->Write  %s.%s\n",copyinstr(arg0),copyinstr(arg1));



mysqld DTrace Probe Reference

698

}

mysql*:::handler-unlock-start
{
   self->unlockstart = timestamp;
   this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
   printf("Start: Lock->Unlock %s.%s (%d ms lock duration)\n",
          copyinstr(arg0),copyinstr(arg1),
          (timestamp - self->lockmap[this->lockref])/1000000);
}

mysql*:::handler-rdlock-done
{
   printf("End:   Lock->Read   %d ms\n",
          (timestamp - self->rdlockstart)/1000000);
}

mysql*:::handler-wrlock-done
{
   printf("End:   Lock->Write  %d ms\n",
          (timestamp - self->wrlockstart)/1000000);
}

mysql*:::handler-unlock-done
{
   printf("End:   Lock->Unlock %d ms\n",
          (timestamp - self->unlockstart)/1000000);
}

When executed, you should get information both about the duration of the locking process itself, and of
the locks on a specific table:

Start: Lock->Read   test.t2
End:   Lock->Read   0 ms
Start: Lock->Unlock test.t2 (25743 ms lock duration)
End:   Lock->Unlock 0 ms
Start: Lock->Read   test.t2
End:   Lock->Read   0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End:   Lock->Unlock 0 ms
Start: Lock->Read   test.t2
End:   Lock->Read   0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End:   Lock->Unlock 0 ms
Start: Lock->Read   test.t2
End:   Lock->Read   0 ms

5.7.1.11 Filesort Probes

The filesort probes are triggered whenever a filesort operation is applied to a table. For more
information on filesort and the conditions under which it occurs, see Section 8.2.1.10, “ORDER BY
Optimization”.

filesort-start(database, table)
filesort-done(status, rows)

• filesort-start: Triggered when the filesort operation starts on a table. The two arguments to the
probe, database and table, will identify the table being sorted.

• filesort-done: Triggered when the filesort operation completes. Two arguments are supplied, the
status (0 for success, 1 for failure), and the number of rows sorted during the filesort process.

An example of this is in the following script, which tracks the duration of the filesort process in addition
to the duration of the main query:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN



mysqld DTrace Probe Reference

699

{
   printf("%-2s %-10s %-10s %9s %18s %-s \n",
          "St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}

mysql*:::query-start
{
   self->query = copyinstr(arg0);
   self->who   = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
   self->db    = copyinstr(arg2);
   self->connid = arg1;
   self->querystart = timestamp;
   self->filesort = 0;
   self->fsdb = "";
   self->fstable = "";
}

mysql*:::filesort-start
{
  self->filesort = timestamp;
  self->fsdb = copyinstr(arg0);
  self->fstable = copyinstr(arg1);
}

mysql*:::filesort-done
{
   this->elapsed = (timestamp - self->filesort) /1000;
   printf("%2d %-10s %-10s %9d %18d Filesort on %s\n",
          arg0, self->who, self->fsdb,
          self->connid, this->elapsed, self->fstable);
}

mysql*:::query-done
{
   this->elapsed = (timestamp - self->querystart) /1000;
   printf("%2d %-10s %-10s %9d %18d %s\n",
          arg0, self->who, self->db,
          self->connid, this->elapsed, self->query);
}

Executing a query on a large table with an ORDER BY clause that triggers a filesort, and then creating
an index on the table and then repeating the same query, you can see the difference in execution
speed:

St Who        DB            ConnID       Dur microsec Query
 0 @localhost test              14           11335469 Filesort on t1
 0 @localhost test              14           11335787 select * from t1 order by i limit 100
 0 @localhost test              14          466734378 create index t1a on t1 (i)
 0 @localhost test              14              26472 select * from t1 order by i limit 100

5.7.1.12 Statement Probes

The individual statement probes are provided to give specific information about different statement
types. For the start probes the string of the query is provided as a the only argument. Depending on
the statement type, the information provided by the corresponding done probe will differ. For all done
probes the status of the operation (0 for success, >0 for failure) is provided. For SELECT, INSERT,
INSERT ... (SELECT FROM ...), DELETE, and DELETE FROM t1,t2 operations the number of
rows affected is returned.

For UPDATE and UPDATE t1,t2 ... statements the number of rows matched and the number
of rows actually changed is provided. This is because the number of rows actually matched by the
corresponding WHERE clause, and the number of rows changed can differ. MySQL does not update the
value of a row if the value already matches the new setting.

select-start(query)
select-done(status,rows)

insert-start(query)
insert-done(status,rows)



mysqld DTrace Probe Reference

700

insert-select-start(query)
insert-select-done(status,rows)

update-start(query)
update-done(status,rowsmatched,rowschanged)

multi-update-start(query)
multi-update-done(status,rowsmatched,rowschanged)

delete-start(query)
delete-done(status,rows)

multi-delete-start(query)
multi-delete-done(status,rows)

• select-start: Triggered before a SELECT statement.

• select-done: Triggered at the end of a SELECT statement.

• insert-start: Triggered before a INSERT statement.

• insert-done: Triggered at the end of an INSERT statement.

• insert-select-start: Triggered before an INSERT ... SELECT statement.

• insert-select-done: Triggered at the end of an INSERT ... SELECT statement.

• update-start: Triggered before an UPDATE statement.

• update-done: Triggered at the end of an UPDATE statement.

• multi-update-start: Triggered before an UPDATE statement involving multiple tables.

• multi-update-done: Triggered at the end of an UPDATE statement involving multiple tables.

• delete-start: Triggered before a DELETE statement.

• delete-done: Triggered at the end of a DELETE statement.

• multi-delete-start: Triggered before a DELETE statement involving multiple tables.

• multi-delete-done: Triggered at the end of a DELETE statement involving multiple tables.

The arguments for the statement probes are:

• query: The query string.

• status: The status of the query. 0 for success, and >0 for failure.

• rows: The number of rows affected by the statement. This returns the number rows found for
SELECT, the number of rows deleted for DELETE, and the number of rows successfully inserted for
INSERT.

• rowsmatched: The number of rows matched by the WHERE clause of an UPDATE operation.

• rowschanged: The number of rows actually changed during an UPDATE operation.

You use these probes to monitor the execution of these statement types without having to monitor the
user or client executing the statements. A simple example of this is to track the execution times:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
   printf("%-60s %-8s %-8s %-8s\n", "Query", "RowsU", "RowsM", "Dur (ms)");



mysqld DTrace Probe Reference

701

}

mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
    self->query = copyinstr(arg0);
    self->querystart = timestamp;
}

mysql*:::insert-done, mysql*:::select-done,
mysql*:::delete-done, mysql*:::multi-delete-done, mysql*:::insert-select-done
/ self->querystart /
{
    this->elapsed = ((timestamp - self->querystart)/1000000);
    printf("%-60s %-8d %-8d %d\n",
           self->query,
           0,
           arg1,
           this->elapsed);
    self->querystart = 0;
}

mysql*:::update-done, mysql*:::multi-update-done
/ self->querystart /
{
    this->elapsed = ((timestamp - self->querystart)/1000000);
    printf("%-60s %-8d %-8d %d\n",
           self->query,
           arg1,
           arg2,
           this->elapsed);
    self->querystart = 0;
}

When executed you can see the basic execution times and rows matches:

Query                                                        RowsU    RowsM    Dur (ms)
select * from t2                                             0        275      0
insert into t2 (select * from t2)                            0        275      9
update t2 set i=5 where i > 75                               110      110      8
update t2 set i=5 where i < 25                               254      134      12
delete from t2 where i < 5                                   0        0        0

Another alternative is to use the aggregation functions in DTrace to aggregate the execution time of
individual statements together:

#!/usr/sbin/dtrace -s

#pragma D option quiet

mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
    self->querystart = timestamp;
}

mysql*:::select-done
{
        @statements["select"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::insert-done, mysql*:::insert-select-done
{
        @statements["insert"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::update-done, mysql*:::multi-update-done



mysqld DTrace Probe Reference

702

{
        @statements["update"] = sum(((timestamp - self->querystart)/1000000));
}

mysql*:::delete-done, mysql*:::multi-delete-done
{
        @statements["delete"] = sum(((timestamp - self->querystart)/1000000));
}

tick-30s
{
        printa(@statements);
}

The script just shown aggregates the times spent doing each operation, which could be used to help
benchmark a standard suite of tests.

 delete                                                            0
  update                                                            0
  insert                                                           23
  select                                                         2484

  delete                                                            0
  update                                                            0
  insert                                                           39
  select                                                        10744

  delete                                                            0
  update                                                           26
  insert                                                           56
  select                                                        10944

  delete                                                            0
  update                                                           26
  insert                                                         2287
  select                                                        15985

5.7.1.13 Network Probes

The network probes monitor the transfer of information from the MySQL server and clients of all types
over the network. The probes are defined as follows:

net-read-start()
net-read-done(status, bytes)
net-write-start(bytes)
net-write-done(status)

• net-read-start: Triggered when a network read operation is started.

• net-read-done: Triggered when the network read operation completes. The status is an
integer representing the return status for the operation, 0 for success and 1 for failure. The bytes
argument is an integer specifying the number of bytes read during the process.

• net-start-bytes: Triggered when data is written to a network socket. The single argument,
bytes, specifies the number of bytes written to the network socket.

• net-write-done: Triggered when the network write operation has completed. The single
argument, status, is an integer representing the return status for the operation, 0 for success and 1
for failure.

You can use the network probes to monitor the time spent reading from and writing to network clients
during execution. The following D script provides an example of this. Both the cumulative time for the
read or write is calculated, and the number of bytes. Note that the dynamic variable size has been
increased (using the dynvarsize option) to cope with the rapid firing of the individual probes for the
network reads/writes.

#!/usr/sbin/dtrace -s



mysqld DTrace Probe Reference

703

#pragma D option quiet
#pragma D option dynvarsize=4m

dtrace:::BEGIN
{
   printf("%-2s %-30s %-10s %9s %18s %-s \n",
          "St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}

mysql*:::query-start
{
   self->query = copyinstr(arg0);
   self->who   = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
   self->db    = copyinstr(arg2);
   self->connid = arg1;
   self->querystart = timestamp;
   self->netwrite = 0;
   self->netwritecum = 0;
   self->netwritebase = 0;
   self->netread = 0;
   self->netreadcum = 0;
   self->netreadbase = 0;
}

mysql*:::net-write-start
{
   self->netwrite += arg0;
   self->netwritebase = timestamp;
}

mysql*:::net-write-done
{
   self->netwritecum += (timestamp - self->netwritebase);
   self->netwritebase = 0;
}

mysql*:::net-read-start
{
   self->netreadbase = timestamp;
}

mysql*:::net-read-done
{
   self->netread += arg1;
   self->netreadcum += (timestamp - self->netreadbase);
   self->netreadbase = 0;
}

mysql*:::query-done
{
   this->elapsed = (timestamp - self->querystart) /1000000;
   printf("%2d %-30s %-10s %9d %18d %s\n",
          arg0, self->who, self->db,
          self->connid, this->elapsed, self->query);
   printf("Net read: %d bytes (%d ms) write: %d bytes (%d ms)\n",
               self->netread, (self->netreadcum/1000000),
               self->netwrite, (self->netwritecum/1000000));
}

When executing the above script on a machine with a remote client, you can see that approximately a
third of the time spent executing the query is related to writing the query results back to the client.

St Who                            DB            ConnID       Dur microsec Query
 0 root@::ffff:192.168.0.108      test              31               3495 select * from t1 limit 1000000
Net read: 0 bytes (0 ms) write: 10000075 bytes (1220 ms)

5.7.1.14 Keycache Probes

The keycache probes are triggered when using the index key cache used with the MyISAM storage
engine. Probes exist to monitor when data is read into the keycache, cached key data is written from
the cache into a cached file, or when accessing the keycache.



mysqld DTrace Probe Reference

704

Keycache usage indicates when data is read or written from the index files into the cache, and can be
used to monitor how efficient the memory allocated to the keycache is being used. A high number of
keycache reads across a range of queries may indicate that the keycache is too small for size of data
being accessed.

keycache-read-start(filepath, bytes, mem_used, mem_free)
keycache-read-block(bytes)
keycache-read-hit()
keycache-read-miss()
keycache-read-done(mem_used, mem_free)
keycache-write-start(filepath, bytes, mem_used, mem_free)
keycache-write-block(bytes)
keycache-write-done(mem_used, mem_free)

When reading data from the index files into the keycache, the process first initializes the read operation
(indicated by keycache-read-start), then loads blocks of data (keycache-read-block), and
then the read block is either matches the data being identified (keycache-read-hit) or more data
needs to be read (keycache-read-miss). Once the read operation has completed, reading stops
with the keycache-read-done.

Data will be read from the index file into the keycache only when the specified key is not already within
the keycache.

• keycache-read-start: Triggered when the keycache read operation is started. Data is read from
the specified filepath, reading the specified number of bytes. The mem_used and mem_avail
indicate memory currently used by the keycache and the amount of memory available within the
keycache.

• keycache-read-block: Triggered when the keycache reads a block of data, of the specified
number of bytes, from the index file into the keycache.

• keycache-read-hit: Triggered when the block of data read from the index file matches the key
data requested.

• keycache-read-miss: Triggered when the block of data read from the index file does not match
the key data needed.

• keycache-read-done: Triggered when the keycache read operation has completed. The
mem_used and mem_avail indicate memory currently used by the keycache and the amount of
memory available within the keycache.

Keycache writes occur when the index information is updated during an INSERT, UPDATE, or DELETE
operation, and the cached key information is flushed back to the index file.

• keycache-write-start: Triggered when the keycache write operation is started. Data is written
to the specified filepath, reading the specified number of bytes. The mem_used and mem_avail
indicate memory currently used by the keycache and the amount of memory available within the
keycache.

• keycache-write-block: Triggered when the keycache writes a block of data, of the specified
number of bytes, to the index file from the keycache.

• keycache-write-done: Triggered when the keycache write operation has completed. The
mem_used and mem_avail indicate memory currently used by the keycache and the amount of
memory available within the keycache.



705

Chapter 6 Security

Table of Contents
6.1 General Security Issues ...................................................................................................... 706

6.1.1 Security Guidelines ................................................................................................... 706
6.1.2 Keeping Passwords Secure ...................................................................................... 707
6.1.3 Making MySQL Secure Against Attackers .................................................................. 715
6.1.4 Security-Related mysqld Options and Variables ......................................................... 717
6.1.5 How to Run MySQL as a Normal User ...................................................................... 717
6.1.6 Security Issues with LOAD DATA LOCAL .................................................................. 718
6.1.7 Client Programming Security Guidelines .................................................................... 719

6.2 The MySQL Access Privilege System .................................................................................. 721
6.2.1 Privileges Provided by MySQL .................................................................................. 722
6.2.2 Grant Tables ............................................................................................................ 726
6.2.3 Specifying Account Names ....................................................................................... 732
6.2.4 Access Control, Stage 1: Connection Verification ....................................................... 734
6.2.5 Access Control, Stage 2: Request Verification ........................................................... 736
6.2.6 When Privilege Changes Take Effect ........................................................................ 738
6.2.7 Troubleshooting Problems Connecting to MySQL ....................................................... 739

6.3 MySQL User Account Management ..................................................................................... 744
6.3.1 User Names and Passwords ..................................................................................... 744
6.3.2 Adding User Accounts .............................................................................................. 746
6.3.3 Removing User Accounts ......................................................................................... 747
6.3.4 Setting Account Resource Limits ............................................................................... 747
6.3.5 Assigning Account Passwords ................................................................................... 749
6.3.6 Pluggable Authentication ........................................................................................... 751
6.3.7 Proxy Users ............................................................................................................. 753
6.3.8 SQL-Based MySQL Account Activity Auditing ............................................................ 757

6.4 Using Secure Connections .................................................................................................. 759
6.4.1 OpenSSL Versus yaSSL ........................................................................................... 760
6.4.2 Building MySQL with Support for Secure Connections ................................................ 760
6.4.3 Secure Connection Protocols and Ciphers ................................................................. 761
6.4.4 Configuring MySQL to Use Secure Connections ........................................................ 762
6.4.5 Command Options for Secure Connections ............................................................... 764
6.4.6 Creating SSL Certificates and Keys Using openssl ..................................................... 766
6.4.7 Connecting to MySQL Remotely from Windows with SSH ........................................... 772

6.5 Security Plugins .................................................................................................................. 772
6.5.1 Authentication Plugins .............................................................................................. 772
6.5.2 MySQL Enterprise Audit ........................................................................................... 791

When thinking about security within a MySQL installation, you should consider a wide range of possible
topics and how they affect the security of your MySQL server and related applications:

• General factors that affect security. These include choosing good passwords, not granting
unnecessary privileges to users, ensuring application security by preventing SQL injections and data
corruption, and others. See Section 6.1, “General Security Issues”.

• Security of the installation itself. The data files, log files, and the all the application files of your
installation should be protected to ensure that they are not readable or writable by unauthorized
parties. For more information, see Section 2.10, “Postinstallation Setup and Testing”.

• Access control and security within the database system itself, including the users and databases
granted with access to the databases, views and stored programs in use within the database. For
more information, see Section 6.2, “The MySQL Access Privilege System”, and Section 6.3, “MySQL
User Account Management”.



General Security Issues

706

• The features offered by security-related plugins. See Section 6.5, “Security Plugins”.

• Network security of MySQL and your system. The security is related to the grants for individual
users, but you may also wish to restrict MySQL so that it is available only locally on the MySQL
server host, or to a limited set of other hosts.

• Ensure that you have adequate and appropriate backups of your database files, configuration
and log files. Also be sure that you have a recovery solution in place and test that you are able to
successfully recover the information from your backups. See Chapter 7, Backup and Recovery.

6.1 General Security Issues

This section describes general security issues to be aware of and what you can do to make your
MySQL installation more secure against attack or misuse. For information specifically about the access
control system that MySQL uses for setting up user accounts and checking database access, see
Section 2.10, “Postinstallation Setup and Testing”.

For answers to some questions that are often asked about MySQL Server security issues, see
Section A.9, “MySQL 5.5 FAQ: Security”.

6.1.1 Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to avoid the
most common security mistakes.

In discussing security, it is necessary to consider fully protecting the entire server host (not just the
MySQL server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of
service. We do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also support for SSL-encrypted connections
between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL
at all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the
mysql database! This is critical.

• Learn how the MySQL access privilege system works (see Section 6.2, “The MySQL Access
Privilege System”). Use the GRANT and REVOKE statements to control access to MySQL. Do not
grant more privileges than necessary. Never grant privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked
for a password, anyone can connect to your MySQL server as the MySQL root user with full
privileges! Review the MySQL installation instructions, paying particular attention to the information
about setting a root password. See Section 2.10.4, “Securing the Initial MySQL Accounts”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

• Do not store cleartext passwords in your database. If your computer becomes compromised, the
intruder can take the full list of passwords and use them. Instead, use SHA2() or some other one-
way hashing function and store the hash value.

To prevent password recovery using rainbow tables, do not use these functions on a plain password;
instead, choose some string to be used as a salt, and use hash(hash(password)+salt) values.



Keeping Passwords Secure

707

• Do not choose passwords from dictionaries. Special programs exist to break passwords. Even
passwords like “xfish98” are very bad. Much better is “duag98” which contains the same word
“fish” but typed one key to the left on a standard QWERTY keyboard. Another method is to use
a password that is taken from the first characters of each word in a sentence (for example, “Four
score and seven years ago” results in a password of “Fsasya”). The password is easy to remember
and type, but difficult to guess for someone who does not know the sentence. In this case, you can
additionally substitute digits for the number words to obtain the phrase “4 score and 7 years ago”,
yielding the password “4sa7ya” which is even more difficult to guess.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306
by default. This port should not be accessible from untrusted hosts. As a simple way to check
whether your MySQL port is open, try the following command from some remote machine, where
server_host is the host name or IP address of the host on which your MySQL server runs:

shell> telnet server_host 3306

If telnet hangs or the connection is refused, the port is blocked, which is how you want it to be.
If you get a connection and some garbage characters, the port is open, and should be closed on
your firewall or router, unless you really have a good reason to keep it open.

• Applications that access MySQL should not trust any data entered by users, and should be written
using proper defensive programming techniques. See Section 6.1.7, “Client Programming Security
Guidelines”.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone
who has the time and ability to intercept it and use it for their own purposes. Instead, use an
encrypted protocol such as SSL or SSH. MySQL supports internal SSL connections. Another
technique is to use SSH port-forwarding to create an encrypted (and compressed) tunnel for the
communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL
data streams are unencrypted by issuing a command like the following:

shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.

Warning

If you do not see cleartext data, this does not always mean that the
information actually is encrypted. If you need high security, consult with a
security expert.

6.1.2 Keeping Passwords Secure

Passwords occur in several contexts within MySQL. The following sections provide guidelines that
enable end users and administrators to keep these passwords secure and avoid exposing them. There
is also a discussion of how MySQL uses password hashing internally.

6.1.2.1 End-User Guidelines for Password Security

MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your
password in a way that exposes it to discovery by other users. The methods you can use to specify



Keeping Passwords Secure

708

your password when you run client programs are listed here, along with an assessment of the risks of
each method. In short, the safest methods are to have the client program prompt for the password or to
specify the password in a properly protected option file.

•   Use a -pyour_pass or --password=your_pass option on the command line. For example:

shell> mysql -u francis -pfrank db_name

This is convenient but insecure. On some systems, your password becomes visible to system
status programs such as ps that may be invoked by other users to display command lines. MySQL
clients typically overwrite the command-line password argument with zeros during their initialization
sequence. However, there is still a brief interval during which the value is visible. Also, on some
systems this overwriting strategy is ineffective and the password remains visible to ps. (SystemV
Unix systems and perhaps others are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your
terminal window, the password remains visible as long as the command is running, even if the
command has scrolled out of view in the window content area.

• Use the -p or --password option on the command line with no password value specified. In this
case, the client program solicits the password interactively:

shell> mysql -u francis -p db_name
Enter password: ********

The * characters indicate where you enter your password. The password is not displayed as you
enter it.

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs
that you run interactively. If you want to invoke a client from a script that runs noninteractively, there
is no opportunity to enter the password from the keyboard. On some systems, you may even find
that the first line of your script is read and interpreted (incorrectly) as your password.

•  Store your password in an option file. For example, on Unix, you can list your password in the
[client] section of the .my.cnf file in your home directory:

[client]
password=your_pass

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this,
set the file access mode to 400 or 600. For example:

shell> chmod 600 .my.cnf

To name from the command line a specific option file containing the password, use the --
defaults-file=file_name option, where file_name is the full path name to the file. For
example:

shell> mysql --defaults-file=/home/francis/mysql-opts

Section 4.2.6, “Using Option Files”, discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. See Section 4.9, “MySQL Program
Environment Variables”.

This method of specifying your MySQL password must be considered extremely insecure and should
not be used. Some versions of ps include an option to display the environment of running processes.
On some systems, if you set MYSQL_PWD, your password is exposed to any other user who runs



Keeping Passwords Secure

709

ps. Even on systems without such a version of ps, it is unwise to assume that there are no other
methods by which users can examine process environments.

On Unix, the mysql client writes a record of executed statements to a history file (see Section 4.5.1.3,
“mysql Logging”). By default, this file is named .mysql_history and is created in your home
directory. Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT,
and SET PASSWORD, so if you use these statements, they are logged in the history file. To keep this file
safe, use a restrictive access mode, the same way as described earlier for the .my.cnf file.

If your command interpreter is configured to maintain a history, any file in which the commands
are saved will contain MySQL passwords entered on the command line. For example, bash uses
~/.bash_history. Any such file should have a restrictive access mode.

6.1.2.2 Administrator Guidelines for Password Security

Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the mysql.user table. Access to this table should
never be granted to any nonadministrative accounts.

A user who has access to modify the plugin directory (the value of the plugin_dir system variable)
or the my.cnf file that specifies the plugin directory location can replace plugins and modify the
capabilities provided by plugins, including authentication plugins.

Files such as log files to which passwords might be written should be protected. See Section 6.1.2.3,
“Passwords and Logging”.

6.1.2.3 Passwords and Logging

Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, SET
PASSWORD, and statements that invoke the PASSWORD() function. If such statements are logged by
the MySQL server as written, passwords in them become visible to anyone with access to the logs.
This applies to the general query log, the slow query log, and the binary log (see Section 5.4, “MySQL
Server Logs”).

Contents of the audit log file produced by the audit log plugin are not encrypted. For security reasons,
this file should be written to a directory accessible only to the MySQL server and users with a legitimate
reason to view the log. See Section 6.5.2.2, “MySQL Enterprise Audit Security Considerations”.

To guard log files against unwarranted exposure, locate them in a directory that restricts access to the
server and the database administrator. If the server logs to tables in the mysql database, grant access
to those tables only to the database administrator.

Replication slaves store the password for the replication master in the master.info file. Restrict this
file to be accessible only to the database administrator.

Use a restricted access mode to protect database backups that include log tables or log files containing
passwords.

6.1.2.4 Password Hashing in MySQL

Note

The information in this section applies only for accounts that use the
mysql_native_password or mysql_old_password authentication plugins.

MySQL lists user accounts in the user table of the mysql database. Each MySQL account can be
assigned a password, although the user table does not store the cleartext version of the password, but
a hash value computed from it.

MySQL uses passwords in two phases of client/server communication:



Keeping Passwords Secure

710

• When a client attempts to connect to the server, there is an initial authentication step in which the
client must present a password that has a hash value matching the hash value stored in the user
table for the account the client wants to use.

• After the client connects, it can (if it has sufficient privileges) set or change the password hash
for accounts listed in the user table. The client can do this by using the PASSWORD() function to
generate a password hash, or by using a password-generating statement (CREATE USER, GRANT, or
SET PASSWORD).

In other words, the server checks hash values during authentication when a client first attempts to
connect. The server generates hash values if a connected client invokes the PASSWORD() function or
uses a password-generating statement to set or change a password.

Password hashing methods in MySQL have the history described following. These changes are
illustrated by changes in the result from the PASSWORD() function that computes password hash
values and in the structure of the user table where passwords are stored.

The Original (Pre-4.1) Hashing Method

The original hashing method produced a 16-byte string. Such hashes look like this:

mysql> SELECT PASSWORD('mypass');
+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e   |
+--------------------+

To store account passwords, the Password column of the user table was at this point 16 bytes long.

The 4.1 Hashing Method

MySQL 4.1 introduced password hashing that provided better security and reduced the risk of
passwords being intercepted. There were several aspects to this change:

• Different format of password values produced by the PASSWORD() function

• Widening of the Password column

• Control over the default hashing method

• Control over the permitted hashing methods for clients attempting to connect to the server

The changes in MySQL 4.1 took place in two stages:

• MySQL 4.1.0 used a preliminary version of the 4.1 hashing method. This method was short lived and
the following discussion says nothing more about it.

• In MySQL 4.1.1, the hashing method was modified to produce a longer 41-byte hash value:

mysql> SELECT PASSWORD('mypass');
+-------------------------------------------+
| PASSWORD('mypass')                        |
+-------------------------------------------+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+-------------------------------------------+

The longer password hash format has better cryptographic properties, and client authentication
based on long hashes is more secure than that based on the older short hashes.

To accommodate longer password hashes, the Password column in the user table was changed at
this point to be 41 bytes, its current length.



Keeping Passwords Secure

711

A widened Password column can store password hashes in both the pre-4.1 and 4.1 formats. The
format of any given hash value can be determined two ways:

• The length: 4.1 and pre-4.1 hashes are 41 and 16 bytes, respectively.

• Password hashes in the 4.1 format always begin with a * character, whereas passwords in the
pre-4.1 format never do.

To permit explicit generation of pre-4.1 password hashes, two additional changes were made:

• The OLD_PASSWORD() function was added, which returns hash values in the 16-byte format.

• For compatibility purposes, the old_passwords system variable was added, to enable DBAs and
applications control over the hashing method. The default old_passwords value of 0 causes
hashing to use the 4.1 method (41-byte hash values), but setting old_passwords=1 causes
hashing to use the pre-4.1 method. In this case, PASSWORD() produces 16-byte values and is
equivalent to OLD_PASSWORD()

To permit DBAs control over how clients are permitted to connect, the secure_auth system
variable was added. Starting the server with this variable disabled or enabled permits or prohibits
clients to connect using the older pre-4.1 password hashing method. Before MySQL 5.6.5,
secure_auth is disabled by default. As of 5.6.5, secure_auth is enabled by default to promote
a more secure default configuration. (DBAs can disable it at their discretion, but this is not
recommended.)

In addition, the mysql client supports a --secure-auth option that is analogous to secure_auth,
but from the client side. It can be used to prevent connections to less secure accounts that
use pre-4.1 password hashing. This option is disabled by default before MySQL 5.6.7, enabled
thereafter.

Compatibility Issues Related to Hashing Methods

The widening of the Password column in MySQL 4.1 from 16 bytes to 41 bytes affects installation or
upgrade operations as follows:

• If you perform a new installation of MySQL, the Password column is made 41 bytes long
automatically.

• Upgrades from MySQL 4.1 or later to current versions of MySQL should not give rise to any issues in
regard to the Password column because both versions use the same column length and password
hashing method.

• For upgrades from a pre-4.1 release to 4.1 or later, you must upgrade the system tables after
upgrading. (See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.)

The 4.1 hashing method is understood only by MySQL 4.1 (and higher) servers and clients, which can
result in some compatibility problems. A 4.1 or higher client can connect to a pre-4.1 server, because
the client understands both the pre-4.1 and 4.1 password hashing methods. However, a pre-4.1 client
that attempts to connect to a 4.1 or higher server may run into difficulties. For example, a 4.0 mysql
client may fail with the following error message:

shell> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

This phenomenon also occurs for attempts to use the older PHP mysql extension after upgrading to
MySQL 4.1 or higher. (See Common Problems with MySQL and PHP.)

The following discussion describes the differences between the pre-4.1 and 4.1 hashing methods,
and what you should do if you upgrade your server but need to maintain backward compatibility with

http://dev.mysql.com/doc/apis-php/en/apis-php-problems.html


Keeping Passwords Secure

712

pre-4.1 clients. (However, permitting connections by old clients is not recommended and should be
avoided if possible.) Additional information can be found in Section B.5.2.4, “Client does not support
authentication protocol”. This information is of particular importance to PHP programmers migrating
MySQL databases from versions older than 4.1 to 4.1 or higher.

The differences between short and long password hashes are relevant both for how the server uses
passwords during authentication and for how it generates password hashes for connected clients that
perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the
Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either format:

• Pre-4.1 clients can connect, but because they know only about the pre-4.1 hashing method, they
can authenticate only using accounts that have short hashes.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later
clients than for older clients. In terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating with short password hash

• 4.1 or later client authenticating with short password hash

• 4.1 or later client authenticating with long password hash

The way in which the server generates password hashes for connected clients is affected by the width
of the Password column and by the old_passwords system variable. A 4.1 or later server generates
long hashes only if certain conditions are met: The Password column must be wide enough to hold
long values and old_passwords must not be set to 1.

Those conditions apply as follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has not
been updated and still has the pre-4.1 width of 16 bytes, the server notices that long hashes cannot
fit into it and generates only short hashes when a client performs password-changing operations
using the PASSWORD() function or a password-generating statement. This is the behavior that
occurs if you have upgraded from a version of MySQL older than 4.1 to 4.1 or later but have not yet
run the mysql_upgrade program to widen the Password column.

• If the Password column is wide, it can store either short or long password hashes. In this case, the
PASSWORD() function and password-generating statements generate long hashes unless the server
was started with the old_passwords system variable set to 1 to force the server to generate short
password hashes instead.

The purpose of the old_passwords system variable is to permit backward compatibility with pre-4.1
clients under circumstances where the server would otherwise generate long password hashes.
The option does not affect authentication (4.1 and later clients can still use accounts that have long
password hashes), but it does prevent creation of a long password hash in the user table as the result
of a password-changing operation. Were that permitted to occur, the account could no longer be used
by pre-4.1 clients. With old_passwords disabled, the following undesirable scenario is possible:

• An old pre-4.1 client connects to an account that has a short password hash.

• The client changes its own password. With old_passwords disabled, this results in the account
having a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account has
a long password hash that requires the 4.1 hashing method during authentication. (Once an account



Keeping Passwords Secure

713

has a long password hash in the user table, only 4.1 and later clients can authenticate for it because
pre-4.1 clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is problematic to run a 4.1
or higher server without old_passwords set to 1. By running the server with old_passwords=1,
password-changing operations do not generate long password hashes and thus do not cause accounts
to become inaccessible to older clients. (Those clients cannot inadvertently lock themselves out by
changing their password and ending up with a long password hash.)

The downside of old_passwords=1 is that any passwords created or changed use short hashes,
even for 4.1 or later clients. Thus, you lose the additional security provided by long password hashes.
To create an account that has a long hash (for example, for use by 4.1 clients) or to change an existing
account to use a long password hash, an administrator can set the session value of old_passwords
set to 0 while leaving the global value set to 1:

mysql> SET @@session.old_passwords = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@session.old_passwords, @@global.old_passwords;
+-------------------------+------------------------+
| @@session.old_passwords | @@global.old_passwords |
+-------------------------+------------------------+
|                       0 |                      1 |
+-------------------------+------------------------+
1 row in set (0.00 sec)

mysql> CREATE USER 'newuser'@'localhost' IDENTIFIED BY 'newpass';
Query OK, 0 rows affected (0.03 sec)

mysql> SET PASSWORD FOR 'existinguser'@'localhost' = PASSWORD('existingpass');
Query OK, 0 rows affected (0.00 sec)

The following scenarios are possible in MySQL 4.1 or later. The factors are whether the Password
column is short or long, and, if long, whether the server is started with old_passwords enabled or
disabled.

Scenario 1: Short Password column in user table:

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

• For connected clients, password hash-generating operations involving the PASSWORD() function
or password-generating statements use short hashes exclusively. Any change to an account's
password results in that account having a short password hash.

• The value of old_passwords is irrelevant because with a short Password column, the server
generates only short password hashes anyway.

This scenario occurs when a pre-4.1 MySQL installation has been upgraded to 4.1 or later but
mysql_upgrade has not been run to upgrade the system tables in the mysql database. (This is not a
recommended configuration because it does not permit use of more secure 4.1 password hashing.)

Scenario 2: Long Password column; server started with old_passwords=1:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate for accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function
or password-generating statements use short hashes exclusively. Any change to an account's
password results in that account having a short password hash.



Keeping Passwords Secure

714

In this scenario, newly created accounts have short password hashes because old_passwords=1
prevents generation of long hashes. Also, if you create an account with a long hash before setting
old_passwords to 1, changing the account's password while old_passwords=1 results in the
account being given a short password, causing it to lose the security benefits of a longer hash.

To create a new account that has a long password hash, or to change the password of any existing
account to use a long hash, first set the session value of old_passwords set to 0 while leaving the
global value set to 1, as described previously.

In this scenario, the server has an up to date Password column, but is running with the default
password hashing method set to generate pre-4.1 hash values. This is not a recommended
configuration but may be useful during a transitional period in which pre-4.1 clients and passwords
are upgraded to 4.1 or later. When that has been done, it is preferable to run the server with
old_passwords=0 and secure_auth=1.

Scenario 3: Long Password column; server started with old_passwords=0:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only using accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use long hashes exclusively. A change to an account's password
results in that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short
password hash to become inaccessible to pre-4.1 clients. A change to such an account's password
made using the PASSWORD() function or a password-generating statement results in the account being
given a long password hash. From that point on, no pre-4.1 client can connect to the server using that
account. The client must upgrade to 4.1 or later.

If this is a problem, you can change a password in a special way. For example, normally you use SET
PASSWORD as follows to change an account password:

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

The disadvantages for each of the preceding scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, old_passwords=1 prevents accounts with short hashes from becoming inaccessible,
but password-changing operations cause accounts with long hashes to revert to short hashes unless
you take care to change the session value of old_passwords to 0 first.

In scenario 3, accounts with short hashes become inaccessible to pre-4.1 clients if you change their
passwords without explicitly using OLD_PASSWORD().

The best way to avoid compatibility problems related to short password hashes is to not use them:

• Upgrade all client programs to MySQL 4.1 or later.

• Run the server with old_passwords=0.

• Reset the password for any account with a short password hash to use a long password hash.

• For additional security, run the server with secure_auth=1.



Making MySQL Secure Against Attackers

715

6.1.2.5 Implications of Password Hashing Changes in MySQL 4.1 for Application
Programs

An upgrade to MySQL version 4.1 or later can cause compatibility issues for applications that use
PASSWORD() to generate passwords for their own purposes. Applications really should not do this,
because PASSWORD() should be used only to manage passwords for MySQL accounts. But some
applications use PASSWORD() for their own purposes anyway.

If you upgrade to 4.1 or later from a pre-4.1 version of MySQL and run the server under conditions
where it generates long password hashes, an application using PASSWORD() for its own passwords
breaks. The recommended course of action in such cases is to modify the application to use another
function, such as SHA2(), SHA1(), or MD5(), to produce hashed values. If that is not possible, you
can use the OLD_PASSWORD() function, which is provided for generate short hashes in the old format.
However, you should note that OLD_PASSWORD() may one day no longer be supported.

If the server is running with old_passwords=1, it generates short hashes and OLD_PASSWORD() is
equivalent to PASSWORD().

PHP programmers migrating their MySQL databases from version 4.0 or lower to version 4.1 or higher
should see MySQL and PHP.

6.1.3 Making MySQL Secure Against Attackers

When you connect to a MySQL server, you should use a password. The password is not transmitted in
clear text over the connection. Password handling during the client connection sequence was upgraded
in MySQL 4.1.1 to be very secure. If you are still using pre-4.1.1-style passwords, the encryption
algorithm is not as strong as the newer algorithm. With some effort, a clever attacker who can sniff
the traffic between the client and the server can crack the password. (See Section 6.1.2.4, “Password
Hashing in MySQL”, for a discussion of the different password handling methods.)

All other information is transferred as text, and can be read by anyone who is able to watch the
connection. If the connection between the client and the server goes through an untrusted network,
and you are concerned about this, you can use the compressed protocol to make traffic much more
difficult to decipher. You can also use MySQL's internal SSL support to make the connection even
more secure. See Section 6.4, “Using Secure Connections”. Alternatively, use SSH to get an encrypted
TCP/IP connection between a MySQL server and a MySQL client. You can find an Open Source SSH
client at http://www.openssh.org/, and a comparison of both Open Source and Commercial SSH clients
at http://en.wikipedia.org/wiki/Comparison_of_SSH_clients.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know
the identity of the person running it. It is common for client/server applications that the user can
specify any user name to the client program. For example, anyone can use the mysql program
to connect as any other person simply by invoking it as mysql -u other_user db_name if
other_user has no password. If all accounts have a password, connecting using another user's
account becomes much more difficult.

For a discussion of methods for setting passwords, see Section 6.3.5, “Assigning Account
Passwords”.

• Make sure that the only Unix user account with read or write privileges in the database directories is
the account that is used for running mysqld.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any
user with the FILE privilege is able to cause the server to create files as root (for example,
~root/.bashrc). To prevent this, mysqld refuses to run as root unless that is specified explicitly
using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a
separate Unix account named mysql to make everything even more secure. Use this account only

http://dev.mysql.com/doc/apis-php/en/
http://www.openssh.org/
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients


Making MySQL Secure Against Attackers

716

for administering MySQL. To start mysqld as a different Unix user, add a user option that specifies
the user name in the [mysqld] group of the my.cnf option file where you specify server options.
For example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using
mysqld_safe or mysql.server. For more details, see Section 6.1.5, “How to Run MySQL as a
Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root
user name in the user table. User names for MySQL accounts have nothing to do with user names
for Unix accounts.

• Do not grant the FILE privilege to nonadministrative users. Any user that has this privilege can
write a file anywhere in the file system with the privileges of the mysqld daemon. This includes
the server's data directory containing the files that implement the privilege tables. To make FILE-
privilege operations a bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite
existing files and are writable by everyone.

The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix
user that the server runs as. With this privilege, you can read any file into a database table. This
could be abused, for example, by using LOAD DATA to load /etc/passwd into a table, which then
can be displayed with SELECT.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 5.1.5, “Server System Variables”.

• Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of
mysqladmin processlist and SHOW PROCESSLIST shows the text of any statements
currently being executed, so any user who is permitted to see the server process list
might be able to see statements issued by other users such as UPDATE user SET
password=PASSWORD('not_secure').

mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL
root user can log in and check server activity even if all normal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by
changing the value of system variables, and control replication servers.

• Do not permit the use of symlinks to tables. (This capability can be disabled with the --skip-
symbolic-links option.) This is especially important if you run mysqld as root, because anyone
that has write access to the server's data directory then could delete any file in the system! See
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”.

• Stored programs and views should be written using the security guidelines discussed in
Section 20.6, “Access Control for Stored Programs and Views”.

• If you do not trust your DNS, you should use IP addresses rather than host names in the grant
tables. In any case, you should be very careful about creating grant table entries using host name
values that contain wildcards.

• If you want to restrict the number of connections permitted to a single account, you can do
so by setting the max_user_connections variable in mysqld. The GRANT statement also
supports resource control options for limiting the extent of server use permitted to an account. See
Section 13.7.1.3, “GRANT Syntax”.

• If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making



Security-Related mysqld Options and Variables

717

plugin_dir read only to the server or by setting --secure-file-priv to a directory where
SELECT writes can be made safely.

6.1.4 Security-Related mysqld Options and Variables

The following table shows mysqld options and system variables that affect security. For descriptions
of each of these, see Section 5.1.4, “Server Command Options”, and Section 5.1.5, “Server System
Variables”.

Table 6.1 Security Option/Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

allow-suspicious-
udfs

Yes Yes     

automatic_sp_privileges  Yes  Global Yes

chroot Yes Yes     

des-key-file Yes Yes     

local_infile   Yes  Global Yes

old_passwords   Yes  Both Yes

safe-show-
database

Yes Yes     

safe-user-create Yes Yes     

secure-auth Yes Yes   Global Yes

- Variable:
secure_auth

  Yes  Global Yes

secure-file-priv Yes Yes   Global No

- Variable:
secure_file_priv

  Yes  Global No

skip-grant-tables Yes Yes     

skip-name-
resolve

Yes Yes   Global No

- Variable:
skip_name_resolve

  Yes  Global No

skip-networking Yes Yes   Global No

- Variable:
skip_networking

  Yes  Global No

skip-show-
database

Yes Yes   Global No

- Variable:
skip_show_database

  Yes  Global No

6.1.5 How to Run MySQL as a Normal User

On Windows, you can run the server as a Windows service using a normal user account.

On Linux, for installations performed using a MySQL repository, RPM packages, or Debian packages,
the MySQL server mysqld should be started by the local mysql operating system user. Starting
by another operating system user is not supported by the init scripts that are included as part of the
installation.

On Unix (or Linux for installations performed using tar or tar.gz packages) , the MySQL server
mysqld can be started and run by any user. However, you should avoid running the server as the



Security Issues with LOAD DATA LOCAL

718

Unix root user for security reasons. To change mysqld to run as a normal unprivileged Unix user
user_name, you must do the following:

1. Stop the server if it is running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files
in them (you might need to do this as the Unix root user):

shell> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server will not be able to access databases or tables when it runs as
user_name.

If directories or files within the MySQL data directory are symbolic links, chown -R might not
follow symbolic links for you. If it does not, you will also need to follow those links and change the
directories and files they point to.

3. Start the server as user user_name. Another alternative is to start mysqld as the Unix root user
and use the --user=user_name option. mysqld starts up, then switches to run as the Unix user
user_name before accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the user name
by adding a user option to the [mysqld] group of the /etc/my.cnf option file or the my.cnf
option file in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself is not secured, you should assign passwords to the MySQL root accounts
in the grant tables. Otherwise, any user with a login account on that machine can run the mysql client
with a --user=root option and perform any operation. (It is a good idea to assign passwords to
MySQL accounts in any case, but especially so when other login accounts exist on the server host.)
See Section 2.10.4, “Securing the Initial MySQL Accounts”.

6.1.6 Security Issues with LOAD DATA LOCAL

The LOAD DATA statement can load a file located on the server host, or, if the LOCAL keyword is
specified, on the client host.

There are two potential security issues with the LOCAL version of LOAD DATA:

• The transfer of the file from the client host to the server host is initiated by the MySQL server. In
theory, a patched server could be built that would tell the client program to transfer a file of the
server's choosing rather than the file named by the client in the LOAD DATA statement. Such a
server could access any file on the client host to which the client user has read access. (A patched
server could in fact reply with a file-transfer request to any statement, not just LOAD DATA LOCAL,
so a more fundamental issue is that clients should not connect to untrusted servers.)

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a user
could run any statement against the SQL server). In this environment, the client with respect to the
MySQL server actually is the Web server, not a remote program being run by users who connect to
the Web server.

To avoid LOAD DATA issues, clients should avoid using LOCAL. To avoid connecting to untrusted
servers, clients can establish a secure connection and verify the server identity by connecting using the
--ssl-verify-server-cert option and the appropriate CA certificate.

To enable adminstrators and applications to manage the local data loading capability, LOCAL
configuration works like this:



Client Programming Security Guidelines

719

• On the server side:

• The local_infile system variable controls server-side LOCAL capability. Depending on the
local_infile setting, the server refuses or permits local data loading by clients that have
LOCAL enabled on the client side. By default, local_infile is enabled.

• To explicitly cause the server to refuse or permit LOAD DATA LOCAL statements (regardless
of how client programs and libraries are configured at build time or runtime), start mysqld with
local_infile disabled or enabled, respectively. local_infile can also be set at runtime.

• On the client side:

• The ENABLED_LOCAL_INFILE CMake option controls the compiled-in default LOCAL capability
for the MySQL client library. Clients that make no explicit arrangements therefore have LOCAL
capability disabled or enabled according to the ENABLED_LOCAL_INFILE setting specified at
MySQL build time.

By default, the client library in MySQL binary distributions is compiled with
ENABLED_LOCAL_INFILE enabled. If you compile MySQL from source, configure it with
ENABLED_LOCAL_INFILE disabled or enabled based on whether clients that make no explicit
arrangements should have LOCAL capability disabled or enabled, respectively.

• Client programs that use the C API can control load data loading explicitly by invoking
mysql_options() to disable or enable the MYSQL_OPT_LOCAL_INFILE option. See
Section 23.8.7.49, “mysql_options()”.

• For the mysql client, local data loading is disabled by default. To disable or enable it explicitly, use
the --local-infile=0 or --local-infile[=1] option.

• For the mysqlimport client, local data loading is disabled by default. To disable or enable it
explicitly, use the --local=0 or --local[=1] option.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group
from option files, you can add an local-infile option setting to that group. To prevent
problems for programs that do not understand this option, specify it using the loose- prefix:

[client]
loose-local-infile=0

or:

[client]
loose-local-infile=1

• In all cases, successful use of a LOCAL load operation by a client also requires that the server
permits it.

If LOCAL capability is disabled, on either the server or client side, a client that attempts to issue a LOAD
DATA LOCAL statement receives the following error message:

ERROR 1148: The used command is not allowed with this MySQL version

6.1.7 Client Programming Security Guidelines

Applications that access MySQL should not trust any data entered by users, who can try to trick your
code by entering special or escaped character sequences in Web forms, URLs, or whatever application
you have built. Be sure that your application remains secure if a user enters something like ; DROP
DATABASE mysql;. This is an extreme example, but large security leaks and data loss might occur as
a result of hackers using similar techniques, if you do not prepare for them.



Client Programming Security Guidelines

720

A common mistake is to protect only string data values. Remember to check numeric data as well. If an
application generates a query such as SELECT * FROM table WHERE ID=234 when a user enters
the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the
query SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the server retrieves every row
in the table. This exposes every row and causes excessive server load. The simplest way to protect
from this type of attack is to use single quotation marks around the numeric constants: SELECT *
FROM table WHERE ID='234'. If the user enters extra information, it all becomes part of the string.
In a numeric context, MySQL automatically converts this string to a number and strips any trailing
nonnumeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be
protected. This is incorrect. Even if it is permissible to display any row in the database, you should still
protect against denial of service attacks (for example, those that are based on the technique in the
preceding paragraph that causes the server to waste resources). Otherwise, your server becomes
unresponsive to legitimate users.

Checklist:

• Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See
Section 5.1.8, “Server SQL Modes”.

• Try to enter single and double quotation marks (' and ") in all of your Web forms. If you get any kind
of MySQL error, investigate the problem right away.

• Try to modify dynamic URLs by adding %22 ("), %23 (#), and %27 (') to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters
shown in the previous examples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error. Passing
unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a user name different from the one you use for
administrative purposes. Do not give your applications any access privileges they do not need.

Many application programming interfaces provide a means of escaping special characters in data
values. Properly used, this prevents application users from entering values that cause the application to
generate statements that have a different effect than you intend:

• MySQL C API: Use the mysql_real_escape_string() API call.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use either the mysqli or pdo_mysql extensions, and not the older ext/mysql extension.
The preferred API's support the improved MySQL authentication protocol and passwords, as well as
prepared statements with placeholders. See also Choosing an API.

If the older ext/mysql extension must be used, then for escaping use the
mysql_real_escape_string() function and not mysql_escape_string() or addslashes()
because only mysql_real_escape_string() is character set-aware; the other functions can be
“bypassed” when using (invalid) multibyte character sets.

• Perl DBI: Use placeholders or the quote() method.

• Ruby DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

http://dev.mysql.com/doc/apis-php/en/apis-php-mysqlinfo.api.choosing.html


The MySQL Access Privilege System

721

6.2 The MySQL Access Privilege System
The primary function of the MySQL privilege system is to authenticate a user who connects from a
given host and to associate that user with privileges on a database such as SELECT, INSERT, UPDATE,
and DELETE. Additional functionality includes the ability to have anonymous users and to grant
privileges for MySQL-specific functions such as LOAD DATA INFILE and administrative operations.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly
match a user and then refuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create
or drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object
such as a database, table, or routine.

The user interface to the MySQL privilege system consists of SQL statements such as CREATE USER,
GRANT, and REVOKE. See Section 13.7.1, “Account Management Statements”.

Internally, the server stores privilege information in the grant tables of the mysql database (that is, in
the database named mysql). The MySQL server reads the contents of these tables into memory when
it starts and bases access-control decisions on the in-memory copies of the grant tables.

The MySQL privilege system ensures that all users may perform only the operations permitted to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which
you connect and the user name you specify. When you issue requests after connecting, the system
grants privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason
to assume that a given user name belongs to the same person on all hosts. For example, the user
joe who connects from office.example.com need not be the same person as the user joe who
connects from home.example.com. MySQL handles this by enabling you to distinguish users on
different hosts that happen to have the same name: You can grant one set of privileges for connections
by joe from office.example.com, and a different set of privileges for connections by joe from
home.example.com. To see what privileges a given account has, use the SHOW GRANTS statement.
For example:

SHOW GRANTS FOR 'joe'@'office.example.com';
SHOW GRANTS FOR 'joe'@'home.example.com';

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can
verify your identity by supplying the correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a table
in a database or drop a table from the database, the server verifies that you have the SELECT privilege
for the table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 6.2.4, “Access
Control, Stage 1: Connection Verification”, and Section 6.2.5, “Access Control, Stage 2: Request
Verification”.

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. For details
about the conditions under which the server reloads the grant tables, see Section 6.2.6, “When
Privilege Changes Take Effect”.



Privileges Provided by MySQL

722

For general security-related advice, see Section 6.1, “General Security Issues”. For help in diagnosing
privilege-related problems, see Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”.

6.2.1 Privileges Provided by MySQL

The privileges granted to a MySQL account determine which operations the account can perform.
MySQL privileges differ in the contexts in which they apply and at different levels of operation:

• Administrative privileges enable users to manage operation of the MySQL server. These privileges
are global because they are not specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges can be granted
for specific databases, or globally so that they apply to all databases.

• Privileges for database objects such as tables, indexes, views, and stored routines can be granted
for specific objects within a database, for all objects of a given type within a database (for example,
all tables in a database), or globally for all objects of a given type in all databases).

Information about account privileges is stored in the user, db, host, tables_priv, columns_priv,
and procs_priv tables in the mysql system database (see Section 6.2.2, “Grant Tables”). The
MySQL server reads the contents of these tables into memory when it starts and reloads them under
the circumstances indicated in Section 6.2.6, “When Privilege Changes Take Effect”. Access-control
decisions are based on the in-memory copies of the grant tables.

Some MySQL releases introduce changes to the structure of the grant tables to add new privileges or
features. To make sure that you can take advantage of any new capabilities, update your grant tables
to have the current structure whenever you upgrade MySQL. See Section 4.4.7, “mysql_upgrade —
Check and Upgrade MySQL Tables”.

The following table shows the privilege names used in GRANT and REVOKE statements, along with the
column name associated with each privilege in the grant tables and the context in which the privilege
applies.

Table 6.2 Permissible Privileges for GRANT and REVOKE

Privilege Column Context

ALL [PRIVILEGES] Synonym for “all privileges” Server administration

ALTER Alter_priv Tables

ALTER ROUTINE Alter_routine_priv Stored routines

CREATE Create_priv Databases, tables, or indexes

CREATE ROUTINE Create_routine_priv Stored routines

CREATE TABLESPACE Create_tablespace_priv Server administration

CREATE TEMPORARY
TABLES

Create_tmp_table_priv Tables

CREATE USER Create_user_priv Server administration

CREATE VIEW Create_view_priv Views

DELETE Delete_priv Tables

DROP Drop_priv Databases, tables, or views

EVENT Event_priv Databases

EXECUTE Execute_priv Stored routines

FILE File_priv File access on server host

GRANT OPTION Grant_priv Databases, tables, or stored routines

INDEX Index_priv Tables

INSERT Insert_priv Tables or columns



Privileges Provided by MySQL

723

Privilege Column Context

LOCK TABLES Lock_tables_priv Databases

PROCESS Process_priv Server administration

PROXY See proxies_priv table Server administration

REFERENCES References_priv Databases or tables

RELOAD Reload_priv Server administration

REPLICATION CLIENT Repl_client_priv Server administration

REPLICATION SLAVE Repl_slave_priv Server administration

SELECT Select_priv Tables or columns

SHOW DATABASES Show_db_priv Server administration

SHOW VIEW Show_view_priv Views

SHUTDOWN Shutdown_priv Server administration

SUPER Super_priv Server administration

TRIGGER Trigger_priv Tables

UPDATE Update_priv Tables or columns

USAGE Synonym for “no privileges” Server administration

The following list provides general descriptions of the privileges available in MySQL. Particular SQL
statements might have more specific privilege requirements than indicated here. If so, the description
for the statement in question provides the details.

• The ALL or ALL PRIVILEGES privilege specifier is shorthand. It stands for “all privileges available
at a given privilege level” (except GRANT OPTION). For example, granting ALL at the global or table
level grants all global privileges or all table-level privileges.

• The ALTER privilege enables use of the ALTER TABLE statement to change the structure of tables.
ALTER TABLE also requires the CREATE and INSERT privileges. Renaming a table requires ALTER
and DROP on the old table, CREATE, and INSERT on the new table.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines (procedures and functions).

• The CREATE privilege enables creation of new databases and tables.

• The CREATE ROUTINE privilege is needed to create stored routines (procedures and functions).

• The CREATE TABLESPACE privilege is needed to create, alter, or drop tablespaces and log file
groups.

• The CREATE TEMPORARY TABLES privilege enables the creation of temporary tables using the
CREATE TEMPORARY TABLE statement.

However, other operations on a temporary table, such as INSERT, UPDATE, or SELECT, require
additional privileges for those operations for the database containing the temporary table, or for
the nontemporary table of the same name. For more information, see Section 13.1.17.3, “CREATE
TEMPORARY TABLE Syntax”.

• The CREATE USER privilege enables use of the CREATE USER, DROP USER, RENAME USER, and
REVOKE ALL PRIVILEGES statements.

• The CREATE VIEW privilege enables use of the CREATE VIEW statement.

• The DELETE privilege enables rows to be deleted from tables in a database.

• The DROP privilege enables you to drop (remove) existing databases, tables, and views. The DROP
privilege is required in order to use the statement ALTER TABLE ... DROP PARTITION on a



Privileges Provided by MySQL

724

partitioned table. The DROP privilege is also required for TRUNCATE TABLE. If you grant the DROP
privilege for the mysql database to a user, that user can drop the database in which the MySQL
access privileges are stored.

• The EVENT privilege is required to create, alter, drop, or see events for the Event Scheduler.

• The EXECUTE privilege is required to execute stored routines (procedures and functions).

• The FILE privilege gives you permission to read and write files on the server host using the LOAD
DATA INFILE and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function. A
user who has the FILE privilege can read any file on the server host that is either world-readable or
readable by the MySQL server. (This implies the user can read any file in any database directory,
because the server can access any of those files.) The FILE privilege also enables the user to
create new files in any directory where the MySQL server has write access. This includes the
server's data directory containing the files that implement the privilege tables. As a security measure,
the server will not overwrite existing files. As of MySQL 5.5.54, the FILE privilege is required to use
the DATA DIRECTORY or INDEX DIRECTORY table option for the CREATE TABLE statement.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 5.1.5, “Server System Variables”.

• The GRANT OPTION privilege enables you to give to other users or remove from other users those
privileges that you yourself possess.

• The INDEX privilege enables you to create or drop (remove) indexes. INDEX applies to existing
tables. If you have the CREATE privilege for a table, you can include index definitions in the CREATE
TABLE statement.

• The INSERT privilege enables rows to be inserted into tables in a database. INSERT is also required
for the ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

• The LOCK TABLES privilege enables the use of explicit LOCK TABLES statements to lock tables
for which you have the SELECT privilege. This includes the use of write locks, which prevents other
sessions from reading the locked table.

• The PROCESS privilege pertains to display of information about the threads executing within the
server (that is, information about the statements being executed by sessions). The privilege enables
use of SHOW PROCESSLIST or mysqladmin processlist to see threads belonging to other
accounts; you can always see your own threads. The PROCESS privilege also enables use of SHOW
ENGINE.

• The PROXY privilege enables a user to impersonate or become known as another user. See
Section 6.3.7, “Proxy Users”. This privilege was added in MySQL 5.5.7.

• The REFERENCES privilege is unused before MySQL 5.5.41. As of 5.5.41, creation of a foreign
key constraint requires at least one of the SELECT, INSERT, UPDATE, DELETE, or REFERENCES
privileges for the parent table.

• The RELOAD privilege enables use of the FLUSH statement. It also enables mysqladmin commands
that are equivalent to FLUSH operations: flush-hosts, flush-logs, flush-privileges,
flush-status, flush-tables, flush-threads, refresh, and reload.

The reload command tells the server to reload the grant tables into memory. flush-privileges
is a synonym for reload. The refresh command closes and reopens the log files and flushes
all tables. The other flush-xxx commands perform functions similar to refresh, but are more
specific and may be preferable in some instances. For example, if you want to flush just the log files,
flush-logs is a better choice than refresh.

• The REPLICATION CLIENT privilege enables the use of the SHOW MASTER STATUS and SHOW
SLAVE STATUS statements. In MySQL 5.5.25 and later, it also enables the use of the SHOW
BINARY LOGS statement.



Privileges Provided by MySQL

725

• The REPLICATION SLAVE privilege should be granted to accounts that are used by slave servers to
connect to the current server as their master. Without this privilege, the slave cannot request updates
that have been made to databases on the master server.

• The SELECT privilege enables you to select rows from tables in a database. SELECT statements
require the SELECT privilege only if they actually retrieve rows from a table. Some SELECT
statements do not access tables and can be executed without permission for any database.
For example, you can use SELECT as a simple calculator to evaluate expressions that make no
reference to tables:

SELECT 1+1;
SELECT PI()*2;

The SELECT privilege is also needed for other statements that read column values. For example,
SELECT is needed for columns referenced on the right hand side of col_name=expr assignment in
UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.

The SELECT privilege is also needed for tables or views being used with EXPLAIN, including any
underlying tables of views.

• The SHOW DATABASES privilege enables the account to see database names by issuing the SHOW
DATABASE statement. Accounts that do not have this privilege see only databases for which they
have some privileges, and cannot use the statement at all if the server was started with the --skip-
show-database option. Note that any global privilege is a privilege for the database.

• The SHOW VIEW privilege enables use of the SHOW CREATE VIEW statement. This privilege is also
needed for views being used with EXPLAIN.

• The SHUTDOWN privilege enables use of the mysqladmin shutdown command and the
mysql_shutdown() C API function. There is no corresponding SQL statement.

• The SUPER privilege enables these operations and server behaviors:

• Enables configuration changes by modifying global system variables. For some system variables,
setting the session value also requires the SUPER privilege; if so, it is indicated in the variable
description. Examples include binlog_format, sql_log_bin, and sql_log_off.

• Enables starting and stopping replication on slave servers.

• Enables use of the CHANGE MASTER TO statement.

• Enables binary log control by means of the PURGE BINARY LOGS and BINLOG statements.

• Enables setting the effective authorization ID when executing a view or stored program. A user
with this privilege can specify any account in the DEFINER attribute of a view or stored program.

• Enables use of the CREATE SERVER, ALTER SERVER, and DROP SERVER statements.

• Enables use of the mysqladmin debug command.

• Enables reading the DES key file by the DES_ENCRYPT() function.

• Enables control over client connections not permitted to non-SUPER accounts:

• Enables use of the KILL statement or mysqladmin kill command to kill threads belonging to
other accounts. (You can always kill your own threads.)

• The server accepts one connection from a SUPER client even if the connection limit controlled by
the max_connections system variable is reached.



Grant Tables

726

• Updates can be performed even when the read_only system variable is enabled. This applies
to table updates and use of account-management statements such as GRANT and REVOKE.

• The server does not execute init_connect system variable content when SUPER clients
connect.

You may also need the SUPER privilege to create or alter stored functions if binary logging is
enabled, as described in Section 20.7, “Binary Logging of Stored Programs”.

• The TRIGGER privilege enables trigger operations. You must have this privilege for a table to create,
drop, execute, or display triggers for that table.

When a trigger is activated (by a user who has privileges to execute INSERT, UPDATE, or DELETE
statements for the table associated with the trigger), trigger execution requires that the user who
defined the trigger still have the TRIGGER privilege.

• The UPDATE privilege enables rows to be updated in tables in a database.

• The USAGE privilege specifier stands for “no privileges.” It is used at the global level with GRANT
to modify account attributes such as resource limits or SSL characteristics without naming specific
account privileges. SHOW GRANTS displays USAGE to indicate that an account has no privileges at a
privilege level.

It is a good idea to grant to an account only those privileges that it needs. You should exercise
particular caution in granting the FILE and administrative privileges:

• The FILE privilege can be abused to read into a database table any files that the MySQL server can
read on the server host. This includes all world-readable files and files in the server's data directory.
The table can then be accessed using SELECT to transfer its contents to the client host.

• The GRANT OPTION privilege enables users to give their privileges to other users. Two users that
have different privileges and with the GRANT OPTION privilege are able to combine privileges.

• The ALTER privilege may be used to subvert the privilege system by renaming tables.

• The SHUTDOWN privilege can be abused to deny service to other users entirely by terminating the
server.

• The PROCESS privilege can be used to view the plain text of currently executing statements, including
statements that set or change passwords.

• The SUPER privilege can be used to terminate other sessions or change how the server operates.

• Privileges granted for the mysql database itself can be used to change passwords and other access
privilege information. Passwords are stored encrypted, so a malicious user cannot simply read them
to know the plain text password. However, a user with write access to the user table Password
column can change an account's password, and then connect to the MySQL server using that
account.

6.2.2 Grant Tables

The mysql system database includes several grant tables that contain information about user
accounts and the privileges held by them. This section describes those tables. For information about
other tables in the system database, see Section 5.3, “The mysql System Database”.

Normally, to manipulate the contents of grant tables, you modify them indirectly by using account-
management statements such as CREATE USER, GRANT, and REVOKE to set up accounts and control
the privileges available to each one. See Section 13.7.1, “Account Management Statements”. The
discussion here describes the underlying structure of the grant tables and how the server uses their
contents when interacting with clients.



Grant Tables

727

Note

Direct modification of grant tables using statements such as INSERT, UPDATE,
or DELETE is discouraged and done at your own risk. The server is free to
ignore rows that become malformed as a result of such modifications.

As of MySQL 5.5.55, for any operation that modifies a grant table, the server
checks whether the table has the expected structure and produces an error
if not. mysql_upgrade must be run to update the tables to the expected
structure.

These mysql database tables contain grant information:

• user: User accounts, global privileges, and other non-privilege columns

• db: Database-level privileges

• host: Obsolete

• tables_priv: Table-level privileges

• columns_priv: Column-level privileges

• procs_priv: Stored procedure and function privileges

• proxies_priv: Proxy-user privileges

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each row in the tables; that is, the context in which the row
applies. For example, a user table row with Host and User values of 'thomas.loc.gov' and
'bob' applies to authenticating connections made to the server from the host thomas.loc.gov by
a client that specifies a user name of bob. Similarly, a db table row with Host, User, and Db column
values of 'thomas.loc.gov', 'bob' and 'reports' applies when bob connects from the host
thomas.loc.gov to access the reports database. The tables_priv and columns_priv
tables contain scope columns indicating tables or table/column combinations to which each row
applies. The procs_priv scope columns indicate the stored routine to which each row applies.

• Privilege columns indicate which privileges a table row grants; that is, which operations it permits to
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 6.2.5, “Access Control, Stage 2: Request Verification”,
describes the rules for this.

The server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or permit incoming connections. For
permitted connections, any privileges granted in the user table indicate the user's global privileges.
Any privileges granted in this table apply to all databases on the server.

Caution

Because any global privilege is considered a privilege for all databases,
any global privilege enables a user to see all database names with SHOW
DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA.

• The db table scope columns determine which users can access which databases from which hosts.
The privilege columns determine the permitted operations. A privilege granted at the database level
applies to the database and to all objects in the database, such as tables and stored programs.

• The host table is used in conjunction with the db table when you want a given db table row to apply
to several hosts. For example, if you want a user to be able to use a database from several hosts



Grant Tables

728

in your network, leave the Host value empty in the user's db table row, then populate the host
table with a row for each of those hosts. This mechanism is described more detail in Section 6.2.5,
“Access Control, Stage 2: Request Verification”.

Note

The host table must be modified directly with statements such as INSERT,
UPDATE, and DELETE. It is not affected by statements such as GRANT and
REVOKE that modify the grant tables indirectly. Most MySQL installations need
not use this table at all.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained:
They apply at the table and column levels rather than at the database level. A privilege granted at the
table level applies to the table and to all its columns. A privilege granted at the column level applies
only to a specific column.

• The procs_priv table applies to stored routines (procedures and functions). A privilege granted at
the routine level applies only to a single procedure or function.

• The proxies_priv table indicates which users can act as proxies for other users and whether a
user can grant the PROXY privilege to other users.

The server uses the user, db, and host tables in the mysql database at both the first and second
stages of access control (see Section 6.2, “The MySQL Access Privilege System”). The columns in the
user and db tables are shown here. The host table is similar to the db table but has a specialized use
as described in Section 6.2.5, “Access Control, Stage 2: Request Verification”.

Table 6.3 user and db Table Columns

Table Name user db

Scope columns Host Host

 User Db

 Password User

Privilege columns Select_priv Select_priv

 Insert_priv Insert_priv

 Update_priv Update_priv

 Delete_priv Delete_priv

 Index_priv Index_priv

 Alter_priv Alter_priv

 Create_priv Create_priv

 Drop_priv Drop_priv

 Grant_priv Grant_priv

 Create_view_priv Create_view_priv

 Show_view_priv Show_view_priv

 Create_routine_priv Create_routine_priv

 Alter_routine_priv Alter_routine_priv

 Execute_priv Execute_priv

 Trigger_priv Trigger_priv

 Event_priv Event_priv

 Create_tmp_table_priv Create_tmp_table_priv

 Lock_tables_priv Lock_tables_priv



Grant Tables

729

Table Name user db

 References_priv References_priv

 Reload_priv  

 Shutdown_priv  

 Process_priv  

 File_priv  

 Show_db_priv  

 Super_priv  

 Repl_slave_priv  

 Repl_client_priv  

 Create_user_priv  

 Create_tablespace_priv  

Security columns ssl_type  

 ssl_cipher  

 x509_issuer  

 x509_subject  

 plugin  

 authentication_string  

Resource control columns max_questions  

 max_updates  

 max_connections  

 max_user_connections  

The user table has a Password column for storing credential information. As of MySQL 5.5.7, the
user table also has plugin and authentication_string columns for storing authentication plugin
and credential information.

If an account row names a plugin in the plugin column, the server uses it to authenticate
connection attempts for the account. It is up to the plugin whether it uses the Password and
authentication_string column values.

If the plugin column for an account row is empty, the server authenticates the account using either
the mysql_native_password or mysql_old_password plugin, depending on whether the
password hash value in the Password column used native hashing or the older pre-4.1 hashing
method. Clients must match the password in the Password column of the account row.

Prior to MySQL 5.5.11, the length of the plugin column was 60 characters. This was increased to
64 characters in MySQL 5.5.11 for compatibility with the mysql.plugin table's name column. (Bug
#11766610, Bug #59752)

During the second stage of access control, the server performs request verification to ensure that each
client has sufficient privileges for each request that it issues. In addition to the user, db, and host
grant tables, the server may also consult the tables_priv and columns_priv tables for requests
that involve tables. The latter tables provide finer privilege control at the table and column levels. They
have the columns shown in the following table.

Table 6.4 tables_priv and columns_priv Table Columns

Table Name tables_priv columns_priv

Scope columns Host Host



Grant Tables

730

Table Name tables_priv columns_priv

 Db Db

 User User

 Table_name Table_name

  Column_name

Privilege columns Table_priv Column_priv

 Column_priv  

Other columns Timestamp Timestamp

 Grantor  

The Timestamp and Grantor columns are set to the current timestamp and the CURRENT_USER
value, respectively, but are otherwise unused.

For verification of requests that involve stored routines, the server may consult the procs_priv table,
which has the columns shown in the following table.

Table 6.5 procs_priv Table Columns

Table Name procs_priv

Scope columns Host

 Db

 User

 Routine_name

 Routine_type

Privilege columns Proc_priv

Other columns Timestamp

 Grantor

The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to
indicate the type of routine the row refers to. This column enables privileges to be granted separately
for a function and a procedure with the same name.

The Timestamp and Grantor columns are unused.

The proxies_priv table was added in MySQL 5.5.7 and records information about proxy accounts. It
has these columns:

• Host, User: The proxy account; that is, the account that has the PROXY privilege for the proxied
account.

• Proxied_host, Proxied_user: The proxied account.

• Grantor, Timestamp: Unused.

• With_grant: Whether the proxy account can grant the PROXY privilege to other accounts.

For an account to be able to grant the PROXY privilege to other accounts, it must have a row in
the proxies_priv table with With_grant set to 1 and Proxied_host and Proxied_user
set to indicate the account or accounts for which the privilege can be granted. For example, the
'root'@'localhost' account created during MySQL installation has a row in the proxies_priv
table that enables granting the PROXY privilege for ''@'', that is, for all users and all hosts. This
enables root to set up proxy users, as well as to delegate to other accounts the authority to set up
proxy users. See Section 6.3.7, “Proxy Users”.



Grant Tables

731

Scope columns in the grant tables contain strings. The default value for each is the empty string. The
following table shows the number of characters permitted in each column.

Table 6.6 Grant Table Scope Column Lengths

Column Name Maximum Permitted Characters

Host, Proxied_host 60

User, Proxied_user 16

Password 41

Db 64

Table_name 64

Column_name 64

Routine_name 64

For access-checking purposes, comparisons of User, Proxied_user, Password, Db, and
Table_name values are case sensitive. Comparisons of Host, Proxied_host, Column_name, and
Routine_name values are not case sensitive.

The user, db, and host tables list each privilege in a separate column that is declared as
ENUM('N','Y') DEFAULT 'N'. In other words, each privilege can be disabled or enabled, with the
default being disabled.

The tables_priv, columns_priv, and procs_priv tables declare the privilege columns as SET
columns. Values in these columns can contain any combination of the privileges controlled by the table.
Only those privileges listed in the column value are enabled.

Table 6.7 Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert', 'Update',
'Delete', 'Create', 'Drop', 'Grant',
'References', 'Index', 'Alter',
'Create View', 'Show view', 'Trigger'

tables_priv Column_priv 'Select', 'Insert', 'Update',
'References'

columns_priv Column_priv 'Select', 'Insert', 'Update',
'References'

procs_priv Proc_priv 'Execute', 'Alter Routine', 'Grant'

Only the user table specifies administrative privileges, such as RELOAD and SHUTDOWN. Administrative
operations are operations on the server itself and are not database-specific, so there is no reason to list
these privileges in the other grant tables. Consequently, the server need consult only the user table to
determine whether a user can perform an administrative operation.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as
such, but a user's ability to read or write files on the server host is independent of the database being
accessed.

The server reads the contents of the grant tables into memory when it starts. You can tell it to reload
the tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin flush-
privileges or mysqladmin reload command. Changes to the grant tables take effect as indicated
in Section 6.2.6, “When Privilege Changes Take Effect”.



Specifying Account Names

732

When you modify an account, it is a good idea to verify that your changes have the intended effect.
To check the privileges for a given account, use the SHOW GRANTS statement. For example, to
determine the privileges that are granted to an account with user name and host name values of bob
and pc84.example.com, use this statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

6.2.3 Specifying Account Names

MySQL account names consist of a user name and a host name. This enables creation of accounts for
users with the same name who can connect from different hosts. This section describes how to write
account names, including special values and wildcard rules.

In SQL statements such as CREATE USER, GRANT, and SET PASSWORD, account names follow these
rules:

• Account name syntax is 'user_name'@'host_name'.

• An account name consisting only of a user name is equivalent to 'user_name'@'%'. For example,
'me' is equivalent to 'me'@'%'.

• The user name and host name need not be quoted if they are legal as unquoted identifiers. Quotes
are necessary to specify a user_name string containing special characters (such as space or -),
or a host_name string containing special characters or wildcard characters (such as . or %); for
example, 'test-user'@'%.com'.

• Quote user names and host names as identifiers or as strings, using either backticks (`), single
quotation marks ('), or double quotation marks ("). For string-quoting and identifier-quoting
guidelines, see Section 9.1.1, “String Literals”, and Section 9.2, “Schema Object Names”.

• The user name and host name parts, if quoted, must be quoted separately. That is,
write 'me'@'localhost', not 'me@localhost'; the latter is actually equivalent to
'me@localhost'@'%'.

• A reference to the CURRENT_USER or CURRENT_USER() function is equivalent to specifying the
current client's user name and host name literally.

MySQL stores account names in grant tables in the mysql system database using separate columns
for the user name and host name parts:

• The user table contains one row for each account. The User and Host columns store the user
name and host name. This table also indicates which global privileges the account has.

• Other grant tables indicate privileges an account has for databases and objects within databases.
These tables have User and Host columns to store the account name. Each row in these tables
associates with the account in the user table that has the same User and Host values.

• For access-checking purposes, comparisons of User values are case sensitive. Comparisons of Host
values are not case sensitive.

For additional detail about grant table structure, see Section 6.2.2, “Grant Tables”.

User names and host names have certain special values or wildcard conventions, as described
following.

The user name part of an account name is either a nonblank value that literally matches the user
name for incoming connection attempts, or a blank value (empty string) that matches any user name.
An account with a blank user name is an anonymous user. To specify an anonymous user in SQL
statements, use a quoted empty user name part, such as ''@'localhost'.

The host name part of an account name can take many forms, and wildcards are permitted:



Specifying Account Names

733

• A host value can be a host name or an IP address (IPv4 or IPv6). The name 'localhost'
indicates the local host. The IP address '127.0.0.1' indicates the IPv4 loopback interface. The IP
address '::1' indicates the IPv6 loopback interface.

•  The % and _ wildcard characters are permitted in host name or IP address values. These have the
same meaning as for pattern-matching operations performed with the LIKE operator. For example, a
host value of '%' matches any host name, whereas a value of '%.mysql.com' matches any host
in the mysql.com domain. '192.168.1.%' matches any host in the 192.168.1 class C network.

Because IP wildcard values are permitted in host values (for example, '192.168.1.%' to
match every host on a subnet), someone could try to exploit this capability by naming a host
192.168.1.somewhere.com. To foil such attempts, MySQL does not perform matching on host
names that start with digits and a dot. For example, if a host is named 1.2.example.com, its name
never matches the host part of account names. An IP wildcard value can match only IP addresses,
not host names.

•  For a host value specified as an IPv4 address, a netmask can be given to indicate how many
address bits to use for the network number. Netmask notation cannot be used for IPv6 addresses.

The syntax is host_ip/netmask. For example:

CREATE USER 'david'@'192.58.197.0/255.255.255.0';

This enables david to connect from any client host having an IP address client_ip for which the
following condition is true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

client_ip & 255.255.255.0 = 192.58.197.0

IP addresses that satisfy this condition range from 192.58.197.0 to 192.58.197.255.

A netmask typically begins with bits set to 1, followed by bits set to 0. Examples:

• 192.0.0.0/255.0.0.0: Any host on the 192 class A network

• 192.168.0.0/255.255.0.0: Any host on the 192.168 class B network

• 192.168.1.0/255.255.255.0: Any host on the 192.168.1 class C network

• 192.168.1.1: Only the host with this specific IP address

The server performs matching of host values in account names against the client host using the value
returned by the system DNS resolver for the client host name or IP address. Except in the case that the
account host value is specified using netmask notation, the server performs this comparison as a string
match, even for an account host value given as an IP address. This means that you should specify
account host values in the same format used by DNS. Here are examples of problems to watch out for:

• Suppose that a host on the local network has a fully qualified name of host1.example.com. If DNS
returns name lookups for this host as host1.example.com, use that name in account host values.
If DNS returns just host1, use host1 instead.

• If DNS returns the IP address for a given host as 192.168.1.2, that will match an account host
value of 192.168.1.2 but not 192.168.01.2. Similarly, it will match an account host pattern like
192.168.1.% but not 192.168.01.%.

To avoid problems like these, it is advisable to check the format in which your DNS returns host names
and addresses. Use values in the same format in MySQL account names.



Access Control, Stage 1: Connection Verification

734

6.2.4 Access Control, Stage 1: Connection Verification

When you attempt to connect to a MySQL server, the server accepts or rejects the connection based
on your identity and whether you can verify your identity by supplying the correct password. If not, the
server denies access to you completely. Otherwise, the server accepts the connection, and then enters
Stage 2 and waits for requests.

Credential checking is performed using the three user table scope columns (Host, User, and
Password). The server accepts the connection only if the Host and User columns in some user
table row match the client host name and user name and the client supplies the password specified
in that row. The rules for permissible Host and User values are given in Section 6.2.3, “Specifying
Account Names”.

Your identity is based on two pieces of information:

• The client host from which you connect

• Your MySQL user name

If the User column value is nonblank, the user name in an incoming connection must match exactly.
If the User value is blank, it matches any user name. If the user table row that matches an incoming
connection has a blank user name, the user is considered to be an anonymous user with no name, not
a user with the name that the client actually specified. This means that a blank user name is used for
all further access checking for the duration of the connection (that is, during Stage 2).

The Password column can be blank. This is not a wildcard and does not mean that any password
matches. It means that the user must connect without specifying a password. If the server
authenticates a client using a plugin, the authentication method that the plugin implements may or may
not use the password in the Password column. In this case, it is possible that an external password is
also used to authenticate to the MySQL server.

Nonblank Password values in the user table represent encrypted passwords. MySQL does not
store passwords in cleartext form for anyone to see. Rather, the password supplied by a user who is
attempting to connect is encrypted (using the PASSWORD() function). The encrypted password then
is used during the connection process when checking whether the password is correct. This is done
without the encrypted password ever traveling over the connection. See Section 6.3.1, “User Names
and Passwords”.

From MySQL's point of view, the encrypted password is the real password, so you should never give
anyone access to it. In particular, do not give nonadministrative users read access to tables in the
mysql database.

The following table shows how various combinations of User and Host values in the user table apply
to incoming connections.

User Value Host Value Permissible Connections

'fred' 'thomas.loc.gov' fred, connecting from thomas.loc.gov

'' 'thomas.loc.gov' Any user, connecting from thomas.loc.gov

'fred' '%' fred, connecting from any host

'' '%' Any user, connecting from any host

'fred' '%.loc.gov' fred, connecting from any host in the loc.gov
domain

'fred' 'x.y.%' fred, connecting from x.y.net, x.y.com,
x.y.edu, and so on; this is probably not useful

'fred' '192.168.10.177' fred, connecting from the host with IP address
192.168.10.177



Access Control, Stage 1: Connection Verification

735

User Value Host Value Permissible Connections

'fred' '192.168.10.%' fred, connecting from any host in the
192.168.10 class C subnet

'fred' '192.168.10.0/255.255.255.0'Same as previous example

It is possible for the client host name and user name of an incoming connection to match more than
one row in the user table. The preceding set of examples demonstrates this: Several of the entries
shown match a connection from thomas.loc.gov by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this
issue as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client host name and user name.

The server uses sorting rules that order rows with the most-specific Host values first. Literal host
names and IP addresses are the most specific. (The specificity of a literal IP address is not affected by
whether it has a netmask, so 192.168.1.13 and 192.168.1.0/255.255.255.0 are considered
equally specific.) The pattern '%' means “any host” and is least specific. The empty string '' also
means “any host” but sorts after '%'. Rows with the same Host value are ordered with the most-
specific User values first (a blank User value means “any user” and is least specific). For rows with
equally-specific Host and User values, the order is indeterminate.

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host      | User     | ...
+-----------+----------+-
| %         | root     | ...
| %         | jeffrey  | ...
| localhost | root     | ...
| localhost |          | ...
+-----------+----------+-

When the server reads the table into memory, it sorts the rows using the rules just described. The
result after sorting looks like this:

+-----------+----------+-
| Host      | User     | ...
+-----------+----------+-
| localhost | root     | ...
| localhost |          | ...
| %         | jeffrey  | ...
| %         | root     | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from localhost by jeffrey, two of the rows from the table match: the
one with Host and User values of 'localhost' and '', and the one with values of '%' and
'jeffrey'. The 'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host           | User     | ...
+----------------+----------+-



Access Control, Stage 2: Request Verification

736

| %              | jeffrey  | ...
| thomas.loc.gov |          | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host           | User     | ...
+----------------+----------+-
| thomas.loc.gov |          | ...
| %              | jeffrey  | ...
+----------------+----------+-

A connection by jeffrey from thomas.loc.gov is matched by the first row, whereas a connection
by jeffrey from any host is matched by the second.

Note

It is a common misconception to think that, for a given user name, all rows
that explicitly name that user are used first when the server attempts to find a
match for the connection. This is not true. The preceding example illustrates
this, where a connection from thomas.loc.gov by jeffrey is first matched
not by the row containing 'jeffrey' as the User column value, but by the row
with no user name. As a result, jeffrey is authenticated as an anonymous
user, even though he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably are
being authenticated as some other account. To find out what account the server used to authenticate
you, use the CURRENT_USER() function. (See Section 12.14, “Information Functions”.) It returns a
value in user_name@host_name format that indicates the User and Host values from the matching
user table row. Suppose that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost     |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In
other words, the server is treating jeffrey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to
see where the first match is being made.

6.2.5 Access Control, Stage 2: Request Verification

After you establish a connection, the server enters Stage 2 of access control. For each request that
you issue through that connection, the server determines what operation you want to perform, then
checks whether you have sufficient privileges to do so. This is where the privilege columns in the grant
tables come into play. These privileges can come from any of the user, db, host, tables_priv,
columns_priv, or procs_priv tables. (You may find it helpful to refer to Section 6.2.2, “Grant
Tables”, which lists the columns present in each of the grant tables.)

The user table grants privileges that are assigned to you on a global basis and that apply no matter
what the default database is. For example, if the user table grants you the DELETE privilege, you can
delete rows from any table in any database on the server host! It is wise to grant privileges in the user
table only to people who need them, such as database administrators. For other users, you should
leave all privileges in the user table set to 'N' and grant privileges at more specific levels only. You
can grant privileges for particular databases, tables, columns, or routines.



Access Control, Stage 2: Request Verification

737

The db and host tables grant database-specific privileges. Values in the scope columns of these
tables can take the following forms:

• A blank User value in the db table matches the anonymous user. A nonblank value matches literally;
there are no wildcards in user names.

• The wildcard characters % and _ can be used in the Host and Db columns of either table. These
have the same meaning as for pattern-matching operations performed with the LIKE operator. If you
want to use either character literally when granting privileges, you must escape it with a backslash.
For example, to include the underscore character (_) as part of a database name, specify it as \_ in
the GRANT statement.

• A '%' Host value in the db table means “any host.” A blank Host value in the db table means
“consult the host table for further information” (a process that is described later in this section).

• A '%' or blank Host value in the host table means “any host.”

• A '%' or blank Db value in either table means “any database.”

The server reads the db and host tables into memory and sorts them at the same time that it reads
the user table. The server sorts the db table based on the Host, Db, and User scope columns, and
sorts the host table based on the Host and Db scope columns. As with the user table, sorting puts
the most-specific values first and least-specific values last, and when the server looks for matching
rows, it uses the first match that it finds.

The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific,
and routine-specific privileges. Values in the scope columns of these tables can take the following
forms:

• The wildcard characters % and _ can be used in the Host column. These have the same meaning as
for pattern-matching operations performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

• The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be
blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host,
Db, and User columns. This is similar to db table sorting, but simpler because only the Host column
can contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require
administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user table row
because that is the only table that specifies administrative privileges. The server grants access if the
row permits the requested operation and denies access otherwise. For example, if you want to execute
mysqladmin shutdown but your user table row does not grant the SHUTDOWN privilege to you, the
server denies access without even checking the db or host tables. (They contain no Shutdown_priv
column, so there is no need to do so.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global
privileges by looking in the user table row. If the row permits the requested operation, access is
granted. If the global privileges in the user table are insufficient, the server determines the user's
database-specific privileges by checking the db and host tables:

1. The server looks in the db table for a match on the Host, Db, and User columns. The Host and
User columns are matched to the connecting user's host name and MySQL user name. The Db
column is matched to the database that the user wants to access. If there is no row for the Host
and User, access is denied.

2. If there is a matching db table row and its Host column is not blank, that row defines the user's
database-specific privileges.



When Privilege Changes Take Effect

738

3. If the matching db table row's Host column is blank, it signifies that the host table enumerates
which hosts should be permitted access to the database. In this case, a further lookup is done
in the host table to find a match on the Host and Db columns. If no host table row matches,
access is denied. If there is a match, the user's database-specific privileges are computed as the
intersection (not the union!) of the privileges in the db and host table rows; that is, the privileges
that are 'Y' in both rows. (This way you can grant general privileges in the db table row and then
selectively restrict them on a host-by-host basis using the host table rows.)

After determining the database-specific privileges granted by the db and host table rows, the server
adds them to the global privileges granted by the user table. If the result permits the requested
operation, access is granted. Otherwise, the server successively checks the user's table and column
privileges in the tables_priv and columns_priv tables, adds those to the user's privileges, and
permits or denies access based on the result. For stored-routine operations, the server uses the
procs_priv table rather than tables_priv and columns_priv.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global user row privileges are initially found to be insufficient for the
requested operation, the server adds those privileges to the database, table, and column privileges
later. The reason is that a request might require more than one type of privilege. For example, if you
execute an INSERT INTO ... SELECT statement, you need both the INSERT and the SELECT
privileges. Your privileges might be such that the user table row grants one privilege and the db table
row grants the other. In this case, you have the necessary privileges to perform the request, but the
server cannot tell that from either table by itself; the privileges granted by the rows in both tables must
be combined.

The host table is not affected by the GRANT or REVOKE statements, so it is unused in most MySQL
installations. If you modify it directly, you can use it for some specialized purposes, such as to maintain
a list of secure servers on the local network that are granted all privileges.

You can also use the host table to indicate hosts that are not secure. Suppose that you have a
machine public.your.domain that is located in a public area that you do not consider secure. You
can enable access to all hosts on your network except that machine by using host table rows like this:

+--------------------+----+-
| Host               | Db | ...
+--------------------+----+-
| public.your.domain | %  | ... (all privileges set to 'N')
| %.your.domain      | %  | ... (all privileges set to 'Y')
+--------------------+----+-

6.2.6 When Privilege Changes Take Effect

When mysqld starts, it reads all grant table contents into memory. The in-memory tables become
effective for access control at that point.

If you modify the grant tables indirectly using account-management statements such as GRANT,
REVOKE, SET PASSWORD, or RENAME USER, the server notices these changes and loads the grant
tables into memory again immediately.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE, your
changes have no effect on privilege checking until you either restart the server or tell it to reload
the tables. If you change the grant tables directly but forget to reload them, your changes have no



Troubleshooting Problems Connecting to MySQL

739

effect until you restart the server. This may leave you wondering why your changes seem to make no
difference!

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by
issuing a FLUSH PRIVILEGES statement or by executing a mysqladmin flush-privileges or
mysqladmin reload command.

A grant table reload affects privileges for each existing client connection as follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect the next time the client executes a USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not
be visible to them without actually changing to a different database or flushing
the privileges.

• Global privileges and passwords are unaffected for a connected client. These changes take effect
only for subsequent connections.

If the server is started with the --skip-grant-tables option, it does not read the grant tables or
implement any access control. Anyone can connect and do anything, which is insecure. To cause a
server thus started to read the tables and enable access checking, flush the privileges.

6.2.7 Troubleshooting Problems Connecting to MySQL

If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

• Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an
attempt to connect to the server fails with a message such as one of those following, one cause
might be that the server is not running:

shell> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
shell> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

• It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe,
or Unix socket file different from the one on which the server is listening. To correct this when you
invoke a client program, specify a --port option to indicate the proper port number, or a --socket
option to indicate the proper named pipe or Unix socket file. To find out where the socket file is, you
can use this command:

shell> netstat -ln | grep mysql

• Make sure that the server has not been configured to ignore network connections or (if you
are attempting to connect remotely) that it has not been configured to listen only locally on its
network interfaces. If the server was started with --skip-networking, it will not accept TCP/IP
connections at all. If the server was started with --bind-address=127.0.0.1, it will listen for
TCP/IP connections only locally on the loopback interface and will not accept remote connections.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be
configured on the basis of the application being executed, or the port number used by MySQL for
communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration
to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or
the Windows XP personal firewall may need to be configured not to block the MySQL port.



Troubleshooting Problems Connecting to MySQL

740

• The grant tables must be properly set up so that the server can use them for access control. For
some distribution types (such as binary distributions on Windows, or RPM distributions on Linux), the
installation process initializes the MySQL data directory, including the mysql database containing
the grant tables. For distributions that do not do this, you must initialize the data directory manually.
For details, see Section 2.10, “Postinstallation Setup and Testing”.

To determine whether you need to initialize the grant tables, look for a mysql directory under the
data directory. (The data directory normally is named data or var and is located under your MySQL
installation directory.) Make sure that you have a file named user.MYD in the mysql database
directory. If not, initialize the data directory. After doing so and starting the server, test the initial
privileges by executing this command:

shell> mysql -u root

The server should let you connect without error.

• After a fresh installation, you should connect to the server and set up your users and their access
permissions:

shell> mysql -u root mysql

The server should let you connect because the MySQL root user has no password initially. That is
also a security risk, so setting the password for the root accounts is something you should do while
you're setting up your other MySQL accounts. For instructions on setting the initial passwords, see
Section 2.10.4, “Securing the Initial MySQL Accounts”.

•  If you have updated an existing MySQL installation to a newer version, did you run the
mysql_upgrade script? If not, do so. The structure of the grant tables changes occasionally when
new capabilities are added, so after an upgrade you should always make sure that your tables have
the current structure. For instructions, see Section 4.4.7, “mysql_upgrade — Check and Upgrade
MySQL Tables”.

• If a client program receives the following error message when it tries to connect, it means that the
server expects passwords in a newer format than the client is capable of generating:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 6.1.2.4, “Password Hashing in MySQL”, and
Section B.5.2.4, “Client does not support authentication protocol”.

•     Remember that client programs use connection parameters specified in option files or
environment variables. If a client program seems to be sending incorrect default connection
parameters when you have not specified them on the command line, check any applicable option
files and your environment. For example, if you get Access denied when you run a client without
any options, make sure that you have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults
option. For example:

shell> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Section 4.2.6, “Using Option Files”. Environment
variables are listed in Section 4.9, “MySQL Program Environment Variables”.

• If you get the following error, it means that you are using an incorrect root password:

shell> mysqladmin -u root -pxxxx ver



Troubleshooting Problems Connecting to MySQL

741

Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have
an incorrect password listed in some option file. Try the --no-defaults option as described in the
previous item.

For information on changing passwords, see Section 6.3.5, “Assigning Account Passwords”.

If you have lost or forgotten the root password, see Section B.5.3.2, “How to Reset the Root
Password”.

• If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt the
password using the PASSWORD() function. If you do not use PASSWORD() for these statements, the
password will not work. For example, the following statement assigns a password, but fails to encrypt
it, so the user is not able to connect afterward:

SET PASSWORD FOR 'abe'@'host_name' = 'eagle';

Instead, set the password like this:

SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');

The PASSWORD() function is unnecessary when you specify a password using the CREATE USER
or GRANT statements or the mysqladmin password command. Each of those automatically uses
PASSWORD() to encrypt the password. See Section 6.3.5, “Assigning Account Passwords”, and
Section 13.7.1.1, “CREATE USER Syntax”.

• localhost is a synonym for your local host name, and is also the default host to which clients try to
connect if you specify no host explicitly.

You can use a --host=127.0.0.1 option to name the server host explicitly. This will make a TCP/
IP connection to the local mysqld server. You can also use TCP/IP by specifying a --host option
that uses the actual host name of the local host. In this case, the host name must be specified in a
user table row on the server host, even though you are running the client program on the same host
as the server.

• The Access denied error message tells you who you are trying to log in as, the client host from
which you are trying to connect, and whether you were using a password. Normally, you should have
one row in the user table that exactly matches the host name and user name that were given in the
error message. For example, if you get an error message that contains using password: NO, it
means that you tried to log in without a password.

• If you get an Access denied error when trying to connect to the database with mysql -u
user_name, you may have a problem with the user table. Check this by executing mysql -u
root mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name
and your MySQL user name.

• If the following error occurs when you try to connect from a host other than the one on which the
MySQL server is running, it means that there is no row in the user table with a Host value that
matches the client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client host name and user name that
you are using when trying to connect.



Troubleshooting Problems Connecting to MySQL

742

If you do not know the IP address or host name of the machine from which you are connecting, you
should put a row with '%' as the Host column value in the user table. After trying to connect from
the client machine, use a SELECT USER() query to see how you really did connect. Then change
the '%' in the user table row to the actual host name that shows up in the log. Otherwise, your
system is left insecure because it permits connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version
that is compiled with a different version of the glibc library than the one you are using. In this case,
you should either upgrade your operating system or glibc, or download a source distribution of
MySQL version and compile it yourself. A source RPM is normally trivial to compile and install, so
this is not a big problem.

• If you specify a host name when trying to connect, but get an error message where the host name
is not shown or is an IP address, it means that the MySQL server got an error when trying to resolve
the IP address of the client host to a name:

shell> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

If you try to connect as root and get the following error, it means that you do not have a row in the
user table with a User column value of 'root' and that mysqld cannot resolve the host name for
your client:

Access denied for user ''@'unknown'

These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the
internal DNS host cache. See Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP addresses rather than host names in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on
Windows.

• Start mysqld with the --skip-name-resolve option.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to
localhost. For connections to localhost, MySQL programs attempt to connect to the local
server by using a Unix socket file, unless there are connection parameters specified to ensure that
the client makes a TCP/IP connection. For more information, see Section 4.2.2, “Connecting to the
MySQL Server”.

• On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the host name . (period). Connections to . use a
named pipe rather than TCP/IP.

• If mysql -u root works but mysql -h your_hostname -u root results in Access denied
(where your_hostname is the actual host name of the local host), you may not have the correct
name for your host in the user table. A common problem here is that the Host value in the user
table row specifies an unqualified host name, but your system's name resolution routines return a
fully qualified domain name (or vice versa). For example, if you have a row with host 'pluto' in
the user table, but your DNS tells MySQL that your host name is 'pluto.example.com', the
row does not work. Try adding a row to the user table that contains the IP address of your host as
the Host column value. (Alternatively, you could add a row to the user table with a Host value



Troubleshooting Problems Connecting to MySQL

743

that contains a wildcard; for example, 'pluto.%'. However, use of Host values ending with % is
insecure and is not recommended!)

• If mysql -u user_name works but mysql -u user_name some_db does not, you have not
granted access to the given user for the database named some_db.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -
u user_name does not work when executed on a remote client host, you have not enabled access
to the server for the given user name from the remote host.

• If you cannot figure out why you get Access denied, remove from the user table all rows that
have Host values containing wildcards (rows that contain '%' or '_' characters). A very common
error is to insert a new row with Host='%' and User='some_user', thinking that this enables
you to specify localhost to connect from the same machine. The reason that this does not work
is that the default privileges include a row with Host='localhost' and User=''. Because that
row has a Host value 'localhost' that is more specific than '%', it is used in preference to the
new row when connecting from localhost! The correct procedure is to insert a second row with
Host='localhost' and User='some_user', or to delete the row with Host='localhost' and
User=''. After deleting the row, remember to issue a FLUSH PRIVILEGES statement to reload the
grant tables. See also Section 6.2.4, “Access Control, Stage 1: Connection Verification”.

• If you are able to connect to the MySQL server, but get an Access denied message whenever you
issue a SELECT ... INTO OUTFILE or LOAD DATA INFILE statement, your row in the user
table does not have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE
statements) and your changes seem to be ignored, remember that you must execute a FLUSH
PRIVILEGES statement or a mysqladmin flush-privileges command to cause the server to
reload the privilege tables. Otherwise, your changes have no effect until the next time the server is
restarted. Remember that after you change the root password with an UPDATE statement, you will
not need to specify the new password until after you flush the privileges, because the server will not
know you've changed the password yet!

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL
administrator has changed them. Reloading the grant tables affects new client connections, but
it also affects existing connections as indicated in Section 6.2.6, “When Privilege Changes Take
Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to
the server with mysql -u user_name db_name or mysql -u user_name -pyour_pass
db_name. If you are able to connect using the mysql client, the problem lies with your program, not
with the access privileges. (There is no space between -p and the password; you can also use the
--password=your_pass syntax to specify the password. If you use the -p or --password option
with no password value, MySQL prompts you for the password.)

• For testing purposes, start the mysqld server with the --skip-grant-tables option. Then
you can change the MySQL grant tables and use the mysqlaccess script to check whether
your modifications have the desired effect. When you are satisfied with your changes, execute
mysqladmin flush-privileges to tell the mysqld server to reload the privileges. This enables
you to begin using the new grant table contents without stopping and restarting the server.

• If you get the following error, you may have a problem with the db or host table:

Access to database denied

If the row selected from the db table has an empty value in the Host column, make sure that there
are one or more corresponding rows in the host table specifying which hosts the db table row
applies to. This problem occurs infrequently because the host table is rarely used.



MySQL User Account Management

744

• If everything else fails, start the mysqld server with a debugging option (for example, --
debug=d,general,query). This prints host and user information about attempted connections, as
well as information about each command issued. See Section 24.5.3, “The DBUG Package”.

• If you have any other problems with the MySQL grant tables and feel you must post the problem to
the mailing list, always provide a dump of the MySQL grant tables. You can dump the tables with
the mysqldump mysql command. To file a bug report, see the instructions at Section 1.6, “How to
Report Bugs or Problems”. In some cases, you may need to restart mysqld with --skip-grant-
tables to run mysqldump.

6.3 MySQL User Account Management
This section describes how to set up accounts for clients of your MySQL server. It discusses the
following topics:

• The meaning of account names and passwords as used in MySQL and how that compares to names
and passwords used by your operating system

• How to set up new accounts and remove existing accounts

• How to change passwords

• Guidelines for using passwords securely

See also Section 13.7.1, “Account Management Statements”, which describes the syntax and use for
all user-management SQL statements.

6.3.1 User Names and Passwords

MySQL stores accounts in the user table of the mysql system database. An account is defined in
terms of a user name and the client host or hosts from which the user can connect to the server. For
information about account representation in the user table, see Section 6.2.2, “Grant Tables”.

The account may also have a password. MySQL supports authentication plugins, so it is possible that
an account authenticates using some external authentication method. See Section 6.3.6, “Pluggable
Authentication”.

There are several distinctions between the way user names and passwords are used by MySQL and
your operating system:

• User names, as used by MySQL for authentication purposes, have nothing to do with user names
(login names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in
using the current Unix user name as the MySQL user name, but that is for convenience only. The
default can be overridden easily, because client programs permit any user name to be specified
with a -u or --user option. This means that anyone can attempt to connect to the server using
any user name, so you cannot make a database secure in any way unless all MySQL accounts
have passwords. Anyone who specifies a user name for an account that has no password is able to
connect successfully to the server.

• MySQL user names can be up to 16 characters long. Operating system user names may be of a
different maximum length. For example, Unix user names typically are limited to eight characters.

Warning

The limit on MySQL user name length is hardcoded in MySQL servers and
clients, and trying to circumvent it by modifying the definitions of the tables in
the mysql database does not work.

You should never alter the structure of tables in the mysql database in any
manner whatsoever except by means of the procedure that is described in
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.



User Names and Passwords

745

Attempting to redefine MySQL's system tables in any other fashion results in
undefined (and unsupported!) behavior. The server is free to ignore rows that
become malformed as a result of such modifications.

• To authenticate client connections for accounts that use MySQL native authentication (implemented
by the mysql_native_password authentication plugin), the server uses passwords stored in the
user table. These passwords are distinct from passwords for logging in to your operating system.
There is no necessary connection between the “external” password you use to log in to a Windows
or Unix machine and the password you use to access the MySQL server on that machine.

If the server authenticates a client using some other plugin, the authentication method that the plugin
implements may or may not use a password stored in the user table. In this case, it is possible that
an external password is also used to authenticate to the MySQL server.

• Passwords stored in the user table are encrypted using plugin-specific algorithms. For information
about MySQL native password hashing, see Section 6.1.2.4, “Password Hashing in MySQL”.

• If the user name and password contain only ASCII characters, it is possible to connect to the
server regardless of character set settings. To connect when the user name or password contain
non-ASCII characters, the client should call the mysql_options() C API function with the
MYSQL_SET_CHARSET_NAME option and appropriate character set name as arguments. This causes
authentication to take place using the specified character set. Otherwise, authentication will fail
unless the server default character set is the same as the encoding in the authentication defaults.

Standard MySQL client programs support a --default-character-set option that causes
mysql_options() to be called as just described. In addition, character set autodetection is
supported as described in Section 10.1.4, “Connection Character Sets and Collations”. For programs
that use a connector that is not based on the C API, the connector may provide an equivalent to
mysql_options() that can be used instead. Check the connector documentation.

The preceding notes do not apply for ucs2, utf16, and utf32, which are not permitted as client
character sets.

The MySQL installation process populates the grant tables with an initial account or accounts. The
names and access privileges for these accounts are described in Section 2.10.4, “Securing the Initial
MySQL Accounts”, which also discusses how to assign passwords to them. Thereafter, you normally
set up, modify, and remove MySQL accounts using statements such as CREATE USER, DROP USER,
GRANT, and REVOKE. See Section 13.7.1, “Account Management Statements”.

To connect to a MySQL server with a command-line client, specify user name and password options as
necessary for the account that you want to use:

shell> mysql --user=finley --password db_name

If you prefer short options, the command looks like this:

shell> mysql -u finley -p db_name

If you omit the password value following the --password or -p option on the command line (as just
shown), the client prompts for one. Alternatively, the password can be specified on the command line:

shell> mysql --user=finley --password=password db_name
shell> mysql -u finley -ppassword db_name

If you use the -p option, there must be no space between -p and the following password value.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line. See Section 4.2.6, “Using Option Files”.



Adding User Accounts

746

For additional information about specifying user names, passwords, and other connection parameters,
see Section 4.2.2, “Connecting to the MySQL Server”.

6.3.2 Adding User Accounts

You can create MySQL accounts two ways:

• By using account-management statements intended for creating accounts and establishing their
privileges, such as CREATE USER and GRANT. These statements cause the server to make
appropriate modifications to the underlying grant tables.

• By manipulating the MySQL grant tables directly with statements such as INSERT, UPDATE, or
DELETE.

The preferred method is to use account-management statements because they are more concise
and less error-prone than manipulating the grant tables directly. All such statements are described in
Section 13.7.1, “Account Management Statements”. Direct grant table manipulation is discouraged,
and is not described here. The server is free to ignore rows that become malformed as a result of such
modifications.

Another option for creating accounts is to use the GUI tool MySQL Workbench. Also, several third-party
programs offer capabilities for MySQL account administration. phpMyAdmin is one such program.

The following examples show how to use the mysql client program to set up new accounts.
These examples assume that privileges have been set up according to the defaults described in
Section 2.10.4, “Securing the Initial MySQL Accounts”. This means that to make changes, you must
connect to the MySQL server as the MySQL root user, which has the CREATE USER privilege.

First, use the mysql program to connect to the server as the MySQL root user:

shell> mysql --user=root mysql

If you have assigned a password to the root account, you must also supply a --password or -p
option.

After connecting to the server as root, you can add new accounts. The following example uses
CREATE USER  and GRANT statements to set up four accounts:

mysql> CREATE USER 'finley'@'localhost' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'finley'@'localhost'
    ->     WITH GRANT OPTION;
mysql> CREATE USER 'finley'@'%' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'finley'@'%'
    ->     WITH GRANT OPTION;
mysql> CREATE USER 'admin'@'localhost' IDENTIFIED BY 'admin_pass';
mysql> GRANT RELOAD,PROCESS ON *.* TO 'admin'@'localhost';
mysql> CREATE USER 'dummy'@'localhost';

The accounts created by those statements have the following properties:

• Two accounts have a user name of finley and a password of some_pass. Both are superuser
accounts with full privileges to do anything. The 'finley'@'localhost' account can be used
only when connecting from the local host. The 'finley'@'%' account uses the '%' wildcard for
the host part, so it can be used to connect from any host.

The 'finley'@'localhost' account is necessary if there is an anonymous-user account for
localhost. Without the 'finley'@'localhost' account, that anonymous-user account takes
precedence when finley connects from the local host and finley is treated as an anonymous
user. The reason for this is that the anonymous-user account has a more specific Host column value
than the 'finley'@'%' account and thus comes earlier in the user table sort order. (user table
sorting is discussed in Section 6.2.4, “Access Control, Stage 1: Connection Verification”.)



Removing User Accounts

747

• The 'admin'@'localhost' account has a password of admin_pass. This account can be used
only by admin to connect from the local host. It is granted the RELOAD and PROCESS administrative
privileges. These privileges enable the admin user to execute the mysqladmin reload,
mysqladmin refresh, and mysqladmin flush-xxx commands, as well as mysqladmin
processlist . No privileges are granted for accessing any databases. You could add such
privileges using GRANT statements.

• The 'dummy'@'localhost' account has no password (which is insecure and not recommended).
This account can be used only to connect from the local host. No privileges are granted. It is
assumed that you will grant specific privileges to the account using GRANT statements.

To see the privileges for an account, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+-----------------------------------------------------+
| Grants for admin@localhost                          |
+-----------------------------------------------------+
| GRANT RELOAD, PROCESS ON *.* TO 'admin'@'localhost' |
+-----------------------------------------------------+

The next examples create three accounts and grant them access to specific databases. Each of them
has a user name of custom and password of obscure:

mysql> CREATE USER 'custom'@'localhost' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
    ->     ON bankaccount.*
    ->     TO 'custom'@'localhost';
mysql> CREATE USER 'custom'@'host47.example.com' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
    ->     ON expenses.*
    ->     TO 'custom'@'host47.example.com';
mysql> CREATE USER 'custom'@'%.example.com' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
    ->     ON customer.*
    ->     TO 'custom'@'%.example.com';

The three accounts can be used as follows:

• The first account can access the bankaccount database, but only from the local host.

• The second account can access the expenses database, but only from the host
host47.example.com.

• The third account can access the customer database, from any host in the example.com domain.
This account has access from all machines in the domain due to use of the % wildcard character in
the host part of the account name.

6.3.3 Removing User Accounts

To remove an account, use the DROP USER statement, which is described in Section 13.7.1.2, “DROP
USER Syntax”. For example:

mysql> DROP USER 'jeffrey'@'localhost';

6.3.4 Setting Account Resource Limits

One means of restricting client use of MySQL server resources is to set the global
max_user_connections system variable to a nonzero value. This limits the number of simultaneous
connections that can be made by any given account, but places no limits on what a client can do once
connected. In addition, setting max_user_connections does not enable management of individual
accounts. Both types of control are of interest to MySQL administrators.



Setting Account Resource Limits

748

To address such concerns, MySQL permits limits for individual accounts on use of these server
resources:

• The number of queries an account can issue per hour

• The number of updates an account can issue per hour

• The number of times an account can connect to the server per hour

• The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit, unless its results are served from
the query cache. Only statements that modify databases or tables count against the update limit.

An “account” in this context corresponds to a row in the mysql.user table. That is, a connection is
assessed against the User and Host values in the user table row that applies to the connection. For
example, an account 'usera'@'%.example.com' corresponds to a row in the user table that has
User and Host values of usera and %.example.com, to permit usera to connect from any host in
the example.com domain. In this case, the server applies resource limits in this row collectively to all
connections by usera from any host in the example.com domain because all such connections use
the same account.

Before MySQL 5.0.3, an “account” was assessed against the actual host from which a user connects.
This older method of accounting may be selected by starting the server with the --old-style-
user-limits option. In this case, if usera connects simultaneously from host1.example.com and
host2.example.com, the server applies the account resource limits separately to each connection.
If usera connects again from host1.example.com, the server applies the limits for that connection
together with the existing connection from that host.

To establish resource limits for an account, use the GRANT statement (see Section 13.7.1.3, “GRANT
Syntax”). Provide a WITH clause that names each resource to be limited. The default value for each
limit is zero (no limit). For example, to create a new account that can access the customer database,
but only in a limited fashion, issue these statements:

mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank';
mysql> GRANT ALL ON customer.* TO 'francis'@'localhost'
    ->     WITH MAX_QUERIES_PER_HOUR 20
    ->          MAX_UPDATES_PER_HOUR 10
    ->          MAX_CONNECTIONS_PER_HOUR 5
    ->          MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any
order. The value for each per-hour limit should be an integer representing a count per hour. For
MAX_USER_CONNECTIONS, the limit is an integer representing the maximum number of simultaneous
connections by the account. If this limit is set to zero, the global max_user_connections system
variable value determines the number of simultaneous connections. If max_user_connections is
also zero, there is no limit for the account.

To modify limits for an existing account, use a GRANT USAGE statement at the global level (ON *.*).
The following statement changes the query limit for francis to 100:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
    ->     WITH MAX_QUERIES_PER_HOUR 100;

The statement modifies only the limit value specified and leaves the account otherwise unchanged.

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour
francis can connect, use this statement:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
    ->     WITH MAX_CONNECTIONS_PER_HOUR 0;



Assigning Account Passwords

749

As mentioned previously, the simultaneous-connection limit for an account is determined from the
MAX_USER_CONNECTIONS limit and the max_user_connections system variable. Suppose that
the global max_user_connections value is 10 and three accounts have individual resource limits
specified as follows:

GRANT ... TO 'user1'@'localhost' WITH MAX_USER_CONNECTIONS 0;
GRANT ... TO 'user2'@'localhost' WITH MAX_USER_CONNECTIONS 5;
GRANT ... TO 'user3'@'localhost' WITH MAX_USER_CONNECTIONS 20;

user1 has a connection limit of 10 (the global max_user_connections value) because it has
a MAX_USER_CONNECTIONS limit of zero. user2 and user3 have connection limits of 5 and 20,
respectively, because they have nonzero MAX_USER_CONNECTIONS limits.

The server stores resource limits for an account in the user table row corresponding to the account.
The max_questions, max_updates, and max_connections columns store the per-hour limits, and
the max_user_connections column stores the MAX_USER_CONNECTIONS limit. (See Section 6.2.2,
“Grant Tables”.)

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of
the resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches
its limit on number of connections within the last hour, the server rejects further connections for the
account until that hour is up. Similarly, if the account reaches its limit on the number of queries or
updates, the server rejects further queries or updates until the hour is up. In all such cases, the server
issues appropriate error messages.

Resource counting occurs per account, not per client. For example, if your account has a query limit of
50, you cannot increase your limit to 100 by making two simultaneous client connections to the server.
Queries issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a
given account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRIVILEGES
statement or a mysqladmin reload command).

• The counts for an individual account can be reset to zero by setting any of its limits again. Specify a
limit value equal to the value currently assigned to the account.

Per-hour counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts. Counts do not carry over through server restarts.

For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the
maximum number of connections permitted to it: A disconnect followed quickly by a connect can result
in an error (ER_TOO_MANY_USER_CONNECTIONS or ER_USER_LIMIT_REACHED) if the server has not
fully processed the disconnect by the time the connect occurs. When the server finishes disconnect
processing, another connection will once more be permitted.

6.3.5 Assigning Account Passwords

Required credentials for clients that connect to the MySQL server can include a password. This section
describes how to assign passwords for MySQL accounts.

MySQL stores passwords in the user table in the mysql system database. Operations that assign
or modify passwords are permitted only to users with the CREATE USER privilege, or, alternatively,
privileges for the mysql database (INSERT privilege to create new accounts, UPDATE privilege to
modify existing accounts). If the read_only system variable is enabled, use of account-modification
statements such as CREATE USER or SET PASSWORD additionally requires the SUPER privilege.



Assigning Account Passwords

750

The discussion here summarizes syntax only for the most common password-assignment statements.
For complete details on other possibilities, see Section 13.7.1.1, “CREATE USER Syntax”,
Section 13.7.1.3, “GRANT Syntax”, and Section 13.7.1.6, “SET PASSWORD Syntax”.

MySQL hashes passwords stored in the mysql.user table to obfuscate them. For most statements
described here, MySQL automatically hashes the password specified. An exception is SET
PASSWORD ... = PASSWORD('auth_string'), for which you use the PASSWORD() function
explicitly to hash the password. There are also syntaxes for CREATE USER, GRANT, and SET
PASSWORD that permit hashed values to be specified literally; for details, see the descriptions of those
statements.

MySQL uses plugins to perform client authentication; see Section 6.3.6, “Pluggable Authentication”.
The authentication plugin associated with an account determines the algorithm used to hash
passwords for that account.

To assign a password when you create a new account, use CREATE USER and include an
IDENTIFIED BY clause:

mysql> CREATE USER 'jeffrey'@'localhost'
    -> IDENTIFIED BY 'mypass';

For this CREATE USER syntax, MySQL automatically hashes the password before storing it in the
mysql.user table.

CREATE USER also supports syntax for specifying the account authentication plugin. See
Section 13.7.1.1, “CREATE USER Syntax”.

To assign or change a password for an existing account, use one of the following methods:

• Use SET PASSWORD with the PASSWORD() function:

mysql> SET PASSWORD FOR
    -> 'jeffrey'@'localhost' = PASSWORD('mypass');

If you are not connected as an anonymous user, you can change your own password by omitting the
FOR clause:

mysql> SET PASSWORD = PASSWORD('mypass');

The PASSWORD() function hashes the password using the hashing method determined by the value
of the old_passwords system variable value. If SET PASSWORD rejects the hashed password
value returned by PASSWORD() as not being in the correct format, it may be necessary to change
old_passwords to change the hashing method. See Section 13.7.1.6, “SET PASSWORD Syntax”.

• Use a GRANT USAGE statement at the global level (ON *.*) to change an account password without
affecting the account's current privileges:

mysql> GRANT USAGE ON *.* TO 'jeffrey'@'localhost'
    -> IDENTIFIED BY 'mypass';

For this GRANT syntax, MySQL automatically hashes the password before storing it in the
mysql.user table.

• To change an account password from the command line, use the mysqladmin command:

shell> mysqladmin -u user_name -h host_name password "new_password"

The account for which this command sets the password is the one with a mysql.user table row that
matches user_name in the User column and the client host from which you connect in the Host
column.



Pluggable Authentication

751

For password changes made using mysqladmin, MySQL automatically hashes the password before
storing it in the mysql.user table.

6.3.6 Pluggable Authentication

When a client connects to the MySQL server, the server uses the user name provided by the client
and the client host to select the appropriate account row from the mysql.user table. The server then
consults this row to authenticate the client.

Before MySQL 5.5.7, the server authenticates the password provided by the client against the
Password column of the account row.

As of MySQL 5.5.7, the server authenticates clients using a plugin. Selection of the proper account
row from the mysql.user table is based on the user name and client host, as before, but the server
authenticates the client by determining from the account row which authentication plugin applies for the
client:

• If the account row specifies a plugin, the server invokes it to authenticate the user. If the server
cannot find the plugin, an error occurs and the connection attempt is rejected.

• If the account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password
hash value in the Password column used native hashing or the older pre-4.1 hashing method.
Clients must match the password in the Password column of the account row.

The plugin returns a status to the server indicating whether the user is permitted to connect.

Pluggable authentication enables two important capabilities:

• External authentication: Pluggable authentication makes it possible for clients to connect to the
MySQL server with credentials that are appropriate for authentication methods that store credentials
elsewhere than in the mysql.user table. For example, plugins can be created to use external
authentication methods such as PAM, Windows login IDs, LDAP, or Kerberos.

• Proxy users: If a user is permitted to connect, an authentication plugin can return to the server a
user name different from the name of the connecting user, to indicate that the connecting user is
a proxy for another user (the proxied user). While the connection lasts, the proxy user is treated,
for purposes of access control, as having the privileges of the proxied user. In effect, one user
impersonates another. For more information, see Section 6.3.7, “Proxy Users”.

Several authentication plugins are available in MySQL:

• Plugins that perform native authentication; that is, authentication based on the password
hashing methods in use from before the introduction of pluggable authentication. The
mysql_native_password plugin implements authentication based on the native password
hashing method. The mysql_old_password plugin implements native authentication based
on the older (pre-4.1) password hashing method. See Section 6.5.1.1, “Native Pluggable
Authentication”, and Section 6.5.1.2, “Old Native Pluggable Authentication”. Native authentication
using mysql_native_password is the default for accounts that have no plugin named explicitly in
their account row.

• A client-side plugin that sends the password to the server without hashing or encryption. This
plugin is used in conjunction with server-side plugins that require access to the password exactly as
provided by the client user. See Section 6.5.1.3, “Client-Side Cleartext Pluggable Authentication”.

• A plugin that performs external authentication using PAM (Pluggable Authentication Modules),
enabling MySQL Server to use PAM to authenticate MySQL users. This plugin supports proxy users
as well. See Section 6.5.1.4, “PAM Pluggable Authentication”.

• A plugin that performs external authentication on Windows, enabling MySQL Server to use native
Windows services to authenticate client connections. Users who have logged in to Windows can



Pluggable Authentication

752

connect from MySQL client programs to the server based on the information in their environment
without specifying an additional password. This plugin supports proxy users as well. See
Section 6.5.1.5, “Windows Pluggable Authentication”.

• A plugin that authenticates clients that connect from the local host through the Unix socket file. See
Section 6.5.1.6, “Socket Peer-Credential Pluggable Authentication”.

• A test plugin that checks account credentials and logs success or failure to the server error log.
This plugin is intended for testing and development purposes, and as an example of how to write an
authentication plugin. See Section 6.5.1.7, “Test Pluggable Authentication”.

Note

For information about current restrictions on the use of pluggable authentication,
including which connectors support which plugins, see Section C.9,
“Restrictions on Pluggable Authentication”.

Third-party connector developers should read that section to determine the
extent to which a connector can take advantage of pluggable authentication
capabilities and what steps to take to become more compliant.

If you are interested in writing your own authentication plugins, see Section 24.2.4.9, “Writing
Authentication Plugins”.

Authentication Plugin Usage Instructions

This section provides general instructions for installing and using authentication plugins. For
instructions specific to a given plugin, see the section that describes that plugin.

In general, pluggable authentication uses corresponding plugins on the server and client sides, so you
use a given authentication method like this:

• If necessary, install the plugin library or libraries containing the appropriate plugins. On the server
host, install the library containing the server-side plugin, so that the server can use it to authenticate
client connections. Similarly, on each client host, install the library containing the client-side plugin for
use by client programs.

• Create MySQL accounts that specify use of the server-side plugin for authentication.

• When a client connects, the server-side plugin tells the client program which client-side plugin to use
for authentication.

In the case that an account uses an authentication method that is the default for both the server and
the client program, the server need not communicate to the client which client-side plugin to use, and a
round trip in client/server negotiation can be avoided. This is true for accounts that use native MySQL
authentication (mysql_native_password or mysql_old_password).

The --default-auth=plugin_name option can be specified on the mysql command line as a hint
about which client-side plugin the program can expect to use, although the server will override this if
the server-side plugin associated with the user account requires a different client-side plugin.

If the client program does not find the client-side plugin, specify a --plugin-dir=dir_name option
to indicate where the plugin is located.

Note

If you start the server with the --skip-grant-tables option, authentication
plugins are not used even if loaded because the server performs no client
authentication and permits any client to connect. Because this is insecure,
you might want to use --skip-grant-tables in conjunction with --skip-
networking to prevent remote clients from connecting.



Proxy Users

753

6.3.7 Proxy Users

Authentication to the MySQL server occurs by means of authentication plugins. The plugin that
authenticates a given connection may request that the connecting (external) user be treated as a
different user for privilege-checking purposes. This enables the external user to be a proxy for the
second user; that is, to have the privileges of the second user:

• The external user is a “proxy user” (a user who can impersonate or become known as another user).

• The second user is a “proxied user” (a user whose identity can be taken on by a proxy user).

This section describes how the proxy user capability works. For general information about
authentication plugins, see Section 6.3.6, “Pluggable Authentication”. For information about specific
plugins, see Section 6.5.1, “Authentication Plugins”. For information about writing authentication
plugins that support proxy users, see Implementing Proxy User Support in Authentication Plugins.

For proxying to occur for a given authentication plugin, these conditions must be satisfied:

• The plugin must support proxying.

• A proxy user account must be set up to be authenticated by the plugin. Use the CREATE USER or
GRANT statement to associate an account with an authentication plugin.

• For a client connecting to the proxy account to be treated as a proxy user, the authentication plugin
must return a user name different from the client user name, to indicate the user name for the
proxied account.

• The proxy user account must have the PROXY privilege for the proxied account. Use the GRANT
statement for this.

The proxy mechanism permits mapping only the client user name to the proxied user name. There is
no provision for mapping host names. When a connecting client matches a proxy account, the server
attempts to find a match for a proxied account using the user name returned by the authentication
plugin and the host name of the proxy account.

Consider the following definitions:

-- create proxy user
CREATE USER 'employee_ext'@'localhost'
  IDENTIFIED WITH my_auth_plugin AS 'my_auth_string';

-- create proxied user
CREATE USER 'employee'@'localhost'
  IDENTIFIED BY 'employee_pass';

-- grant PROXY privilege for proxy user to proxied user
GRANT PROXY
  ON 'employee'@'localhost'
  TO 'employee_ext'@'localhost';

When a client connects as employee_ext from the local host, MySQL uses my_auth_plugin
to perform authentication. Suppose that my_auth_plugin returns a user name of employee to
the server, based on the content of 'my_auth_string' and perhaps by consulting some external
authentication system. The name employee differs from employee_ext, so returning employee
serves as a request to the server to treat the employee_ext client, for purposes of privilege checking,
as the employee local user.

In this case, employee_ext is the proxy user and employee is the proxied user.

The server verifies that proxy authentication for employee is possible for the employee_ext user by
checking whether employee_ext (the proxy user) has the PROXY privilege for employee (the proxied
user). If this privilege has not been granted, an error occurs.



Proxy Users

754

When proxying occurs, the USER() and CURRENT_USER() functions can be used to see the difference
between the connecting user (the proxy user) and the account whose privileges apply during the
current session (the proxied user). For the example just described, those functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------------+--------------------+
| USER()                 | CURRENT_USER()     |
+------------------------+--------------------+
| employee_ext@localhost | employee@localhost |
+------------------------+--------------------+

In the CREATE USER statement that creates the proxy user account, the IDENTIFIED WITH clause
that names the authentication plugin is optionally followed by an AS 'auth_string' clause
specifying a string that the server passes to the plugin when the user connects. If present, the string
provides information that helps the plugin determine how to map the external client user name to a
proxied user name. It is up to each plugin whether it requires the AS clause. If so, the format of the
authentication string depends on how the plugin intends to use it. Consult the documentation for a
given plugin for information about the authentication string values it accepts.

Granting the Proxy Privilege

The PROXY privilege is needed to enable an external user to connect as and have the privileges of
another user. To grant this privilege, use the GRANT statement. For example:

GRANT PROXY ON 'proxied_user' TO 'proxy_user';

The statement creates a row in the mysql.proxies_priv grant table.

At connection time, proxy_user must represent a valid externally authenticated MySQL user, and
proxied_user must represent a valid locally authenticated user. Otherwise, the connection attempt
fails.

The corresponding REVOKE syntax is:

REVOKE PROXY ON 'proxied_user' FROM 'proxy_user';

MySQL GRANT and REVOKE syntax extensions work as usual. For example:

GRANT PROXY ON 'a' TO 'b', 'c', 'd';
GRANT PROXY ON 'a' TO 'd' IDENTIFIED BY ...;
GRANT PROXY ON 'a' TO 'd' WITH GRANT OPTION;
GRANT PROXY ON 'a' TO ''@'';
REVOKE PROXY ON 'a' FROM 'b', 'c', 'd';

In the preceding example, ''@'' is the default proxy user and means “any user.” Default proxy user
are discussed in Default Proxy Users.

The PROXY privilege can be granted in these cases:

• By a user that has GRANT PROXY ... WITH GRANT OPTION for proxied_user.

• By proxied_user for itself: The value of USER() must exactly match CURRENT_USER() and
proxied_user, for both the user name and host name parts of the account name.

The initial root account created during MySQL installation has the PROXY ... WITH GRANT
OPTION privilege for ''@'', that is, for all users and all hosts. This enables root to set up proxy
users, as well as to delegate to other accounts the authority to set up proxy users. For example, root
can do this:

CREATE USER 'admin'@'localhost' IDENTIFIED BY 'test';
GRANT PROXY ON ''@'' TO 'admin'@'localhost' WITH GRANT OPTION;



Proxy Users

755

Those statements create an admin user that can manage all GRANT PROXY mappings. For example,
admin can do this:

GRANT PROXY ON sally TO joe;

Default Proxy Users

To specify that some or all users should connect using a given authentication plugin, create a
“blank” MySQL user, associate it with that plugin for authentication, and let the plugin return the real
authenticated user name (if different from the blank user). For example, suppose that there exists a
plugin named ldap_auth that implements LDAP authentication and maps connecting users onto
either a developer or manager account. To set up proxying of users onto these accounts, use the
following statements:

-- create default proxy user
CREATE USER ''@'' IDENTIFIED WITH ldap_auth AS 'O=Oracle, OU=MySQL';

-- create proxied users
CREATE USER 'developer'@'localhost' IDENTIFIED BY 'developer_pass';
CREATE USER 'manager'@'localhost' IDENTIFIED BY 'manager_pass';

-- grant PROXY privilege for default proxy user to proxied users
GRANT PROXY ON 'manager'@'localhost' TO ''@'';
GRANT PROXY ON 'developer'@'localhost' TO ''@'';

Now assume that a client tries to connect as follows:

shell> mysql --user=myuser --password ...
Enter password: myuser_pass

The server will not find myuser defined as a MySQL user. But because there is a blank user account
(''@''), that matches the client user name and host name, the server authenticates the client against
that account: The server invokes the ldap_auth authentication plugin and passes myuser and
myuser_pass to it as the user name and password.

If the ldap_auth plugin finds in the LDAP directory that myuser_pass is not the correct password for
myuser, authentication fails and the server rejects the connection.

If the password is correct and ldap_auth finds that myuser is a developer, it returns the user name
developer to the MySQL server, rather than myuser. Returning a user name different from the
client user name of myuser signals to the server that it should treat myuser as a proxy. The server
verifies that ''@'' can authenticate as developer (because it has the PROXY privilege to do so) and
accepts the connection. The session proceeds with myuser having the privileges of developer, the
proxied user. (These privileges should be set up by the DBA using GRANT statements, not shown.) The
USER() and CURRENT_USER() functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------+---------------------+
| USER()           | CURRENT_USER()      |
+------------------+---------------------+
| myuser@localhost | developer@localhost |
+------------------+---------------------+

If the plugin instead finds in the LDAP directory that myuser is a manager, it returns manager as the
user name and the session proceeds with myuser having the privileges of manager.

mysql> SELECT USER(), CURRENT_USER();
+------------------+-------------------+
| USER()           | CURRENT_USER()    |
+------------------+-------------------+
| myuser@localhost | manager@localhost |
+------------------+-------------------+



Proxy Users

756

For simplicity, external authentication cannot be multilevel: Neither the credentials for developer nor
those for manager are taken into account in the preceding example. However, they are still used if a
client tries to connect and authenticate directly as the developer or manager account, which is why
those accounts should be assigned passwords.

Default Proxy User and Anonymous User Conflicts

If you intend to create a default proxy user, check for other existing “match any user” accounts that take
precedence over the default proxy user and thus prevent that user from working as intended.

In the preceding discussion, the default proxy user account has '' in the host part, which matches any
host. If you set up a default proxy user, take care to also check whether nonproxy accounts exist with
the same user part and '%' in the host part, because '%' also matches any host, but has precedence
over '' by the rules that the server uses to sort account rows internally (see Section 6.2.4, “Access
Control, Stage 1: Connection Verification”).

Suppose that a MySQL installation includes these two accounts:

-- create default proxy user
CREATE USER ''@''
  IDENTIFIED WITH some_plugin AS 'some_auth_string';
-- create anonymous user
CREATE USER ''@'%'
  IDENTIFIED BY 'some_password';

The first account (''@'') is intended as the default proxy user, used to authenticate connections
for users who do not otherwise match a more-specific account. The second account (''@'%') is an
anonymous-user account, which might have been created, for example, to enable users without their
own account to connect anonymously.

Both accounts have the same user part (''), which matches any user. And each account has a
host part that matches any host. Nevertheless, there is a priority in account matching for connection
attempts because the matching rules sort a host of '%' ahead of ''. For accounts that do not match
any more-specific account, the server attempts to authenticate them against ''@'%' (the anonymous
user) rather than ''@'' (the default proxy user). The result is that the default proxy account is never
used.

To avoid this problem, use one of the following strategies:

• Remove the anonymous account so that it does not conflict with the default proxy user. This might be
a good idea anyway if you want to associate every connection with a named user.

• Use a more-specific default proxy user that matches ahead of the anonymous user. For example, to
permit only localhost proxy connections, use ''@'localhost':

CREATE USER ''@'localhost'
  IDENTIFIED WITH some_plugin AS 'some_auth_string';

In addition, modify any GRANT PROXY statements to name ''@'localhost' rather than ''@'' as
the proxy user.

Be aware that this strategy prevents anonymous-user connections from localhost.

• Create multiple proxy users, one for local connections and one for “everything else” (remote
connections). This can be useful particularly when local users should have different privileges from
remote users.

Create the proxy users:

-- create proxy user for local connections
CREATE USER ''@'localhost'



SQL-Based MySQL Account Activity Auditing

757

  IDENTIFIED WITH some_plugin AS 'some_auth_string';
-- create proxy user for remote connections
CREATE USER ''@'%'
  IDENTIFIED WITH some_plugin AS 'some_auth_string';

Create the proxied users:

-- create proxied user for local connections
CREATE USER 'developer'@'localhost'
  IDENTIFIED BY 'some_password';
-- create proxied user for remote connections
CREATE USER 'developer'@'%'
  IDENTIFIED BY 'some_password';

Grant the proxy privilege to each proxy user for the corresponding proxied user:

GRANT PROXY ON 'developer'@'localhost' TO ''@'localhost';
GRANT PROXY ON 'developer'@'%' TO ''@'%';

Finally, grant appropriate privileges to the local and remote proxied users (not shown).

Assume that the some_plugin/'some_auth_string' combination causes some_plugin to map
the client user name to developer. Local connections match the ''@'localhost' proxy user,
which maps to the 'developer'@'localhost' proxied user. Remote connections match the
''@'%' proxy user, which maps to the 'developer'@'%' proxied user.

Proxy User System Variables

Two system variables help trace the proxy login process:

• proxy_user: This value is NULL if proxying is not used. Otherwise, it indicates the proxy user
account. For example, if a client authenticates through the ''@'' proxy account, this variable is set
as follows:

mysql> SELECT @@proxy_user;
+--------------+
| @@proxy_user |
+--------------+
| ''@''        |
+--------------+

• external_user: Sometimes the authentication plugin may use an external user to authenticate
to the MySQL server. For example, when using Windows native authentication, a plugin that
authenticates using the windows API does not need the login ID passed to it. However, it still uses a
Windows user ID to authenticate. The plugin may return this external user ID (or the first 512 UTF-8
bytes of it) to the server using the external_user read-only session variable. If the plugin does not
set this variable, its value is NULL.

6.3.8 SQL-Based MySQL Account Activity Auditing

Applications can use the following guidelines to perform SQL-based auditing that ties database activity
to MySQL accounts.

MySQL accounts correspond to rows in the mysql.user table. When a client connects successfully,
the server authenticates the client to a particular row in this table. The User and Host column values
in this row uniquely identify the account and correspond to the 'user_name'@'host_name' format in
which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the
CURRENT_USER() function can be invoked to determine which account this is for the client user. Its
value is constructed from the User and Host columns of the user table row for the account.



SQL-Based MySQL Account Activity Auditing

758

However, there are circumstances under which the CURRENT_USER() value corresponds not to the
client user but to a different account. This occurs in contexts when privilege checking is not based the
client's account:

• Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic

• Views defined with the SQL SECURITY DEFINER characteristic

• Triggers and events

In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER()
refers to that account, not to the account for the client who invoked the stored routine or view or who
caused the trigger to activate. To determine the invoking user, you can call the USER() function, which
returns a value indicating the actual user name provided by the client and the host from which the client
connected. However, this value does not necessarily correspond directly to an account in the user
table, because the USER() value never contains wildcards, whereas account values (as returned by
CURRENT_USER()) may contain user name and host name wildcards.

For example, a blank user name matches any user, so an account of ''@'localhost' enables
clients to connect as an anonymous user from the local host with any user name. In this case, if a client
connects as user1 from the local host, USER() and CURRENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER()          | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost     |
+-----------------+----------------+

The host name part of an account can contain wildcards, too. If the host name contains a '%' or
'_' pattern character or uses netmask notation, the account can be used for clients connecting from
multiple hosts and the CURRENT_USER() value will not indicate which one. For example, the account
'user2'@'%.example.com' can be used by user2 to connect from any host in the example.com
domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return
different values:

mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+
| USER()                   | CURRENT_USER()      |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+

If an application must invoke USER() for user auditing (for example, if it does auditing from within
triggers) but must also be able to associate the USER() value with an account in the user table, it
is necessary to avoid accounts that contain wildcards in the User or Host column. Specifically, do
not permit User to be empty (which creates an anonymous-user account), and do not permit pattern
characters or netmask notation in Host values. All accounts must have a nonempty User value and
literal Host value.

With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com'
accounts should be changed not to use wildcards:

RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';

If user2 must be able to connect from several hosts in the example.com domain, there should be a
separate account for each host.

To extract the user name or host name part from a CURRENT_USER() or USER() value, use the
SUBSTRING_INDEX() function:



Using Secure Connections

759

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1                                 |
+---------------------------------------+

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+----------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+----------------------------------------+
| localhost                              |
+----------------------------------------+

6.4 Using Secure Connections

With an unencrypted connection between the MySQL client and the server, someone with access to
the network could watch all your traffic and inspect the data being sent or received between client and
server.

When you must move information over a network in a secure fashion, an unencrypted connection
is unacceptable. To make any kind of data unreadable, use encryption. Encryption algorithms must
include security elements to resist many kinds of known attacks such as changing the order of
encrypted messages or replaying data twice.

MySQL supports secure (encrypted) connections between clients and the server using the TLS
(Transport Layer Security) protocol. TLS is sometimes referred to as SSL (Secure Sockets Layer)
but MySQL does not actually use the SSL protocol for secure connections because it provides weak
encryption (see Section 6.4.3, “Secure Connection Protocols and Ciphers”).

TLS uses encryption algorithms to ensure that data received over a public network can be trusted. It
has mechanisms to detect data change, loss, or replay. TLS also incorporates algorithms that provide
identity verification using the X509 standard.

X509 makes it possible to identify someone on the Internet. In basic terms, there should be some entity
called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs them.
Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key and
a secret key). A certificate owner can present the certificate to another party as proof of identity. A
certificate consists of its owner's public key. Any data encrypted using this public key can be decrypted
only using the corresponding secret key, which is held by the owner of the certificate.

MySQL can be compiled for secure-connection support using OpenSSL or yaSSL. For a comparison of
the two packages, see Section 6.4.1, “OpenSSL Versus yaSSL” For information about the encryption
protocols and ciphers each package supports, see Section 6.4.3, “Secure Connection Protocols and
Ciphers”.

MySQL performs encryption on a per-connection basis, and use of encryption for a given user can be
optional or mandatory. This enables you to choose an encrypted or unencrypted connection according
to the requirements of individual applications. For information on how to require users to use encrypted
connections, see the discussion of the REQUIRE clause of the GRANT statement in Section 13.7.1.3,
“GRANT Syntax”.

Encrypted connections are not used by default. For applications that require the security provided by
encrypted connections, the extra computation to encrypt the data is worthwhile.

Secure connections are available through the MySQL C API using the mysql_ssl_set() and
mysql_options() functions. See Section 23.8.7.67, “mysql_ssl_set()”, and Section 23.8.7.49,
“mysql_options()”.

Replication uses the C API, so secure connections can be used between master and slave servers.
See Section 17.3.7, “Setting Up Replication to Use Secure Connections”.



OpenSSL Versus yaSSL

760

It is also possible to connect securely from within an SSH connection to the MySQL server host. For an
example, see Section 6.4.7, “Connecting to MySQL Remotely from Windows with SSH”.

6.4.1 OpenSSL Versus yaSSL

MySQL can be compiled using OpenSSL or yaSSL, both of which enable secure conections based on
the OpenSSL API:

• MySQL Enterprise Edition binary distributions are compiled using yaSSL.

• MySQL Community Edition binary distributions are compiled using yaSSL.

• MySQL Community Edition source distributions can be compiled using either OpenSSL or yaSSL
(see Section 6.4.2, “Building MySQL with Support for Secure Connections”).

OpenSSL and yaSSL offer the same basic functionality, but additional features are available in
MySQL distributions compiled using OpenSSL: OpenSSL supports a wider range of encryption ciphers
from which to choose for the --ssl-cipher option, and supports the --ssl-capath option. See
Section 6.4.5, “Command Options for Secure Connections”.

6.4.2 Building MySQL with Support for Secure Connections

To use SSL connections between the MySQL server and client programs, your system must support
either OpenSSL or yaSSL:

• MySQL Enterprise Edition binary distributions are compiled using yaSSL.

• MySQL Community Edition binary distributions are compiled using yaSSL.

• MySQL Community Edition source distributions can be compiled using either OpenSSL or yaSSL.

If you compile MySQL from a source distribution, CMake configures the distribution to use yaSSL by
default. To compile using OpenSSL instead, use this procedure:

1. Ensure OpenSSL 1.0.1 or higher is installed on your system. To obtain OpenSSL, visit http://
www.openssl.org.

2. To use OpenSSL, add the -DWITH_SSL=system option to the CMake command you normally use
to configure the MySQL source distribution. For example:

shell> cmake . -DWITH_SSL=system

That command configures the distribution to use the installed OpenSSL library. See Section 2.9.4,
“MySQL Source-Configuration Options”.

3. Compile and install the distribution.

To check whether a mysqld server supports secure connections, examine the value of the have_ssl
system variable:

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl      | YES   |
+---------------+-------+

If the value is YES, the server supports secure connections. If the value is DISABLED, the server is
capable of supporting secure connections but was not started with the appropriate --ssl-xxx options
to enable secure connections to be used; see Section 6.4.4, “Configuring MySQL to Use Secure
Connections”.

http://www.openssl.org
http://www.openssl.org


Secure Connection Protocols and Ciphers

761

6.4.3 Secure Connection Protocols and Ciphers

To determine which encryption protocol and cipher are in use for an encrypted connection, use the
following statements to check the values of the Ssl_version and Ssl_cipher status variables:

mysql> SHOW SESSION STATUS LIKE 'Ssl_version';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Ssl_version   | TLSv1 |
+---------------+-------+
mysql> SHOW SESSION STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value              |
+---------------+--------------------+
| Ssl_cipher    | DHE-RSA-AES256-SHA |
+---------------+--------------------+

If the connection is not encrypted, both variables have an empty value.

MySQL supports encrypted connections using the TLSv1 protocol. As of MySQL 5.5.42, it explicitly
disables SSL 2.0 and SSL 3.0 because they provide weak encryption.

To determine which ciphers a given server supports, use the following statement to check the value of
the Ssl_cipher_list status variable:

SHOW SESSION STATUS LIKE 'Ssl_cipher_list';

The set of available ciphers depends on your MySQL version and whether MySQL was compiled using
OpenSSL or yaSSL, and (for OpenSSL) the library version used to compile MySQL.

MySQL passes this cipher list to OpenSSL:

AES256-GCM-SHA384
AES256-SHA
AES256-SHA256
CAMELLIA256-SHA
DES-CBC3-SHA
DHE-DSS-AES256-GCM-SHA384
DHE-DSS-AES256-SHA
DHE-DSS-AES256-SHA256
DHE-DSS-CAMELLIA256-SHA
DHE-RSA-AES256-GCM-SHA384
DHE-RSA-AES256-SHA
DHE-RSA-AES256-SHA256
DHE-RSA-CAMELLIA256-SHA
ECDH-ECDSA-AES256-GCM-SHA384
ECDH-ECDSA-AES256-SHA
ECDH-ECDSA-AES256-SHA384
ECDH-ECDSA-DES-CBC3-SHA
ECDH-RSA-AES256-GCM-SHA384
ECDH-RSA-AES256-SHA
ECDH-RSA-AES256-SHA384
ECDH-RSA-DES-CBC3-SHA
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA384
ECDHE-ECDSA-DES-CBC3-SHA
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES256-SHA
ECDHE-RSA-AES256-SHA384



Configuring MySQL to Use Secure Connections

762

ECDHE-RSA-DES-CBC3-SHA
EDH-DSS-DES-CBC3-SHA
EDH-RSA-DES-CBC3-SHA
PSK-3DES-EDE-CBC-SHA
PSK-AES256-CBC-SHA
SRP-DSS-3DES-EDE-CBC-SHA
SRP-DSS-AES-128-CBC-SHA
SRP-DSS-AES-256-CBC-SHA
SRP-RSA-3DES-EDE-CBC-SHA
SRP-RSA-AES-128-CBC-S
SRP-RSA-AES-256-CBC-SHA

MySQL passes this cipher list to yaSSL:

AES128-RMD
AES128-SHA
AES256-RMD
AES256-SHA
DES-CBC-SHA
DES-CBC3-RMD
DES-CBC3-SHA
DHE-RSA-AES128-RMD
DHE-RSA-AES128-SHA
DHE-RSA-AES256-RMD
DHE-RSA-AES256-SHA
DHE-RSA-DES-CBC3-RMD
EDH-RSA-DES-CBC-SHA
EDH-RSA-DES-CBC3-SHA
RC4-MD5
RC4-SHA

6.4.4 Configuring MySQL to Use Secure Connections

To enable secure connections, your MySQL distribution must be built with SSL support, as described in
Section 6.4.2, “Building MySQL with Support for Secure Connections”. In addition, the proper options
must be used to specify the appropriate certificate and key files. For a complete list of options related to
establishment of secure connections, see Section 6.4.5, “Command Options for Secure Connections”.

If you need to create the required certificate and key files, see Section 6.4.6, “Creating SSL Certificates
and Keys Using openssl”.

• Server-Side Configuration for Secure Connections

• Client-Side Configuration for Secure Connections

• C API Configuration for Secure Connections

Server-Side Configuration for Secure Connections

To start the MySQL server so that it permits clients to connect securely, use options that identify the
certificate and key files the server uses when establishing a secure connection:

• --ssl-ca identifies the Certificate Authority (CA) certificate.

• --ssl-cert identifies the server public key certificate. This can be sent to the client and
authenticated against the CA certificate that it has.

• --ssl-key identifies the server private key.

For example, start the server with these lines in the my.cnf file, changing the file names as necessary:

[mysqld]
ssl-ca=ca.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem



Configuring MySQL to Use Secure Connections

763

Each option names a file in PEM format. If you have a MySQL source distribution, you can test your
setup using the demonstration certificate and key files in its mysql-test/std_data directory.

Client-Side Configuration for Secure Connections

For client programs, options for secure connections are similar to those used on the server side, but --
ssl-cert and --ssl-key identify the client public and private key:

• --ssl-ca identifies the Certificate Authority (CA) certificate. This option, if used, must specify the
same certificate used by the server.

• --ssl-cert identifies the client public key certificate.

• --ssl-key identifies the client private key.

To connect securely to a MySQL server that supports secure connections, the options that a client
must specify depend on the encryption requirements of the MySQL account used by the client. (See
the discussion of the REQUIRE clause in Section 13.7.1.3, “GRANT Syntax”.)

Suppose that you want to connect using an account that has no special encryption requirements or
was created using a GRANT statement that includes the REQUIRE SSL option. As a recommended set
of secure-connection options, start the server with at least --ssl-cert and --ssl-key, and invoke
the client with --ssl-ca. A client can connect securely like this:

shell> mysql --ssl-ca=ca.pem

To require that a client certificate also be specified, create the account using the REQUIRE X509
option. Then the client must also specify the proper client key and certificate files or the server will
reject the connection:

shell> mysql --ssl-ca=ca.pem \
       --ssl-cert=client-cert.pem \
       --ssl-key=client-key.pem

To prevent use of encryption and override other --ssl-xxx options, invoke the client program with --
ssl=0 or a synonym (--skip-ssl, --disable-ssl):

shell> mysql --ssl=0

A client can determine whether the current connection with the server uses encryption by checking
the value of the Ssl_cipher status variable. If the value is empty, the connection is not encrypted.
Otherwise, the connection is encrypted and the value indicates the encryption cipher. For example:

mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value              |
+---------------+--------------------+
| Ssl_cipher    | DHE-RSA-AES256-SHA |
+---------------+--------------------+

For the mysql client, an alternative is to use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES256-SHA
...

Or:

mysql> \s
...



Command Options for Secure Connections

764

SSL: Not in use
...

C API Configuration for Secure Connections

The C API enables application programs to use secure connections:

• To establish a secure connection, use the mysql_ssl_set() C API function to set the
appropriate certificate options before calling mysql_real_connect(). See Section 23.8.7.67,
“mysql_ssl_set()”.

• To determine whether encryption is in use after the connection is established, use
mysql_get_ssl_cipher(). A non-NULL return value indicates an encrypted connection and
names the cipher used for encryption. A NULL return value indicates that encryption is not being
used. See Section 23.8.7.33, “mysql_get_ssl_cipher()”.

Replication uses the C API, so secure connections can be used between master and slave servers.
See Section 17.3.7, “Setting Up Replication to Use Secure Connections”.

6.4.5 Command Options for Secure Connections

This section describes options that specify whether to use secure connections and the names of
certificate and key files. These options can be given on the command line or in an option file. They
are not available unless MySQL has been built with SSL support. See Section 6.4.2, “Building MySQL
with Support for Secure Connections”. For examples of suggested use and how to check whether a
connection is secure, see Section 6.4.4, “Configuring MySQL to Use Secure Connections”.

Table 6.8 Secure-Connection Option Summary

Format Description Introduced

--skip-ssl Do not use secure connection  

--ssl Enable secure connection  

--ssl-ca Path of file that contains list of trusted SSL CAs  

--ssl-capath Path of directory that contains trusted SSL CA
certificates in PEM format

 

--ssl-cert Path of file that contains X509 certificate in PEM format  

--ssl-cipher List of permitted ciphers to use for connection encryption  

--ssl-key Path of file that contains X509 key in PEM format  

--ssl-mode Security state of connection to server 5.5.49

--ssl-verify-server-cert Verify server certificate Common Name value against
host name used when connecting to server

 

•   --ssl

For the MySQL server, this option specifies that the server permits but does not require secure
connections.

For MySQL client programs, this option permits but does not require the client to connect to the
server using encryption. Therefore, this option is not sufficient in itself to cause a secure connection
to be used. For example, if you specify this option for a client program but the server has not been
configured to support secure connections, the client falls back to an unencrypted connection.

As a recommended set of options to enable secure connections, use at least --ssl-cert and
--ssl-key on the server side and --ssl-ca on the client side. See Section 6.4.4, “Configuring
MySQL to Use Secure Connections”.

--ssl may be implied by other --ssl-xxx options, as indicated in the descriptions for those
options.



Command Options for Secure Connections

765

The --ssl option in negated form overrides other --ssl-xxx options and indicates that encryption
should not be used. To do this, specify the option as --ssl=0 or a synonym (--skip-ssl, --
disable-ssl). For example, you might have options specified in the [client] group of your
option file to use secure connections by default when you invoke MySQL client programs. To use an
unencrypted connection instead, invoke the client program with --ssl=0 on the command line to
override the options in the option file.

To require use of secure connections by a MySQL account, use a GRANT statement for the account
that includes at least a REQUIRE SSL clause. Connections for the account will be rejected unless
MySQL supports secure connections and the server and client have been started with the proper
secure-connection options.

The REQUIRE clause permits other encryption-related options, which can be used to enforce stricter
requirements than REQUIRE SSL. For additional details about which command options may or must
be specified by clients that connect using accounts configured using the various REQUIRE options,
see the description of REQUIRE in Section 13.7.1.3, “GRANT Syntax”.

•  --ssl-ca=file_name

The path to a file in PEM format that contains a list of trusted SSL certificate authorities. This option
implies --ssl.

If you use encryption when establishing a client connection, to tell the client not to authenticate the
server certificate, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client
according to any applicable requirements established for the client account, and it still uses any --
ssl-ca or --ssl-capath option values specified at server startup.

•  --ssl-capath=dir_name

The path to a directory that contains trusted SSL certificate authority certificates in PEM format. This
option implies --ssl.

If you use encryption when establishing a client connection, to tell the client not to authenticate the
server certificate, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client
according to any applicable requirements established for the client account, and it still uses any --
ssl-ca or --ssl-capath option values specified at server startup.

MySQL distributions compiled using OpenSSL support the --ssl-capath option (see
Section 6.4.1, “OpenSSL Versus yaSSL”). Distributions compiled using yaSSL do not because
yaSSL does not look in any directory and does not follow a chained certificate tree. yaSSL requires
that all components of the CA certificate tree be contained within a single CA certificate tree and that
each certificate in the file has a unique SubjectName value. To work around this yaSSL limitation,
concatenate the individual certificate files comprising the certificate tree into a new file and specify
that file as the value of the --ssl-ca option.

•  --ssl-cert=file_name

The name of the SSL certificate file in PEM format to use for establishing a secure connection. This
option implies --ssl.

•  --ssl-cipher=cipher_list

A list of permissible ciphers to use for connection encryption. If no cipher in the list is supported,
encrypted connections will not work. This option implies --ssl.

For greatest portability, cipher_list should be a list of one or more cipher names, separated by
colons. This format is understood both by OpenSSL and yaSSL. Examples:

--ssl-cipher=AES128-SHA
--ssl-cipher=DHE-RSA-AES256-SHA:AES128-SHA



Creating SSL Certificates and Keys Using openssl

766

OpenSSL supports a more flexible syntax for specifying ciphers, as described in the OpenSSL
documentation at https://www.openssl.org/docs/manmaster/man1/ciphers.html. yaSSL does not, so
attempts to use that extended syntax fail for a MySQL distribution compiled using yaSSL.

For information about which encryption ciphers MySQL supports, see Section 6.4.3, “Secure
Connection Protocols and Ciphers”.

•  --ssl-key=file_name

The name of the SSL key file in PEM format to use for establishing a secure connection. This option
implies --ssl.

If the MySQL distribution was compiled using OpenSSL and the key file is protected by a
passphrase, the program prompts the user for the passphrase. The password must be given
interactively; it cannot be stored in a file. If the passphrase is incorrect, the program continues as if it
could not read the key. If the MySQL distribution was built using yaSSL and the key file is protected
by a passphrase, an error occurs.

•   --ssl-mode=mode

This option is available only for client programs, not the server. It specifies the security state of the
connection to the server:

• If this option is not specified, the default is to establish an unencrypted connection. This is like the
--ssl=0 option or its synonyms (--skip-ssl, --disable-ssl).

• If this option is specified, the only permitted value is REQUIRED (establish a secure connection
if the server supports secure connections). The connection attempt fails if a secure connection
cannot be established.

The --ssl-mode option was added in MySQL 5.5.49.

Note

To require encrypted connections in MySQL 5.5, the standard MySQL
client programs check whether the connection is encrypted if --ssl-
mode=REQUIRED was specified. If not, the client exits with an error. Third-
party applications that must be able to require encrypted connections can use
the same technique. For details, see Section 23.8.7.67, “mysql_ssl_set()”.

•  --ssl-verify-server-cert

This option is available only for client programs, not the server. It causes the client to check the
server's Common Name value in the certificate that the server sends to the client. The client verifies
that name against the host name the client uses for connecting to the server, and the connection
fails if there is a mismatch. For encrypted connections, this option helps prevent man-in-the-middle
attacks. Verification is disabled by default.

6.4.6 Creating SSL Certificates and Keys Using openssl

This section describes how to use the openssl command to set up SSL certificate and key files
for use by MySQL servers and clients. The first example shows a simplified procedure such as you
might use from the command line. The second shows a script that contains more detail. The first two
examples are intended for use on Unix and both use the openssl command that is part of OpenSSL.
The third example describes how to set up SSL files on Windows.

Important

Whatever method you use to generate the certificate and key files, the Common
Name value used for the server and client certificates/keys must each differ

https://www.openssl.org/docs/manmaster/man1/ciphers.html


Creating SSL Certificates and Keys Using openssl

767

from the Common Name value used for the CA certificate. Otherwise, the
certificate and key files will not work for servers compiled using OpenSSL. A
typical error in this case is:

ERROR 2026 (HY000): SSL connection error:
error:00000001:lib(0):func(0):reason(1)

• Example 1: Creating SSL Files from the Command Line on Unix

• Example 2: Creating SSL Files Using a Script on Unix

• Example 3: Creating SSL Files on Windows

Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and key
files. You will need to respond to several prompts by the openssl commands. To generate test files,
you can press Enter to all prompts. To generate files for production use, you should provide nonempty
responses.

# Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

# Create CA certificate
shell> openssl genrsa 2048 > ca-key.pem
shell> openssl req -new -x509 -nodes -days 3600 \
         -key ca-key.pem -out ca.pem

# Create server certificate, remove passphrase, and sign it
# server-cert.pem = public key, server-key.pem = private key
shell> openssl req -newkey rsa:2048 -days 3600 \
         -nodes -keyout server-key.pem -out server-req.pem
shell> openssl rsa -in server-key.pem -out server-key.pem
shell> openssl x509 -req -in server-req.pem -days 3600 \
         -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem

# Create client certificate, remove passphrase, and sign it
# client-cert.pem = public key, client-key.pem = private key
shell> openssl req -newkey rsa:2048 -days 3600 \
         -nodes -keyout client-key.pem -out client-req.pem
shell> openssl rsa -in client-key.pem -out client-key.pem
shell> openssl x509 -req -in client-req.pem -days 3600 \
         -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

shell> openssl verify -CAfile ca.pem server-cert.pem client-cert.pem
server-cert.pem: OK
client-cert.pem: OK

Now you have a set of files that can be used as follows:

• ca.pem: Use this as the argument to --ssl-ca on the server and client sides. (The CA certificate, if
used, must be the same on both sides.)

• server-cert.pem, server-key.pem: Use these as the arguments to --ssl-cert and --ssl-
key on the server side.

• client-cert.pem, client-key.pem: Use these as the arguments to --ssl-cert and --ssl-
key on the client side.

To use the files for SSL connections, see Section 6.4.4, “Configuring MySQL to Use Secure
Connections”.



Creating SSL Certificates and Keys Using openssl

768

Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificate and key files for MySQL. After
executing the script, use the files for SSL connections as described in Section 6.4.4, “Configuring
MySQL to Use Secure Connections”.

DIR=`pwd`/openssl
PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf

# Create necessary files: $database, $serial and $new_certs_dir
# directory (optional)

touch $DIR/index.txt
echo "01" > $DIR/serial

#
# Generation of Certificate Authority(CA)
#

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/ca.pem \
    -days 3600 -config $DIR/openssl.cnf

# Sample output:
# Using configuration from /home/finley/openssl/openssl.cnf
# Generating a 1024 bit RSA private key
# ................++++++
# .........++++++
# writing new private key to '/home/finley/openssl/private/cakey.pem'
# Enter PEM pass phrase:
# Verifying password - Enter PEM pass phrase:
# -----
# You are about to be asked to enter information that will be
# incorporated into your certificate request.
# What you are about to enter is what is called a Distinguished Name
# or a DN.
# There are quite a few fields but you can leave some blank
# For some fields there will be a default value,
# If you enter '.', the field will be left blank.
# -----
# Country Name (2 letter code) [AU]:FI
# State or Province Name (full name) [Some-State]:.
# Locality Name (eg, city) []:
# Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
# Organizational Unit Name (eg, section) []:
# Common Name (eg, YOUR name) []:MySQL admin
# Email Address []:

#
# Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \
    $DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf

# Sample output:
# Using configuration from /home/finley/openssl/openssl.cnf
# Generating a 1024 bit RSA private key
# ..++++++
# ..........++++++
# writing new private key to '/home/finley/openssl/server-key.pem'
# Enter PEM pass phrase:
# Verifying password - Enter PEM pass phrase:
# -----
# You are about to be asked to enter information that will be
# incorporated into your certificate request.
# What you are about to enter is what is called a Distinguished Name
# or a DN.



Creating SSL Certificates and Keys Using openssl

769

# There are quite a few fields but you can leave some blank
# For some fields there will be a default value,
# If you enter '.', the field will be left blank.
# -----
# Country Name (2 letter code) [AU]:FI
# State or Province Name (full name) [Some-State]:.
# Locality Name (eg, city) []:
# Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
# Organizational Unit Name (eg, section) []:
# Common Name (eg, YOUR name) []:MySQL server
# Email Address []:
#
# Please enter the following 'extra' attributes
# to be sent with your certificate request
# A challenge password []:
# An optional company name []:

#
# Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem

#
# Sign server cert
#
openssl ca -cert $DIR/ca.pem -policy policy_anything \
    -out $DIR/server-cert.pem -config $DIR/openssl.cnf \
    -infiles $DIR/server-req.pem

# Sample output:
# Using configuration from /home/finley/openssl/openssl.cnf
# Enter PEM pass phrase:
# Check that the request matches the signature
# Signature ok
# The Subjects Distinguished Name is as follows
# countryName           :PRINTABLE:'FI'
# organizationName      :PRINTABLE:'MySQL AB'
# commonName            :PRINTABLE:'MySQL admin'
# Certificate is to be certified until Sep 13 14:22:46 2003 GMT
# (365 days)
# Sign the certificate? [y/n]:y
#
#
# 1 out of 1 certificate requests certified, commit? [y/n]y
# Write out database with 1 new entries
# Data Base Updated

#
# Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \
    $DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf

# Sample output:
# Using configuration from /home/finley/openssl/openssl.cnf
# Generating a 1024 bit RSA private key
# .....................................++++++
# .............................................++++++
# writing new private key to '/home/finley/openssl/client-key.pem'
# Enter PEM pass phrase:
# Verifying password - Enter PEM pass phrase:
# -----
# You are about to be asked to enter information that will be
# incorporated into your certificate request.
# What you are about to enter is what is called a Distinguished Name
# or a DN.
# There are quite a few fields but you can leave some blank
# For some fields there will be a default value,
# If you enter '.', the field will be left blank.
# -----
# Country Name (2 letter code) [AU]:FI
# State or Province Name (full name) [Some-State]:.



Creating SSL Certificates and Keys Using openssl

770

# Locality Name (eg, city) []:
# Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
# Organizational Unit Name (eg, section) []:
# Common Name (eg, YOUR name) []:MySQL user
# Email Address []:
#
# Please enter the following 'extra' attributes
# to be sent with your certificate request
# A challenge password []:
# An optional company name []:

#
# Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

#
# Sign client cert
#

openssl ca -cert $DIR/ca.pem -policy policy_anything \
    -out $DIR/client-cert.pem -config $DIR/openssl.cnf \
    -infiles $DIR/client-req.pem

# Sample output:
# Using configuration from /home/finley/openssl/openssl.cnf
# Enter PEM pass phrase:
# Check that the request matches the signature
# Signature ok
# The Subjects Distinguished Name is as follows
# countryName           :PRINTABLE:'FI'
# organizationName      :PRINTABLE:'MySQL AB'
# commonName            :PRINTABLE:'MySQL user'
# Certificate is to be certified until Sep 13 16:45:17 2003 GMT
# (365 days)
# Sign the certificate? [y/n]:y
#
#
# 1 out of 1 certificate requests certified, commit? [y/n]y
# Write out database with 1 new entries
# Data Base Updated

#
# Create a my.cnf file that you can use to test the certificates
#

cat <<EOF > $DIR/my.cnf
[client]
ssl-ca=$DIR/ca.pem
ssl-cert=$DIR/client-cert.pem
ssl-key=$DIR/client-key.pem
[mysqld]
ssl-ca=$DIR/ca.pem
ssl-cert=$DIR/server-cert.pem
ssl-key=$DIR/server-key.pem
EOF

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows if it is not installed on your system. An overview of available
packages can be seen here:

http://www.slproweb.com/products/Win32OpenSSL.html

Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture
(32-bit or 64-bit). The default installation location will be C:\OpenSSL-Win32 or C:\OpenSSL-Win64,
depending on which package you downloaded. The following instructions assume a default location of
C:\OpenSSL-Win32. Modify this as necessary if you are using the 64-bit package.

http://www.slproweb.com/products/Win32OpenSSL.html


Creating SSL Certificates and Keys Using openssl

771

If a message occurs during setup indicating '...critical component is missing:
Microsoft Visual C++ 2008 Redistributables', cancel the setup and download one of the
following packages as well, again depending on your architecture (32-bit or 64-bit):

• Visual C++ 2008 Redistributables (x86), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF

• Visual C++ 2008 Redistributables (x64), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

After installing the additional package, restart the OpenSSL setup procedure.

During installation, leave the default C:\OpenSSL-Win32 as the install path, and also leave the
default option 'Copy OpenSSL DLL files to the Windows system directory' selected.

When the installation has finished, add C:\OpenSSL-Win32\bin to the Windows System Path
variable of your server:

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable
dialogue should appear.

4. Add ';C:\OpenSSL-Win32\bin' to the end (notice the semicolon).

5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command
console (Start>Run>cmd.exe) and verifying that OpenSSL is available:

Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Windows\system32>cd \

C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.

C:\>

Depending on your version of Windows, the preceding path-setting instructions might differ slightly.

After OpenSSL has been installed, use instructions similar to those from Example 1 (shown earlier in
this section), with the following changes:

• Change the following Unix commands:

# Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

On Windows, use these commands instead:

# Create clean environment
C:\> md c:\newcerts
C:\> cd c:\newcerts

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6


Connecting to MySQL Remotely from Windows with SSH

772

• When a '\' character is shown at the end of a command line, this '\' character must be removed
and the command lines entered all on a single line.

After generating the certificate and key files, to use them for SSL connections, see Section 6.4.4,
“Configuring MySQL to Use Secure Connections”.

6.4.7 Connecting to MySQL Remotely from Windows with SSH

This section describes how to get a secure connection to a remote MySQL server with SSH. The
information was provided by David Carlson <dcarlson@mplcomm.com>.

1. Install an SSH client on your Windows machine. For a comparison of SSH clients, see http://
en.wikipedia.org/wiki/Comparison_of_SSH_clients.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server. This userid value might not be the same as the
user name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host:
yourmysqlservername_or_ip, remote_port: 3306 ) or a local forward (Set port: 3306,
host: localhost, remote port: 3306).

4. Save everything, otherwise you will have to redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally
do, except type in localhost for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

6.5 Security Plugins
MySQL includes several plugins that implement security features:

• Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available
for several authentication protocols. For general discussion of the authentication process, see
Section 6.3.6, “Pluggable Authentication”. For characteristics of specific authentication plugins, see
Section 6.5.1, “Authentication Plugins”.

• (MySQL Enterprise Edition only) MySQL Enterprise Audit, implemented using a server plugin, uses
the open MySQL Audit API to enable standard, policy-based monitoring and logging of connection
and query activity executed on specific MySQL servers. Designed to meet the Oracle audit
specification, MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance
solution for applications that are governed by both internal and external regulatory guidelines.

6.5.1 Authentication Plugins

The following sections describe pluggable authentication methods available in MySQL and the plugins
that implement these methods. For general discussion of the authentication process, see Section 6.3.6,
“Pluggable Authentication”.

6.5.1.1 Native Pluggable Authentication

MySQL includes two plugins that implement native authentication; that is, authentication based
on the password hashing methods in use from before the introduction of pluggable authentication.
This section describes mysql_native_password, which implements authentication against
the mysql.user table using the native password hashing method. For information about
mysql_old_password, which implements authentication using the older (pre-4.1) native password

http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients


Authentication Plugins

773

hashing method, see Section 6.5.1.2, “Old Native Pluggable Authentication”. For information about
these password hashing methods, see Section 6.1.2.4, “Password Hashing in MySQL”.

The mysql_native_password native authentication plugin is backward compatible. Older clients that
do not support authentication plugins do use the native authentication protocol, so they can connect to
servers that support pluggable authentication.

The following table shows the plugin names on the server and client sides.

Table 6.9 Plugin and Library Names for Native Password Authentication

Server-side plugin name mysql_native_password

Client-side plugin name mysql_native_password

Library file name None (plugins are built in)

The following sections provide installation and usage information specific to native pluggable
authentication:

• Installing Native Pluggable Authentication

• Using Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.3.6, “Pluggable
Authentication”.

Installing Native Pluggable Authentication

The mysql_native_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library and available to any program
linked against libmysqlclient.

Using Native Pluggable Authentication

MySQL client programs use mysql_native_password by default. The --default-auth option can
be used as a hint about which client-side plugin the program can expect to use:

shell> mysql --default-auth=mysql_native_password ...

If an account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password
hash value in the Password column used native hashing or the older pre-4.1 hashing method. Clients
must match the password in the Password column of the account row.

6.5.1.2 Old Native Pluggable Authentication

MySQL includes two plugins that implement native authentication; that is, authentication based
on the password hashing methods in use from before the introduction of pluggable authentication.
This section describes mysql_old_password, which implements authentication against the
mysql.user table using the older (pre-4.1) native password hashing method. For information about
mysql_native_password, which implements authentication using the native password hashing
method, see Section 6.5.1.1, “Native Pluggable Authentication”. For information about these password
hashing methods, see Section 6.1.2.4, “Password Hashing in MySQL”.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided.



Authentication Plugins

774

The mysql_old_password native authentication plugin is backward compatible. Older clients that
do not support authentication plugins do use the native authentication protocol, so they can connect to
servers that support pluggable authentication.

The following table shows the plugin names on the server and client sides.

Table 6.10 Plugin and Library Names for Old Native Password Authentication

Server-side plugin name mysql_old_password

Client-side plugin name mysql_old_password

Library file name None (plugins are built in)

The following sections provide installation and usage information specific to old native pluggable
authentication:

• Installing Old Native Pluggable Authentication

• Using Old Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.3.6, “Pluggable
Authentication”.

Installing Old Native Pluggable Authentication

The mysql_old_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library and available to any program
linked against libmysqlclient.

Using Old Native Pluggable Authentication

MySQL client programs can use the --default-auth option to specify the mysql_old_password
plugin as a hint about which client-side plugin the program can expect to use:

shell> mysql --default-auth=mysql_old_password ...

If an account row specifies no plugin name, the server authenticates the account using either the
mysql_native_password or mysql_old_password plugin, depending on whether the password
hash value in the Password column used native hashing or the older pre-4.1 hashing method. Clients
must match the password in the Password column of the account row.

6.5.1.3 Client-Side Cleartext Pluggable Authentication

As of MySQL 5.5.10, a client-side authentication plugin is available that sends the password to the
server without hashing or encryption. This plugin is built into the MySQL client library.

The following table shows the plugin name.

Table 6.11 Plugin and Library Names for Cleartext Authentication

Server-side plugin name None, see discussion

Client-side plugin name mysql_clear_password

Library file name None (plugin is built in)

With many MySQL authentication methods, the client performs hashing or encryption of the password
before sending it to the server. This enables the client to avoid sending the password in clear text.



Authentication Plugins

775

Hashing or encryption cannot be done for authentication schemes that require the server to receive the
password as entered on the client side. In such cases, the client-side mysql_clear_password plugin
is used to send the password to the server in clear text. There is no corresponding server-side plugin.
Rather, the client-side plugin can be used by any server-side plugin that needs a cleartext password.
(The PAM authentication plugin is one such; see Section 6.5.1.4, “PAM Pluggable Authentication”.)

The following discussion provides usage information specific to clear text pluggable authentication.
For For general information about pluggable authentication in MySQL, see Section 6.3.6, “Pluggable
Authentication”.

Note

Sending passwords in clear text may be a security problem in some
configurations. To avoid problems if there is any possibility that the password
would be intercepted, clients should connect to MySQL Server using a method
that protects the password. Possibilities include SSL (see Section 6.4, “Using
Secure Connections”), IPsec, or a private network.

As of MySQL 5.5.27, to make inadvertent use of the mysql_clear_password plugin less likely,
clients must explicitly enable it. This can be done several ways:

• Set the LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable to a value that begins with
1, Y, or y. This enables the plugin for all client connections.

• The mysql, mysqladmin, and mysqlslap client programs (also mysqlcheck, mysqldump, and
mysqlshow for MySQL 5.5.47 and later) support an --enable-cleartext-plugin option that
enables the plugin on a per-invocation basis.

• The mysql_options() C API function supports a MYSQL_ENABLE_CLEARTEXT_PLUGIN option
that enables the plugin on a per-connection basis. Also, any program that uses libmysqlclient
and reads option files can enable the plugin by including an enable-cleartext-plugin option in
an option group read by the client library.

6.5.1.4 PAM Pluggable Authentication

Note

PAM pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
http://www.mysql.com/products/.

As of MySQL 5.5.16, MySQL Enterprise Edition supports an authentication method that enables
MySQL Server to use PAM (Pluggable Authentication Modules) to authenticate MySQL users. PAM
enables a system to use a standard interface to access various kinds of authentication methods, such
as Unix passwords or an LDAP directory.

PAM pluggable authentication provides these capabilities:

• External authentication: PAM authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables and that authenticate using methods supported by
PAM.

• Proxy user support: PAM authentication can return to MySQL a user name different from the login
user, based on the groups the external user is in and the authentication string provided. This means
that the plugin can return the MySQL user that defines the privileges the external PAM-authenticated
user should have. For example, a PAM user named joe can connect and have the privileges of the
MySQL user named developer.

PAM pluggable authentication has been tested on Linux and macOS.

The PAM plugin uses the information passed to it by MySQL Server (such as user name, host name,
password, and authentication string), plus whatever method is available for PAM lookup. The plugin

http://www.mysql.com/products/


Authentication Plugins

776

checks the user credentials against PAM and returns 'Authentication succeeded, Username
is user_name' or 'Authentication failed'.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable. For
installation information, see Installing PAM Pluggable Authentication.

Table 6.12 Plugin and Library Names for PAM Authentication

Server-side plugin name authentication_pam

Client-side plugin name mysql_clear_password

Library file name authentication_pam.so

The server-side PAM authentication plugin is included only in MySQL Enterprise Edition, and the
PAM library file includes only the server-side plugin. The server-side PAM authentication plugin is not
included in MySQL community distributions.

As of MySQL 5.5.10, the client-side clear-text plugin that communicates with the server-side PAM
plugin is built into the libmysqlclient client library and is included in all distributions, including
community distributions. Inclusion of the client-side clear-text plugin in all MySQL distributions enables
clients from any MySQL 5.5.10 or higher distribution to connect to a server that has the server-side
plugin loaded.

The following sections provide installation and usage information specific to PAM pluggable
authentication:

• Installing PAM Pluggable Authentication

• Uninstalling PAM Pluggable Authentication

• Using PAM Pluggable Authentication

• Unix Password Authentication without Proxy Users

• LDAP Authentication without Proxy Users

• Unix Password Authentication with Proxy Users and Group Mapping

• PAM Pluggable Authentication Debugging

For general information about pluggable authentication in MySQL, see Section 6.3.6, “Pluggable
Authentication”. For information about the mysql_clear_password plugin, see Section 6.5.1.3,
“Client-Side Cleartext Pluggable Authentication”. For proxy user information, see Section 6.3.7, “Proxy
Users”.

Installing PAM Pluggable Authentication

This section describes how to install the PAM authentication plugin. For general information about
installing plugins, see Section 5.5.2, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at
server startup to tell the server the plugin directory location.

The plugin library file base name is authentication_pam. The file name suffix differs per platform
(for example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in your my.cnf file (adjust the .so suffix for your platform as necessary):



Authentication Plugins

777

[mysqld]
plugin-load=authentication_pam.so

Alternatively, to register the plugin at runtime, use this statement (adjust the extension as necessary):

INSTALL PLUGIN authentication_pam SONAME 'authentication_pam.so';

INSTALL PLUGIN loads a plugin, and also registers it in the mysql.plugins table to cause the
plugin to be loaded for each subsequent normal server startup.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement (see Section 5.5.3, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
       FROM INFORMATION_SCHEMA.PLUGINS
       WHERE PLUGIN_NAME LIKE '%pam%';
+--------------------+---------------+
| PLUGIN_NAME        | PLUGIN_STATUS |
+--------------------+---------------+
| authentication_pam | ACTIVE        |
+--------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate a MySQL account with the PAM plugin, use the plugin name authentication_pam in
the IDENTIFIED WITH clause of the CREATE USER or GRANT statement that creates the account.
(See Using PAM Pluggable Authentication.)

Uninstalling PAM Pluggable Authentication

The method used to uninstall the PAM authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load option, restart the server without
the option.

• If you installed the plugin at runtime using INSTALL PLUGIN, it remains installed across server
restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_pam;

Using PAM Pluggable Authentication

This section describes how to use the PAM authentication plugin to connect from MySQL client
programs to the server. It is assumed that the server is running with the server-side plugin enabled, as
described in Installing PAM Pluggable Authentication, and that client programs are recent enough to
include the client-side plugin.

To refer to the PAM authentication plugin in the IDENTIFIED WITH clause of a CREATE USER or
GRANT statement, use the name authentication_pam. For example:

CREATE USER user
  IDENTIFIED WITH authentication_pam
  AS 'authentication_string';

The authentication string specifies the following types of information:

• PAM supports the notion of “service name,” which is a name that the system administrator can
use to configure the authentication method for a particular application. There can be several such
“applications” associated with a single database server instance, so the choice of service name is left
to the SQL application developer. When you define an account that should authenticate using PAM,
specify the service name in the authentication string.



Authentication Plugins

778

• PAM provides a way for a PAM module to return to the server a MySQL user name other than the
login name supplied at login time. Use the authentication string to control the mapping between
login name and MySQL user name. If you want to take advantage of proxy user capabilities, the
authentication string must include this kind of mapping.

For example, if the service name is mysql and users in the root and users PAM groups should be
mapped to the developer and data_entry MySQL users, respectively, use a statement like this:

CREATE USER user
  IDENTIFIED WITH authentication_pam
  AS 'mysql, root=developer, users=data_entry';

Authentication string syntax for the PAM authentication plugin follows these rules:

• The string consists of a PAM service name, optionally followed by a group mapping list consisting of
one or more keyword/value pairs each specifying a group name and a MySQL user name:

pam_service_name[,group_name=mysql_user_name]...

The plugin parses the authentication string on each login check. To minimize overhead, keep the
string as short as possible.

• Each group_name=mysql_user_name pair must be preceded by a comma.

• Leading and trailing spaces not inside double quotation marks are ignored.

• Unquoted pam_service_name, group_name, and mysql_user_name values can contain
anything except equal sign, comma, or space.

• If a pam_service_name, group_name, or mysql_user_name value is quoted with double
quotation marks, everything between the quotation marks is part of the value. This is necessary, for
example, if the value contains space characters. All characters are legal except double quotation
mark and backslash (\). To include either character, escape it with a backslash.

If the plugin successfully authenticates a login name, it looks for a group mapping list in the
authentication string and, if present, uses it to return a different user name to the MySQL server based
on the groups the external user is a member of:

• If the authentication string contains no group mapping list, the plugin returns the login name.

• If the authentication string does contain a group mapping list, the plugin examines each
group_name=mysql_user_name pair in the list from left to right and tries to find a match for the
group_name value in a non-MySQL directory of the groups assigned to the authenticated user and
returns mysql_user_name for the first match it finds. If the plugin finds no match for any group, it
returns the login name. If the plugin is not capable of looking up a group in a directory, it ignores the
group mapping list and returns the login name.

The following sections describe how to set up several authentication scenarios that use the PAM
authentication plugin:

• No proxy users. This uses PAM only to check login names and passwords. Every external user
permitted to connect to MySQL Server should have a matching MySQL account that is defined to
use external PAM authentication. (For a MySQL account of user_name@host_name to match the
external user, user_name must be the login name and host_name must match the host from which
the client connects.) Authentication can be performed by various PAM-supported methods. The
discussion shows how to use traditional Unix passwords and LDAP.

PAM authentication, when not done through proxy users or groups, requires the MySQL account
to have the same user name as the Unix account. MySQL user names are limited to 16 characters
(see Section 6.2.2, “Grant Tables”), which limits PAM nonproxy authentication to Unix accounts with
names of at most 16 characters.



Authentication Plugins

779

• Proxy login only and group mapping. For this scenario, create one or a few MySQL accounts that
define different sets of privileges. (Ideally, nobody should connect using those accounts directly.)
Then define a default user authenticating through PAM that uses some mapping scheme (usually
by the external groups the users are in) to map all the external logins to the few MySQL accounts
holding the privilege sets. Any user that logs in is mapped to one of the MySQL accounts and
uses its privileges. The discussion shows how to set this up using Unix passwords, but other PAM
methods such as LDAP could be used instead.

Variations on these scenarios are possible. For example, you can permit some users to log in directly
(without proxying) but require others to connect through proxy users.

The examples make the following assumptions. You might need to make some adjustments if your
system is set up differently.

• The PAM configuration directory is /etc/pam.d.

• The PAM service name is mysql, which means that you must set up a PAM file named mysql in the
PAM configuration directory (creating the file if it does not exist). If you use a service name different
from mysql, the file name will differ and you must use a different name in the AS 'auth_string'
clause of CREATE USER and GRANT statements.

• The examples use a login name of antonio and password of verysecret. Change these to
correspond to the users you want to authenticate.

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set in the server's startup environment. If so, the plugin enables logging of
diagnostic messages to the standard output. Depending on how your server is started, the message
might appear on the console or in the error log. These messages can be helpful for debugging PAM-
related problems that occur when the plugin performs authentication. For more information, see PAM
Pluggable Authentication Debugging.

Unix Password Authentication without Proxy Users

This authentication scenario uses PAM only to check Unix user login names and passwords. Every
external user permitted to connect to MySQL Server should have a matching MySQL account that is
defined to use external PAM authentication.

1. Verify that Unix authentication in PAM permits you to log in as antonio with password
verysecret.

2. Set up PAM to authenticate the mysql service by creating a file named /etc/pam.d/mysql.
The file contents are system dependent, so check existing login-related files in the /etc/pam.d
directory to see what they look like. On Linux, the mysql file might look like this:

#%PAM-1.0
auth            include         password-auth
account         include         password-auth

For Gentoo Linux, use system-login rather than password-auth. For macOS, use login
rather than password-auth.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-
based systems, use these file contents instead:

@include common-auth
@include common-account
@include common-session-noninteractive

3. Create a MySQL account with the same user name as the Unix login name and define it to
authenticate using the PAM plugin:



Authentication Plugins

780

CREATE USER 'antonio'@'localhost'
  IDENTIFIED WITH authentication_pam AS 'mysql';
GRANT ALL PRIVILEGES ON mydb.* TO 'antonio'@'localhost';

4. Connect to the MySQL server using the mysql command-line client. For example:

mysql --user=antonio --password --enable-cleartext-plugin mydb
Enter password: verysecret

The server should permit the connection and the following query should return output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+-------------------+--------------+
| USER()            | CURRENT_USER()    | @@proxy_user |
+-------------------+-------------------+--------------+
| antonio@localhost | antonio@localhost | NULL         |
+-------------------+-------------------+--------------+

This demonstrates that antonio uses the privileges granted to the antonio MySQL account, and
that no proxying has occurred.

Note

The client-side mysql_clear_password plugin with which the server-side
PAM plugin communicates sends the password to the MySQL server in clear
text so it can be passed to PAM. This is necessary to use the server-side PAM
library, but may be a security problem in some configurations. These measures
minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less
likely, clients must explicitly enable it; for example, with the --enable-
cleartext-plugin option.

• To avoid password exposure with the mysql_clear_password plugin
enabled, clients should connect to the server using a secure connection.

For additinal information, see Section 6.5.1.3, “Client-Side Cleartext Pluggable
Authentication”, and Section 6.4.4, “Configuring MySQL to Use Secure
Connections”.

Note

On some systems, Unix authentication uses /etc/shadow, a file that typically
has restricted access permissions. This can cause MySQL PAM-based
authentication to fail. Unfortunately, the PAM implementation does not permit
distinguishing “password could not be checked” (due, for example, to inability
to read /etc/shadow) from “password does not match.” If your system uses
/etc/shadow, you may be able enable access to it by MySQL using this
method (assuming that the MySQL server is run from the mysql system
account):

1. Create a shadow group in /etc/group.

2. Add the mysql user to the shadow group in /etc/group.

3. Assign /etc/group to the shadow group and enable the group read
permission:

chgrp shadow /etc/shadow



Authentication Plugins

781

chmod g+r /etc/shadow

4. Restart the MySQL server.

LDAP Authentication without Proxy Users

This authentication scenario uses PAM only to check LDAP user login names and passwords. Every
external user permitted to connect to MySQL Server should have a matching MySQL account that is
defined to use external PAM authentication.

1. Verify that LDAP authentication in PAM permits you to log in as antonio with password
verysecret.

2. Set up PAM to authenticate the mysql service through LDAP by creating a file named /etc/
pam.d/mysql. The file contents are system dependent, so check existing login-related files in the
/etc/pam.d directory to see what they look like. On Linux, the mysql file might look like this:

#%PAM-1.0
auth        required    pam_ldap.so
account     required    pam_ldap.so

If PAM object files have a suffix different from .so on your system, substitute the correct suffix.

The PAM file format might differ on some systems.

3. MySQL account creation and connecting to the server is the same as described in Unix Password
Authentication without Proxy Users.

Unix Password Authentication with Proxy Users and Group Mapping

This authentication scheme uses proxying and group mapping to map users who connect to the
MySQL server through PAM onto MySQL accounts that define different sets of privileges. Users do not
connect directly through the accounts that define the privileges. Instead, they connect through a default
proxy user authenticating through PAM, such that all the external logins are mapped to the MySQL
accounts that hold the privileges. Any user who connects is mapped to one of those MySQL accounts,
the privileges for which determine the database operations permitted to the external user.

The procedure shown here uses Unix password authentication. To use LDAP instead, see the early
steps of LDAP Authentication without Proxy Users.

Note

For information regarding possible problems related to /etc/shadow, see Unix
Password Authentication without Proxy Users.

1. Verify that Unix authentication in PAM permits you to log in as antonio with password
verysecret and that antonio is a member of the root or users group.

2. Set up PAM to authenticate the mysql service. Put the following in /etc/pam.d/mysql:

#%PAM-1.0
auth            include         password-auth
account         include         password-auth

For Gentoo Linux, use system-login rather than password-auth. For macOS, use login
rather than password-auth.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-
based systems, use these file contents instead:



Authentication Plugins

782

@include common-auth
@include common-account
@include common-session-noninteractive

3. Create a default proxy user (''@'') that maps the external PAM users to the proxied accounts.
It maps external users from the root PAM group to the developer MySQL account and the
external users from the users PAM group to the data_entry MySQL account:

CREATE USER ''@''
  IDENTIFIED WITH authentication_pam
  AS 'mysql, root=developer, users=data_entry';

The mapping list following the service name is required when you set up proxy users. Otherwise,
the plugin cannot tell how to map the name of PAM groups to the proper proxied user name.

If your MySQL installation has anonymous users, they might conflict with the default proxy user.
For more information about this problem, and ways of dealing with it, see Default Proxy User and
Anonymous User Conflicts.

4. Create the proxied accounts that will be used to access the databases:

CREATE USER 'developer'@'localhost' IDENTIFIED BY 'very secret password';
GRANT ALL PRIVILEGES ON mydevdb.* TO 'developer'@'localhost';
CREATE USER 'data_entry'@'localhost' IDENTIFIED BY 'very secret password';
GRANT ALL PRIVILEGES ON mydb.* TO 'data_entry'@'localhost';

If you do not let anyone know the passwords for these accounts, other users cannot use them
to connect directly to the MySQL server. Instead, it is expected that users will authenticate using
PAM and that they will use the developer or data_entry account by proxy based on their PAM
group.

5. Grant the PROXY privilege to the proxy account for the proxied accounts:

GRANT PROXY ON 'developer'@'localhost' TO ''@'';
GRANT PROXY ON 'data_entry'@'localhost' TO ''@'';

6. Connect to the MySQL server using the mysql command-line client. For example:

mysql --user=antonio --password --enable-cleartext-plugin mydb
Enter password: verysecret

The server authenticates the connection using the ''@'' account. The privileges antonio will
have depends on what PAM groups he is a member of. If antonio is a member of the root PAM
group, the PAM plugin maps root to the developer MySQL user name and returns that name to
the server. The server verifies that ''@'' has the PROXY privilege for developer and permits the
connection. the following query should return output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+---------------------+--------------+
| USER()            | CURRENT_USER()      | @@proxy_user |
+-------------------+---------------------+--------------+
| antonio@localhost | developer@localhost | ''@''        |
+-------------------+---------------------+--------------+

This demonstrates that antonio uses the privileges granted to the developer MySQL account,
and that proxying occurred through the default proxy user account.

If antonio is not a member of the root PAM group but is a member of the users group, a
similar process occurs, but the plugin maps user group membership to the data_entry MySQL
user name and returns that name to the server. In this case, antonio uses the privileges of the
data_entry MySQL account:



Authentication Plugins

783

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+----------------------+--------------+
| USER()            | CURRENT_USER()       | @@proxy_user |
+-------------------+----------------------+--------------+
| antonio@localhost | data_entry@localhost | ''@''        |
+-------------------+----------------------+--------------+

Note

The client-side mysql_clear_password plugin with which the server-side
PAM plugin communicates sends the password to the MySQL server in clear
text so it can be passed to PAM. This is necessary to use the server-side PAM
library, but may be a security problem in some configurations. These measures
minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less
likely, clients must explicitly enable it; for example, with the --enable-
cleartext-plugin option.

• To avoid password exposure with the mysql_clear_password plugin
enabled, clients should connect to the server using a secure connection.

For additinal information, see Section 6.5.1.3, “Client-Side Cleartext Pluggable
Authentication”, and Section 6.4.4, “Configuring MySQL to Use Secure
Connections”.

PAM Pluggable Authentication Debugging

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set (the value does not matter). If so, the plugin enables logging of diagnostic
messages to the standard output. These messages may be helpful for debugging PAM-related
problems that occur when the plugin performs authentication.

Some messages include reference to PAM plugin source files and line numbers, which enables plugin
actions to be tied more closely to the location in the code where they occur.

6.5.1.5 Windows Pluggable Authentication

Note

Windows pluggable authentication is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see http://www.mysql.com/products/.

As of MySQL 5.5.16, MySQL Enterprise Edition for Windows supports an authentication method that
performs external authentication on Windows, enabling MySQL Server to use native Windows services
to authenticate client connections. Users who have logged in to Windows can connect from MySQL
client programs to the server based on the information in their environment without specifying an
additional password.

The client and server exchange data packets in the authentication handshake. As a result of this
exchange, the server creates a security context object that represents the identity of the client in the
Windows OS. This identity includes the name of the client account. Windows pluggable authentication
uses the identity of the client to check whether it is a given account or a member of a group. By default,
negotiation uses Kerberos to authenticate, then NTLM if Kerberos is unavailable.

Windows pluggable authentication provides these capabilities:

• External authentication: Windows authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables.

http://www.mysql.com/products/


Authentication Plugins

784

• Proxy user support: Windows authentication can return to MySQL a user name different from the
client user. This means that the plugin can return the MySQL user that defines the privileges the
external Windows-authenticated user should have. For example, a Windows user named joe can
connect and have the privileges of the MySQL user named developer.

The following table shows the plugin and library file names. The file must be located in the directory
named by the plugin_dir system variable. For installation information, see Installing Windows
Pluggable Authentication.

Table 6.13 Plugin and Library Names for Windows Authentication

Server-side plugin name authentication_windows

Client-side plugin name authentication_windows_client

Library file name authentication_windows.dll

The library file includes only the server-side plugin. As of MySQL 5.5.13, the client-side plugin is built
into the libmysqlclient client library.

The server-side Windows authentication plugin is included only in MySQL Enterprise Edition. It is
not included in MySQL community distributions. The client-side plugin is included in all distributions,
including community distributions. This permits clients from any 5.5.13 or higher distribution to connect
to a server that has the server-side plugin loaded.

The Windows authentication plugin is supported on any version of Windows supported by MySQL
5.5 (see http://www.mysql.com/support/supportedplatforms/database.html). It requires MySQL Server
5.5.16 or higher.

The following sections provide installation and usage information specific to Windows pluggable
authentication:

• Installing Windows Pluggable Authentication

• Uninstalling Windows Pluggable Authentication

• Using Windows Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.3.6, “Pluggable
Authentication”. For proxy user information, see Section 6.3.7, “Proxy Users”.

Installing Windows Pluggable Authentication

This section describes how to install the Windows authentication plugin. For general information about
installing plugins, see Section 5.5.2, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at
server startup to tell the server the plugin directory location.

To load the plugin at server startup, use the --plugin-load option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in your my.cnf file:

[mysqld]
plugin-load=authentication_windows.dll

Alternatively, to register the plugin at runtime, use this statement:

INSTALL PLUGIN authentication_windows SONAME 'authentication_windows.dll';

INSTALL PLUGIN loads a plugin, and also registers it in the mysql.plugins table to cause the
plugin to be loaded for each subsequent normal server startup.

http://www.mysql.com/support/supportedplatforms/database.html


Authentication Plugins

785

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement (see Section 5.5.3, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
       FROM INFORMATION_SCHEMA.PLUGINS
       WHERE PLUGIN_NAME LIKE '%windows%';
+------------------------+---------------+
| PLUGIN_NAME            | PLUGIN_STATUS |
+------------------------+---------------+
| authentication_windows | ACTIVE        |
+------------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate a MySQL account with the Windows authentication plugin, use the plugin name
authentication_windows in the IDENTIFIED WITH clause of the CREATE USER or GRANT
statement that creates the account. (See Using Windows Pluggable Authentication.)

Uninstalling Windows Pluggable Authentication

The method used to uninstall the Windows authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load option, restart the server without
the option.

• If you installed the plugin at runtime using INSTALL PLUGIN, it remains installed across server
restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_windows;

In addition, remove any startup options that set Windows plugin-related system variables.

Using Windows Pluggable Authentication

The Windows authentication plugin supports the use of MySQL accounts such that users who have
logged in to Windows can connect to the MySQL server without having to specify an additional
password. It is assumed that the server is running with the server-side plugin enabled, as described in
Installing Windows Pluggable Authentication, and that client programs are recent enough to include the
client-side plugin built into libmysqlclient (MySQL 5.5.13 or higher). Once the DBA has enabled
the server-side plugin and set up accounts to use it, clients can connect using those accounts with no
other setup required on their part.

To refer to the Windows authentication plugin in the IDENTIFIED WITH clause of a CREATE USER
or GRANT statement, use the name authentication_windows. Suppose that the Windows
users Rafal and Tasha should be permitted to connect to MySQL, as well as any users in the
Administrators or Power Users group. To set this up, create a MySQL account named
sql_admin that uses the Windows plugin for authentication:

CREATE USER sql_admin
  IDENTIFIED WITH authentication_windows
  AS 'Rafal, Tasha, Administrators, "Power Users"';

The plugin name is authentication_windows. The string following the AS keyword is the
authentication string. It specifies that the Windows users named Rafal or Tasha are permitted
to authenticate to the server as the MySQL user sql_admin, as are any Windows users in the
Administrators or Power Users group. The latter group name contains a space, so it must be
quoted with double quote characters.

After you create the sql_admin account, a user who has logged in to Windows can attempt to connect
to the server using that account:



Authentication Plugins

786

C:\> mysql --user=sql_admin

No password is required here. The authentication_windows plugin uses the Windows security
API to check which Windows user is connecting. If that user is named Rafal or Tasha, or is in the
Administrators or Power Users group, the server grants access and the client is authenticated
as sql_admin and has whatever privileges are granted to the sql_admin account. Otherwise, the
server denies access.

Authentication string syntax for the Windows authentication plugin follows these rules:

• The string consists of one or more user mappings separated by commas.

• Each user mapping associates a Windows user or group name with a MySQL user name:

win_user_or_group_name=mysql_user_name
win_user_or_group_name

For the latter syntax, with no mysql_user_name value given, the implicit value is the MySQL user
created by the CREATE USER statement. Thus, these statements are equivalent:

CREATE USER sql_admin
  IDENTIFIED WITH authentication_windows
  AS 'Rafal, Tasha, Administrators, "Power Users"';

CREATE USER sql_admin
  IDENTIFIED WITH authentication_windows
  AS 'Rafal=sql_admin, Tasha=sql_admin, Administrators=sql_admin,
      "Power Users"=sql_admin';

• Each backslash ('\') in a value must be doubled because backslash is the escape character in
MySQL strings.

• Leading and trailing spaces not inside double quotation marks are ignored.

• Unquoted win_user_or_group_name and mysql_user_name values can contain anything
except equal sign, comma, or space.

• If a win_user_or_group_name and or mysql_user_name value is quoted with double quotation
marks, everything between the quotation marks is part of the value. This is necessary, for example,
if the name contains space characters. All characters within double quotes are legal except double
quotation mark and backslash. To include either character, escape it with a backslash.

• win_user_or_group_name values use conventional syntax for Windows principals, either local or
in a domain. Examples (note the doubling of backslashes):

domain\\user
.\\user
domain\\group
.\\group
BUILTIN\\WellKnownGroup

When invoked by the server to authenticate a client, the plugin scans the authentication string left
to right for a user or group match to the Windows user. If there is a match, the plugin returns the
corresponding mysql_user_name to the MySQL server. If there is no match, authentication fails.

A user name match takes preference over a group name match. Suppose that the Windows user
named win_user is a member of win_group and the authentication string looks like this:

'win_group = sql_user1, win_user = sql_user2'

When win_user connects to the MySQL server, there is a match both to win_group and to
win_user. The plugin authenticates the user as sql_user2 because the more-specific user match



Authentication Plugins

787

takes precedence over the group match, even though the group is listed first in the authentication
string.

Windows authentication always works for connections from the same computer on which the server
is running. For cross-computer connections, both computers must be registered with Windows Active
Directory. If they are in the same Windows domain, it is unnecessary to specify a domain name. It is
also possible to permit connections from a different domain, as in this example:

CREATE USER sql_accounting
  IDENTIFIED WITH authentication_windows
  AS 'SomeDomain\\Accounting';

Here SomeDomain is the name of the other domain. The backslash character is doubled because it is
the MySQL escape character within strings.

MySQL supports the concept of proxy users whereby a client can connect and authenticate to the
MySQL server using one account but while connected has the privileges of another account (see
Section 6.3.7, “Proxy Users”). Suppose that you want Windows users to connect using a single user
name but be mapped based on their Windows user and group names onto specific MySQL accounts
as follows:

• The local_user and MyDomain\domain_user local and domain Windows users should map to
the local_wlad MySQL account.

• Users in the MyDomain\Developers domain group should map to the local_dev MySQL
account.

• Local machine administrators should map to the local_admin MySQL account.

To set this up, create a proxy account for Windows users to connect to, and configure this account
so that users and groups map to the appropriate MySQL accounts (local_wlad, local_dev,
local_admin). In addition, grant the MySQL accounts the privileges appropriate to the operations
they need to perform. The following instructions use win_proxy as the proxy account, and
local_wlad, local_dev, and local_admin as the proxied accounts.

1. Create the proxy MySQL account:

CREATE USER win_proxy
  IDENTIFIED WITH  authentication_windows
  AS 'local_user = local_wlad,
      MyDomain\\domain_user = local_wlad,
      MyDomain\\Developers = local_dev,
      BUILTIN\\Administrators = local_admin';

2. For proxying to work, the proxied accounts must exist, so create them:

CREATE USER local_wlad IDENTIFIED BY 'wlad_pass';
CREATE USER local_dev IDENTIFIED BY 'dev_pass';
CREATE USER local_admin IDENTIFIED BY  'admin_pass';

If you do not let anyone know the passwords for these accounts, other users cannot use them to
connect directly to the MySQL server.

You should also issue GRANT statements (not shown) that grant each proxied account the
privileges it needs.

3. The proxy account must have the PROXY privilege for each of the proxied accounts:

GRANT PROXY ON local_wlad TO win_proxy;
GRANT PROXY ON local_dev TO win_proxy;
GRANT PROXY ON local_admin TO win_proxy;



Authentication Plugins

788

Now the Windows users local_user and MyDomain\domain_user can connect to the MySQL
server as win_proxy and when authenticated have the privileges of the account given in the
authentication string—in this case, local_wlad. A user in the MyDomain\Developers group
who connects as win_proxy has the privileges of the local_dev account. A user in the BUILTIN
\Administrators group has the privileges of the local_admin account.

To configure authentication so that all Windows users who do not have their own MySQL account go
through a proxy account, substitute the default proxy user (''@'') for win_proxy in the preceding
instructions. For information about the default proxy user, see Section 6.3.7, “Proxy Users”.

If your MySQL installation has anonymous users, they might conflict with the default proxy user.
For more information about this problem, and ways of dealing with it, see Default Proxy User and
Anonymous User Conflicts.

To use the Windows authentication plugin with Connector/Net connection strings in Connection/Net
6.4.4 and higher, see Using the Windows Native Authentication Plugin.

Additional control over the Windows authentication plugin is provided
by the authentication_windows_use_principal_name and
authentication_windows_log_level system variables. See Section 5.1.5, “Server System
Variables”.

6.5.1.6 Socket Peer-Credential Pluggable Authentication

As of MySQL 5.5.10, a server-side auth_socket authentication plugin is available that authenticates
clients that connect from the local host through the Unix socket file. The plugin uses the SO_PEERCRED
socket option to obtain information about the user running the client program. Thus, the plugin can be
used only on systems that support the SO_PEERCRED option, such as Linux.

The source code for this plugin can be examined as a relatively simple example demonstrating how to
write a loadable authentication plugin.

The following table shows the plugin and library file names. The file must be located in the directory
named by the plugin_dir system variable. For installation information, see Section 6.3.6, “Pluggable
Authentication”.

Table 6.14 Plugin and Library Names for Socket Peer-Credential Authentication

Server-side plugin name auth_socket

Client-side plugin name None, see discussion

Library file name auth_socket.so

The following sections provide installation and usage information specific to socket pluggable
authentication:

• Installing Socket Pluggable Authentication

• Uninstalling Socket Pluggable Authentication

• Using Socket Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.3.6, “Pluggable
Authentication”.

Installing Socket Pluggable Authentication

This section describes how to install the socket authentication plugin. For general information about
installing plugins, see Section 5.5.2, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at
server startup to tell the server the plugin directory location.

http://dev.mysql.com/doc/connector-net/en/connector-net-programming-authentication-windows-native.html


Authentication Plugins

789

To load the plugin at server startup, use the --plugin-load option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in your my.cnf file:

[mysqld]
plugin-load=auth_socket.so

Alternatively, to register the plugin at runtime, use this statement (adjust the extension as necessary):

INSTALL PLUGIN auth_socket SONAME 'auth_socket.so';

INSTALL PLUGIN loads a plugin, and also registers it in the mysql.plugins table to cause the
plugin to be loaded for each subsequent normal server startup.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement (see Section 5.5.3, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
       FROM INFORMATION_SCHEMA.PLUGINS
       WHERE PLUGIN_NAME LIKE '%socket%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+
| auth_socket | ACTIVE        |
+-------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate a MySQL account with the socket plugin, use the plugin name auth_socket in the
IDENTIFIED WITH clause of the CREATE USER statement that creates the account. (See Using
Socket Pluggable Authentication.)

Uninstalling Socket Pluggable Authentication

The method used to uninstall the socket authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load option, restart the server without
the option.

• If you installed the plugin at runtime using INSTALL PLUGIN, it remains installed across server
restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN auth_socket;

Using Socket Pluggable Authentication

The socket plugin checks whether the socket user name matches the MySQL user name specified by
the client program to the server, and permits the connection only if the names match.

Suppose that a MySQL account is created for a user named valerie who is to be authenticated by
the auth_socket plugin for connections from the local host through the socket file:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;

If a user on the local host with a login name of stefanie invokes mysql with the option --
user=valerie to connect through the socket file, the server uses auth_socket to authenticate the
client. The plugin determines that the --user option value (valerie) differs from the client user's
name (stephanie) and refuses the connection. If a user named valerie tries the same thing,
the plugin finds that the user name and the MySQL user name are both valerie and permits the
connection. However, the plugin refuses the connection even for valerie if the connection is made
using a different protocol, such as TCP/IP.



Authentication Plugins

790

6.5.1.7 Test Pluggable Authentication

MySQL includes a test plugin that checks account credentials and logs success or failure to the server
error log. This is a loadable plugin (not built in) and must be installed prior to use.

The test plugin source code is separate from the server source, unlike the built-in native plugin, so it
can be examined as a relatively simple example demonstrating how to write a loadable authentication
plugin.

Note

This plugin is intended for testing and development purposes, and is not for use
in production environments or on servers that are exposed to public networks.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable. For
installation information, see Section 6.3.6, “Pluggable Authentication”.

Table 6.15 Plugin and Library Names for Test Authentication

Server-side plugin name test_plugin_server

Client-side plugin name auth_test_plugin

Library file name auth_test_plugin.so

The following sections provide installation and usage information specific to test pluggable
authentication:

• Installing Test Pluggable Authentication

• Uninstalling Test Pluggable Authentication

• Using Test Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 6.3.6, “Pluggable
Authentication”.

Installing Test Pluggable Authentication

This section describes how to install the test authentication plugin. For general information about
installing plugins, see Section 5.5.2, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at
server startup to tell the server the plugin directory location.

To load the plugin at server startup, use the --plugin-load option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in your my.cnf file:

[mysqld]
plugin-load=auth_test_plugin.so

Alternatively, to register the plugin at runtime, use this statement (adjust the extension as necessary):

INSTALL PLUGIN test_plugin_server SONAME 'auth_test_plugin.so';

INSTALL PLUGIN loads a plugin, and also registers it in the mysql.plugins table to cause the
plugin to be loaded for each subsequent normal server startup.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement (see Section 5.5.3, “Obtaining Server Plugin Information”). For example:



MySQL Enterprise Audit

791

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
       FROM INFORMATION_SCHEMA.PLUGINS
       WHERE PLUGIN_NAME LIKE '%test_plugin%';
+--------------------+---------------+
| PLUGIN_NAME        | PLUGIN_STATUS |
+--------------------+---------------+
| test_plugin_server | ACTIVE        |
+--------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate a MySQL account with the test plugin, use the plugin name test_plugin_server in
the IDENTIFIED WITH clause of the CREATE USER statement that creates the account. (See Using
Test Pluggable Authentication.)

Uninstalling Test Pluggable Authentication

The method used to uninstall the test authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load option, restart the server without
the option.

• If you installed the plugin at runtime using INSTALL PLUGIN, it remains installed across server
restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN test_plugin_server;

Using Test Pluggable Authentication

To use the test authentication plugin, create an account and name that plugin in the IDENTIFIED
WITH clause:

CREATE USER 'testuser'@'localhost'
IDENTIFIED WITH test_plugin_server
BY 'testpassword';

Then provide the --user and --password options for that account when you connect to the server.
For example:

shell> mysql --user=testuser --password
Enter password: testpassword

The plugin fetches the password as received from the client and compares it with the value stored in
the authentication_string column of the account row in the mysql.user table. If the two values
match, the plugin returns the authentication_string value as the new effective user ID.

You can look in the server error log for a message indicating whether authentication succeeded (notice
that the password is reported as the “user”):

[Note] Plugin test_plugin_server reported:
'successfully authenticated user testpassword'

6.5.2 MySQL Enterprise Audit

Note

MySQL Enterprise Audit is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see http://
www.mysql.com/products/.

As of MySQL 5.5.28, MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using
a server plugin named audit_log. MySQL Enterprise Audit uses the open MySQL Audit API to

http://www.mysql.com/products/
http://www.mysql.com/products/


MySQL Enterprise Audit

792

enable standard, policy-based monitoring and logging of connection and query activity executed on
specific MySQL servers. Designed to meet the Oracle audit specification, MySQL Enterprise Audit
provides an out of box, easy to use auditing and compliance solution for applications that are governed
by both internal and external regulatory guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

After you install the plugin (see Section 6.5.2.1, “Installing MySQL Enterprise Audit”), it writes an audit
log file. By default, the file is named audit.log in the server data directory. To change the name of
the file, set the audit_log_file system variable at server startup.

Audit log file contents are not encrypted. See Section 6.5.2.2, “MySQL Enterprise Audit Security
Considerations”.

The audit log file is written in XML, with auditable events encoded as <AUDIT_RECORD> elements. To
select the file format, set the audit_log_format system variable at server startup. For details on file
format and contents, see Section 6.5.2.3, “The Audit Log File”.

To control what information audit_log writes to its log file, set the audit_log_policy system
variable. By default, this variable is set to ALL (write all auditable events), but also permits values of
LOGINS or QUERIES to log only login or query events, or NONE to disable logging.

For more information about controlling how logging occurs, see Section 6.5.2.4, “Audit Log Logging
Control”. For descriptions of the parameters used to configure the audit log plugin, see Section 6.5.2.7,
“Audit Log Options and System Variables”.

If the audit_log plugin is enabled, the Performance Schema (see Chapter 22, MySQL Performance
Schema) has instrumentation for the audit log plugin. To identify the relevant instruments, use this
query:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE '%/alog/%';

Changes from Older MySQL Enterprise Audit Versions

Several changes were made to the audit log plugin in MySQL 5.5.34 for better compatibility with Oracle
Audit Vault.

MySQL 5.7 changed audit log file output to a new format. This format has been backported to MySQL
5.5 and it is possible to select either the old or new format using the audit_log_format system
variable, which has permitted values of OLD and NEW (default OLD). The two formats differ as follows:

• Information within <AUDIT_RECORD> elements written in the old format using attributes is written in
the new format using subelements.

• The new format includes more information in <AUDIT_RECORD> elements. Every element includes
a RECORD_ID value providing a unique identifier. The TIMESTAMP value includes time zone
information. Query records include HOST, IP, OS_LOGIN, and USER information, as well as
COMMAND_CLASS and STATUS_CODE values.

Example of old <AUDIT_RECORD> format:

<AUDIT_RECORD
 TIMESTAMP="2013-09-15T15:27:27"
 NAME="Query"
 CONNECTION_ID="3"
 STATUS="0"
 SQLTEXT="SELECT 1"
/>



MySQL Enterprise Audit

793

Example of new <AUDIT_RECORD> format:

<AUDIT_RECORD>
 <TIMESTAMP>2013-09-15T15:27:27 UTC</TIMESTAMP>
 <RECORD_ID>3998_2013-09-15T15:27:27</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>3</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN></OS_LOGIN>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>select</COMMAND_CLASS>
 <SQLTEXT>SELECT 1</SQLTEXT>
</AUDIT_RECORD>

When the audit log plugin rotates the audit log file, it uses a different file name format. For a log file
named audit.log, the plugin previously renamed the file to audit.log.TIMESTAMP. The plugin
now renames the file to audit.log.TIMESTAMP.xml to indicate that it is an XML file.

If you change the value of audit_log_format, use this procedure to avoid writing log entries in one
format to an existing log file that contains entries in a different format:

1. Stop the server.

2. Rename the current audit log file manually.

3. Restart the server with the new value of audit_log_format. The audit log plugin will create a
new log file, which will contain log entries in the selected format.

The API for writing audit plugins has also changed. The mysql_event_general structure has new
members to represent client host name and IP address, command class, and external user. For more
information, see Section 24.2.4.8, “Writing Audit Plugins”.

6.5.2.1 Installing MySQL Enterprise Audit

This section describes how to install MySQL Enterprise Audit, which is implemented using the
audit_log plugin. For general information about installing plugins, see Section 5.5.2, “Installing and
Uninstalling Plugins”.

Note

If installed, the audit_log plugin involves some minimal overhead even when
disabled. To avoid this overhead, do not install MySQL Enterprise Audit unless
you plan to use it.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at
server startup to tell the server the plugin directory location.

The plugin library file base name is audit_log. The file name suffix differs per platform (for example,
.so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts.
For example, put the following lines in your my.cnf file (adjust the .so suffix for your platform as
necessary):

[mysqld]
plugin-load=audit_log.so

Alternatively, to register the plugin at runtime, use this statement (adjust the suffix as necessary):



MySQL Enterprise Audit

794

INSTALL PLUGIN audit_log SONAME 'audit_log.so';

INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins table to cause the
plugin to be loaded for each subsequent normal server startup.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement (see Section 5.5.3, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
       FROM INFORMATION_SCHEMA.PLUGINS
       WHERE PLUGIN_NAME LIKE 'audit%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+
| audit_log   | ACTIVE        |
+-------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

If the plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load,
you can use the --audit-log option at server startup to control plugin activation. For example, to
load the plugin at startup and prevent it from being removed at runtime, use these options:

[mysqld]
plugin-load=audit_log.so
audit-log=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without the audit plugin, use --audit-log with
a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not
initialize successfully.

For additional information about the parameters used to configure operation of the audit_log plugin,
see Section 6.5.2.7, “Audit Log Options and System Variables”.

Audit log file contents are not encrypted. See Section 6.5.2.2, “MySQL Enterprise Audit Security
Considerations”.

6.5.2.2 MySQL Enterprise Audit Security Considerations

Contents of the audit log file produced by the audit_log plugin are not encrypted and may contain
sensitive information, such as the text of SQL statements. For security reasons, this file should be
written to a directory accessible only to the MySQL server and users with a legitimate reason to
view the log. The default file is audit.log in the data directory. This can be changed by setting the
audit_log_file system variable at server startup.

6.5.2.3 The Audit Log File

Audit log file contents are not encrypted. See Section 6.5.2.2, “MySQL Enterprise Audit Security
Considerations”.

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element
is <AUDIT>. The closing </AUDIT> tag of the root element is written when the audit log plugin
terminates, so the tag is not present in the file while the plugin is active.

The root element contains <AUDIT_RECORD> elements. Each <AUDIT_RECORD> element has an
empty body; all audit record fields are represented by element attributes.

MySQL 5.7 changed audit log file output to a new format that has better compatibility with Oracle Audit
Vault. This new format was backported to MySQL 5.5 as of MySQL 5.5.34 and it is possible to select
either the old or new format using the audit_log_format system variable, which has permitted
values of OLD and NEW (default OLD).



MySQL Enterprise Audit

795

If you change the value of audit_log_format, use this procedure to avoid writing log entries in one
format to an existing log file that contains entries in a different format:

1. Stop the server.

2. Rename the current audit log file manually.

3. Restart the server with the new value of audit_log_format. The audit log plugin will create a
new log file, which will contain log entries in the selected format.

Here is a sample log file in the default (old) format, reformatted slightly for readability:

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
  <AUDIT_RECORD
    TIMESTAMP="2012-08-02T14:52:12"
    NAME="Audit"
    SERVER_ID="1"
    VERSION="1"
    STARTUP_OPTIONS="--port=3306"
    OS_VERSION="i686-Linux"
    MYSQL_VERSION="5.5.28-debug-log"/>
  <AUDIT_RECORD
    TIMESTAMP="2012-08-02T14:52:41"
    NAME="Connect"
    CONNECTION_ID="1"
    STATUS="0"
    USER="root"
    PRIV_USER="root"
    OS_LOGIN=""
    PROXY_USER=""
    HOST="localhost"
    IP="127.0.0.1"
    DB=""/>
  <AUDIT_RECORD
    TIMESTAMP="2012-08-02T14:53:45"
    NAME="Query"
    CONNECTION_ID="1"
    STATUS="0"
    SQLTEXT="INSERT INTO t1 () VALUES()"/>
  <AUDIT_RECORD
    TIMESTAMP="2012-08-02T14:53:51"
    NAME="Quit"
    CONNECTION_ID="1"
    STATUS="0"/>
  <AUDIT_RECORD
    TIMESTAMP="2012-08-06T14:21:03"
    NAME="NoAudit"
    SERVER_ID="1"/>
</AUDIT>

Attributes of <AUDIT_RECORD> elements have these characteristics:

• Some attributes appear in every element, but most are optional and do not necessarily appear in
every element.

• Order of attributes within an element is not guaranteed.

• Attribute values are not fixed length. Long values may be truncated as indicated in the attribute
descriptions given later.

• The <, >, ", and & characters are encoded as &lt;, &gt;, &quot;, and &amp;, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:



MySQL Enterprise Audit

796

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

New Audit Log File Format

Every <AUDIT_RECORD> element contains a set of mandatory elements. Other optional elements may
appear, depending on the audit record type.

The following elements are mandatory in every <AUDIT_RECORD> element:

• <NAME>

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example:

<NAME>Query</NAME>

Some common <NAME> values:

Audit    When auditing starts, which may be server startup time
Connect  When a client connects, also known as logging in
Query    An SQL statement (executed directly)
Prepare  Preparation of an SQL statement; usually followed by Execute
Execute  Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit     When a client disconnects
NoAudit  Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field
List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics,
Table Dump, Time.

With the exception of Audit and NoAudit, these values correspond to the COM_xxx command
values listed in the mysql_com.h header file. For example, Create DB and Shutdown correspond
to COM_CREATE_DB and COM_SHUTDOWN, respectively.

• <RECORD_ID>

A unique identifier for the audit record. The value is composed from a sequence number and
timestamp, in the format SEQ_TIMESTAMP. The sequence number is initialized to the size of the
audit log file at the time the audit log plugin opens it and increments by 1 for each record logged. The
timestamp is a UTC value in yyyy-mm-ddThh:mm:ss format indicating the time when the audit log
plugin opened the file.

Example:

<RECORD_ID>28743_2013-09-18T21:03:24</RECORD_ID>

• <TIMESTAMP>

The date and time that the audit event was generated. For example, the event corresponding to
execution of an SQL statement received from a client has a <TIMESTAMP> value occurring after the
statement finishes, not when it is received. The value has the format yyyy-mm-ddThh:mm:ss UTC
(with T, no decimals). The format includes a time zone specifier at the end. The time zone is always
UTC.

Example:



MySQL Enterprise Audit

797

<TIMESTAMP>2013-09-17T15:03:49 UTC</TIMESTAMP>

The following elements are optional in <AUDIT_RECORD> elements. Many of them occur only with
specific <NAME> values.

• <COMMAND_CLASS>

A string that indicates the type of action performed.

Example:

<COMMAND_CLASS>drop_table</COMMAND_CLASS>

The values come from the com_status_vars array in the sql/mysqld.cc file in a MySQL source
distribution. They correspond to the status variables displayed by this statement:

SHOW STATUS LIKE 'Com%';

• <CONNECTION_ID>

An unsigned integer representing the client connection identifier. This is the same as the
CONNECTION_ID() function value within the session.

Example:

<CONNECTION_ID>127</CONNECTION_ID>

• <DB>

A string representing the default database name. This element appears only if the <NAME> value is
Connect or Change user.

• <HOST>

A string representing the client host name. This element appears only if the <NAME> value is
Connect, Change user, or Query.

Example:

<HOST>localhost</HOST>

• <IP>

A string representing the client IP address. This element appears only if the <NAME> value is
Connect, Change user, or Query.

Example:

<IP>127.0.0.1</IP>

• <MYSQL_VERSION>

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable. This element appears only if the <NAME> value is Audit.

Example:

<MYSQL_VERSION>5.7.1-m11-log</MYSQL_VERSION>

• <OS_LOGIN>



MySQL Enterprise Audit

798

A string representing the external user (empty if none). The value may differ from the <USER> value,
for example, if the server authenticates the client using an external authentication method. This
element appears only if the <NAME> value is Connect, Change user, or Query.

• <OS_VERSION>

A string representing the operating system on which the server was built or is running. This element
appears only if the <NAME> value is Audit.

Example:

<OS_VERSION>x86_64-Linux</OS_VERSION>

• <PRIV_USER>

A string representing the user that the server authenticated the client as. This is the user name that
the server uses for privilege checking, and may differ from the <USER> value. This element appears
only if the <NAME> value is Connect or Change user.

• <PROXY_USER>

A string representing the proxy user. The value is empty if user proxying is not in effect. This element
appears only if the <NAME> value is Connect or Change user.

• <SERVER_ID>

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable. This element appears only if the <NAME> value is Audit or NoAudit.

Example:

<SERVER_ID>1</SERVER_ID>

• <SQLTEXT>

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. This element appears only if the <NAME> value is Query or Execute.

The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so the
value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example:

<SQLTEXT>DELETE FROM t1</SQLTEXT>

• <STARTUP_OPTIONS>

A string representing the options that were given on the command line or in option files when the
MySQL server was started. This element appears only if the <NAME> value is Audit.

Example:

<STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
  --port=3306 --log-output=FILE</STARTUP_OPTIONS>

• <STATUS>

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function.



MySQL Enterprise Audit

799

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Section B.3, “Server Error Codes and
Messages”.

Warnings are not logged.

See the description for <STATUS_CODE> for information about how it differs from <STATUS>.

Example:

<STATUS>1051</STATUS>

• <STATUS_CODE>

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of
the mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not
necessarily 1 for error.

Example:

<STATUS_CODE>0</STATUS_CODE>

• <USER>

A string representing the user name sent by the client. This may differ from the <PRIV_USER> value.
This element appears only if the <NAME> value is Connect, Change user, or Query.

Example:

<USER>root[root] @ localhost [127.0.0.1]</USER>

• <VERSION>

An unsigned integer representing the version of the audit log file format. This element appears only if
the <NAME> value is Audit.

Example:

<VERSION>1</VERSION>

Old Audit Log File Format

Every <AUDIT_RECORD> element contains a set of mandatory attributes. Other optional attributes may
appear depending on the audit record type.

The following attributes are mandatory in every <AUDIT_RECORD> element:

• NAME

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example: NAME="Query"

Some common NAME values:



MySQL Enterprise Audit

800

"Audit"    When auditing starts, which may be server startup time
"Connect"  When a client connects, also known as logging in
"Query"    An SQL statement (executed directly)
"Prepare"  Preparation of an SQL statement; usually followed by Execute
"Execute"  Execution of an SQL statement; usually follows Prepare
"Shutdown" Server shutdown
"Quit"     When a client disconnects
"NoAudit"  Auditing has been turned off

The possible values are "Audit", "Binlog Dump", "Change user", "Close stmt",
"Connect Out", "Connect", "Create DB", "Daemon", "Debug", "Delayed insert",
"Drop DB", "Execute", "Fetch", "Field List", "Init DB", "Kill", "Long Data",
"NoAudit", "Ping", "Prepare", "Processlist", "Query", "Quit", "Refresh", "Register
Slave", "Reset stmt", "Set option", "Shutdown", "Sleep", "Statistics", "Table
Dump", "Time".

With the exception of "Audit" and "NoAudit", these values correspond to the COM_xxx
command values listed in the mysql_com.h header file. For example, "Create DB" and
"Shutdown" correspond to COM_CREATE_DB and COM_SHUTDOWN, respectively.

• TIMESTAMP

The date and time that the audit event was generated. For example, the event corresponding to
execution of an SQL statement received from a client has a TIMESTAMP value occurring after the
statement finishes, not when it is received. The value is UTC, in the format yyyy-mm-ddThh:mm:ss
(with T, no decimals).

Example: TIMESTAMP="2012-08-09T12:55:16"

The following attributes are optional in <AUDIT_RECORD> elements. Many of them occur only for
elements with specific values of the NAME attribute.

• CONNECTION_ID

An unsigned integer representing the client connection identifier. This is the same as the
CONNECTION_ID() function value within the session.

Example: CONNECTION_ID="127"

• DB

A string representing the default database name. This attribute appears only if the NAME value is
"Connect" or "Change user".

• HOST

A string representing the client host name. This attribute appears only if the NAME value is
"Connect" or "Change user".

Example: HOST="localhost"

• IP

A string representing the client IP address. This attribute appears only if the NAME value is
"Connect" or "Change user".

Example: IP="127.0.0.1"

• MYSQL_VERSION

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable. This attribute appears only if the NAME value is "Audit".

Example: MYSQL_VERSION="5.5.31-log"



MySQL Enterprise Audit

801

• OS_LOGIN

A string representing the external user (empty if none). The value may differ from USER, for example,
if the server authenticates the client using an external authentication method. This attribute appears
only if the NAME value is "Connect" or "Change user".

• OS_VERSION

A string representing the operating system on which the server was built or is running. This attribute
appears only if the NAME value is "Audit".

Example: OS_VERSION="x86_64-Linux"

• PRIV_USER

A string representing the user that the server authenticated the client as. This is the user name that
the server uses for privilege checking, and it may differ from the USER value. This attribute appears
only if the NAME value is "Connect" or "Change user".

• PROXY_USER

A string representing the proxy user. The value is empty if user proxying is not in effect. This attribute
appears only if the NAME value is "Connect" or "Change user".

• SERVER_ID

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable. This attribute appears only if the NAME value is "Audit" or "NoAudit".

Example: SERVER_ID="1"

• SQLTEXT

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. This attribute appears only if the NAME value is "Query" or "Execute".

The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so the
value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example: SQLTEXT="DELETE FROM t1"

• STARTUP_OPTIONS

A string representing the options that were given on the command line or in option files when the
MySQL server was started. This attribute appears only if the NAME value is "Audit".

Example: STARTUP_OPTIONS="--port=3306 --log-output=FILE"

• STATUS

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function.

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Section B.3, “Server Error Codes and
Messages”.

Warnings are not logged.

Example: STATUS="1051"

• USER



MySQL Enterprise Audit

802

A string representing the user name sent by the client. This may differ from the PRIV_USER value.
This attribute appears only if the NAME value is "Connect" or "Change user".

• VERSION

An unsigned integer representing the version of the audit log file format. This attribute appears only if
the NAME value is "Audit".

Example: VERSION="1"

6.5.2.4 Audit Log Logging Control

This section describes how the audit_log plugin performs logging and the system variables that
control how logging occurs. It assumes familiarity with the log file format described in Section 6.5.2.3,
“The Audit Log File”.

When the audit log plugin opens its log file, it checks whether the XML declaration and opening
<AUDIT> root element tag must be written and writes them if so. When the audit log plugin terminates,
it writes a closing </AUDIT> tag to the file.

If the log file exists at open time, the plugin checks whether the file ends with an </AUDIT> tag and
truncates it if so before writing any <AUDIT_RECORD> elements. If the log file exists but does not end
with </AUDIT> or the </AUDIT> tag cannot be truncated, the plugin considers the file malformed and
fails to initialize. This can occur if the server crashes or is killed with the audit log plugin running. No
logging occurs until the problem is rectified. Check the error log for diagnostic information:

[ERROR] Plugin 'audit_log' init function returned error.

To deal with this problem, either remove or rename the malformed log file and restart the server.

The MySQL server calls the audit log plugin to write an <AUDIT_RECORD> element whenever an
auditable event occurs, such as when it completes execution of an SQL statement received from
a client. Typically the first <AUDIT_RECORD> element written after server startup has the server
description and startup options. Elements following that one represent events such as client connect
and disconnect events, executed SQL statements, and so forth. Only top-level statements are logged,
not statements within stored programs such as triggers or stored procedures. Contents of files
referenced by statements such as LOAD DATA INFILE are not logged.

To permit control over how logging occurs, the audit_log plugin provides several system variables,
described following. For more information, see Section 6.5.2.7, “Audit Log Options and System
Variables”.

Audit Log File Naming

To control the audit log file name, set the audit_log_file system variable at server startup. By
default, the name is audit.log in the server data directory. For security reasons, the audit log file
should be written to a directory accessible only to the MySQL server and users with a legitimate reason
to view the log.

Audit Logging Strategy

The audit log plugin can use any of several strategies for log writes. To specify a strategy, set
the audit_log_strategy system variable at server startup. By default, the strategy value is
ASYNCHRONOUS and the plugin logs asynchronously to a buffer, waiting if the buffer is full. It's possible
to tell the plugin not to wait (PERFORMANCE) or to log synchronously, either using file system caching
(SEMISYNCHRONOUS) or forcing output with a sync() call after each write request (SYNCHRONOUS).

Asynchronous logging strategy has these characteristics:

• Minimal impact on server performance and scalability.



MySQL Enterprise Audit

803

• Blocking of threads that generate audit events for the shortest possible time; that is, time to allocate
the buffer plus time to copy the event to the buffer.

• Output goes to the buffer. A separate thread handles writes from the buffer to the log file.

A disadvantage of PERFORMANCE strategy is that it drops events when the buffer is full. For a heavily
loaded server, it is more likely that the audit log will be missing events.

With asynchronous logging, the integrity of the log file may be compromised if a problem occurs
during a write to the file or if the plugin does not shut down cleanly (for example, in the event that the
server host crashes). To reduce this risk, set audit_log_strategy to use synchronous logging.
Regardless of strategy, logging occurs on a best-effort basis, with no guarantee of consistency.

Audit Log Space Management

The audit log plugin provides several system variables that enable you to manage the space used by
its log files:

• audit_log_buffer_size: Set this variable at server startup to set the size of the buffer for
asynchronous logging. The plugin uses a single buffer, which it allocates when it initializes and
removes when it terminates. The plugin allocates this buffer only if logging is asynchronous.

• audit_log_rotate_on_size, audit_log_flush: These variables permit audit log file rotation
and flushing. The audit log file has the potential to grow very large and consume a lot of disk space.
To manage the space used, either enable automatic log rotation, or manually rename the audit file
and flush the log to open a new file. The renamed file can be removed or backed up as desired.

By default, audit_log_rotate_on_size=0 and there is no log rotation. In this case, the audit log
plugin closes and reopens the log file when the audit_log_flush value changes from disabled
to enabled. Log file renaming must be done externally to the server. Suppose that you want to
maintain the three most recent log files, which cycle through the names audit.log.1 through
audit.log.3. On Unix, perform rotation manually like this:

1. From the command line, rename the current log files:

mv audit.log.2 audit.log.3
mv audit.log.1 audit.log.2
mv audit.log audit.log.1

At this point, the plugin is still writing to the current log file, which has been renamed to
audit.log.1.

2. Connect to the server and flush the log file so the plugin closes it and reopens a new audit.log
file:

SET GLOBAL audit_log_flush = ON;

If audit_log_rotate_on_size is greater than 0, setting audit_log_flush has no effect.
In this case, the audit log plugin closes and reopens its log file whenever a write to the file
causes its size to exceed the audit_log_rotate_on_size value. The plugin renames the
original file to have a timestamp extension. For example, audit.log might be renamed to
audit.log.13440033615657730. The last 7 digits are a fractional second part. The first 10 digits
are a Unix timestamp value that can be interpreted using the FROM_UNIXTIME() function:

mysql> SELECT FROM_UNIXTIME(1344003361);
+---------------------------+
| FROM_UNIXTIME(1344003361) |
+---------------------------+
| 2012-08-03 09:16:01       |
+---------------------------+



MySQL Enterprise Audit

804

6.5.2.5 Audit Log Filtering

The audit_log_policy system variable controls what kinds of information the plugin writes. By
default, this variable is set to ALL (write all auditable events), but also permits values of LOGINS or
QUERIES to log only login or query events, or NONE to disable logging.

6.5.2.6 Audit Log Option and Variable Reference

Table 6.16 Audit Log Option/Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

audit-log Yes Yes     

audit_log_buffer_sizeYes Yes Yes  Global No

audit_log_file Yes Yes Yes  Global No

audit_log_flush   Yes  Global Yes

audit_log_format Yes Yes Yes  Global No

audit_log_policy Yes Yes Yes  Global Yes

audit_log_rotate_on_sizeYes Yes Yes  Global Yes

audit_log_strategy Yes Yes Yes  Global No

6.5.2.7 Audit Log Options and System Variables

This section describes the command options and system variables that control operation of MySQL
Enterprise Audit. If values specified at startup time are incorrect, the audit_log plugin may fail
to initialize properly and the server does not load it. In this case, the server may also produce error
messages for other audit log settings because it will not recognize them.

To control the activation of the audit_log plugin, use this option:

•   --audit-log[=value]

Introduced 5.5.28

Command-Line Format --audit-log[=value]

Type enumeration

Default ON

ON

OFF

FORCE

Permitted Values

Valid
Values

FORCE_PLUS_PERMANENT

This option controls how the server loads the audit_log plugin at startup. It is available only if the
plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load.
See Section 6.5.2.1, “Installing MySQL Enterprise Audit”.

The option value should be one of those available for plugin-loading options, as
described in Section 5.5.2, “Installing and Uninstalling Plugins”. For example, --audit-
log=FORCE_PLUS_PERMANENT tells the server to load the plugin at startup and prevents it from
being removed while the server is running.

This option was added in MySQL 5.5.28.

If the audit_log plugin is enabled, it exposes several system variables that permit control over
logging:

mysql> SHOW VARIABLES LIKE 'audit_log%';



MySQL Enterprise Audit

805

+--------------------------+--------------+
| Variable_name            | Value        |
+--------------------------+--------------+
| audit_log_buffer_size    | 1048576      |
| audit_log_file           | audit.log    |
| audit_log_flush          | OFF          |
| audit_log_policy         | ALL          |
| audit_log_rotate_on_size | 0            |
| audit_log_strategy       | ASYNCHRONOUS |
+--------------------------+--------------+

You can set any of these variables at server startup, and some of them at runtime.

•   audit_log_buffer_size

Introduced 5.5.28

Command-Line Format --audit-log-buffer-size=value

Name audit_log_buffer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1048576

Min
Value

4096

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1048576

Min
Value

4096

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

When the audit log plugin writes events to the log asynchronously, it uses a buffer to store event
contents prior to writing them. This variable controls the size of that buffer, in bytes. The server
adjusts the value to a multiple of 4096. The plugin uses a single buffer, which it allocates when
it initializes and removes when it terminates. The plugin allocates this buffer only if logging is
asynchronous.

This variable was added in MySQL 5.5.28.

•   audit_log_file

Introduced 5.5.28

Command-Line Format --audit-log-file=file_name

Name audit_log_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default audit.log



MySQL Enterprise Audit

806

The name of the file to which the audit log plugin writes events. The default value is audit.log.
If the file name is a relative path, the server interprets it relative to the data directory. For security
reasons, the audit log file should be written to a directory accessible only to the MySQL server and
users with a legitimate reason to view the log.

This variable was added in MySQL 5.5.28.

•   audit_log_flush

Introduced 5.5.28

Name audit_log_flush

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When this variable is set to enabled (1 or ON), the audit log plugin closes and reopens its log file to
flush it. (The value remains OFF so that you need not disable it explicitly before enabling it again to
perform another flush.) Enabling this variable has no effect unless audit_log_rotate_on_size
is 0.

This variable was added in MySQL 5.5.28.

•   audit_log_format

Introduced 5.5.34

Command-Line Format --audit-log-format=value

Name audit_log_format

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type enumeration

Default OLD

OLD

Permitted Values (>=
5.5.34)

Valid
Values NEW

The audit log file format. Permitted values are OLD and NEW (default OLD). For details about each
format, see Section 6.5.2.3, “The Audit Log File”.

If you change the value of audit_log_format, use this procedure to avoid writing log entries in
one format to an existing log file that contains entries in a different format:

1. Stop the server.

2. Rename the current audit log file manually.

3. Restart the server with the new value of audit_log_format. The audit log plugin will create a
new log file, which will contain log entries in the selected format.

This variable was added in MySQL 5.5.34.



MySQL Enterprise Audit

807

•   audit_log_policy

Introduced 5.5.28

Command-Line Format --audit-log-policy=value

Name audit_log_policy

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default ALL

ALL

LOGINS

QUERIES

Permitted Values

Valid
Values

NONE

The policy controlling the information written by the audit log plugin to its log file. The following table
shows the permitted values.

Value Description

ALL Log all events

NONE Log nothing (disable the audit stream)

LOGINS Log only login events

QUERIES Log only query events

This variable was added in MySQL 5.5.28.

•   audit_log_rotate_on_size

Introduced 5.5.28

Command-Line Format --audit-log-rotate-on-size=N

Name audit_log_rotate_on_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 0

If the audit_log_rotate_on_size value is greater than 0, the audit log plugin closes and
reopens its log file if a write to the file causes its size to exceed this value. The original file is
renamed to have a timestamp extension.

If the audit_log_rotate_on_size value is 0, the plugin does not close and reopen its log based
on size. Instead, use audit_log_flush to close and reopen the log on demand. In this case,
rename the file externally to the server before flushing it.

For more information about audit log file rotation and timestamp interpretation, see Section 6.5.2.4,
“Audit Log Logging Control”.



MySQL Enterprise Audit

808

If you set this variable to a value that is not a multiple of 4096, it is truncated to the nearest multiple.
(Thus, setting it to a value less than 4096 has the effect of setting it to 0 and no rotation occurs.)

This variable was added in MySQL 5.5.28.

•   audit_log_strategy

Introduced 5.5.28

Command-Line Format --audit-log-strategy=value

Name audit_log_strategy

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type enumeration

Default ASYNCHRONOUS

ASYNCHRONOUS

PERFORMANCE

SEMISYNCHRONOUS

Permitted Values

Valid
Values

SYNCHRONOUS

The logging method used by the audit log plugin. The following table describes the permitted values.

Table 6.17 Audit Log Strategies

Value Meaning

ASYNCHRONOUS Log asynchronously, wait for space in output buffer

PERFORMANCE Log asynchronously, drop request if insufficient space in output buffer

SEMISYNCHRONOUS Log synchronously, permit caching by operating system

SYNCHRONOUS Log synchronously, call sync() after each request

This variable was added in MySQL 5.5.28.

6.5.2.8 Audit Log Restrictions

MySQL Enterprise Audit is subject to these general restrictions:

• Only SQL statements are logged. Changes made by no-SQL APIs, such as memcached, Node.JS,
and the NDB API, are not logged.

• Only top-level statements are logged, not statements within stored programs such as triggers or
stored procedures.

• Contents of files referenced by statements such as LOAD DATA INFILE are not logged.

NDB Cluster.  It is possible to use MySQL Enterprise Audit with MySQL NDB Cluster, subject to the
following conditions:

• All changes to be logged must be done using the SQL interface. Changes using no-SQL interfaces,
such as those provided by the NDB API, memcached, or ClusterJ, are not logged.

• The plugin must be installed on each MySQL server that is used to execute SQL on the cluster.

• Audit plugin data must be aggregated amongst all MySQL servers used with the cluster. This
aggregation is the responsibility of the application or user.



809

Chapter 7 Backup and Recovery

Table of Contents
7.1 Backup and Recovery Types ............................................................................................... 810
7.2 Database Backup Methods .................................................................................................. 813
7.3 Example Backup and Recovery Strategy .............................................................................. 815

7.3.1 Establishing a Backup Policy .................................................................................... 815
7.3.2 Using Backups for Recovery ..................................................................................... 817
7.3.3 Backup Strategy Summary ....................................................................................... 818

7.4 Using mysqldump for Backups ............................................................................................. 818
7.4.1 Dumping Data in SQL Format with mysqldump .......................................................... 818
7.4.2 Reloading SQL-Format Backups ............................................................................... 819
7.4.3 Dumping Data in Delimited-Text Format with mysqldump ........................................... 820
7.4.4 Reloading Delimited-Text Format Backups ................................................................. 821
7.4.5 mysqldump Tips ....................................................................................................... 822

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log .................................................. 824
7.5.1 Point-in-Time Recovery Using Event Times ............................................................... 825
7.5.2 Point-in-Time Recovery Using Event Positions ........................................................... 826

7.6 MyISAM Table Maintenance and Crash Recovery ................................................................ 826
7.6.1 Using myisamchk for Crash Recovery ....................................................................... 827
7.6.2 How to Check MyISAM Tables for Errors .................................................................. 828
7.6.3 How to Repair MyISAM Tables ................................................................................. 828
7.6.4 MyISAM Table Optimization ...................................................................................... 831
7.6.5 Setting Up a MyISAM Table Maintenance Schedule ................................................... 831

It is important to back up your databases so that you can recover your data and be up and running
again in case problems occur, such as system crashes, hardware failures, or users deleting data by
mistake. Backups are also essential as a safeguard before upgrading a MySQL installation, and they
can be used to transfer a MySQL installation to another system or to set up replication slave servers.

MySQL offers a variety of backup strategies from which you can choose the methods that best suit
the requirements for your installation. This chapter discusses several backup and recovery topics with
which you should be familiar:

• Types of backups: Logical versus physical, full versus incremental, and so forth.

• Methods for creating backups.

• Recovery methods, including point-in-time recovery.

• Backup scheduling, compression, and encryption.

• Table maintenance, to enable recovery of corrupt tables.

Additional Resources

Resources related to backup or to maintaining data availability include the following:

• Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product for backups.
For an overview of the MySQL Enterprise Backup product, see Section 25.2, “MySQL Enterprise
Backup Overview”.

• A forum dedicated to backup issues is available at http://forums.mysql.com/list.php?28.

• Details for mysqldump, mysqlhotcopy, and other MySQL backup programs can be found in
Chapter 4, MySQL Programs.

• The syntax of the SQL statements described here is given in Chapter 13, SQL Statement Syntax.

http://forums.mysql.com/list.php?28


Backup and Recovery Types

810

• For additional information about InnoDB backup procedures, see Section 14.21.1, “InnoDB Backup”.

• Replication enables you to maintain identical data on multiple servers. This has several benefits,
such as enabling client query load to be distributed over servers, availability of data even if a given
server is taken offline or fails, and the ability to make backups with no impact on the master by using
a slave server. See Chapter 17, Replication.

• NDB Cluster provides a high-availability, high-redundancy version of MySQL adapted for the
distributed computing environment. See Chapter 18, MySQL NDB Cluster 7.2. For information
specifically about NDB Cluster backup, see Section 18.5.3, “Online Backup of NDB Cluster”.

• Distributed Replicated Block Device (DRBD) is another high-availability solution. It works by
replicating a block device from a primary server to a secondary server at the block level. See
Chapter 16, High Availability and Scalability

7.1 Backup and Recovery Types
This section describes the characteristics of different types of backups.

Physical (Raw) Versus Logical Backups

Physical backups consist of raw copies of the directories and files that store database contents. This
type of backup is suitable for large, important databases that need to be recovered quickly when
problems occur.

Logical backups save information represented as logical database structure (CREATE DATABASE,
CREATE TABLE statements) and content (INSERT statements or delimited-text files). This type of
backup is suitable for smaller amounts of data where you might edit the data values or table structure,
or recreate the data on a different machine architecture.

Physical backup methods have these characteristics:

• The backup consists of exact copies of database directories and files. Typically this is a copy of all or
part of the MySQL data directory.

• Physical backup methods are faster than logical because they involve only file copying without
conversion.

• Output is more compact than for logical backup.

• Because backup speed and compactness are important for busy, important databases, the MySQL
Enterprise Backup product performs physical backups. For an overview of the MySQL Enterprise
Backup product, see Section 25.2, “MySQL Enterprise Backup Overview”.

• Backup and restore granularity ranges from the level of the entire data directory down to the level of
individual files. This may or may not provide for table-level granularity, depending on storage engine.
For example, InnoDB tables can each be in a separate file, or share file storage with other InnoDB
tables; each MyISAM table corresponds uniquely to a set of files.

• In addition to databases, the backup can include any related files such as log or configuration files.

• Data from MEMORY tables is tricky to back up this way because their contents are not stored on disk.
(The MySQL Enterprise Backup product has a feature where you can retrieve data from MEMORY
tables during a backup.)

• Backups are portable only to other machines that have identical or similar hardware characteristics.

• Backups can be performed while the MySQL server is not running. If the server is running, it is
necessary to perform appropriate locking so that the server does not change database contents
during the backup. MySQL Enterprise Backup does this locking automatically for tables that require
it.



Online Versus Offline Backups

811

• Physical backup tools include the mysqlbackup of MySQL Enterprise Backup for InnoDB or any
other tables, file system-level commands (such as cp, scp, tar, rsync), or mysqlhotcopy for
MyISAM tables.

• For restore:

• MySQL Enterprise Backup restores InnoDB and other tables that it backed up.

• ndb_restore restores NDB tables.

• Files copied at the file system level or with mysqlhotcopy can be copied back to their original
locations with file system commands.

Logical backup methods have these characteristics:

• The backup is done by querying the MySQL server to obtain database structure and content
information.

• Backup is slower than physical methods because the server must access database information and
convert it to logical format. If the output is written on the client side, the server must also send it to
the backup program.

• Output is larger than for physical backup, particularly when saved in text format.

• Backup and restore granularity is available at the server level (all databases), database level (all
tables in a particular database), or table level. This is true regardless of storage engine.

• The backup does not include log or configuration files, or other database-related files that are not
part of databases.

• Backups stored in logical format are machine independent and highly portable.

• Logical backups are performed with the MySQL server running. The server is not taken offline.

• Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE
statement. These work for any storage engine, even MEMORY.

• To restore logical backups, SQL-format dump files can be processed using the mysql client. To load
delimited-text files, use the LOAD DATA INFILE statement or the mysqlimport client.

Online Versus Offline Backups

Online backups take place while the MySQL server is running so that the database information can be
obtained from the server. Offline backups take place while the server is stopped. This distinction can
also be described as “hot” versus “cold” backups; a “warm” backup is one where the server remains
running but locked against modifying data while you access database files externally.

Online backup methods have these characteristics:

• The backup is less intrusive to other clients, which can connect to the MySQL server during the
backup and may be able to access data depending on what operations they need to perform.

• Care must be taken to impose appropriate locking so that data modifications do not take place that
would compromise backup integrity. The MySQL Enterprise Backup product does such locking
automatically.

Offline backup methods have these characteristics:

• Clients can be affected adversely because the server is unavailable during backup. For that reason,
such backups are often taken from a replication slave server that can be taken offline without
harming availability.

• The backup procedure is simpler because there is no possibility of interference from client activity.



Local Versus Remote Backups

812

A similar distinction between online and offline applies for recovery operations, and similar
characteristics apply. However, it is more likely that clients will be affected for online recovery than for
online backup because recovery requires stronger locking. During backup, clients might be able to read
data while it is being backed up. Recovery modifies data and does not just read it, so clients must be
prevented from accessing data while it is being restored.

Local Versus Remote Backups

A local backup is performed on the same host where the MySQL server runs, whereas a remote
backup is done from a different host. For some types of backups, the backup can be initiated from a
remote host even if the output is written locally on the server. host.

• mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT
statements), local or remote dumps can be done and generate output on the client. For delimited-text
output (with the --tab option), data files are created on the server host.

• mysqlhotcopy performs only local backups: It connects to the server to lock it against data
modifications and then copies local table files.

• SELECT ... INTO OUTFILE can be initiated from a local or remote client host, but the output file
is created on the server host.

• Physical backup methods typically are initiated locally on the MySQL server host so that the server
can be taken offline, although the destination for copied files might be remote.

Snapshot Backups

Some file system implementations enable “snapshots” to be taken. These provide logical copies of
the file system at a given point in time, without requiring a physical copy of the entire file system. (For
example, the implementation may use copy-on-write techniques so that only parts of the file system
modified after the snapshot time need be copied.) MySQL itself does not provide the capability for
taking file system snapshots. It is available through third-party solutions such as Veritas, LVM, or ZFS.

Full Versus Incremental Backups

A full backup includes all data managed by a MySQL server at a given point in time. An incremental
backup consists of the changes made to the data during a given time span (from one point in time to
another). MySQL has different ways to perform full backups, such as those described earlier in this
section. Incremental backups are made possible by enabling the server's binary log, which the server
uses to record data changes.

Full Versus Point-in-Time (Incremental) Recovery

A full recovery restores all data from a full backup. This restores the server instance to the state that it
had when the backup was made. If that state is not sufficiently current, a full recovery can be followed
by recovery of incremental backups made since the full backup, to bring the server to a more up-to-
date state.

Incremental recovery is recovery of changes made during a given time span. This is also called point-
in-time recovery because it makes a server's state current up to a given time. Point-in-time recovery
is based on the binary log and typically follows a full recovery from the backup files that restores the
server to its state when the backup was made. Then the data changes written in the binary log files are
applied as incremental recovery to redo data modifications and bring the server up to the desired point
in time.

Table Maintenance

Data integrity can be compromised if tables become corrupt. For InnoDB tables, this is not a typical
issue. For programs to check MyISAM tables and repair them if problems are found, see Section 7.6,
“MyISAM Table Maintenance and Crash Recovery”.



Backup Scheduling, Compression, and Encryption

813

Backup Scheduling, Compression, and Encryption

Backup scheduling is valuable for automating backup procedures. Compression of backup
output reduces space requirements, and encryption of the output provides better security against
unauthorized access of backed-up data. MySQL itself does not provide these capabilities. The MySQL
Enterprise Backup product can compress InnoDB backups, and compression or encryption of backup
output can be achieved using file system utilities. Other third-party solutions may be available.

7.2 Database Backup Methods
This section summarizes some general methods for making backups.

Making a Hot Backup with MySQL Enterprise Backup

Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product to do physical
backups of entire instances or selected databases, tables, or both. This product includes features
for incremental and compressed backups. Backing up the physical database files makes restore
much faster than logical techniques such as the mysqldump command. InnoDB tables are copied
using a hot backup mechanism. (Ideally, the InnoDB tables should represent a substantial majority
of the data.) Tables from other storage engines are copied using a warm backup mechanism. For an
overview of the MySQL Enterprise Backup product, see Section 25.2, “MySQL Enterprise Backup
Overview”.

Making Backups with mysqldump or mysqlhotcopy

The mysqldump program and the mysqlhotcopy script can make backups. mysqldump is more
general because it can back up all kinds of tables. mysqlhotcopy works only with some storage
engines. (See Section 7.4, “Using mysqldump for Backups”, and Section 4.6.9, “mysqlhotcopy — A
Database Backup Program”.)

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables using the --
single-transaction option to mysqldump. See Section 7.3.1, “Establishing a Backup Policy”.

Making Backups by Copying Table Files

For storage engines that represent each table using its own files, tables can be backed up by copying
those files. For example, MyISAM tables are stored as files, so it is easy to do a backup by copying files
(*.frm, *.MYD, and *.MYI files). To get a consistent backup, stop the server or lock and flush the
relevant tables:

FLUSH TABLES tbl_list WITH READ LOCK;

You need only a read lock; this enables other clients to continue to query the tables while you are
making a copy of the files in the database directory. The flush is needed to ensure that the all active
index pages are written to disk before you start the backup. See Section 13.3.5, “LOCK TABLES and
UNLOCK TABLES Syntax”, and Section 13.7.6.3, “FLUSH Syntax”.

You can also create a binary backup simply by copying all table files, as long as the server isn't
updating anything. The mysqlhotcopy script uses this method. (But note that table file copying
methods do not work if your database contains InnoDB tables. mysqlhotcopy does not work for
InnoDB tables because InnoDB does not necessarily store table contents in database directories.
Also, even if the server is not actively updating data, InnoDB may still have modified data cached in
memory and not flushed to disk.)

Making Delimited-Text File Backups

To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name'
FROM tbl_name. The file is created on the MySQL server host, not the client host. For this statement,



Making Incremental Backups by Enabling the Binary Log

814

the output file cannot already exist because permitting files to be overwritten constitutes a security risk.
See Section 13.2.9, “SELECT Syntax”. This method works for any kind of data file, but saves only table
data, not the table structure.

Another way to create text data files (along with files containing CREATE TABLE statements for the
backed up tables) is to use mysqldump with the --tab option. See Section 7.4.3, “Dumping Data in
Delimited-Text Format with mysqldump”.

To reload a delimited-text data file, use LOAD DATA INFILE or mysqlimport.

Making Incremental Backups by Enabling the Binary Log

MySQL supports incremental backups: You must start the server with the --log-bin option to
enable binary logging; see Section 5.4.4, “The Binary Log”. The binary log files provide you with the
information you need to replicate changes to the database that are made subsequent to the point at
which you performed a backup. At the moment you want to make an incremental backup (containing
all changes that happened since the last full or incremental backup), you should rotate the binary log
by using FLUSH LOGS. This done, you need to copy to the backup location all binary logs which range
from the one of the moment of the last full or incremental backup to the last but one. These binary logs
are the incremental backup; at restore time, you apply them as explained in Section 7.5, “Point-in-
Time (Incremental) Recovery Using the Binary Log”. The next time you do a full backup, you should
also rotate the binary log using FLUSH LOGS, mysqldump --flush-logs, or mysqlhotcopy --
flushlog. See Section 4.5.4, “mysqldump — A Database Backup Program”, and Section 4.6.9,
“mysqlhotcopy — A Database Backup Program”.

Making Backups Using Replication Slaves

If you have performance problems with your master server while making backups, one strategy that
can help is to set up replication and perform backups on the slave rather than on the master. See
Section 17.3.1, “Using Replication for Backups”.

If you are backing up a slave replication server, you should back up its master.info and relay-
log.info files when you back up the slave's databases, regardless of the backup method you
choose. These information files are always needed to resume replication after you restore the slave's
data. If your slave is replicating LOAD DATA INFILE statements, you should also back up any
SQL_LOAD-* files that exist in the directory that the slave uses for this purpose. The slave needs these
files to resume replication of any interrupted LOAD DATA INFILE operations. The location of this
directory is the value of the --slave-load-tmpdir option. If the server was not started with that
option, the directory location is the value of the tmpdir system variable.

Recovering Corrupt Tables

If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR
TABLE or myisamchk -r first. That should work in 99.9% of all cases. If myisamchk fails, see
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.

Making Backups Using a File System Snapshot

If you are using a Veritas file system, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

Similar snapshot capabilities may be available in other file systems, such as LVM or ZFS.



Example Backup and Recovery Strategy

815

7.3 Example Backup and Recovery Strategy
This section discusses a procedure for performing backups that enables you to recover data after
several types of crashes:

• Operating system crash

• Power failure

• File system crash

• Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as --user and --password for the mysqldump
and mysql client programs. You should include such options as necessary to enable client programs
to connect to the MySQL server.

Assume that data is stored in the InnoDB storage engine, which has support for transactions and
automatic crash recovery. Assume also that the MySQL server is under load at the time of the crash. If
it were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is
available after a restart. The InnoDB data files might not contain consistent data due to the crash, but
InnoDB reads its logs and finds in them the list of pending committed and noncommitted transactions
that have not been flushed to the data files. InnoDB automatically rolls back those transactions that
were not committed, and flushes to its data files those that were committed. Information about this
recovery process is conveyed to the user through the MySQL error log. The following is an example log
excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data
is not available after a restart. This means that MySQL fails to start successfully because some blocks
of disk data are no longer readable. In this case, it is necessary to reformat the disk, install a new one,
or otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from
backups, which means that backups must already have been made. To make sure that is the case,
design and implement a backup policy.

7.3.1 Establishing a Backup Policy

To be useful, backups must be scheduled regularly. A full backup (a snapshot of the data at a point in
time) can be done in MySQL with several tools. For example, MySQL Enterprise Backup can perform
a physical backup of an entire instance, with optimizations to minimize overhead and avoid disruption



Establishing a Backup Policy

816

when backing up InnoDB data files; mysqldump provides online logical backup. This discussion uses
mysqldump.

Assume that we make a full backup of all our InnoDB tables in all databases using the following
command on Sunday at 1 p.m., when load is low:

shell> mysqldump --single-transaction --all-databases > backup_sunday_1_PM.sql

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be
used to reload the dumped tables at a later time.

This backup operation acquires a global read lock on all tables at the beginning of the dump (using
FLUSH TABLES WITH READ LOCK). As soon as this lock has been acquired, the binary log
coordinates are read and the lock is released. If long updating statements are running when the FLUSH
statement is issued, the backup operation may stall until those statements finish. After that, the dump
becomes lock-free and does not disturb reads and writes on the tables.

It was assumed earlier that the tables to back up are InnoDB tables, so --single-transaction
uses a consistent read and guarantees that data seen by mysqldump does not change. (Changes
made by other clients to InnoDB tables are not seen by the mysqldump process.) If the backup
operation includes nontransactional tables, consistency requires that they do not change during the
backup. For example, for the MyISAM tables in the mysql database, there must be no administrative
changes to MySQL accounts during the backup.

Full backups are necessary, but it is not always convenient to create them. They produce large backup
files and take time to generate. They are not optimal in the sense that each successive full backup
includes all data, even that part that has not changed since the previous full backup. It is more efficient
to make an initial full backup, and then to make incremental backups. The incremental backups are
smaller and take less time to produce. The tradeoff is that, at recovery time, you cannot restore your
data just by reloading the full backup. You must also process the incremental backups to recover the
incremental changes.

To make incremental backups, we need to save the incremental changes. In MySQL, these changes
are represented in the binary log, so the MySQL server should always be started with the --log-bin
option to enable that log. With binary logging enabled, the server writes each data change into a file
while it updates data. Looking at the data directory of a MySQL server that was started with the --
log-bin option and that has been running for some days, we find these MySQL binary log files:

-rw-rw---- 1 guilhem  guilhem   1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem  guilhem         4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem  guilhem        79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem  guilhem       508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem  guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem  guilhem    998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem  guilhem       361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the
sequence. While the server is running, you can also tell it to close the current binary log file and begin
a new one manually by issuing a FLUSH LOGS SQL statement or with a mysqladmin flush-logs
command. mysqldump also has an option to flush the logs. The .index file in the data directory
contains the list of all MySQL binary logs in the directory.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If
you make sure to flush the logs when you make your full backup, the binary log files created afterward
contain all the data changes made since the backup. Let's modify the previous mysqldump command
a bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the dump
file contains the name of the new current binary log:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
         --all-databases > backup_sunday_1_PM.sql



Using Backups for Recovery

817

After executing this command, the data directory contains a new binary log file, gbichot2-
bin.000007, because the --flush-logs option causes the server to flush its logs. The --master-
data option causes mysqldump to write binary log information to its output, so the resulting .sql
dump file includes these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

• The dump file contains all changes made before any changes written to the gbichot2-
bin.000007 binary log file or higher.

• All data changes logged after the backup are not present in the dump file, but are present in the
gbichot2-bin.000007 binary log file or higher.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new
binary log file. For example, executing a mysqladmin flush-logs command creates gbichot2-
bin.000008. All changes between the Sunday 1 p.m. full backup and Monday 1 p.m. will be in the
gbichot2-bin.000007 file. This incremental backup is important, so it is a good idea to copy it to
a safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday
at 1 p.m., execute another mysqladmin flush-logs command. All changes between Monday 1
p.m. and Tuesday 1 p.m. will be in the gbichot2-bin.000008 file (which also should be copied
somewhere safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One
way to do this is by deleting the binary logs that are no longer needed, such as when we make a full
backup:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
         --all-databases --delete-master-logs > backup_sunday_1_PM.sql

Note

Deleting the MySQL binary logs with mysqldump --delete-master-logs
can be dangerous if your server is a replication master server, because slave
servers might not yet fully have processed the contents of the binary log. The
description for the PURGE BINARY LOGS statement explains what should be
verified before deleting the MySQL binary logs. See Section 13.4.1.1, “PURGE
BINARY LOGS Syntax”.

7.3.2 Using Backups for Recovery

Now, suppose that we have a catastrophic crash on Wednesday at 8 a.m. that requires recovery from
backups. To recover, first we restore the last full backup we have (the one from Sunday 1 p.m.). The
full backup file is just a set of SQL statements, so restoring it is very easy:

shell> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since
then, we must use the incremental backups; that is, the gbichot2-bin.000007 and gbichot2-
bin.000008 binary log files. Fetch the files if necessary from where they were backed up, and then
process their contents like this:

shell> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes
from that date to the date of the crash. To not lose them, we would have needed to have the MySQL
server store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the place



Backup Strategy Summary

818

where it stores its data files, so that these logs were not on the destroyed disk. (That is, we can start
the server with a --log-bin option that specifies a location on a different physical device from the
one on which the data directory resides. That way, the logs are safe even if the device containing
the directory is lost.) If we had done this, we would have the gbichot2-bin.000009 file (and any
subsequent files) at hand, and we could apply them using mysqlbinlog and mysql to restore the
most recent data changes with no loss up to the moment of the crash:

shell> mysqlbinlog gbichot2-bin.000009 ... | mysql

For more information about using mysqlbinlog to process binary log files, see Section 7.5, “Point-in-
Time (Incremental) Recovery Using the Binary Log”.

7.3.3 Backup Strategy Summary

In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data.
But to make sure that you can sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even --log-bin=log_name, where
the log file name is located on some safe media different from the drive on which the data directory is
located. If you have such safe media, this technique can also be good for disk load balancing (which
results in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 7.3.1,
“Establishing a Backup Policy”, that makes an online, nonblocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-
logs.

7.4 Using mysqldump for Backups
This section describes how to use mysqldump to produce dump files, and how to reload dump files. A
dump file can be used in several ways:

• As a backup to enable data recovery in case of data loss.

• As a source of data for setting up replication slaves.

• As a source of data for experimentation:

• To make a copy of a database that you can use without changing the original data.

• To test potential upgrade incompatibilities.

mysqldump produces two types of output, depending on whether the --tab option is given:

• Without --tab, mysqldump writes SQL statements to the standard output. This output consists of
CREATE statements to create dumped objects (databases, tables, stored routines, and so forth), and
INSERT statements to load data into tables. The output can be saved in a file and reloaded later
using mysql to recreate the dumped objects. Options are available to modify the format of the SQL
statements, and to control which objects are dumped.

• With --tab, mysqldump produces two output files for each dumped table. The server writes one
file as tab-delimited text, one line per table row. This file is named tbl_name.txt in the output
directory. The server also sends a CREATE TABLE statement for the table to mysqldump, which
writes it as a file named tbl_name.sql in the output directory.

7.4.1 Dumping Data in SQL Format with mysqldump

This section describes how to use mysqldump to create SQL-format dump files. For information about
reloading such dump files, see Section 7.4.2, “Reloading SQL-Format Backups”.



Reloading SQL-Format Backups

819

By default, mysqldump writes information as SQL statements to the standard output. You can save the
output in a file:

shell> mysqldump [arguments] > file_name

To dump all databases, invoke mysqldump with the --all-databases option:

shell> mysqldump --all-databases > dump.sql

To dump only specific databases, name them on the command line and use the --databases option:

shell> mysqldump --databases db1 db2 db3 > dump.sql

The --databases option causes all names on the command line to be treated as database names.
Without this option, mysqldump treats the first name as a database name and those following as table
names.

With --all-databases or --databases, mysqldump writes CREATE DATABASE and USE
statements prior to the dump output for each database. This ensures that when the dump file is
reloaded, it creates each database if it does not exist and makes it the default database so database
contents are loaded into the same database from which they came. If you want to cause the dump file
to force a drop of each database before recreating it, use the --add-drop-database option as well.
In this case, mysqldump writes a DROP DATABASE statement preceding each CREATE DATABASE
statement.

To dump a single database, name it on the command line:

shell> mysqldump --databases test > dump.sql

In the single-database case, it is permissible to omit the --databases option:

shell> mysqldump test > dump.sql

The difference between the two preceding commands is that without --databases, the dump output
contains no CREATE DATABASE or USE statements. This has several implications:

• When you reload the dump file, you must specify a default database name so that the server knows
which database to reload.

• For reloading, you can specify a database name different from the original name, which enables you
to reload the data into a different database.

• If the database to be reloaded does not exist, you must create it first.

• Because the output will contain no CREATE DATABASE statement, the --add-drop-database
option has no effect. If you use it, it produces no DROP DATABASE statement.

To dump only specific tables from a database, name them on the command line following the database
name:

shell> mysqldump test t1 t3 t7 > dump.sql

7.4.2 Reloading SQL-Format Backups

To reload a dump file written by mysqldump that consists of SQL statements, use it as input to
the mysql client. If the dump file was created by mysqldump with the --all-databases or --
databases option, it contains CREATE DATABASE and USE statements and it is not necessary to
specify a default database into which to load the data:



Dumping Data in Delimited-Text Format with mysqldump

820

shell> mysql < dump.sql

Alternatively, from within mysql, use a source command:

mysql> source dump.sql

If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the
database first (if necessary):

shell> mysqladmin create db1

Then specify the database name when you load the dump file:

shell> mysql db1 < dump.sql

Alternatively, from within mysql, create the database, select it as the default database, and load the
dump file:

mysql> CREATE DATABASE IF NOT EXISTS db1;
mysql> USE db1;
mysql> source dump.sql

Note

For Windows PowerShell users: Because the "<" character is reserved for future
use in PowerShell, an alternative approach is required, such as using quotes
cmd.exe /c "mysql < dump.sql".

7.4.3 Dumping Data in Delimited-Text Format with mysqldump

This section describes how to use mysqldump to create delimited-text dump files. For information
about reloading such dump files, see Section 7.4.4, “Reloading Delimited-Text Format Backups”.

If you invoke mysqldump with the --tab=dir_name option, it uses dir_name as the output directory
and dumps tables individually in that directory using two files for each table. The table name is the base
name for these files. For a table named t1, the files are named t1.sql and t1.txt. The .sql file
contains a CREATE TABLE statement for the table. The .txt file contains the table data, one line per
table row.

The following command dumps the contents of the db1 database to files in the /tmp database:

shell> mysqldump --tab=/tmp db1

The .txt files containing table data are written by the server, so they are owned by the system
account used for running the server. The server uses SELECT ... INTO OUTFILE to write the files,
so you must have the FILE privilege to perform this operation, and an error occurs if a given .txt file
already exists.

The server sends the CREATE definitions for dumped tables to mysqldump, which writes them to .sql
files. These files therefore are owned by the user who executes mysqldump.

It is best that --tab be used only for dumping a local server. If you use it with a remote server, the
--tab directory must exist on both the local and remote hosts, and the .txt files will be written
by the server in the remote directory (on the server host), whereas the .sql files will be written by
mysqldump in the local directory (on the client host).

For mysqldump --tab, the server by default writes table data to .txt files one line per row with tabs
between column values, no quotation marks around column values, and newline as the line terminator.
(These are the same defaults as for SELECT ... INTO OUTFILE.)



Reloading Delimited-Text Format Backups

821

To enable data files to be written using a different format, mysqldump supports these options:

• --fields-terminated-by=str

The string for separating column values (default: tab).

• --fields-enclosed-by=char

The character within which to enclose column values (default: no character).

• --fields-optionally-enclosed-by=char

The character within which to enclose non-numeric column values (default: no character).

• --fields-escaped-by=char

The character for escaping special characters (default: no escaping).

• --lines-terminated-by=str

The line-termination string (default: newline).

Depending on the value you specify for any of these options, it might be necessary on the command
line to quote or escape the value appropriately for your command interpreter. Alternatively, specify the
value using hex notation. Suppose that you want mysqldump to quote column values within double
quotation marks. To do so, specify double quote as the value for the --fields-enclosed-by option.
But this character is often special to command interpreters and must be treated specially. For example,
on Unix, you can quote the double quote like this:

--fields-enclosed-by='"'

On any platform, you can specify the value in hex:

--fields-enclosed-by=0x22

It is common to use several of the data-formatting options together. For example, to dump tables in
comma-separated values format with lines terminated by carriage-return/newline pairs (\r\n), use this
command (enter it on a single line):

shell> mysqldump --tab=/tmp --fields-terminated-by=,
         --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1

Should you use any of the data-formatting options to dump table data, you will need to specify the
same format when you reload data files later, to ensure proper interpretation of the file contents.

7.4.4 Reloading Delimited-Text Format Backups

For backups produced with mysqldump --tab, each table is represented in the output directory by an
.sql file containing the CREATE TABLE statement for the table, and a .txt file containing the table
data. To reload a table, first change location into the output directory. Then process the .sql file with
mysql to create an empty table and process the .txt file to load the data into the table:

shell> mysql db1 < t1.sql
shell> mysqlimport db1 t1.txt

An alternative to using mysqlimport to load the data file is to use the LOAD DATA INFILE statement
from within the mysql client:



mysqldump Tips

822

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1;

If you used any data-formatting options with mysqldump when you initially dumped the table, you must
use the same options with mysqlimport or LOAD DATA INFILE to ensure proper interpretation of
the data file contents:

shell> mysqlimport --fields-terminated-by=,
         --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1 t1.txt

Or:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1
    -> FIELDS TERMINATED BY ',' FIELDS ENCLOSED BY '"'
    -> LINES TERMINATED BY '\r\n';

7.4.5 mysqldump Tips

This section surveys techniques that enable you to use mysqldump to solve specific problems:

• How to make a copy a database

• How to copy a database from one server to another

• How to dump stored programs (stored procedures and functions, triggers, and events)

• How to dump definitions and data separately

7.4.5.1 Making a Copy of a Database

shell> mysqldump db1 > dump.sql
shell> mysqladmin create db2
shell> mysql db2 < dump.sql

Do not use --databases on the mysqldump command line because that causes USE db1 to be
included in the dump file, which overrides the effect of naming db2 on the mysql command line.

7.4.5.2 Copy a Database from one Server to Another

On Server 1:

shell> mysqldump --databases db1 > dump.sql

Copy the dump file from Server 1 to Server 2.

On Server 2:

shell> mysql < dump.sql

Use of --databases with the mysqldump command line causes the dump file to include CREATE
DATABASE and USE statements that create the database if it does exist and make it the default
database for the reloaded data.

Alternatively, you can omit --databases from the mysqldump command. Then you will need to
create the database on Server 2 (if necessary) and specify it as the default database when you reload
the dump file.

On Server 1:



mysqldump Tips

823

shell> mysqldump db1 > dump.sql

On Server 2:

shell> mysqladmin create db1
shell> mysql db1 < dump.sql

You can specify a different database name in this case, so omitting --databases from the
mysqldump command enables you to dump data from one database and load it into another.

7.4.5.3 Dumping Stored Programs

Several options control how mysqldump handles stored programs (stored procedures and functions,
triggers, and events):

• --events: Dump Event Scheduler events

• --routines: Dump stored procedures and functions

• --triggers: Dump triggers for tables

The --triggers option is enabled by default so that when tables are dumped, they are accompanied
by any triggers they have. The other options are disabled by default and must be specified explicitly to
dump the corresponding objects. To disable any of these options explicitly, use its skip form: --skip-
events, --skip-routines, or --skip-triggers.

7.4.5.4 Dumping Table Definitions and Content Separately

The --no-data option tells mysqldump not to dump table data, resulting in the dump file containing
only statements to create the tables. Conversely, the --no-create-info option tells mysqldump to
suppress CREATE statements from the output, so that the dump file contains only table data.

For example, to dump table definitions and data separately for the test database, use these
commands:

shell> mysqldump --no-data test > dump-defs.sql
shell> mysqldump --no-create-info test > dump-data.sql

For a definition-only dump, add the --routines and --events options to also include stored routine
and event definitions:

shell> mysqldump --no-data --routines --events test > dump-defs.sql

7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

When contemplating a MySQL upgrade, it is prudent to install the newer version separately from your
current production version. Then you can dump the database and database object definitions from the
production server and load them into the new server to verify that they are handled properly. (This is
also useful for testing downgrades.)

On the production server:

shell> mysqldump --all-databases --no-data --routines --events > dump-defs.sql

On the upgraded server:

shell> mysql < dump-defs.sql



Point-in-Time (Incremental) Recovery Using the Binary Log

824

Because the dump file does not contain table data, it can be processed quickly. This enables you to
spot potential incompatibilities without waiting for lengthy data-loading operations. Look for warnings or
errors while the dump file is being processed.

After you have verified that the definitions are handled properly, dump the data and try to load it into the
upgraded server.

On the production server:

shell> mysqldump --all-databases --no-create-info > dump-data.sql

On the upgraded server:

shell> mysql < dump-data.sql

Now check the table contents and run some test queries.

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log
Point-in-time recovery refers to recovery of data changes made since a given point in time. Typically,
this type of recovery is performed after restoring a full backup that brings the server to its state as of
the time the backup was made. (The full backup can be made in several ways, such as those listed
in Section 7.2, “Database Backup Methods”.) Point-in-time recovery then brings the server up to date
incrementally from the time of the full backup to a more recent time.

Note

Many of the examples here use the mysql client to process binary log output
produced by mysqlbinlog. If your binary log contains \0 (null) characters, that
output cannot be parsed by mysql unless you invoke it with the --binary-
mode option (available in MySQL 5.6).

Point-in-time recovery is based on these principles:

• The source of information for point-in-time recovery is the set of incremental backups represented by
the binary log files generated subsequent to the full backup operation. Therefore, the server must be
started with the --log-bin option to enable binary logging (see Section 5.4.4, “The Binary Log”).

To restore data from the binary log, you must know the name and location of the current binary log
files. By default, the server creates binary log files in the data directory, but a path name can be
specified with the --log-bin option to place the files in a different location. Section 5.4.4, “The
Binary Log”.

To see a listing of all binary log files, use this statement:

mysql> SHOW BINARY LOGS;

To determine the name of the current binary log file, issue the following statement:

mysql> SHOW MASTER STATUS;

• The mysqlbinlog utility converts the events in the binary log files from binary format to text so
that they can be executed or viewed. mysqlbinlog has options for selecting sections of the binary
log based on event times or position of events within the log. See Section 4.6.7, “mysqlbinlog —
Utility for Processing Binary Log Files”.

• Executing events from the binary log causes the data modifications they represent to be redone. This
enables recovery of data changes for a given span of time. To execute events from the binary log,
process mysqlbinlog output using the mysql client:

http://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_binary-mode
http://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_binary-mode


Point-in-Time Recovery Using Event Times

825

shell> mysqlbinlog binlog_files | mysql -u root -p

• Viewing log contents can be useful when you need to determine event times or positions to select
partial log contents prior to executing events. To view events from the log, send mysqlbinlog
output into a paging program:

shell> mysqlbinlog binlog_files | more

Alternatively, save the output in a file and view the file in a text editor:

shell> mysqlbinlog binlog_files > tmpfile
shell> ... edit tmpfile ...

• Saving the output in a file is useful as a preliminary to executing the log contents with certain events
removed, such as an accidental DROP DATABASE. You can delete from the file any statements not to
be executed before executing its contents. After editing the file, execute the contents as follows:

shell> mysql -u root -p < tmpfile

If you have more than one binary log to execute on the MySQL server, the safe method is to process
them all using a single connection to the server. Here is an example that demonstrates what may be
unsafe:

shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using different connections to the server causes problems if the
first log file contains a CREATE TEMPORARY TABLE statement and the second log contains a
statement that uses the temporary table. When the first mysql process terminates, the server drops
the temporary table. When the second mysql process attempts to use the table, the server reports
“unknown table.”

To avoid problems like this, use a single connection to execute the contents of all binary logs that you
want to process. Here is one way to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 >  /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"

7.5.1 Point-in-Time Recovery Using Event Times

To indicate the start and end times for recovery, specify the --start-datetime and --stop-
datetime options for mysqlbinlog, in DATETIME format. As an example, suppose that exactly at
10:00 a.m. on April 20, 2005 an SQL statement was executed that deleted a large table. To restore
the table and data, you could restore the previous night's backup, and then execute the following
command:

shell> mysqlbinlog --stop-datetime="2005-04-20 9:59:59" \
         /var/log/mysql/bin.123456 | mysql -u root -p

This command recovers all of the data up until the date and time given by the --stop-datetime
option. If you did not detect the erroneous SQL statement that was entered until hours later, you



Point-in-Time Recovery Using Event Positions

826

will probably also want to recover the activity that occurred afterward. Based on this, you could run
mysqlbinlog again with a start date and time, like so:

shell> mysqlbinlog --start-datetime="2005-04-20 10:01:00" \
         /var/log/mysql/bin.123456 | mysql -u root -p

In this command, the SQL statements logged from 10:01 a.m. on will be re-executed. The combination
of restoring of the previous night's dump file and the two mysqlbinlog commands restores everything
up until one second before 10:00 a.m. and everything from 10:01 a.m. on.

To use this method of point-in-time recovery, you should examine the log to be sure of the exact
times to specify for the commands. To display the log file contents without executing them, use this
command:

shell> mysqlbinlog /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

Then open the /tmp/mysql_restore.sql file with a text editor to examine it.

Excluding specific changes by specifying times for mysqlbinlog does not work well if multiple
statements executed at the same time as the one to be excluded.

7.5.2 Point-in-Time Recovery Using Event Positions

Instead of specifying dates and times, the --start-position and --stop-position options for
mysqlbinlog can be used for specifying log positions. They work the same as the start and stop
date options, except that you specify log position numbers rather than dates. Using positions may
enable you to be more precise about which part of the log to recover, especially if many transactions
occurred around the same time as a damaging SQL statement. To determine the position numbers, run
mysqlbinlog for a range of times near the time when the unwanted transaction was executed, but
redirect the results to a text file for examination. This can be done like so:

shell> mysqlbinlog --start-datetime="2005-04-20 9:55:00" \
         --stop-datetime="2005-04-20 10:05:00" \
         /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

This command creates a small text file in the /tmp directory that contains the SQL statements around
the time that the deleterious SQL statement was executed. Open this file with a text editor and look
for the statement that you do not want to repeat. Determine the positions in the binary log for stopping
and resuming the recovery and make note of them. Positions are labeled as log_pos followed by a
number. After restoring the previous backup file, use the position numbers to process the binary log
file. For example, you would use commands something like these:

shell> mysqlbinlog --stop-position=368312 /var/log/mysql/bin.123456 \
         | mysql -u root -p

shell> mysqlbinlog --start-position=368315 /var/log/mysql/bin.123456 \
         | mysql -u root -p

The first command recovers all the transactions up until the stop position given. The second command
recovers all transactions from the starting position given until the end of the binary log. Because the
output of mysqlbinlog includes SET TIMESTAMP statements before each SQL statement recorded,
the recovered data and related MySQL logs will reflect the original times at which the transactions were
executed.

7.6 MyISAM Table Maintenance and Crash Recovery

This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have
.MYD and .MYI files for storing data and indexes). For general myisamchk background, see



Using myisamchk for Crash Recovery

827

Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Other table-repair information can
be found at Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”.

You can use myisamchk to check, repair, or optimize database tables. The following sections describe
how to perform these operations and how to set up a table maintenance schedule. For information
about using myisamchk to get information about your tables, see Section 4.6.3.5, “Obtaining Table
Information with myisamchk”.

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup
before doing a repair or any maintenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause FULLTEXT indexes to be rebuilt with full-text
parameters that are incompatible with the values used by the MySQL server. To avoid this problem,
follow the guidelines in Section 4.6.3.1, “myisamchk General Options”.

MyISAM table maintenance can also be done using the SQL statements that perform operations similar
to what myisamchk can do:

• To check MyISAM tables, use CHECK TABLE.

• To repair MyISAM tables, use REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

For additional information about these statements, see Section 13.7.2, “Table Maintenance
Statements”.

These statements can be used directly or by means of the mysqlcheck client program. One
advantage of these statements over myisamchk is that the server does all the work. With myisamchk,
you must make sure that the server does not use the tables at the same time so that there is no
unwanted interaction between myisamchk and the server.

7.6.1 Using myisamchk for Crash Recovery

This section describes how to check for and deal with data corruption in MySQL databases. If your
tables become corrupted frequently, you should try to find the reason why. See Section B.5.3.3, “What
to Do If MySQL Keeps Crashing”.

For an explanation of how MyISAM tables can become corrupted, see Section 15.3.4, “MyISAM Table
Problems”.

If you run mysqld with external locking disabled (which is the default), you cannot reliably use
myisamchk to check a table when mysqld is using the same table. If you can be certain that no
one will access the tables through mysqld while you run myisamchk, you only have to execute
mysqladmin flush-tables before you start checking the tables. If you cannot guarantee this, you
must stop mysqld while you check the tables. If you run myisamchk to check tables that mysqld is
updating at the same time, you may get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use myisamchk to check tables at any
time. In this case, if the server tries to update a table that myisamchk is using, the server will wait for
myisamchk to finish before it continues.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server
is not using the table (this also applies if external locking is disabled). If you do not stop mysqld, you
should at least do a mysqladmin flush-tables before you run myisamchk. Your tables may
become corrupted if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a
database corresponds to the three files in the database directory shown in the following table.



How to Check MyISAM Tables for Errors

828

File Purpose

tbl_name.frm Definition (format) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in
data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by
removing the old .MYD file and renaming the new file to the original file name. If you use --quick,
myisamchk does not create a temporary .MYD file, but instead assumes that the .MYD file is correct
and generates only a new index file without touching the .MYD file. This is safe, because myisamchk
automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify
the --quick option twice to myisamchk. In this case, myisamchk does not abort on some errors
(such as duplicate-key errors) but instead tries to resolve them by modifying the .MYD file. Normally
the use of two --quick options is useful only if you have too little free disk space to perform a normal
repair. In this case, you should at least make a backup of the table before running myisamchk.

7.6.2 How to Check MyISAM Tables for Errors

To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which
is very unusual). If you want to check a table, you should normally run myisamchk without options or
with the -s (silent) option.

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all
rows. It calculates a checksum for all key values in the rows and verifies that the checksum matches
the checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-
read of every key for each row to verify that they indeed point to the correct row. This may take a
long time for a large table that has many indexes. Normally, myisamchk stops after the first error
it finds. If you want to obtain more information, you can add the -v (verbose) option. This causes
myisamchk to keep going, up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

This is like the previous command, but the -i option tells myisamchk to print additional statistical
information.

In most cases, a simple myisamchk command with no arguments other than the table name is
sufficient to check a table.

7.6.3 How to Repair MyISAM Tables

The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI
and .MYD).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM
tables. See Section 13.7.2.2, “CHECK TABLE Syntax”, and Section 13.7.2.5, “REPAIR TABLE
Syntax”.



How to Repair MyISAM Tables

829

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as
these:

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

To get more information about the error, run perror nnn, where nnn is the error number. The
following example shows how to use perror to find the meanings for the most common error numbers
that indicate a problem with a table:

shell> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not
errors that can be fixed by a simple repair. In this case, you must use ALTER TABLE to increase the
MAX_ROWS and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems
that occur.

The repair process involves up to four stages, described here. Before you begin, you should change
location to the database directory and check the permissions of the table files. On Unix, make sure that
they are readable by the user that mysqld runs as (and to you, because you need to access the files
you are checking). If it turns out you need to modify files, they must also be writable by you.

This section is for the cases where a table check fails (such as those described in Section 7.6.2, “How
to Check MyISAM Tables for Errors”), or you want to use the extended features that myisamchk
provides.

The myisamchk options used for table maintenance with are described in Section 4.6.3, “myisamchk
— MyISAM Table-Maintenance Utility”. myisamchk also has variables that you can set to control
memory allocation that may improve performance. See Section 4.6.3.6, “myisamchk Memory Usage”.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note
that when you do mysqladmin shutdown on a remote server, the mysqld server is still available for
a while after mysqladmin returns, until all statement-processing has stopped and all index changes
have been flushed to disk.

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option
to suppress unnecessary information.



How to Repair MyISAM Tables

830

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to
mark the table as “checked.”

You have to repair only those tables for which myisamchk announces an error. For such tables,
proceed to Stage 2.

If you get unexpected errors when checking (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to
repair the index file without touching the data file. If the data file contains everything that it should and
the delete links point at the correct locations within the data file, this should work, and the table is fixed.
Start repairing the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and
deleted rows from the data file and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode
uses an old recovery method that handles a few cases that regular recovery mode does not (but is
slower).

Note

If you want a repair operation to go much faster, you should set the values of
the sort_buffer_size and key_buffer_size variables each to about 25%
of your available memory when running myisamchk.

If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains
incorrect information, or if the index file is missing. In this case, it is necessary to create a new index
file. Do so as follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:

shell> mysql db_name
mysql> SET autocommit=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto
the new file. You want to retain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above
procedure, since it involves file system operations, and these are not logged by
MySQL.

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs
the whole procedure automatically. There is also no possibility of unwanted interaction between



MyISAM Table Optimization

831

a utility and the server, because the server does all the work when you use REPAIR TABLE. See
Section 13.7.2.5, “REPAIR TABLE Syntax”.

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never
happen, because the description file is not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index
file and go back to Stage 2. In the latter case, you should start with myisamchk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table
in another database. Remove the new data file, and then move the .frm description and .MYI
index files from the other database to your crashed database. This gives you new description and
index files, but leaves the .MYD data file alone. Go back to Stage 2 and attempt to reconstruct the
index file.

7.6.4 MyISAM Table Optimization

To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows,
run myisamchk in recovery mode:

shell> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE
TABLE does a table repair and a key analysis, and also sorts the index tree so that key lookups are
faster. There is also no possibility of unwanted interaction between a utility and the server, because the
server does all the work when you use OPTIMIZE TABLE. See Section 13.7.2.4, “OPTIMIZE TABLE
Syntax”.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze or -a: Perform key distribution analysis. This improves join performance by enabling the
join optimizer to better choose the order in which to join the tables and which indexes it should use.

• --sort-index or -S: Sort the index blocks. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=index_num or -R index_num: Sort data rows according to a given index.
This makes your data much more localized and may speed up range-based SELECT and ORDER BY
operations that use this index.

For a full description of all available options, see Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

7.6.5 Setting Up a MyISAM Table Maintenance Schedule

It is a good idea to perform table checks on a regular basis rather than waiting for problems to
occur. One way to check and repair MyISAM tables is with the CHECK TABLE and REPAIR TABLE
statements. See Section 13.7.2, “Table Maintenance Statements”.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use
myisamchk -s. The -s option (short for --silent) causes myisamchk to run in silent mode,
printing messages only when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine
has done a restart in the middle of an update, you usually need to check each table that could have
been affected before it is used further. (These are “expected crashed tables.”) To cause the server
to check MyISAM tables automatically, start it with the --myisam-recover-options option. See
Section 5.1.4, “Server Command Options”.



Setting Up a MyISAM Table Maintenance Schedule

832

You should also check your tables regularly during normal system operation. For example, you can run
a cron job to check important tables once a week, using a line like this in a crontab file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that you can examine and repair them as
necessary.

To start with, execute myisamchk -s each night on all tables that have been updated during the last
24 hours. As you see that problems occur infrequently, you can back off the checking frequency to
once a week or so.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables
with dynamic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with many
deleted rows you may want to defragment/reclaim space from the tables from time to time. You can do
this by using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop the mysqld
server for a while, change location into the data directory and use this command while the server is
stopped:

shell> myisamchk -r -s --sort-index --myisam_sort_buffer_size=16M */*.MYI



833

Chapter 8 Optimization

Table of Contents
8.1 Optimization Overview ......................................................................................................... 834
8.2 Optimizing SQL Statements ................................................................................................. 836

8.2.1 Optimizing SELECT Statements ................................................................................ 836
8.2.2 Subquery Optimization .............................................................................................. 870
8.2.3 Optimizing INFORMATION_SCHEMA Queries ........................................................... 874
8.2.4 Optimizing Data Change Statements ......................................................................... 879
8.2.5 Optimizing Database Privileges ................................................................................. 881
8.2.6 Other Optimization Tips ............................................................................................ 881

8.3 Optimization and Indexes .................................................................................................... 881
8.3.1 How MySQL Uses Indexes ....................................................................................... 881
8.3.2 Using Primary Keys .................................................................................................. 883
8.3.3 Using Foreign Keys .................................................................................................. 883
8.3.4 Column Indexes ....................................................................................................... 883
8.3.5 Multiple-Column Indexes ........................................................................................... 884
8.3.6 Verifying Index Usage .............................................................................................. 886
8.3.7 InnoDB and MyISAM Index Statistics Collection ......................................................... 886
8.3.8 Comparison of B-Tree and Hash Indexes .................................................................. 887

8.4 Optimizing Database Structure ............................................................................................. 889
8.4.1 Optimizing Data Size ................................................................................................ 889
8.4.2 Optimizing MySQL Data Types ................................................................................. 891
8.4.3 Optimizing for Many Tables ...................................................................................... 892
8.4.4 Internal Temporary Table Use in MySQL ................................................................... 894

8.5 Optimizing for InnoDB Tables .............................................................................................. 895
8.5.1 Optimizing Storage Layout for InnoDB Tables ............................................................ 895
8.5.2 Optimizing InnoDB Transaction Management ............................................................. 896
8.5.3 Optimizing InnoDB Redo Logging ............................................................................. 897
8.5.4 Bulk Data Loading for InnoDB Tables ........................................................................ 897
8.5.5 Optimizing InnoDB Queries ....................................................................................... 898
8.5.6 Optimizing InnoDB DDL Operations .......................................................................... 899
8.5.7 Optimizing InnoDB Disk I/O ...................................................................................... 899
8.5.8 Optimizing InnoDB Configuration Variables ................................................................ 901
8.5.9 Optimizing InnoDB for Systems with Many Tables ...................................................... 902

8.6 Optimizing for MyISAM Tables ............................................................................................. 902
8.6.1 Optimizing MyISAM Queries ..................................................................................... 902
8.6.2 Bulk Data Loading for MyISAM Tables ...................................................................... 904
8.6.3 Optimizing REPAIR TABLE Statements ..................................................................... 905

8.7 Optimizing for MEMORY Tables .......................................................................................... 907
8.8 Understanding the Query Execution Plan ............................................................................. 907

8.8.1 Optimizing Queries with EXPLAIN ............................................................................. 907
8.8.2 EXPLAIN Output Format ........................................................................................... 908
8.8.3 Extended EXPLAIN Output Format ........................................................................... 918
8.8.4 Estimating Query Performance .................................................................................. 920

8.9 Controlling the Query Optimizer ........................................................................................... 920
8.9.1 Controlling Query Plan Evaluation ............................................................................. 920
8.9.2 Switchable Optimizations .......................................................................................... 921
8.9.3 Index Hints ............................................................................................................... 922

8.10 Buffering and Caching ....................................................................................................... 925
8.10.1 InnoDB Buffer Pool Optimization ............................................................................. 925
8.10.2 The MyISAM Key Cache ........................................................................................ 925
8.10.3 The MySQL Query Cache ....................................................................................... 929

8.11 Optimizing Locking Operations ........................................................................................... 936
8.11.1 Internal Locking Methods ........................................................................................ 936



Optimization Overview

834

8.11.2 Table Locking Issues .............................................................................................. 938
8.11.3 Concurrent Inserts .................................................................................................. 940
8.11.4 Metadata Locking ................................................................................................... 940
8.11.5 External Locking ..................................................................................................... 941

8.12 Optimizing the MySQL Server ............................................................................................ 942
8.12.1 System Factors ...................................................................................................... 942
8.12.2 Optimizing Disk I/O ................................................................................................. 943
8.12.3 Using Symbolic Links .............................................................................................. 944
8.12.4 Optimizing Memory Use .......................................................................................... 947
8.12.5 Optimizing Network Use .......................................................................................... 951

8.13 Measuring Performance (Benchmarking) ............................................................................ 953
8.13.1 Measuring the Speed of Expressions and Functions ................................................. 953
8.13.2 The MySQL Benchmark Suite ................................................................................. 953
8.13.3 Using Your Own Benchmarks ................................................................................. 954
8.13.4 Measuring Performance with performance_schema .................................................. 955

8.14 Examining Thread Information ........................................................................................... 955
8.14.1 Thread Command Values ....................................................................................... 955
8.14.2 General Thread States ............................................................................................ 957
8.14.3 Delayed-Insert Thread States .................................................................................. 963
8.14.4 Query Cache Thread States .................................................................................... 964
8.14.5 Replication Master Thread States ............................................................................ 965
8.14.6 Replication Slave I/O Thread States ........................................................................ 965
8.14.7 Replication Slave SQL Thread States ...................................................................... 966
8.14.8 Replication Slave Connection Thread States ............................................................ 967
8.14.9 NDB Cluster Thread States ..................................................................................... 967
8.14.10 Event Scheduler Thread States ............................................................................. 968

This chapter explains how to optimize MySQL performance and provides examples. Optimization
involves configuring, tuning, and measuring performance, at several levels. Depending on your job
role (developer, DBA, or a combination of both), you might optimize at the level of individual SQL
statements, entire applications, a single database server, or multiple networked database servers.
Sometimes you can be proactive and plan in advance for performance, while other times you might
troubleshoot a configuration or code issue after a problem occurs. Optimizing CPU and memory usage
can also improve scalability, allowing the database to handle more load without slowing down.

8.1 Optimization Overview

Database performance depends on several factors at the database level, such as tables, queries,
and configuration settings. These software constructs result in CPU and I/O operations at the
hardware level, which you must minimize and make as efficient as possible. As you work on database
performance, you start by learning the high-level rules and guidelines for the software side, and
measuring performance using wall-clock time. As you become an expert, you learn more about what
happens internally, and start measuring things such as CPU cycles and I/O operations.

Typical users aim to get the best database performance out of their existing software and hardware
configurations. Advanced users look for opportunities to improve the MySQL software itself, or develop
their own storage engines and hardware appliances to expand the MySQL ecosystem.

• Optimizing at the Database Level

• Optimizing at the Hardware Level

• Balancing Portability and Performance

Optimizing at the Database Level

The most important factor in making a database application fast is its basic design:



Optimizing at the Hardware Level

835

• Are the tables structured properly? In particular, do the columns have the right data types, and
does each table have the appropriate columns for the type of work? For example, applications that
perform frequent updates often have many tables with few columns, while applications that analyze
large amounts of data often have few tables with many columns.

• Are the right indexes in place to make queries efficient?

• Are you using the appropriate storage engine for each table, and taking advantage of the strengths
and features of each storage engine you use? In particular, the choice of a transactional storage
engine such as InnoDB or a nontransactional one such as MyISAM can be very important for
performance and scalability.

Note

InnoDB is the default storage engine for new tables. In practice, the
advanced InnoDB performance features mean that InnoDB tables often
outperform the simpler MyISAM tables, especially for a busy database.

• Does each table use an appropriate row format? This choice also depends on the storage engine
used for the table. In particular, compressed tables use less disk space and so require less disk I/O
to read and write the data. Compression is available for all kinds of workloads with InnoDB tables,
and for read-only MyISAM tables.

• Does the application use an appropriate locking strategy? For example, by allowing shared access
when possible so that database operations can run concurrently, and requesting exclusive access
when appropriate so that critical operations get top priority. Again, the choice of storage engine is
significant. The InnoDB storage engine handles most locking issues without involvement from you,
allowing for better concurrency in the database and reducing the amount of experimentation and
tuning for your code.

• Are all memory areas used for caching sized correctly? That is, large enough to hold frequently
accessed data, but not so large that they overload physical memory and cause paging. The main
memory areas to configure are the InnoDB buffer pool, the MyISAM key cache, and the MySQL
query cache.

Optimizing at the Hardware Level

Any database application eventually hits hardware limits as the database becomes more and more
busy. A DBA must evaluate whether it is possible to tune the application or reconfigure the server
to avoid these bottlenecks, or whether more hardware resources are required. System bottlenecks
typically arise from these sources:

• Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time
for this is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time
improves slowly with new disks and is very hard to optimize for a single table. The way to optimize
seek time is to distribute the data onto more than one disk.

• Disk reading and writing. When the disk is at the correct position, we need to read or write the data.
With modern disks, one disk delivers at least 10–20MB/s throughput. This is easier to optimize than
seeks because you can read in parallel from multiple disks.

• CPU cycles. When the data is in main memory, we must process it to get our result. Having large
tables compared to the amount of memory is the most common limiting factor. But with small tables,
speed is usually not the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main memory
bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems, but one to be
aware of.

Balancing Portability and Performance



Optimizing SQL Statements

836

To use performance-oriented SQL extensions in a portable MySQL program, you can wrap MySQL-
specific keywords in a statement within /*! */ comment delimiters. Other SQL servers ignore the
commented keywords. For information about writing comments, see Section 9.6, “Comment Syntax”.

8.2 Optimizing SQL Statements

The core logic of a database application is performed through SQL statements, whether issued directly
through an interpreter or submitted behind the scenes through an API. The tuning guidelines in this
section help to speed up all kinds of MySQL applications. The guidelines cover SQL operations that
read and write data, the behind-the-scenes overhead for SQL operations in general, and operations
used in specific scenarios such as database monitoring.

8.2.1 Optimizing SELECT Statements

Queries, in the form of SELECT statements, perform all the lookup operations in the database. Tuning
these statements is a top priority, whether to achieve sub-second response times for dynamic web
pages, or to chop hours off the time to generate huge overnight reports.

Besides SELECT statements, the tuning techniques for queries also apply to constructs such as
CREATE TABLE...AS SELECT, INSERT INTO...SELECT, and WHERE clauses in DELETE
statements. Those statements have additional performance considerations because they combine write
operations with the read-oriented query operations.

In MySQL NDB Cluster 7.2 and later, the NDB storage engine supports a join pushdown optimization
whereby a qualifying join is sent in its entirety to NDB Cluster data nodes, where it can be distributed
among them and executed in parallel. For more information about this optimization, see Conditions for
NDB pushdown joins.

The main considerations for optimizing queries are:

• To make a slow SELECT ... WHERE query faster, the first thing to check is whether you can add
an index. Set up indexes on columns used in the WHERE clause, to speed up evaluation, filtering, and
the final retrieval of results. To avoid wasted disk space, construct a small set of indexes that speed
up many related queries used in your application.

Indexes are especially important for queries that reference different tables, using features such as
joins and foreign keys. You can use the EXPLAIN statement to determine which indexes are used for
a SELECT. See Section 8.3.1, “How MySQL Uses Indexes” and Section 8.8.1, “Optimizing Queries
with EXPLAIN”.

• Isolate and tune any part of the query, such as a function call, that takes excessive time. Depending
on how the query is structured, a function could be called once for every row in the result set, or even
once for every row in the table, greatly magnifying any inefficiency.

• Minimize the number of full table scans in your queries, particularly for big tables.

• Keep table statistics up to date by using the ANALYZE TABLE statement periodically, so the
optimizer has the information needed to construct an efficient execution plan.

• Learn the tuning techniques, indexing techniques, and configuration parameters that are specific to
the storage engine for each table. Both InnoDB and MyISAM have sets of guidelines for enabling
and sustaining high performance in queries. For details, see Section 8.5.5, “Optimizing InnoDB
Queries” and Section 8.6.1, “Optimizing MyISAM Queries”.

• Avoid transforming the query in ways that make it hard to understand, especially if the optimizer does
some of the same transformations automatically.

• If a performance issue is not easily solved by one of the basic guidelines, investigate the internal
details of the specific query by reading the EXPLAIN plan and adjusting your indexes, WHERE



Optimizing SELECT Statements

837

clauses, join clauses, and so on. (When you reach a certain level of expertise, reading the EXPLAIN
plan might be your first step for every query.)

• Adjust the size and properties of the memory areas that MySQL uses for caching. With efficient use
of the InnoDB buffer pool, MyISAM key cache, and the MySQL query cache, repeated queries run
faster because the results are retrieved from memory the second and subsequent times.

• Even for a query that runs fast using the cache memory areas, you might still optimize further so that
they require less cache memory, making your application more scalable. Scalability means that your
application can handle more simultaneous users, larger requests, and so on without experiencing a
big drop in performance.

• Deal with locking issues, where the speed of your query might be affected by other sessions
accessing the tables at the same time.

8.2.1.1 WHERE Clause Optimization

This section discusses optimizations that can be made for processing WHERE clauses. The examples
use SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UPDATE
statements.

Some examples of queries that are very fast:

SELECT COUNT(*) FROM tbl_name;

SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;

SELECT MAX(key_part2) FROM tbl_name
  WHERE key_part1=constant;

SELECT ... FROM tbl_name
  ORDER BY key_part1,key_part2,... LIMIT 10;

SELECT ... FROM tbl_name
  ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;

MySQL resolves the following queries using only the entries from a secondary index, if the indexed
columns are numeric:

SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;

SELECT COUNT(*) FROM tbl_name
  WHERE key_part1=val1 AND key_part2=val2;

SELECT key_part2 FROM tbl_name GROUP BY key_part1;

The following queries use the index data to retrieve the rows in sorted order without a separate sorting
pass:

SELECT ... FROM tbl_name
  ORDER BY key_part1,key_part2,... ;

SELECT ... FROM tbl_name
  ORDER BY key_part1 DESC, key_part2 DESC, ... ;

You might be tempted to rewrite your queries to make arithmetic operations faster, while sacrificing
readability. Because MySQL does similar optimizations automatically, you can often avoid this work,
and leave the query in a more understandable and maintainable form. Some of the optimizations
performed by MySQL follow:

Note

Because work on the MySQL optimizer is ongoing, not all of the optimizations
that MySQL performs are documented here.



Optimizing SELECT Statements

838

• Removal of unnecessary parentheses:

   ((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

• Constant folding:

   (a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

• Constant condition removal (needed because of constant folding):

   (B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6)
-> B=5 OR B=6

• Constant expressions used by indexes are evaluated only once.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table information for
MyISAM and MEMORY tables. This is also done for any NOT NULL expression when used with only
one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some SELECT
statements are impossible and returns no rows.

• HAVING is merged with WHERE if you do not use GROUP BY or aggregate functions (COUNT(),
MIN(), and so on).

• For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the table
and also to skip rows as soon as possible.

•   All constant tables are read first before any other tables in the query. A constant table is any of the
following:

• An empty table or a table with one row.

• A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where all index
parts are compared to constant expressions and are defined as NOT NULL.

All of the following tables are used as constant tables:

SELECT * FROM t WHERE primary_key=1;
SELECT * FROM t1,t2
  WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination for joining the tables is found by trying all possibilities. If all columns in
ORDER BY and GROUP BY clauses come from the same table, that table is preferred first when
joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY
contains columns from tables other than the first table in the join queue, a temporary table is created.

• If you use the SQL_SMALL_RESULT modifier, MySQL uses an in-memory temporary table.

• Each table index is queried, and the best index is used unless the optimizer believes that it is more
efficient to use a table scan. At one time, a scan was used based on whether the best index spanned
more than 30% of the table, but a fixed percentage no longer determines the choice between using
an index or a scan. The optimizer now is more complex and bases its estimate on additional factors
such as table size, number of rows, and I/O block size.

• In some cases, MySQL can read rows from the index without even consulting the data file. If all
columns used from the index are numeric, only the index tree is used to resolve the query.



Optimizing SELECT Statements

839

• Before each row is output, those that do not match the HAVING clause are skipped.

8.2.1.2 Range Optimization

The range access method uses a single index to retrieve a subset of table rows that are contained
within one or several index value intervals. It can be used for a single-part or multiple-part index. The
following sections give a detailed description of how intervals are extracted from the WHERE clause.

• The Range Access Method for Single-Part Indexes

• The Range Access Method for Multiple-Part Indexes

The Range Access Method for Single-Part Indexes

For a single-part index, index value intervals can be conveniently represented by corresponding
conditions in the WHERE clause, denoted as range conditions rather than “intervals.”

The definition of a range condition for a single-part index is as follows:

• For both BTREE and HASH indexes, comparison of a key part with a constant value is a range
condition when using the =, <=>, IN(), IS NULL, or IS NOT NULL operators.

• Additionally, for BTREE indexes, comparison of a key part with a constant value is a range condition
when using the >, <, >=, <=, BETWEEN, !=, or <> operators, or LIKE comparisons if the argument to
LIKE is a constant string that does not start with a wildcard character.

• For all index types, multiple range conditions combined with OR or AND form a range condition.

“Constant value” in the preceding descriptions means one of the following:

• A constant from the query string

• A column of a const or system table from the same join

• The result of an uncorrelated subquery

• Any expression composed entirely from subexpressions of the preceding types

Here are some examples of queries with range conditions in the WHERE clause:

SELECT * FROM t1
  WHERE key_col > 1
  AND key_col < 10;

SELECT * FROM t1
  WHERE key_col = 1
  OR key_col IN (15,18,20);

SELECT * FROM t1
  WHERE key_col LIKE 'ab%'
  OR key_col BETWEEN 'bar' AND 'foo';

Some nonconstant values may be converted to constants during the optimizer constant propagation
phase.

MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes.
During the extraction process, conditions that cannot be used for constructing the range condition are
dropped, conditions that produce overlapping ranges are combined, and conditions that produce empty
ranges are removed.

Consider the following statement, where key1 is an indexed column and nonkey is not indexed:



Optimizing SELECT Statements

840

SELECT * FROM t1 WHERE
  (key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
  (key1 < 'bar' AND nonkey = 4) OR
  (key1 < 'uux' AND key1 > 'z');

The extraction process for key key1 is as follows:

1. Start with original WHERE clause:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')

2. Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range scan. The
correct way to remove them is to replace them with TRUE, so that we do not miss any matching
rows when doing the range scan. Having replaced them with TRUE, we get:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')

3. Collapse conditions that are always true or false:

• (key1 LIKE 'abcde%' OR TRUE) is always true

• (key1 < 'uux' AND key1 > 'z') is always false

Replacing these conditions with constants, we get:

(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)

Removing unnecessary TRUE and FALSE constants, we obtain:

(key1 < 'abc') OR (key1 < 'bar')

4. Combining overlapping intervals into one yields the final condition to be used for the range scan:

(key1 < 'bar')

In general (and as demonstrated by the preceding example), the condition used for a range scan is
less restrictive than the WHERE clause. MySQL performs an additional check to filter out rows that
satisfy the range condition but not the full WHERE clause.

The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth, and
its output does not depend on the order in which conditions appear in WHERE clause.

MySQL does not support merging multiple ranges for the range access method for spatial indexes. To
work around this limitation, you can use a UNION with identical SELECT statements, except that you put
each spatial predicate in a different SELECT.

The Range Access Method for Multiple-Part Indexes

Range conditions on a multiple-part index are an extension of range conditions for a single-part index.
A range condition on a multiple-part index restricts index rows to lie within one or several key tuple
intervals. Key tuple intervals are defined over a set of key tuples, using ordering from the index.

For example, consider a multiple-part index defined as key1(key_part1, key_part2,
key_part3), and the following set of key tuples listed in key order:



Optimizing SELECT Statements

841

key_part1  key_part2  key_part3
  NULL       1          'abc'
  NULL       1          'xyz'
  NULL       2          'foo'
   1         1          'abc'
   1         1          'xyz'
   1         2          'abc'
   2         1          'aaa'

The condition key_part1 = 1 defines this interval:

(1,-inf,-inf) <= (key_part1,key_part2,key_part3) < (1,+inf,+inf)

The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the range
access method.

By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be used
by the range access method.

The following descriptions indicate how range conditions work for multiple-part indexes in greater
detail.

• For HASH indexes, each interval containing identical values can be used. This means that the interval
can be produced only for conditions in the following form:

    key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;

Here, const1, const2, … are constants, cmp is one of the =, <=>, or IS NULL comparison
operators, and the conditions cover all index parts. (That is, there are N conditions, one for each part
of an N-part index.) For example, the following is a range condition for a three-part HASH index:

key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'

For the definition of what is considered to be a constant, see The Range Access Method for Single-
Part Indexes.

• For a BTREE index, an interval might be usable for conditions combined with AND, where each
condition compares a key part with a constant value using =, <=>, IS NULL, >, <, >=, <=, !=, <>,
BETWEEN, or LIKE 'pattern' (where 'pattern' does not start with a wildcard). An interval can
be used as long as it is possible to determine a single key tuple containing all rows that match the
condition (or two intervals if <> or != is used).

The optimizer attempts to use additional key parts to determine the interval as long as the
comparison operator is =, <=>, or IS NULL. If the operator is >, <, >=, <=, !=, <>, BETWEEN,
or LIKE, the optimizer uses it but considers no more key parts. For the following expression,
the optimizer uses = from the first comparison. It also uses >= from the second comparison but
considers no further key parts and does not use the third comparison for interval construction:

key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10

The single interval is:

('foo',10,-inf) < (key_part1,key_part2,key_part3) < ('foo',+inf,+inf)

It is possible that the created interval contains more rows than the initial condition. For example,
the preceding interval includes the value ('foo', 11, 0), which does not satisfy the original
condition.



Optimizing SELECT Statements

842

• If conditions that cover sets of rows contained within intervals are combined with OR, they form a
condition that covers a set of rows contained within the union of their intervals. If the conditions are
combined with AND, they form a condition that covers a set of rows contained within the intersection
of their intervals. For example, for this condition on a two-part index:

(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)

The intervals are:

(1,-inf) < (key_part1,key_part2) < (1,2)
(5,-inf) < (key_part1,key_part2)

In this example, the interval on the first line uses one key part for the left bound and two key parts for
the right bound. The interval on the second line uses only one key part. The key_len column in the
EXPLAIN output indicates the maximum length of the key prefix used.

In some cases, key_len may indicate that a key part was used, but that might be not what you
would expect. Suppose that key_part1 and key_part2 can be NULL. Then the key_len column
displays two key part lengths for the following condition:

key_part1 >= 1 AND key_part2 < 2

But, in fact, the condition is converted to this:

key_part1 >= 1 AND key_part2 IS NOT NULL

The Range Access Method for Single-Part Indexes, describes how optimizations are performed
to combine or eliminate intervals for range conditions on a single-part index. Analogous steps are
performed for range conditions on multiple-part indexes.

8.2.1.3 Index Merge Optimization

The Index Merge access method retrieves rows with multiple range scans and merges their results
into one. This access method merges index scans from a single table; it does not merge scans
across multiple tables. The merge can produce unions, intersections, or unions-of-intersections of its
underlying scans.

Example queries for which Index Merge may be used:

SELECT * FROM tbl_name WHERE key1 = 10 OR key2 = 20;

SELECT * FROM tbl_name
  WHERE (key1 = 10 OR key2 = 20) AND non_key = 30;

SELECT * FROM t1, t2
  WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')
  AND t2.key1 = t1.some_col;

SELECT * FROM t1, t2
  WHERE t1.key1 = 1
  AND (t2.key1 = t1.some_col OR t2.key2 = t1.some_col2);

In EXPLAIN output, the Index Merge method appears as index_merge in the type column. In this
case, the key column contains a list of indexes used, and key_len contains a list of the longest key
parts for those indexes.

Note

The Index Merge optimization algorithm has the following known deficiencies:



Optimizing SELECT Statements

843

• If your query has a complex WHERE clause with deep AND/OR nesting and
MySQL does not choose the optimal plan, try distributing terms using the
following identity transformations:

(x AND y) OR z => (x OR z) AND (y OR z)
(x OR y) AND z => (x AND z) OR (y AND z)

• Index Merge is not applicable to full-text indexes.

• If a range scan is possible on some key, the optimizer will not consider using
Index Merge Union or Index Merge Sort-Union algorithms. For example,
consider this query:

SELECT * FROM t1 WHERE (goodkey1 < 10 OR goodkey2 < 20) AND badkey < 30;

For this query, two plans are possible:

• An Index Merge scan using the (goodkey1 < 10 OR goodkey2 < 20)
condition.

• A range scan using the badkey < 30 condition.

However, the optimizer considers only the second plan.

The Index Merge access method has several algorithms, which are displayed in the Extra field of
EXPLAIN output:

• Using intersect(...)

• Using union(...)

• Using sort_union(...)

The following sections describe these algorithms in greater detail. The optimizer chooses between
different possible Index Merge algorithms and other access methods based on cost estimates of the
various available options.

Use of Index Merge is subject to the value of the index_merge, index_merge_intersection,
index_merge_union, and index_merge_sort_union flags of the optimizer_switch system
variable. See Section 8.9.2, “Switchable Optimizations”. By default, all those flags are on. To enable
only certain algorithms, set index_merge to off, and enable only such of the others as should be
permitted.

• The Index Merge Intersection Access Algorithm

• The Index Merge Union Access Algorithm

• The Index Merge Sort-Union Access Algorithm

The Index Merge Intersection Access Algorithm

This access algorithm is applicable when a WHERE clause is converted to several range conditions on
different keys combined with AND, and each condition is one of the following:

• An N-part expression of this form, where the index has exactly N parts (that is, all index parts are
covered):

key_part1 = const1 AND key_part2 = const2 ... AND key_partN = constN

• Any range condition over a primary key of an InnoDB table.



Optimizing SELECT Statements

844

Examples:

SELECT * FROM innodb_table
  WHERE primary_key < 10 AND key_col1 = 20;

SELECT * FROM tbl_name
  WHERE (key1_part1 = 1 AND key1_part2 = 2) AND key2 = 2;

The Index Merge intersection algorithm performs simultaneous scans on all used indexes and
produces the intersection of row sequences that it receives from the merged index scans.

If all columns used in the query are covered by the used indexes, full table rows are not retrieved
(EXPLAIN output contains Using index in Extra field in this case). Here is an example of such a
query:

SELECT COUNT(*) FROM t1 WHERE key1 = 1 AND key2 = 1;

If the used indexes do not cover all columns used in the query, full rows are retrieved only when the
range conditions for all used keys are satisfied.

If one of the merged conditions is a condition over a primary key of an InnoDB table, it is not used for
row retrieval, but is used to filter out rows retrieved using other conditions.

The Index Merge Union Access Algorithm

The criteria for this algorithm are similar to those for the Index Merge intersection algorithm. The
algorithm is applicable when the table's WHERE clause is converted to several range conditions on
different keys combined with OR, and each condition is one of the following:

• An N-part expression of this form, where the index has exactly N parts (that is, all index parts are
covered):

key_part1 = const1 AND key_part2 = const2 ... AND key_partN = constN

• Any range condition over a primary key of an InnoDB table.

• A condition for which the Index Merge intersection algorithm is applicable.

Examples:

SELECT * FROM t1
  WHERE key1 = 1 OR key2 = 2 OR key3 = 3;

SELECT * FROM innodb_table
  WHERE (key1 = 1 AND key2 = 2)
     OR (key3 = 'foo' AND key4 = 'bar') AND key5 = 5;

The Index Merge Sort-Union Access Algorithm

This access algorithm is applicable when the WHERE clause is converted to several range conditions
combined by OR, but the Index Merge union algorithm is not applicable.

Examples:

SELECT * FROM tbl_name
  WHERE key_col1 < 10 OR key_col2 < 20;

SELECT * FROM tbl_name
  WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col = 30;

The difference between the sort-union algorithm and the union algorithm is that the sort-union algorithm
must first fetch row IDs for all rows and sort them before returning any rows.



Optimizing SELECT Statements

845

8.2.1.4 Engine Condition Pushdown Optimization

This optimization improves the efficiency of direct comparisons between a nonindexed column and
a constant. In such cases, the condition is “pushed down” to the storage engine for evaluation. This
optimization can be used only by the NDB storage engine.

For NDB Cluster, this optimization can eliminate the need to send nonmatching rows over the network
between the cluster's data nodes and the MySQL server that issued the query, and can speed up
queries where it is used by a factor of 5 to 10 times over cases where condition pushdown could be but
is not used.

Suppose that an NDB Cluster table is defined as follows:

CREATE TABLE t1 (
    a INT,
    b INT,
    KEY(a)
) ENGINE=NDB;

Condition pushdown can be used with queries such as the one shown here, which includes a
comparison between a nonindexed column and a constant:

SELECT a, b FROM t1 WHERE b = 10;

The use of condition pushdown can be seen in the output of EXPLAIN:

mysql> EXPLAIN SELECT a,b FROM t1 WHERE b = 10\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 10
        Extra: Using where with pushed condition

However, condition pushdown cannot be used with either of these two queries:

SELECT a,b FROM t1 WHERE a = 10;
SELECT a,b FROM t1 WHERE b + 1 = 10;

Condition pushdown is not applicable to the first query because an index exists on column a. (An index
access method would be more efficient and so would be chosen in preference to condition pushdown.)
Condition pushdown cannot be employed for the second query because the comparison involving the
nonindexed column b is indirect. (However, condition pushdown could be applied if you were to reduce
b + 1 = 10 to b = 9 in the WHERE clause.)

Condition pushdown may also be employed when an indexed column is compared with a constant
using a > or < operator:

mysql> EXPLAIN SELECT a, b FROM t1 WHERE a < 2\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
         type: range
possible_keys: a
          key: a
      key_len: 5



Optimizing SELECT Statements

846

          ref: NULL
         rows: 2
        Extra: Using where with pushed condition

Other supported comparisons for condition pushdown include the following:

• column [NOT] LIKE pattern

pattern must be a string literal containing the pattern to be matched; for syntax, see
Section 12.5.1, “String Comparison Functions”.

• column IS [NOT] NULL

• column IN (value_list)

Each item in the value_list must be a constant, literal value.

• column BETWEEN constant1 AND constant2

constant1 and constant2 must each be a constant, literal value.

In all of the cases in the preceding list, it is possible for the condition to be converted into the form of
one or more direct comparisons between a column and a constant.

Engine condition pushdown is enabled by default. To disable it at server startup, set the
optimizer_switch system variable. For example, in a my.cnf file, use these lines:

[mysqld]
optimizer_switch=engine_condition_pushdown=off

At runtime, disable condition pushdown like this:

SET optimizer_switch='engine_condition_pushdown=off';

Limitations.  Condition pushdown is subject to the following limitations:

• Condition pushdown is supported only by the NDB storage engine.

• Columns may be compared with constants only; however, this includes expressions which evaluate
to constant values.

• Columns used in comparisons cannot be of any of the BLOB or TEXT types.

• A string value to be compared with a column must use the same collation as the column.

• Joins are not directly supported; conditions involving multiple tables are pushed separately where
possible. Use extended EXPLAIN output to determine which conditions are actually pushed down.
See Section 8.8.3, “Extended EXPLAIN Output Format”.

8.2.1.5 Nested-Loop Join Algorithms

MySQL executes joins between tables using a nested-loop algorithm or variations on it.

• Nested-Loop Join Algorithm

• Block Nested-Loop Join Algorithm

Nested-Loop Join Algorithm

A simple nested-loop join (NLJ) algorithm reads rows from the first table in a loop one at a time,
passing each row to a nested loop that processes the next table in the join. This process is repeated as
many times as there remain tables to be joined.



Optimizing SELECT Statements

847

Assume that a join between three tables t1, t2, and t3 is to be executed using the following join
types:

Table   Join Type
t1      range
t2      ref
t3      ALL

If a simple NLJ algorithm is used, the join is processed like this:

for each row in t1 matching range {
  for each row in t2 matching reference key {
    for each row in t3 {
      if row satisfies join conditions, send to client
    }
  }
}

Because the NLJ algorithm passes rows one at a time from outer loops to inner loops, it typically reads
tables processed in the inner loops many times.

Block Nested-Loop Join Algorithm

A Block Nested-Loop (BNL) join algorithm uses buffering of rows read in outer loops to reduce the
number of times that tables in inner loops must be read. For example, if 10 rows are read into a buffer
and the buffer is passed to the next inner loop, each row read in the inner loop can be compared
against all 10 rows in the buffer. This reduces by an order of magnitude the number of times the inner
table must be read.

MySQL join buffering has these characteristics:

• Join buffering can be used when the join is of type ALL or index (in other words, when no possible
keys can be used, and a full scan is done, of either the data or index rows, respectively), or range.

• A join buffer is never allocated for the first nonconstant table, even if it would be of type ALL or
index.

• Only columns of interest to a join are stored in its join buffer, not whole rows.

• The join_buffer_size system variable determines the size of each join buffer used to process a
query.

• One buffer is allocated for each join that can be buffered, so a given query might be processed using
multiple join buffers.

• A join buffer is allocated prior to executing the join and freed after the query is done.

For the example join described previously for the NLJ algorithm (without buffering), the join is done as
follows using join buffering:

for each row in t1 matching range {
  for each row in t2 matching reference key {
    store used columns from t1, t2 in join buffer
    if buffer is full {
      for each row in t3 {
        for each t1, t2 combination in join buffer {
          if row satisfies join conditions, send to client
        }
      }
      empty join buffer
    }
  }
}



Optimizing SELECT Statements

848

if buffer is not empty {
  for each row in t3 {
    for each t1, t2 combination in join buffer {
      if row satisfies join conditions, send to client
    }
  }
}

If S is the size of each stored t1, t2 combination is the join buffer and C is the number of combinations
in the buffer, the number of times table t3 is scanned is:

(S * C)/join_buffer_size + 1

The number of t3 scans decreases as the value of join_buffer_size increases, up to the point
when join_buffer_size is large enough to hold all previous row combinations. At that point, no
speed is gained by making it larger.

8.2.1.6 Nested Join Optimization

The syntax for expressing joins permits nested joins. The following discussion refers to the join syntax
described in Section 13.2.9.2, “JOIN Syntax”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts
only table_reference, not a list of them inside a pair of parentheses. This is a conservative
extension if we consider each comma in a list of table_reference items as equivalent to an inner
join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
                 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

Is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
                 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is syntactically equivalent to INNER JOIN; they can replace each other. In
standard SQL, they are not equivalent. INNER JOIN is used with an ON clause; CROSS JOIN is used
otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations.
Consider this join expression:

t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
   ON t1.a=t2.a

After removing parentheses and grouping operations to the left, that join expression transforms into this
expression:

(t1 LEFT JOIN t2 ON t1.a=t2.a) LEFT JOIN t3
    ON t2.b=t3.b OR t2.b IS NULL

Yet, the two expressions are not equivalent. To see this, suppose that the tables t1, t2, and t3 have
the following state:

• Table t1 contains rows (1), (2)

• Table t2 contains row (1,101)

• Table t3 contains row (101)



Optimizing SELECT Statements

849

In this case, the first expression returns a result set including the rows (1,1,101,101),
(2,NULL,NULL,NULL), whereas the second expression returns the rows (1,1,101,101),
(2,NULL,NULL,101):

mysql> SELECT *
       FROM t1
            LEFT JOIN
            (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
            ON t1.a=t2.a;
+------+------+------+------+
| a    | a    | b    | b    |
+------+------+------+------+
|    1 |    1 |  101 |  101 |
|    2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
       FROM (t1 LEFT JOIN t2 ON t1.a=t2.a)
            LEFT JOIN t3
            ON t2.b=t3.b OR t2.b IS NULL;
+------+------+------+------+
| a    | a    | b    | b    |
+------+------+------+------+
|    1 |    1 |  101 |  101 |
|    2 | NULL | NULL |  101 |
+------+------+------+------+

In the following example, an outer join operation is used together with an inner join operation:

t1 LEFT JOIN (t2, t3) ON t1.a=t2.a

That expression cannot be transformed into the following expression:

t1 LEFT JOIN t2 ON t1.a=t2.a, t3

For the given table states, the two expressions return different sets of rows:

mysql> SELECT *
       FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a;
+------+------+------+------+
| a    | a    | b    | b    |
+------+------+------+------+
|    1 |    1 |  101 |  101 |
|    2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
       FROM t1 LEFT JOIN t2 ON t1.a=t2.a, t3;
+------+------+------+------+
| a    | a    | b    | b    |
+------+------+------+------+
|    1 |    1 |  101 |  101 |
|    2 | NULL | NULL |  101 |
+------+------+------+------+

Therefore, if we omit parentheses in a join expression with outer join operators, we might change the
result set for the original expression.

More exactly, we cannot ignore parentheses in the right operand of the left outer join operation and in
the left operand of a right join operation. In other words, we cannot ignore parentheses for the inner
table expressions of outer join operations. Parentheses for the other operand (operand for the outer
table) can be ignored.

The following expression:



Optimizing SELECT Statements

850

(t1,t2) LEFT JOIN t3 ON P(t2.b,t3.b)

Is equivalent to this expression for any tables t1,t2,t3 and any condition P over attributes t2.b and
t3.b:

t1, t2 LEFT JOIN t3 ON P(t2.b,t3.b)

Whenever the order of execution of join operations in a join expression (join_table) is not from left
to right, we talk about nested joins. Consider the following queries:

SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b) ON t1.a=t2.a
  WHERE t1.a > 1

SELECT * FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
  WHERE (t2.b=t3.b OR t2.b IS NULL) AND t1.a > 1

Those queries are considered to contain these nested joins:

t2 LEFT JOIN t3 ON t2.b=t3.b
t2, t3

In the first query, the nested join is formed with a left join operation. In the second query, it is formed
with an inner join operation.

In the first query, the parentheses can be omitted: The grammatical structure of the join expression
will dictate the same order of execution for join operations. For the second query, the parentheses
cannot be omitted, although the join expression here can be interpreted unambiguously without them.
In our extended syntax, the parentheses in (t2, t3) of the second query are required, although
theoretically the query could be parsed without them: We still would have unambiguous syntactical
structure for the query because LEFT JOIN and ON play the role of the left and right delimiters for the
expression (t2,t3).

The preceding examples demonstrate these points:

• For join expressions involving only inner joins (and not outer joins), parentheses can be removed and
joins evaluated left to right. In fact, tables can be evaluated in any order.

• The same is not true, in general, for outer joins or for outer joins mixed with inner joins. Removal of
parentheses may change the result.

Queries with nested outer joins are executed in the same pipeline manner as queries with inner joins.
More exactly, a variation of the nested-loop join algorithm is exploited. Recall the algorithm by which
the nested-loop join executes a query (see Section 8.2.1.5, “Nested-Loop Join Algorithms”). Suppose
that a join query over 3 tables T1,T2,T3 has this form:

SELECT * FROM T1 INNER JOIN T2 ON P1(T1,T2)
                 INNER JOIN T3 ON P2(T2,T3)
  WHERE P(T1,T2,T3)

Here, P1(T1,T2) and P2(T3,T3) are some join conditions (on expressions), whereas P(T1,T2,T3)
is a condition over columns of tables T1,T2,T3.

The nested-loop join algorithm would execute this query in the following manner:

FOR each row t1 in T1 {
  FOR each row t2 in T2 such that P1(t1,t2) {
    FOR each row t3 in T3 such that P2(t2,t3) {
      IF P(t1,t2,t3) {
         t:=t1||t2||t3; OUTPUT t;
      }



Optimizing SELECT Statements

851

    }
  }
}

The notation t1||t2||t3 indicates a row constructed by concatenating the columns of rows t1, t2,
and t3. In some of the following examples, NULL where a table name appears means a row in which
NULL is used for each column of that table. For example, t1||t2||NULL indicates a row constructed
by concatenating the columns of rows t1 and t2, and NULL for each column of t3. Such a row is said
to be NULL-complemented.

Now consider a query with nested outer joins:

SELECT * FROM T1 LEFT JOIN
              (T2 LEFT JOIN T3 ON P2(T2,T3))
              ON P1(T1,T2)
  WHERE P(T1,T2,T3)

For this query, modify the nested-loop pattern to obtain:

FOR each row t1 in T1 {
  BOOL f1:=FALSE;
  FOR each row t2 in T2 such that P1(t1,t2) {
    BOOL f2:=FALSE;
    FOR each row t3 in T3 such that P2(t2,t3) {
      IF P(t1,t2,t3) {
        t:=t1||t2||t3; OUTPUT t;
      }
      f2=TRUE;
      f1=TRUE;
    }
    IF (!f2) {
      IF P(t1,t2,NULL) {
        t:=t1||t2||NULL; OUTPUT t;
      }
      f1=TRUE;
    }
  }
  IF (!f1) {
    IF P(t1,NULL,NULL) {
      t:=t1||NULL||NULL; OUTPUT t;
    }
  }
}

In general, for any nested loop for the first inner table in an outer join operation, a flag is introduced that
is turned off before the loop and is checked after the loop. The flag is turned on when for the current
row from the outer table a match from the table representing the inner operand is found. If at the end of
the loop cycle the flag is still off, no match has been found for the current row of the outer table. In this
case, the row is complemented by NULL values for the columns of the inner tables. The result row is
passed to the final check for the output or into the next nested loop, but only if the row satisfies the join
condition of all embedded outer joins.

In the example, the outer join table expressed by the following expression is embedded:

(T2 LEFT JOIN T3 ON P2(T2,T3))

For the query with inner joins, the optimizer could choose a different order of nested loops, such as this
one:

FOR each row t3 in T3 {
  FOR each row t2 in T2 such that P2(t2,t3) {
    FOR each row t1 in T1 such that P1(t1,t2) {
      IF P(t1,t2,t3) {
         t:=t1||t2||t3; OUTPUT t;



Optimizing SELECT Statements

852

      }
    }
  }
}

For queries with outer joins, the optimizer can choose only such an order where loops for outer tables
precede loops for inner tables. Thus, for our query with outer joins, only one nesting order is possible.
For the following query, the optimizer evaluates two different nestings. In both nestings, T1 must be
processed in the outer loop because it is used in an outer join. T2 and T3 are used in an inner join, so
that join must be processed in the inner loop. However, because the join is an inner join, T2 and T3
can be processed in either order.

SELECT * T1 LEFT JOIN (T2,T3) ON P1(T1,T2) AND P2(T1,T3)
  WHERE P(T1,T2,T3)

One nesting evaluates T2, then T3:

FOR each row t1 in T1 {
  BOOL f1:=FALSE;
  FOR each row t2 in T2 such that P1(t1,t2) {
    FOR each row t3 in T3 such that P2(t1,t3) {
      IF P(t1,t2,t3) {
        t:=t1||t2||t3; OUTPUT t;
      }
      f1:=TRUE
    }
  }
  IF (!f1) {
    IF P(t1,NULL,NULL) {
      t:=t1||NULL||NULL; OUTPUT t;
    }
  }
}

The other nesting evaluates T3, then T2:

FOR each row t1 in T1 {
  BOOL f1:=FALSE;
  FOR each row t3 in T3 such that P2(t1,t3) {
    FOR each row t2 in T2 such that P1(t1,t2) {
      IF P(t1,t2,t3) {
        t:=t1||t2||t3; OUTPUT t;
      }
      f1:=TRUE
    }
  }
  IF (!f1) {
    IF P(t1,NULL,NULL) {
      t:=t1||NULL||NULL; OUTPUT t;
    }
  }
}

When discussing the nested-loop algorithm for inner joins, we omitted some details whose impact
on the performance of query execution may be huge. We did not mention so-called “pushed-down”
conditions. Suppose that our WHERE condition P(T1,T2,T3) can be represented by a conjunctive
formula:

P(T1,T2,T2) = C1(T1) AND C2(T2) AND C3(T3).

In this case, MySQL actually uses the following nested-loop algorithm for the execution of the query
with inner joins:

FOR each row t1 in T1 such that C1(t1) {



Optimizing SELECT Statements

853

  FOR each row t2 in T2 such that P1(t1,t2) AND C2(t2)  {
    FOR each row t3 in T3 such that P2(t2,t3) AND C3(t3) {
      IF P(t1,t2,t3) {
         t:=t1||t2||t3; OUTPUT t;
      }
    }
  }
}

You see that each of the conjuncts C1(T1), C2(T2), C3(T3) are pushed out of the most inner loop to
the most outer loop where it can be evaluated. If C1(T1) is a very restrictive condition, this condition
pushdown may greatly reduce the number of rows from table T1 passed to the inner loops. As a result,
the execution time for the query may improve immensely.

For a query with outer joins, the WHERE condition is to be checked only after it has been found that
the current row from the outer table has a match in the inner tables. Thus, the optimization of pushing
conditions out of the inner nested loops cannot be applied directly to queries with outer joins. Here we
must introduce conditional pushed-down predicates guarded by the flags that are turned on when a
match has been encountered.

Recall this example with outer joins:

P(T1,T2,T3)=C1(T1) AND C(T2) AND C3(T3)

For that example, the nested-loop algorithm using guarded pushed-down conditions looks like this:

FOR each row t1 in T1 such that C1(t1) {
  BOOL f1:=FALSE;
  FOR each row t2 in T2
      such that P1(t1,t2) AND (f1?C2(t2):TRUE) {
    BOOL f2:=FALSE;
    FOR each row t3 in T3
        such that P2(t2,t3) AND (f1&&f2?C3(t3):TRUE) {
      IF (f1&&f2?TRUE:(C2(t2) AND C3(t3))) {
        t:=t1||t2||t3; OUTPUT t;
      }
      f2=TRUE;
      f1=TRUE;
    }
    IF (!f2) {
      IF (f1?TRUE:C2(t2) && P(t1,t2,NULL)) {
        t:=t1||t2||NULL; OUTPUT t;
      }
      f1=TRUE;
    }
  }
  IF (!f1 && P(t1,NULL,NULL)) {
      t:=t1||NULL||NULL; OUTPUT t;
  }
}

In general, pushed-down predicates can be extracted from join conditions such as P1(T1,T2) and
P(T2,T3). In this case, a pushed-down predicate is guarded also by a flag that prevents checking the
predicate for the NULL-complemented row generated by the corresponding outer join operation.

Access by key from one inner table to another in the same nested join is prohibited if it is induced by a
predicate from the WHERE condition.

8.2.1.7 Left Join and Right Join Optimization

MySQL implements an A LEFT JOIN B join_condition as follows:

• Table B is set to depend on table A and all tables on which A depends.

• Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.



Optimizing SELECT Statements

854

• The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other words, any
condition in the WHERE clause is not used.)

• All standard join optimizations are performed, with the exception that a table is always read after all
tables on which it depends. If there is a circular dependency, an error occurs.

• All standard WHERE optimizations are performed.

• If there is a row in A that matches the WHERE clause, but there is no row in B that matches the ON
condition, an extra B row is generated with all columns set to NULL.

• If you use LEFT JOIN to find rows that do not exist in some table and you have the following test:
col_name IS NULL in the WHERE part, where col_name is a column that is declared as NOT
NULL, MySQL stops searching for more rows (for a particular key combination) after it has found one
row that matches the LEFT JOIN condition.

The RIGHT JOIN implementation is analogous to that of LEFT JOIN with the table roles reversed.
Right joins are converted to equivalent left joins, as described in Section 8.2.1.8, “Outer Join
Simplification”.

The join optimizer calculates the order in which to join tables. The table read order forced by LEFT
JOIN or STRAIGHT_JOIN helps the join optimizer do its work much more quickly, because there are
fewer table permutations to check. This means that if you execute a query of the following type, MySQL
does a full scan on b because the LEFT JOIN forces it to be read before d:

SELECT *
  FROM a JOIN b LEFT JOIN c ON (c.key=a.key)
  LEFT JOIN d ON (d.key=a.key)
  WHERE b.key=d.key;

The fix in this case is reverse the order in which a and b are listed in the FROM clause:

SELECT *
  FROM b JOIN a LEFT JOIN c ON (c.key=a.key)
  LEFT JOIN d ON (d.key=a.key)
  WHERE b.key=d.key;

For a LEFT JOIN, if the WHERE condition is always false for the generated NULL row, the LEFT JOIN
is changed to a normal join. For example, the WHERE clause would be false in the following query if
t2.column1 were NULL:

SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;

Therefore, it is safe to convert the query to a normal join:

SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;

Now the optimizer can use table t2 before table t1 if doing so would result in a better query plan. To
provide a hint about the table join order, use STRAIGHT_JOIN; see Section 13.2.9, “SELECT Syntax”.

8.2.1.8 Outer Join Simplification

Table expressions in the FROM clause of a query are simplified in many cases.

At the parser stage, queries with right outer join operations are converted to equivalent queries
containing only left join operations. In the general case, the conversion is performed such that this right
join:



Optimizing SELECT Statements

855

(T1, ...) RIGHT JOIN (T2, ...) ON P(T1, ..., T2, ...)

Becomes this equivalent left join:

(T2, ...) LEFT JOIN (T1, ...) ON P(T1, ..., T2, ...)

All inner join expressions of the form T1 INNER JOIN T2 ON P(T1,T2) are replaced by the list
T1,T2, P(T1,T2) being joined as a conjunct to the WHERE condition (or to the join condition of the
embedding join, if there is any).

When the optimizer evaluates plans for outer join operations, it takes into consideration only plans
where, for each such operation, the outer tables are accessed before the inner tables. The optimizer
choices are limited because only such plans enable outer joins to be executed using the nested-loop
algorithm.

Consider a query of this form, where R(T2) greatly narrows the number of matching rows from table
T2:

SELECT * T1 LEFT JOIN T2 ON P1(T1,T2)
  WHERE P(T1,T2) AND R(T2)

If the query is executed as written, the optimizer has no choice but to access the less-restricted table
T1 before the more-restricted table T2, which may produce a very inefficient execution plan.

Instead, MySQL converts the query to a query with no outer join operation if the WHERE condition is
null-rejected. (That is, it converts the outer join to an inner join.) A condition is said to be null-rejected
for an outer join operation if it evaluates to FALSE or UNKNOWN for any NULL-complemented row
generated for the operation.

Thus, for this outer join:

T1 LEFT JOIN T2 ON T1.A=T2.A

Conditions such as these are null-rejected because they cannot be true for any NULL-complemented
row (with T2 columns set to NULL):

T2.B IS NOT NULL
T2.B > 3
T2.C <= T1.C
T2.B < 2 OR T2.C > 1

Conditions such as these are not null-rejected because they might be true for a NULL-complemented
row:

T2.B IS NULL
T1.B < 3 OR T2.B IS NOT NULL
T1.B < 3 OR T2.B > 3

The general rules for checking whether a condition is null-rejected for an outer join operation are
simple:

• It is of the form A IS NOT NULL, where A is an attribute of any of the inner tables

• It is a predicate containing a reference to an inner table that evaluates to UNKNOWN when one of its
arguments is NULL

• It is a conjunction containing a null-rejected condition as a conjunct

• It is a disjunction of null-rejected conditions



Optimizing SELECT Statements

856

A condition can be null-rejected for one outer join operation in a query and not null-rejected for another.
In this query, the WHERE condition is null-rejected for the second outer join operation but is not null-
rejected for the first one:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
                 LEFT JOIN T3 ON T3.B=T1.B
  WHERE T3.C > 0

If the WHERE condition is null-rejected for an outer join operation in a query, the outer join operation is
replaced by an inner join operation.

For example, in the preceding query, the second outer join is null-rejected and can be replaced by an
inner join:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
                 INNER JOIN T3 ON T3.B=T1.B
  WHERE T3.C > 0

For the original query, the optimizer evaluates only plans compatible with the single table-access order
T1,T2,T3. For the rewritten query, it additionally considers the access order T3,T1,T2.

A conversion of one outer join operation may trigger a conversion of another. Thus, the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
                 LEFT JOIN T3 ON T3.B=T2.B
  WHERE T3.C > 0

Is first converted to the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
                 INNER JOIN T3 ON T3.B=T2.B
  WHERE T3.C > 0

Which is equivalent to the query:

SELECT * FROM (T1 LEFT JOIN T2 ON T2.A=T1.A), T3
  WHERE T3.C > 0 AND T3.B=T2.B

The remaining outer join operation can also be replaced by an inner join because the condition
T3.B=T2.B is null-rejected. This results in a query with no outer joins at all:

SELECT * FROM (T1 INNER JOIN T2 ON T2.A=T1.A), T3
  WHERE T3.C > 0 AND T3.B=T2.B

Sometimes the optimizer succeeds in replacing an embedded outer join operation, but cannot convert
the embedding outer join. The following query:

SELECT * FROM T1 LEFT JOIN
              (T2 LEFT JOIN T3 ON T3.B=T2.B)
              ON T2.A=T1.A
  WHERE T3.C > 0

Is converted to:

SELECT * FROM T1 LEFT JOIN
              (T2 INNER JOIN T3 ON T3.B=T2.B)
              ON T2.A=T1.A
  WHERE T3.C > 0

That can be rewritten only to the form still containing the embedding outer join operation:



Optimizing SELECT Statements

857

SELECT * FROM T1 LEFT JOIN
              (T2,T3)
              ON (T2.A=T1.A AND T3.B=T2.B)
  WHERE T3.C > 0

Any attempt to convert an embedded outer join operation in a query must take into account the join
condition for the embedding outer join together with the WHERE condition. In this query, the WHERE
condition is not null-rejected for the embedded outer join, but the join condition of the embedding outer
join T2.A=T1.A AND T3.C=T1.C is null-rejected:

SELECT * FROM T1 LEFT JOIN
              (T2 LEFT JOIN T3 ON T3.B=T2.B)
              ON T2.A=T1.A AND T3.C=T1.C
  WHERE T3.D > 0 OR T1.D > 0

Consequently, the query can be converted to:

SELECT * FROM T1 LEFT JOIN
              (T2, T3)
              ON T2.A=T1.A AND T3.C=T1.C AND T3.B=T2.B
  WHERE T3.D > 0 OR T1.D > 0

8.2.1.9 IS NULL Optimization

MySQL can perform the same optimization on col_name IS NULL that it can use for col_name =
constant_value. For example, MySQL can use indexes and ranges to search for NULL with IS
NULL.

Examples:

SELECT * FROM tbl_name WHERE key_col IS NULL;

SELECT * FROM tbl_name WHERE key_col <=> NULL;

SELECT * FROM tbl_name
  WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;

If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT
NULL, that expression is optimized away. This optimization does not occur in cases when the column
might produce NULL anyway; for example, if it comes from a table on the right side of a LEFT JOIN.

MySQL can also optimize the combination col_name = expr OR col_name IS NULL, a form that
is common in resolved subqueries. EXPLAIN shows ref_or_null when this optimization is used.

This optimization can handle one IS NULL for any key part.

Some examples of queries that are optimized, assuming that there is an index on columns a and b of
table t2:

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;

SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;

SELECT * FROM t1, t2
  WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;

SELECT * FROM t1, t2
  WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);

SELECT * FROM t1, t2
  WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)
  OR (t1.a=t2.a AND t2.a IS NULL AND ...);



Optimizing SELECT Statements

858

ref_or_null works by first doing a read on the reference key, and then a separate search for rows
with a NULL key value.

The optimization can handle only one IS NULL level. In the following query, MySQL uses key lookups
only on the expression (t1.a=t2.a AND t2.a IS NULL) and is not able to use the key part on b:

SELECT * FROM t1, t2
  WHERE (t1.a=t2.a AND t2.a IS NULL)
  OR (t1.b=t2.b AND t2.b IS NULL);

8.2.1.10 ORDER BY Optimization

This section describes when MySQL can use an index to satisfy an ORDER BY clause, the filesort
algorithms used when an index cannot be used, and execution plan information available from the
optimizer about ORDER BY.

• Use of Indexes to Satisfy ORDER BY

• Optimization Using filesort

• The Original filesort Algorithm

• The Modified filesort Algorithm

• Comparison of filesort Algorithms

• Influencing ORDER BY Optimization

• ORDER BY Execution Plan Information Available

Use of Indexes to Satisfy ORDER BY

In some cases, MySQL can use an index to satisfy an ORDER BY clause without doing extra sorting.

The index can also be used even if the ORDER BY does not match the index exactly, as long as all
unused portions of the index and all extra ORDER BY columns are constants in the WHERE clause. The
following queries use the index to resolve the ORDER BY part:

SELECT * FROM t1
  ORDER BY key_part1, key_part2;

SELECT * FROM t1
  WHERE key_part1 = constant
  ORDER BY key_part2;

SELECT * FROM t1
  ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
  WHERE key_part1 = 1
  ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
  WHERE key_part1 > constant
  ORDER BY key_part1 ASC;

SELECT * FROM t1
  WHERE key_part1 < constant
  ORDER BY key_part1 DESC;

SELECT * FROM t1
  WHERE key_part1 = constant1 AND key_part2 > constant2
  ORDER BY key_part2;

In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it may still use indexes
to find the rows that match the WHERE clause. Examples:



Optimizing SELECT Statements

859

• The query uses ORDER BY on different indexes:

SELECT * FROM t1 ORDER BY key1, key2;

• The query uses ORDER BY on nonconsecutive parts of an index:

SELECT * FROM t1 WHERE key2=constant ORDER BY key_part1, key_part3;

• The query mixes ASC and DESC:

SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC;

• The index used to fetch the rows differs from the one used in the ORDER BY:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1;

• The query uses ORDER BY with an expression that includes terms other than the index column
name:

SELECT * FROM t1 ORDER BY ABS(key);
SELECT * FROM t1 ORDER BY -key;

• The query joins many tables, and the columns in the ORDER BY are not all from the first nonconstant
table that is used to retrieve rows. (This is the first table in the EXPLAIN output that does not have a
const join type.)

• The query has different ORDER BY and GROUP BY expressions.

• There is an index on only a prefix of a column named in the ORDER BY clause. In this case, the index
cannot be used to fully resolve the sort order. For example, if only the first 10 bytes of a CHAR(20)
column are indexed, the index cannot distinguish values past the 10th byte and a filesort is
needed.

• The index does not store rows in order. For example, this is true for a HASH index in a MEMORY table.

Availability of an index for sorting may be affected by the use of column aliases. Suppose that the
column t1.a is indexed. In this statement, the name of the column in the select list is a. It refers to
t1.a, as does the reference to a in the ORDER BY, so the index on t1.a can be used:

SELECT a FROM t1 ORDER BY a;

In this statement, the name of the column in the select list is also a, but it is the alias name. It refers to
ABS(a), as does the reference to a in the ORDER BY, so the index on t1.a cannot be used:

SELECT ABS(a) AS a FROM t1 ORDER BY a;

In the following statement, the ORDER BY refers to a name that is not the name of a column in the
select list. But there is a column in t1 named a, so the ORDER BY refers to t1.a and the index on
t1.a can be used. (The resulting sort order may be completely different from the order for ABS(a), of
course.)

SELECT ABS(a) AS b FROM t1 ORDER BY a;

By default, MySQL sorts all GROUP BY col1, col2, ... queries as if you specified ORDER BY
col1, col2, ... in the query as well. If you include an explicit ORDER BY clause that contains the
same column list, MySQL optimizes it away without any speed penalty, although the sorting still occurs.



Optimizing SELECT Statements

860

If a query includes GROUP BY but you want to avoid the overhead of sorting the result, you can
suppress sorting by specifying ORDER BY NULL. For example:

INSERT INTO foo
SELECT a, COUNT(*) FROM bar GROUP BY a ORDER BY NULL;

The optimizer may still choose to use sorting to implement grouping operations. ORDER BY NULL
suppresses sorting of the result, not prior sorting done by grouping operations to determine the result.

Note

GROUP BY implicitly sorts by default (that is, in the absence of ASC or DESC
designators), but relying on implicit GROUP BY sorting is deprecated. To
produce a given sort order, use explicit ASC or DESC designators for GROUP
BY columns or provide an ORDER BY clause. GROUP BY sorting is a MySQL
extension that may change in a future release; for example, to make it possible
for the optimizer to order groupings in whatever manner it deems most efficient
and to avoid the sorting overhead.

Optimization Using filesort

MySQL has multiple filesort algorithms for sorting and retrieving results. The original algorithm
uses only the ORDER BY columns. The modified algorithm uses not just the ORDER BY columns, but all
columns referenced by the query.

The optimizer selects which filesort algorithm to use. It normally uses the modified algorithm
except when BLOB or TEXT columns are involved, in which case it uses the original algorithm. For each
algorithm, the sort buffer size is the sort_buffer_size system variable value.

The Original filesort Algorithm

The original filesort algorithm works as follows:

1. Read all rows according to key or by table scanning. Skip rows that do not match the WHERE
clause.

2. For each row, store in the sort buffer a tuple consisting of a pair of values (the sort key value and
the row ID).

3. If all pairs fit into the sort buffer, no temporary file is created. Otherwise, when the sort buffer
becomes full, run a quicksort on it in memory and write it to a temporary file. Save a pointer to the
sorted block.

4. Repeat the preceding steps until all rows have been read.

5. Do a multi-merge of up to MERGEBUFF (7) regions to one block in another temporary file. Repeat
until all blocks from the first file are in the second file.

6. Repeat the following until there are fewer than MERGEBUFF2 (15) blocks left.

7. On the last multi-merge, only the row ID (the last part of the value pair) is written to a result file.

8. Read the rows in sorted order using the row IDs in the result file. To optimize this, read in a large
block of row IDs, sort them, and use them to read the rows in sorted order into a row buffer. The
row buffer size is the read_rnd_buffer_size system variable value. The code for this step is in
the sql/records.cc source file.

One problem with this approach is that it reads rows twice: Once during WHERE clause evaluation, and
again after sorting the value pairs. And even if the rows were accessed successively the first time (for
example, if a table scan is done), the second time they are accessed randomly. (The sort keys are
ordered, but the row positions are not.)



Optimizing SELECT Statements

861

The Modified filesort Algorithm

The modified filesort algorithm incorporates an optimization to avoid reading the rows twice: It
records the sort key value, but instead of the row ID, it records the columns referenced by the query.
The modified filesort algorithm works like this:

1. Read the rows that match the WHERE clause.

2. For each row, store in the sort buffer a tuple consisting of the sort key value and the columns
referenced by the query.

3. When the sort buffer becomes full, sort the tuples by sort key value in memory and write it to a
temporary file.

4. After merge-sorting the temporary file, retrieve the rows in sorted order, but read the columns
required by the query directly from the sorted tuples rather than by accessing the table a second
time.

The tuples used by the modified filesort algorithm are longer than the pairs used by the original
algorithm, and fewer of them fit in the sort buffer. As a result, it is possible for the extra I/O to make
the modified approach slower, not faster. To avoid a slowdown, the optimizer uses the modified
algorithm only if the total size of the extra columns in the sort tuple does not exceed the value of the
max_length_for_sort_data system variable. (A symptom of setting the value of this variable too
high is a combination of high disk activity and low CPU activity.)

Comparison of filesort Algorithms

Suppose that a table t1 has four VARCHAR columns a, b, c, and d and that the optimizer uses
filesort for this query:

SELECT * FROM t1 ORDER BY a, b;

The query sorts by a and b, but returns all columns, so the columns referenced by the query are a,
b, c, and d. Depending on which filesort algorithm the optimizer chooses, the query executes as
follows:

For the original algorithm, sort buffer tuples have these contents:

(fixed size a value, fixed size b value,
row ID into t1)

The optimizer sorts on the fixed size values. After sorting, the optimizer reads the tuples in order and
uses the row ID in each tuple to read rows from t1 to obtain the select list column values.

For the modified algorithm, sort buffer tuples have these contents:

(fixed size a value, fixed size b value,
a value, b value, c value, d value)

The optimizer sorts on the fixed size values. After sorting, the optimizer reads the tuples in order and
uses the values for a, b, c, and d to obtain the select list column values without reading t1 again.

Influencing ORDER BY Optimization

For slow ORDER BY queries for which filesort is not used, try lowering
max_length_for_sort_data to a value that is appropriate to trigger a filesort.

To increase ORDER BY speed, check whether you can get MySQL to use indexes rather than an extra
sorting phase. If this is not possible, you can try the following strategies:



Optimizing SELECT Statements

862

• Increase the sort_buffer_size variable value. Ideally, the value should be large enough for the
entire result set to fit in the sort buffer (to avoid writes to disk and merge passes), but at minimum the
value must be large enough to accommodate fifteen tuples.

Take into account that the size of column values stored in the sort buffer is affected by the
max_sort_length system variable value. For example, if tuples store values of long string columns
and you increase the value of max_sort_length, the size of sort buffer tuples increases as well
and may require you to increase sort_buffer_size. For column values calculated as a result
of string expressions (such as those that invoke a string-valued function), the filesort algorithm
cannot tell the maximum length of expression values, so it must allocate max_sort_length bytes
for each tuple.

To monitor the number of merge passes, check the Sort_merge_passes status variable.

• Increase the read_rnd_buffer_size variable value.

• Use less RAM per row by declaring columns only as large as they need to be to hold the values
stored in them. For example, CHAR(16) is better than CHAR(200) if values never exceed 16
characters.

• Change the tmpdir system variable to point to a dedicated file system with large amounts of free
space. The variable value can list several paths that are used in round-robin fashion; you can use
this feature to spread the load across several directories. Separate the paths by colon characters
(:) on Unix and semicolon characters (;) on Windows. The paths should name directories in file
systems located on different physical disks, not different partitions on the same disk.

ORDER BY Execution Plan Information Available

With EXPLAIN SELECT ... ORDER BY, you can check whether MySQL can use indexes to resolve
the query. It cannot if you see Using filesort in the Extra column. See Section 8.8.1, “Optimizing
Queries with EXPLAIN”. Filesort uses a fixed-length row-storage format similar to that used by the
MEMORY storage engine. Variable-length types such as VARCHAR are stored using a fixed length.

If a filesort is done, EXPLAIN output includes Using filesort in the Extra column.

An ORDER BY with and without LIMIT may return rows in different orders, as discussed in
Section 8.2.1.13, “LIMIT Query Optimization”.

8.2.1.11 GROUP BY Optimization

The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new
temporary table where all rows from each group are consecutive, and then use this temporary table
to discover groups and apply aggregate functions (if any). In some cases, MySQL is able to do much
better than that and to avoid creation of temporary tables by using index access.

The most important preconditions for using indexes for GROUP BY are that all GROUP BY columns
reference attributes from the same index, and that the index stores its keys in order (for example, this
is a BTREE index and not a HASH index). Whether use of temporary tables can be replaced by index
access also depends on which parts of an index are used in a query, the conditions specified for these
parts, and the selected aggregate functions.

There are two ways to execute a GROUP BY query through index access, as detailed in the following
sections. In the first method, the grouping operation is applied together with all range predicates (if
any). The second method first performs a range scan, and then groups the resulting tuples.

In MySQL, GROUP BY is used for sorting, so the server may also apply ORDER BY optimizations to
grouping. However, relying on implicit GROUP BY sorting is deprecated. See Section 8.2.1.10, “ORDER
BY Optimization”.

• Loose Index Scan



Optimizing SELECT Statements

863

• Tight Index Scan

Loose Index Scan

The most efficient way to process GROUP BY is when an index is used to directly retrieve the grouping
columns. With this access method, MySQL uses the property of some index types that the keys are
ordered (for example, BTREE). This property enables use of lookup groups in an index without having
to consider all keys in the index that satisfy all WHERE conditions. This access method considers only
a fraction of the keys in an index, so it is called a loose index scan. When there is no WHERE clause, a
loose index scan reads as many keys as the number of groups, which may be a much smaller number
than that of all keys. If the WHERE clause contains range predicates (see the discussion of the range
join type in Section 8.8.1, “Optimizing Queries with EXPLAIN”), a loose index scan looks up the first
key of each group that satisfies the range conditions, and again reads the least possible number of
keys. This is possible under the following conditions:

• The query is over a single table.

• The GROUP BY names only columns that form a leftmost prefix of the index and no other columns.
(If, instead of GROUP BY, the query has a DISTINCT clause, all distinct attributes refer to columns
that form a leftmost prefix of the index.) For example, if a table t1 has an index on (c1,c2,c3),
loose index scan is applicable if the query has GROUP BY c1, c2,. It is not applicable if the query
has GROUP BY c2, c3 (the columns are not a leftmost prefix) or GROUP BY c1, c2, c4 (c4 is
not in the index).

• The only aggregate functions used in the select list (if any) are MIN() and MAX(), and all of them
refer to the same column. The column must be in the index and must immediately follow the columns
in the GROUP BY.

• Any other parts of the index than those from the GROUP BY referenced in the query must be
constants (that is, they must be referenced in equalities with constants), except for the argument of
MIN() or MAX() functions.

• For columns in the index, full column values must be indexed, not just a prefix. For example, with c1
VARCHAR(20), INDEX (c1(10)), the index cannot be used for loose index scan.

If loose index scan is applicable to a query, the EXPLAIN output shows Using index for group-
by in the Extra column.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The loose index scan
access method can be used for the following queries:

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;

The following queries cannot be executed with this quick select method, for the reasons given:

• There are aggregate functions other than MIN() or MAX():

SELECT c1, SUM(c2) FROM t1 GROUP BY c1;

• The columns in the GROUP BY clause do not form a leftmost prefix of the index:

SELECT c1, c2 FROM t1 GROUP BY c2, c3;

• The query refers to a part of a key that comes after the GROUP BY part, and for which there is no
equality with a constant:



Optimizing SELECT Statements

864

SELECT c1, c3 FROM t1 GROUP BY c1, c2;

Were the query to include WHERE c3 = const, loose index scan could be used.

The loose index scan access method can be applied to other forms of aggregate function references in
the select list, in addition to the MIN() and MAX() references already supported:

• AVG(DISTINCT), SUM(DISTINCT), and COUNT(DISTINCT) are supported. AVG(DISTINCT)
and SUM(DISTINCT) take a single argument. COUNT(DISTINCT) can have more than one column
argument.

• There must be no GROUP BY or DISTINCT clause in the query.

• The loose scan limitations described earlier still apply.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The loose index scan
access method can be used for the following queries:

SELECT COUNT(DISTINCT c1), SUM(DISTINCT c1) FROM t1;

SELECT COUNT(DISTINCT c1, c2), COUNT(DISTINCT c2, c1) FROM t1;

Tight Index Scan

A tight index scan may be either a full index scan or a range index scan, depending on the query
conditions.

When the conditions for a loose index scan are not met, it still may be possible to avoid creation of
temporary tables for GROUP BY queries. If there are range conditions in the WHERE clause, this method
reads only the keys that satisfy these conditions. Otherwise, it performs an index scan. Because this
method reads all keys in each range defined by the WHERE clause, or scans the whole index if there
are no range conditions, we term it a tight index scan. With a tight index scan, the grouping operation is
performed only after all keys that satisfy the range conditions have been found.

For this method to work, it is sufficient that there is a constant equality condition for all columns in
a query referring to parts of the key coming before or in between parts of the GROUP BY key. The
constants from the equality conditions fill in any “gaps” in the search keys so that it is possible to form
complete prefixes of the index. These index prefixes then can be used for index lookups. If we require
sorting of the GROUP BY result, and it is possible to form search keys that are prefixes of the index,
MySQL also avoids extra sorting operations because searching with prefixes in an ordered index
already retrieves all the keys in order.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The following queries
do not work with the loose index scan access method described earlier, but still work with the tight
index scan access method.

• There is a gap in the GROUP BY, but it is covered by the condition c2 = 'a':

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

• The GROUP BY does not begin with the first part of the key, but there is a condition that provides a
constant for that part:

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

8.2.1.12 DISTINCT Optimization

DISTINCT combined with ORDER BY needs a temporary table in many cases.



Optimizing SELECT Statements

865

Because DISTINCT may use GROUP BY, learn how MySQL works with columns in ORDER BY or
HAVING clauses that are not part of the selected columns. See Section 12.16.3, “MySQL Handling of
GROUP BY”.

In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example,
the following two queries are equivalent:

SELECT DISTINCT c1, c2, c3 FROM t1
WHERE c1 > const;

SELECT c1, c2, c3 FROM t1
WHERE c1 > const GROUP BY c1, c2, c3;

Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to
queries with a DISTINCT clause. Thus, for more details on the optimization possibilities for DISTINCT
queries, see Section 8.2.1.11, “GROUP BY Optimization”.

When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

If you do not use columns from all tables named in a query, MySQL stops scanning any unused tables
as soon as it finds the first match. In the following case, assuming that t1 is used before t2 (which you
can check with EXPLAIN), MySQL stops reading from t2 (for any particular row in t1) when it finds the
first row in t2:

SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;

8.2.1.13 LIMIT Query Optimization

If you need only a specified number of rows from a result set, use a LIMIT clause in the query, rather
than fetching the whole result set and throwing away the extra data.

MySQL sometimes optimizes a query that has a LIMIT row_count clause and no HAVING clause:

• If you select only a few rows with LIMIT, MySQL uses indexes in some cases when normally it
would prefer to do a full table scan.

• If you combine LIMIT row_count with ORDER BY, MySQL stops sorting as soon as it has found
the first row_count rows of the sorted result, rather than sorting the entire result. If ordering is done
by using an index, this is very fast. If a filesort must be done, all rows that match the query without
the LIMIT clause are selected, and most or all of them are sorted, before the first row_count are
found. After the initial rows have been found, MySQL does not sort any remainder of the result set.

One manifestation of this behavior is that an ORDER BY query with and without LIMIT may return
rows in different order, as described later in this section.

• If you combine LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

• In some cases, a GROUP BY can be resolved by reading the index in order (or doing a sort on the
index), then calculating summaries until the index value changes. In this case, LIMIT row_count
does not calculate any unnecessary GROUP BY values.

•  As soon as MySQL has sent the required number of rows to the client, it aborts the query unless you
are using SQL_CALC_FOUND_ROWS. In that case, the number of rows can be retrieved with SELECT
FOUND_ROWS(). See Section 12.14, “Information Functions”.

• LIMIT 0 quickly returns an empty set. This can be useful for checking the validity of a query. It can
also be employed to obtain the types of the result columns within applications that use a MySQL
API that makes result set metadata available. With the mysql client program, you can use the --
column-type-info option to display result column types.



Optimizing SELECT Statements

866

• If the server uses temporary tables to resolve a query, it uses the LIMIT row_count clause to
calculate how much space is required.

If multiple rows have identical values in the ORDER BY columns, the server is free to return those rows
in any order, and may do so differently depending on the overall execution plan. In other words, the
sort order of those rows is nondeterministic with respect to the nonordered columns.

One factor that affects the execution plan is LIMIT, so an ORDER BY query with and without LIMIT
may return rows in different orders. Consider this query, which is sorted by the category column but
nondeterministic with respect to the id and rating columns:

mysql> SELECT * FROM ratings ORDER BY category;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
|  1 |        1 |    4.5 |
|  5 |        1 |    3.2 |
|  3 |        2 |    3.7 |
|  4 |        2 |    3.5 |
|  6 |        2 |    3.5 |
|  2 |        3 |    5.0 |
|  7 |        3 |    2.7 |
+----+----------+--------+

Including LIMIT may affect order of rows within each category value. For example, this is a valid
query result:

mysql> SELECT * FROM ratings ORDER BY category LIMIT 5;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
|  1 |        1 |    4.5 |
|  5 |        1 |    3.2 |
|  4 |        2 |    3.5 |
|  3 |        2 |    3.7 |
|  6 |        2 |    3.5 |
+----+----------+--------+

In each case, the rows are sorted by the ORDER BY column, which is all that is required by the SQL
standard.

If it is important to ensure the same row order with and without LIMIT, include additional columns in
the ORDER BY clause to make the order deterministic. For example, if id values are unique, you can
make rows for a given category value appear in id order by sorting like this:

mysql> SELECT * FROM ratings ORDER BY category, id;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
|  1 |        1 |    4.5 |
|  5 |        1 |    3.2 |
|  3 |        2 |    3.7 |
|  4 |        2 |    3.5 |
|  6 |        2 |    3.5 |
|  2 |        3 |    5.0 |
|  7 |        3 |    2.7 |
+----+----------+--------+

mysql> SELECT * FROM ratings ORDER BY category, id LIMIT 5;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
|  1 |        1 |    4.5 |
|  5 |        1 |    3.2 |
|  3 |        2 |    3.7 |
|  4 |        2 |    3.5 |



Optimizing SELECT Statements

867

|  6 |        2 |    3.5 |
+----+----------+--------+

8.2.1.14 Function Call Optimization

MySQL functions are tagged internally as deterministic or nondeterministic. A function is
nondeterministic if, given fixed values for its arguments, it can return different results for different
invocations. Examples of nondeterministic functions: RAND(), UUID().

If a function is tagged nondeterministic, a reference to it in a WHERE clause is evaluated for every row
(when selecting from one table) or combination of rows (when selecting from a multiple-table join).

MySQL also determines when to evaluate functions based on types of arguments, whether the
arguments are table columns or constant values. A deterministic function that takes a table column as
argument must be evaluated whenever that column changes value.

Nondeterministic functions may affect query performance. For example, some optimizations may not
be available, or more locking might be required. The following discussion uses RAND() but applies to
other nondeterministic functions as well.

Suppose that a table t has this definition:

CREATE TABLE t (id INT NOT NULL PRIMARY KEY, col_a VARCHAR(100));

Consider these two queries:

SELECT * FROM t WHERE id = POW(1,2);
SELECT * FROM t WHERE id = FLOOR(1 + RAND() * 49);

Both queries appear to use a primary key lookup because of the equality comparison against the
primary key, but that is true only for the first of them:

• The first query always produces a maximum of one row because POW() with constant arguments is
a constant value and is used for index lookup.

• The second query contains an expression that uses the nondeterministic function RAND(), which
is not constant in the query but in fact has a new value for every row of table t. Consequently,
the query reads every row of the table, evaluates the predicate for each row, and outputs all rows
for which the primary key matches the random value. This might be zero, one, or multiple rows,
depending on the id column values and the values in the RAND() sequence.

The effects of nondeterminism are not limited to SELECT statements. This UPDATE statement uses a
nondeterministic function to select rows to be modified:

UPDATE t SET col_a = some_expr WHERE id = FLOOR(1 + RAND() * 49);

Presumably the intent is to update at most a single row for which the primary key matches the
expression. However, it might update zero, one, or multiple rows, depending on the id column values
and the values in the RAND() sequence.

The behavior just described has implications for performance and replication:

• Because a nondeterministic function does not produce a constant value, the optimizer cannot use
strategies that might otherwise be applicable, such as index lookups. The result may be a table scan.

• InnoDB might escalate to a range-key lock rather than taking a single row lock for one matching row.

• Updates that do not execute deterministically are unsafe for replication.

The difficulties stem from the fact that the RAND() function is evaluated once for every row of the table.
To avoid multiple function evaluations, use one of these techniques:



Optimizing SELECT Statements

868

• Move the expression containing the nondeterministic function to a separate statement, saving the
value in a variable. In the original statement, replace the expression with a reference to the variable,
which the optimizer can treat as a constant value:

SET @keyval = FLOOR(1 + RAND() * 49);
UPDATE t SET col_a = some_expr WHERE id = @keyval;

• Assign the random value to a variable in a derived table. This technique causes the variable to be
assigned a value, once, prior to its use in the comparison in the WHERE clause:

UPDATE t, (SELECT @keyval := FLOOR(1 + RAND() * 49)) AS dt
SET col_a = some_expr WHERE id = @keyval;

As mentioned previously, a nondeterministic expression in the WHERE clause might prevent
optimizations and result in a table scan. However, it may be possible to partially optimize the WHERE
clause if other expressions are deterministic. For example:

SELECT * FROM t WHERE partial_key=5 AND some_column=RAND();

If the optimizer can use partial_key to reduce the set of rows selected, RAND() is executed fewer
times, which diminishes the effect of nondeterminism on optimization.

8.2.1.15 Row Constructor Expression Optimization

Row constructors permit simultaneous comparisons of multiple values. For example, these two
statements are semantically equivalent:

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

In addition, the optimizer handles both expressions the same way.

The optimizer is less likely to use available indexes if the row constructor columns do not cover the
prefix of an index. Consider the following table, which has a primary key on (c1, c2, c3):

CREATE TABLE t1 (
  c1 INT, c2 INT, c3 INT, c4 CHAR(100),
  PRIMARY KEY(c1,c2,c3)
);

In this query, the WHERE clause uses all columns in the index. However, the row constructor itself does
not cover an index prefix, with the result that the optimizer uses only c1 (key_len=4, the size of c1):

mysql> EXPLAIN SELECT * FROM t1
       WHERE c1=1 AND (c2,c3) > (1,1)\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: NULL
         type: ref
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: const
         rows: 3
        Extra: Using where

In such cases, rewriting the row constructor expression using an equivalent nonconstructor expression
may result in more complete index use. For the given query, the row constructor and equivalent
nonconstructor expressions are:



Optimizing SELECT Statements

869

(c2,c3) > (1,1)
c2 > 1 OR ((c2 = 1) AND (c3 > 1))

Rewriting the query to use the nonconstructor expression results in the optimizer using all three
columns in the index (key_len=12):

mysql> EXPLAIN SELECT * FROM t1
       WHERE c1 = 1 AND (c2 > 1 OR ((c2 = 1) AND (c3 > 1)))\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
   partitions: NULL
         type: range
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 12
          ref: NULL
         rows: 3
        Extra: Using where

Thus, for better results, avoid mixing row constructors with AND/OR expressions. Use one or the other.

8.2.1.16 Avoiding Full Table Scans

Frequently, a full table scan is a danger sign that a query can be speeded up significantly. For tables
with more than a few rows, consider redesigning the query by adding an index for one or more of the
columns tested in the WHERE clause. Put extra effort into avoiding table scans for queries that perform
joins or reference foreign keys. If the nature of the data means there is no way to avoid reading all the
rows, then it might not be practical to make the query faster, or making it faster might involve extensive
restructuring of your tables that is beyond the scope of this section.

The output from EXPLAIN shows ALL in the type column when MySQL uses a table scan to resolve a
query. This usually happens under the following conditions:

• The ON or WHERE clauses do not reference any indexed columns that the query can use. Consider
adding an index, or refining those clauses to refer to an indexed column.

• The table is so small that it is faster to perform a table scan than to bother with a key lookup. This is
common for tables with fewer than 10 rows and a short row length. Don't worry in this case.

• You are comparing indexed columns with constant values and MySQL has calculated (based on
the index tree) that the constants cover too large a part of the table and that a table scan would be
faster. See Section 8.2.1.1, “WHERE Clause Optimization”. For example, to query census data only
for males or only for females, MySQL must read most of the data blocks in the table, so locating the
rows through the index would add unnecessary overhead. Don't worry if you encounter this condition
for occasional big reports. If these reports are frequent or truly time-critical, and the table is huge,
you might partition, shard, or create dimension tables using the relevant column.

• You are using a key with low cardinality (many rows match the key value) through another column.
In this case, MySQL assumes that by using the key it probably will do many key lookups and that a
table scan would be faster.

For small tables, a table scan often is appropriate and the performance impact is negligible. For large
tables, try the following techniques to avoid having the optimizer incorrectly choose a table scan:

• Minimize the OR keywords in your WHERE clauses. If there is no index that helps to locate the values
on both sides of the OR, any row could potentially be part of the result set, so all rows must be
tested, and that requires a full table scan. If you have one index that helps to optimize one side of
an OR query, and a different index that helps to optimize the other side, use a UNION operator to run
separate fast queries and merge the results afterward.



Subquery Optimization

870

• With tables that use the MEMORY storage engine, if you run queries that examine ranges of values
(using operators such as >, <=, or BETWEEN on the indexed columns), create the index with the
USING BTREE clause. The default (USING HASH) is fast for retrieving individual rows with an
equality operator (= or <=>), but is much slower (requiring a full table scan) to examine a range
of column values. A MEMORY table created with the USING BTREE clause is still fast for equality
comparisons, so use that clause for your MEMORY tables that handle a variety of queries.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive
compared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
  WHERE t1.col_name=t2.col_name;

See Section 8.9.3, “Index Hints”.

• Start mysqld with the --max-seeks-for-key=1000 option or use SET
max_seeks_for_key=1000 to tell the optimizer to assume that no key scan causes more than
1,000 key seeks. See Section 5.1.5, “Server System Variables”.

8.2.2 Subquery Optimization

Certain optimizations are applicable to comparisons that use the IN operator to test subquery results
(or that use =ANY, which is equivalent). This section discusses these optimizations, particularly with
regard to the challenges that NULL values present. The last part of the discussion suggests how you
can help the optimizer.

Consider the following subquery comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

MySQL evaluates queries “from outside to inside.” That is, it first obtains the value of the outer
expression outer_expr, and then runs the subquery and captures the rows that it produces.

A very useful optimization is to “inform” the subquery that the only rows of interest are those where the
inner expression inner_expr is equal to outer_expr. This is done by pushing down an appropriate
equality into the subquery's WHERE clause to make it more restrictive. The converted comparison looks
like this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

After the conversion, MySQL can use the pushed-down equality to limit the number of rows it must
examine to evaluate the subquery.

More generally, a comparison of N values to a subquery that returns N-value rows is subject to the
same conversion. If oe_i and ie_i represent corresponding outer and inner expression values, this
subquery comparison:

(oe_1, ..., oe_N) IN
  (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

Becomes:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
                          AND oe_1 = ie_1
                          AND ...



Subquery Optimization

871

                          AND oe_N = ie_N)

For simplicity, the following discussion assumes a single pair of outer and inner expression values.

The conversion just described has its limitations. It is valid only if we ignore possible NULL values. That
is, the “pushdown” strategy works as long as both of these conditions are true:

• outer_expr and inner_expr cannot be NULL.

• You need not distinguish NULL from FALSE subquery results. If the subquery is a part of an OR or
AND expression in the WHERE clause, MySQL assumes that you do not care.

When either or both of those conditions do not hold, optimization is more complex.

Suppose that outer_expr is known to be a non-NULL value but the subquery does not produce a row
such that outer_expr = inner_expr. Then outer_expr IN (SELECT ...) evaluates as follows:

• NULL, if the SELECT produces any row where inner_expr is NULL

• FALSE, if the SELECT produces only non-NULL values or produces nothing

In this situation, the approach of looking for rows with outer_expr = inner_expr is no longer valid.
It is necessary to look for such rows, but if none are found, also look for rows where inner_expr is
NULL. Roughly speaking, the subquery can be converted to something like this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND
        (outer_expr=inner_expr OR inner_expr IS NULL))

The need to evaluate the extra IS NULL condition is why MySQL has the ref_or_null access
method:

mysql> EXPLAIN
       SELECT outer_expr IN (SELECT t2.maybe_null_key
                             FROM t2, t3 WHERE ...)
       FROM t1;
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: t1
...
*************************** 2. row ***************************
           id: 2
  select_type: DEPENDENT SUBQUERY
        table: t2
         type: ref_or_null
possible_keys: maybe_null_key
          key: maybe_null_key
      key_len: 5
          ref: func
         rows: 2
        Extra: Using where; Using index
...

The unique_subquery and index_subquery subquery-specific access methods also have
“or NULL” variants. However, they are not visible in EXPLAIN output, so you must use EXPLAIN
EXTENDED followed by SHOW WARNINGS (note the checking NULL in the warning message):

mysql> EXPLAIN EXTENDED
       SELECT outer_expr IN (SELECT maybe_null_key FROM t2) FROM t1\G
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: t1
...



Subquery Optimization

872

*************************** 2. row ***************************
           id: 2
  select_type: DEPENDENT SUBQUERY
        table: t2
         type: index_subquery
possible_keys: maybe_null_key
          key: maybe_null_key
      key_len: 5
          ref: func
         rows: 2
        Extra: Using index

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Note
   Code: 1003
Message: select (`test`.`t1`.`outer_expr`,
         (((`test`.`t1`.`outer_expr`) in t2 on
         maybe_null_key checking NULL))) AS `outer_expr IN (SELECT
         maybe_null_key FROM t2)` from `test`.`t1`

The additional OR ... IS NULL condition makes query execution slightly more complicated (and
some optimizations within the subquery become inapplicable), but generally this is tolerable.

The situation is much worse when outer_expr can be NULL. According to the SQL interpretation of
NULL as “unknown value,” NULL IN (SELECT inner_expr ...) should evaluate to:

• NULL, if the SELECT produces any rows

• FALSE, if the SELECT produces no rows

For proper evaluation, it is necessary to be able to check whether the SELECT has produced any rows
at all, so outer_expr = inner_expr cannot be pushed down into the subquery. This is a problem
because many real world subqueries become very slow unless the equality can be pushed down.

Essentially, there must be different ways to execute the subquery depending on the value of
outer_expr.

The optimizer chooses SQL compliance over speed, so it accounts for the possibility that outer_expr
might be NULL:

• If outer_expr is NULL, to evaluate the following expression, it is necessary to execute the SELECT
to determine whether it produces any rows:

NULL IN (SELECT inner_expr FROM ... WHERE subquery_where)

It is necessary to execute the original SELECT here, without any pushed-down equalities of the kind
mentioned earlier.

• On the other hand, when outer_expr is not NULL, it is absolutely essential that this comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

be converted to this expression that uses a pushed-down condition:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

Without this conversion, subqueries will be slow.

To solve the dilemma of whether or not to push down conditions into the subquery, the conditions are
wrapped within “trigger” functions. Thus, an expression of the following form:



Subquery Optimization

873

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

is converted into:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
                          AND trigcond(outer_expr=inner_expr))

More generally, if the subquery comparison is based on several pairs of outer and inner expressions,
the conversion takes this comparison:

(oe_1, ..., oe_N) IN (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

and converts it to this expression:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
                          AND trigcond(oe_1=ie_1)
                          AND ...
                          AND trigcond(oe_N=ie_N)
       )

Each trigcond(X) is a special function that evaluates to the following values:

• X when the “linked” outer expression oe_i is not NULL

• TRUE when the “linked” outer expression oe_i is NULL

Note

Trigger functions are not triggers of the kind that you create with CREATE
TRIGGER.

Equalities that are wrapped within trigcond() functions are not first class predicates for the query
optimizer. Most optimizations cannot deal with predicates that may be turned on and off at query
execution time, so they assume any trigcond(X) to be an unknown function and ignore it. Triggered
equalities can be used by those optimizations:

• Reference optimizations: trigcond(X=Y [OR Y IS NULL]) can be used to construct ref,
eq_ref, or ref_or_null table accesses.

• Index lookup-based subquery execution engines: trigcond(X=Y) can be used to construct
unique_subquery or index_subquery accesses.

• Table-condition generator: If the subquery is a join of several tables, the triggered condition is
checked as soon as possible.

When the optimizer uses a triggered condition to create some kind of index lookup-based access
(as for the first two items of the preceding list), it must have a fallback strategy for the case when the
condition is turned off. This fallback strategy is always the same: Do a full table scan. In EXPLAIN
output, the fallback shows up as Full scan on NULL key in the Extra column:

mysql> EXPLAIN SELECT t1.col1,
       t1.col1 IN (SELECT t2.key1 FROM t2 WHERE t2.col2=t1.col2) FROM t1\G
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: t1
        ...
*************************** 2. row ***************************
           id: 2
  select_type: DEPENDENT SUBQUERY
        table: t2
         type: index_subquery



Optimizing INFORMATION_SCHEMA Queries

874

possible_keys: key1
          key: key1
      key_len: 5
          ref: func
         rows: 2
        Extra: Using where; Full scan on NULL key

If you run EXPLAIN EXTENDED followed by SHOW WARNINGS, you can see the triggered condition:

*************************** 1. row ***************************
  Level: Note
   Code: 1003
Message: select `test`.`t1`.`col1` AS `col1`,
         <in_optimizer>(`test`.`t1`.`col1`,
         <exists>(<index_lookup>(<cache>(`test`.`t1`.`col1`) in t2
         on key1 checking NULL
         where (`test`.`t2`.`col2` = `test`.`t1`.`col2`) having
         trigcond(<is_not_null_test>(`test`.`t2`.`key1`))))) AS
         `t1.col1 IN (select t2.key1 from t2 where t2.col2=t1.col2)`
         from `test`.`t1`

The use of triggered conditions has some performance implications. A NULL IN (SELECT ...)
expression now may cause a full table scan (which is slow) when it previously did not. This is the price
paid for correct results (the goal of the trigger-condition strategy is to improve compliance, not speed).

For multiple-table subqueries, execution of NULL IN (SELECT ...) is particularly slow because
the join optimizer does not optimize for the case where the outer expression is NULL. It assumes that
subquery evaluations with NULL on the left side are very rare, even if there are statistics that indicate
otherwise. On the other hand, if the outer expression might be NULL but never actually is, there is no
performance penalty.

To help the query optimizer better execute your queries, use these suggestions:

• Declare a column as NOT NULL if it really is. This also helps other aspects of the optimizer by
simplifying condition testing for the column.

• If you need not distinguish a NULL from FALSE subquery result, you can easily avoid the slow
execution path. Replace a comparison that looks like this:

outer_expr IN (SELECT inner_expr FROM ...)

with this expression:

(outer_expr IS NOT NULL) AND (outer_expr IN (SELECT inner_expr FROM ...))

Then NULL IN (SELECT ...) is never evaluated because MySQL stops evaluating AND parts as
soon as the expression result is clear.

8.2.3 Optimizing INFORMATION_SCHEMA Queries

Applications that monitor databases may make frequent use of INFORMATION_SCHEMA tables. Certain
types of queries for INFORMATION_SCHEMA tables can be optimized to execute more quickly. The goal
is to minimize file operations (for example, scanning a directory or opening a table file) to collect the
information that makes up these dynamic tables.

Note

Comparison behavior for database and table names in INFORMATION_SCHEMA
queries might differ from what you expect. For details, see Section 10.1.8.7,
“Using Collation in INFORMATION_SCHEMA Searches”.

1) Try to use constant lookup values for database and table names in the WHERE clause



Optimizing INFORMATION_SCHEMA Queries

875

You can take advantage of this principle as follows:

• To look up databases or tables, use expressions that evaluate to a constant, such as literal values,
functions that return a constant, or scalar subqueries.

• Avoid queries that use a nonconstant database name lookup value (or no lookup value) because
they require a scan of the data directory to find matching database directory names.

• Within a database, avoid queries that use a nonconstant table name lookup value (or no lookup
value) because they require a scan of the database directory to find matching table files.

This principle applies to the INFORMATION_SCHEMA tables shown in the following table, which shows
the columns for which a constant lookup value enables the server to avoid a directory scan. For
example, if you are selecting from TABLES, using a constant lookup value for TABLE_SCHEMA in the
WHERE clause enables a data directory scan to be avoided.

Table Column to specify to avoid
data directory scan

Column to specify to avoid
database directory scan

COLUMNS TABLE_SCHEMA TABLE_NAME

KEY_COLUMN_USAGE TABLE_SCHEMA TABLE_NAME

PARTITIONS TABLE_SCHEMA TABLE_NAME

REFERENTIAL_CONSTRAINTS CONSTRAINT_SCHEMA TABLE_NAME

STATISTICS TABLE_SCHEMA TABLE_NAME

TABLES TABLE_SCHEMA TABLE_NAME

TABLE_CONSTRAINTS TABLE_SCHEMA TABLE_NAME

TRIGGERS EVENT_OBJECT_SCHEMA EVENT_OBJECT_TABLE

VIEWS TABLE_SCHEMA TABLE_NAME

The benefit of a query that is limited to a specific constant database name is that checks need be made
only for the named database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

Use of the literal database name test enables the server to check only the test database directory,
regardless of how many databases there might be. By contrast, the following query is less efficient
because it requires a scan of the data directory to determine which database names match the pattern
'test%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA LIKE 'test%';

For a query that is limited to a specific constant table name, checks need be made only for the named
table within the corresponding database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';

Use of the literal table name t1 enables the server to check only the files for the t1 table, regardless of
how many tables there might be in the test database. By contrast, the following query requires a scan
of the test database directory to determine which table names match the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME LIKE 't%';

The following query requires a scan of the database directory to determine matching database names
for the pattern 'test%', and for each matching database, it requires a scan of the database directory
to determine matching table names for the pattern 't%':



Optimizing INFORMATION_SCHEMA Queries

876

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test%' AND TABLE_NAME LIKE 't%';

2) Write queries that minimize the number of table files that must be opened

For queries that refer to certain INFORMATION_SCHEMA table columns, several optimizations are
available that minimize the number of table files that must be opened. Example:

SELECT TABLE_NAME, ENGINE FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

In this case, after the server has scanned the database directory to determine the names of the
tables in the database, those names become available with no further file system lookups. Thus,
TABLE_NAME requires no files to be opened. The ENGINE (storage engine) value can be determined
by opening the table's .frm file, without touching other table files such as the .MYD or .MYI file.

Some values, such as INDEX_LENGTH for MyISAM tables, require opening the .MYD or .MYI file as
well.

The file-opening optimization types are denoted thus:

• SKIP_OPEN_TABLE: Table files do not need to be opened. The information has already become
available within the query by scanning the database directory.

• OPEN_FRM_ONLY: Only the table's .frm file need be opened.

• OPEN_TRIGGER_ONLY: Only the table's .TRG file need be opened.

• OPEN_FULL_TABLE: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be
opened.

The following list indicates how the preceding optimization types apply to INFORMATION_SCHEMA table
columns. For tables and columns not named, none of the optimizations apply.

• COLUMNS: OPEN_FRM_ONLY applies to all columns

• KEY_COLUMN_USAGE: OPEN_FULL_TABLE applies to all columns

• PARTITIONS: OPEN_FULL_TABLE applies to all columns

• REFERENTIAL_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• STATISTICS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

NON_UNIQUE OPEN_FRM_ONLY

INDEX_SCHEMA OPEN_FRM_ONLY

INDEX_NAME OPEN_FRM_ONLY

SEQ_IN_INDEX OPEN_FRM_ONLY

COLUMN_NAME OPEN_FRM_ONLY

COLLATION OPEN_FRM_ONLY

CARDINALITY OPEN_FULL_TABLE

SUB_PART OPEN_FRM_ONLY

PACKED OPEN_FRM_ONLY



Optimizing INFORMATION_SCHEMA Queries

877

Column Optimization type

NULLABLE OPEN_FRM_ONLY

INDEX_TYPE OPEN_FULL_TABLE

COMMENT OPEN_FRM_ONLY

• TABLES:

Column Optimization type

TABLE_CATALOG SKIP_OPEN_TABLE

TABLE_SCHEMA SKIP_OPEN_TABLE

TABLE_NAME SKIP_OPEN_TABLE

TABLE_TYPE OPEN_FRM_ONLY

ENGINE OPEN_FRM_ONLY

VERSION OPEN_FRM_ONLY

ROW_FORMAT OPEN_FULL_TABLE

TABLE_ROWS OPEN_FULL_TABLE

AVG_ROW_LENGTH OPEN_FULL_TABLE

DATA_LENGTH OPEN_FULL_TABLE

MAX_DATA_LENGTH OPEN_FULL_TABLE

INDEX_LENGTH OPEN_FULL_TABLE

DATA_FREE OPEN_FULL_TABLE

AUTO_INCREMENT OPEN_FULL_TABLE

CREATE_TIME OPEN_FULL_TABLE

UPDATE_TIME OPEN_FULL_TABLE

CHECK_TIME OPEN_FULL_TABLE

TABLE_COLLATION OPEN_FRM_ONLY

CHECKSUM OPEN_FULL_TABLE

CREATE_OPTIONS OPEN_FRM_ONLY

TABLE_COMMENT OPEN_FRM_ONLY

• TABLE_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• TRIGGERS: OPEN_TRIGGER_ONLY applies to all columns

• VIEWS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

VIEW_DEFINITION OPEN_FRM_ONLY

CHECK_OPTION OPEN_FRM_ONLY

IS_UPDATABLE OPEN_FULL_TABLE

DEFINER OPEN_FRM_ONLY

SECURITY_TYPE OPEN_FRM_ONLY

CHARACTER_SET_CLIENT OPEN_FRM_ONLY



Optimizing INFORMATION_SCHEMA Queries

878

Column Optimization type

COLLATION_CONNECTION OPEN_FRM_ONLY

3) Use EXPLAIN to determine whether the server can use INFORMATION_SCHEMA optimizations
for a query

This applies particularly for INFORMATION_SCHEMA queries that search for information from more than
one database, which might take a long time and impact performance. The Extra value in EXPLAIN
output indicates which, if any, of the optimizations described earlier the server can use to evaluate
INFORMATION_SCHEMA queries. The following examples demonstrate the kinds of information you can
expect to see in the Extra value.

mysql> EXPLAIN SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS WHERE
       TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v1'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: VIEWS
         type: ALL
possible_keys: NULL
          key: TABLE_SCHEMA,TABLE_NAME
      key_len: NULL
          ref: NULL
         rows: NULL
        Extra: Using where; Open_frm_only; Scanned 0 databases

Use of constant database and table lookup values enables the server to avoid directory scans. For
references to VIEWS.TABLE_NAME, only the .frm file need be opened.

mysql> EXPLAIN SELECT TABLE_NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.TABLES\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: TABLES
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: NULL
        Extra: Open_full_table; Scanned all databases

No lookup values are provided (there is no WHERE clause), so the server must scan the data
directory and each database directory. For each table thus identified, the table name and row format
are selected. TABLE_NAME requires no further table files to be opened (the SKIP_OPEN_TABLE
optimization applies). ROW_FORMAT requires all table files to be opened (OPEN_FULL_TABLE applies).
EXPLAIN reports OPEN_FULL_TABLE because it is more expensive than SKIP_OPEN_TABLE.

mysql> EXPLAIN SELECT TABLE_NAME, TABLE_TYPE FROM INFORMATION_SCHEMA.TABLES
       WHERE TABLE_SCHEMA = 'test'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: TABLES
         type: ALL
possible_keys: NULL
          key: TABLE_SCHEMA
      key_len: NULL
          ref: NULL
         rows: NULL
        Extra: Using where; Open_frm_only; Scanned 1 database

No table name lookup value is provided, so the server must scan the test database directory. For the
TABLE_NAME and TABLE_TYPE columns, the SKIP_OPEN_TABLE and OPEN_FRM_ONLY optimizations
apply, respectively. EXPLAIN reports OPEN_FRM_ONLY because it is more expensive.

mysql> EXPLAIN SELECT B.TABLE_NAME



Optimizing Data Change Statements

879

       FROM INFORMATION_SCHEMA.TABLES AS A, INFORMATION_SCHEMA.COLUMNS AS B
       WHERE A.TABLE_SCHEMA = 'test'
       AND A.TABLE_NAME = 't1'
       AND B.TABLE_NAME = A.TABLE_NAME\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: A
         type: ALL
possible_keys: NULL
          key: TABLE_SCHEMA,TABLE_NAME
      key_len: NULL
          ref: NULL
         rows: NULL
        Extra: Using where; Skip_open_table; Scanned 0 databases
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: B
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: NULL
        Extra: Using where; Open_frm_only; Scanned all databases;
               Using join buffer

For the first EXPLAIN output row: Constant database and table lookup values enable the server to
avoid directory scans for TABLES values. References to TABLES.TABLE_NAME require no further table
files.

For the second EXPLAIN output row: All COLUMNS table values are OPEN_FRM_ONLY lookups, so
COLUMNS.TABLE_NAME requires the .frm file to be opened.

mysql> EXPLAIN SELECT * FROM INFORMATION_SCHEMA.COLLATIONS\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: COLLATIONS
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: NULL
        Extra:

In this case, no optimizations apply because COLLATIONS is not one of the INFORMATION_SCHEMA
tables for which optimizations are available.

8.2.4 Optimizing Data Change Statements

This section explains how to speed up data change statements: INSERT, UPDATE, and DELETE.
Traditional OLTP applications and modern web applications typically do many small data change
operations, where concurrency is vital. Data analysis and reporting applications typically run data
change operations that affect many rows at once, where the main considerations is the I/O to write
large amounts of data and keep indexes up-to-date. For inserting and updating large volumes of data
(known in the industry as ETL, for “extract-transform-load”), sometimes you use other SQL statements
or external commands, that mimic the effects of INSERT, UPDATE, and DELETE statements.

8.2.4.1 Optimizing INSERT Statements

To optimize insert speed, combine many small operations into a single large operation. Ideally, you
make a single connection, send the data for many new rows at once, and delay all index updates and
consistency checking until the very end.



Optimizing Data Change Statements

880

The time required for inserting a row is determined by the following factors, where the numbers indicate
approximate proportions:

• Connecting: (3)

• Sending query to server: (2)

• Parsing query: (2)

• Inserting row: (1 × size of row)

• Inserting indexes: (1 × number of indexes)

• Closing: (1)

This does not take into consideration the initial overhead to open tables, which is done once for each
concurrently running query.

The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.

You can use the following methods to speed up inserts:

• If you are inserting many rows from the same client at the same time, use INSERT statements with
multiple VALUES lists to insert several rows at a time. This is considerably faster (many times faster
in some cases) than using separate single-row INSERT statements. If you are adding data to a
nonempty table, you can tune the bulk_insert_buffer_size variable to make data insertion
even faster. See Section 5.1.5, “Server System Variables”.

• When loading a table from a text file, use LOAD DATA INFILE. This is usually 20 times faster than
using INSERT statements. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• Take advantage of the fact that columns have default values. Insert values explicitly only when the
value to be inserted differs from the default. This reduces the parsing that MySQL must do and
improves the insert speed.

• See Section 8.5.4, “Bulk Data Loading for InnoDB Tables” for tips specific to InnoDB tables.

• See Section 8.6.2, “Bulk Data Loading for MyISAM Tables” for tips specific to MyISAM tables.

8.2.4.2 Optimizing UPDATE Statements

An update statement is optimized like a SELECT query with the additional overhead of a write. The
speed of the write depends on the amount of data being updated and the number of indexes that are
updated. Indexes that are not changed do not get updated.

Another way to get fast updates is to delay updates and then do many updates in a row later.
Performing multiple updates together is much quicker than doing one at a time if you lock the table.

For a MyISAM table that uses dynamic row format, updating a row to a longer total length may
split the row. If you do this often, it is very important to use OPTIMIZE TABLE occasionally. See
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”.

8.2.4.3 Optimizing DELETE Statements

The time required to delete individual rows in a MyISAM table is exactly proportional to the number of
indexes. To delete rows more quickly, you can increase the size of the key cache by increasing the
key_buffer_size system variable. See Section 5.1.1, “Configuring the Server”.

To delete all rows from a MyISAM table, TRUNCATE TABLE tbl_name is faster than DELETE FROM
tbl_name. Truncate operations are not transaction-safe; an error occurs when attempting one in the
course of an active transaction or active table lock. See Section 13.1.33, “TRUNCATE TABLE Syntax”.



Optimizing Database Privileges

881

8.2.5 Optimizing Database Privileges

The more complex your privilege setup, the more overhead applies to all SQL statements. Simplifying
the privileges established by GRANT statements enables MySQL to reduce permission-checking
overhead when clients execute statements. For example, if you do not grant any table-level or column-
level privileges, the server need not ever check the contents of the tables_priv and columns_priv
tables. Similarly, if you place no resource limits on any accounts, the server does not have to perform
resource counting. If you have a very high statement-processing load, consider using a simplified grant
structure to reduce permission-checking overhead.

8.2.6 Other Optimization Tips

This section lists a number of miscellaneous tips for improving query processing speed:

• If your application makes several database requests to perform related updates, combining the
statements into a stored routine can help performance. Similarly, if your application computes a
single result based on several column values or large volumes of data, combining the computation
into a UDF (user-defined function) can help performance. The resulting fast database operations
are then available to be reused by other queries, applications, and even code written in different
programming languages. See Section 20.2, “Using Stored Routines (Procedures and Functions)”
and Section 24.4, “Adding New Functions to MySQL” for more information.

• To fix any compression issues that occur with ARCHIVE tables, use OPTIMIZE TABLE. See
Section 15.6, “The ARCHIVE Storage Engine”.

• If possible, classify reports as “live” or as “statistical”, where data needed for statistical reports is
created only from summary tables that are generated periodically from the live data.

• If you have data that does not conform well to a rows-and-columns table structure, you can pack and
store data into a BLOB column. In this case, you must provide code in your application to pack and
unpack information, but this might save I/O operations to read and write the sets of related values.

• With Web servers, store images and other binary assets as files, with the path name stored in the
database rather than the file itself. Most Web servers are better at caching files than database
contents, so using files is generally faster. (Although you must handle backups and storage issues
yourself in this case.)

• If you need really high speed, look at the low-level MySQL interfaces. For example, by accessing
the MySQL InnoDB or MyISAM storage engine directly, you could get a substantial speed increase
compared to using the SQL interface.

• Replication can provide a performance benefit for some operations. You can distribute client
retrievals among replication servers to split up the load. To avoid slowing down the master while
making backups, you can make backups using a slave server. See Chapter 17, Replication.

8.3 Optimization and Indexes

The best way to improve the performance of SELECT operations is to create indexes on one or more of
the columns that are tested in the query. The index entries act like pointers to the table rows, allowing
the query to quickly determine which rows match a condition in the WHERE clause, and retrieve the
other column values for those rows. All MySQL data types can be indexed.

Although it can be tempting to create an indexes for every possible column used in a query,
unnecessary indexes waste space and waste time for MySQL to determine which indexes to use.
Indexes also add to the cost of inserts, updates, and deletes because each index must be updated.
You must find the right balance to achieve fast queries using the optimal set of indexes.

8.3.1 How MySQL Uses Indexes



How MySQL Uses Indexes

882

Indexes are used to find rows with specific column values quickly. Without an index, MySQL must
begin with the first row and then read through the entire table to find the relevant rows. The larger the
table, the more this costs. If the table has an index for the columns in question, MySQL can quickly
determine the position to seek to in the middle of the data file without having to look at all the data. This
is much faster than reading every row sequentially.

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees.
Exceptions are that indexes on spatial data types use R-trees, and that MEMORY tables also support
hash indexes.

In general, indexes are used as described in the following discussion. Characteristics specific to hash
indexes (as used in MEMORY tables) are described in Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”.

MySQL uses indexes for these operations:

• To find the rows matching a WHERE clause quickly.

• To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally
uses the index that finds the smallest number of rows (the most selective index).

•   If the table has a multiple-column index, any leftmost prefix of the index can be used by the
optimizer to look up rows. For example, if you have a three-column index on (col1, col2,
col3), you have indexed search capabilities on (col1), (col1, col2), and (col1, col2,
col3). For more information, see Section 8.3.5, “Multiple-Column Indexes”.

• To retrieve rows from other tables when performing joins. MySQL can use indexes on columns
more efficiently if they are declared as the same type and size. In this context, VARCHAR and CHAR
are considered the same if they are declared as the same size. For example, VARCHAR(10) and
CHAR(10) are the same size, but VARCHAR(10) and CHAR(15) are not.

For comparisons between nonbinary string columns, both columns should use the same character
set. For example, comparing a utf8 column with a latin1 column precludes use of an index.

Comparison of dissimilar columns (comparing a string column to a temporal or numeric column, for
example) may prevent use of indexes if values cannot be compared directly without conversion. For
a given value such as 1 in the numeric column, it might compare equal to any number of values in
the string column such as '1', ' 1', '00001', or '01.e1'. This rules out use of any indexes for
the string column.

• To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a
preprocessor that checks whether you are using WHERE key_part_N = constant on all key
parts that occur before key_col in the index. In this case, MySQL does a single key lookup for each
MIN() or MAX() expression and replaces it with a constant. If all expressions are replaced with
constants, the query returns at once. For example:

SELECT MIN(key_part2),MAX(key_part2)
  FROM tbl_name WHERE key_part1=10;

• To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable index (for
example, ORDER BY key_part1, key_part2). If all key parts are followed by DESC, the key
is read in reverse order. See Section 8.2.1.10, “ORDER BY Optimization”, and Section 8.2.1.11,
“GROUP BY Optimization”.

• In some cases, a query can be optimized to retrieve values without consulting the data rows. (An
index that provides all the necessary results for a query is called a covering index.) If a query uses
from a table only columns that are included in some index, the selected values can be retrieved from
the index tree for greater speed:

SELECT key_part3 FROM tbl_name



Using Primary Keys

883

  WHERE key_part1=1

Indexes are less important for queries on small tables, or big tables where report queries process most
or all of the rows. When a query needs to access most of the rows, reading sequentially is faster than
working through an index. Sequential reads minimize disk seeks, even if not all the rows are needed for
the query. See Section 8.2.1.16, “Avoiding Full Table Scans” for details.

8.3.2 Using Primary Keys

The primary key for a table represents the column or set of columns that you use in your most vital
queries. It has an associated index, for fast query performance. Query performance benefits from
the NOT NULL optimization, because it cannot include any NULL values. With the InnoDB storage
engine, the table data is physically organized to do ultra-fast lookups and sorts based on the primary
key column or columns.

If your table is big and important, but does not have an obvious column or set of columns to use as a
primary key, you might create a separate column with auto-increment values to use as the primary key.
These unique IDs can serve as pointers to corresponding rows in other tables when you join tables
using foreign keys.

8.3.3 Using Foreign Keys

If a table has many columns, and you query many different combinations of columns, it might be
efficient to split the less-frequently used data into separate tables with a few columns each, and relate
them back to the main table by duplicating the numeric ID column from the main table. That way,
each small table can have a primary key for fast lookups of its data, and you can query just the set of
columns that you need using a join operation. Depending on how the data is distributed, the queries
might perform less I/O and take up less cache memory because the relevant columns are packed
together on disk. (To maximize performance, queries try to read as few data blocks as possible from
disk; tables with only a few columns can fit more rows in each data block.)

8.3.4 Column Indexes

The most common type of index involves a single column, storing copies of the values from that
column in a data structure, allowing fast lookups for the rows with the corresponding column values.
The B-tree data structure lets the index quickly find a specific value, a set of values, or a range of
values, corresponding to operators such as =, >, ≤, BETWEEN, IN, and so on, in a WHERE clause.

The maximum number of indexes per table and the maximum index length is defined per storage
engine. See Chapter 14, The InnoDB Storage Engine, and Chapter 15, Alternative Storage Engines.
All storage engines support at least 16 indexes per table and a total index length of at least 256 bytes.
Most storage engines have higher limits.

For additional information about column indexes, see Section 13.1.13, “CREATE INDEX Syntax”.

• Index Prefixes

• FULLTEXT Indexes

• Spatial Indexes

• Indexes in the MEMORY Storage Engine

Index Prefixes

With col_name(N) syntax in an index specification for a string column, you can create an index that
uses only the first N characters of the column. Indexing only a prefix of column values in this way can
make the index file much smaller. When you index a BLOB or TEXT column, you must specify a prefix
length for the index. For example:



Multiple-Column Indexes

884

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables, unless you have
innodb_large_prefix set).

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE
TABLE, ALTER TABLE, and CREATE INDEX statements is interpreted as
number of characters for nonbinary string types (CHAR, VARCHAR, TEXT) and
number of bytes for binary string types (BINARY, VARBINARY, BLOB). Take this
into account when specifying a prefix length for a nonbinary string column that
uses a multibyte character set.

For additional information about index prefixes, see Section 13.1.13, “CREATE INDEX Syntax”.

FULLTEXT Indexes

FULLTEXT indexes are used for full-text searches. Only the MyISAM storage engine supports
FULLTEXT indexes and only for CHAR, VARCHAR, and TEXT columns. Indexing always takes place over
the entire column and column prefix indexing is not supported. For details, see Section 12.9, “Full-Text
Search Functions”.

For queries that contain full-text expressions, MySQL evaluates those expressions during the
optimization phase of query execution. The optimizer does not just look at full-text expressions and
make estimates, it actually evaluates them in the process of developing an execution plan.

An implication of this behavior is that EXPLAIN for full-text queries is typically slower than for non-full-
text queries for which no expression evaluation occurs during the optimization phase.

EXPLAIN for full-text queries may show Select tables optimized away in the Extra column
due to matching occurring during optimization; in this case, no table access need occur during later
execution.

Spatial Indexes

You can create indexes on spatial data types. Only MyISAM supports R-tree indexes on spatial types.
Other storage engines use B-trees for indexing spatial types (except for ARCHIVE, which does not
support spatial type indexing).

Indexes in the MEMORY Storage Engine

The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.

8.3.5 Multiple-Column Indexes

MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist
of up to 16 columns. For certain data types, you can index a prefix of the column (see Section 8.3.4,
“Column Indexes”).

MySQL can use multiple-column indexes for queries that test all the columns in the index, or queries
that test just the first column, the first two columns, the first three columns, and so on. If you specify the
columns in the right order in the index definition, a single composite index can speed up several kinds
of queries on the same table.

A multiple-column index can be considered a sorted array, the rows of which contain values that are
created by concatenating the values of the indexed columns.

Note

As an alternative to a composite index, you can introduce a column that is
“hashed” based on information from other columns. If this column is short,



Multiple-Column Indexes

885

reasonably unique, and indexed, it might be faster than a “wide” index on many
columns. In MySQL, it is very easy to use this extra column:

SELECT * FROM tbl_name
  WHERE hash_col=MD5(CONCAT(val1,val2))
  AND col1=val1 AND col2=val2;

Suppose that a table has the following specification:

CREATE TABLE test (
    id         INT NOT NULL,
    last_name  CHAR(30) NOT NULL,
    first_name CHAR(30) NOT NULL,
    PRIMARY KEY (id),
    INDEX name (last_name,first_name)
);

The name index is an index over the last_name and first_name columns. The index can be used
for lookups in queries that specify values in a known range for combinations of last_name and
first_name values. It can also be used for queries that specify just a last_name value because that
column is a leftmost prefix of the index (as described later in this section). Therefore, the name index is
used for lookups in the following queries:

SELECT * FROM test WHERE last_name='Widenius';

SELECT * FROM test
  WHERE last_name='Widenius' AND first_name='Michael';

SELECT * FROM test
  WHERE last_name='Widenius'
  AND (first_name='Michael' OR first_name='Monty');

SELECT * FROM test
  WHERE last_name='Widenius'
  AND first_name >='M' AND first_name < 'N';

However, the name index is not used for lookups in the following queries:

SELECT * FROM test WHERE first_name='Michael';

SELECT * FROM test
  WHERE last_name='Widenius' OR first_name='Michael';

Suppose that you issue the following SELECT statement:

SELECT * FROM tbl_name
  WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly.
If separate single-column indexes exist on col1 and col2, the optimizer attempts to use the Index
Merge optimization (see Section 8.2.1.3, “Index Merge Optimization”), or attempts to find the most
restrictive index by deciding which index excludes more rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer
to look up rows. For example, if you have a three-column index on (col1, col2, col3), you have
indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).

MySQL cannot use the index to perform lookups if the columns do not form a leftmost prefix of the
index. Suppose that you have the SELECT statements shown here:

SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;



Verifying Index Usage

886

SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first two queries use the index. The third and
fourth queries do involve indexed columns, but (col2) and (col2, col3) are not leftmost prefixes
of (col1, col2, col3).

8.3.6 Verifying Index Usage

Always check whether all your queries really use the indexes that you have created in the tables. Use
the EXPLAIN statement, as described in Section 8.8.1, “Optimizing Queries with EXPLAIN”.

8.3.7 InnoDB and MyISAM Index Statistics Collection

Storage engines collect statistics about tables for use by the optimizer. Table statistics are based
on value groups, where a value group is a set of rows with the same key prefix value. For optimizer
purposes, an important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

• To estimate how may rows must be read for each ref access

• To estimate how many row a partial join will produce; that is, the number of rows that an operation of
this form will produce:

(...) JOIN tbl_name ON tbl_name.key = expr

As the average value group size for an index increases, the index is less useful for those two purposes
because the average number of rows per lookup increases: For the index to be good for optimization
purposes, it is best that each index value target a small number of rows in the table. When a given
index value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The
SHOW INDEX statement displays a cardinality value based on N/S, where N is the number of rows
in the table and S is the average value group size. That ratio yields an approximate number of value
groups in the table.

For a join based on the <=> comparison operator, NULL is not treated differently from any other value:
NULL <=> NULL, just as N <=> N for any other N.

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2
is not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons of the
form tbl_name.key = expr: MySQL will not access the table if the current value of expr is NULL,
because the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization
purposes, the relevant value is the average size of the non-NULL value groups. However, MySQL does
not currently enable that average size to be collected or used.

For InnoDB and MyISAM tables, you have some control over collection of table statistics by means
of the innodb_stats_method and myisam_stats_method system variables, respectively. These
variables have three possible values, which differ as follows:

• When the variable is set to nulls_equal, all NULL values are treated as identical (that is, they all
form a single value group).

If the NULL value group size is much higher than the average non-NULL value group size, this
method skews the average value group size upward. This makes index appear to the optimizer to be
less useful than it really is for joins that look for non-NULL values. Consequently, the nulls_equal
method may cause the optimizer not to use the index for ref accesses when it should.



Comparison of B-Tree and Hash Indexes

887

• When the variable is set to nulls_unequal, NULL values are not considered the same. Instead,
each NULL value forms a separate value group of size 1.

If you have many NULL values, this method skews the average value group size downward. If
the average non-NULL value group size is large, counting NULL values each as a group of size 1
causes the optimizer to overestimate the value of the index for joins that look for non-NULL values.
Consequently, the nulls_unequal method may cause the optimizer to use this index for ref
lookups when other methods may be better.

• When the variable is set to nulls_ignored, NULL values are ignored.

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons
and one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.

The innodb_stats_method system variable has a global value; the myisam_stats_method
system variable has both global and session values. Setting the global value affects statistics
collection for tables from the corresponding storage engine. Setting the session value affects statistics
collection only for the current client connection. This means that you can force a table's statistics to
be regenerated with a given method without affecting other clients by setting the session value of
myisam_stats_method.

To regenerate MyISAM table statistics, you can use any of the following methods:

• Execute myisamchk --stats_method=method_name --analyze

• Change the table to cause its statistics to go out of date (for example, insert a row and then delete it),
and then set myisam_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of innodb_stats_method and myisam_stats_method:

• You can force table statistics to be collected explicitly, as just described. However, MySQL may also
collect statistics automatically. For example, if during the course of executing statements for a table,
some of those statements modify the table, MySQL may collect statistics. (This may occur for bulk
inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statistics
are collected using whatever value innodb_stats_method or myisam_stats_method has at
the time. Thus, if you collect statistics using one method, but the system variable is set to the other
method when a table's statistics are collected automatically later, the other method will be used.

• There is no way to tell which method was used to generate statistics for a given table.

• These variables apply only to InnoDB and MyISAM tables. Other storage engines have only one
method for collecting table statistics. Usually it is closer to the nulls_equal method.

8.3.8 Comparison of B-Tree and Hash Indexes

Understanding the B-tree and hash data structures can help predict how different queries perform on
different storage engines that use these data structures in their indexes, particularly for the MEMORY
storage engine that lets you choose B-tree or hash indexes.

• B-Tree Index Characteristics

• Hash Index Characteristics

B-Tree Index Characteristics

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or
BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is
a constant string that does not start with a wildcard character. For example, the following SELECT
statements use indexes:



Comparison of B-Tree and Hash Indexes

888

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In the
second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the
LIKE value is not a constant.

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the
Turbo Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform
the search more quickly.

A search using col_name IS NULL employs indexes if col_name is indexed.

Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In
other words, to be able to use an index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3

    /* index = 1 OR index = 2 */
... WHERE index=1 OR A=10 AND index=2

    /* optimized like "index_part1='hello'" */
... WHERE index_part1='hello' AND index_part3=5

    /* Can use index on index1 but not on index2 or index3 */
... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

These WHERE clauses do not use indexes:

    /* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

    /*  Index is not used in both parts of the WHERE clause  */
... WHERE index=1 OR A=10

    /* No index spans all rows  */
... WHERE index_part1=1 OR index_part2=10

Sometimes MySQL does not use an index, even if one is available. One circumstance under which
this occurs is when the optimizer estimates that using the index would require MySQL to access a
very large percentage of the rows in the table. (In this case, a table scan is likely to be much faster
because it requires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the
rows, MySQL uses an index anyway, because it can much more quickly find the few rows to return in
the result.

Hash Index Characteristics

Hash indexes have somewhat different characteristics from those just discussed:

• They are used only for equality comparisons that use the = or <=> operators (but are very fast). They
are not used for comparison operators such as < that find a range of values. Systems that rely on
this type of single-value lookup are known as “key-value stores”; to use MySQL for such applications,
use hash indexes wherever possible.



Optimizing Database Structure

889

• The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot
be used to search for the next entry in order.)

• MySQL cannot determine approximately how many rows there are between two values (this is used
by the range optimizer to decide which index to use). This may affect some queries if you change a
MyISAM or InnoDB table to a hash-indexed MEMORY table.

• Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key
can be used to find rows.)

8.4 Optimizing Database Structure
In your role as a database designer, look for the most efficient way to organize your schemas, tables,
and columns. As when tuning application code, you minimize I/O, keep related items together, and plan
ahead so that performance stays high as the data volume increases. Starting with an efficient database
design makes it easier for team members to write high-performing application code, and makes the
database likely to endure as applications evolve and are rewritten.

8.4.1 Optimizing Data Size

Design your tables to minimize their space on the disk. This can result in huge improvements by
reducing the amount of data written to and read from disk. Smaller tables normally require less main
memory while their contents are being actively processed during query execution. Any space reduction
for table data also results in smaller indexes that can be processed faster.

MySQL supports many different storage engines (table types) and row formats. For each table, you
can decide which storage and indexing method to use. Choosing the proper table format for your
application can give you a big performance gain. See Chapter 14, The InnoDB Storage Engine, and
Chapter 15, Alternative Storage Engines.

You can get better performance for a table and minimize storage space by using the techniques listed
here:

• Table Columns

• Row Format

• Indexes

• Joins

• Normalization

Table Columns

• Use the most efficient (smallest) data types possible. MySQL has many specialized types that save
disk space and memory. For example, use the smaller integer types if possible to get smaller tables.
MEDIUMINT is often a better choice than INT because a MEDIUMINT column uses 25% less space.

• Declare columns to be NOT NULL if possible. It makes SQL operations faster, by enabling better use
of indexes and eliminating overhead for testing whether each value is NULL. You also save some
storage space, one bit per column. If you really need NULL values in your tables, use them. Just
avoid the default setting that allows NULL values in every column.

Row Format

• In MySQL 5.5, InnoDB tables use the COMPACT row storage format (ROW_FORMAT=COMPACT) by
default. Older versions of MySQL use the REDUNDANT row format (ROW_FORMAT=REDUNDANT).

The compact family of row formats, which includes COMPACT, DYNAMIC, and COMPRESSED,
decreases row storage space at the cost of increasing CPU use for some operations. If your



Optimizing Data Size

890

workload is a typical one that is limited by cache hit rates and disk speed it is likely to be faster. If it is
a rare case that is limited by CPU speed, it might be slower.

The compact family of row formats also optimizes CHAR column storage when using a variable-
length character set such as utf8mb3 or utf8mb4. With ROW_FORMAT=REDUNDANT, CHAR(N)
occupies N × the maximum byte length of the character set. Many languages can be written primarily
using single-byte utf8 characters, so a fixed storage length often wastes space. With the compact
family of rows formats, InnoDB allocates a variable amount of storage in the range of N to N
× the maximum byte length of the character set for these columns by stripping trailing spaces.
The minimum storage length is N bytes to facilitate in-place updates in typical cases. For more
information, see Section 14.11.1.2, “The Physical Row Structure of an InnoDB Table”.

• To minimize space even further by storing table data in compressed form, specify
ROW_FORMAT=COMPRESSED when creating InnoDB tables, or run the myisampack command on
an existing MyISAM table. (InnoDB compressed tables are readable and writable, while MyISAM
compressed tables are read-only.)

• For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB
columns), a fixed-size row format is used. This is faster but may waste some space. See
Section 15.3.3, “MyISAM Table Storage Formats”. You can hint that you want to have fixed length
rows even if you have VARCHAR columns with the CREATE TABLE option ROW_FORMAT=FIXED.

Indexes

• The primary index of a table should be as short as possible. This makes identification of each row
easy and efficient. For InnoDB tables, the primary key columns are duplicated in each secondary
index entry, so a short primary key saves considerable space if you have many secondary indexes.

• Create only the indexes that you need to improve query performance. Indexes are good for retrieval,
but slow down insert and update operations. If you access a table mostly by searching on a
combination of columns, create a single composite index on them rather than a separate index for
each column. The first part of the index should be the column most used. If you always use many
columns when selecting from the table, the first column in the index should be the one with the most
duplicates, to obtain better compression of the index.

• If it is very likely that a long string column has a unique prefix on the first number of characters, it is
better to index only this prefix, using MySQL's support for creating an index on the leftmost part of
the column (see Section 13.1.13, “CREATE INDEX Syntax”). Shorter indexes are faster, not only
because they require less disk space, but because they also give you more hits in the index cache,
and thus fewer disk seeks. See Section 5.1.1, “Configuring the Server”.

Joins

• In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is
especially true if it is a dynamic-format table and it is possible to use a smaller static format table that
can be used to find the relevant rows when scanning the table.

• Declare columns with identical information in different tables with identical data types, to speed up
joins based on the corresponding columns.

• Keep column names simple, so that you can use the same name across different tables and simplify
join queries. For example, in a table named customer, use a column name of name instead of
customer_name. To make your names portable to other SQL servers, consider keeping them
shorter than 18 characters.

Normalization

• Normally, try to keep all data nonredundant (observing what is referred to in database theory as
third normal form). Instead of repeating lengthy values such as names and addresses, assign them
unique IDs, repeat these IDs as needed across multiple smaller tables, and join the tables in queries
by referencing the IDs in the join clause.



Optimizing MySQL Data Types

891

• If speed is more important than disk space and the maintenance costs of keeping multiple copies
of data, for example in a business intelligence scenario where you analyze all the data from large
tables, you can relax the normalization rules, duplicating information or creating summary tables to
gain more speed.

8.4.2 Optimizing MySQL Data Types

8.4.2.1 Optimizing for Numeric Data

• For unique IDs or other values that can be represented as either strings or numbers, prefer numeric
columns to string columns. Since large numeric values can be stored in fewer bytes than the
corresponding strings, it is faster and takes less memory to transfer and compare them.

• If you are using numeric data, it is faster in many cases to access information from a database (using
a live connection) than to access a text file. Information in the database is likely to be stored in a
more compact format than in the text file, so accessing it involves fewer disk accesses. You also
save code in your application because you can avoid parsing the text file to find line and column
boundaries.

8.4.2.2 Optimizing for Character and String Types

For character and string columns, follow these guidelines:

• Use binary collation order for fast comparison and sort operations, when you do not need language-
specific collation features. You can use the BINARY operator to use binary collation within a
particular query.

• When comparing values from different columns, declare those columns with the same character set
and collation wherever possible, to avoid string conversions while running the query.

• For column values less than 8KB in size, use binary VARCHAR instead of BLOB. The GROUP BY and
ORDER BY clauses can generate temporary tables, and these temporary tables can use the MEMORY
storage engine if the original table does not contain any BLOB columns.

• If a table contains string columns such as name and address, but many queries do not retrieve
those columns, consider splitting the string columns into a separate table and using join queries
with a foreign key when necessary. When MySQL retrieves any value from a row, it reads a data
block containing all the columns of that row (and possibly other adjacent rows). Keeping each row
small, with only the most frequently used columns, allows more rows to fit in each data block. Such
compact tables reduce disk I/O and memory usage for common queries.

• When you use a randomly generated value as a primary key in an InnoDB table, prefix it with an
ascending value such as the current date and time if possible. When consecutive primary values are
physically stored near each other, InnoDB can insert and retrieve them faster.

• See Section 8.4.2.1, “Optimizing for Numeric Data” for reasons why a numeric column is usually
preferable to an equivalent string column.

8.4.2.3 Optimizing for BLOB Types

• When storing a large blob containing textual data, consider compressing it first. Do not use this
technique when the entire table is compressed by InnoDB or MyISAM.

• For a table with several columns, to reduce memory requirements for queries that do not use the
BLOB column, consider splitting the BLOB column into a separate table and referencing it with a join
query when needed.

• Since the performance requirements to retrieve and display a BLOB value might be very different
from other data types, you could put the BLOB-specific table on a different storage device or even a
separate database instance. For example, to retrieve a BLOB might require a large sequential disk
read that is better suited to a traditional hard drive than to an SSD device.



Optimizing for Many Tables

892

• See Section 8.4.2.2, “Optimizing for Character and String Types” for reasons why a binary VARCHAR
column is sometimes preferable to an equivalent BLOB column.

• Rather than testing for equality against a very long text string, you can store a hash of the column
value in a separate column, index that column, and test the hashed value in queries. (Use the MD5()
or CRC32() function to produce the hash value.) Since hash functions can produce duplicate results
for different inputs, you still include a clause AND blob_column = long_string_value in
the query to guard against false matches; the performance benefit comes from the smaller, easily
scanned index for the hashed values.

8.4.2.4 Using PROCEDURE ANALYSE

ANALYSE([max_elements[,max_memory]])

ANALYSE() examines the result from a query and returns an analysis of the results that suggests
optimal data types for each column that may help reduce table sizes. To obtain this analysis, append
PROCEDURE ANALYSE to the end of a SELECT statement:

SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max_elements,[max_memory]])

For example:

SELECT col1, col2 FROM table1 PROCEDURE ANALYSE(10, 2000);

The results show some statistics for the values returned by the query, and propose an optimal data
type for the columns. This can be helpful for checking your existing tables, or after importing new data.
You may need to try different settings for the arguments so that PROCEDURE ANALYSE() does not
suggest the ENUM data type when it is not appropriate.

The arguments are optional and are used as follows:

• max_elements (default 256) is the maximum number of distinct values that ANALYSE() notices per
column. This is used by ANALYSE() to check whether the optimal data type should be of type ENUM;
if there are more than max_elements distinct values, then ENUM is not a suggested type.

• max_memory (default 8192) is the maximum amount of memory that ANALYSE() should allocate per
column while trying to find all distinct values.

A PROCEDURE clause is not permitted in a UNION statement.

8.4.3 Optimizing for Many Tables

Some techniques for keeping individual queries fast involve splitting data across many tables. When
the number of tables runs into the thousands or even millions, the overhead of dealing with all these
tables becomes a new performance consideration.

8.4.3.1 How MySQL Opens and Closes Tables

When you execute a mysqladmin status command, you should see something like this:

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have only six tables.

MySQL is multi-threaded, so there may be many clients issuing queries for a given table
simultaneously. To minimize the problem with multiple client sessions having different states on the
same table, the table is opened independently by each concurrent session. This uses additional
memory but normally increases performance. With MyISAM tables, one extra file descriptor is required



Optimizing for Many Tables

893

for the data file for each client that has the table open. (By contrast, the index file descriptor is shared
between all sessions.)

The table_open_cache and max_connections system variables affect the maximum number of
files the server keeps open. If you increase one or both of these values, you may run up against a limit
imposed by your operating system on the per-process number of open file descriptors. Many operating
systems permit you to increase the open-files limit, although the method varies widely from system to
system. Consult your operating system documentation to determine whether it is possible to increase
the limit and how to do so.

table_open_cache is related to max_connections. For example, for 200 concurrent running
connections, specify a table cache size of at least 200 * N, where N is the maximum number of tables
per join in any of the queries which you execute. You must also reserve some extra file descriptors for
temporary tables and files.

Make sure that your operating system can handle the number of open file descriptors implied by the
table_open_cache setting. If table_open_cache is set too high, MySQL may run out of file
descriptors and refuse connections, fail to perform queries, and be very unreliable.

You should also take into account the fact that the MyISAM storage engine needs two file descriptors
for each unique open table. For a partitioned MyISAM table, two file descriptors are required for each
partition of the opened table. (Note further that when MyISAM opens a partitioned table, it opens every
partition of this table, whether or not a given partition is actually used. See MyISAM and partition file
descriptor usage.) You can increase the number of file descriptors available to MySQL using the --
open-files-limit startup option to mysqld. See Section B.5.2.18, “File Not Found and Similar
Errors”.

The cache of open tables is kept at a level of table_open_cache entries. The default value is
400; this can be changed with the --table_open_cache option to mysqld. Note that MySQL may
temporarily open more tables than this to execute queries.

MySQL closes an unused table and removes it from the table cache under the following circumstances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_open_cache entries and a table in the cache is no
longer being used by any threads.

• When a table flushing operation occurs. This happens when someone issues a FLUSH TABLES
statement or executes a mysqladmin flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

• Tables that are not currently in use are released, beginning with the table least recently used.

• If a new table needs to be opened, but the cache is full and no tables can be released, the cache is
temporarily extended as necessary. When the cache is in a temporarily extended state and a table
goes from a used to unused state, the table is closed and released from the cache.

A MyISAM table is opened for each concurrent access. This means the table needs to be opened twice
if two threads access the same table or if a thread accesses the table twice in the same query (for
example, by joining the table to itself). Each concurrent open requires an entry in the table cache. The
first open of any MyISAM table takes two file descriptors: one for the data file and one for the index file.
Each additional use of the table takes only one file descriptor for the data file. The index file descriptor
is shared among all threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object
is allocated for the thread. This table object is not shared by other threads and is not closed until the
thread calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the table is put
back in the table cache (if the cache is not full). See Section 13.2.4, “HANDLER Syntax”.



Internal Temporary Table Use in MySQL

894

You can determine whether your table cache is too small by checking the mysqld status variable
Opened_tables, which indicates the number of table-opening operations since the server started:

mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741  |
+---------------+-------+

If the value is very large or increases rapidly, even when you have not issued many FLUSH TABLES
statements, increase the table cache size. See Section 5.1.5, “Server System Variables”, and
Section 5.1.7, “Server Status Variables”.

8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

If you have many MyISAM tables in the same database directory, open, close, and create operations
are slow. If you execute SELECT statements on many different tables, there is a little overhead when
the table cache is full, because for every table that has to be opened, another must be closed. You can
reduce this overhead by increasing the number of entries permitted in the table cache.

8.4.4 Internal Temporary Table Use in MySQL

In some cases, the server creates internal temporary tables while processing statements. Users have
no direct control over when this occurs.

The server creates temporary tables under conditions such as these:

• Evaluation of UNION statements.

• Evaluation of some views, such those that use the TEMPTABLE algorithm, UNION, or aggregation.

• Evaluation of statements that contain an ORDER BY clause and a different GROUP BY clause, or for
which the ORDER BY or GROUP BY contains columns from tables other than the first table in the join
queue.

• Evaluation of DISTINCT combined with ORDER BY may require a temporary table.

• For queries that use the SQL_SMALL_RESULT modifier, MySQL uses an in-memory temporary table,
unless the query also contains elements (described later) that require on-disk storage.

• Evaluation of multiple-table UPDATE statements.

• Evaluation of GROUP_CONCAT() or COUNT(DISTINCT) expressions.

To determine whether a statement requires a temporary table, use EXPLAIN and check the Extra
column to see whether it says Using temporary (see Section 8.8.1, “Optimizing Queries with
EXPLAIN”).

When the server creates an internal temporary table (either in memory or on disk), it increments the
Created_tmp_tables status variable. If the server creates the table on disk (either initially or by
converting an in-memory table) it increments the Created_tmp_disk_tables status variable.

Some query conditions prevent the use of an in-memory temporary table, in which case the server
uses an on-disk table instead:

• Presence of a BLOB or TEXT column in the table

• Presence of any string column in a GROUP BY or DISTINCT clause larger than 512 bytes

• Presence of any string column with a maximum length larger than 512 (bytes for binary strings,
characters for nonbinary strings) in the SELECT list, if UNION or UNION ALL is used



Optimizing for InnoDB Tables

895

• The SHOW COLUMNS and DESCRIBE statements use BLOB as the type for some columns, thus the
temporary table used for the results is an on-disk table.

• Storage Engines Used for Temporary Tables

• Temporary Table Storage Format

Storage Engines Used for Temporary Tables

An internal temporary table can be held in memory and processed by the MEMORY storage engine, or
stored on disk and processed by the MyISAM storage engine.

If an internal temporary table is created as an in-memory table but becomes too large, MySQL
automatically converts it to an on-disk table. The maximum size for in-memory temporary tables is
determined from whichever of the values of tmp_table_size and max_heap_table_size is
smaller. This differs from MEMORY tables explicitly created with CREATE TABLE: For such tables, only
the max_heap_table_size system variable determines how large the table is permitted to grow and
there is no conversion to on-disk format.

Temporary Table Storage Format

In-memory temporary tables are managed by the MEMORY storage engine, which uses fixed-length row
format. VARCHAR and VARBINARY column values are padded to the maximum column length, in effect
storing them as CHAR and BINARY columns.

On-disk temporary tables are managed by the MyISAM storage engine using dynamic-width
row format. Columns take only as much storage as needed, which reduces disk I/O and space
requirements, and processing time compared to on-disk tables that use fixed-length rows. The
exception to dynamic-length row format is that on-disk temporary tables for derived tables are stored
using fixed-length rows.

Prior to MySQL 5.5.47, on-disk temporary table storage uses fixed-length rows.

For statements that initially create an internal temporary table in memory, then convert it to an on-disk
table, better performance might be achieved by skipping the conversion step and creating the table
on disk to begin with. The big_tables system variable can be used to force disk storage of internal
temporary tables.

8.5 Optimizing for InnoDB Tables
InnoDB is the storage engine that MySQL customers typically use in production databases where
reliability and concurrency are important. Because InnoDB is the default storage engine in MySQL 5.5
and higher, you can expect to see InnoDB tables more often than before. This section explains how to
optimize database operations for InnoDB tables.

8.5.1 Optimizing Storage Layout for InnoDB Tables

• Once your data reaches a stable size, or a growing table has increased by tens or some hundreds
of megabytes, consider using the OPTIMIZE TABLE statement to reorganize the table and compact
any wasted space. The reorganized tables require less disk I/O to perform full table scans. This is a
straightforward technique that can improve performance when other techniques such as improving
index usage or tuning application code are not practical.

OPTIMIZE TABLE copies the data part of the table and rebuilds the indexes. The benefits come
from improved packing of data within indexes, and reduced fragmentation within the tablespaces
and on disk. The benefits vary depending on the data in each table. You may find that there are
significant gains for some and not for others, or that the gains decrease over time until you next
optimize the table. This operation can be slow if the table is large or if the indexes being rebuilt do
not fit into the buffer pool. The first run after adding a lot of data to a table is often much slower than
later runs.



Optimizing InnoDB Transaction Management

896

• In InnoDB, having a long PRIMARY KEY (either a single column with a lengthy value, or several
columns that form a long composite value) wastes a lot of disk space. The primary key value
for a row is duplicated in all the secondary index records that point to the same row. (See
Section 14.11.2.1, “Clustered and Secondary Indexes”.) Create an AUTO_INCREMENT column as
the primary key if your primary key is long, or index a prefix of a long VARCHAR column instead of the
entire column.

• Use the VARCHAR data type instead of CHAR to store variable-length strings or for columns with many
NULL values. A CHAR(N) column always takes N characters to store data, even if the string is shorter
or its value is NULL. Smaller tables fit better in the buffer pool and reduce disk I/O.

When using COMPACT row format (the default InnoDB format) and variable-length character sets,
such as utf8 or sjis, CHAR(N) columns occupy a variable amount of space, but still at least N
bytes.

• For tables that are big, or contain lots of repetitive text or numeric data, consider using COMPRESSED
row format. Less disk I/O is required to bring data into the buffer pool, or to perform full table scans.
Before making a permanent decision, measure the amount of compression you can achieve by using
COMPRESSED versus COMPACT row format.

8.5.2 Optimizing InnoDB Transaction Management

To optimize InnoDB transaction processing, find the ideal balance between the performance overhead
of transactional features and the workload of your server. For example, an application might encounter
performance issues if it commits thousands of times per second, and different performance issues if it
commits only every 2-3 hours.

• The default MySQL setting AUTOCOMMIT=1 can impose performance limitations on a busy database
server. Where practical, wrap several related data change operations into a single transaction,
by issuing SET AUTOCOMMIT=0 or a START TRANSACTION statement, followed by a COMMIT
statement after making all the changes.

InnoDB must flush the log to disk at each transaction commit if that transaction made modifications
to the database. When each change is followed by a commit (as with the default autocommit setting),
the I/O throughput of the storage device puts a cap on the number of potential operations per
second.

• Avoid performing rollbacks after inserting, updating, or deleting huge numbers of rows. If a big
transaction is slowing down server performance, rolling it back can make the problem worse,
potentially taking several times as long to perform as the original data change operations. Killing the
database process does not help, because the rollback starts again on server startup.

To minimize the chance of this issue occurring:

• Increase the size of the buffer pool so that all the data change changes can be cached rather than
immediately written to disk.

• Set innodb_change_buffering=all so that update and delete operations are buffered in
addition to inserts.

• Consider issuing COMMIT statements periodically during the big data change operation, possibly
breaking a single delete or update into multiple statements that operate on smaller numbers of
rows.

To get rid of a runaway rollback once it occurs, increase the buffer pool so that the rollback becomes
CPU-bound and runs fast, or kill the server and restart with innodb_force_recovery=3, as
explained in Section 14.21.2, “InnoDB Recovery”.

This issue is expected to be infrequent with the default setting innodb_change_buffering=all,
which allows update and delete operations to be cached in memory, making them faster to perform



Optimizing InnoDB Redo Logging

897

in the first place, and also faster to roll back if needed. Make sure to use this parameter setting on
servers that process long-running transactions with many inserts, updates, or deletes.

• If you can afford the loss of some of the latest committed transactions if a crash occurs, you can set
the innodb_flush_log_at_trx_commit parameter to 0. InnoDB tries to flush the log once per
second anyway, although the flush is not guaranteed. Also, set the value of innodb_support_xa
to 0, which will reduce the number of disk flushes due to synchronizing on disk data and the binary
log.

• When rows are modified or deleted, the rows and associated undo logs are not physically removed
immediately, or even immediately after the transaction commits. The old data is preserved until
transactions that started earlier or concurrently are finished, so that those transactions can access
the previous state of modified or deleted rows. Thus, a long-running transaction can prevent InnoDB
from purging data that was changed by a different transaction.

• When rows are modified or deleted within a long-running transaction, other transactions using the
READ COMMITTED and REPEATABLE READ isolation levels have to do more work to reconstruct the
older data if they read those same rows.

• When a long-running transaction modifies a table, queries against that table from other transactions
do not make use of the covering index technique. Queries that normally could retrieve all the result
columns from a secondary index, instead look up the appropriate values from the table data.

If secondary index pages are found to have a PAGE_MAX_TRX_ID that is too new, or if records in the
secondary index are delete-marked, InnoDB may need to look up records using a clustered index.

8.5.3 Optimizing InnoDB Redo Logging

Consider the following guidelines for optimizing redo logging:

• Make your redo log files big, even as big as the buffer pool. When InnoDB has written the redo log
files full, it must write the modified contents of the buffer pool to disk in a checkpoint. Small redo log
files cause many unnecessary disk writes. Although historically big redo log files caused lengthy
recovery times, recovery is now much faster and you can confidently use large redo log files.

The size and number of redo log files are configured using the innodb_log_file_size and
innodb_log_files_in_group configuration options. For information about modifying an existing
redo log file configuration, see Section 14.10.2, “Changing the Number or Size of InnoDB Redo Log
Files”.

• Consider increasing the size of the log buffer. A large log buffer enables large transactions to run
without a need to write the log to disk before the transactions commit. Thus, if you have transactions
that update, insert, or delete many rows, making the log buffer larger saves disk I/O. Log buffer size
is configured using the innodb_log_buffer_size configuration option.

8.5.4 Bulk Data Loading for InnoDB Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.4.1,
“Optimizing INSERT Statements”.

• When importing data into InnoDB, turn off autocommit mode, because it performs a log flush to
disk for every insert. To disable autocommit during your import operation, surround it with SET
autocommit and COMMIT statements:

SET autocommit=0;
... SQL import statements ...
COMMIT;

The mysqldump option --opt creates dump files that are fast to import into an InnoDB table, even
without wrapping them with the SET autocommit and COMMIT statements.



Optimizing InnoDB Queries

898

• If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily
turning off the uniqueness checks during the import session:

SET unique_checks=0;
... SQL import statements ...
SET unique_checks=1;

For big tables, this saves a lot of disk I/O because InnoDB can use its change buffer to write
secondary index records in a batch. Be certain that the data contains no duplicate keys.

• If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning off
the foreign key checks for the duration of the import session:

SET foreign_key_checks=0;
... SQL import statements ...
SET foreign_key_checks=1;

For big tables, this can save a lot of disk I/O.

• Use the multiple-row INSERT syntax to reduce communication overhead between the client and the
server if you need to insert many rows:

INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table, not just InnoDB tables.

• When doing bulk inserts into tables with auto-increment columns, set
innodb_autoinc_lock_mode to 2 instead of the default value 1. See Section 14.11.1.5,
“AUTO_INCREMENT Handling in InnoDB” for details.

• When performing bulk inserts, it is faster to insert rows in PRIMARY KEY order. InnoDB tables
use a clustered index, which makes it relatively fast to use data in the order of the PRIMARY KEY.
Performing bulk inserts in PRIMARY KEY order is particularly important for tables that do not fit
entirely within the buffer pool.

8.5.5 Optimizing InnoDB Queries

To tune queries for InnoDB tables, create an appropriate set of indexes on each table. See
Section 8.3.1, “How MySQL Uses Indexes” for details. Follow these guidelines for InnoDB indexes:

• Because each InnoDB table has a primary key (whether you request one or not), specify a set of
primary key columns for each table, columns that are used in the most important and time-critical
queries.

• Do not specify too many or too long columns in the primary key, because these column values are
duplicated in each secondary index. When an index contains unnecessary data, the I/O to read this
data and memory to cache it reduce the performance and scalability of the server.

• Do not create a separate secondary index for each column, because each query can only make
use of one index. Indexes on rarely tested columns or columns with only a few different values
might not be helpful for any queries. If you have many queries for the same table, testing different
combinations of columns, try to create a small number of concatenated indexes rather than a large
number of single-column indexes. If an index contains all the columns needed for the result set
(known as a covering index), the query might be able to avoid reading the table data at all.

• If an indexed column cannot contain any NULL values, declare it as NOT NULL when you create the
table. The optimizer can better determine which index is most effective to use for a query, when it
knows whether each column contains NULL values.

• If you often have recurring queries for tables that are not updated frequently, enable the query cache:



Optimizing InnoDB DDL Operations

899

[mysqld]
query_cache_type = 1
query_cache_size = 10M

8.5.6 Optimizing InnoDB DDL Operations

• For DDL operations on tables and indexes (CREATE, ALTER, and DROP statements), the most
significant aspect for InnoDB tables is that creating and dropping secondary indexes is much faster
in MySQL 5.5 and higher, than in earlier versions. See Section 14.16, “InnoDB Fast Index Creation”
for details.

• “Fast index creation” makes it faster in some cases to drop an index before loading data into a table,
then re-create the index after loading the data.

• Use TRUNCATE TABLE to empty a table, not DELETE FROM tbl_name. Foreign key constraints
can make a TRUNCATE statement work like a regular DELETE statement, in which case a sequence
of commands like DROP TABLE and CREATE TABLE might be fastest.

• Because the primary key is integral to the storage layout of each InnoDB table, and changing the
definition of the primary key involves reorganizing the whole table, always set up the primary key as
part of the CREATE TABLE statement, and plan ahead so that you do not need to ALTER or DROP
the primary key afterward.

8.5.7 Optimizing InnoDB Disk I/O

If you follow best practices for database design and tuning techniques for SQL operations, but your
database is still slow due to heavy disk I/O activity, consider these disk I/O optimizations. If the Unix
top tool or the Windows Task Manager shows that the CPU usage percentage with your workload is
less than 70%, your workload is probably disk-bound.

• Increase buffer pool size

When table data is cached in the InnoDB buffer pool, it can be accessed repeatedly
by queries without requiring any disk I/O. Specify the size of the buffer pool with the
innodb_buffer_pool_size option. This memory area is important enough that it is typically
recommended that innodb_buffer_pool_size is configured to 50 to 75 percent of system
memory. For more information see, Section 8.12.4.1, “How MySQL Uses Memory”.

• Adjust the flush method

In some versions of GNU/Linux and Unix, flushing files to disk with the Unix fsync() call (which
InnoDB uses by default) and similar methods is surprisingly slow. If database write performance is
an issue, conduct benchmarks with the innodb_flush_method parameter set to O_DSYNC.

• Use a noop or deadline I/O scheduler with native AIO on Linux

InnoDB uses the asynchronous I/O subsystem (native AIO) on Linux to perform read-ahead and
write requests for data file pages. This behavior is controlled by the innodb_use_native_aio
configuration option, which is enabled by default. With native AIO, the type of I/O scheduler
has greater influence on I/O performance. Generally, noop and deadline I/O schedulers are
recommended. Conduct benchmarks to determine which I/O scheduler provides the best results for
your workload and environment. For more information, see Section 14.9.7, “Using Asynchronous I/O
on Linux”.

• Use direct I/O on Solaris 10 for x86_64 architecture

When using the InnoDB storage engine on Solaris 10 for x86_64 architecture (AMD Opteron),
use direct I/O for InnoDB-related files to avoid degradation of InnoDB performance. To use
direct I/O for an entire UFS file system used for storing InnoDB-related files, mount it with the
forcedirectio option; see mount_ufs(1M). (The default on Solaris 10/x86_64 is not to use



Optimizing InnoDB Disk I/O

900

this option.) To apply direct I/O only to InnoDB file operations rather than the whole file system, set
innodb_flush_method = O_DIRECT. With this setting, InnoDB calls directio() instead of
fcntl() for I/O to data files (not for I/O to log files).

• Use raw storage for data and log files with Solaris 2.6 or later

When using the InnoDB storage engine with a large innodb_buffer_pool_size value on any
release of Solaris 2.6 and up and any platform (sparc/x86/x64/amd64), conduct benchmarks with
InnoDB data files and log files on raw devices or on a separate direct I/O UFS file system, using the
forcedirectio mount option as described earlier. (It is necessary to use the mount option rather
than setting innodb_flush_method if you want direct I/O for the log files.) Users of the Veritas file
system VxFS should use the convosync=direct mount option.

Do not place other MySQL data files, such as those for MyISAM tables, on a direct I/O file system.
Executables or libraries must not be placed on a direct I/O file system.

• Use additional storage devices

Additional storage devices could be used to set up a RAID configuration. For related information, see
Section 8.12.2, “Optimizing Disk I/O”.

Alternatively, InnoDB tablespace data files and log files can be placed on different physical disks.
For more information, refer to the following sections:

• Section 14.9.1, “InnoDB Startup Configuration”

• Section 14.11.1.3, “Moving or Copying InnoDB Tables”

• Non-rotational storage generally provides better performance for random I/O operations; and
rotational storage for sequential I/O operations. When distributing data and log files across rotational
and non-rotational storage devices, consider the type of I/O operations that are predominantly
performed on each file.

Random I/O-oriented files are typically file-per-table data files. Sequential I/O-oriented files include
InnoDB system tablespace files (due to doublewrite buffering and change buffering) and log files
such as binary log files and redo log files.

Review settings for the following configuration options when using non-rotational storage:

• innodb_io_capacity

The default setting of 200 is generally sufficient for a lower-end non-rotational storage device. For
higher-end, bus-attached devices, consider a higher setting such as 1000.

• innodb_log_file_size

If redo logs are on non-rotational storage, configure this option to maximize caching and write
combining.

Early-generation SSD devices often have a 4k sector size, but some newer devices have a 16k
sector size. The default InnoDB page size is 16k. Keeping the page size close to the storage device
block size minimizes the amount of unchanged data that is rewritten to disk.

Ensure that TRIM support is enabled for your operating system. It is typically enabled by default.

• Increase I/O capacity to avoid backlogs

If throughput drops periodically because of InnoDB checkpoint operations, consider increasing
the value of the innodb_io_capacity configuration option. Higher values cause more frequent
flushing, avoiding the backlog of work that can cause dips in throughput.

• Lower I/O capacity if flushing does not fall behind



Optimizing InnoDB Configuration Variables

901

If the system is not falling behind with InnoDB flushing operations, consider lowering the value of
the innodb_io_capacity configuration option. Typically, you keep this option value as low as
practical, but not so low that it causes periodic drops in throughput as mentioned in the preceding
bullet. In a typical scenario where you could lower the option value, you might see a combination like
this in the output from SHOW ENGINE INNODB STATUS:

• History list length low, below a few thousand.

• Insert buffer merges close to rows inserted.

• Modified pages in buffer pool consistently well below innodb_max_dirty_pages_pct of the
buffer pool. (Measure at a time when the server is not doing bulk inserts; it is normal during bulk
inserts for the modified pages percentage to rise significantly.)

• Log sequence number - Last checkpoint is at less than 7/8 or ideally less than 6/8 of the
total size of the InnoDB log files.

8.5.8 Optimizing InnoDB Configuration Variables

Different settings work best for servers with light, predictable loads, versus servers that are running
near full capacity all the time, or that experience spikes of high activity.

Because the InnoDB storage engine performs many of its optimizations automatically, many
performance-tuning tasks involve monitoring to ensure that the database is performing well, and
changing configuration options when performance drops. See Section 14.19, “InnoDB Integration with
MySQL Performance Schema” for information about detailed InnoDB performance monitoring.

For a list of the most important and most recent InnoDB performance features, see Section 1.4, “What
Is New in MySQL 5.5”. Even if you have used InnoDB tables in prior versions, these features might be
new to you, because they are from the “InnoDB Plugin”. The Plugin co-existed alongside the built-in
InnoDB in MySQL 5.1, and becomes the default storage engine in MySQL 5.5 and higher.

The main configuration steps you can perform include:

• Enabling InnoDB to use high-performance memory allocators on systems that include them. See
Section 14.9.3, “Configuring the Memory Allocator for InnoDB”.

• Controlling the types of data change operations for which InnoDB buffers the changed data, to avoid
frequent small disk writes. See Section 14.9.4, “Configuring InnoDB Change Buffering”. Because the
default is to buffer all types of data change operations, only change this setting if you need to reduce
the amount of buffering.

• Turning the adaptive hash indexing feature on and off using the innodb_adaptive_hash_index
option. See Section 14.7.3, “Adaptive Hash Index” for more information. You might change this
setting during periods of unusual activity, then restore it to its original setting.

• Setting a limit on the number of concurrent threads that InnoDB processes, if context switching is a
bottleneck. See Section 14.9.5, “Configuring Thread Concurrency for InnoDB”.

• Controlling the amount of prefetching that InnoDB does with its read-ahead operations. When
the system has unused I/O capacity, more read-ahead can improve the performance of queries.
Too much read-ahead can cause periodic drops in performance on a heavily loaded system. See
Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

• Increasing the number of background threads for read or write operations, if you have a high-end
I/O subsystem that is not fully utilized by the default values. See Section 14.9.6, “Configuring the
Number of Background InnoDB I/O Threads”.

• Controlling how much I/O InnoDB performs in the background. See Section 14.9.8, “Configuring the
InnoDB Master Thread I/O Rate”. You might scale back this setting if you observe periodic drops in
performance.



Optimizing InnoDB for Systems with Many Tables

902

• Controlling the algorithm that determines when InnoDB performs certain types of background writes.
See Section 14.9.2.5, “Configuring InnoDB Buffer Pool Flushing”. The algorithm works for some
types of workloads but not others, so might turn off this setting if you observe periodic drops in
performance.

• Taking advantage of multicore processors and their cache memory configuration, to minimize delays
in context switching. See Section 14.9.9, “Configuring Spin Lock Polling”.

• Preventing one-time operations such as table scans from interfering with the frequently accessed
data stored in the InnoDB buffer cache. See Section 14.9.2.3, “Making the Buffer Pool Scan
Resistant”.

• Adjusting log files to a size that makes sense for reliability and crash recovery. InnoDB log files have
often been kept small to avoid long startup times after a crash. Optimizations introduced in MySQL
5.5 speed up certain steps of the crash recovery process. In particular, scanning the redo log and
applying the redo log are faster due to improved algorithms for memory management. If you have
kept your log files artificially small to avoid long startup times, you can now consider increasing log
file size to reduce the I/O that occurs due recycling of redo log records.

• Configuring the size and number of instances for the InnoDB buffer pool, especially important for
systems with multi-gigabyte buffer pools. See Section 14.9.2.2, “Configuring Multiple Buffer Pool
Instances”.

• Increasing the maximum number of concurrent transactions, which dramatically improves scalability
for the busiest databases. See Section 14.7.8, “Undo Logs”. Although this feature does not require
any action during day-to-day operation, you must perform a slow shutdown during or after upgrading
the database to MySQL 5.5 to enable the higher limit.

• Moving purge operations (a type of garbage collection) into a background thread. See
Section 14.9.10, “Configuring InnoDB Purge Scheduling”. To effectively measure the results of this
setting, tune the other I/O-related and thread-related configuration settings first.

• Reducing the amount of switching that InnoDB does between concurrent threads, so that
SQL operations on a busy server do not queue up and form a “traffic jam”. Set a value for the
innodb_thread_concurrency option, up to approximately 32 for a high-powered modern system.
Increase the value for the innodb_concurrency_tickets option, typically to 5000 or so. This
combination of options sets a cap on the number of threads that InnoDB processes at any one time,
and allows each thread to do substantial work before being swapped out, so that the number of
waiting threads stays low and operations can complete without excessive context switching.

8.5.9 Optimizing InnoDB for Systems with Many Tables

• InnoDB computes index cardinality values for a table the first time that table is accessed after
startup, instead of storing such values in the table. This step can take significant time on systems
that partition the data into many tables. Since this overhead only applies to the initial table open
operation, to “warm up” a table for later use, access it immediately after startup by issuing a
statement such as SELECT 1 FROM tbl_name LIMIT 1.

8.6 Optimizing for MyISAM Tables
The MyISAM storage engine performs best with read-mostly data or with low-concurrency operations,
because table locks limit the ability to perform simultaneous updates. In MySQL 5.5, InnoDB is the
default storage engine rather than MyISAM.

8.6.1 Optimizing MyISAM Queries

Some general tips for speeding up queries on MyISAM tables:

• To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze on
a table after it has been loaded with data. This updates a value for each index part that indicates



Optimizing MyISAM Queries

903

the average number of rows that have the same value. (For unique indexes, this is always 1.)
MySQL uses this to decide which index to choose when you join two tables based on a nonconstant
expression. You can check the result from the table analysis by using SHOW INDEX FROM
tbl_name and examining the Cardinality value. myisamchk --description --verbose
shows index distribution information.

• To sort an index and data according to an index, use myisamchk --sort-index --sort-
records=1 (assuming that you want to sort on index 1). This is a good way to make queries faster
if you have a unique index from which you want to read all rows in order according to the index. The
first time you sort a large table this way, it may take a long time.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid
problems with table locking that occur due to contention between readers and writers.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you
can INSERT new rows into it at the same time that other threads are reading from the table. If it is
important to be able to do this, consider using the table in ways that avoid deleting rows. Another
possibility is to run OPTIMIZE TABLE to defragment the table after you have deleted a lot of rows
from it. This behavior is altered by setting the concurrent_insert variable. You can force new
rows to be appended (and therefore permit concurrent inserts), even in tables that have deleted
rows. See Section 8.11.3, “Concurrent Inserts”.

• For MyISAM tables that change frequently, try to avoid all variable-length columns (VARCHAR, BLOB,
and TEXT). The table uses dynamic row format if it includes even a single variable-length column.
See Chapter 15, Alternative Storage Engines.

• It is normally not useful to split a table into different tables just because the rows become large. In
accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row.
After finding the data, most modern disks can read the entire row fast enough for most applications.
The only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table
using dynamic row format that you can change to a fixed row size, or if you very often need to scan
the table but do not need most of the columns. See Chapter 15, Alternative Storage Engines.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1,
expr2, ... order. By using this option after extensive changes to the table, you may be able to get
higher performance.

• If you often need to calculate results such as counts based on information from a lot of rows, it may
be preferable to introduce a new table and update the counter in real time. An update of the following
form is very fast:

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is very important when you use a MySQL storage engine such as MyISAM that has only table-
level locking (multiple readers with single writers). This also gives better performance with most
database systems, because the row locking manager in this case has less to do.

• Use INSERT DELAYED when you do not need to know when your data is written. This reduces the
overall insertion impact because many rows can be written with a single disk write.

• Use INSERT LOW_PRIORITY when you want to give SELECT statements higher priority than your
inserts.

Use SELECT HIGH_PRIORITY to get retrievals that jump the queue. That is, the SELECT is
executed even if there is another client waiting to do a write.

LOW_PRIORITY and HIGH_PRIORITY have an effect only for storage engines that use only table-
level locking (such as MyISAM, MEMORY, and MERGE).

• Use OPTIMIZE TABLE periodically to avoid fragmentation with dynamic-format MyISAM tables. See
Section 15.3.3, “MyISAM Table Storage Formats”.



Bulk Data Loading for MyISAM Tables

904

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster
because they are not flushed to disk until the table is closed. The downside is that if something kills
the server while such a table is open, you must ensure that the table is okay by running the server
with the --myisam-recover-options option, or by running myisamchk before restarting the
server. (However, even in this case, you should not lose anything by using DELAY_KEY_WRITE,
because the key information can always be generated from the data rows.)

• Strings are automatically prefix- and end-space compressed in MyISAM indexes. See
Section 13.1.13, “CREATE INDEX Syntax”.

• You can increase performance by caching queries or answers in your application and then executing
many inserts or updates together. Locking the table during this operation ensures that the index
cache is only flushed once after all updates. You can also take advantage of MySQL's query cache
to achieve similar results; see Section 8.10.3, “The MySQL Query Cache”.

8.6.2 Bulk Data Loading for MyISAM Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.4.1,
“Optimizing INSERT Statements”.

• To improve performance when multiple clients insert a lot of rows, use the INSERT DELAYED
statement. See Section 13.2.5.2, “INSERT DELAYED Syntax”. This technique works for MyISAM and
some other storage engines, but not InnoDB.

• For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT
statements are running, if there are no deleted rows in middle of the data file. See Section 8.11.3,
“Concurrent Inserts”.

• With some extra work, it is possible to make LOAD DATA INFILE run even faster for a MyISAM
table when the table has many indexes. Use the following procedure:

1. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

2. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name to remove all use of
indexes for the table.

3. Insert data into the table with LOAD DATA INFILE. This does not update any indexes and
therefore is very fast.

4. If you intend only to read from the table in the future, use myisampack to compress it. See
Section 15.3.3.3, “Compressed Table Characteristics”.

5. Re-create the indexes with myisamchk -rq /path/to/db/tbl_name. This creates the index
tree in memory before writing it to disk, which is much faster than updating the index during LOAD
DATA INFILE because it avoids lots of disk seeks. The resulting index tree is also perfectly
balanced.

6. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

LOAD DATA INFILE performs the preceding optimization automatically if the MyISAM table into
which you insert data is empty. The main difference between automatic optimization and using the
procedure explicitly is that you can let myisamchk allocate much more temporary memory for the
index creation than you might want the server to allocate for index re-creation when it executes the
LOAD DATA INFILE statement.

You can also disable or enable the nonunique indexes for a MyISAM table by using the following
statements rather than myisamchk. If you use these statements, you can skip the FLUSH TABLE
operations:

ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;



Optimizing REPAIR TABLE Statements

905

• To speed up INSERT operations that are performed with multiple statements for nontransactional
tables, lock your tables:

LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
...
UNLOCK TABLES;

This benefits performance because the index buffer is flushed to disk only once, after all INSERT
statements have completed. Normally, there would be as many index buffer flushes as there are
INSERT statements. Explicit locking statements are not needed if you can insert all rows with a
single INSERT.

Locking also lowers the total time for multiple-connection tests, although the maximum wait time for
individual connections might go up because they wait for locks. Suppose that five clients attempt to
perform inserts simultaneously as follows:

• Connection 1 does 1000 inserts

• Connections 2, 3, and 4 do 1 insert

• Connection 5 does 1000 inserts

If you do not use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking,
connections 2, 3, and 4 probably do not finish before 1 or 5, but the total time should be about 40%
faster.

INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better overall
performance by adding locks around everything that does more than about five successive inserts
or updates. If you do very many successive inserts, you could do a LOCK TABLES followed by an
UNLOCK TABLES once in a while (each 1,000 rows or so) to permit other threads to access table.
This would still result in a nice performance gain.

INSERT is still much slower for loading data than LOAD DATA INFILE, even when using the
strategies just outlined.

• To increase performance for MyISAM tables, for both LOAD DATA INFILE and INSERT, enlarge the
key cache by increasing the key_buffer_size system variable. See Section 5.1.1, “Configuring
the Server”.

8.6.3 Optimizing REPAIR TABLE Statements

REPAIR TABLE for MyISAM tables is similar to using myisamchk for repair operations, and some of
the same performance optimizations apply:

• myisamchk has variables that control memory allocation. You may be able to its improve
performance by setting these variables, as described in Section 4.6.3.6, “myisamchk Memory
Usage”.

• For REPAIR TABLE, the same principle applies, but because the repair is done by the server, you
set server system variables instead of myisamchk variables. Also, in addition to setting memory-
allocation variables, increasing the myisam_max_sort_file_size system variable increases the
likelihood that the repair will use the faster filesort method and avoid the slower repair by key cache
method. Set the variable to the maximum file size for your system, after checking to be sure that
there is enough free space to hold a copy of the table files. The free space must be available in the
file system containing the original table files.

Suppose that a myisamchk table-repair operation is done using the following options to set its
memory-allocation variables:



Optimizing REPAIR TABLE Statements

906

--key_buffer_size=128M --myisam_sort_buffer_size=256M
--read_buffer_size=64M --write_buffer_size=64M

Some of those myisamchk variables correspond to server system variables:

myisamchk Variable System Variable

key_buffer_size key_buffer_size

myisam_sort_buffer_size myisam_sort_buffer_size

read_buffer_size read_buffer_size

write_buffer_size none

Each of the server system variables can be set at runtime, and some of them
(myisam_sort_buffer_size, read_buffer_size) have a session value in addition to a global
value. Setting a session value limits the effect of the change to your current session and does not affect
other users. Changing a global-only variable (key_buffer_size, myisam_max_sort_file_size)
affects other users as well. For key_buffer_size, you must take into account that the buffer
is shared with those users. For example, if you set the myisamchk key_buffer_size variable
to 128MB, you could set the corresponding key_buffer_size system variable larger than that
(if it is not already set larger), to permit key buffer use by activity in other sessions. However,
changing the global key buffer size invalidates the buffer, causing increased disk I/O and slowdown
for other sessions. An alternative that avoids this problem is to use a separate key cache, assign
to it the indexes from the table to be repaired, and deallocate it when the repair is complete. See
Section 8.10.2.2, “Multiple Key Caches”.

Based on the preceding remarks, a REPAIR TABLE operation can be done as follows to use settings
similar to the myisamchk command. Here a separate 128MB key buffer is allocated and the file
system is assumed to permit a file size of at least 100GB.

SET SESSION myisam_sort_buffer_size = 256*1024*1024;
SET SESSION read_buffer_size = 64*1024*1024;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
SET GLOBAL repair_cache.key_buffer_size = 128*1024*1024;
CACHE INDEX tbl_name IN repair_cache;
LOAD INDEX INTO CACHE tbl_name;
REPAIR TABLE tbl_name ;
SET GLOBAL repair_cache.key_buffer_size = 0;

If you intend to change a global variable but want to do so only for the duration of a REPAIR TABLE
operation to minimally affect other users, save its value in a user variable and restore it afterward. For
example:

SET @old_myisam_sort_buffer_size = @@global.myisam_max_sort_file_size;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
REPAIR TABLE tbl_name ;
SET GLOBAL myisam_max_sort_file_size = @old_myisam_max_sort_file_size;

The system variables that affect REPAIR TABLE can be set globally at server startup if you want the
values to be in effect by default. For example, add these lines to the server my.cnf file:

[mysqld]
myisam_sort_buffer_size=256M
key_buffer_size=1G
myisam_max_sort_file_size=100G

These settings do not include read_buffer_size. Setting read_buffer_size globally to a
large value does so for all sessions and can cause performance to suffer due to excessive memory
allocation for a server with many simultaneous sessions.



Optimizing for MEMORY Tables

907

8.7 Optimizing for MEMORY Tables
Consider using MEMORY tables for noncritical data that is accessed often, and is read-only or rarely
updated. Benchmark your application against equivalent InnoDB or MyISAM tables under a realistic
workload, to confirm that any additional performance is worth the risk of losing data, or the overhead of
copying data from a disk-based table at application start.

For best performance with MEMORY tables, examine the kinds of queries against each table, and
specify the type to use for each associated index, either a B-tree index or a hash index. On the CREATE
INDEX statement, use the clause USING BTREE or USING HASH. B-tree indexes are fast for queries
that do greater-than or less-than comparisons through operators such as > or BETWEEN. Hash indexes
are only fast for queries that look up single values through the = operator, or a restricted set of values
through the IN operator. For why USING BTREE is often a better choice than the default USING HASH,
see Section 8.2.1.16, “Avoiding Full Table Scans”. For implementation details of the different types of
MEMORY indexes, see Section 8.3.8, “Comparison of B-Tree and Hash Indexes”.

8.8 Understanding the Query Execution Plan
Depending on the details of your tables, columns, indexes, and the conditions in your WHERE clause,
the MySQL optimizer considers many techniques to efficiently perform the lookups involved in an SQL
query. A query on a huge table can be performed without reading all the rows; a join involving several
tables can be performed without comparing every combination of rows. The set of operations that the
optimizer chooses to perform the most efficient query is called the “query execution plan”, also known
as the EXPLAIN plan. Your goals are to recognize the aspects of the EXPLAIN plan that indicate a
query is optimized well, and to learn the SQL syntax and indexing techniques to improve the plan if you
see some inefficient operations.

8.8.1 Optimizing Queries with EXPLAIN

The EXPLAIN statement provides information about how MySQL executes statements:

• When you precede a SELECT statement with the keyword EXPLAIN, MySQL displays information
from the optimizer about the statement execution plan. That is, MySQL explains how it would
process the statement, including information about how tables are joined and in which order. For
information about using EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN
Output Format”.

• EXPLAIN EXTENDED produces additional execution plan information. See Section 8.8.3, “Extended
EXPLAIN Output Format”.

• EXPLAIN PARTITIONS is useful for examining queries involving partitioned tables. See
Section 19.3.4, “Obtaining Information About Partitions”.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the
optimizer joins the tables in an optimal order. To give a hint to the optimizer to use a join order
corresponding to the order in which the tables are named in a SELECT statement, begin the statement
with SELECT STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Syntax”.)

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.

Note

EXPLAIN can also be used to obtain information about the columns in a
table. EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name and
SHOW COLUMNS FROM tbl_name. For more information, see Section 13.8.1,
“DESCRIBE Syntax”, and Section 13.7.5.6, “SHOW COLUMNS Syntax”.



EXPLAIN Output Format

908

8.8.2 EXPLAIN Output Format

The EXPLAIN statement provides information about the execution plan for a SELECT statement.

EXPLAIN returns a row of information for each table used in the SELECT statement. It lists the tables in
the output in the order that MySQL would read them while processing the statement. MySQL resolves
all joins using a nested-loop join method. This means that MySQL reads a row from the first table,
and then finds a matching row in the second table, the third table, and so on. When all tables are
processed, MySQL outputs the selected columns and backtracks through the table list until a table is
found for which there are more matching rows. The next row is read from this table and the process
continues with the next table.

When the EXTENDED keyword is used, EXPLAIN produces extra information that can be viewed by
issuing a SHOW WARNINGS statement following the EXPLAIN statement. EXPLAIN EXTENDED also
displays the filtered column. See Section 8.8.3, “Extended EXPLAIN Output Format”.

Note

You cannot use the EXTENDED and PARTITIONS keywords together in the
same EXPLAIN statement.

Note

MySQL Workbench has a Visual Explain capability that provides a visual
representation of EXPLAIN output. See Tutorial: Using Visual Explain to
Improve Query Performance.

• EXPLAIN Output Columns

• EXPLAIN Join Types

• EXPLAIN Extra Information

• EXPLAIN Output Interpretation

EXPLAIN Output Columns

This section describes the output columns produced by EXPLAIN. Later sections provide additional
information about the type and Extra columns.

Each output row from EXPLAIN provides information about one table. Each row contains the values
summarized in Table 8.1, “EXPLAIN Output Columns”, and described in more detail following the table.

Table 8.1 EXPLAIN Output Columns

Column Meaning

id The SELECT identifier

select_type The SELECT type

table The table for the output row

partitions The matching partitions

type The join type

possible_keys The possible indexes to choose

key The index actually chosen

key_len The length of the chosen key

ref The columns compared to the index

rows Estimate of rows to be examined

filtered Percentage of rows filtered by table condition

Extra Additional information

http://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html
http://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html


EXPLAIN Output Format

909

• id

The SELECT identifier. This is the sequential number of the SELECT within the query. The value can
be NULL if the row refers to the union result of other rows. In this case, the table column shows a
value like <unionM,N> to indicate that the row refers to the union of the rows with id values of M
and N.

• select_type

The type of SELECT, which can be any of those shown in the following table.

select_type Value Meaning

SIMPLE Simple SELECT (not using UNION or subqueries)

PRIMARY Outermost SELECT

UNION Second or later SELECT statement in a UNION

DEPENDENT UNION Second or later SELECT statement in a UNION, dependent on outer query

UNION RESULT Result of a UNION.

SUBQUERY First SELECT in subquery

DEPENDENT
SUBQUERY

First SELECT in subquery, dependent on outer query

DERIVED Derived table SELECT (subquery in FROM clause)

UNCACHEABLE
SUBQUERY

A subquery for which the result cannot be cached and must be re-
evaluated for each row of the outer query

UNCACHEABLE UNION The second or later select in a UNION that belongs to an uncacheable
subquery (see UNCACHEABLE SUBQUERY)

DEPENDENT typically signifies the use of a correlated subquery. See Section 13.2.10.7, “Correlated
Subqueries”.

DEPENDENT SUBQUERY evaluation differs from UNCACHEABLE SUBQUERY evaluation. For
DEPENDENT SUBQUERY, the subquery is re-evaluated only once for each set of different values of
the variables from its outer context. For UNCACHEABLE SUBQUERY, the subquery is re-evaluated for
each row of the outer context.

Cacheability of subqueries differs from caching of query results in the query cache (which is
described in Section 8.10.3.1, “How the Query Cache Operates”). Subquery caching occurs during
query execution, whereas the query cache is used to store results only after query execution
finishes.

• table

The name of the table to which the row of output refers. This can also be one of the following values:

• <unionM,N>: The row refers to the union of the rows with id values of M and N.

• <derivedN>: The row refers to the derived table result for the row with an id value of N. A
derived table may result, for example, from a subquery in the FROM clause.

• partitions

The partitions from which records would be matched by the query. This column is displayed only if
the PARTITIONS keyword is used. The value is NULL for nonpartitioned tables. See Section 19.3.4,
“Obtaining Information About Partitions”.

• type

The join type. For descriptions of the different types, see EXPLAIN Join Types.



EXPLAIN Output Format

910

• possible_keys

The possible_keys column indicates which indexes MySQL can choose from to find the rows in
this table. Note that this column is totally independent of the order of the tables as displayed in the
output from EXPLAIN. That means that some of the keys in possible_keys might not be usable in
practice with the generated table order.

If this column is NULL, there are no relevant indexes. In this case, you may be able to improve
the performance of your query by examining the WHERE clause to check whether it refers to some
column or columns that would be suitable for indexing. If so, create an appropriate index and check
the query with EXPLAIN again. See Section 13.1.7, “ALTER TABLE Syntax”.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

• key

The key column indicates the key (index) that MySQL actually decided to use. If MySQL decides to
use one of the possible_keys indexes to look up rows, that index is listed as the key value.

It is possible that key will name an index that is not present in the possible_keys value. This
can happen if none of the possible_keys indexes are suitable for looking up rows, but all the
columns selected by the query are columns of some other index. That is, the named index covers
the selected columns, so although it is not used to determine which rows to retrieve, an index scan is
more efficient than a data row scan.

For InnoDB, a secondary index might cover the selected columns even if the query also selects
the primary key because InnoDB stores the primary key value with each secondary index. If key is
NULL, MySQL found no index to use for executing the query more efficiently.

To force MySQL to use or ignore an index listed in the possible_keys column, use FORCE
INDEX, USE INDEX, or IGNORE INDEX in your query. See Section 8.9.3, “Index Hints”.

For MyISAM and NDB tables, running ANALYZE TABLE helps the optimizer choose better indexes.
For NDB tables, this also improves performance of distributed pushed-down joins. For MyISAM
tables, myisamchk --analyze does the same as ANALYZE TABLE. See Section 7.6, “MyISAM
Table Maintenance and Crash Recovery”.

• key_len

The key_len column indicates the length of the key that MySQL decided to use. The value of
key_len enables you to determine how many parts of a multiple-part key MySQL actually uses. If
the key column says NULL, the len_len column also says NULL.

Due to the key storage format, the key length is one greater for a column that can be NULL than for a
NOT NULL column.

• ref

The ref column shows which columns or constants are compared to the index named in the key
column to select rows from the table.

• rows

The rows column indicates the number of rows MySQL believes it must examine to execute the
query.

For InnoDB tables, this number is an estimate, and may not always be exact.

• filtered

The filtered column indicates an estimated percentage of table rows that will be filtered by the
table condition. That is, rows shows the estimated number of rows examined and rows × filtered



EXPLAIN Output Format

911

/ 100 shows the number of rows that will be joined with previous tables. This column is displayed if
you use EXPLAIN EXTENDED.

• Extra

This column contains additional information about how MySQL resolves the query. For descriptions
of the different values, see EXPLAIN Extra Information.

EXPLAIN Join Types

The type column of EXPLAIN output describes how tables are joined. The following list describes the
join types, ordered from the best type to the worst:

•    system

The table has only one row (= system table). This is a special case of the const join type.

•    const

The table has at most one matching row, which is read at the start of the query. Because there is
only one row, values from the column in this row can be regarded as constants by the rest of the
optimizer. const tables are very fast because they are read only once.

const is used when you compare all parts of a PRIMARY KEY or UNIQUE index to constant values.
In the following queries, tbl_name can be used as a const table:

SELECT * FROM tbl_name WHERE primary_key=1;

SELECT * FROM tbl_name
  WHERE primary_key_part1=1 AND primary_key_part2=2;

•   eq_ref

One row is read from this table for each combination of rows from the previous tables. Other than the
system and const types, this is the best possible join type. It is used when all parts of an index are
used by the join and the index is a PRIMARY KEY or UNIQUE NOT NULL index.

eq_ref can be used for indexed columns that are compared using the = operator. The comparison
value can be a constant or an expression that uses columns from tables that are read before this
table. In the following examples, MySQL can use an eq_ref join to process ref_table:

SELECT * FROM ref_table,other_table
  WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
  WHERE ref_table.key_column_part1=other_table.column
  AND ref_table.key_column_part2=1;

•   ref

All rows with matching index values are read from this table for each combination of rows from the
previous tables. ref is used if the join uses only a leftmost prefix of the key or if the key is not a
PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a single row based on the
key value). If the key that is used matches only a few rows, this is a good join type.

ref can be used for indexed columns that are compared using the = or <=> operator. In the
following examples, MySQL can use a ref join to process ref_table:

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table



EXPLAIN Output Format

912

  WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
  WHERE ref_table.key_column_part1=other_table.column
  AND ref_table.key_column_part2=1;

•   fulltext

The join is performed using a FULLTEXT index.

•   ref_or_null

This join type is like ref, but with the addition that MySQL does an extra search for rows that contain
NULL values. This join type optimization is used most often in resolving subqueries. In the following
examples, MySQL can use a ref_or_null join to process ref_table:

SELECT * FROM ref_table
  WHERE key_column=expr OR key_column IS NULL;

See Section 8.2.1.9, “IS NULL Optimization”.

•   index_merge

This join type indicates that the Index Merge optimization is used. In this case, the key column in the
output row contains a list of indexes used, and key_len contains a list of the longest key parts for
the indexes used. For more information, see Section 8.2.1.3, “Index Merge Optimization”.

•   unique_subquery

This type replaces eq_ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

unique_subquery is just an index lookup function that replaces the subquery completely for better
efficiency.

•   index_subquery

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for nonunique
indexes in subqueries of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)

•   range

Only rows that are in a given range are retrieved, using an index to select the rows. The key column
in the output row indicates which index is used. The key_len contains the longest key part that was
used. The ref column is NULL for this type.

range can be used when a key column is compared to a constant using any of the =, <>, >, >=, <,
<=, IS NULL, <=>, BETWEEN, or IN() operators:

SELECT * FROM tbl_name
  WHERE key_column = 10;

SELECT * FROM tbl_name
  WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name
  WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name



EXPLAIN Output Format

913

  WHERE key_part1 = 10 AND key_part2 IN (10,20,30);

•   index

The index join type is the same as ALL, except that the index tree is scanned. This occurs two
ways:

• If the index is a covering index for the queries and can be used to satisfy all data required from
the table, only the index tree is scanned. In this case, the Extra column says Using index. An
index-only scan usually is faster than ALL because the size of the index usually is smaller than the
table data.

• A full table scan is performed using reads from the index to look up data rows in index order. Uses
index does not appear in the Extra column.

MySQL can use this join type when the query uses only columns that are part of a single index.

•   ALL

A full table scan is done for each combination of rows from the previous tables. This is normally
not good if the table is the first table not marked const, and usually very bad in all other cases.
Normally, you can avoid ALL by adding indexes that enable row retrieval from the table based on
constant values or column values from earlier tables.

EXPLAIN Extra Information

The Extra column of EXPLAIN output contains additional information about how MySQL resolves the
query. The following list explains the values that can appear in this column. If you want to make your
queries as fast as possible, look out for Extra values of Using filesort and Using temporary.

• Child of 'table' pushed join@1

This table is referenced as the child of table in a join that can be pushed down to the NDB kernel.
Applies only in MySQL NDB Cluster 7.2 and later, when pushed-down joins are enabled. See the
description of the ndb_join_pushdown server system variable for more information and examples.

• const row not found

For a query such as SELECT ... FROM tbl_name, the table was empty.

• Distinct

MySQL is looking for distinct values, so it stops searching for more rows for the current row
combination after it has found the first matching row.

• Full scan on NULL key

This occurs for subquery optimization as a fallback strategy when the optimizer cannot use an index-
lookup access method.

• Impossible HAVING

The HAVING clause is always false and cannot select any rows.

• Impossible WHERE

The WHERE clause is always false and cannot select any rows.

• Impossible WHERE noticed after reading const tables

MySQL has read all const (and system) tables and notice that the WHERE clause is always false.

• No matching min/max row



EXPLAIN Output Format

914

No row satisfies the condition for a query such as SELECT MIN(...) FROM ... WHERE
condition.

• no matching row in const table

For a query with a join, there was an empty table or a table with no rows satisfying a unique index
condition.

• No tables used

The query has no FROM clause, or has a FROM DUAL clause.

• Not exists

MySQL was able to do a LEFT JOIN optimization on the query and does not examine more rows
in this table for the previous row combination after it finds one row that matches the LEFT JOIN
criteria. Here is an example of the type of query that can be optimized this way:

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
  WHERE t2.id IS NULL;

Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up the rows
in t2 using the values of t1.id. If MySQL finds a matching row in t2, it knows that t2.id can
never be NULL, and does not scan through the rest of the rows in t2 that have the same id value.
In other words, for each row in t1, MySQL needs to do only a single lookup in t2, regardless of how
many rows actually match in t2.

• Range checked for each record (index map: N)

MySQL found no good index to use, but found that some of indexes might be used after column
values from preceding tables are known. For each row combination in the preceding tables, MySQL
checks whether it is possible to use a range or index_merge access method to retrieve rows. This
is not very fast, but is faster than performing a join with no index at all. The applicability criteria are as
described in Section 8.2.1.2, “Range Optimization”, and Section 8.2.1.3, “Index Merge Optimization”,
with the exception that all column values for the preceding table are known and considered to be
constants.

Indexes are numbered beginning with 1, in the same order as shown by SHOW INDEX for the table.
The index map value N is a bitmask value that indicates which indexes are candidates. For example,
a value of 0x19 (binary 11001) means that indexes 1, 4, and 5 will be considered.

• Scanned N databases

This indicates how many directory scans the server performs when processing a
query for INFORMATION_SCHEMA tables, as described in Section 8.2.3, “Optimizing
INFORMATION_SCHEMA Queries”. The value of N can be 0, 1, or all.

• Select tables optimized away

The optimizer determined 1) that at most one row should be returned, and 2) that to produce this
row, a deterministic set of rows must be read. When the rows to be read can be read during the
optimization phase (for example, by reading index rows), there is no need to read any tables during
query execution.

The first condition is fulfilled when the query is implicitly grouped (contains an aggregate function but
no GROUP BY clause). The second condition is fulfilled when one row lookup is performed per index
used. The number of indexes read determines the number of rows to read.

Consider the following implicitly grouped query:



EXPLAIN Output Format

915

SELECT MIN(c1), MIN(c2) FROM t1;

Suppose that MIN(c1) can be retrieved by reading one index row and MIN(c2) can be retrieved
by reading one row from a different index. That is, for each column c1 and c2, there exists an index
where the column is the first column of the index. In this case, one row is returned, produced by
reading two deterministic rows.

This Extra value does not occur if the rows to read are not deterministic. Consider this query:

SELECT MIN(c2) FROM t1 WHERE c1 <= 10;

Suppose that (c1, c2) is a covering index. Using this index, all rows with c1 <= 10 must be
scanned to find the minimum c2 value. By contrast, consider this query:

SELECT MIN(c2) FROM t1 WHERE c1 = 10;

In this case, the first index row with c1 = 10 contains the minimum c2 value. Only one row must be
read to produce the returned row.

For storage engines that maintain an exact row count per table (such as MyISAM, but not InnoDB),
this Extra value can occur for COUNT(*) queries for which the WHERE clause is missing or always
true and there is no GROUP BY clause. (This is an instance of an implicitly grouped query where the
storage engine influences whether a deterministic number of rows can be read.)

• Skip_open_table, Open_frm_only, Open_full_table

These values indicate file-opening optimizations that apply to queries for INFORMATION_SCHEMA
tables, as described in Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”.

• Skip_open_table: Table files do not need to be opened. The information has already become
available within the query by scanning the database directory.

• Open_frm_only: Only the table's .frm file need be opened.

• Open_full_table: The unoptimized information lookup. The .frm, .MYD, and .MYI files must
be opened.

• unique row not found

For a query such as SELECT ... FROM tbl_name, no rows satisfy the condition for a UNIQUE
index or PRIMARY KEY on the table.

• Using filesort

MySQL must do an extra pass to find out how to retrieve the rows in sorted order. The sort is done
by going through all rows according to the join type and storing the sort key and pointer to the row for
all rows that match the WHERE clause. The keys then are sorted and the rows are retrieved in sorted
order. See Section 8.2.1.10, “ORDER BY Optimization”.

• Using index

The column information is retrieved from the table using only information in the index tree without
having to do an additional seek to read the actual row. This strategy can be used when the query
uses only columns that are part of a single index.

For InnoDB tables that have a user-defined clustered index, that index can be used even when
Using index is absent from the Extra column. This is the case if type is index and key is
PRIMARY.

• Using index for group-by



EXPLAIN Output Format

916

Similar to the Using index table access method, Using index for group-by indicates that
MySQL found an index that can be used to retrieve all columns of a GROUP BY or DISTINCT query
without any extra disk access to the actual table. Additionally, the index is used in the most efficient
way so that for each group, only a few index entries are read. For details, see Section 8.2.1.11,
“GROUP BY Optimization”.

• Using join buffer

Tables from earlier joins are read in portions into the join buffer, and then their rows are used from
the buffer to perform the join with the current table.

• Using sort_union(...), Using union(...), Using intersect(...)

These indicate the particular algorithm showing how index scans are merged for the index_merge
join type. See Section 8.2.1.3, “Index Merge Optimization”.

• Using temporary

To resolve the query, MySQL needs to create a temporary table to hold the result. This typically
happens if the query contains GROUP BY and ORDER BY clauses that list columns differently.

• Using where

A WHERE clause is used to restrict which rows to match against the next table or send to the client.
Unless you specifically intend to fetch or examine all rows from the table, you may have something
wrong in your query if the Extra value is not Using where and the table join type is ALL or index.
Even if you are using an index for all parts of a WHERE clause, you may see Using where if the
column can be NULL.

• Using where with pushed condition

This item applies to NDB tables only. It means that NDB Cluster is using the Condition Pushdown
optimization to improve the efficiency of a direct comparison between a nonindexed column and a
constant. In such cases, the condition is “pushed down” to the cluster's data nodes and is evaluated
on all data nodes simultaneously. This eliminates the need to send nonmatching rows over the
network, and can speed up such queries by a factor of 5 to 10 times over cases where Condition
Pushdown could be but is not used. For more information, see Section 8.2.1.4, “Engine Condition
Pushdown Optimization”.

EXPLAIN Output Interpretation

You can get a good indication of how good a join is by taking the product of the values in the rows
column of the EXPLAIN output. This should tell you roughly how many rows MySQL must examine to
execute the query. If you restrict queries with the max_join_size system variable, this row product
also is used to determine which multiple-table SELECT statements to execute and which to abort. See
Section 5.1.1, “Configuring the Server”.

The following example shows how a multiple-table join can be optimized progressively based on the
information provided by EXPLAIN.

Suppose that you have the SELECT statement shown here and that you plan to examine it using
EXPLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
               tt.ProjectReference, tt.EstimatedShipDate,
               tt.ActualShipDate, tt.ClientID,
               tt.ServiceCodes, tt.RepetitiveID,
               tt.CurrentProcess, tt.CurrentDPPerson,
               tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
               et_1.COUNTRY, do.CUSTNAME
        FROM tt, et, et AS et_1, do



EXPLAIN Output Format

917

        WHERE tt.SubmitTime IS NULL
          AND tt.ActualPC = et.EMPLOYID
          AND tt.AssignedPC = et_1.EMPLOYID
          AND tt.ClientID = do.CUSTNMBR;

For this example, make the following assumptions:

• The columns being compared have been declared as follows.

Table Column Data Type

tt ActualPC CHAR(10)

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

do CUSTNMBR CHAR(15)

• The tables have the following indexes.

Table Index

tt ActualPC

tt AssignedPC

tt ClientID

et EMPLOYID (primary key)

do CUSTNMBR (primary key)

• The tt.ActualPC values are not evenly distributed.

Initially, before any optimizations have been performed, the EXPLAIN statement produces the following
information:

table type possible_keys key  key_len ref  rows  Extra
et    ALL  PRIMARY       NULL NULL    NULL 74
do    ALL  PRIMARY       NULL NULL    NULL 2135
et_1  ALL  PRIMARY       NULL NULL    NULL 74
tt    ALL  AssignedPC,   NULL NULL    NULL 3872
           ClientID,
           ActualPC
      Range checked for each record (index map: 0x23)

Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian
product of all the tables; that is, every combination of rows. This takes quite a long time, because the
product of the number of rows in each table must be examined. For the case at hand, this product is 74
× 2135 × 74 × 3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how long it
would take.

One problem here is that MySQL can use indexes on columns more efficiently if they are declared
as the same type and size. In this context, VARCHAR and CHAR are considered the same if they are
declared as the same size. tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is CHAR(15),
so there is a length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10
characters to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN statement
again produces this result:



Extended EXPLAIN Output Format

918

table type   possible_keys key     key_len ref         rows    Extra
tt    ALL    AssignedPC,   NULL    NULL    NULL        3872    Using
             ClientID,                                         where
             ActualPC
do    ALL    PRIMARY       NULL    NULL    NULL        2135
      Range checked for each record (index map: 0x1)
et_1  ALL    PRIMARY       NULL    NULL    NULL        74
      Range checked for each record (index map: 0x1)
et    eq_ref PRIMARY       PRIMARY 15      tt.ActualPC 1

This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This
version executes in a couple of seconds.

A second alteration can be made to eliminate the column length mismatches for the tt.AssignedPC
= et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
                      MODIFY ClientID   VARCHAR(15);

After that modification, EXPLAIN produces the output shown here:

table type   possible_keys key      key_len ref           rows Extra
et    ALL    PRIMARY       NULL     NULL    NULL          74
tt    ref    AssignedPC,   ActualPC 15      et.EMPLOYID   52   Using
             ClientID,                                         where
             ActualPC
et_1  eq_ref PRIMARY       PRIMARY  15      tt.AssignedPC 1
do    eq_ref PRIMARY       PRIMARY  15      tt.ClientID   1

At this point, the query is optimized almost as well as possible. The remaining problem is that, by
default, MySQL assumes that values in the tt.ActualPC column are evenly distributed, and that is
not the case for the tt table. Fortunately, it is easy to tell MySQL to analyze the key distribution:

mysql> ANALYZE TABLE tt;

With the additional index information, the join is perfect and EXPLAIN produces this result:

table type   possible_keys key     key_len ref           rows Extra
tt    ALL    AssignedPC    NULL    NULL    NULL          3872 Using
             ClientID,                                        where
             ActualPC
et    eq_ref PRIMARY       PRIMARY 15      tt.ActualPC   1
et_1  eq_ref PRIMARY       PRIMARY 15      tt.AssignedPC 1
do    eq_ref PRIMARY       PRIMARY 15      tt.ClientID   1

 The rows column in the output from EXPLAIN is an educated guess from the MySQL join optimizer.
Check whether the numbers are even close to the truth by comparing the rows product with the
actual number of rows that the query returns. If the numbers are quite different, you might get better
performance by using STRAIGHT_JOIN in your SELECT statement and trying to list the tables in a
different order in the FROM clause.

It is possible in some cases to execute statements that modify data when EXPLAIN SELECT is used
with a subquery; for more information, see Section 13.2.10.8, “Derived Tables (Subqueries in the
FROM Clause)”.

8.8.3 Extended EXPLAIN Output Format

When EXPLAIN is used with the EXTENDED keyword, the output includes a filtered column not
otherwise displayed. This column indicates the estimated percentage of table rows that will be filtered
by the table condition.



Extended EXPLAIN Output Format

919

In addition, the statement produces extra (“extended”) information that is not part of EXPLAIN output
but can be viewed by issuing a SHOW WARNINGS statement following EXPLAIN. The Message value in
SHOW WARNINGS output displays how the optimizer qualifies table and column names in the SELECT
statement, what the SELECT looks like after the application of rewriting and optimization rules, and
possibly other notes about the optimization process.

Here is an example of extended EXPLAIN output:

mysql> EXPLAIN EXTENDED
       SELECT t1.a, t1.a IN (SELECT t2.a FROM t2) FROM t1\G
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: t1
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 4
     filtered: 100.00
        Extra: Using index
*************************** 2. row ***************************
           id: 2
  select_type: DEPENDENT SUBQUERY
        table: t2
         type: index_subquery
possible_keys: a
          key: a
      key_len: 5
          ref: func
         rows: 2
     filtered: 100.00
        Extra: Using index
2 rows in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Note
   Code: 1003
Message: select `test`.`t1`.`a` AS `a`,
         <in_optimizer>(`test`.`t1`.`a`,
         <exists>(<index_lookup>(<cache>(`test`.`t1`.`a`)
         in t2 on a checking NULL having
         <is_not_null_test>(`test`.`t2`.`a`)))) AS `t1.a
         IN (SELECT t2.a FROM t2)` from `test`.`t1`
1 row in set (0.00 sec)

Because the statement displayed by SHOW WARNINGS may contain special markers to provide
information about query rewriting or optimizer actions, the statement is not necessarily valid SQL and
is not intended to be executed. The output may also include rows with Message values that provide
additional non-SQL explanatory notes about actions taken by the optimizer.

The following list describes special markers that can appear in the extended output displayed by SHOW
WARNINGS:

• <cache>(expr)

The expression (such as a scalar subquery) is executed once and the resulting value is saved in
memory for later use.

• <exists>(query fragment)

The subquery predicate is converted to an EXISTS predicate and the subquery is transformed so
that it can be used together with the EXISTS predicate.

• <in_optimizer>(query fragment)



Estimating Query Performance

920

This is an internal optimizer object with no user significance.

• <index_lookup>(query fragment)

The query fragment is processed using an index lookup to find qualifying rows.

• <is_not_null_test>(expr)

A test to verify that the expression does not evaluate to NULL.

• <primary_index_lookup>(query fragment)

The query fragment is processed using a primary key lookup to find qualifying rows.

• <ref_null_helper>(expr)

This is an internal optimizer object with no user significance.

When some tables are of const or system type, expressions involving columns from these tables
are evaluated early by the optimizer and are not part of the displayed statement. However, with
FORMAT=JSON, some const table accesses are displayed as a ref access that uses a const value.

8.8.4 Estimating Query Performance

In most cases, you can estimate query performance by counting disk seeks. For small tables, you can
usually find a row in one disk seek (because the index is probably cached). For bigger tables, you can
estimate that, using B-tree indexes, you need this many seeks to find a row: log(row_count) /
log(index_block_length / 3 * 2 / (index_length + data_pointer_length)) + 1.

In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a
500,000-row table with a key value length of three bytes (the size of MEDIUMINT), the formula indicates
log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 * 7 * 3/2 = 5.2MB (assuming a typical index buffer fill
ratio of 2/3), so you probably have much of the index in memory and so need only one or two calls to
read data to find the row.

For writes, however, you need four seek requests to find where to place a new index value and
normally two seeks to update the index and write the row.

The preceding discussion does not mean that your application performance slowly degenerates by
log N. As long as everything is cached by the OS or the MySQL server, things become only marginally
slower as the table gets bigger. After the data gets too big to be cached, things start to go much slower
until your applications are bound only by disk seeks (which increase by log N). To avoid this, increase
the key cache size as the data grows. For MyISAM tables, the key cache size is controlled by the
key_buffer_size system variable. See Section 5.1.1, “Configuring the Server”.

8.9 Controlling the Query Optimizer

MySQL provides optimizer control through system variables that affect how query plans are evaluated,
switchable optimizations, and index hints.

8.9.1 Controlling Query Plan Evaluation

The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the
difference in performance between “good” and “bad” plans can be orders of magnitude (that is,
seconds versus hours or even days), most query optimizers, including that of MySQL, perform a more
or less exhaustive search for an optimal plan among all possible query evaluation plans. For join
queries, the number of possible plans investigated by the MySQL optimizer grows exponentially with



Switchable Optimizations

921

the number of tables referenced in a query. For small numbers of tables (typically less than 7 to 10)
this is not a problem. However, when larger queries are submitted, the time spent in query optimization
may easily become the major bottleneck in the server's performance.

A more flexible method for query optimization enables the user to control how exhaustive the optimizer
is in its search for an optimal query evaluation plan. The general idea is that the fewer plans that are
investigated by the optimizer, the less time it spends in compiling a query. On the other hand, because
the optimizer skips some plans, it may miss finding an optimal plan.

The behavior of the optimizer with respect to the number of plans it evaluates can be controlled using
two system variables:

• The optimizer_prune_level variable tells the optimizer to skip certain plans based on
estimates of the number of rows accessed for each table. Our experience shows that this kind of
“educated guess” rarely misses optimal plans, and may dramatically reduce query compilation
times. That is why this option is on (optimizer_prune_level=1) by default. However,
if you believe that the optimizer missed a better query plan, this option can be switched off
(optimizer_prune_level=0) with the risk that query compilation may take much longer. Note
that, even with the use of this heuristic, the optimizer still explores a roughly exponential number of
plans.

• The optimizer_search_depth variable tells how far into the “future” of each incomplete plan
the optimizer should look to evaluate whether it should be expanded further. Smaller values of
optimizer_search_depth may result in orders of magnitude smaller query compilation times.
For example, queries with 12, 13, or more tables may easily require hours and even days to
compile if optimizer_search_depth is close to the number of tables in the query. At the same
time, if compiled with optimizer_search_depth equal to 3 or 4, the optimizer may compile
in less than a minute for the same query. If you are unsure of what a reasonable value is for
optimizer_search_depth, this variable can be set to 0 to tell the optimizer to determine the
value automatically.

8.9.2 Switchable Optimizations

The optimizer_switch system variable enables control over optimizer behavior. Its value is a set of
flags, each of which has a value of on or off to indicate whether the corresponding optimizer behavior
is enabled or disabled. This variable has global and session values and can be changed at runtime.
The global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
                    index_merge_sort_union=on,
                    index_merge_intersection=on,
                    engine_condition_pushdown=on

To change the value of optimizer_switch, assign a value consisting of a comma-separated list of
one or more commands:

SET [GLOBAL|SESSION] optimizer_switch='command[,command]...';

Each command value should have one of the forms shown in the following table.

Command Syntax Meaning

default Reset every optimization to its default value

opt_name=default Set the named optimization to its default value

opt_name=off Disable the named optimization



Index Hints

922

Command Syntax Meaning

opt_name=on Enable the named optimization

The order of the commands in the value does not matter, although the default command is executed
first if present. Setting an opt_name flag to default sets it to whichever of on or off is its default
value. Specifying any given opt_name more than once in the value is not permitted and causes
an error. Any errors in the value cause the assignment to fail with an error, leaving the value of
optimizer_switch unchanged.

The following table lists the permissible opt_name flag names, grouped by optimization strategy.

Optimization Flag Name Meaning Default

Engine Condition
Pushdown

engine_condition_pushdown Controls engine condition
pushdown

ON

index_merge Controls all Index Merge
optimizations

ON

index_merge_intersection Controls the Index Merge
Intersection Access optimization

ON

index_merge_sort_union Controls the Index Merge Sort-
Union Access optimization

ON

Index Merge

index_merge_union Controls the Index Merge Union
Access optimization

ON

For more information about individual optimization strategies, see the following sections:

• Section 8.2.1.3, “Index Merge Optimization”

• Section 8.2.1.4, “Engine Condition Pushdown Optimization”

When you assign a value to optimizer_switch, flags that are not mentioned keep their current
values. This makes it possible to enable or disable specific optimizer behaviors in a single statement
without affecting other behaviors. The statement does not depend on what other optimizer flags exist
and what their values are. Suppose that all Index Merge optimizations are enabled:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
                    index_merge_sort_union=on,
                    index_merge_intersection=on,
                    engine_condition_pushdown=on

If the server is using the Index Merge Union or Index Merge Sort-Union access methods for certain
queries and you want to check whether the optimizer will perform better without them, set the variable
value like this:

mysql> SET optimizer_switch='index_merge_union=off,index_merge_sort_union=off';

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=off,
                    index_merge_sort_union=off,
                    index_merge_intersection=on,
                    engine_condition_pushdown=on

8.9.3 Index Hints

Index hints give the optimizer information about how to choose indexes during query processing.
Index hints are specified following a table name. (For the general syntax for specifying tables in a



Index Hints

923

SELECT statement, see Section 13.2.9.2, “JOIN Syntax”.) The syntax for referring to an individual table,
including index hints, looks like this:

tbl_name [[AS] alias] [index_hint_list]

index_hint_list:
    index_hint [, index_hint] ...

index_hint:
    USE {INDEX|KEY}
      [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
  | IGNORE {INDEX|KEY}
      [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
  | FORCE {INDEX|KEY}
      [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:
    index_name [, index_name] ...

The USE INDEX (index_list) hint tells MySQL to use only one of the named indexes to find rows
in the table. The alternative syntax IGNORE INDEX (index_list) tells MySQL to not use some
particular index or indexes. These hints are useful if EXPLAIN shows that MySQL is using the wrong
index from the list of possible indexes.

The FORCE INDEX hint acts like USE INDEX (index_list), with the addition that a table scan is
assumed to be very expensive. In other words, a table scan is used only if there is no way to use one
of the named indexes to find rows in the table.

Each hint requires the names of indexes, not the names of columns. To refer to a primary key, use the
name PRIMARY. To see the index names for a table, use SHOW INDEX.

An index_name value need not be a full index name. It can be an unambiguous prefix of an index
name. If a prefix is ambiguous, an error occurs.

Examples:

SELECT * FROM table1 USE INDEX (col1_index,col2_index)
  WHERE col1=1 AND col2=2 AND col3=3;

SELECT * FROM table1 IGNORE INDEX (col3_index)
  WHERE col1=1 AND col2=2 AND col3=3;

The syntax for index hints has the following characteristics:

• It is syntactically valid to omit index_list for USE INDEX, which means “use no indexes.” Omitting
index_list for FORCE INDEX or IGNORE INDEX is a syntax error.

• You can specify the scope of an index hint by adding a FOR clause to the hint. This provides more
fine-grained control over the optimizer's selection of an execution plan for various phases of query
processing. To affect only the indexes used when MySQL decides how to find rows in the table and
how to process joins, use FOR JOIN. To influence index usage for sorting or grouping rows, use FOR
ORDER BY or FOR GROUP BY.

• You can specify multiple index hints:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX FOR ORDER BY (i2) ORDER BY a;

It is not an error to name the same index in several hints (even within the same hint):

SELECT * FROM t1 USE INDEX (i1) USE INDEX (i1,i1);

However, it is an error to mix USE INDEX and FORCE INDEX for the same table:



Index Hints

924

SELECT * FROM t1 USE INDEX FOR JOIN (i1) FORCE INDEX FOR JOIN (i2);

If an index hint includes no FOR clause, the scope of the hint is to apply to all parts of the statement.
For example, this hint:

IGNORE INDEX (i1)

is equivalent to this combination of hints:

IGNORE INDEX FOR JOIN (i1)
IGNORE INDEX FOR ORDER BY (i1)
IGNORE INDEX FOR GROUP BY (i1)

In MySQL 5.0, hint scope with no FOR clause was to apply only to row retrieval. To cause the server
to use this older behavior when no FOR clause is present, enable the old system variable at server
startup. Take care about enabling this variable in a replication setup. With statement-based binary
logging, having different modes for the master and slaves might lead to replication errors.

When index hints are processed, they are collected in a single list by type (USE, FORCE, IGNORE) and
by scope (FOR JOIN, FOR ORDER BY, FOR GROUP BY). For example:

SELECT * FROM t1
  USE INDEX () IGNORE INDEX (i2) USE INDEX (i1) USE INDEX (i2);

is equivalent to:

SELECT * FROM t1
   USE INDEX (i1,i2) IGNORE INDEX (i2);

The index hints then are applied for each scope in the following order:

1. {USE|FORCE} INDEX is applied if present. (If not, the optimizer-determined set of indexes is
used.)

2. IGNORE INDEX is applied over the result of the previous step. For example, the following two
queries are equivalent:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX (i2) USE INDEX (i2);

SELECT * FROM t1 USE INDEX (i1);

For FULLTEXT searches, index hints work as follows:

• For natural language mode searches, index hints are silently ignored. For example, IGNORE
INDEX(i1) is ignored with no warning and the index is still used.

• For boolean mode searches, index hints with FOR ORDER BY or FOR GROUP BY are silently
ignored. Index hints with FOR JOIN or no FOR modifier are honored. In contrast to how hints apply
for non-FULLTEXT searches, the hint is used for all phases of query execution (finding rows and
retrieval, grouping, and ordering). This is true even if the hint is given for a non-FULLTEXT index.

For example, the following two queries are equivalent:

SELECT * FROM t
  USE INDEX (index1)
  IGNORE INDEX (index1) FOR ORDER BY
  IGNORE INDEX (index1) FOR GROUP BY



Buffering and Caching

925

  WHERE ... IN BOOLEAN MODE ... ;

SELECT * FROM t
  USE INDEX (index1)
  WHERE ... IN BOOLEAN MODE ... ;

8.10 Buffering and Caching

MySQL uses several strategies that cache information in memory buffers to increase performance.
Depending on your database architecture, you balance the size and layout of these areas, to provide
the most performance benefit without wasting memory or exceeding available memory. When you
set up or resize these memory areas, test the resulting performance using the techniques from
Section 8.13, “Measuring Performance (Benchmarking)”.

8.10.1 InnoDB Buffer Pool Optimization

InnoDB maintains a storage area called the buffer pool for caching data and indexes in memory.
Knowing how the InnoDB buffer pool works, and taking advantage of it to keep frequently accessed
data in memory, is an important aspect of MySQL tuning.

For an explanation of the inner workings of the InnoDB buffer pool, an overview of its LRU
replacement algorithm, and general configuration information, see Section 14.9.2.1, “The InnoDB
Buffer Pool”.

For additional InnoDB buffer pool configuration and tuning information, see these sections:

• Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”

• Section 14.9.2.5, “Configuring InnoDB Buffer Pool Flushing”

• Section 14.9.2.3, “Making the Buffer Pool Scan Resistant”

• Section 14.9.2.2, “Configuring Multiple Buffer Pool Instances”

8.10.2 The MyISAM Key Cache

To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database
management systems. It employs a cache mechanism to keep the most frequently accessed table
pages in memory:

• For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure
contains a number of block buffers where the most-used index blocks are placed.

• For data blocks, MySQL uses no special cache. Instead it relies on the native operating system file
system cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses features
that improve key cache performance and that enable you to better control cache operation:

• Multiple sessions can access the cache concurrently.

• You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set
equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is
too small to allocate the minimal number of block buffers (8).

When the key cache is not operational, index files are accessed using only the native file system
buffering provided by the operating system. (In other words, table index blocks are accessed using the
same strategy as that employed for table data blocks.)



The MyISAM Key Cache

926

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index
block is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a B-tree
data structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are nonleaf
nodes.)

All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or
less than the size of a table index block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is available
in some block buffer of the key cache. If it is, the server accesses data in the key cache rather than
on disk. That is, it reads from the cache or writes into it rather than reading from or writing to disk.
Otherwise, the server chooses a cache block buffer containing a different table index block (or blocks)
and replaces the data there by a copy of required table index block. As soon as the new index block is
in the cache, the index data can be accessed.

If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In
this case, prior to being replaced, its contents are flushed to the table index from which it came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for
replacement, it selects the least recently used index block. To make this choice easier, the key cache
module maintains all used blocks in a special list (LRU chain) ordered by time of use. When a block
is accessed, it is the most recently used and is placed at the end of the list. When blocks need to be
replaced, blocks at the beginning of the list are the least recently used and become the first candidates
for eviction.

The InnoDB storage engine also uses an LRU algorithm, to manage its buffer pool. See
Section 14.9.2.1, “The InnoDB Buffer Pool”.

8.10.2.1 Shared Key Cache Access

Threads can access key cache buffers simultaneously, subject to the following conditions:

• A buffer that is not being updated can be accessed by multiple sessions.

• A buffer that is being updated causes sessions that need to use it to wait until the update is
complete.

• Multiple sessions can initiate requests that result in cache block replacements, as long as they do not
interfere with each other (that is, as long as they need different index blocks, and thus cause different
cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly.

8.10.2.2 Multiple Key Caches

Shared access to the key cache improves performance but does not eliminate contention among
sessions entirely. They still compete for control structures that manage access to the key cache
buffers. To reduce key cache access contention further, MySQL also provides multiple key caches.
This feature enables you to assign different table indexes to different key caches.

Where there are multiple key caches, the server must know which cache to use when processing
queries for a given MyISAM table. By default, all MyISAM table indexes are cached in the default
key cache. To assign table indexes to a specific key cache, use the CACHE INDEX statement (see
Section 13.7.6.2, “CACHE INDEX Syntax”). For example, the following statement assigns indexes from
the tables t1, t2, and t3 to the key cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table   | Op                 | Msg_type | Msg_text |
+---------+--------------------+----------+----------+



The MyISAM Key Cache

927

| test.t1 | assign_to_keycache | status   | OK       |
| test.t2 | assign_to_keycache | status   | OK       |
| test.t3 | assign_to_keycache | status   | OK       |
+---------+--------------------+----------+----------+

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET
GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

You cannot destroy the default key cache. Any attempt to do this is ignored:

mysql> SET GLOBAL key_buffer_size = 0;

mysql> SHOW VARIABLES LIKE 'key_buffer_size';
+-----------------+---------+
| Variable_name   | Value   |
+-----------------+---------+
| key_buffer_size | 8384512 |
+-----------------+---------+

Key cache variables are structured system variables that have a name and components. For
keycache1.key_buffer_size, keycache1 is the cache variable name and key_buffer_size
is the cache component. See Section 5.1.6.1, “Structured System Variables”, for a description of the
syntax used for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup.
When a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

For a busy server, you can use a strategy that involves three key caches:

• A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that
are heavily used for searches but that are not updated.

• A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for
medium-sized, intensively modified tables, such as temporary tables.

• A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache,
to be used by default for all other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does not
block access to the others. Statements that access tables assigned to one cache do not compete with
statements that access tables assigned to another cache. Performance gains occur for other reasons
as well:

• The hot cache is used only for retrieval queries, so its contents are never modified. Consequently,
whenever an index block needs to be pulled in from disk, the contents of the cache block chosen for
replacement need not be flushed first.

• For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a
high probability that the index blocks corresponding to nonleaf nodes of the index B-tree remain in
the cache.

• An update operation most frequently executed for temporary tables is performed much faster when
the updated node is in the cache and need not be read in from disk first. If the size of the indexes of
the temporary tables are comparable with the size of cold key cache, the probability is very high that
the updated node is in the cache.



The MyISAM Key Cache

928

The CACHE INDEX statement sets up an association between a table and a key cache, but the
association is lost each time the server restarts. If you want the association to take effect each time the
server starts, one way to accomplish this is to use an option file: Include variable settings that configure
your key caches, and an init-file option that names a file containing CACHE INDEX statements to
be executed. For example:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql

The statements in mysqld_init.sql are executed each time the server starts. The file should
contain one SQL statement per line. The following example assigns several tables each to hot_cache
and cold_cache:

CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache

8.10.2.3 Midpoint Insertion Strategy

By default, the key cache management system uses a simple LRU strategy for choosing key cache
blocks to be evicted, but it also supports a more sophisticated method called the midpoint insertion
strategy.

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot
sublist and a warm sublist. The division point between two parts is not fixed, but the key cache
management system takes care that the warm part is not “too short,” always containing at least
key_cache_division_limit percent of the key cache blocks. key_cache_division_limit is a
component of structured key cache variables, so its value is a parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sublist.
After a certain number of hits (accesses of the block), it is promoted to the hot sublist. At present, the
number of hits required to promote a block (3) is the same for all index blocks.

A block promoted into the hot sublist is placed at the end of the list. The block then circulates within
this sublist. If the block stays at the beginning of the sublist for a long enough time, it is demoted to the
warm sublist. This time is determined by the value of the key_cache_age_threshold component of
the key cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of
the hot sublist not accessed within the last N * key_cache_age_threshold / 100 hits is to be
moved to the beginning of the warm sublist. It then becomes the first candidate for eviction, because
blocks for replacement always are taken from the beginning of the warm sublist.

The midpoint insertion strategy enables you to keep more-valued blocks always in the cache. If you
prefer to use the plain LRU strategy, leave the key_cache_division_limit value set to its default
of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that
requires an index scan effectively pushes out of the cache all the index blocks corresponding to
valuable high-level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the
key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are
preserved in the hot sublist during an index scan operation as well.

8.10.2.4 Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks
corresponding to its nonleaf nodes, it makes sense to preload the key cache with index blocks before
starting to use it. Preloading enables you to put the table index blocks into a key cache buffer in the
most efficient way: by reading the index blocks from disk sequentially.



The MySQL Query Cache

929

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the
blocks will stay in the cache, because there are enough buffers for all of them, they are fetched from
disk in random order, and not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the
following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table   | Op           | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status   | OK       |
| test.t2 | preload_keys | status   | OK       |
+---------+--------------+----------+----------+

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.
Thus, the statement shown preloads all index blocks from t1, but only blocks for the nonleaf nodes
from t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places
index blocks into that cache. Otherwise, the index is loaded into the default key cache.

8.10.2.5 Key Cache Block Size

It is possible to specify the size of the block buffers for an individual key cache using the
key_cache_block_size variable. This permits tuning of the performance of I/O operations for index
files.

The best performance for I/O operations is achieved when the size of read buffers is equal to the size
of the native operating system I/O buffers. But setting the size of key nodes equal to the size of the I/
O buffer does not always ensure the best overall performance. When reading the big leaf nodes, the
server pulls in a lot of unnecessary data, effectively preventing reading other leaf nodes.

To control the size of blocks in the .MYI index file of MyISAM tables, use the --myisam-block-size
option at server startup.

8.10.2.6 Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache component a
value that differs from the component's current value, the server destroys the cache's old structure and
creates a new one based on the new values. If the cache contains any dirty blocks, the server saves
them to disk before destroying and re-creating the cache. Restructuring does not occur if you change
other key cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After
that, the cache contents become unavailable. However, restructuring does not block queries that need
to use indexes assigned to the cache. Instead, the server directly accesses the table indexes using
native file system caching. File system caching is not as efficient as using a key cache, so although
queries execute, a slowdown can be anticipated. After the cache has been restructured, it becomes
available again for caching indexes assigned to it, and the use of file system caching for the indexes
ceases.

8.10.3 The MySQL Query Cache

The query cache stores the text of a SELECT statement together with the corresponding result that was
sent to the client. If an identical statement is received later, the server retrieves the results from the
query cache rather than parsing and executing the statement again. The query cache is shared among



The MySQL Query Cache

930

sessions, so a result set generated by one client can be sent in response to the same query issued by
another client.

The query cache can be useful in an environment where you have tables that do not change very
often and for which the server receives many identical queries. This is a typical situation for many Web
servers that generate many dynamic pages based on database content. For example, when an order
form queries a table to display the lists of all US states or all countries in the world, those values can be
retrieved from the query cache. Although the values would probably be retrieved from memory in any
case (from the InnoDB buffer pool or MyISAM key cache), using the query cache avoids the overhead
of processing the query, deciding whether to use a table scan, and locating the data block for each row.

The query cache always contains current and reliable data. Any insert, update, delete, or other
modification to a table causes any relevant entries in the query cache to be flushed.

Note

The query cache does not work in an environment where you have multiple
mysqld servers updating the same MyISAM tables.

The query cache is used for prepared statements under the conditions described in Section 8.10.3.1,
“How the Query Cache Operates”.

Note

As of MySQL 5.5.23, the query cache is not supported for partitioned tables,
and is automatically disabled for queries involving partitioned tables. The query
cache cannot be enabled for such queries. (Bug #53775)

Some performance data for the query cache follows. These results were generated by running the
MySQL benchmark suite on a Linux Alpha 2×500MHz system with 2GB RAM and a 64MB query
cache.

• If all the queries you are performing are simple (such as selecting a row from a table with one row),
but still differ so that the queries cannot be cached, the overhead for having the query cache active
is 13%. This could be regarded as the worst case scenario. In real life, queries tend to be much more
complicated, so the overhead normally is significantly lower.

• Searches for a single row in a single-row table are 238% faster with the query cache than without it.
This can be regarded as close to the minimum speedup to be expected for a query that is cached.

To disable the query cache at server startup, set the query_cache_size system variable to 0. By
disabling the query cache code, there is no noticeable overhead.

The query cache offers the potential for substantial performance improvement, but do not assume that
it will do so under all circumstances. With some query cache configurations or server workloads, you
might actually see a performance decrease:

• Be cautious about sizing the query cache excessively large, which increases the overhead required
to maintain the cache, possibly beyond the benefit of enabling it. Sizes in tens of megabytes are
usually beneficial. Sizes in the hundreds of megabytes might not be.

• Server workload has a significant effect on query cache efficiency. A query mix consisting almost
entirely of a fixed set of SELECT statements is much more likely to benefit from enabling the cache
than a mix in which frequent INSERT statements cause continual invalidation of results in the cache.
In some cases, a workaround is to use the SQL_NO_CACHE option to prevent results from even
entering the cache for SELECT statements that use frequently modified tables. (See Section 8.10.3.2,
“Query Cache SELECT Options”.)

To verify that enabling the query cache is beneficial, test the operation of your MySQL server with the
cache enabled and disabled. Then retest periodically because query cache efficiency may change as
server workload changes.



The MySQL Query Cache

931

8.10.3.1 How the Query Cache Operates

This section describes how the query cache works when it is operational. Section 8.10.3.3, “Query
Cache Configuration”, describes how to control whether it is operational.

Incoming queries are compared to those in the query cache before parsing, so the following two
queries are regarded as different by the query cache:

SELECT * FROM tbl_name
Select * from tbl_name

Queries must be exactly the same (byte for byte) to be seen as identical. In addition, query strings
that are identical may be treated as different for other reasons. Queries that use different databases,
different protocol versions, or different default character sets are considered different queries and are
cached separately.

The cache is not used for queries of the following types:

• Queries that are a subquery of an outer query

• Queries executed within the body of a stored function, trigger, or event

Before a query result is fetched from the query cache, MySQL checks whether the user has SELECT
privilege for all databases and tables involved. If this is not the case, the cached result is not used.

If a query result is returned from query cache, the server increments the Qcache_hits status variable,
not Com_select. See Section 8.10.3.4, “Query Cache Status and Maintenance”.

If a table changes, all cached queries that use the table become invalid and are removed from the
cache. This includes queries that use MERGE tables that map to the changed table. A table can be
changed by many types of statements, such as INSERT, UPDATE, DELETE, TRUNCATE TABLE, ALTER
TABLE, DROP TABLE, or DROP DATABASE.

The query cache also works within transactions when using InnoDB tables.

The result from a SELECT query on a view is cached.

The query cache works for SELECT SQL_CALC_FOUND_ROWS ... queries and stores a value that
is returned by a following SELECT FOUND_ROWS() query. FOUND_ROWS() returns the correct value
even if the preceding query was fetched from the cache because the number of found rows is also
stored in the cache. The SELECT FOUND_ROWS() query itself cannot be cached.

Prepared statements that are issued using the binary protocol using mysql_stmt_prepare()
and mysql_stmt_execute() (see Section 23.8.8, “C API Prepared Statements”), are subject to
limitations on caching. Comparison with statements in the query cache is based on the text of the
statement after expansion of ? parameter markers. The statement is compared only with other cached
statements that were executed using the binary protocol. That is, for query cache purposes, prepared
statements issued using the binary protocol are distinct from prepared statements issued using the text
protocol (see Section 13.5, “Prepared SQL Statement Syntax”).

A query cannot be cached if it contains any of the functions shown in the following table.

BENCHMARK() CONNECTION_ID() CONVERT_TZ()

CURDATE() CURRENT_DATE() CURRENT_TIME()

CURRENT_TIMESTAMP() CURRENT_USER() CURTIME()

DATABASE() ENCRYPT() with one parameter FOUND_ROWS()

GET_LOCK() IS_FREE_LOCK() IS_USED_LOCK()



The MySQL Query Cache

932

LAST_INSERT_ID() LOAD_FILE() MASTER_POS_WAIT()

NOW() RAND() RELEASE_ALL_LOCKS()

RELEASE_LOCK() SLEEP() SYSDATE()

UNIX_TIMESTAMP() with no
parameters

USER() UUID()

UUID_SHORT()   

A query also is not cached under these conditions:

• It refers to user-defined functions (UDFs) or stored functions.

• It refers to user variables or local stored program variables.

• It refers to tables in the mysql, INFORMATION_SCHEMA, or performance_schema database.

• (MySQL 5.5.23 and later:) It refers to any partitioned tables.

• It is of any of the following forms:

SELECT ... LOCK IN SHARE MODE
SELECT ... FOR UPDATE
SELECT ... INTO OUTFILE ...
SELECT ... INTO DUMPFILE ...
SELECT * FROM ... WHERE autoincrement_col IS NULL

The last form is not cached because it is used as the ODBC workaround for obtaining the last insert
ID value. See the Connector/ODBC section of Chapter 23, Connectors and APIs.

Statements within transactions that use SERIALIZABLE isolation level also cannot be cached
because they use LOCK IN SHARE MODE locking.

• It uses TEMPORARY tables.

• It does not use any tables.

• It generates warnings.

• The user has a column-level privilege for any of the involved tables.

8.10.3.2 Query Cache SELECT Options

Two query cache-related options may be specified in SELECT statements:

•  SQL_CACHE

The query result is cached if it is cacheable and the value of the query_cache_type system
variable is ON or DEMAND.

•
SQL_NO_CACHE

The server does not use the query cache. It neither checks the query cache to see whether the
result is already cached, nor does it cache the query result. (Due to a limitation in the parser, a space
character must precede and follow the SQL_NO_CACHE keyword; a nonspace such as a newline
causes the server to check the query cache to see whether the result is already cached.)

Examples:

SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;

http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_release-all-locks


The MySQL Query Cache

933

8.10.3.3 Query Cache Configuration

The have_query_cache server system variable indicates whether the query cache is available:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name    | Value |
+------------------+-------+
| have_query_cache | YES   |
+------------------+-------+

When using a standard MySQL binary, this value is always YES, even if query caching is disabled.

Several other system variables control query cache operation. These can be set in an option file or
on the command line when starting mysqld. The query cache system variables all have names that
begin with query_cache_. They are described briefly in Section 5.1.5, “Server System Variables”,
with additional configuration information given here.

To set the size of the query cache, set the query_cache_size system variable. Setting it to 0
disables the query cache. The default size is 0, so the query cache is disabled by default.

To reduce overhead significantly, start the server with query_cache_type=0 if you will not be using
the query cache.

Note

When using the Windows Configuration Wizard to install or configure MySQL,
the default value for query_cache_size will be configured automatically
for you based on the different configuration types available. When using the
Windows Configuration Wizard, the query cache may be enabled (that is, set
to a nonzero value) due to the selected configuration. The query cache is also
controlled by the setting of the query_cache_type variable. Check the values
of these variables as set in your my.ini file after configuration has taken place.

When you set query_cache_size to a nonzero value, keep in mind that the query cache needs
a minimum size of about 40KB to allocate its structures. (The exact size depends on system
architecture.) If you set the value too small, you'll get a warning, as in this example:

mysql> SET GLOBAL query_cache_size = 40000;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Warning
   Code: 1282
Message: Query cache failed to set size 39936;
         new query cache size is 0

mysql> SET GLOBAL query_cache_size = 41984;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+-------+
| Variable_name    | Value |
+------------------+-------+
| query_cache_size | 41984 |
+------------------+-------+

For the query cache to actually be able to hold any query results, its size must be set larger:

mysql> SET GLOBAL query_cache_size = 1000000;
Query OK, 0 rows affected (0.04 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';



The MySQL Query Cache

934

+------------------+--------+
| Variable_name    | Value  |
+------------------+--------+
| query_cache_size | 999424 |
+------------------+--------+
1 row in set (0.00 sec)

The query_cache_size value is aligned to the nearest 1024 byte block. The value reported may
therefore be different from the value that you assign.

If the query cache size is greater than 0, the query_cache_type variable influences how it works.
This variable can be set to the following values:

• A value of 0 or OFF prevents caching or retrieval of cached results.

• A value of 1 or ON enables caching except of those statements that begin with SELECT
SQL_NO_CACHE.

• A value of 2 or DEMAND causes caching of only those statements that begin with SELECT
SQL_CACHE.

If query_cache_size is 0, you should also set query_cache_type variable to 0. In this case, the
server does not acquire the query cache mutex at all, which means that the query cache cannot be
enabled at runtime and there is reduced overhead in query execution.

Setting the GLOBAL query_cache_type value determines query cache behavior for all clients
that connect after the change is made. Individual clients can control cache behavior for their own
connection by setting the SESSION query_cache_type value. For example, a client can disable use
of the query cache for its own queries like this:

mysql> SET SESSION query_cache_type = OFF;

If you set query_cache_type at server startup (rather than at runtime with a SET statement), only the
numeric values are permitted.

To control the maximum size of individual query results that can be cached, set the
query_cache_limit system variable. The default value is 1MB.

Be careful not to set the size of the cache too large. Due to the need for threads to lock the cache
during updates, you may see lock contention issues with a very large cache.

Note

You can set the maximum size that can be specified for the query
cache at runtime with the SET statement by using the --maximum-
query_cache_size=32M option on the command line or in the configuration
file.

When a query is to be cached, its result (the data sent to the client) is stored in the query cache
during result retrieval. Therefore the data usually is not handled in one big chunk. The query cache
allocates blocks for storing this data on demand, so when one block is filled, a new block is allocated.
Because memory allocation operation is costly (timewise), the query cache allocates blocks with
a minimum size given by the query_cache_min_res_unit system variable. When a query is
executed, the last result block is trimmed to the actual data size so that unused memory is freed.
Depending on the types of queries your server executes, you might find it helpful to tune the value of
query_cache_min_res_unit:

• The default value of query_cache_min_res_unit is 4KB. This should be adequate for most
cases.

• If you have a lot of queries with small results, the default block size may lead to memory
fragmentation, as indicated by a large number of free blocks. Fragmentation can force the query



The MySQL Query Cache

935

cache to prune (delete) queries from the cache due to lack of memory. In this case, decrease the
value of query_cache_min_res_unit. The number of free blocks and queries removed due to
pruning are given by the values of the Qcache_free_blocks and Qcache_lowmem_prunes
status variables.

• If most of your queries have large results (check the Qcache_total_blocks and
Qcache_queries_in_cache status variables), you can increase performance by increasing
query_cache_min_res_unit. However, be careful to not make it too large (see the previous
item).

8.10.3.4 Query Cache Status and Maintenance

To check whether the query cache is present in your MySQL server, use the following statement:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name    | Value |
+------------------+-------+
| have_query_cache | YES   |
+------------------+-------+

You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE
statement. The statement does not remove any queries from the cache.

The RESET QUERY CACHE statement removes all query results from the query cache. The FLUSH
TABLES statement also does this.

To monitor query cache performance, use SHOW STATUS to view the cache status variables:

mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+--------+
| Variable_name           | Value  |
+-------------------------+--------+
| Qcache_free_blocks      | 36     |
| Qcache_free_memory      | 138488 |
| Qcache_hits             | 79570  |
| Qcache_inserts          | 27087  |
| Qcache_lowmem_prunes    | 3114   |
| Qcache_not_cached       | 22989  |
| Qcache_queries_in_cache | 415    |
| Qcache_total_blocks     | 912    |
+-------------------------+--------+

Descriptions of each of these variables are given in Section 5.1.7, “Server Status Variables”. Some
uses for them are described here.

The total number of SELECT queries is given by this formula:

  Com_select
+ Qcache_hits
+ queries with errors found by parser

The Com_select value is given by this formula:

  Qcache_inserts
+ Qcache_not_cached
+ queries with errors found during the column-privileges check

The query cache uses variable-length blocks, so Qcache_total_blocks and
Qcache_free_blocks may indicate query cache memory fragmentation. After FLUSH QUERY
CACHE, only a single free block remains.



Optimizing Locking Operations

936

Every cached query requires a minimum of two blocks (one for the query text and one or more for the
query results). Also, every table that is used by a query requires one block. However, if two or more
queries use the same table, only one table block needs to be allocated.

The information provided by the Qcache_lowmem_prunes status variable can help you tune the
query cache size. It counts the number of queries that have been removed from the cache to free up
memory for caching new queries. The query cache uses a least recently used (LRU) strategy to decide
which queries to remove from the cache. Tuning information is given in Section 8.10.3.3, “Query Cache
Configuration”.

8.11 Optimizing Locking Operations

When your database is busy with multiple sessions reading and writing data, the mechanism that
controls access to data files and memory areas can become a consideration for performance tuning.
Otherwise, sessions can spend time waiting for access to resources when they could be running
concurrently.

MySQL manages contention for table contents using locking:

• Internal locking is performed within the MySQL server itself to manage contention for table contents
by multiple threads. This type of locking is internal because it is performed entirely by the server and
involves no other programs. See Section 8.11.1, “Internal Locking Methods”.

• External locking occurs when the server and other programs lock MyISAM table files to coordinate
among themselves which program can access the tables at which time. See Section 8.11.5,
“External Locking”.

8.11.1 Internal Locking Methods

This section discusses internal locking; that is, locking performed within the MySQL server itself to
manage contention for table contents by multiple sessions. This type of locking is internal because it
is performed entirely by the server and involves no other programs. For locking performed on MySQL
files by other programs, see Section 8.11.5, “External Locking”.

• Row-Level Locking

• Table-Level Locking

• Choosing the Type of Locking

Row-Level Locking

MySQL uses row-level locking for InnoDB tables to support simultaneous write access by multiple
sessions, making them suitable for multi-user, highly concurrent, and OLTP applications.

To avoid deadlocks when performing multiple concurrent write operations on a single InnoDB table,
acquire necessary locks at the start of the transaction by issuing a SELECT ... FOR UPDATE
statement for each group of rows expected to be modified, even if the data change statements
come later in the transaction. If transactions modify or lock more than one table, issue the applicable
statements in the same order within each transaction. Deadlocks affect performance rather than
representing a serious error, because InnoDB automatically detects deadlock conditions and rolls back
one of the affected transactions.

Advantages of row-level locking:

• Fewer lock conflicts when different sessions access different rows.

• Fewer changes for rollbacks.

• Possible to lock a single row for a long time.



Internal Locking Methods

937

Table-Level Locking

MySQL uses table-level locking for MyISAM, MEMORY, and MERGE tables, permitting only one session to
update those tables at a time. This locking level makes these storage engines more suitable for read-
only, read-mostly, or single-user applications.

These storage engines avoid deadlocks by always requesting all needed locks at once at the beginning
of a query and always locking the tables in the same order. The tradeoff is that this strategy reduces
concurrency; other sessions that want to modify the table must wait until the current data change
statement finishes.

Advantages of table-level locking:

• Relatively little memory required (row locking requires memory per row or group of rows locked)

• Fast when used on a large part of the table because only a single lock is involved.

• Fast if you often do GROUP BY operations on a large part of the data or must scan the entire table
frequently.

MySQL grants table write locks as follows:

1. If there are no locks on the table, put a write lock on it.

2. Otherwise, put the lock request in the write lock queue.

MySQL grants table read locks as follows:

1. If there are no write locks on the table, put a read lock on it.

2. Otherwise, put the lock request in the read lock queue.

Table updates are given higher priority than table retrievals. Therefore, when a lock is released, the
lock is made available to the requests in the write lock queue and then to the requests in the read lock
queue. This ensures that updates to a table are not “starved” even when there is heavy SELECT activity
for the table. However, if there are many updates for a table, SELECT statements wait until there are no
more updates.

For information on altering the priority of reads and writes, see Section 8.11.2, “Table Locking Issues”.

You can analyze the table lock contention on your system by checking the Table_locks_immediate
and Table_locks_waited status variables, which indicate the number of times that requests for
table locks could be granted immediately and the number that had to wait, respectively:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name         | Value   |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited    | 15324   |
+-----------------------+---------+

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and
writers for a given table: If a MyISAM table has no free blocks in the middle of the data file, rows are
always inserted at the end of the data file. In this case, you can freely mix concurrent INSERT and
SELECT statements for a MyISAM table without locks. That is, you can insert rows into a MyISAM table
at the same time other clients are reading from it. Holes can result from rows having been deleted from
or updated in the middle of the table. If there are holes, concurrent inserts are disabled but are enabled
again automatically when all holes have been filled with new data. To control this behavior, use the
concurrent_insert system variable. See Section 8.11.3, “Concurrent Inserts”.



Table Locking Issues

938

If you acquire a table lock explicitly with LOCK TABLES, you can request a READ LOCAL lock rather
than a READ lock to enable other sessions to perform concurrent inserts while you have the table
locked.

To perform many INSERT and SELECT operations on a table t1 when concurrent inserts are not
possible, you can insert rows into a temporary table temp_t1 and update the real table with the rows
from the temporary table:

mysql> LOCK TABLES t1 WRITE, temp_t1 WRITE;
mysql> INSERT INTO t1 SELECT * FROM temp_t1;
mysql> DELETE FROM temp_t1;
mysql> UNLOCK TABLES;

Choosing the Type of Locking

Generally, table locks are superior to row-level locks in the following cases:

• Most statements for the table are reads.

• Statements for the table are a mix of reads and writes, where writes are updates or deletes for a
single row that can be fetched with one key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;

• SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE
statements.

• Many scans or GROUP BY operations on the entire table without any writers.

With higher-level locks, you can more easily tune applications by supporting locks of different types,
because the lock overhead is less than for row-level locks.

Options other than row-level locking:

• Versioning (such as that used in MySQL for concurrent inserts) where it is possible to have one
writer at the same time as many readers. This means that the database or table supports different
views for the data depending on when access begins. Other common terms for this are “time travel,”
“copy on write,” or “copy on demand.”

• Copy on demand is in many cases superior to row-level locking. However, in the worst case, it can
use much more memory than using normal locks.

• Instead of using row-level locks, you can employ application-level locks, such as those provided by
GET_LOCK() and RELEASE_LOCK() in MySQL. These are advisory locks, so they work only with
applications that cooperate with each other. See Section 12.17, “Miscellaneous Functions”.

8.11.2 Table Locking Issues

InnoDB tables use row-level locking so that multiple sessions and applications can read from and write
to the same table simultaneously, without making each other wait or producing inconsistent results.
For this storage engine, avoid using the LOCK TABLES statement, because it does not offer any extra
protection, but instead reduces concurrency. The automatic row-level locking makes these tables
suitable for your busiest databases with your most important data, while also simplifying application
logic since you do not need to lock and unlock tables. Consequently, the InnoDB storage engine is the
default in MySQL 5.5 and higher.

MySQL uses table locking (instead of page, row, or column locking) for all storage engines except
InnoDB and NDB. The locking operations themselves do not have much overhead. But because
only one session can write to a table at any one time, for best performance with these other storage
engines, use them primarily for tables that are queried often and rarely inserted into or updated.



Table Locking Issues

939

• Performance Considerations Favoring InnoDB

• Workarounds for Locking Performance Issues

Performance Considerations Favoring InnoDB

When choosing whether to create a table using InnoDB or a different storage engine, keep in mind the
following disadvantages of table locking:

• Table locking enables many sessions to read from a table at the same time, but if a session wants to
write to a table, it must first get exclusive access, meaning it might have to wait for other sessions to
finish with the table first. During the update, all other sessions that want to access this particular table
must wait until the update is done.

• Table locking causes problems when a session is waiting because the disk is full and free space
needs to become available before the session can proceed. In this case, all sessions that want to
access the problem table are also put in a waiting state until more disk space is made available.

• A SELECT statement that takes a long time to run prevents other sessions from updating the table in
the meantime, making the other sessions appear slow or unresponsive. While a session is waiting
to get exclusive access to the table for updates, other sessions that issue SELECT statements will
queue up behind it, reducing concurrency even for read-only sessions.

Workarounds for Locking Performance Issues

The following items describe some ways to avoid or reduce contention caused by table locking:

• Consider switching the table to the InnoDB storage engine, either using CREATE TABLE ...
ENGINE=INNODB during setup, or using ALTER TABLE ... ENGINE=INNODB for an existing table.
See Chapter 14, The InnoDB Storage Engine for more details about this storage engine.

• Optimize SELECT statements to run faster so that they lock tables for a shorter time. You might have
to create some summary tables to do this.

• Start mysqld with --low-priority-updates. For storage engines that use only table-level
locking (such as MyISAM, MEMORY, and MERGE), this gives all statements that update (modify) a table
lower priority than SELECT statements. In this case, the second SELECT statement in the preceding
scenario would execute before the UPDATE statement, and would not wait for the first SELECT to
finish.

• To specify that all updates issued in a specific connection should be done with low priority, set the
low_priority_updates server system variable equal to 1.

• To give a specific INSERT, UPDATE, or DELETE statement lower priority, use the LOW_PRIORITY
attribute.

• To give a specific SELECT statement higher priority, use the HIGH_PRIORITY attribute. See
Section 13.2.9, “SELECT Syntax”.

• Start mysqld with a low value for the max_write_lock_count system variable to force MySQL to
temporarily elevate the priority of all SELECT statements that are waiting for a table after a specific
number of inserts to the table occur. This permits READ locks after a certain number of WRITE locks.

• If you have problems with INSERT combined with SELECT, consider switching to MyISAM tables,
which support concurrent SELECT and INSERT statements. (See Section 8.11.3, “Concurrent
Inserts”.)

• If you mix inserts and deletes on the same table, INSERT DELAYED may be of great help. See
Section 13.2.5.2, “INSERT DELAYED Syntax”.

• If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DELETE may
help. See Section 13.2.2, “DELETE Syntax”.



Concurrent Inserts

940

• Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table locks
shorter. See Section 13.2.9, “SELECT Syntax”.

• Splitting table contents into separate tables may help, by allowing queries to run against columns in
one table, while updates are confined to columns in a different table.

• You could change the locking code in mysys/thr_lock.c to use a single queue. In this case, write
locks and read locks would have the same priority, which might help some applications.

8.11.3 Concurrent Inserts

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and
writers for a given table: If a MyISAM table has no holes in the data file (deleted rows in the middle), an
INSERT statement can be executed to add rows to the end of the table at the same time that SELECT
statements are reading rows from the table. If there are multiple INSERT statements, they are queued
and performed in sequence, concurrently with the SELECT statements. The results of a concurrent
INSERT may not be visible immediately.

The concurrent_insert system variable can be set to modify the concurrent-insert processing.
By default, the variable is set to AUTO (or 1) and concurrent inserts are handled as just described. If
concurrent_insert is set to NEVER (or 0), concurrent inserts are disabled. If the variable is set to
ALWAYS (or 2), concurrent inserts at the end of the table are permitted even for tables that have deleted
rows. See also the description of the concurrent_insert system variable.

Under circumstances where concurrent inserts can be used, there is seldom any need to use the
DELAYED modifier for INSERT statements. See Section 13.2.5.2, “INSERT DELAYED Syntax”.

If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ...
SELECT or INSERT ... SELECT statements. This is done to ensure that you can re-create an exact
copy of your tables by applying the log during a backup operation. See Section 5.4.4, “The Binary Log”.
In addition, for those statements a read lock is placed on the selected-from table such that inserts into
that table are blocked. The effect is that concurrent inserts for that table must wait as well.

With LOAD DATA INFILE, if you specify CONCURRENT with a MyISAM table that satisfies the condition
for concurrent inserts (that is, it contains no free blocks in the middle), other sessions can retrieve data
from the table while LOAD DATA is executing. Use of the CONCURRENT option affects the performance
of LOAD DATA a bit, even if no other session is using the table at the same time.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the
server was started with that option. It also causes concurrent inserts not to be used.

For LOCK TABLE, the difference between READ LOCAL and READ is that READ LOCAL permits
nonconflicting INSERT statements (concurrent inserts) to execute while the lock is held. However, this
cannot be used if you are going to manipulate the database using processes external to the server
while you hold the lock.

8.11.4 Metadata Locking

MySQL uses metadata locking to manage concurrent access to database objects and to ensure data
consistency. Metadata locking applies not just to tables, but also to schemas and stored programs
(procedures, functions, triggers, and scheduled events).

Metadata locking does involve some overhead, which increases as query volume increases. Metadata
contention increases the more that multiple queries attempt to access the same objects.

Metadata locking is not a replacement for the table definition cache, and its mutexes and locks differ
from the LOCK_open mutex. The following discussion provides some information about how metadata
locking works.

To ensure transaction serializability, the server must not permit one session to perform a data definition
language (DDL) statement on a table that is used in an uncompleted explicitly or implicitly started



External Locking

941

transaction in another session. The server achieves this by acquiring metadata locks on tables used
within a transaction and deferring release of those locks until the transaction ends. A metadata lock
on a table prevents changes to the table's structure. This locking approach has the implication that a
table that is being used by a transaction within one session cannot be used in DDL statements by other
sessions until the transaction ends.

This principle applies not only to transactional tables, but also to nontransactional tables. Suppose that
a session begins a transaction that uses transactional table t and nontransactional table nt as follows:

START TRANSACTION;
SELECT * FROM t;
SELECT * FROM nt;

The server holds metadata locks on both t and nt until the transaction ends. If another session
attempts a DDL or write lock operation on either table, it blocks until metadata lock release at
transaction end. For example, a second session blocks if it attempts any of these operations:

DROP TABLE t;
ALTER TABLE t ...;
DROP TABLE nt;
ALTER TABLE nt ...;
LOCK TABLE t ... WRITE;

If the server acquires metadata locks for a statement that is syntactically valid but fails during
execution, it does not release the locks early. Lock release is still deferred to the end of the transaction
because the failed statement is written to the binary log and the locks protect log consistency.

In autocommit mode, each statement is in effect a complete transaction, so metadata locks acquired
for the statement are held only to the end of the statement.

Metadata locks acquired during a PREPARE statement are released once the statement has been
prepared, even if preparation occurs within a multiple-statement transaction.

8.11.5 External Locking

External locking is the use of file system locking to manage contention for MyISAM database tables by
multiple processes. External locking is used in situations where a single process such as the MySQL
server cannot be assumed to be the only process that requires access to tables. Here are some
examples:

• If you run multiple servers that use the same database directory (not recommended), each server
must have external locking enabled.

• If you use myisamchk to perform table maintenance operations on MyISAM tables, you must either
ensure that the server is not running, or that the server has external locking enabled so that it locks
table files as necessary to coordinate with myisamchk for access to the tables. The same is true for
use of myisampack to pack MyISAM tables.

If the server is run with external locking enabled, you can use myisamchk at any time for read
operations such a checking tables. In this case, if the server tries to update a table that myisamchk
is using, the server will wait for myisamchk to finish before it continues.

If you use myisamchk for write operations such as repairing or optimizing tables, or if you use
myisampack to pack tables, you must always ensure that the mysqld server is not using the table.
If you do not stop mysqld, at least do a mysqladmin flush-tables before you run myisamchk.
Your tables may become corrupted if the server and myisamchk access the tables simultaneously.

With external locking in effect, each process that requires access to a table acquires a file system lock
for the table files before proceeding to access the table. If all necessary locks cannot be acquired,
the process is blocked from accessing the table until the locks can be obtained (after the process that
currently holds the locks releases them).



Optimizing the MySQL Server

942

External locking affects server performance because the server must sometimes wait for other
processes before it can access tables.

External locking is unnecessary if you run a single server to access a given data directory (which is
the usual case) and if no other programs such as myisamchk need to modify tables while the server
is running. If you only read tables with other programs, external locking is not required, although
myisamchk might report warnings if the server changes tables while myisamchk is reading them.

With external locking disabled, to use myisamchk, you must either stop the server while myisamchk
executes or else lock and flush the tables before running myisamchk. (See Section 8.12.1, “System
Factors”.) To avoid this requirement, use the CHECK TABLE and REPAIR TABLE statements to check
and repair MyISAM tables.

For mysqld, external locking is controlled by the value of the skip_external_locking system
variable. When this variable is enabled, external locking is disabled, and vice versa. External locking is
disabled by default.

Use of external locking can be controlled at server startup by using the --external-locking or --
skip-external-locking option.

If you do use external locking option to enable updates to MyISAM tables from many MySQL
processes, you must ensure that the following conditions are satisfied:

• Do not use the query cache for queries that use tables that are updated by another process.

• Do not start the server with the --delay-key-write=ALL option or use the DELAY_KEY_WRITE=1
table option for any shared tables. Otherwise, index corruption can occur.

The easiest way to satisfy these conditions is to always use --external-locking together with
--delay-key-write=OFF and --query-cache-size=0. (This is not done by default because in
many setups it is useful to have a mixture of the preceding options.)

8.12 Optimizing the MySQL Server

This section discusses optimization techniques for the database server, primarily dealing with system
configuration rather than tuning SQL statements. The information in this section is appropriate for
DBAs who want to ensure performance and scalability across the servers they manage; for developers
constructing installation scripts that include setting up the database; and people running MySQL
themselves for development, testing, and so on who want to maximize their own productivity.

8.12.1 System Factors

Some system-level factors can affect performance in a major way:

• If you have enough RAM, you could remove all swap devices. Some operating systems use a swap
device in some contexts even if you have free memory.

• Avoid external locking for MyISAM tables. The default is for external locking to be disabled. The
--external-locking and --skip-external-locking options explicitly enable and disable
external locking.

Disabling external locking does not affect MySQL's functionality as long as you run only one server.
Just remember to take down the server (or lock and flush the relevant tables) before you run
myisamchk. On some systems it is mandatory to disable external locking because it does not work,
anyway.

The only case in which you cannot disable external locking is when you run multiple MySQL servers
(not clients) on the same data, or if you run myisamchk to check (not repair) a table without telling
the server to flush and lock the tables first. Note that using multiple MySQL servers to access the
same data concurrently is generally not recommended, except when using NDB Cluster.



Optimizing Disk I/O

943

The LOCK TABLES and UNLOCK TABLES statements use internal locking, so you can use them
even if external locking is disabled.

8.12.2 Optimizing Disk I/O

This section describes ways to configure storage devices when you can devote more and faster
storage hardware to the database server. For information about optimizing an InnoDB configuration to
improve I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

• Disk seeks are a huge performance bottleneck. This problem becomes more apparent when
the amount of data starts to grow so large that effective caching becomes impossible. For large
databases where you access data more or less randomly, you can be sure that you need at least
one disk seek to read and a couple of disk seeks to write things. To minimize this problem, use disks
with low seek times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead) by either
symlinking files to different disks or striping the disks:

• Using symbolic links

This means that, for MyISAM tables, you symlink the index file and data files from their usual
location in the data directory to another disk (that may also be striped). This makes both the
seek and read times better, assuming that the disk is not used for other purposes as well. See
Section 8.12.3, “Using Symbolic Links”.

Symbolic links are not supported for use with InnoDB tables. However, it is possible to place
InnoDB data and log files on different physical disks. For more information, see Section 8.5.7,
“Optimizing InnoDB Disk I/O”.

•  Striping

Striping means that you have many disks and put the first block on the first disk, the second block
on the second disk, and the N-th block on the (N MOD number_of_disks) disk, and so on. This
means if your normal data size is less than the stripe size (or perfectly aligned), you get much
better performance. Striping is very dependent on the operating system and the stripe size, so
benchmark your application with different stripe sizes. See Section 8.13.3, “Using Your Own
Benchmarks”.

The speed difference for striping is very dependent on the parameters. Depending on how you
set the striping parameters and number of disks, you may get differences measured in orders of
magnitude. You have to choose to optimize for random or sequential access.

• For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need
2 × N drives to hold N drives of data. This is probably the best option if you have the money for it.
However, you may also have to invest in some volume-management software to handle it efficiently.

• A good option is to vary the RAID level according to how critical a type of data is. For example, store
semi-important data that can be regenerated on a RAID 0 disk, but store really important data such
as host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a problem if you have
many writes, due to the time required to update the parity bits.

• You can also set the parameters for the file system that the database uses:

If you do not need to know when files were last accessed (which is not really useful on a database
server), you can mount your file systems with the -o noatime option. That skips updates to the last
access time in inodes on the file system, which avoids some disk seeks.

On many operating systems, you can set a file system to be updated asynchronously by mounting
it with the -o async option. If your computer is reasonably stable, this should give you better
performance without sacrificing too much reliability. (This flag is on by default on Linux.)



Using Symbolic Links

944

Using NFS with MySQL

Caution is advised when considering using NFS with MySQL. Potential issues, which vary by operating
system and NFS version, include:

• MySQL data and log files placed on NFS volumes becoming locked and unavailable for use. Locking
issues may occur in cases where multiple instances of MySQL access the same data directory
or where MySQL is shut down improperly, due to a power outage, for example. NFS version 4
addresses underlying locking issues with the introduction of advisory and lease-based locking.
However, sharing a data directory among MySQL instances is not recommended.

• Data inconsistencies introduced due to messages received out of order or lost network traffic. To
avoid this issue, use TCP with hard and intr mount options.

• Maximum file size limitations. NFS Version 2 clients can only access the lowest 2GB of a file
(signed 32 bit offset). NFS Version 3 clients support larger files (up to 64 bit offsets). The maximum
supported file size also depends on the local file system of the NFS server.

Using NFS within a professional SAN environment or other storage system tends to offer greater
reliability than using NFS outside of such an environment. However, NFS within a SAN environment
may be slower than directly attached or bus-attached non-rotational storage.

If you choose to use NFS, NFS Version 4 or later is recommended, as is testing your NFS setup
thoroughly before deploying into a production environment.

8.12.3 Using Symbolic Links

You can move databases or tables from the database directory to other locations and replace them
with symbolic links to the new locations. You might want to do this, for example, to move a database
to a file system with more free space or increase the speed of your system by spreading your tables to
different disks.

The recommended way to do this is to symlink entire database directories to a different disk. Symlink
MyISAM tables only as a last resort.

To determine the location of your data directory, use this statement:

SHOW VARIABLES LIKE 'datadir';

8.12.3.1 Using Symbolic Links for Databases on Unix

On Unix, the way to symlink a database is first to create a directory on some disk where you have free
space and then to create a soft link to it from the MySQL data directory.

shell> mkdir /dr1/databases/test
shell> ln -s /dr1/databases/test /path/to/datadir

MySQL does not support linking one directory to multiple databases. Replacing a database directory
with a symbolic link works as long as you do not make a symbolic link between databases. Suppose
that you have a database db1 under the MySQL data directory, and then make a symlink db2 that
points to db1:

shell> cd /path/to/datadir
shell> ln -s db1 db2

The result is that, for any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one
client updates db1.tbl_a and another client updates db2.tbl_a, problems are likely to occur.

8.12.3.2 Using Symbolic Links for MyISAM Tables on Unix



Using Symbolic Links

945

Symlinks are fully supported only for MyISAM tables. For files used by tables for other storage engines,
you may get strange problems if you try to use symbolic links.

Do not symlink tables on systems that do not have a fully operational realpath() call. (Linux and
Solaris support realpath()). To determine whether your system supports symbolic links, check the
value of the have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

The handling of symbolic links for MyISAM tables works as follows:

• In the data directory, you always have the table format (.frm) file, the data (.MYD) file, and the index
(.MYI) file. The data file and index file can be moved elsewhere and replaced in the data directory by
symlinks. The format file cannot.

• You can symlink the data file and the index file independently to different directories.

• To instruct a running MySQL server to perform the symlinking, use the DATA DIRECTORY and
INDEX DIRECTORY options to CREATE TABLE. See Section 13.1.17, “CREATE TABLE Syntax”.
Alternatively, if mysqld is not running, symlinking can be accomplished manually using ln -s from
the command line.

Note

The path used with either or both of the DATA DIRECTORY and INDEX
DIRECTORY options may not include the MySQL data directory. (Bug
#32167)

• myisamchk does not replace a symlink with the data file or index file. It works directly on the file to
which the symlink points. Any temporary files are created in the directory where the data file or index
file is located. The same is true for the ALTER TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements.

• Note

When you drop a table that is using symlinks, both the symlink and the file
to which the symlink points are dropped. This is an extremely good reason
not to run mysqld as the system root or permit system users to have write
access to MySQL database directories.

• If you rename a table with ALTER TABLE ... RENAME or RENAME TABLE and you do not move
the table to another database, the symlinks in the database directory are renamed to the new names
and the data file and index file are renamed accordingly.

• If you use ALTER TABLE ... RENAME or RENAME TABLE to move a table to another database,
the table is moved to the other database directory. If the table name changed, the symlinks in the
new database directory are renamed to the new names and the data file and index file are renamed
accordingly.

• If you are not using symlinks, start mysqld with the --skip-symbolic-links option to ensure
that no one can use mysqld to drop or rename a file outside of the data directory.

These table symlink operations are not supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

• As indicated previously, only the data and index files can be symbolic links. The .frm file must
never be a symbolic link. Attempting to do this (for example, to make one table name a synonym
for another) produces incorrect results. Suppose that you have a database db1 under the MySQL
data directory, a table tbl1 in this database, and in the db1 directory you make a symlink tbl2 that
points to tbl1:



Using Symbolic Links

946

shell> cd /path/to/datadir/db1
shell> ln -s tbl1.frm tbl2.frm
shell> ln -s tbl1.MYD tbl2.MYD
shell> ln -s tbl1.MYI tbl2.MYI

Problems result if one thread reads db1.tbl1 and another thread updates db1.tbl2:

• The query cache is “fooled” (it has no way of knowing that tbl1 has not been updated, so it
returns outdated results).

• ALTER statements on tbl2 fail.

8.12.3.3 Using Symbolic Links for Databases on Windows

On Windows, symbolic links can be used for database directories. This enables you to put a database
directory at a different location (for example, on a different disk) by setting up a symbolic link to it. Use
of database symlinks on Windows is similar to their use on Unix, although the procedure for setting up
the link differs.

Suppose that you want to place the database directory for a database named mydb at D:\data\mydb.
To do this, create a symbolic link in the MySQL data directory that points to D:\data\mydb. However,
before creating the symbolic link, make sure that the D:\data\mydb directory exists by creating it if
necessary. If you already have a database directory named mydb in the data directory, move it to D:
\data. Otherwise, the symbolic link will be ineffective. To avoid problems, make sure that the server is
not running when you move the database directory.

The procedure for creating the database symbolic link depends on your version of Windows.

Windows Vista, Windows Server 2008, or newer have native symbolic link support, so you can create a
symlink using the mklink command. This command requires administrative privileges.

1. Change location into the data directory:

C:\> cd \path\to\datadir

2. In the data directory, create a symlink named mydb that points to the location of the database
directory:

C:\> mklink /d mydb D:\data\mydb

After this, all tables created in the database mydb are created in D:\data\mydb.

Alternatively, on any version of Windows supported by MySQL, you can create a symbolic link to a
MySQL database by creating a .sym file in the data directory that contains the path to the destination
directory. The file should be named db_name.sym, where db_name is the database name.

Support for database symbolic links on Windows using .sym files is enabled by default. If you do not
need .sym file symbolic links, you can disable support for them by starting mysqld with the --skip-
symbolic-links option. To determine whether your system supports .sym file symbolic links, check
the value of the have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

To create a .sym file symlink, use this procedure:

1. Change location into the data directory:

C:\> cd \path\to\datadir



Optimizing Memory Use

947

2. In the data directory, create a text file named mydb.sym that contains this path name: D:\data
\mydb\

Note

The path name to the new database and tables should be absolute. If you
specify a relative path, the location will be relative to the mydb.sym file.

After this, all tables created in the database mydb are created in D:\data\mydb.

The following limitations apply to the use of .sym files for database symbolic linking on Windows.
These limitations do not apply for symlinks created using mklink.

• The symbolic link is not used if a directory with the same name as the database exists in the MySQL
data directory.

• The --innodb_file_per_table option cannot be used.

• If you run mysqld as a service, you cannot use a mapped drive to a remote server as the destination
of the symbolic link. As a workaround, you can use the full path (\\servername\path\).

8.12.4 Optimizing Memory Use

8.12.4.1 How MySQL Uses Memory

MySQL allocates buffers and caches to improve performance of database operations. You can improve
MySQL performance by increasing the values of certain cache and buffer-related system variables.
You can also modify these variables to run MySQL on systems with limited memory.

The following list describes some of the ways that MySQL uses memory. Where applicable, relevant
system variables are referenced. Some items are storage engine or feature specific.

• The InnoDB buffer pool is a memory area that holds cached InnoDB data for tables, indexes, and
other auxiliary buffers. For efficiency of high-volume read operations, the buffer pool is divided into
pages that can potentially hold multiple rows. For efficiency of cache management, the buffer pool
is implemented as a linked list of pages; data that is rarely used is aged out of the cache, using
a variation of the LRU algorithm. For more information, see Section 14.9.2.1, “The InnoDB Buffer
Pool”.

The size of the buffer pool is important for system performance:

• InnoDB allocates memory for the entire buffer pool at server startup, using malloc() operations.
The innodb_buffer_pool_size system variable defines the buffer pool size. Typically, a
recommended innodb_buffer_pool_size value is 50 to 75 percent of system memory. For
more information, see Configuring InnoDB Buffer Pool Size.

• On systems with a large amount of memory, you can improve concurrency by dividing the buffer
pool into multiple buffer pool instances. The innodb_buffer_pool_instances system variable
defines the number of buffer pool instances.

• A buffer pool that is too small may cause excessive churning as pages are flushed from the buffer
pool only to be required again a short time later.

• A buffer pool that is too large may cause swapping due to competition for memory.

• All threads share the MyISAM key buffer. The key_buffer_size system variable determines its
size.

For each MyISAM table the server opens, the index file is opened once; the data file is opened once
for each concurrently running thread that accesses the table. For each concurrent thread, a table
structure, column structures for each column, and a buffer of size 3 * N are allocated (where N is

http://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool-resize.html


Optimizing Memory Use

948

the maximum row length, not counting BLOB columns). A BLOB column requires five to eight bytes
plus the length of the BLOB data. The MyISAM storage engine maintains one extra row buffer for
internal use.

• The myisam_use_mmap system variable can be set to 1 to enable memory-mapping for all MyISAM
tables.

• If an internal in-memory temporary table becomes too large (as determined using the
tmp_table_size and max_heap_table_size system variables), MySQL automatically converts
the table from in-memory to on-disk format. On-disk temporary tables use the MyISAM storage
engine. You can increase the permissible temporary table size as described in Section 8.4.4,
“Internal Temporary Table Use in MySQL”.

For MEMORY tables explicitly created with CREATE TABLE, only the max_heap_table_size system
variable determines how large the table is permitted to grow and there is no conversion to on-disk
format.

• The MySQL Performance Schema is a feature for monitoring MySQL server execution at a low level.
For performance reasons, fixed memory buffers for Performance Schema are allocated at server
startup and do not change in size while the server is running.

• Each thread that the server uses to manage client connections requires some thread-specific space.
The following list indicates these and which system variables control their size:

• A stack (thread_stack)

• A connection buffer (net_buffer_length)

• A result buffer (net_buffer_length)

The connection buffer and result buffer each begin with a size equal to net_buffer_length bytes,
but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer
shrinks to net_buffer_length bytes after each SQL statement. While a statement is running, a
copy of the current statement string is also allocated.

• All threads share the same base memory.

• When a thread is no longer needed, the memory allocated to it is released and returned to the
system unless the thread goes back into the thread cache. In that case, the memory remains
allocated.

• Each request that performs a sequential scan of a table allocates a read buffer. The
read_buffer_size system variable determines the buffer size.

• When reading rows in an arbitrary sequence (for example, following a sort), a random-read buffer
may be allocated to avoid disk seeks. The read_rnd_buffer_size system variable determines
the buffer size.

• All joins are executed in a single pass, and most joins can be done without even using a temporary
table. Most temporary tables are memory-based hash tables. Temporary tables with a large row
length (calculated as the sum of all column lengths) or that contain BLOB columns are stored on disk.

• Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on
the result set size. See Section B.5.3.5, “Where MySQL Stores Temporary Files”.

• Almost all parsing and calculating is done in thread-local and reusable memory pools. No memory
overhead is needed for small items, thus avoiding the normal slow memory allocation and freeing.
Memory is allocated only for unexpectedly large strings.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB values.
If you scan a table, the buffer grows as large as the largest BLOB value.



Optimizing Memory Use

949

• MySQL requires memory and descriptors for the table cache. Handler structures for all in-use tables
are saved in the table cache and managed as “First In, First Out” (FIFO). The table_open_cache
system variable defines the initial table cache size; see Section 8.4.3.1, “How MySQL Opens and
Closes Tables”.

MySQL also requires memory for the table definition cache. The table_definition_cache
system variable defines the number of table definitions (from .frm files) that can be stored in the
table definition cache. If you use a large number of tables, you can create a large table definition
cache to speed up the opening of tables. The table definition cache takes less space and does not
use file descriptors, unlike the table cache.

• A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that
are not in use at once and marks all in-use tables to be closed when the currently executing thread
finishes. This effectively frees most in-use memory. FLUSH TABLES does not return until all tables
have been closed.

• The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER,
and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE,
DROP USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes
many instances of the statements that cause caching, there will be an increase in memory use. This
cached memory can be freed with FLUSH PRIVILEGES.

ps and other system status programs may report that mysqld uses a lot of memory. This may be
caused by thread stacks on different memory addresses. For example, the Solaris version of ps counts
the unused memory between stacks as used memory. To verify this, check available swap with swap
-s. We test mysqld with several memory-leakage detectors (both commercial and Open Source), so
there should be no memory leaks.

8.12.4.2 Enabling Large Page Support

Some hardware/operating system architectures support memory pages greater than the default
(usually 4KB). The actual implementation of this support depends on the underlying hardware and
operating system. Applications that perform a lot of memory accesses may obtain performance
improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

In MySQL, large pages can be used by InnoDB, to allocate memory for its buffer pool and additional
memory pool.

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available for
recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or --
skip-super-large-pages option.

MySQL also supports the Linux implementation of large page support (which is called HugeTLB in
Linux).

Before large pages can be used on Linux, the kernel must be enabled to support them and it is
necessary to configure the HugeTLB memory pool. For reference, the HugeTBL API is documented in
the Documentation/vm/hugetlbpage.txt file of your Linux sources.

The kernel for some recent systems such as Red Hat Enterprise Linux appear to have the large pages
feature enabled by default. To check whether this is true for your kernel, use the following command
and look for output lines containing “huge”:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total:       0
HugePages_Free:        0
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:       4096 kB



Optimizing Memory Use

950

The nonempty command output indicates that large page support is present, but the zero values
indicate that no pages are configured for use.

If your kernel needs to be reconfigured to support large pages, consult the hugetlbpage.txt file for
instructions.

Assuming that your Linux kernel has large page support enabled, configure it for use by MySQL using
the following commands. Normally, you put these in an rc file or equivalent startup file that is executed
during the system boot sequence, so that the commands execute each time the system starts. The
commands should execute early in the boot sequence, before the MySQL server starts. Be sure to
change the allocation numbers and the group number as appropriate for your system.

# Set the number of pages to be used.
# Each page is normally 2MB, so a value of 20 = 40MB.
# This command actually allocates memory, so this much
# memory must be available.
echo 20 > /proc/sys/vm/nr_hugepages

# Set the group number that is permitted to access this
# memory (102 in this case). The mysql user must be a
# member of this group.
echo 102 > /proc/sys/vm/hugetlb_shm_group

# Increase the amount of shmem permitted per segment
# (12G in this case).
echo 1560281088 > /proc/sys/kernel/shmmax

# Increase total amount of shared memory.  The value
# is the number of pages. At 4KB/page, 4194304 = 16GB.
echo 4194304 > /proc/sys/kernel/shmall

For MySQL usage, you normally want the value of shmmax to be close to the value of shmall.

To verify the large page configuration, check /proc/meminfo again as described previously. Now you
should see some nonzero values:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total:      20
HugePages_Free:       20
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:       4096 kB

The final step to make use of the hugetlb_shm_group is to give the mysql user an “unlimited”
value for the memlock limit. This can be done either by editing /etc/security/limits.conf or by
adding the following command to your mysqld_safe script:

ulimit -l unlimited

Adding the ulimit command to mysqld_safe causes the root user to set the memlock limit to
unlimited before switching to the mysql user. (This assumes that mysqld_safe is started by
root.)

Large page support in MySQL is disabled by default. To enable it, start the server with the --large-
pages option. For example, you can use the following lines in your server's my.cnf file:

[mysqld]
large-pages

With this option, InnoDB uses large pages automatically for its buffer pool and additional memory pool.
If InnoDB cannot do this, it falls back to use of traditional memory and writes a warning to the error log:
Warning: Using conventional memory pool

To verify that large pages are being used, check /proc/meminfo again:



Optimizing Network Use

951

shell> cat /proc/meminfo | grep -i huge
HugePages_Total:      20
HugePages_Free:       20
HugePages_Rsvd:        2
HugePages_Surp:        0
Hugepagesize:       4096 kB

8.12.5 Optimizing Network Use

8.12.5.1 How MySQL Uses Threads for Client Connections

Connection manager threads handle client connection requests on the network interfaces that the
server listens to. On all platforms, one manager thread handles TCP/IP connection requests. On Unix,
this manager thread also handles Unix socket file connection requests. On Windows, a manager thread
handles shared-memory connection requests, and another handles named-pipe connection requests.
The server does not create threads to handle interfaces that it does not listen to. For example, a
Windows server that does not have support for named-pipe connections enabled does not create a
thread to handle them.

By default, connection manager threads associate each client connection with a thread dedicated to it
that handles authentication and request processing for that connection. Manager threads create a new
thread when necessary but try to avoid doing so by consulting the thread cache first to see whether it
contains a thread that can be used for the connection. When a connection ends, its thread is returned
to the thread cache if the cache is not full.

In the default connection thread model, there are as many threads as there are clients currently
connected, which has some disadvantages when server workload must scale to handle large numbers
of connections. For example, thread creation and disposal becomes expensive. Also, each thread
requires server and kernel resources, such as stack space. To accommodate a large number of
simultaneous connections, the stack size per thread must be kept small, leading to a situation where
it is either too small or the server consumes large amounts of memory. Exhaustion of other resources
can occur as well, and scheduling overhead can become significant.

As of MySQL 5.5.16, MySQL Enterprise Edition includes a thread pool plugin that provides an
alternative thread-handling model designed to reduce overhead and improve performance. It
implements a thread pool that increases server performance by efficiently managing statement
execution threads for large numbers of client connections. See Section 5.5.4, “MySQL Enterprise
Thread Pool”.

To control and monitor how the server manages threads that handle client connections, several system
and status variables are relevant. (See Section 5.1.5, “Server System Variables”, and Section 5.1.7,
“Server Status Variables”.)

The thread cache has a size determined by the thread_cache_size system variable. The default
value is 0 (no caching), which causes a thread to be set up for each new connection and disposed
of when the connection terminates. Set thread_cache_size to N to enable N inactive connection
threads to be cached. thread_cache_size can be set at server startup or changed while the server
runs. A connection thread becomes inactive when the client connection with which it was associated
terminates.

To monitor the number of threads in the cache and how many threads have been created because a
thread could not be taken from the cache, monitor the Threads_cached and Threads_created
status variables.

You can set max_connections at server startup or at runtime to control the maximum number of
clients that can connect simultaneously.

When the thread stack is too small, this limits the complexity of the SQL statements which the server
can handle, the recursion depth of stored procedures, and other memory-consuming actions. To set a
stack size of N bytes for each thread, start the server with --thread_stack=N.



Optimizing Network Use

952

8.12.5.2 DNS Lookup Optimization and the Host Cache

The MySQL server maintains a host cache in memory that contains information about clients: IP
address, host name, and error information. The server uses this cache for nonlocal TCP connections.
It does not use the cache for TCP connections established using a loopback interface address
(127.0.0.1 or ::1), or for connections established using a Unix socket file, named pipe, or shared
memory.

For each new client connection, the server uses the client IP address to check whether the client host
name is in the host cache. If not, the server attempts to resolve the host name. First, it resolves the
IP address to a host name and resolves that host name back to an IP address. Then it compares
the result to the original IP address to ensure that they are the same. The server stores information
about the result of this operation in the host cache. If the cache is full, the least recently used entry is
discarded.

The server performs host name resolution using the thread-safe gethostbyaddr_r() and
gethostbyname_r() calls if the operating system supports them. Otherwise, the thread performing
the lookup locks a mutex and calls gethostbyaddr() and gethostbyname() instead. In this case,
no other thread can resolve host names that are not in the host cache until the thread holding the
mutex lock releases it.

The server uses the host cache for several purposes:

• By caching the results of IP-to-host name lookups, the server avoids doing a DNS lookup for each
client connection. Instead, for a given host, it needs to perform a lookup only for the first connection
from that host.

• The cache contains information about errors that occur during the connection process. Some
errors are considered “blocking.” If too many of these occur successively from a given host
without a successful connection, the server blocks further connections from that host. The
max_connect_errors system variable determines the number of permitted errors before blocking
occurs. See Section B.5.2.6, “Host 'host_name' is blocked”.

To unblock blocked hosts, flush the host cache by issuing a FLUSH HOSTS statement or executing a
mysqladmin flush-hosts command.

It is possible for a blocked host to become unblocked even without FLUSH HOSTS if activity from other
hosts has occurred since the last connection attempt from the blocked host. This can occur because
the server discards the least recently used cache entry to make room for a new entry if the cache is full
when a connection arrives from a client IP not in the cache. If the discarded entry is for a blocked host,
that host becomes unblocked.

The host cache is enabled by default. To disable it, start the server with the --skip-host-cache
option.

To disable DNS host name lookups, start the server with the --skip-name-resolve option. In this
case, the server uses only IP addresses and not host names to match connecting hosts to rows in the
MySQL grant tables. Only accounts specified in those tables using IP addresses can be used. (Be sure
that an account exists that specifies an IP address or you may not be able to connect.)

If you have a very slow DNS and many hosts, you might be able to improve performance either by
disabling DNS lookups with --skip-name-resolve or by increasing the HOST_CACHE_SIZE define
(default value: 128) and recompiling the server

To disallow TCP/IP connections entirely, start the server with the --skip-networking option.

Some connection errors are not associated with TCP connections, occur very early in the connection
process (even before an IP address is known), or are not specific to any particular IP address (such as
out-of-memory conditions).



Measuring Performance (Benchmarking)

953

8.13 Measuring Performance (Benchmarking)
To measure performance, consider the following factors:

• Whether you are measuring the speed of a single operation on a quiet system, or how a set of
operations (a “workload”) works over a period of time. With simple tests, you usually test how
changing one aspect (a configuration setting, the set of indexes on a table, the SQL clauses in a
query) affects performance. Benchmarks are typically long-running and elaborate performance tests,
where the results could dictate high-level choices such as hardware and storage configuration, or
how soon to upgrade to a new MySQL version.

• For benchmarking, sometimes you must simulate a heavy database workload to get an accurate
picture.

• Performance can vary depending on so many different factors that a difference of a few percentage
points might not be a decisive victory. The results might shift the opposite way when you test in a
different environment.

• Certain MySQL features help or do not help performance depending on the workload. For
completeness, always test performance with those features turned on and turned off. The two most
important features to try with each workload are the MySQL query cache, and the adaptive hash
index for InnoDB tables.

This section progresses from simple and direct measurement techniques that a single developer can
do, to more complicated ones that require additional expertise to perform and interpret the results.

8.13.1 Measuring the Speed of Expressions and Functions

To measure the speed of a specific MySQL expression or function, invoke the BENCHMARK() function
using the mysql client program. Its syntax is BENCHMARK(loop_count,expression). The return
value is always zero, but mysql prints a line displaying approximately how long the statement took to
execute. For example:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
|                      0 |
+------------------------+
1 row in set (0.32 sec)

This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute 1,000,000
simple addition expressions in 0.32 seconds on that system.

The built-in MySQL functions are typically highly optimized, but there may be some exceptions.
BENCHMARK() is an excellent tool for finding out if some function is a problem for your queries.

8.13.2 The MySQL Benchmark Suite

This benchmark suite is meant to tell any user what operations a given SQL implementation performs
well or poorly. You can get a good idea for how the benchmarks work by looking at the code and
results in the sql-bench directory in any MySQL source distribution.

To use the benchmark suite, the following requirements must be satisfied:

• The benchmark suite is provided with MySQL source distributions. You can either download a
released distribution from http://dev.mysql.com/downloads/, or use the current development source
tree. (See Section 2.9.3, “Installing MySQL Using a Development Source Tree”.)

• The benchmark scripts are written in Perl and use the Perl DBI module to access database servers,
so DBI must be installed. You also need the server-specific DBD drivers for each of the servers you

http://dev.mysql.com/downloads/


Using Your Own Benchmarks

954

want to test. For example, to test MySQL, PostgreSQL, and DB2, you must have the DBD::mysql,
DBD::Pg, and DBD::DB2 modules installed. See Section 2.12, “Perl Installation Notes”.

After you obtain a MySQL source distribution, you can find the benchmark suite located in its sql-
bench directory. To run the benchmark tests, build MySQL, and then change location into the sql-
bench directory and execute the run-all-tests script:

shell> cd sql-bench
shell> perl run-all-tests --server=server_name

server_name should be the name of one of the supported servers. To get a list of all options and
supported servers, invoke this command:

shell> perl run-all-tests --help

The crash-me script also is located in the sql-bench directory. crash-me tries to determine what
features a database system supports and what its capabilities and limitations are by actually running
queries. For example, it determines:

• What data types are supported

• How many indexes are supported

• What functions are supported

• How big a query can be

• How big a VARCHAR column can be

For more information about benchmark results, visit http://www.mysql.com/why-mysql/benchmarks/.

8.13.3 Using Your Own Benchmarks

Benchmark your application and database to find out where the bottlenecks are. After fixing one
bottleneck (or by replacing it with a “dummy” module), you can proceed to identify the next bottleneck.
Even if the overall performance for your application currently is acceptable, you should at least make a
plan for each bottleneck and decide how to solve it if someday you really need the extra performance.

For examples of portable benchmark programs, look at those in the MySQL benchmark suite. See
Section 8.13.2, “The MySQL Benchmark Suite”. You can take any program from this suite and modify it
for your own needs. By doing this, you can try different solutions to your problem and test which really
is fastest for you.

Another free benchmark suite is the Open Source Database Benchmark, available at http://
osdb.sourceforge.net/.

It is very common for a problem to occur only when the system is very heavily loaded. We have
had many customers who contact us when they have a (tested) system in production and have
encountered load problems. In most cases, performance problems turn out to be due to issues of
basic database design (for example, table scans are not good under high load) or problems with the
operating system or libraries. Most of the time, these problems would be much easier to fix if the
systems were not already in production.

To avoid problems like this, benchmark your whole application under the worst possible load:

• The mysqlslap program can be helpful for simulating a high load produced by multiple clients
issuing queries simultaneously. See Section 4.5.7, “mysqlslap — Load Emulation Client”.

• You can also try benchmarking packages such as SysBench and DBT2, available at https://
launchpad.net/sysbench, and http://osdldbt.sourceforge.net/#dbt2.

http://www.mysql.com/why-mysql/benchmarks/
http://osdb.sourceforge.net/
http://osdb.sourceforge.net/
https://launchpad.net/sysbench
https://launchpad.net/sysbench
http://osdldbt.sourceforge.net/#dbt2


Measuring Performance with performance_schema

955

These programs or packages can bring a system to its knees, so be sure to use them only on your
development systems.

8.13.4 Measuring Performance with performance_schema

You can query the tables in the performance_schema database to see real-time information about
the performance characteristics of your server and the applications it is running. See Chapter 22,
MySQL Performance Schema for details.

8.14 Examining Thread Information

As you monitor the performance of your MySQL server, examine the process list, which is the set of
threads currently executing within the server. Process list information is available from these sources:

• The SHOW [FULL] PROCESSLIST statement: Section 13.7.5.30, “SHOW PROCESSLIST Syntax”

• The SHOW PROFILE statement: Section 13.7.5.32, “SHOW PROFILES Syntax”

• The INFORMATION_SCHEMA PROCESSLIST table: Section 21.14, “The INFORMATION_SCHEMA
PROCESSLIST Table”

• The mysqladmin processlist command: Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”

You can always view information about your own threads. To view information about threads being
executed for other accounts, you must have the PROCESS privilege.

Each process list entry contains several pieces of information:

• Id is the connection identifier for the client associated with the thread.

• User and Host indicate the account associated with the thread.

• db is the default database for the thread, or NULL if none is selected.

• Command and State indicate what the thread is doing.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• Time indicates how long the thread has been in its current state. The thread's notion of the current
time may be altered in some cases: The thread can change the time with SET TIMESTAMP =
value. For a thread running on a slave that is processing events from the master, the thread time is
set to the time found in the events and thus reflects current time on the master and not the slave.

• Info contains the text of the statement being executed by the thread, or NULL if it is not executing
one. By default, this value contains only the first 100 characters of the statement. To see the
complete statements, use SHOW FULL PROCESSLIST.

The following sections list the possible Command values, and State values grouped by category. The
meaning for some of these values is self-evident. For others, additional description is provided.

8.14.1 Thread Command Values

A thread can have any of the following Command values:

•   Binlog Dump

This is a thread on a master server for sending binary log contents to a slave server.

•   Change user



Thread Command Values

956

The thread is executing a change-user operation.

•   Close stmt

The thread is closing a prepared statement.

•   Connect

A replication slave is connected to its master.

•   Connect Out

A replication slave is connecting to its master.

•   Create DB

The thread is executing a create-database operation.

•   Daemon

This thread is internal to the server, not a thread that services a client connection.

•   Debug

The thread is generating debugging information.

•   Delayed insert

The thread is a delayed-insert handler.

•   Drop DB

The thread is executing a drop-database operation.

•   Error

•   Execute

The thread is executing a prepared statement.

•   Fetch

The thread is fetching the results from executing a prepared statement.

•   Field List

The thread is retrieving information for table columns.

•   Init DB

The thread is selecting a default database.

•   Kill

The thread is killing another thread.

•   Long Data

The thread is retrieving long data in the result of executing a prepared statement.

•   Ping

The thread is handling a server-ping request.



General Thread States

957

•   Prepare

The thread is preparing a prepared statement.

•   Processlist

The thread is producing information about server threads.

•   Query

The thread is executing a statement.

•   Quit

The thread is terminating.

•   Refresh

The thread is flushing table, logs, or caches, or resetting status variable or replication server
information.

•   Register Slave

The thread is registering a slave server.

•   Reset stmt

The thread is resetting a prepared statement.

•   Set option

The thread is setting or resetting a client statement-execution option.

•   Shutdown

The thread is shutting down the server.

•   Sleep

The thread is waiting for the client to send a new statement to it.

•   Statistics

The thread is producing server-status information.

•   Table Dump

The thread is sending table contents to a slave server.

•   Time

Unused.

8.14.2 General Thread States

The following list describes thread State values that are associated with general query processing
and not more specialized activities such as replication. Many of these are useful only for finding bugs in
the server.

•   After create

This occurs when the thread creates a table (including internal temporary tables), at the end of the
function that creates the table. This state is used even if the table could not be created due to some
error.



General Thread States

958

•   Analyzing

The thread is calculating a MyISAM table key distributions (for example, for ANALYZE TABLE).

•   checking permissions

The thread is checking whether the server has the required privileges to execute the statement.

•   Checking table

The thread is performing a table check operation.

•   cleaning up

The thread has processed one command and is preparing to free memory and reset certain state
variables.

•   closing tables

The thread is flushing the changed table data to disk and closing the used tables. This should be a
fast operation. If not, verify that you do not have a full disk and that the disk is not in very heavy use.

•   converting HEAP to MyISAM

The thread is converting an internal temporary table from a MEMORY table to an on-disk MyISAM
table.

•   copy to tmp table

The thread is processing an ALTER TABLE statement. This state occurs after the table with the new
structure has been created but before rows are copied into it.

•   Copying to group table

If a statement has different ORDER BY and GROUP BY criteria, the rows are sorted by group and
copied to a temporary table.

•   Copying to tmp table

The server is copying to a temporary table in memory.

•   Copying to tmp table on disk

The server is copying to a temporary table on disk. The temporary result set has become too large
(see Section 8.4.4, “Internal Temporary Table Use in MySQL”). Consequently, the thread is changing
the temporary table from in-memory to disk-based format to save memory.

•   Creating index

The thread is processing ALTER TABLE ... ENABLE KEYS for a MyISAM table.

•   Creating sort index

The thread is processing a SELECT that is resolved using an internal temporary table.

•   creating table

The thread is creating a table. This includes creation of temporary tables.

•   Creating tmp table

The thread is creating a temporary table in memory or on disk. If the table is created in memory
but later is converted to an on-disk table, the state during that operation will be Copying to tmp
table on disk.



General Thread States

959

•   deleting from main table

The server is executing the first part of a multiple-table delete. It is deleting only from the first table,
and saving columns and offsets to be used for deleting from the other (reference) tables.

•   deleting from reference tables

The server is executing the second part of a multiple-table delete and deleting the matched rows
from the other tables.

•   discard_or_import_tablespace

The thread is processing an ALTER TABLE ... DISCARD TABLESPACE or ALTER TABLE ...
IMPORT TABLESPACE statement.

•   end

This occurs at the end but before the cleanup of ALTER TABLE, CREATE VIEW, DELETE, INSERT,
SELECT, or UPDATE statements.

•   executing

The thread has begun executing a statement.

•   Execution of init_command

The thread is executing statements in the value of the init_command system variable.

•   freeing items

The thread has executed a command. Some freeing of items done during this state involves the
query cache. This state is usually followed by cleaning up.

•   FULLTEXT initialization

The server is preparing to perform a natural-language full-text search.

•   init

This occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE
statements. Actions taken by the server in this state include flushing the binary log, the InnoDB log,
and some query cache cleanup operations.

For the end state, the following operations could be happening:

• Removing query cache entries after data in a table is changed

• Writing an event to the binary log

• Freeing memory buffers, including for blobs

•   Killed

Someone has sent a KILL statement to the thread and it should abort next time it checks the kill flag.
The flag is checked in each major loop in MySQL, but in some cases it might still take a short time
for the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as the
other thread releases its lock.

•   logging slow query

The thread is writing a statement to the slow-query log.

•   login



General Thread States

960

The initial state for a connection thread until the client has been authenticated successfully.

•   manage keys

The server is enabling or disabling a table index.

•   NULL

This state is used for the SHOW PROCESSLIST state.

•     Opening tables, Opening table

The thread is trying to open a table. This is should be very fast procedure, unless something
prevents opening. For example, an ALTER TABLE or a LOCK TABLE statement can prevent opening
a table until the statement is finished. It is also worth checking that your table_open_cache value
is large enough.

•   optimizing

The server is performing initial optimizations for a query.

•   preparing

This state occurs during query optimization.

•   Purging old relay logs

The thread is removing unneeded relay log files.

•   query end

This state occurs after processing a query but before the freeing items state.

•   Reading from net

The server is reading a packet from the network.

•   Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL could not optimize away the
distinct operation at an early stage. Because of this, MySQL requires an extra stage to remove all
duplicated rows before sending the result to the client.

•   removing tmp table

The thread is removing an internal temporary table after processing a SELECT statement. This state
is not used if no temporary table was created.

•   rename

The thread is renaming a table.

•   rename result table

The thread is processing an ALTER TABLE statement, has created the new table, and is renaming it
to replace the original table.

•   Reopen tables

The thread got a lock for the table, but noticed after getting the lock that the underlying table
structure changed. It has freed the lock, closed the table, and is trying to reopen it.

•   Repair by sorting



General Thread States

961

The repair code is using a sort to create indexes.

•   Repair done

The thread has completed a multi-threaded repair for a MyISAM table.

•   Repair with keycache

The repair code is using creating keys one by one through the key cache. This is much slower than
Repair by sorting.

•   Rolling back

The thread is rolling back a transaction.

•   Saving state

For MyISAM table operations such as repair or analysis, the thread is saving the new table state to
the .MYI file header. State includes information such as number of rows, the AUTO_INCREMENT
counter, and key distributions.

•   Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This has to be done
if the UPDATE is changing the index that is used to find the involved rows.

• Sending data

The thread is reading and processing rows for a SELECT statement, and sending data to the client.
Because operations occurring during this state tend to perform large amounts of disk access (reads),
it is often the longest-running state over the lifetime of a given query.

•   setup

The thread is beginning an ALTER TABLE operation.

•   Sorting for group

The thread is doing a sort to satisfy a GROUP BY.

•   Sorting for order

The thread is doing a sort to satisfy an ORDER BY.

•   Sorting index

The thread is sorting index pages for more efficient access during a MyISAM table optimization
operation.

•   Sorting result

For a SELECT statement, this is similar to Creating sort index, but for nontemporary tables.

•   statistics

The server is calculating statistics to develop a query execution plan. If a thread is in this state for a
long time, the server is probably disk-bound performing other work.

•     System lock

The thread has called mysql_lock_tables() and the thread state has not been updated since.
This is a very general state that can occur for many reasons.



General Thread States

962

For example, the thread is going to request or is waiting for an internal or external system lock for the
table. This can occur when InnoDB waits for a table-level lock during execution of LOCK TABLES.
If this state is being caused by requests for external locks and you are not using multiple mysqld
servers that are accessing the same MyISAM tables, you can disable external system locks with the
--skip-external-locking option. However, external locking is disabled by default, so it is likely
that this option will have no effect. For SHOW PROFILE, this state means the thread is requesting the
lock (not waiting for it).

•   update

The thread is getting ready to start updating the table.

•   Updating

The thread is searching for rows to update and is updating them.

•   updating main table

The server is executing the first part of a multiple-table update. It is updating only the first table, and
saving columns and offsets to be used for updating the other (reference) tables.

•   updating reference tables

The server is executing the second part of a multiple-table update and updating the matched rows
from the other tables.

•   User lock

The thread is going to request or is waiting for an advisory lock requested with a GET_LOCK() call.
For SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).

•   User sleep

The thread has invoked a SLEEP() call.

•   Waiting for commit lock

A statement that causes an explicit or implicit commit is waiting for release of a read lock or FLUSH
TABLES WITH READ LOCK is waiting for a commit lock.

•   Waiting for global read lock

FLUSH TABLES WITH READ LOCK is waiting for a global read lock or the global read_only
system variable is being set.

•     Waiting for tables

The thread got a notification that the underlying structure for a table has changed and it needs to
reopen the table to get the new structure. However, to reopen the table, it must wait until all other
threads have closed the table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

•   Waiting for table flush

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables, or the
thread got a notification that the underlying structure for a table has changed and it needs to reopen
the table to get the new structure. However, to reopen the table, it must wait until all other threads
have closed the table in question.



Delayed-Insert Thread States

963

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

•                   Waiting for lock_type lock

The server is waiting to acquire a THR_LOCK lock or a lock from the metadata locking subsystem,
where lock_type indicates the type of lock.

This state indicates a wait for a THR_LOCK:

• Waiting for table level lock

These states indicate a wait for a metadata lock:

• Waiting for event metadata lock

• Waiting for global metadata lock

• Waiting for global read lock

• Waiting for schema metadata lock

• Waiting for stored function metadata lock

• Waiting for stored procedure metadata lock

• Waiting for table metadata lock

• Waiting for trigger metadata lock

For information about table lock indicators, see Section 8.11.1, “Internal Locking Methods”. For
information about metadata locking, see Section 8.11.4, “Metadata Locking”.

•   Waiting on cond

A generic state in which the thread is waiting for a condition to become true. No specific state
information is available.

•   Writing to net

The server is writing a packet to the network.

8.14.3 Delayed-Insert Thread States

These thread states are associated with processing for DELAYED inserts (see Section 13.2.5.2,
“INSERT DELAYED Syntax”). Some states are associated with connection threads that process
INSERT DELAYED statements from clients. Other states are associated with delayed-insert handler
threads that insert the rows. There is a delayed-insert handler thread for each table for which INSERT
DELAYED statements are issued.

States associated with a connection thread that processes an INSERT DELAYED statement from the
client:

•   allocating local table

The thread is preparing to feed rows to the delayed-insert handler thread.

•   Creating delayed handler

The thread is creating a handler for DELAYED inserts.



Query Cache Thread States

964

•   got handler lock

This occurs before the allocating local table state and after the waiting for handler
lock state, when the connection thread gets access to the delayed-insert handler thread.

•   got old table

This occurs after the waiting for handler open state. The delayed-insert handler thread
has signaled that it has ended its initialization phase, which includes opening the table for delayed
inserts.

•   storing row into queue

The thread is adding a new row to the list of rows that the delayed-insert handler thread must insert.

•   waiting for delay_list

This occurs during the initialization phase when the thread is trying to find the delayed-insert handler
thread for the table, and before attempting to gain access to the list of delayed-insert threads.

•   waiting for handler insert

An INSERT DELAYED handler has processed all pending inserts and is waiting for new ones.

•   waiting for handler lock

This occurs before the allocating local table state when the connection thread waits for
access to the delayed-insert handler thread.

•   waiting for handler open

This occurs after the Creating delayed handler state and before the got old table state.
The delayed-insert handler thread has just been started, and the connection thread is waiting for it to
initialize.

States associated with a delayed-insert handler thread that inserts the rows:

•   insert

The state that occurs just before inserting rows into the table.

•   reschedule

After inserting a number of rows, the delayed-insert thread sleeps to let other threads do work.

•   upgrading lock

A delayed-insert handler is trying to get a lock for the table to insert rows.

•   Waiting for INSERT

A delayed-insert handler is waiting for a connection thread to add rows to the queue (see storing
row into queue).

8.14.4 Query Cache Thread States

These thread states are associated with the query cache (see Section 8.10.3, “The MySQL Query
Cache”).

•   checking privileges on cached query

The server is checking whether the user has privileges to access a cached query result.



Replication Master Thread States

965

•   checking query cache for query

The server is checking whether the current query is present in the query cache.

•   invalidating query cache entries

Query cache entries are being marked invalid because the underlying tables have changed.

•   sending cached result to client

The server is taking the result of a query from the query cache and sending it to the client.

•   storing result in query cache

The server is storing the result of a query in the query cache.

•   Waiting for query cache lock

This state occurs while a session is waiting to take the query cache lock. This can happen for any
statement that needs to perform some query cache operation, such as an INSERT or DELETE that
invalidates the query cache, a SELECT that looks for a cached entry, RESET QUERY CACHE, and so
forth.

8.14.5 Replication Master Thread States

The following list shows the most common states you may see in the State column for the master's
Binlog Dump thread. If you see no Binlog Dump threads on a master server, this means that
replication is not running—that is, that no slaves are currently connected.

•   Finished reading one binlog; switching to next binlog

The thread has finished reading a binary log file and is opening the next one to send to the slave.

•   Master has sent all binlog to slave; waiting for binlog to be updated

The thread has read all outstanding updates from the binary logs and sent them to the slave. The
thread is now idle, waiting for new events to appear in the binary log resulting from new updates
occurring on the master.

•   Sending binlog event to slave

Binary logs consist of events, where an event is usually an update plus some other information. The
thread has read an event from the binary log and is now sending it to the slave.

•   Waiting to finalize termination

A very brief state that occurs as the thread is stopping.

8.14.6 Replication Slave I/O Thread States

The following list shows the most common states you see in the State column for a slave server I/O
thread. This state also appears in the Slave_IO_State column displayed by SHOW SLAVE STATUS,
so you can get a good view of what is happening by using that statement.

•   Checking master version

A state that occurs very briefly, after the connection to the master is established.

•   Connecting to master

The thread is attempting to connect to the master.

•   Queueing master event to the relay log



Replication Slave SQL Thread States

966

The thread has read an event and is copying it to the relay log so that the SQL thread can process it.

•   Reconnecting after a failed binlog dump request

The thread is trying to reconnect to the master.

•   Reconnecting after a failed master event read

The thread is trying to reconnect to the master. When connection is established again, the state
becomes Waiting for master to send event.

•   Registering slave on master

A state that occurs very briefly after the connection to the master is established.

•   Requesting binlog dump

A state that occurs very briefly, after the connection to the master is established. The thread sends
to the master a request for the contents of its binary logs, starting from the requested binary log file
name and position.

•   Waiting for master to send event

The thread has connected to the master and is waiting for binary log events to arrive. This can last
for a long time if the master is idle. If the wait lasts for slave_net_timeout seconds, a timeout
occurs. At that point, the thread considers the connection to be broken and makes an attempt to
reconnect.

•   Waiting for master update

The initial state before Connecting to master.

•   Waiting for slave mutex on exit

A state that occurs briefly as the thread is stopping.

•   Waiting for the slave SQL thread to free enough relay log space

You are using a nonzero relay_log_space_limit value, and the relay logs have grown large
enough that their combined size exceeds this value. The I/O thread is waiting until the SQL thread
frees enough space by processing relay log contents so that it can delete some relay log files.

•   Waiting to reconnect after a failed binlog dump request

If the binary log dump request failed (due to disconnection), the thread goes into this state while it
sleeps, then tries to reconnect periodically. The interval between retries can be specified using the
CHANGE MASTER TO statement.

•   Waiting to reconnect after a failed master event read

An error occurred while reading (due to disconnection). The thread is sleeping for the number of
seconds set by the CHANGE MASTER TO statement (default 60) before attempting to reconnect.

8.14.7 Replication Slave SQL Thread States

The following list shows the most common states you may see in the State column for a slave server
SQL thread:

•   Waiting for the next event in relay log

The initial state before Reading event from the relay log.



Replication Slave Connection Thread States

967

•   Reading event from the relay log

The thread has read an event from the relay log so that the event can be processed.

•   Making temp file

The thread is executing a LOAD DATA INFILE statement and is creating a temporary file containing
the data from which the slave will read rows.

•   Slave has read all relay log; waiting for the slave I/O thread to update
it

The thread has processed all events in the relay log files, and is now waiting for the I/O thread to
write new events to the relay log.

•   Waiting for slave mutex on exit

A very brief state that occurs as the thread is stopping.

The State column for the I/O thread may also show the text of a statement. This indicates that the
thread has read an event from the relay log, extracted the statement from it, and is executing it.

8.14.8 Replication Slave Connection Thread States

These thread states occur on a replication slave but are associated with connection threads, not with
the I/O or SQL threads.

•   Changing master

The thread is processing a CHANGE MASTER TO statement.

•   Killing slave

The thread is processing a STOP SLAVE statement.

•   Opening master dump table

This state occurs after Creating table from master dump.

•   Reading master dump table data

This state occurs after Opening master dump table.

•   Rebuilding the index on master dump table

This state occurs after Reading master dump table data.

8.14.9 NDB Cluster Thread States

•   Committing events to binlog

•   Opening mysql.ndb_apply_status

•   Processing events

The thread is processing events for binary logging.

•   Processing events from schema table

The thread is doing the work of schema replication.

•   Shutting down



Event Scheduler Thread States

968

•   Syncing ndb table schema operation and binlog

This is used to have a correct binary log of schema operations for NDB.

•   Waiting for allowed to take ndbcluster global schema lock

The thread is waiting for permission to take a global schema lock. Added in MySQL NDB Cluster 7.2.

•   Waiting for event from ndbcluster

The server is acting as an SQL node in an NDB Cluster, and is connected to a cluster management
node.

•   Waiting for first event from ndbcluster

•   Waiting for ndbcluster binlog update to reach current position

•   Waiting for ndbcluster global schema lock

The thread is waiting for a global schema lock held by another thread to be released. Added in
MySQL NDB Cluster 7.2.

•   Waiting for ndbcluster to start

•   Waiting for schema epoch

The thread is waiting for a schema epoch (that is, a global checkpoint).

8.14.10 Event Scheduler Thread States

These states occur for the Event Scheduler thread, threads that are created to execute scheduled
events, or threads that terminate the scheduler.

•   Clearing

The scheduler thread or a thread that was executing an event is terminating and is about to end.

•   Initialized

The scheduler thread or a thread that will execute an event has been initialized.

•   Waiting for next activation

The scheduler has a nonempty event queue but the next activation is in the future.

•   Waiting for scheduler to stop

The thread issued SET GLOBAL event_scheduler=OFF and is waiting for the scheduler to stop.

•   Waiting on empty queue

The scheduler's event queue is empty and it is sleeping.



969

Chapter 9 Language Structure

Table of Contents
9.1 Literal Values ...................................................................................................................... 969

9.1.1 String Literals ........................................................................................................... 969
9.1.2 Number Literals ........................................................................................................ 972
9.1.3 Date and Time Literals ............................................................................................. 972
9.1.4 Hexadecimal Literals ................................................................................................ 974
9.1.5 Bit-Value Literals ...................................................................................................... 976
9.1.6 Boolean Literals ....................................................................................................... 977
9.1.7 NULL Values ............................................................................................................ 978

9.2 Schema Object Names ........................................................................................................ 978
9.2.1 Identifier Qualifiers .................................................................................................... 980
9.2.2 Identifier Case Sensitivity .......................................................................................... 982
9.2.3 Mapping of Identifiers to File Names ......................................................................... 984
9.2.4 Function Name Parsing and Resolution ..................................................................... 986

9.3 Keywords and Reserved Words ........................................................................................... 989
9.4 User-Defined Variables ........................................................................................................ 995
9.5 Expression Syntax .............................................................................................................. 998
9.6 Comment Syntax ............................................................................................................... 1000

This chapter discusses the rules for writing the following elements of SQL statements when using
MySQL:

• Literal values such as strings and numbers

• Identifiers such as database, table, and column names

• Keywords and reserved words

• User-defined and system variables

• Comments

9.1 Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers,
hexadecimal and bit values, boolean values, and NULL. The section also covers various nuances that
you may encounter when dealing with these basic types in MySQL.

9.1.1 String Literals

A string is a sequence of bytes or characters, enclosed within either single quote (') or double quote
(") characters. Examples:

'a string'
"another string"

Quoted strings placed next to each other are concatenated to a single string. The following lines are
equivalent:

'a string'
'a' ' ' 'string'

If the ANSI_QUOTES SQL mode is enabled, string literals can be quoted only within single quotation
marks because a string quoted within double quotation marks is interpreted as an identifier.



String Literals

970

A binary string is a string of bytes. Every binary string has a character set and collation named
binary. A nonbinary string is a string of characters. It has a character set other than binary and a
collation that is compatible with the character set.

For both types of strings, comparisons are based on the numeric values of the string unit. For binary
strings, the unit is the byte; comparisons use numeric byte values. For nonbinary strings, the unit is the
character and some character sets support multibyte characters; comparisons use numeric character
code values. Character code ordering is a function of the string collation. (For more information, see
Section 10.1.8.5, “The binary Collation Compared to _bin Collations”.)

A character string literal may have an optional character set introducer and COLLATE clause, to
designate it as a string that uses a particular character set and collation:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT _latin1'string';
SELECT _binary'string';
SELECT _utf8'string' COLLATE utf8_danish_ci;

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For information about these forms of string syntax, see Section 10.1.3.7, “The National Character Set”,
and Section 10.1.3.8, “Character Set Introducers”.

Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES
SQL mode is enabled. Each of these sequences begins with a backslash (\), known as the escape
character. MySQL recognizes the escape sequences shown in Table 9.1, “Special Character Escape
Sequences”. For all other escape sequences, backslash is ignored. That is, the escaped character is
interpreted as if it was not escaped. For example, \x is just x. These sequences are case sensitive.
For example, \b is interpreted as a backspace, but \B is interpreted as B. Escape processing is done
according to the character set indicated by the character_set_connection system variable. This
is true even for strings that are preceded by an introducer that indicates a different character set, as
discussed in Section 10.1.3.6, “Character String Literal Character Set and Collation”.

Table 9.1 Special Character Escape Sequences

Escape
Sequence

Character Represented by Sequence

\0  An ASCII NUL (X'00') character

\'  A single quote (') character

\"  A double quote (") character

\b  A backspace character

\n    A newline (linefeed) character

\r   A carriage return character

\t  A tab character

\Z  ASCII 26 (Control+Z); see note following the table

\\  A backslash (\) character

\%  A % character; see note following the table



String Literals

971

Escape
Sequence

Character Represented by Sequence

\_  A _ character; see note following the table

The ASCII 26 character can be encoded as \Z to enable you to work around the problem that ASCII 26
stands for END-OF-FILE on Windows. ASCII 26 within a file causes problems if you try to use mysql
db_name < file_name.

The \% and \_ sequences are used to search for literal instances of % and _ in pattern-matching
contexts where they would otherwise be interpreted as wildcard characters. See the description of the
LIKE operator in Section 12.5.1, “String Comparison Functions”. If you use \% or \_ outside of pattern-
matching contexts, they evaluate to the strings \% and \_, not to % and _.

There are several ways to include quote characters within a string:

• A ' inside a string quoted with ' may be written as ''.

• A " inside a string quoted with " may be written as "".

• Precede the quote character by an escape character (\).

• A ' inside a string quoted with " needs no special treatment and need not be doubled or escaped. In
the same way, " inside a string quoted with ' needs no special treatment.

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+

mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+

To insert binary data into a string column (such as a BLOB column), you should represent certain
characters by escape sequences. Backslash (\) and the quote character used to quote the string
must be escaped. In certain client environments, it may also be necessary to escape NUL or Control
+Z. The mysql client truncates quoted strings containing NUL characters if they are not escaped, and
Control+Z may be taken for END-OF-FILE on Windows if not escaped. For the escape sequences that
represent each of these characters, see Table 9.1, “Special Character Escape Sequences”.

When writing application programs, any string that might contain any of these special characters must
be properly escaped before the string is used as a data value in an SQL statement that is sent to the
MySQL server. You can do this in two ways:

• Process the string with a function that escapes the special characters. In a C program, you can use
the mysql_real_escape_string() C API function to escape characters. See Section 23.8.7.53,
“mysql_real_escape_string()”. Within SQL statements that construct other SQL statements, you



Number Literals

972

can use the QUOTE() function. The Perl DBI interface provides a quote method to convert special
characters to the proper escape sequences. See Section 23.10, “MySQL Perl API”. Other language
interfaces may provide a similar capability.

• As an alternative to explicitly escaping special characters, many MySQL APIs provide a placeholder
capability that enables you to insert special markers into a statement string, and then bind data
values to them when you issue the statement. In this case, the API takes care of escaping special
characters in the values for you.

9.1.2 Number Literals

Number literals include exact-value (integer and DECIMAL) literals and approximate-value (floating-
point) literals.

Integers are represented as a sequence of digits. Numbers may include . as a decimal separator.
Numbers may be preceded by - or + to indicate a negative or positive value, respectively. Numbers
represented in scientific notation with a mantissa and exponent are approximate-value numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed.
Examples: 1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-
point) number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types. For more
information about exact-value calculations, see Section 12.18, “Precision Math”.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In
MySQL, types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

An integer may be used in a floating-point context; it is interpreted as the equivalent floating-point
number.

9.1.3 Date and Time Literals

Date and time values can be represented in several formats, such as quoted strings or as numbers,
depending on the exact type of the value and other factors. For example, in contexts where MySQL
expects a date, it interprets any of '2015-07-21', '20150721', and 20150721 as a date.

This section describes the acceptable formats for date and time literals. For more information about the
temporal data types, such as the range of permitted values, consult these sections:

• Section 11.1.2, “Date and Time Type Overview”

• Section 11.3, “Date and Time Types”

Standard SQL and ODBC Date and Time Literals.  Standard SQL permits temporal literals to be
specified using a type keyword and a string. The space between the keyword and string is optional.

DATE 'str'
TIME 'str'
TIMESTAMP 'str'

MySQL recognizes those constructions and also the corresponding ODBC syntax:

{ d 'str' }



Date and Time Literals

973

{ t 'str' }
{ ts 'str' }

However, MySQL ignores the type keyword and each of the preceding constructions produces the
string value 'str', with a type of VARCHAR.

String and Numeric Literals in Date and Time Context.  MySQL recognizes DATE values in these
formats:

• As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A “relaxed” syntax is permitted:
Any punctuation character may be used as the delimiter between date parts. For example,
'2012-12-31', '2012/12/31', '2012^12^31', and '2012@12@31' are equivalent.

• As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the
string makes sense as a date. For example, '20070523' and '070523' are interpreted as
'2007-05-23', but '071332' is illegal (it has nonsensical month and day parts) and becomes
'0000-00-00'.

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as a
date. For example, 19830905 and 830905 are interpreted as '1983-09-05'.

MySQL recognizes DATETIME and TIMESTAMP values in these formats:

• As a string in either 'YYYY-MM-DD HH:MM:SS' or 'YY-MM-DD HH:MM:SS' format. A “relaxed”
syntax is permitted here, too: Any punctuation character may be used as the delimiter between
date parts or time parts. For example, '2012-12-31 11:30:45', '2012^12^31 11+30+45',
'2012/12/31 11*30*45', and '2012@12@31 11^30^45' are equivalent.

The date and time parts can be separated by T rather than a space. For example, '2012-12-31
11:30:45' '2012-12-31T11:30:45' are equivalent.

• As a string with no delimiters in either 'YYYYMMDDHHMMSS' or 'YYMMDDHHMMSS' format, provided
that the string makes sense as a date. For example, '20070523091528' and '070523091528'
are interpreted as '2007-05-23 09:15:28', but '071122129015' is illegal (it has a nonsensical
minute part) and becomes '0000-00-00 00:00:00'.

• As a number in either YYYYMMDDHHMMSS or YYMMDDHHMMSS format, provided that the number
makes sense as a date. For example, 19830905132800 and 830905132800 are interpreted as
'1983-09-05 13:28:00'.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. Although this fractional part is recognized, it is discarded from values stored into
DATETIME or TIMESTAMP columns. For information about fractional seconds support in MySQL, see
Section 11.3.6, “Fractional Seconds in Time Values”.

Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 70-99 are converted to 1970-1999.

• Year values in the range 00-69 are converted to 2000-2069.

See also Section 11.3.8, “Two-Digit Years in Dates”.

For values specified as strings that include date part delimiters, it is unnecessary to specify two digits
for month or day values that are less than 10. '2015-6-9' is the same as '2015-06-09'. Similarly,
for values specified as strings that include time part delimiters, it is unnecessary to specify two digits
for hour, minute, or second values that are less than 10. '2015-10-30 1:2:3' is the same as
'2015-10-30 01:02:03'.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long, it
is assumed to be in YYYYMMDD or YYYYMMDDHHMMSS format and that the year is given by the first 4



Hexadecimal Literals

974

digits. If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or YYMMDDHHMMSS format and
that the year is given by the first 2 digits. Numbers that are not one of these lengths are interpreted as
though padded with leading zeros to the closest length.

Values specified as nondelimited strings are interpreted according their length. For a string 8 or 14
characters long, the year is assumed to be given by the first 4 characters. Otherwise, the year is
assumed to be given by the first 2 characters. The string is interpreted from left to right to find year,
month, day, hour, minute, and second values, for as many parts as are present in the string. This
means you should not use strings that have fewer than 6 characters. For example, if you specify
'9903', thinking that represents March, 1999, MySQL converts it to the “zero” date value. This occurs
because the year and month values are 99 and 03, but the day part is completely missing. However,
you can explicitly specify a value of zero to represent missing month or day parts. For example, to
insert the value '1999-03-00', use '990300'.

MySQL recognizes TIME values in these formats:

• As a string in 'D HH:MM:SS' format. You can also use one of the following “relaxed” syntaxes:
'HH:MM:SS', 'HH:MM', 'D HH:MM', 'D HH', or 'SS'. Here D represents days and can have a
value from 0 to 34.

• As a string with no delimiters in 'HHMMSS' format, provided that it makes sense as a time. For
example, '101112' is understood as '10:11:12', but '109712' is illegal (it has a nonsensical
minute part) and becomes '00:00:00'.

• As a number in HHMMSS format, provided that it makes sense as a time. For example, 101112 is
understood as '10:11:12'. The following alternative formats are also understood: SS, MMSS, or
HHMMSS.

A trailing fractional seconds part is recognized in the 'D HH:MM:SS.fraction',
'HH:MM:SS.fraction', 'HHMMSS.fraction', and HHMMSS.fraction time formats, where
fraction is the fractional part in up to microseconds (6 digits) precision. Although this fractional part
is recognized, it is discarded from values stored into TIME columns. For information about fractional
seconds support in MySQL, see Section 11.3.6, “Fractional Seconds in Time Values”.

For TIME values specified as strings that include a time part delimiter, it is unnecessary to specify
two digits for hours, minutes, or seconds values that are less than 10. '8:3:2' is the same as
'08:03:02'.

9.1.4 Hexadecimal Literals

Hexadecimal literal values are written using X'val' or 0xval notation, where val contains
hexadecimal digits (0..9, A..F). Lettercase of the digits and of any leading X does not matter. A
leading 0x is case sensitive and cannot be written as 0X.

Legal hexadecimal literals:

X'01AF'
X'01af'
x'01AF'
x'01af'
0x01AF
0x01af

Illegal hexadecimal literals:

X'0G'   (G is not a hexadecimal digit)
0X01AF  (0X must be written as 0x)

Values written using X'val' notation must contain an even number of digits or a syntax error occurs.
To correct the problem, pad the value with a leading zero:



Hexadecimal Literals

975

mysql> SET @s = X'FFF';
ERROR 1064 (42000): You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server
version for the right syntax to use near 'X'FFF''

mysql> SET @s = X'0FFF';
Query OK, 0 rows affected (0.00 sec)

Values written using 0xval notation that contain an odd number of digits are treated as having an
extra leading 0. For example, 0xaaa is interpreted as 0x0aaa.

By default, a hexadecimal literal is a binary string, where each pair of hexadecimal digits represents a
character:

mysql> SELECT X'4D7953514C', CHARSET(X'4D7953514C');
+---------------+------------------------+
| X'4D7953514C' | CHARSET(X'4D7953514C') |
+---------------+------------------------+
| MySQL         | binary                 |
+---------------+------------------------+
mysql> SELECT 0x5461626c65, CHARSET(0x5461626c65);
+--------------+-----------------------+
| 0x5461626c65 | CHARSET(0x5461626c65) |
+--------------+-----------------------+
| Table        | binary                |
+--------------+-----------------------+

A hexadecimal literal may have an optional character set introducer and COLLATE clause, to designate
it as a string that uses a particular character set and collation:

[_charset_name] X'val' [COLLATE collation_name]

Examples:

SELECT _latin1 X'4D7953514C';
SELECT _utf8 0x4D7953514C COLLATE utf8_danish_ci;

The examples use X'val' notation, but 0xval notation permits introducers as well. For information
about introducers, see Section 10.1.3.8, “Character Set Introducers”.

In numeric contexts, MySQL treats a hexadecimal literal like a BIGINT (64-bit integer). To ensure
numeric treatment of a hexadecimal literal, use it in numeric context. Ways to do this include adding 0
or using CAST(... AS UNSIGNED). For example, a hexadecimal literal assigned to a user-defined
variable is a binary string by default. To assign the value as a number, use it in numeric context:

mysql> SET @v1 = X'41';
mysql> SET @v2 = X'41'+0;
mysql> SET @v3 = CAST(X'41' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1  | @v2  | @v3  |
+------+------+------+
| A    |   65 |   65 |
+------+------+------+

An empty hexadecimal value (X'') evaluates to a zero-length binary string. Converted to a number, it
produces 0:

mysql> SELECT CHARSET(X''), LENGTH(X'');
+--------------+-------------+
| CHARSET(X'') | LENGTH(X'') |
+--------------+-------------+
| binary       |           0 |



Bit-Value Literals

976

+--------------+-------------+
mysql> SELECT X''+0;
+-------+
| X''+0 |
+-------+
|     0 |
+-------+

The X'val' notation is based on standard SQL. The 0x notation is based on ODBC, for which
hexadecimal strings are often used to supply values for BLOB columns.

To convert a string or a number to a string in hexadecimal format, use the HEX() function:

mysql> SELECT HEX('cat');
+------------+
| HEX('cat') |
+------------+
| 636174     |
+------------+
mysql> SELECT X'636174';
+-----------+
| X'636174' |
+-----------+
| cat       |
+-----------+

9.1.5 Bit-Value Literals

Bit-value literals are written using b'val' or 0bval notation. val is a binary value written using zeros
and ones. Lettercase of any leading b does not matter. A leading 0b is case sensitive and cannot be
written as 0B.

Legal bit-value literals:

b'01'
B'01'
0b01

Illegal bit-value literals:

b'2'    (2 is not a binary digit)
0B01    (0B must be written as 0b)

By default, a bit-value literal is a binary string:

mysql> SELECT b'1000001', CHARSET(b'1000001');
+------------+---------------------+
| b'1000001' | CHARSET(b'1000001') |
+------------+---------------------+
| A          | binary              |
+------------+---------------------+
mysql> SELECT 0b1100001, CHARSET(0b1100001);
+-----------+--------------------+
| 0b1100001 | CHARSET(0b1100001) |
+-----------+--------------------+
| a         | binary             |
+-----------+--------------------+

A bit-value literal may have an optional character set introducer and COLLATE clause, to designate it as
a string that uses a particular character set and collation:

[_charset_name] b'val' [COLLATE collation_name]

Examples:



Boolean Literals

977

SELECT _latin1 b'1000001';
SELECT _utf8 0b1000001 COLLATE utf8_danish_ci;

The examples use b'val' notation, but 0bval notation permits introducers as well. For information
about introducers, see Section 10.1.3.8, “Character Set Introducers”.

In numeric contexts, MySQL treats a bit literal like an integer. To ensure numeric treatment of a bit
literal, use it in numeric context. Ways to do this include adding 0 or using CAST(... AS UNSIGNED).
For example, a bit literal assigned to a user-defined variable is a binary string by default. To assign the
value as a number, use it in numeric context:

mysql> SET @v1 = b'1100001';
mysql> SET @v2 = b'1100001'+0;
mysql> SET @v3 = CAST(b'1100001' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1  | @v2  | @v3  |
+------+------+------+
| a    |   97 |   97 |
+------+------+------+

An empty bit value (b'') evaluates to a zero-length binary string. Converted to a number, it produces
0:

mysql> SELECT CHARSET(b''), LENGTH(b'');
+--------------+-------------+
| CHARSET(b'') | LENGTH(b'') |
+--------------+-------------+
| binary       |           0 |
+--------------+-------------+
mysql> SELECT b''+0;
+-------+
| b''+0 |
+-------+
|     0 |
+-------+

Bit-value notation is convenient for specifying values to be assigned to BIT columns:

mysql> CREATE TABLE t (b BIT(8));
mysql> INSERT INTO t SET b = b'11111111';
mysql> INSERT INTO t SET b = b'1010';
mysql> INSERT INTO t SET b = b'0101';

Bit values in result sets are returned as binary values, which may not display well. To convert a bit
value to printable form, use it in numeric context or use a conversion function such as BIN() or
HEX(). High-order 0 digits are not displayed in the converted value.

mysql> SELECT b+0, BIN(b), OCT(b), HEX(b) FROM t;
+------+----------+--------+--------+
| b+0  | BIN(b)   | OCT(b) | HEX(b) |
+------+----------+--------+--------+
|  255 | 11111111 | 377    | FF     |
|   10 | 1010     | 12     | A      |
|    5 | 101      | 5      | 5      |
+------+----------+--------+--------+

9.1.6 Boolean Literals

The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written
in any lettercase.



NULL Values

978

mysql> SELECT TRUE, true, FALSE, false;
        -> 1, 1, 0, 0

9.1.7 NULL Values

The NULL value means “no data.” NULL can be written in any lettercase. A synonym is \N (case
sensitive).

Be aware that the NULL value is different from values such as 0 for numeric types or the empty string
for string types. For more information, see Section B.5.4.3, “Problems with NULL Values”.

For text file import or export operations performed with LOAD DATA INFILE or SELECT ... INTO
OUTFILE, NULL is represented by the \N sequence. See Section 13.2.6, “LOAD DATA INFILE
Syntax”.

9.2 Schema Object Names

Certain objects within MySQL, including database, table, index, column, alias, view, stored procedure,
partition, tablespace, and other object names are known as identifiers. This section describes the
permissible syntax for identifiers in MySQL. Section 9.2.2, “Identifier Case Sensitivity”, describes which
types of identifiers are case sensitive and under what conditions.

An identifier may be quoted or unquoted. If an identifier contains special characters or is a reserved
word, you must quote it whenever you refer to it. (Exception: A reserved word that follows a period
in a qualified name must be an identifier, so it need not be quoted.) Reserved words are listed at
Section 9.3, “Keywords and Reserved Words”.

Identifiers are converted to Unicode internally. They may contain these characters:

• Permitted characters in unquoted identifiers:

• ASCII: [0-9,a-z,A-Z$_] (basic Latin letters, digits 0-9, dollar, underscore)

• Extended: U+0080 .. U+FFFF

• Permitted characters in quoted identifiers include the full Unicode Basic Multilingual Plane (BMP),
except U+0000:

• ASCII: U+0001 .. U+007F

• Extended: U+0080 .. U+FFFF

• ASCII NUL (U+0000) and supplementary characters (U+10000 and higher) are not permitted in
quoted or unquoted identifiers.

• Identifiers may begin with a digit but unless quoted may not consist solely of digits.

• Database, table, and column names cannot end with space characters.

The identifier quote character is the backtick (`):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

If the ANSI_QUOTES SQL mode is enabled, it is also permissible to quote identifiers within double
quotation marks:

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax...
mysql> SET sql_mode='ANSI_QUOTES';



Schema Object Names

979

mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

The ANSI_QUOTES mode causes the server to interpret double-quoted strings as identifiers.
Consequently, when this mode is enabled, string literals must be enclosed within single quotation
marks. They cannot be enclosed within double quotation marks. The server SQL mode is controlled as
described in Section 5.1.8, “Server SQL Modes”.

Identifier quote characters can be included within an identifier if you quote the identifier. If the character
to be included within the identifier is the same as that used to quote the identifier itself, then you need
to double the character. The following statement creates a table named a`b that contains a column
named c"d:

mysql> CREATE TABLE `a``b` (`c"d` INT);

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

mysql> SELECT 1 AS `one`, 2 AS 'two';
+-----+-----+
| one | two |
+-----+-----+
|   1 |   2 |
+-----+-----+

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference
is treated as a string literal.

It is recommended that you do not use names that begin with Me or MeN, where M and N are integers.
For example, avoid using 1e as an identifier, because an expression such as 1e+3 is ambiguous.
Depending on context, it might be interpreted as the expression 1e + 3 or as the number 1e+3.

Be careful when using MD5() to produce table names because it can produce names in illegal or
ambiguous formats such as those just described.

A user variable cannot be used directly in an SQL statement as an identifier or as part of an identifier.
See Section 9.4, “User-Defined Variables”, for more information and examples of workarounds.

Special characters in database and table names are encoded in the corresponding file system names
as described in Section 9.2.3, “Mapping of Identifiers to File Names”. If you have databases or tables
from an older version of MySQL that contain special characters and for which the underlying directory
names or file names have not been updated to use the new encoding, the server displays their names
with a prefix of #mysql50#. For information about referring to such names or converting them to the
newer encoding, see that section.

The following table describes the maximum length for each type of identifier.

Identifier Maximum Length (characters)

Database 64 (NDB storage engine: 63)

Table 64 (NDB storage engine: 63)

Column 64

Index 64

Constraint 64

Stored Program 64

View 64

Tablespace 64



Identifier Qualifiers

980

Identifier Maximum Length (characters)

Server 64

Log File Group 64

Alias 256 (see exception following table)

Compound Statement Label 16

Aliases for column names in CREATE VIEW statements are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters).

Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions that are
stored in .frm files and to identifiers stored in the grant tables in the mysql database. The sizes of
the identifier string columns in the grant tables are measured in characters. You can use multibyte
characters without reducing the number of characters permitted for values stored in these columns. As
indicated earlier, the permissible Unicode characters are those in the Basic Multilingual Plane (BMP).
Supplementary characters are not permitted.

NDB Cluster imposes a maximum length of 63 characters for names of databases and tables. See
Section 18.1.6.5, “Limits Associated with Database Objects in NDB Cluster”.

9.2.1 Identifier Qualifiers

Object names may be unqualified or qualified. An unqualified name is permitted in contexts where
interpretation of the name is unambiguous. A qualified name includes at least one qualifier to clarify the
interpretive context by overriding a default context or providing missing context.

For example, this statement creates a table using the unqualified name t1:

CREATE TABLE t1 (i INT);

Because t1 includes no qualifier to specify a database, the statement creates the table in the default
database. If there is no default database, an error occurs.

This statement creates a table using the qualified name db1.t1:

CREATE TABLE db1.t1 (i INT);

Because db1.t1 includes a database qualifier db1, the statement creates t1 in the database named
db1, regardless of the default database. The qualifier must be specified if there is no default database.
The qualifier may be specified if there is a default database, to specify a database different from the
default, or to make the database explicit if the default is the same as the one specified.

Qualifiers have these characteristics:

• An unqualified name consists of a single identifier. A qualified name consists of multiple identifiers.

• The components of a multiple-part name must be separated by period (.) characters. The initial
parts of a multiple-part name act as qualifiers that affect the context within which to interpret the final
identifier.

• The qualifier character is a separate token and need not be contiguous with the associated
identifiers. For example, tbl_name.col_name and tbl_name . col_name are equivalent.

• If any components of a multiple-part name require quoting, quote them individually rather than
quoting the name as a whole. For example, write `my-table`.`my-column`, not `my-
table.my-column`.

• A reserved word that follows a period in a qualified name must be an identifier, so in that context it
need not be quoted.



Identifier Qualifiers

981

• The syntax .tbl_name means the table tbl_name in the default database. This syntax is accepted
for ODBC compatibility because some ODBC programs prefix table names with a . character.

The permitted qualifiers for object names depend on the object type:

• A database name is fully qualified and takes no qualifier:

CREATE DATABASE db1;

• A table, view, or stored program name may be given a database-name qualifier. Examples of
unqualified and qualified names in CREATE statements:

CREATE TABLE mytable ...;
CREATE VIEW myview ...;
CREATE PROCEDURE myproc ...;
CREATE FUNCTION myfunc ...;
CREATE EVENT myevent ...;

CREATE TABLE mydb.mytable ...;
CREATE VIEW mydb.myview ...;
CREATE PROCEDURE mydb.myproc ...;
CREATE FUNCTION mydb.myfunc ...;
CREATE EVENT mydb.myevent ...;

• A trigger is associated with a table, so any qualifier applies to the table name:

CREATE TRIGGER mytrigger ... ON mytable ...;

CREATE TRIGGER mytrigger ... ON mydb.mytable ...;

• A column name may be given multiple qualifiers to indicate context in statements that reference it, as
shown in the following table.

Column Reference Meaning

col_name Column col_name from whichever table used in the statement
contains a column of that name

tbl_name.col_name Column col_name from table tbl_name of the default
database

db_name.tbl_name.col_name Column col_name from table tbl_name of the database
db_name

In other words, a column name may be given a table-name qualifier, which itself may be given
a database-name qualifier. Examples of unqualified and qualified column references in SELECT
statements:

SELECT c1 FROM mytable
WHERE c2 > 100;

SELECT mytable.c1 FROM mytable
WHERE mytable.c2 > 100;

SELECT mydb.mytable.c1 FROM mydb.mytable
WHERE mydb.mytable.c2 > 100;

You need not specify a qualifier for an object reference in a statement unless the unqualified reference
is ambiguous. Suppose that column c1 occurs only in table t1, c2 only in t2, and c in both t1 and
t2. Any unqualified reference to c is ambiguous in a statement that refers to both tables and must be
qualified as t1.c or t2.c to indicate which table you mean:

SELECT c1, c2, t1.c FROM t1 INNER JOIN t2



Identifier Case Sensitivity

982

WHERE t2.c > 100;

Similarly, to retrieve from a table t in database db1 and from a table t in database db2 in the same
statement, you must qualify the table references: For references to columns in those tables, qualifiers
are required only for column names that appear in both tables. Suppose that column c1 occurs only
in table db1.t, c2 only in db2.t, and c in both db1.t and db2.t. In this case, c is ambiguous and
must be qualified but c1 and c2 need not be:

SELECT c1, c2, db1.t.c FROM db1.t INNER JOIN db2.t
WHERE db2.t.c > 100;

Table aliases enable qualified column references to be written more simply:

SELECT c1, c2, t1.c FROM db1.t AS t1 INNER JOIN db2.t AS t2
WHERE t2.c > 100;

9.2.2 Identifier Case Sensitivity

In MySQL, databases correspond to directories within the data directory. Each table within a database
corresponds to at least one file within the database directory (and possibly more, depending on the
storage engine). Triggers also correspond to files. Consequently, the case sensitivity of the underlying
operating system plays a part in the case sensitivity of database, table, and trigger names. This means
such names are not case sensitive in Windows, but are case sensitive in most varieties of Unix. One
notable exception is OS X, which is Unix-based but uses a default file system type (HFS+) that is not
case sensitive. However, OS X also supports UFS volumes, which are case sensitive just as on any
Unix. See Section 1.7.1, “MySQL Extensions to Standard SQL”. The lower_case_table_names
system variable also affects how the server handles identifier case sensitivity, as described later in this
section.

Note

Although database, table, and trigger names are not case sensitive on some
platforms, you should not refer to one of these using different cases within the
same statement. The following statement would not work because it refers to a
table both as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column, index, stored routine, and event names are not case sensitive on any platform, nor are column
aliases.

However, names of logfile groups are case sensitive. This differs from standard SQL.

By default, table aliases are case sensitive on Unix, but not so on Windows or OS X. The following
statement would not work on Unix, because it refers to the alias both as a and as A:

mysql> SELECT col_name FROM tbl_name AS a
    -> WHERE a.col_name = 1 OR A.col_name = 2;

However, this same statement is permitted on Windows. To avoid problems caused by such
differences, it is best to adopt a consistent convention, such as always creating and referring to
databases and tables using lowercase names. This convention is recommended for maximum
portability and ease of use.

How table and database names are stored on disk and used in MySQL is affected by the
lower_case_table_names system variable, which you can set when starting mysqld.
lower_case_table_names can take the values shown in the following table. This variable does not
affect case sensitivity of trigger identifiers. On Unix, the default value of lower_case_table_names
is 0. On Windows, the default value is 1. On OS X, the default value is 2.



Identifier Case Sensitivity

983

Value Meaning

0 Table and database names are stored on disk using the lettercase specified in the CREATE
TABLE or CREATE DATABASE statement. Name comparisons are case sensitive. You
should not set this variable to 0 if you are running MySQL on a system that has case-
insensitive file names (such as Windows or OS X). If you force this variable to 0 with --
lower-case-table-names=0 on a case-insensitive file system and access MyISAM
tablenames using different lettercases, index corruption may result.

1 Table names are stored in lowercase on disk and name comparisons are not case
sensitive. MySQL converts all table names to lowercase on storage and lookup. This
behavior also applies to database names and table aliases.

2 Table and database names are stored on disk using the lettercase specified in the
CREATE TABLE or CREATE DATABASE statement, but MySQL converts them to
lowercase on lookup. Name comparisons are not case sensitive. This works only on file
systems that are not case sensitive! InnoDB table names are stored in lowercase, as for
lower_case_table_names=1.

If you are using MySQL on only one platform, you do not normally have to change the
lower_case_table_names variable from its default value. However, you may encounter difficulties if
you want to transfer tables between platforms that differ in file system case sensitivity. For example, on
Unix, you can have two different tables named my_table and MY_TABLE, but on Windows these two
names are considered identical. To avoid data transfer problems arising from lettercase of database or
table names, you have two options:

• Use lower_case_table_names=1 on all systems. The main disadvantage with this is that when
you use SHOW TABLES or SHOW DATABASES, you do not see the names in their original lettercase.

• Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Windows.
This preserves the lettercase of database and table names. The disadvantage of this is that you
must ensure that your statements always refer to your database and table names with the correct
lettercase on Windows. If you transfer your statements to Unix, where lettercase is significant, they
do not work if the lettercase is incorrect.

Exception: If you are using InnoDB tables and you are trying to avoid these data transfer problems,
you should set lower_case_table_names to 1 on all platforms to force names to be converted to
lowercase.

If you plan to set the lower_case_table_names system variable to 1 on Unix, you must first convert
your old database and table names to lowercase before stopping mysqld and restarting it with the new
variable setting. To do this for an individual table, use RENAME TABLE:

RENAME TABLE T1 TO t1;

To convert one or more entire databases, dump them before setting lower_case_table_names,
then drop the databases, and reload them after setting lower_case_table_names:

1. Use mysqldump to dump each database:

mysqldump --databases db1 > db1.sql
mysqldump --databases db2 > db2.sql
...

Do this for each database that must be recreated.

2. Use DROP DATABASE to drop each database.

3. Stop the server, set lower_case_table_names, and restart the server.

4. Reload the dump file for each database. Because lower_case_table_names is set, each
database and table name will be converted to lowercase as it is recreated:



Mapping of Identifiers to File Names

984

mysql < db1.sql
mysql < db2.sql
...

Object names may be considered duplicates if their uppercase forms are equal according to a binary
collation. That is true for names of cursors, conditions, procedures, functions, savepoints, stored
routine parameters, stored program local variables, and plugins. It is not true for names of columns,
constraints, databases, partitions, statements prepared with PREPARE, tables, triggers, users, and
user-defined variables.

File system case sensitivity can affect searches in string columns of INFORMATION_SCHEMA tables.
For more information, see Section 10.1.8.7, “Using Collation in INFORMATION_SCHEMA Searches”.

9.2.3 Mapping of Identifiers to File Names

There is a correspondence between database and table identifiers and names in the file system. For
the basic structure, MySQL represents each database as a directory in the data directory, and each
table by one or more files in the appropriate database directory. For the table format files (.FRM), the
data is always stored in this structure and location.

For the data and index files, the exact representation on disk is storage engine specific. These files
may be stored in the same location as the FRM files, or the information may be stored in a separate
file. InnoDB data is stored in the InnoDB data files. If you are using tablespaces with InnoDB, then the
specific tablespace files you create are used instead.

Any character is legal in database or table identifiers except ASCII NUL (X'00'). MySQL encodes
any characters that are problematic in the corresponding file system objects when it creates database
directories or table files:

• Basic Latin letters (a..zA..Z), digits (0..9) and underscore (_) are encoded as is. Consequently,
their case sensitivity directly depends on file system features.

• All other national letters from alphabets that have uppercase/lowercase mapping are encoded as
shown in the following table. Values in the Code Range column are UCS-2 values.

Code Range Pattern Number Used Unused Blocks

00C0..017F [@][0..4][g..z] 5*20= 100 97 3 Latin-1 Supplement +
Latin Extended-A

0370..03FF [@][5..9][g..z] 5*20= 100 88 12 Greek and Coptic

0400..052F [@][g..z][0..6] 20*7= 140 137 3 Cyrillic + Cyrillic
Supplement

0530..058F [@][g..z][7..8] 20*2= 40 38 2 Armenian

2160..217F [@][g..z][9] 20*1= 20 16 4 Number Forms

0180..02AF [@][g..z][a..k] 20*11=220 203 17 Latin Extended-B + IPA
Extensions

1E00..1EFF [@][g..z][l..r] 20*7= 140 136 4 Latin Extended
Additional

1F00..1FFF [@][g..z][s..z] 20*8= 160 144 16 Greek Extended

.... .... [@][a..f][g..z] 6*20= 120 0 120 RESERVED

24B6..24E9 [@][@][a..z] 26 26 0 Enclosed
Alphanumerics

FF21..FF5A [@][a..z][@] 26 26 0 Halfwidth and Fullwidth
forms



Mapping of Identifiers to File Names

985

One of the bytes in the sequence encodes lettercase. For example: LATIN CAPITAL LETTER A
WITH GRAVE is encoded as @0G, whereas LATIN SMALL LETTER A WITH GRAVE is encoded as
@0g. Here the third byte (G or g) indicates lettercase. (On a case-insensitive file system, both letters
will be treated as the same.)

For some blocks, such as Cyrillic, the second byte determines lettercase. For other blocks, such as
Latin1 Supplement, the third byte determines lettercase. If two bytes in the sequence are letters (as
in Greek Extended), the leftmost letter character stands for lettercase. All other letter bytes must be
in lowercase.

• All nonletter characters except underscore (_), as well as letters from alphabets that do not have
uppercase/lowercase mapping (such as Hebrew) are encoded using hexadecimal representation
using lowercase letters for hexadecimal digits a..f:

0x003F -> @003f
0xFFFF -> @ffff

The hexadecimal values correspond to character values in the ucs2 double-byte character set.

On Windows, some names such as nul, prn, and aux are encoded by appending @@@ to the name
when the server creates the corresponding file or directory. This occurs on all platforms for portability of
the corresponding database object between platforms.

If you have databases or tables from a version of MySQL older than 5.1.6 that contain special
characters and for which the underlying directory names or file names have not been updated to use
the new encoding, the server displays their names with a prefix of #mysql50# in the output from
INFORMATION_SCHEMA tables or SHOW statements. For example, if you have a table named a@b and
its name encoding has not been updated, SHOW TABLES displays it like this:

mysql> SHOW TABLES;
+----------------+
| Tables_in_test |
+----------------+
| #mysql50#a@b   |
+----------------+

To refer to such a name for which the encoding has not been updated, you must supply the
#mysql50# prefix:

mysql> SHOW COLUMNS FROM `a@b`;
ERROR 1146 (42S02): Table 'test.a@b' doesn't exist

mysql> SHOW COLUMNS FROM `#mysql50#a@b`;
+-------+---------+------+-----+---------+-------+
| Field | Type    | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+
| i     | int(11) | YES  |     | NULL    |       |
+-------+---------+------+-----+---------+-------+

To update old names to eliminate the need to use the special prefix to refer to them, re-encode them
with mysqlcheck. The following commands update all names to the new encoding:

shell> mysqlcheck --check-upgrade --all-databases
shell> mysqlcheck --fix-db-names --fix-table-names --all-databases

To check only specific databases or tables, omit --all-databases and provide the appropriate
database or table arguments. For information about mysqlcheck invocation syntax, see Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.



Function Name Parsing and Resolution

986

Note

The #mysql50# prefix is intended only to be used internally by the server. You
should not create databases or tables with names that use this prefix.

Also, mysqlcheck cannot fix names that contain literal instances of the @
character that is used for encoding special characters. If you have databases
or tables that contain this character, use mysqldump to dump them before
upgrading to MySQL 5.1.6 or later, and then reload the dump file after
upgrading.

9.2.4 Function Name Parsing and Resolution

MySQL 5.5 supports built-in (native) functions, user-defined functions (UDFs), and stored functions.
This section describes how the server recognizes whether the name of a built-in function is used as
a function call or as an identifier, and how the server determines which function to use in cases when
functions of different types exist with a given name.

Built-In Function Name Parsing

The parser uses default rules for parsing names of built-in functions. These rules can be changed by
enabling the IGNORE_SPACE SQL mode.

When the parser encounters a word that is the name of a built-in function, it must determine whether
the name signifies a function call or is instead a nonexpression reference to an identifier such as a
table or column name. For example, in the following statements, the first reference to count is a
function call, whereas the second reference is a table name:

SELECT COUNT(*) FROM mytable;
CREATE TABLE count (i INT);

The parser should recognize the name of a built-in function as indicating a function call only when
parsing what is expected to be an expression. That is, in nonexpression context, function names are
permitted as identifiers.

However, some built-in functions have special parsing or implementation considerations, so the parser
uses the following rules by default to distinguish whether their names are being used as function calls
or as identifiers in nonexpression context:

• To use the name as a function call in an expression, there must be no whitespace between the name
and the following ( parenthesis character.

• Conversely, to use the function name as an identifier, it must not be followed immediately by a
parenthesis.

The requirement that function calls be written with no whitespace between the name and the
parenthesis applies only to the built-in functions that have special considerations. COUNT is one such
name. The sql_functions[] array in the sql/lex.h source file lists the names of these special
functions for which following whitespace determines their interpretation. Before MySQL 5.1, these are
rather numerous (about 200). In MySQL 5.1 and later, parser improvements reduce to about 30 the
number of affected function names. You may find it easiest to treat the no-whitespace requirement as
applying to all function calls.

The following table names the functions that are affected by the IGNORE_SPACE setting and listed as
special in the sql/lex.h source file. For versions older than MySQL 5.1.13, the list is much longer;
check the sql_functions[] array in the sql/lex.h source file.

ADDDATE BIT_AND BIT_OR BIT_XOR

CAST COUNT CURDATE CURTIME



Function Name Parsing and Resolution

987

DATE_ADD DATE_SUB EXTRACT GROUP_CONCAT

MAX MID MIN NOW

POSITION SESSION_USER STD STDDEV

STDDEV_POP STDDEV_SAMP SUBDATE SUBSTR

SUBSTRING SUM SYSDATE SYSTEM_USER

TRIM VARIANCE VAR_POP VAR_SAMP

For functions not listed as special in sql/lex.h, whitespace does not matter. They are interpreted as
function calls only when used in expression context and may be used freely as identifiers otherwise.
ASCII is one such name. However, for these nonaffected function names, interpretation may vary in
expression context: func_name () is interpreted as a built-in function if there is one with the given
name; if not, func_name () is interpreted as a user-defined function or stored function if one exists
with that name.

The IGNORE_SPACE SQL mode can be used to modify how the parser treats function names that are
whitespace-sensitive:

• With IGNORE_SPACE disabled, the parser interprets the name as a function call when there is no
whitespace between the name and the following parenthesis. This occurs even when the function
name is used in nonexpression context:

mysql> CREATE TABLE count(i INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'count(i INT)'

To eliminate the error and cause the name to be treated as an identifier, either use whitespace
following the name or write it as a quoted identifier (or both):

CREATE TABLE count (i INT);
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

• With IGNORE_SPACE enabled, the parser loosens the requirement that there be no whitespace
between the function name and the following parenthesis. This provides more flexibility in writing
function calls. For example, either of the following function calls are legal:

SELECT COUNT(*) FROM mytable;
SELECT COUNT (*) FROM mytable;

However, enabling IGNORE_SPACE also has the side effect that the parser treats the affected
function names as reserved words (see Section 9.3, “Keywords and Reserved Words”). This means
that a space following the name no longer signifies its use as an identifier. The name can be used
in function calls with or without following whitespace, but causes a syntax error in nonexpression
context unless it is quoted. For example, with IGNORE_SPACE enabled, both of the following
statements fail with a syntax error because the parser interprets count as a reserved word:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

To use the function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

To enable the IGNORE_SPACE SQL mode, use this statement:



Function Name Parsing and Resolution

988

SET sql_mode = 'IGNORE_SPACE';

IGNORE_SPACE is also enabled by certain other composite modes such as ANSI that include it in their
value:

SET sql_mode = 'ANSI';

Check Section 5.1.8, “Server SQL Modes”, to see which composite modes enable IGNORE_SPACE.

To minimize the dependency of SQL code on the IGNORE_SPACE setting, use these guidelines:

• Avoid creating UDFs or stored functions that have the same name as a built-in function.

• Avoid using function names in nonexpression context. For example, these statements use count
(one of the affected function names affected by IGNORE_SPACE), so they fail with or without
whitespace following the name if IGNORE_SPACE is enabled:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

If you must use a function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

Incompatibility warning: The change in MySQL 5.1.13 that reduces the number of function names
affected by IGNORE_SPACE improves the consistency of parser operation. However, it also introduces
the possibility of incompatibility for old SQL code that relies on the following conditions:

• IGNORE_SPACE is disabled.

• The presence or absence of whitespace following a function name is used to distinguish between a
built-in function and stored function that have the same name, such as PI() versus PI ().

For functions that are no longer affected by IGNORE_SPACE as of MySQL 5.1.13, that strategy no
longer works. Either of the following approaches can be used if you have code that is subject to the
preceding incompatibility:

• If a stored function has a name that conflicts with a built-in function, refer to the stored function
with a schema name qualifier, regardless of whether whitespace is present. For example, write
schema_name.PI() or schema_name.PI ().

• Alternatively, rename the stored function to use a nonconflicting name and change invocations of the
function to use the new name.

Function Name Resolution

The following rules describe how the server resolves references to function names for function creation
and invocation:

• Built-in functions and user-defined functions

An error occurs if you try to create a UDF with the same name as a built-in function.

• Built-in functions and stored functions

It is possible to create a stored function with the same name as a built-in function, but to invoke
the stored function it is necessary to qualify it with a schema name. For example, if you create a
stored function named PI in the test schema, invoke it as test.PI() because the server resolves
PI() without a qualifier as a reference to the built-in function. The server generates a warning if the



Keywords and Reserved Words

989

stored function name collides with a built-in function name. The warning can be displayed with SHOW
WARNINGS.

• User-defined functions and stored functions

User-defined functions and stored functions share the same namespace, so you cannot create a
UDF and a stored function with the same name.

The preceding function name resolution rules have implications for upgrading to versions of MySQL
that implement new built-in functions:

• If you have already created a user-defined function with a given name and upgrade MySQL to a
version that implements a new built-in function with the same name, the UDF becomes inaccessible.
To correct this, use DROP FUNCTION to drop the UDF and CREATE FUNCTION to re-create the UDF
with a different nonconflicting name. Then modify any affected code to use the new name.

• If a new version of MySQL implements a built-in function with the same name as an existing stored
function, you have two choices: Rename the stored function to use a nonconflicting name, or change
calls to the function so that they use a schema qualifier (that is, use schema_name.func_name()
syntax). In either case, modify any affected code accordingly.

9.3 Keywords and Reserved Words

Keywords are words that have significance in SQL. Certain keywords, such as SELECT, DELETE, or
BIGINT, are reserved and require special treatment for use as identifiers such as table and column
names. This may also be true for the names of built-in functions.

Nonreserved keywords are permitted as identifiers without quoting. Reserved words are permitted as
identifiers if you quote them as described in Section 9.2, “Schema Object Names”:

mysql> CREATE TABLE interval (begin INT, end INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'interval (begin INT, end INT)'

BEGIN and END are keywords but not reserved, so their use as identifiers does not require quoting.
INTERVAL is a reserved keyword and must be quoted to be used as an identifier:

mysql> CREATE TABLE `interval` (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Exception: A word that follows a period in a qualified name must be an identifier, so it need not be
quoted even if it is reserved:

mysql> CREATE TABLE mydb.interval (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Names of built-in functions are permitted as identifiers but may require care to be used as such. For
example, COUNT is acceptable as a column name. However, by default, no whitespace is permitted
in function invocations between the function name and the following ( character. This requirement
enables the parser to distinguish whether the name is used in a function call or in nonfunction context.
For further details on recognition of function names, see Section 9.2.4, “Function Name Parsing and
Resolution”.

The following table shows the keywords and reserved words in MySQL 5.5, along with changes
to individual words from version to version. Reserved keywords are marked with (R). In addition,
_FILENAME is reserved.

At some point, you might upgrade to a higher version, so it is a good idea to have a look at future
reserved words, too. You can find these in the manuals that cover higher versions of MySQL. Most of



Keywords and Reserved Words

990

the reserved words in the table are forbidden by standard SQL as column or table names (for example,
GROUP). A few are reserved because MySQL needs them and uses a yacc parser.

Table 9.2 Keywords and Reserved Words in MySQL 5.5

ACCESSIBLE (R) ACTION ADD (R)

AFTER AGAINST AGGREGATE

ALGORITHM ALL (R) ALTER (R)

ANALYZE (R) AND (R) ANY

AS (R) ASC (R) ASCII

ASENSITIVE (R) AT AUTHORS

AUTOEXTEND_SIZE AUTO_INCREMENT AVG

AVG_ROW_LENGTH BACKUP BEFORE (R)

BEGIN BETWEEN (R) BIGINT (R)

BINARY (R) BINLOG BIT

BLOB (R) BLOCK BOOL

BOOLEAN BOTH (R) BTREE

BY (R) BYTE CACHE

CALL (R) CASCADE (R) CASCADED

CASE (R) CATALOG_NAME CHAIN

CHANGE (R) CHANGED CHAR (R)

CHARACTER (R) CHARSET CHECK (R)

CHECKSUM CIPHER CLASS_ORIGIN

CLIENT CLOSE COALESCE

CODE COLLATE (R) COLLATION

COLUMN (R) COLUMNS COLUMN_NAME

COMMENT COMMIT COMMITTED

COMPACT COMPLETION COMPRESSED

CONCURRENT CONDITION (R) CONNECTION

CONSISTENT CONSTRAINT (R) CONSTRAINT_CATALOG

CONSTRAINT_NAME CONSTRAINT_SCHEMA CONTAINS

CONTEXT CONTINUE (R) CONTRIBUTORS

CONVERT (R) CPU CREATE (R)

CROSS (R) CUBE CURRENT_DATE (R)

CURRENT_TIME (R) CURRENT_TIMESTAMP (R) CURRENT_USER (R)

CURSOR (R) CURSOR_NAME DATA

DATABASE (R) DATABASES (R) DATAFILE

DATE DATETIME DAY

DAY_HOUR (R) DAY_MICROSECOND (R) DAY_MINUTE (R)

DAY_SECOND (R) DEALLOCATE DEC (R)

DECIMAL (R) DECLARE (R) DEFAULT (R)

DEFINER DELAYED (R) DELAY_KEY_WRITE

DELETE (R) DESC (R) DESCRIBE (R)

DES_KEY_FILE DETERMINISTIC (R) DIRECTORY



Keywords and Reserved Words

991

DISABLE DISCARD DISK

DISTINCT (R) DISTINCTROW (R) DIV (R)

DO DOUBLE (R) DROP (R)

DUAL (R) DUMPFILE DUPLICATE

DYNAMIC EACH (R) ELSE (R)

ELSEIF (R) ENABLE ENCLOSED (R)

END ENDS ENGINE

ENGINES ENUM ERRORa

ERRORS ESCAPE ESCAPED (R)

EVENT EVENTS EVERY

EXECUTE EXISTS (R) EXIT (R)

EXPANSION EXPLAIN (R) EXTENDED

EXTENT_SIZE FALSE (R) FAST

FAULTS FETCH (R) FIELDS

FILE FIRST FIXED

FLOAT (R) FLOAT4 (R) FLOAT8 (R)

FLUSH FOR (R) FORCE (R)

FOREIGN (R) FOUND FRAC_SECONDb

FROM (R) FULL FULLTEXT (R)

FUNCTION GENERALc GEOMETRY

GEOMETRYCOLLECTION GET_FORMAT GLOBAL

GRANT (R) GRANTS GROUP (R)

HANDLER HASH HAVING (R)

HELP HIGH_PRIORITY (R) HOST

HOSTS HOUR HOUR_MICROSECOND (R)

HOUR_MINUTE (R) HOUR_SECOND (R) IDENTIFIED

IF (R) IGNORE (R) IGNORE_SERVER_IDSd

IMPORT IN (R) INDEX (R)

INDEXES INFILE (R) INITIAL_SIZE

INNER (R) INNOBASEe INNODBf

INOUT (R) INSENSITIVE (R) INSERT (R)

INSERT_METHOD INSTALL INT (R)

INT1 (R) INT2 (R) INT3 (R)

INT4 (R) INT8 (R) INTEGER (R)

INTERVAL (R) INTO (R) INVOKER

IO IO_THREAD IPC

IS (R) ISOLATION ISSUER

ITERATE (R) JOIN (R) KEY (R)

KEYS (R) KEY_BLOCK_SIZE KILL (R)

LANGUAGE LAST LEADING (R)

LEAVE (R) LEAVES LEFT (R)

LESS LEVEL LIKE (R)



Keywords and Reserved Words

992

LIMIT (R) LINEAR (R) LINES (R)

LINESTRING LIST LOAD (R)

LOCAL LOCALTIME (R) LOCALTIMESTAMP (R)

LOCK (R) LOCKS LOGFILE

LOGS LONG (R) LONGBLOB (R)

LONGTEXT (R) LOOP (R) LOW_PRIORITY (R)

MASTER MASTER_CONNECT_RETRY MASTER_HEARTBEAT_PERIODg

MASTER_HOST MASTER_LOG_FILE MASTER_LOG_POS

MASTER_PASSWORD MASTER_PORT MASTER_SERVER_ID

MASTER_SSL MASTER_SSL_CA MASTER_SSL_CAPATH

MASTER_SSL_CERT MASTER_SSL_CIPHER MASTER_SSL_KEY

MASTER_SSL_VERIFY_SERVER_CERT
(R)

MASTER_USER MATCH (R)

MAXVALUE (R) MAX_CONNECTIONS_PER_HOUR MAX_QUERIES_PER_HOUR

MAX_ROWS MAX_SIZE MAX_UPDATES_PER_HOUR

MAX_USER_CONNECTIONS MEDIUM MEDIUMBLOB (R)

MEDIUMINT (R) MEDIUMTEXT (R) MEMORY

MERGE MESSAGE_TEXT MICROSECOND

MIDDLEINT (R) MIGRATE MINUTE

MINUTE_MICROSECOND (R) MINUTE_SECOND (R) MIN_ROWS

MOD (R) MODE MODIFIES (R)

MODIFY MONTH MULTILINESTRING

MULTIPOINT MULTIPOLYGON MUTEX

MYSQL_ERRNO NAME NAMES

NATIONAL NATURAL (R) NCHAR

NDB NDBCLUSTER NEW

NEXT NO NODEGROUP

NONE NOT (R) NO_WAIT

NO_WRITE_TO_BINLOG (R) NULL (R) NUMERIC (R)

NVARCHAR OFFSET OLD_PASSWORD

ON (R) ONE ONE_SHOT

OPEN OPTIMIZE (R) OPTION (R)

OPTIONALLY (R) OPTIONS OR (R)

ORDER (R) OUT (R) OUTER (R)

OUTFILE (R) OWNER PACK_KEYS

PAGE PARSER PARTIAL

PARTITION PARTITIONING PARTITIONS

PASSWORD PHASE PLUGIN

PLUGINS POINT POLYGON

PORT PRECISION (R) PREPARE

PRESERVE PREV PRIMARY (R)

PRIVILEGES PROCEDURE (R) PROCESSLIST



Keywords and Reserved Words

993

PROFILE PROFILES PROXYh

PURGE (R) QUARTER QUERY

QUICK RANGE (R) READ (R)

READS (R) READ_ONLY READ_WRITE (R)

REAL (R) REBUILD RECOVER

REDOFILE REDO_BUFFER_SIZE REDUNDANT

REFERENCES (R) REGEXP (R) RELAYi

RELAYLOG RELAY_LOG_FILE RELAY_LOG_POS

RELAY_THREAD RELEASE (R) RELOAD

REMOVE RENAME (R) REORGANIZE

REPAIR REPEAT (R) REPEATABLE

REPLACE (R) REPLICATION REQUIRE (R)

RESET RESIGNAL (R) RESTORE

RESTRICT (R) RESUME RETURN (R)

RETURNS REVOKE (R) RIGHT (R)

RLIKE (R) ROLLBACK ROLLUP

ROUTINE ROW ROWS

ROW_FORMAT RTREE SAVEPOINT

SCHEDULE SCHEMA (R) SCHEMAS (R)

SCHEMA_NAME SECOND SECOND_MICROSECOND (R)

SECURITY SELECT (R) SENSITIVE (R)

SEPARATOR (R) SERIAL SERIALIZABLE

SERVER SESSION SET (R)

SHARE SHOW (R) SHUTDOWN

SIGNAL (R) SIGNED SIMPLE

SLAVE SLOWj SMALLINT (R)

SNAPSHOT SOCKET SOME

SONAME SOUNDS SOURCE

SPATIAL (R) SPECIFIC (R) SQL (R)

SQLEXCEPTION (R) SQLSTATE (R) SQLWARNING (R)

SQL_BIG_RESULT (R) SQL_BUFFER_RESULT SQL_CACHE

SQL_CALC_FOUND_ROWS (R) SQL_NO_CACHE SQL_SMALL_RESULT (R)

SQL_THREAD SQL_TSI_DAY SQL_TSI_FRAC_SECONDk

SQL_TSI_HOUR SQL_TSI_MINUTE SQL_TSI_MONTH

SQL_TSI_QUARTER SQL_TSI_SECOND SQL_TSI_WEEK

SQL_TSI_YEAR SSL (R) START

STARTING (R) STARTS STATUS

STOP STORAGE STRAIGHT_JOIN (R)

STRING SUBCLASS_ORIGIN SUBJECT

SUBPARTITION SUBPARTITIONS SUPER

SUSPEND SWAPS SWITCHES

TABLE (R) TABLES TABLESPACE



Keywords and Reserved Words

994

TABLE_CHECKSUM TABLE_NAME TEMPORARY

TEMPTABLE TERMINATED (R) TEXT

THAN THEN (R) TIME

TIMESTAMP TIMESTAMPADD TIMESTAMPDIFF

TINYBLOB (R) TINYINT (R) TINYTEXT (R)

TO (R) TRAILING (R) TRANSACTION

TRIGGER (R) TRIGGERS TRUE (R)

TRUNCATE TYPE TYPES

UNCOMMITTED UNDEFINED UNDO (R)

UNDOFILE UNDO_BUFFER_SIZE UNICODE

UNINSTALL UNION (R) UNIQUE (R)

UNKNOWN UNLOCK (R) UNSIGNED (R)

UNTIL UPDATE (R) UPGRADE

USAGE (R) USE (R) USER

USER_RESOURCES USE_FRM USING (R)

UTC_DATE (R) UTC_TIME (R) UTC_TIMESTAMP (R)

VALUE VALUES (R) VARBINARY (R)

VARCHAR (R) VARCHARACTER (R) VARIABLES

VARYING (R) VIEW WAIT

WARNINGS WEEK WHEN (R)

WHERE (R) WHILE (R) WITH (R)

WORK WRAPPER WRITE (R)

X509 XA XML

XOR (R) YEAR YEAR_MONTH (R)

ZEROFILL (R)   
aERROR: added in 5.5.3 (nonreserved)
bFRAC_SECOND: removed in 5.5.3
cGENERAL: added in 5.5.3 (reserved); became nonreserved in 5.5.8
dIGNORE_SERVER_IDS: became nonreserved in 5.5.8
eINNOBASE: removed in 5.5.3
fINNODB: removed in 5.5.3
gMASTER_HEARTBEAT_PERIOD: became nonreserved in 5.5.8
hPROXY: added in 5.5.7 (nonreserved)
iRELAY: added in 5.5.3 (nonreserved)
jSLOW: added in 5.5.3 (reserved); became nonreserved in 5.5.8
kSQL_TSI_FRAC_SECOND: removed in 5.5.3

The following table shows the keywords and reserved words that are added in MySQL 5.5. Reserved
keywords are marked with (R).

Table 9.3 Keywords and Reserved Words Added in MySQL 5.5 Compared to MySQL 5.1

CATALOG_NAME CLASS_ORIGIN COLUMN_NAME

CONSTRAINT_CATALOG CONSTRAINT_NAME CONSTRAINT_SCHEMA

CURSOR_NAME ERROR GENERAL

IGNORE_SERVER_IDS MASTER_HEARTBEAT_PERIOD MESSAGE_TEXT

MYSQL_ERRNO PROXY RELAY

RELAYLOG RESIGNAL (R) SCHEMA_NAME



User-Defined Variables

995

SIGNAL (R) SLOW SUBCLASS_ORIGIN

TABLE_NAME XML  

The following table shows the keywords and reserved words that are removed in MySQL 5.5. Reserved
keywords are marked with (R).

Table 9.4 Keywords and Reserved Words Removed in MySQL 5.5 Compared to MySQL 5.1

FRAC_SECOND INNOBASE INNODB

SQL_TSI_FRAC_SECOND   

9.4 User-Defined Variables

You can store a value in a user-defined variable in one statement and refer to it later in another
statement. This enables you to pass values from one statement to another.

User variables are written as @var_name, where the variable name var_name consists of
alphanumeric characters, ., _, and $. A user variable name can contain other characters if you quote it
as a string or identifier (for example, @'my-var', @"my-var", or @`my-var`).

User-defined variables are session specific. A user variable defined by one client cannot be seen or
used by other clients. All variables for a given client session are automatically freed when that client
exits.

User variable names are not case sensitive.

One way to set a user-defined variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator.

You can also assign a value to a user variable in statements other than SET. In this case, the
assignment operator must be := and not = because the latter is treated as the comparison operator =
in non-SET statements:

mysql> SET @t1=1, @t2=2, @t3:=4;
mysql> SELECT @t1, @t2, @t3, @t4 := @t1+@t2+@t3;
+------+------+------+--------------------+
| @t1  | @t2  | @t3  | @t4 := @t1+@t2+@t3 |
+------+------+------+--------------------+
|    1 |    2 |    4 |                  7 |
+------+------+------+--------------------+

User variables can be assigned a value from a limited set of data types: integer, decimal, floating-point,
binary or nonbinary string, or NULL value. Assignment of decimal and real values does not preserve the
precision or scale of the value. A value of a type other than one of the permissible types is converted to
a permissible type. For example, a value having a temporal or spatial data type is converted to a binary
string.

If a user variable is assigned a nonbinary (character) string value, it has the same character set and
collation as the string. The coercibility of user variables is implicit. (This is the same coercibility as for
table column values.)

Hexadcimal or bit values assigned to user variables are treated as binary strings. To assign a
hexadecimal or bit value as a number to a user variable, use it in numeric context. For example, add 0
or use CAST(... AS UNSIGNED):



User-Defined Variables

996

mysql> SET @v1 = X'41';
mysql> SET @v2 = X'41'+0;
mysql> SET @v3 = CAST(X'41' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1  | @v2  | @v3  |
+------+------+------+
| A    |   65 |   65 |
+------+------+------+
mysql> SET @v1 = b'1000001';
mysql> SET @v2 = b'1000001'+0;
mysql> SET @v3 = CAST(b'1000001' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1  | @v2  | @v3  |
+------+------+------+
| A    |   65 |   65 |
+------+------+------+

If the value of a user variable is selected in a result set, it is returned to the client as a string.

If you refer to a variable that has not been initialized, it has a value of NULL and a type of string.

User variables may be used in most contexts where expressions are permitted. This does not currently
include contexts that explicitly require a literal value, such as in the LIMIT clause of a SELECT
statement, or the IGNORE N LINES clause of a LOAD DATA statement.

As a general rule, other than in SET statements, you should never assign a value to a user variable and
read the value within the same statement. For example, to increment a variable, this is okay:

SET @a = @a + 1;

For other statements, such as SELECT, you might get the results you expect, but this is not
guaranteed. In the following statement, you might think that MySQL will evaluate @a first and then do
an assignment second:

SELECT @a, @a:=@a+1, ...;

However, the order of evaluation for expressions involving user variables is undefined.

Another issue with assigning a value to a variable and reading the value within the same non-SET
statement is that the default result type of a variable is based on its type at the start of the statement.
The following example illustrates this:

mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;

For this SELECT statement, MySQL reports to the client that column one is a string and converts all
accesses of @a to strings, even though @a is set to a number for the second row. After the SELECT
statement executes, @a is regarded as a number for the next statement.

To avoid problems with this behavior, either do not assign a value to and read the value of the same
variable within a single statement, or else set the variable to 0, 0.0, or '' to define its type before you
use it.

In a SELECT statement, each select expression is evaluated only when sent to the client. This means
that in a HAVING, GROUP BY, or ORDER BY clause, referring to a variable that is assigned a value in
the select expression list does not work as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;



User-Defined Variables

997

The reference to b in the HAVING clause refers to an alias for an expression in the select list that uses
@aa. This does not work as expected: @aa contains the value of id from the previous selected row, not
from the current row.

User variables are intended to provide data values. They cannot be used directly in an SQL statement
as an identifier or as part of an identifier, such as in contexts where a table or database name is
expected, or as a reserved word such as SELECT. This is true even if the variable is quoted, as shown
in the following example:

mysql> SELECT c1 FROM t;
+----+
| c1 |
+----+
|  0 |
+----+
|  1 |
+----+
2 rows in set (0.00 sec)

mysql> SET @col = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| c1   |
+------+
1 row in set (0.00 sec)

mysql> SELECT `@col` FROM t;
ERROR 1054 (42S22): Unknown column '@col' in 'field list'

mysql> SET @col = "`c1`";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| `c1` |
+------+
1 row in set (0.00 sec)

An exception to this principle that user variables cannot be used to provide identifiers, is when you are
constructing a string for use as a prepared statement to execute later. In this case, user variables can
be used to provide any part of the statement. The following example illustrates how this can be done:

mysql> SET @c = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SET @s = CONCAT("SELECT ", @c, " FROM t");
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE stmt FROM @s;
Query OK, 0 rows affected (0.04 sec)
Statement prepared

mysql> EXECUTE stmt;
+----+
| c1 |
+----+
|  0 |
+----+
|  1 |
+----+
2 rows in set (0.00 sec)



Expression Syntax

998

mysql> DEALLOCATE PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)

See Section 13.5, “Prepared SQL Statement Syntax”, for more information.

A similar technique can be used in application programs to construct SQL statements using program
variables, as shown here using PHP 5:

<?php
  $mysqli = new mysqli("localhost", "user", "pass", "test");

  if( mysqli_connect_errno() )
    die("Connection failed: %s\n", mysqli_connect_error());

  $col = "c1";

  $query = "SELECT $col FROM t";

  $result = $mysqli->query($query);

  while($row = $result->fetch_assoc())
  {
    echo "<p>" . $row["$col"] . "</p>\n";
  }

  $result->close();

  $mysqli->close();
?>

Assembling an SQL statement in this fashion is sometimes known as “Dynamic SQL”.

9.5 Expression Syntax
The following rules define expression syntax in MySQL. The grammar shown here is based on that
given in the sql/sql_yacc.yy file of MySQL source distributions. See the notes after the grammar
for additional information about some of the terms.

expr:
    expr OR expr
  | expr || expr
  | expr XOR expr
  | expr AND expr
  | expr && expr
  | NOT expr
  | ! expr
  | boolean_primary IS [NOT] {TRUE | FALSE | UNKNOWN}
  | boolean_primary

boolean_primary:
    boolean_primary IS [NOT] NULL
  | boolean_primary <=> predicate
  | boolean_primary comparison_operator predicate
  | boolean_primary comparison_operator {ALL | ANY} (subquery)
  | predicate

comparison_operator: = | >= | > | <= | < | <> | !=

predicate:
    bit_expr [NOT] IN (subquery)
  | bit_expr [NOT] IN (expr [, expr] ...)
  | bit_expr [NOT] BETWEEN bit_expr AND predicate
  | bit_expr SOUNDS LIKE bit_expr
  | bit_expr [NOT] LIKE simple_expr [ESCAPE simple_expr]
  | bit_expr [NOT] REGEXP bit_expr
  | bit_expr

bit_expr:



Expression Syntax

999

    bit_expr | bit_expr
  | bit_expr & bit_expr
  | bit_expr << bit_expr
  | bit_expr >> bit_expr
  | bit_expr + bit_expr
  | bit_expr - bit_expr
  | bit_expr * bit_expr
  | bit_expr / bit_expr
  | bit_expr DIV bit_expr
  | bit_expr MOD bit_expr
  | bit_expr % bit_expr
  | bit_expr ^ bit_expr
  | bit_expr + interval_expr
  | bit_expr - interval_expr
  | simple_expr

simple_expr:
    literal
  | identifier
  | function_call
  | simple_expr COLLATE collation_name
  | param_marker
  | variable
  | simple_expr || simple_expr
  | + simple_expr
  | - simple_expr
  | ~ simple_expr
  | ! simple_expr
  | BINARY simple_expr
  | (expr [, expr] ...)
  | ROW (expr, expr [, expr] ...)
  | (subquery)
  | EXISTS (subquery)
  | {identifier expr}
  | match_expr
  | case_expr
  | interval_expr

Notes:

For operator precedence, see in Section 12.3.1, “Operator Precedence”.

For literal value syntax, see Section 9.1, “Literal Values”.

For identifier syntax, see Section 9.2, “Schema Object Names”.

Variables can be user variables, system variables, or stored program local variables or parameters:

• User variables: Section 9.4, “User-Defined Variables”

• System variables: Section 5.1.6, “Using System Variables”

• Local variables: Section 13.6.4.1, “Local Variable DECLARE Syntax”

• Parameters: Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”

param_marker is ? as used in prepared statements for placeholders. See Section 13.5.1, “PREPARE
Syntax”.

(subquery) indicates a subquery that returns a single value; that is, a scalar subquery. See
Section 13.2.10.1, “The Subquery as Scalar Operand”.

{identifier expr} is ODBC escape syntax and is accepted for ODBC compatibility. The value
is expr. The curly braces in the syntax should be written literally; they are not metasyntax as used
elsewhere in syntax descriptions.

match_expr indicates a MATCH expression. See Section 12.9, “Full-Text Search Functions”.



Comment Syntax

1000

case_expr indicates a CASE expression. See Section 12.4, “Control Flow Functions”.

interval_expr represents a time interval. The syntax is INTERVAL expr unit, where unit is
a specifier such as HOUR, DAY, or WEEK. For the full list of unit specifiers, see the description of the
DATE_ADD() function in Section 12.7, “Date and Time Functions”.

The meaning of some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 5.1.8, “Server SQL Modes”.

9.6 Comment Syntax

MySQL Server supports three comment styles:

• From a # character to the end of the line.

• From a --  sequence to the end of the line. In MySQL, the --  (double-dash) comment style
requires the second dash to be followed by at least one whitespace or control character (such as a
space, tab, newline, and so on). This syntax differs slightly from standard SQL comment syntax, as
discussed in Section 1.7.2.4, “'--' as the Start of a Comment”.

• From a /* sequence to the following */ sequence, as in the C programming language. This syntax
enables a comment to extend over multiple lines because the beginning and closing sequences need
not be on the same line.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1;     # This comment continues to the end of line
mysql> SELECT 1+1;     -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment
*/
1;

Nested comments are not supported. (Under some conditions, nested comments might be permitted,
but usually are not, and users should avoid them.)

MySQL Server supports some variants of C-style comments. These enable you to write code that
includes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other
SQL statement, but other SQL servers will ignore the extensions. For example, MySQL Server
recognizes the STRAIGHT_JOIN keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the ! character, the syntax within the comment is executed only if
the MySQL version is greater than or equal to the specified version number. The KEY_BLOCK_SIZE
keyword in the following comment is executed only by servers from MySQL 5.1.10 or higher:



Comment Syntax

1001

CREATE TABLE t1(a INT, KEY (a)) /*!50110 KEY_BLOCK_SIZE=1024 */;

The comment syntax just described applies to how the mysqld server parses SQL statements. The
mysql client program also performs some parsing of statements before sending them to the server. (It
does this to determine statement boundaries within a multiple-statement input line.)

Comments in this format, /*!12345 ... */, are not stored on the server. If this format is used to
comment stored routines, the comments will not be retained on the server.

The use of short-form mysql commands such as \C within multiple-line /* ... */ comments is not
supported.



1002



1003

Chapter 10 Globalization

Table of Contents
10.1 Character Set Support ..................................................................................................... 1003

10.1.1 Character Sets and Collations in General .............................................................. 1004
10.1.2 Character Sets and Collations in MySQL ............................................................... 1005
10.1.3 Specifying Character Sets and Collations ............................................................... 1009
10.1.4 Connection Character Sets and Collations ............................................................. 1019
10.1.5 Configuring Application Character Set and Collation ............................................... 1021
10.1.6 Error Message Character Set ................................................................................ 1023
10.1.7 Column Character Set Conversion ......................................................................... 1024
10.1.8 Collation Issues .................................................................................................... 1025
10.1.9 Unicode Support ................................................................................................... 1033
10.1.10 Supported Character Sets and Collations ............................................................. 1039

10.2 Setting the Error Message Language ............................................................................... 1052
10.3 Adding a Character Set ................................................................................................... 1053

10.3.1 Character Definition Arrays ................................................................................... 1054
10.3.2 String Collating Support for Complex Character Sets .............................................. 1055
10.3.3 Multi-Byte Character Support for Complex Character Sets ...................................... 1056

10.4 Adding a Collation to a Character Set .............................................................................. 1056
10.4.1 Collation Implementation Types ............................................................................. 1057
10.4.2 Choosing a Collation ID ........................................................................................ 1058
10.4.3 Adding a Simple Collation to an 8-Bit Character Set ............................................... 1059
10.4.4 Adding a UCA Collation to a Unicode Character Set ............................................... 1060

10.5 Character Set Configuration ............................................................................................. 1063
10.6 MySQL Server Time Zone Support .................................................................................. 1064

10.6.1 Staying Current with Time Zone Changes .............................................................. 1067
10.6.2 Time Zone Leap Second Support .......................................................................... 1068

10.7 MySQL Server Locale Support ......................................................................................... 1069

This chapter covers issues of globalization, which includes internationalization (MySQL's capabilities
for adapting to local use) and localization (selecting particular local conventions):

• MySQL support for character sets in SQL statements.

• How to configure the server to support different character sets.

• Selecting the language for error messages.

• How to set the server's time zone and enable per-connection time zone support.

• Selecting the locale for day and month names.

10.1 Character Set Support

MySQL includes character set support that enables you to store data using a variety of character sets
and perform comparisons according to a variety of collations. You can specify character sets at the
server, database, table, and column level. MySQL supports the use of character sets for the MyISAM,
MEMORY, NDBCLUSTER, and InnoDB storage engines.

This chapter discusses the following topics:

• What are character sets and collations?



Character Sets and Collations in General

1004

• The multiple-level default system for character set assignment.

• Syntax for specifying character sets and collations.

• Affected functions and operations.

• Unicode support.

• The character sets and collations that are available, with notes.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about configuring character sets for application use and character set-related
issues in client/server communication, see Section 10.1.5, “Configuring Application Character Set and
Collation”, and Section 10.1.4, “Connection Character Sets and Collations”.

10.1.1 Character Sets and Collations in General

A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters
in a character set. Let's make the distinction clear with an example of an imaginary character set.

Suppose that we have an alphabet with four letters: A, B, a, b. We give each letter a number: A = 0, B =
1, a = 2, b = 3. The letter A is a symbol, the number 0 is the encoding for A, and the combination of all
four letters and their encodings is a character set.

Suppose that we want to compare two string values, A and B. The simplest way to do this is to look at
the encodings: 0 for A and 1 for B. Because 0 is less than 1, we say A is less than B. What we've just
done is apply a collation to our character set. The collation is a set of rules (only one rule in this case):
“compare the encodings.” We call this simplest of all possible collations a binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would
have at least two rules: (1) treat the lowercase letters a and b as equivalent to A and B; (2) then
compare the encodings. We call this a case-insensitive collation. It is a little more complex than a
binary collation.

In real life, most character sets have many characters: not just A and B but whole alphabets,
sometimes multiple alphabets or eastern writing systems with thousands of characters, along with
many special symbols and punctuation marks. Also in real life, most collations have many rules, not
just for whether to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a
mark attached to a character as in German Ö), and for multiple-character mappings (such as the rule
that Ö = OE in one of the two German collations).

MySQL can do these things for you:

• Store strings using a variety of character sets.

• Compare strings using a variety of collations.

• Mix strings with different character sets or collations in the same server, the same database, or even
the same table.

• Enable specification of character set and collation at any level.

To use these features effectively, you must know what character sets and collations are available, how
to change the defaults, and how they affect the behavior of string operators and functions.



Character Sets and Collations in MySQL

1005

10.1.2 Character Sets and Collations in MySQL

MySQL Server supports multiple character sets. To display the available character sets, use the
INFORMATION_SCHEMA CHARACTER_SETS table or the SHOW CHARACTER SET statement. A partial
listing follows. For more complete information, see Section 10.1.10, “Supported Character Sets and
Collations”.

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset  | Description                     | Default collation   | Maxlen |
+----------+---------------------------------+---------------------+--------+
| big5     | Big5 Traditional Chinese        | big5_chinese_ci     |      2 |
...
| latin1   | cp1252 West European            | latin1_swedish_ci   |      1 |
| latin2   | ISO 8859-2 Central European     | latin2_general_ci   |      1 |
...
| utf8     | UTF-8 Unicode                   | utf8_general_ci     |      3 |
| ucs2     | UCS-2 Unicode                   | ucs2_general_ci     |      2 |
...
| utf8mb4  | UTF-8 Unicode                   | utf8mb4_general_ci  |      4 |
...
| binary   | Binary pseudo charset           | binary              |      1 |
...

By default, the SHOW CHARACTER SET statement displays all available character sets. It takes an
optional LIKE or WHERE clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description                 | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
| latin1  | cp1252 West European        | latin1_swedish_ci |      1 |
| latin2  | ISO 8859-2 Central European | latin2_general_ci |      1 |
| latin5  | ISO 8859-9 Turkish          | latin5_turkish_ci |      1 |
| latin7  | ISO 8859-13 Baltic          | latin7_general_ci |      1 |
+---------+-----------------------------+-------------------+--------+

A given character set always has at least one collation, and most character sets have several. To list
the display collations for a character set, use the INFORMATION_SCHEMA COLLATIONS table or the
SHOW COLLATION statement.

By default, the SHOW COLLATION statement displays all available collations. It takes an optional LIKE
or WHERE clause that indicates which collation names to display. For example, to see the collations for
the latin1 (cp1252 West European) character set, use this statement:

mysql> SHOW COLLATION WHERE Charset = 'latin1';
+-------------------+---------+----+---------+----------+---------+
| Collation         | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1  |  5 |         | Yes      |       1 |
| latin1_swedish_ci | latin1  |  8 | Yes     | Yes      |       1 |
| latin1_danish_ci  | latin1  | 15 |         | Yes      |       1 |
| latin1_german2_ci | latin1  | 31 |         | Yes      |       2 |
| latin1_bin        | latin1  | 47 |         | Yes      |       1 |
| latin1_general_ci | latin1  | 48 |         | Yes      |       1 |
| latin1_general_cs | latin1  | 49 |         | Yes      |       1 |
| latin1_spanish_ci | latin1  | 94 |         | Yes      |       1 |
+-------------------+---------+----+---------+----------+---------+

The latin1 collations have the following meanings.

Collation Meaning

latin1_bin Binary according to latin1 encoding

latin1_danish_ci Danish/Norwegian



Character Sets and Collations in MySQL

1006

Collation Meaning

latin1_general_ci Multilingual (Western European)

latin1_general_cs Multilingual (ISO Western European), case sensitive

latin1_german1_ci German DIN-1 (dictionary order)

latin1_german2_ci German DIN-2 (phone book order)

latin1_spanish_ci Modern Spanish

latin1_swedish_ci Swedish/Finnish

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has a default collation. For example, the default collations for latin1 and utf8
are latin1_swedish_ci and utf8_general_ci, respectively. The INFORMATION_SCHEMA
CHARACTER_SETS table and the SHOW CHARACTER SET statement indicate the default collation
for each character set. The INFORMATION_SCHEMA COLLATIONS table and the SHOW COLLATION
statement have a column that indicates for each collation whether it is the default for its character set
(Yes if so, empty if not).

• Collation names start with the name of the character set with which they are associated, generally
followed by one or more suffixes indicating other collation characteristics. For additional information
about naming conventions, see Section 10.1.3.1, “Collation Naming Conventions”.

When a character set has multiple collations, it might not be clear which collation is most suitable for
a given application. To avoid choosing an inappropriate collation, perform some comparisons with
representative data values to make sure that a given collation sorts values the way you expect.

10.1.2.1 Character Set Repertoire

The repertoire of a character set is the collection of characters in the set.

String expressions have a repertoire attribute, which can have two values:

• ASCII: The expression can contain only characters in the Unicode range U+0000 to U+007F.

• UNICODE: The expression can contain characters in the Unicode range U+0000 to U+10FFFF.
This includes characters in the Basic Multilingual Plane (BMP) range (U+0000 to U+FFFF) and
supplementary characters outside the BMP range (U+01000 to U+10FFFF).

The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted
safely without loss of information to the character set of any string with UNICODE repertoire or to a
character set that is a superset of ASCII. (All MySQL character sets are supersets of ASCII with the
exception of swe7, which reuses some punctuation characters for Swedish accented characters.) The
use of repertoire enables character set conversion in expressions for many cases where MySQL would
otherwise return an “illegal mix of collations” error.

The following discussion provides examples of expressions and their repertoires, and describes how
the use of repertoire changes string expression evaluation:

• The repertoire for a string constant depends on string content and may differ from the repertoire of
the string character set. Consider these statements:

SET NAMES utf8; SELECT 'abc';
SELECT _utf8'def';
SELECT N'MySQL';

Although the character set is utf8 in each of the preceding cases, the strings do not actually contain
any characters outside the ASCII range, so their repertoire is ASCII rather than UNICODE.



Character Sets and Collations in MySQL

1007

• A column having the ascii character set has ASCII repertoire because of its character set. In the
following table, c1 has ASCII repertoire:

CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);

The following example illustrates how repertoire enables a result to be determined in a case where
an error occurs without repertoire:

CREATE TABLE t1 (
  c1 CHAR(1) CHARACTER SET latin1,
  c2 CHAR(1) CHARACTER SET ascii
);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'

Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is
returned:

+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab            |
+---------------+

• Functions with one string argument inherit the repertoire of their argument. The result of
UPPER(_utf8'abc') has ASCII repertoire because its argument has ASCII repertoire.

• For functions that return a string but do not have string arguments and use
character_set_connection as the result character set, the result repertoire is ASCII if
character_set_connection is ascii, and UNICODE otherwise:

FORMAT(numeric_column, 4);

Use of repertoire changes how MySQL evaluates the following example:

SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'

With repertoire, a result is returned:

+-------------------------+
| CONCAT(FORMAT(a, 4), b) |
+-------------------------+
| 1.0000b                 |
+-------------------------+

• Functions with two or more string arguments use the “widest” argument repertoire for the result
repertoire (UNICODE is wider than ASCII). Consider the following CONCAT() calls:



Character Sets and Collations in MySQL

1008

CONCAT(_ucs2 X'0041', _ucs2 X'0042')
CONCAT(_ucs2 X'0041', _ucs2 X'00C2')

For the first call, the repertoire is ASCII because both arguments are within the range of the ascii
character set. For the second call, the repertoire is UNICODE because the second argument is
outside the ascii character set range.

• The repertoire for function return values is determined based only on the repertoire of the arguments
that affect the result's character set and collation.

IF(column1 < column2, 'smaller', 'greater')

The result repertoire is ASCII because the two string arguments (the second argument and the third
argument) both have ASCII repertoire. The first argument does not matter for the result repertoire,
even if the expression uses string values.

10.1.2.2 UTF-8 for Metadata

Metadata is “the data about the data.” Anything that describes the database—as opposed to being
the contents of the database—is metadata. Thus column names, database names, user names,
version names, and most of the string results from SHOW are metadata. This is also true of the contents
of tables in INFORMATION_SCHEMA because those tables by definition contain information about
database objects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW statements nor SELECT
statements for tables in INFORMATION_SCHEMA would work properly because different rows in the
same column of the results of these operations would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name
columns and tables using their own languages.

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This
does not cause any disruption if you never use accented or non-Latin characters. But if you do, you
should be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(),
SESSION_USER(), SYSTEM_USER(), DATABASE(), and VERSION() functions have the UTF-8
character set by default.

The server sets the character_set_system system variable to the name of the metadata character
set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name        | Value |
+----------------------+-------+
| character_set_system | utf8  |
+----------------------+-------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and
the results of DESCRIBE functions in the character_set_system character set by default. When
you use SELECT column1 FROM t, the name column1 itself is returned from the server to the
client in the character set determined by the value of the character_set_results system variable,
which has a default value of latin1. If you want the server to pass metadata results back in a
different character set, use the SET NAMES statement to force the server to perform character set
conversion. SET NAMES sets the character_set_results and other related system variables.
(See Section 10.1.4, “Connection Character Sets and Collations”.) Alternatively, a client program can



Specifying Character Sets and Collations

1009

perform the conversion after receiving the result from the server. It is more efficient for the client to
perform the conversion, but this option is not always available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns
metadata using its original character set (the set indicated by character_set_system).

Error messages returned from the server to the client are converted to the client character set
automatically, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single
statement, don't worry. MySQL performs some automatic conversion for you.

SELECT * FROM t1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the
comparison.

INSERT INTO t1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the
assignment.

Although automatic conversion is not in the SQL standard, the standard does say that every character
set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle
that “what applies to a superset can apply to a subset,” we believe that a collation for Unicode can
apply for comparisons with non-Unicode strings. For more information about coercion of strings, see
Section 10.1.8.4, “Collation Coercibility in Expressions”.

10.1.3 Specifying Character Sets and Collations

There are default settings for character sets and collations at four levels: server, database, table,
and column. The description in the following sections may appear complex, but it has been found in
practice that multiple-level defaulting leads to natural and obvious results.

CHARACTER SET is used in clauses that specify a character set. CHARSET can be used as a synonym
for CHARACTER SET.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about character set-related issues in client/server communication, see
Section 10.1.4, “Connection Character Sets and Collations”.

10.1.3.1 Collation Naming Conventions

MySQL collation names follow these conventions:

• A collation name starts with the name of the character set with which it is associated, generally
followed by one or more suffixes indicating other collation characteristics. For example,
utf8_general_ci and latin1_swedish_ci are collations for the utf8 and latin1 character
sets, respectively. The binary character set has a single collation, also named binary, with no
suffixes.

• A language-specific collation includes a language name. For example, utf8_turkish_ci and
utf8_hungarian_ci sort characters for the utf8 character set using the rules of Turkish and
Hungarian, respectively.



Specifying Character Sets and Collations

1010

• Collation suffixes indicate whether a collation is case and accent sensitive, or binary. The following
table shows the suffixes used to indicate these characteristics.

Table 10.1 Collation Case Sensitivity Suffixes

Suffix Meaning

_ai Accent insensitive

_as Accent sensitive

_ci Case insensitive

_cs Case sensitive

_bin Binary

For nonbinary collation names that do not specify accent sensitivity, it is determined by case
sensitivity. If a collation name does not contain _ai or _as, _ci in the name implies _ai and _cs
in the name implies _as. For example, latin1_general_ci is explicitly case insensitive and
implicitly accent insensitive, and latin1_general_cs is explicitly case sensitive and implicitly
accent sensitive.

For the binary collation of the binary character set, comparisons are based on numeric byte
values. For the _bin collation of a nonbinary character set, comparisons are based on numeric
character code values, which differ from byte values for multibyte characters. For more information,
see Section 10.1.8.5, “The binary Collation Compared to _bin Collations”.

• For Unicode character sets, the xxx_general_mysql500_ci collations preserve the pre-5.1.24
ordering of the original xxx_general_ci collations and permit upgrades for tables created before
MySQL 5.1.24 (Bug #27877).

10.1.3.2 Server Character Set and Collation

MySQL Server has a server character set and a server collation. These can be set at server startup on
the command line or in an option file and changed at runtime.

Initially, the server character set and collation depend on the options that you use when you start
mysqld. You can use --character-set-server for the character set. Along with it, you can add
--collation-server for the collation. If you don't specify a character set, that is the same as saying
--character-set-server=latin1. If you specify only a character set (for example, latin1) but
not a collation, that is the same as saying --character-set-server=latin1 --collation-
server=latin1_swedish_ci because latin1_swedish_ci is the default collation for latin1.
Therefore, the following three commands all have the same effect:

shell> mysqld
shell> mysqld --character-set-server=latin1
shell> mysqld --character-set-server=latin1 \
           --collation-server=latin1_swedish_ci

One way to change the settings is by recompiling. To change the default server character set and
collation when building from sources, use the DEFAULT_CHARSET and DEFAULT_COLLATION options
for CMake. For example:

shell> cmake . -DDEFAULT_CHARSET=latin1

Or:

shell> cmake . -DDEFAULT_CHARSET=latin1 \
           -DDEFAULT_COLLATION=latin1_german1_ci

Both mysqld and CMake verify that the character set/collation combination is valid. If not, each
program displays an error message and terminates.



Specifying Character Sets and Collations

1011

The server character set and collation are used as default values if the database character set and
collation are not specified in CREATE DATABASE statements. They have no other purpose.

The current server character set and collation can be determined from the values of the
character_set_server and collation_server system variables. These variables can be
changed at runtime.

10.1.3.3 Database Character Set and Collation

Every database has a database character set and a database collation. The CREATE DATABASE and
ALTER DATABASE statements have optional clauses for specifying the database character set and
collation:

CREATE DATABASE db_name
    [[DEFAULT] CHARACTER SET charset_name]
    [[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
    [[DEFAULT] CHARACTER SET charset_name]
    [[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

All database options are stored in a text file named db.opt that can be found in the database
directory.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different
character sets and collations on the same MySQL server.

Example:

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified,
character set charset_name and collation collation_name are used.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated
with collation_name and collation collation_name are used.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the server character set and server
collation are used.

The character set and collation for the default database can be determined from the values of the
character_set_database and collation_database system variables. The server sets these
variables whenever the default database changes. If there is no default database, the variables have
the same value as the corresponding server-level system variables, character_set_server and
collation_server.

To see the default character set and collation for a given database, use these statements:

USE db_name;
SELECT @@character_set_database, @@collation_database;

Alternatively, to display the values without changing the default database:

SELECT DEFAULT_CHARACTER_SET_NAME, DEFAULT_COLLATION_NAME



Specifying Character Sets and Collations

1012

FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME = 'db_name';

The database character set and collation affect these aspects of server operation:

• For CREATE TABLE statements, the database character set and collation are used as default values
for table definitions if the table character set and collation are not specified. To override this, provide
explicit CHARACTER SET and COLLATE table options.

• For LOAD DATA statements that include no CHARACTER SET clause, the server uses the character
set indicated by the character_set_database system variable to interpret the information in the
file. To override this, provide an explicit CHARACTER SET clause.

• For stored routines (procedures and functions), the database character set and collation in effect at
routine creation time are used as the character set and collation of character data parameters for
which the declaration includes no CHARACTER SET or COLLATE attribute. To override this, provide
explicit CHARACTER SET and COLLATE attributes.

10.1.3.4 Table Character Set and Collation

Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE
statements have optional clauses for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
    [[DEFAULT] CHARACTER SET charset_name]
    [COLLATE collation_name]]

ALTER TABLE tbl_name
    [[DEFAULT] CHARACTER SET charset_name]
    [COLLATE collation_name]

Example:

CREATE TABLE t1 ( ... )
CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified,
character set charset_name and collation collation_name are used.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated
with collation_name and collation collation_name are used.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the database character set and
collation are used.

The table character set and collation are used as default values for column definitions if the column
character set and collation are not specified in individual column definitions. The table character set
and collation are MySQL extensions; there are no such things in standard SQL.

10.1.3.5 Column Character Set and Collation

Every “character” column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column character
set and a column collation. Column definition syntax for CREATE TABLE and ALTER TABLE has
optional clauses for specifying the column character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)
    [CHARACTER SET charset_name]



Specifying Character Sets and Collations

1013

    [COLLATE collation_name]

These clauses can also be used for ENUM and SET columns:

col_name {ENUM | SET} (val_list)
    [CHARACTER SET charset_name]
    [COLLATE collation_name]

Examples:

CREATE TABLE t1
(
    col1 VARCHAR(5)
      CHARACTER SET latin1
      COLLATE latin1_german1_ci
);

ALTER TABLE t1 MODIFY
    col1 VARCHAR(5)
      CHARACTER SET latin1
      COLLATE latin1_swedish_ci;

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified,
character set charset_name and collation collation_name are used.

CREATE TABLE t1
(
    col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set and collation are specified for the column, so they are used. The column has
character set utf8 and collation utf8_unicode_ci.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used.

CREATE TABLE t1
(
    col1 CHAR(10) CHARACTER SET utf8
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set is specified for the column, but the collation is not. The column has character set
utf8 and the default collation for utf8, which is utf8_general_ci. To see the default collation for
each character set, use the SHOW CHARACTER SET statement.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated
with collation_name and collation collation_name are used.

CREATE TABLE t1
(
    col1 CHAR(10) COLLATE utf8_polish_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The collation is specified for the column, but the character set is not. The column has collation
utf8_polish_ci and the character set is the one associated with the collation, which is utf8.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the table character set and collation
are used.

CREATE TABLE t1



Specifying Character Sets and Collations

1014

(
    col1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_bin;

Neither the character set nor collation is specified for the column, so the table defaults are used. The
column has character set latin1 and collation latin1_bin.

The CHARACTER SET and COLLATE clauses are standard SQL.

If you use ALTER TABLE to convert a column from one character set to another, MySQL attempts to
map the data values, but if the character sets are incompatible, there may be data loss.

10.1.3.6 Character String Literal Character Set and Collation

Every character string literal has a character set and a collation.

For the simple statement SELECT 'string', the string has the connection default character set
and collation defined by the character_set_connection and collation_connection system
variables.

A character string literal may have an optional character set introducer and COLLATE clause, to
designate it as a string that uses a particular character set and collation:

[_charset_name]'string' [COLLATE collation_name]

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

Examples:

SELECT 'abc';
SELECT _latin1'abc';
SELECT _binary'abc';
SELECT _utf8'abc' COLLATE utf8_danish_ci;

The _charset_name expression is formally called an introducer. It tells the parser, “the string that
follows uses character set charset_name.” An introducer does not change the string to the introducer
character set like CONVERT() would do. It does not change the string value, although padding may
occur. The introducer is just a signal.

MySQL determines the character set and collation of a character string literal in the following manner:

• If both _charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used. collation_name must be a permitted
collation for charset_name.

• If _charset_name is specified but COLLATE is not specified, character set charset_name and
its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement.

• If _charset_name is not specified but COLLATE collation_name is specified, the connection
default character set given by the character_set_connection system variable and collation
collation_name are used. collation_name must be a permitted collation for the connection
default character set.

• Otherwise (neither _charset_name nor COLLATE collation_name is specified), the
connection default character set and collation given by the character_set_connection and
collation_connection system variables are used.

Examples:

• A nonbinary string with latin1 character set and latin1_german1_ci collation:



Specifying Character Sets and Collations

1015

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

• A nonbinary string with utf8 character set and its default collation (that is, utf8_general_ci):

SELECT _utf8'Müller';

• A binary string with binary character set and its default collation (that is, binary):

SELECT _binary'Müller';

• A nonbinary string with the connection default character set and utf8_general_ci collation (fails if
the connection character set is not utf8):

SELECT 'Müller' COLLATE utf8_general_ci;

• A string with the connection default character set and collation:

SELECT 'Müller';

An introducer indicates the character set for the following string, but does not change how the parser
performs escape processing within the string. Escapes are always interpreted by the parser according
to the character set given by character_set_connection.

The following examples show that escape processing occurs using character_set_connection
even in the presence of an introducer. The examples use SET NAMES (which changes
character_set_connection, as discussed in Section 10.1.4, “Connection Character Sets and
Collations”), and display the resulting strings using the HEX() function so that the exact string contents
can be seen.

Example 1:

mysql> SET NAMES latin1;
mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n')  | HEX(_sjis'à\n')  |
+------------+-----------------+
| E00A       | E00A            |
+------------+-----------------+

Here, à (hexadecimal value E0) is followed by \n, the escape sequence for newline. The escape
sequence is interpreted using the character_set_connection value of latin1 to produce a
literal newline (hexadecimal value 0A). This happens even for the second string. That is, the _sjis
introducer does not affect the parser's escape processing.

Example 2:

mysql> SET NAMES sjis;
mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n')  | HEX(_latin1'à\n')  |
+------------+-------------------+
| E05C6E     | E05C6E            |
+------------+-------------------+

Here, character_set_connection is sjis, a character set in which the sequence of à followed by
\ (hexadecimal values 05 and 5C) is a valid multibyte character. Hence, the first two bytes of the string
are interpreted as a single sjis character, and the \ is not interpreted as an escape character. The
following n (hexadecimal value 6E) is not interpreted as part of an escape sequence. This is true even
for the second string; the _latin1 introducer does not affect escape processing.



Specifying Character Sets and Collations

1016

10.1.3.7 The National Character Set

Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should
use some predefined character set. MySQL uses utf8 as this predefined character set. For example,
these data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NVARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

10.1.3.8 Character Set Introducers

A character string literal, hexadecimal literal, or bit-value literal may have an optional character set
introducer and COLLATE clause, to designate it as a string that uses a particular character set and
collation:

[_charset_name] literal [COLLATE collation_name]

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

Examples:

SELECT 'abc';
SELECT _latin1'abc';
SELECT _binary'abc';
SELECT _utf8'abc' COLLATE utf8_danish_ci;

SELECT _latin1 X'4D7953514C';
SELECT _utf8 0x4D7953514C COLLATE utf8_danish_ci;

SELECT _latin1 b'1000001';
SELECT _utf8 0b1000001 COLLATE utf8_danish_ci;

The _charset_name expression is formally called an introducer. It tells the parser, “the string that
follows uses character set charset_name.” An introducer does not change the string to the introducer
character set like CONVERT() would do. It does not change the string value, although padding may
occur. The introducer is just a signal.

For character string literals, space between the introducer and the string is permitted but optional.

Character string literals can be designated as binary strings by using the _binary introducer.
Hexadecimal literals and bit-value literals are binary strings by default, so _binary is permitted, but
unnecessary.

MySQL determines the character set and collation of a character string literal, hexadecimal literal, or
bit-value literal in the following manner:



Specifying Character Sets and Collations

1017

• If both _charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used. collation_name must be a permitted
collation for charset_name.

• If _charset_name is specified but COLLATE is not specified, character set charset_name and
its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement.

• If _charset_name is not specified but COLLATE collation_name is specified:

• For a character string literal, the connection default character set given by the
character_set_connection system variable and collation collation_name are used.
collation_name must be a permitted collation for the connection default character set.

• For a hexadecimal literal or bit-value literal, the only permitted collation is binary because these
types of literals are binary strings by default.

• Otherwise (neither _charset_name nor COLLATE collation_name is specified):

• For a character string literal, the connection default character set and collation given by the
character_set_connection and collation_connection system variables are used.

• For a hexadecimal literal or bit-value literal, the character set and collation are binary.

Examples:

• Nonbinary strings with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;
SELECT _latin1 X'0A0D' COLLATE latin1_german1_ci;
SELECT _latin1 b'0110' COLLATE latin1_german1_ci;

• Nonbinary strings with utf8 character set and its default collation (that is, utf8_general_ci):

SELECT _utf8'Müller';
SELECT _utf8 X'0A0D';
SELECT _utf8 b'0110';

• Binary strings with binary character set and its default collation (that is, binary):

SELECT _binary'Müller';
SELECT X'0A0D';
SELECT b'0110';

The hexadecimal literal and bit-value literal need no introducer because they are binary strings by
default.

• A nonbinary string with the connection default character set and utf8_general_ci collation (fails if
the connection character set is not utf8):

SELECT 'Müller' COLLATE utf8_general_ci;

This construction (COLLATE only) does not work for hexadecimal literals or bit literals because their
character set is binary no matter the connection character set, and binary is not compatible
with the utf8_general_ci collation. The only permitted COLLATE clause in the absence of an
introducer is COLLATE binary.

• A string with the connection default character set and collation:

SELECT 'Müller';



Specifying Character Sets and Collations

1018

For character set literals, an introducer indicates the character set for the following string, but does not
change how the parser performs escape processing within the string. Escapes are always interpreted
by the parser according to the character set given by character_set_connection. For additional
discussion and examples, see Section 10.1.3.6, “Character String Literal Character Set and Collation”.

10.1.3.9 Examples of Character Set and Collation Assignment

The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(
    c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The
definition is explicit, so that is straightforward. Notice that there is no problem with storing a latin1
column in a latin2 table.

Example 2: Table and Column Definition

CREATE TABLE t1
(
    c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it
might seem natural, the default collation is not taken from the table level. Instead, because the
default collation for latin1 is always latin1_swedish_ci, column c1 has a collation of
latin1_swedish_ci (not latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1
(
    c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL
checks the table level to determine the column character set and collation. Consequently, the character
set for column c1 is latin1 and its collation is latin1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
    DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_ci;
USE d1;
CREATE TABLE t1
(
    c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a
character set and a collation at the table level. In this circumstance, MySQL checks the database
level to determine the table settings, which thereafter become the column settings.) Consequently, the
character set for column c1 is latin2 and its collation is latin2_czech_ci.

10.1.3.10 Compatibility with Other DBMSs

For MaxDB compatibility these two statements are the same:



Connection Character Sets and Collations

1019

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

10.1.4 Connection Character Sets and Collations

Several character set and collation system variables relate to a client's interaction with the server.
Some of these have been mentioned in earlier sections:

• The server character set and collation are the values of the character_set_server and
collation_server system variables.

• The character set and collation of the default database are the values of the
character_set_database and collation_database system variables.

Additional character set and collation system variables are involved in handling traffic for the
connection between a client and the server. Every client has connection-related character set and
collation system variables.

A “connection” is what you make when you connect to the server. The client sends SQL statements,
such as queries, over the connection to the server. The server sends responses, such as result sets or
error messages, over the connection back to the client. This leads to several questions about character
set and collation handling for client connections, each of which can be answered in terms of system
variables:

• What character set is the statement in when it leaves the client?

The server takes the character_set_client system variable to be the character set in which
statements are sent by the client.

• What character set should the server translate a statement to after receiving it?

For this, the server uses the character_set_connection and collation_connection
system variables. It converts statements sent by the client from character_set_client to
character_set_connection, xexcept for string literals that have an introducer (for example,
_utf8mb4 or _latin2). collation_connection is important for comparisons of literal strings.
For comparisons of strings with column values, collation_connection does not matter because
columns have their own collation, which has a higher collation precedence.

• What character set should the server translate to before shipping result sets or error messages back
to the client?

The character_set_results system variable indicates the character set in which the server
returns query results to the client. This includes result data such as column values, and result
metadata such as column names and error messages.

Clients can fine-tune the settings for these variables, or depend on the defaults (in which case, you can
skip the rest of this section). If you do not use the defaults, you must change the character settings for
each connection to the server.

Two statements affect the connection-related character set variables as a group:

• SET NAMES 'charset_name' [COLLATE 'collation_name']

SET NAMES indicates what character set the client will use to send SQL statements to the server.
Thus, SET NAMES 'cp1251' tells the server, “future incoming messages from this client are in
character set cp1251.” It also specifies the character set that the server should use for sending
results back to the client. (For example, it indicates what character set to use for column values if you
use a SELECT statement.)

A SET NAMES 'charset_name' statement is equivalent to these three statements:



Connection Character Sets and Collations

1020

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET character_set_connection = charset_name;

Setting character_set_connection to charset_name also implicitly sets
collation_connection to the default collation for charset_name. It is unnecessary to set that
collation explicitly. To specify a particular collation, use the optional COLLATE clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

• SET CHARACTER SET 'charset_name'

SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and
collation_connection to character_set_database and collation_database. A SET
CHARACTER SET charset_name statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET collation_connection = @@collation_database;

Setting collation_connection also implicitly sets character_set_connection
to the character set associated with the collation (equivalent to executing SET
character_set_connection = @@character_set_database). It is unnecessary to set
character_set_connection explicitly.

Note

ucs2, utf16, and utf32 cannot be used as a client character set, which
means that they do not work for SET NAMES or SET CHARACTER SET.

The MySQL client programs mysql, mysqladmin, mysqlcheck, mysqlimport, and mysqlshow
determine the default character set to use as follows:

• In the absence of other information, the programs use the compiled-in default character set, usually
latin1.

• The programs can autodetect which character set to use based on the operating system setting,
such as the value of the LANG or LC_ALL locale environment variable on Unix systems or the code
page setting on Windows systems. For systems on which the locale is available from the OS, the
client uses it to set the default character set rather than using the compiled-in default. For example,
setting LANG to ru_RU.KOI8-R causes the koi8r character set to be used. Thus, users can
configure the locale in their environment for use by MySQL clients.

The OS character set is mapped to the closest MySQL character set if there is no exact match. If
the client does not support the matching character set, it uses the compiled-in default. For example,
ucs2 is not supported as a connection character set.

C applications can use character set autodetection based on the OS setting by invoking
mysql_options() as follows before connecting to the server:

mysql_options(mysql,
              MYSQL_SET_CHARSET_NAME,
              MYSQL_AUTODETECT_CHARSET_NAME);

• The programs support a --default-character-set option, which enables users to specify the
character set explicitly to override whatever default the client otherwise determines.

Note

Before MySQL 5.5, in the absence of other information, the MySQL client
programs used the compiled-in default character set, usually latin1. An



Configuring Application Character Set and Collation

1021

implication of this difference is that if your environment is configured to use
a non-latin1 locale, MySQL client programs will use a different connection
character set than previously, as though you had issued an implicit SET NAMES
statement. If the previous behavior is required, start the client with the --
default-character-set=latin1 option.

When a client connects to the server, it sends the name of the character set to be used for
communication with the server. The server uses the name to set the character_set_client,
character_set_results, and character_set_connection system variables. In effect, the
server performs a SET NAMES operation using the character set name.

With the mysql client, to use a character set different from the default, you could explicitly execute
SET NAMES every time you start up. To accomplish the same result more easily, add the --default-
character-set option setting to your mysql command line or in your option file. For example, the
following option file setting changes the three connection-related character set variables set to koi8r
each time you invoke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is
preferable to use the charset command rather than SET NAMES. For example:

mysql> charset utf8
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set
that mysql uses when it reconnects after the connection has dropped.

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say
SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server sends back
all the values for column1 using the character set that the client specified when it connected. On the
other hand, if you say SET NAMES 'latin1' or SET CHARACTER SET latin1 before issuing the
SELECT statement, the server converts the latin2 values to latin1 just before sending results back.
Conversion may be lossy if there are characters that are not in both character sets.

If you want the server to perform no conversion of result sets or error messages, set
character_set_results to NULL or binary:

SET character_set_results = NULL;
SET character_set_results = binary;

To see the values of the character set and collation system variables that apply to your connection, use
these statements:

SHOW VARIABLES LIKE 'character_set%';
SHOW VARIABLES LIKE 'collation%';

You must also consider the environment within which your MySQL applications execute. See
Section 10.1.5, “Configuring Application Character Set and Collation”.

For more information about character sets and error messages, see Section 10.1.6, “Error Message
Character Set”.

10.1.5 Configuring Application Character Set and Collation

For applications that store data using the default MySQL character set and collation (latin1,
latin1_swedish_ci), no special configuration should be needed. If applications require data storage
using a different character set or collation, you can configure character set information several ways:



Configuring Application Character Set and Collation

1022

• Specify character settings per database. For example, applications that use one database might
require utf8, whereas applications that use another database might require sjis.

• Specify character settings at server startup. This causes the server to use the given settings for all
applications that do not make other arrangements.

• Specify character settings at configuration time, if you build MySQL from source. This causes the
server to use the given settings for all applications, without having to specify them at server startup.

When different applications require different character settings, the per-database technique provides
a good deal of flexibility. If most or all applications use the same character set, specifying character
settings at server startup or configuration time may be most convenient.

For the per-database or server-startup techniques, the settings control the character set for
data storage. Applications must also tell the server which character set to use for client/server
communications, as described in the following instructions.

The examples shown here assume use of the utf8 character set and utf8_general_ci collation.

Specify character settings per database. To create a database such that its tables will use a given
default character set and collation for data storage, use a CREATE DATABASE statement like this:

CREATE DATABASE mydb
  DEFAULT CHARACTER SET utf8
  DEFAULT COLLATE utf8_general_ci;

Tables created in the database will use utf8 and utf8_general_ci by default for any character
columns.

Applications that use the database should also configure their connection to the server each time
they connect. This can be done by executing a SET NAMES 'utf8' statement after connecting. The
statement can be used regardless of connection method: The mysql client, PHP scripts, and so forth.

In some cases, it may be possible to configure the connection to use the desired character set some
other way. For example, for connections made using mysql, you can specify the --default-
character-set=utf8 command-line option to achieve the same effect as SET NAMES 'utf8'.

For more information about configuring client connections, see Section 10.1.4, “Connection Character
Sets and Collations”.

If you change the default character set or collation for a database, stored routines that use the
database defaults must be dropped and recreated so that they use the new defaults. (In a stored
routine, variables with character data types use the database defaults if the character set or collation
are not specified explicitly. See Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION
Syntax”.)

Specify character settings at server startup. To select a character set and collation at server
startup, use the --character-set-server and --collation-server options. For example, to
specify the options in an option file, include these lines:

[mysqld]
character-set-server=utf8
collation-server=utf8_general_ci

These settings apply server-wide and apply as the defaults for databases created by any application,
and for tables created in those databases.

It is still necessary for applications to configure their connection using SET NAMES or equivalent
after they connect, as described previously. You might be tempted to start the server with the --
init_connect="SET NAMES 'utf8'" option to cause SET NAMES to be executed automatically
for each client that connects. However, this will yield inconsistent results because the init_connect
value is not executed for users who have the SUPER privilege.



Error Message Character Set

1023

Specify character settings at MySQL configuration time. To select a character set and
collation when you configure and build MySQL from source, use the DEFAULT_CHARSET and
DEFAULT_COLLATION options for CMake:

shell> cmake . -DDEFAULT_CHARSET=utf8 \
           -DDEFAULT_COLLATION=utf8_general_ci

The resulting server uses utf8 and utf8_general_ci as the default for databases and tables and
for client connections. It is unnecessary to use --character-set-server and --collation-
server to specify those defaults at server startup. It is also unnecessary for applications to configure
their connection using SET NAMES or equivalent after they connect to the server.

Regardless of how you configure the MySQL character set for application use, you must also consider
the environment within which those applications execute. If you will send statements using UTF-8 text
taken from a file that you create in an editor, you should edit the file with the locale of your environment
set to UTF-8 so that the file encoding is correct and so that the operating system handles it correctly.
If you use the mysql client from within a terminal window, the window must be configured to use
UTF-8 or characters may not display properly. For a script that executes in a Web environment, the
script must handle character encoding properly for its interaction with the MySQL server, and it must
generate pages that correctly indicate the encoding so that browsers know how to display the content
of the pages. For example, you can include this <meta> tag within your <head> element:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

10.1.6 Error Message Character Set

This section describes how the MySQL server uses character sets for constructing error messages
and returning them to clients. For information about the language of error messages (rather than the
character set), see Section 10.2, “Setting the Error Message Language”.

As of MySQL 5.5, the server constructs error messages using UTF-8 and returns them to clients in the
character set specified by the character_set_results system variable.

The server constructs error messages as follows:

• The message template uses UTF-8.

• Parameters in the message template are replaced with values that apply to a specific error
occurrence:

• Identifiers such as table or column names use UTF-8 internally so they are copied as is.

• Character (nonbinary) string values are converted from their character set to UTF-8.

• Binary string values are copied as is for bytes in the range 0x20 to 0x7E, and using \x
hexadecimal encoding for bytes outside that range. For example, if a duplicate-key error occurs
for an attempt to insert 0x41CF9F into a VARBINARY unique column, the resulting error message
uses UTF-8 with some bytes hexadecimal encoded:

Duplicate entry 'A\xC3\x9F' for key 1

To return a message to the client after it has been constructed, the server converts it from
UTF-8 to the character set specified by the character_set_results system variable. If
character_set_results has a value of NULL or binary, no conversion occurs. No conversion
occurs if the variable value is utf8, either, because that matches the original error message character
set.

For characters that cannot be represented in character_set_results, some encoding may occur
during the conversion. The encoding uses Unicode code point values:



Column Character Set Conversion

1024

• Characters in the Basic Multilingual Plane (BMP) range (0x0000 to 0xFFFF) are written using
\nnnn notation.

• Characters outside the BMP range (0x01000 to 0x10FFFF) are written using \+nnnnnn notation.

Clients can set character_set_results to control the character set in which they receive error
messages. The variable can be set directly, or indirectly by means such as SET NAMES. For more
information about character_set_results, see Section 10.1.4, “Connection Character Sets and
Collations”.

Prior to MySQL 5.5, the server constructs error messages and returns them to clients as follows:

• The message template has the character set associated with the error message language. For
example, English, Korean, and Russian messages use latin1, euckr, and koi8r, respectively.

• Parameters in the message template are replaced with values that apply to a specific error
occurrence. These parameters use their own character set. Identifiers such as table or column
names use UTF-8. Data values retain their character set. For example, in the following duplicate-key
message, 'xxx' has the character set of the table column associated with key 1:

Duplicate entry 'xxx' for key1

The preceding method of error-message construction can result in messages that contain a mix of
character sets unless all items involved contain only ASCII characters.

For MySQL 5.5 and higher, the encoding that occurs during the conversion to
character_set_results before returning error messages to clients can result in different message
content compared to earlier versions. For example, if an error occurs for an attempt to drop a table
named ペ (KATAKANA LETTER PE) and character_set_results is a character set such as
latin1 that does not contain that character, the resulting message sent to the client has an encoded
table name:

ERROR 1051 (42S02): Unknown table '\30DA'

Before MySQL 5.5, the name is not encoded:

ERROR 1051 (42S02): Unknown table 'ペ'

10.1.7 Column Character Set Conversion

To convert a binary or nonbinary string column to use a particular character set, use ALTER TABLE.
For successful conversion to occur, one of the following conditions must apply:

• If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains
must be encoded using a single character set (the character set you're converting the column to). If
you use a binary column to store information in multiple character sets, MySQL has no way to know
which values use which character set and cannot convert the data properly.

• If the column has a nonbinary data type (CHAR, VARCHAR, TEXT), its contents should be encoded
in the column character set, not some other character set. If the contents are encoded in a different
character set, you can convert the column to use a binary data type first, and then to a nonbinary
column with the desired character set.

Suppose that a table t has a binary column named col1 defined as VARBINARY(50). Assuming that
the information in the column is encoded using a single character set, you can convert it to a nonbinary
column that has that character set. For example, if col1 contains binary data representing characters
in the greek character set, you can convert it as follows:

ALTER TABLE t MODIFY col1 VARCHAR(50) CHARACTER SET greek;



Collation Issues

1025

If your original column has a type of BINARY(50), you could convert it to CHAR(50), but the resulting
values will be padded with 0x00 bytes at the end, which may be undesirable. To remove these bytes,
use the TRIM() function:

UPDATE t SET col1 = TRIM(TRAILING 0x00 FROM col1);

Suppose that table t has a nonbinary column named col1 defined as CHAR(50) CHARACTER SET
latin1 but you want to convert it to use utf8 so that you can store values from many languages. The
following statement accomplishes this:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8;

Conversion may be lossy if the column contains characters that are not in both character sets.

A special case occurs if you have old tables from before MySQL 4.1 where a nonbinary column
contains values that actually are encoded in a character set different from the server's default character
set. For example, an application might have stored sjis values in a column, even though MySQL's
default character set was latin1. It is possible to convert the column to use the proper character set
but an additional step is required. Suppose that the server's default character set was latin1 and
col1 is defined as CHAR(50) but its contents are sjis values. The first step is to convert the column
to a binary data type, which removes the existing character set information without performing any
character conversion:

ALTER TABLE t MODIFY col1 BLOB;

The next step is to convert the column to a nonbinary data type with the proper character set:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;

This procedure requires that the table not have been modified already with statements such as INSERT
or UPDATE after an upgrade to MySQL 4.1 or later. In that case, MySQL would store new values in the
column using latin1, and the column will contain a mix of sjis and latin1 values and cannot be
converted properly.

If you specified attributes when creating a column initially, you should also specify them when altering
the table with ALTER TABLE. For example, if you specified NOT NULL and an explicit DEFAULT
value, you should also provide them in the ALTER TABLE statement. Otherwise, the resulting column
definition will not include those attributes.

To convert all character columns in a table, the ALTER TABLE ... CONVERT TO CHARACTER SET
charset statement may be useful. See Section 13.1.7, “ALTER TABLE Syntax”.

10.1.8 Collation Issues

The following sections discuss various aspects of character set collations.

10.1.8.1 Using COLLATE in SQL Statements

With the COLLATE clause, you can override whatever the default collation is for a comparison.
COLLATE may be used in various parts of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:



Collation Issues

1026

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:

     SELECT *
     FROM t1
     WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

     SELECT *
     FROM t1
     WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;

• With HAVING:

SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

10.1.8.2 COLLATE Clause Precedence

The COLLATE clause has high precedence (higher than ||), so the following two expressions are
equivalent:

x || y COLLATE z
x || (y COLLATE z)

10.1.8.3 Character Set and Collation Compatibility

Each character set has one or more collations, but each collation is associated with one and only one
character set. Therefore, the following statement causes an error message because the latin2_bin
collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

10.1.8.4 Collation Coercibility in Expressions

In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison
operation. For example, in the following cases, it should be clear that the collation is the collation of
column x:



Collation Issues

1027

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, with multiple operands, there can be ambiguity. For example:

SELECT x FROM T WHERE x = 'Y';

Should the comparison use the collation of the column x, or of the string literal 'Y'? Both x and 'Y'
have collations, so which collation takes precedence?

A mix of collations may also occur in contexts other than comparison. For example, a multiple-
argument concatenation operation such as CONCAT(x,'Y') combines its arguments to produce a
single string. What collation should the result have?

To resolve questions like these, MySQL checks whether the collation of one item can be coerced to the
collation of the other. MySQL assigns coercibility values as follows:

• An explicit COLLATE clause has a coercibility of 0 (not coercible at all).

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a
coercibility of 3.

• The collation of a literal has a coercibility of 4.

• The collation of a numeric or temporal value has a coercibility of 5.

• NULL or an expression that is derived from NULL has a coercibility of 6.

MySQL uses coercibility values with the following rules to resolve ambiguities:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then:

• If both sides are Unicode, or both sides are not Unicode, it is an error.

• If one of the sides has a Unicode character set, and another side has a non-Unicode character set,
the side with Unicode character set wins, and automatic character set conversion is applied to the
non-Unicode side. For example, the following statement does not return an error:

SELECT CONCAT(utf8_column, latin1_column) FROM t1;

It returns a result that has a character set of utf8 and the same collation as utf8_column.
Values of latin1_column are automatically converted to utf8 before concatenating.

• For an operation with operands from the same character set but that mix a _bin collation and
a _ci or _cs collation, the _bin collation is used. This is similar to how operations that mix
nonbinary and binary strings evaluate the operands as binary strings, except that it is for collations
rather than data types.

Although automatic conversion is not in the SQL standard, the standard does say that every character
set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that
“what applies to a superset can apply to a subset,” we believe that a collation for Unicode can apply for
comparisons with non-Unicode strings.

The following table illustrates some applications of the preceding rules.



Collation Issues

1028

Comparison Collation Used

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

column1 COLLATE x = 'A' COLLATE y Error

To determine the coercibility of a string expression, use the COERCIBILITY() function (see
Section 12.14, “Information Functions”):

mysql> SELECT COERCIBILITY('A' COLLATE latin1_swedish_ci);
        -> 0
mysql> SELECT COERCIBILITY(VERSION());
        -> 3
mysql> SELECT COERCIBILITY('A');
        -> 4
mysql> SELECT COERCIBILITY(1000);
        -> 5

For implicit conversion of a numeric or temporal value to a string, such as occurs for the argument 1 in
the expression CONCAT(1, 'abc'), the result is a character (nonbinary) string that has a character
set and collation determined by the character_set_connection and collation_connection
system variables. (Before MySQL 5.5.3, the result is a binary string for which the character set and
collation are binary). See Section 12.2, “Type Conversion in Expression Evaluation”.

10.1.8.5 The binary Collation Compared to _bin Collations

This section describes how the binary collation for binary strings compares to the _bin collations for
nonbinary strings.

Binary strings (as stored using the BINARY, VARBINARY, and BLOB data types) have a character set
and collation named binary. Binary strings are sequences of bytes and the numeric values of those
bytes determine comparison and sort order.

Nonbinary strings (as stored using the CHAR, VARCHAR, and TEXT data types) have a character set
and collation other than binary. A given nonbinary character set can have several collations, each of
which defines a particular comparison and sort order for the characters in the set. One of these is the
binary collation for the character set, indicated by a _bin suffix in the collation name. For example, the
binary collations for latin1 and utf8 are named latin1_bin and utf8_bin, respectively.

The binary collation differs from the _bin collations in several respects.

The unit for comparison and sorting.  Binary strings are sequences of bytes. For the binary
collation, comparison and sorting are based on numeric byte values. Nonbinary strings are sequences
of characters, which might be multibyte. Collations for nonbinary strings define an ordering of the
character values for comparison and sorting. For the _bin collation, this ordering is based on numeric
character code values, which is similar to ordering for binary strings except that character code values
might be multibyte.

Character set conversion.  A nonbinary string has a character set and is automatically converted to
another character set in many cases, even when the string has a _bin collation:

• When assigning column values from another column that has a different character set:

UPDATE t1 SET utf8_bin_column=latin1_column;
INSERT INTO t1 (latin1_column) SELECT utf8_bin_column FROM t2;

• When assigning column values for INSERT or UPDATE using a string literal:

SET NAMES latin1;
INSERT INTO t1 (utf8_bin_column) VALUES ('string-in-latin1');



Collation Issues

1029

• When sending results from the server to a client:

SET NAMES latin1;
SELECT utf8_bin_column FROM t2;

For binary string columns, no conversion occurs. For the preceding cases, the string value is copied
byte-wise.

Lettercase conversion.  Collations for nonbinary character sets provide information about lettercase
of characters, so characters in a nonbinary string can be converted from one lettercase to another,
even for _bin collations that ignore lettercase for ordering:

mysql> SET NAMES latin1 COLLATE latin1_bin;
mysql> SELECT LOWER('aA'), UPPER('zZ');
+-------------+-------------+
| LOWER('aA') | UPPER('zZ') |
+-------------+-------------+
| aa          | ZZ          |
+-------------+-------------+

The concept of lettercase does not apply to bytes in a binary string. To perform lettercase conversion,
the string must be converted to a nonbinary string:

mysql> SET NAMES binary;
mysql> SELECT LOWER('aA'), LOWER(CONVERT('aA' USING latin1));
+-------------+-----------------------------------+
| LOWER('aA') | LOWER(CONVERT('aA' USING latin1)) |
+-------------+-----------------------------------+
| aA          | aa                                |
+-------------+-----------------------------------+

Trailing space handling in comparisons. 
Nonbinary strings have PAD SPACE behavior for all collations, including _bin collations. Trailing
spaces are insignificant in comparisons:

mysql> SET NAMES utf8 COLLATE utf8_bin;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
|          1 |
+------------+

For binary strings, all characters are significant in comparisons, including trailing spaces:

mysql> SET NAMES binary;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
|          0 |
+------------+

Trailing space handling for inserts and retrievals.  CHAR(N) columns store nonbinary strings.
Values shorter than N characters are extended with spaces on insertion. For retrieval, trailing spaces
are removed.

BINARY(N) columns store binary strings. Values shorter than N bytes are extended with 0x00 bytes
on insertion. For retrieval, nothing is removed; a value of the declared length is always returned.

mysql> CREATE TABLE t1 (
         a CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin,
         b BINARY(10)



Collation Issues

1030

       );
mysql> INSERT INTO t1 VALUES ('a','a');
mysql> SELECT HEX(a), HEX(b) FROM t1;
+--------+----------------------+
| HEX(a) | HEX(b)               |
+--------+----------------------+
| 61     | 61000000000000000000 |
+--------+----------------------+

10.1.8.6 Examples of the Effect of Collation

Example 1: Sorting German Umlauts

Suppose that column X in table T has these latin1 column values:

Muffler
Müller
MX Systems
MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different collations.

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is the U with two dots over it (ü),
which the Germans call “U-umlaut.”

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says
that U-umlaut sorts with Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-
umlaut sorts with U.

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-
umlaut sorts with UE.

Example 2: Searching for German Umlauts

Suppose that you have three tables that differ only by the character set and collation used:

mysql> SET NAMES utf8;
mysql> CREATE TABLE german1 (
         c CHAR(10)
       ) CHARACTER SET latin1 COLLATE latin1_german1_ci;
mysql> CREATE TABLE german2 (
         c CHAR(10)
       ) CHARACTER SET latin1 COLLATE latin1_german2_ci;
mysql> CREATE TABLE germanutf8 (
         c CHAR(10)
       ) CHARACTER SET utf8 COLLATE utf8_unicode_ci;

Each table contains two records:



Collation Issues

1031

mysql> INSERT INTO german1 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO german2 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('Bär');

Two of the above collations have an A = Ä equality, and one has no such equality
(latin1_german2_ci). For that reason, you'll get these results in comparisons:

mysql> SELECT * FROM german1 WHERE c = 'Bär';
+------+
| c    |
+------+
| Bar  |
| Bär  |
+------+
mysql> SELECT * FROM german2 WHERE c = 'Bär';
+------+
| c    |
+------+
| Bär  |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'Bär';
+------+
| c    |
+------+
| Bar  |
| Bär  |
+------+

This is not a bug but rather a consequence of the sorting properties of latin1_german1_ci and
utf8_unicode_ci (the sorting shown is done according to the German DIN 5007 standard).

10.1.8.7 Using Collation in INFORMATION_SCHEMA Searches

String columns in INFORMATION_SCHEMA tables have a collation of utf8_general_ci, which is
case insensitive. However, for values that correspond to objects that are represented in the file system,
such as databases and tables, searches in INFORMATION_SCHEMA string columns can be case
sensitive or insensitive, depending on the characteristics of the underlying file system and the value of
the lower_case_table_names system variable. For example, searches may be case sensitive if the
file system is case sensitive. This section describes this behavior and how to modify it if necessary; see
also Bug #34921.

Suppose that a query searches the SCHEMATA.SCHEMA_NAME column for the test database. On
Linux, file systems are case sensitive, so comparisons of SCHEMATA.SCHEMA_NAME with 'test'
match, but comparisons with 'TEST' do not:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
       WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test        |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
       WHERE SCHEMA_NAME = 'TEST';
Empty set (0.00 sec)

These results occur with the lower_case_table_names system system variable set to 0. Changing
the value of lower_case_table_names to 1 or 2 causes the second query to return the same
(nonempty) result as the first query.

On Windows or OS X, file systems are not case sensitive, so comparisons match both 'test' and
'TEST':



Collation Issues

1032

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
       WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test        |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
       WHERE SCHEMA_NAME = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| TEST        |
+-------------+

The value of lower_case_table_names makes no difference in this context.

The preceding behavior occurs because the utf8_general_ci collation is not used for
INFORMATION_SCHEMA queries when searching for values that correspond to objects
represented in the file system. It is a result of file system-scanning optimizations implemented for
INFORMATION_SCHEMA searches. For information about these optimizations, see Section 8.2.3,
“Optimizing INFORMATION_SCHEMA Queries”.

If the result of a string operation on an INFORMATION_SCHEMA column differs from expectations, a
workaround is to use an explicit COLLATE clause to force a suitable collation (see Section 10.1.8.1,
“Using COLLATE in SQL Statements”). For example, to perform a case-insensitive search, use
COLLATE with the INFORMATION_SCHEMA column name:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
       WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test        |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
       WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| test        |
+-------------+

In the preceding queries, it is important to apply the COLLATE clause to the INFORMATION_SCHEMA
column name. Applying COLLATE to the comparison value has no effect.

You can also use the UPPER() or LOWER() function:

WHERE UPPER(SCHEMA_NAME) = 'TEST'
WHERE LOWER(SCHEMA_NAME) = 'test'

Although a case-insensitive comparison can be performed even on platforms with case-sensitive
file systems, as just shown, it is not necessarily always the right thing to do. On such platforms, it is
possible to have multiple objects with names that differ only in lettercase. For example, tables named
city, CITY, and City can all exist simultaneously. Consider whether a search should match all
such names or just one and write queries accordingly. The first of the following comparisons (with
utf8_bin) is case sensitive; the others are not:

WHERE TABLE_NAME COLLATE utf8_bin = 'City'
WHERE TABLE_NAME COLLATE utf8_general_ci = 'city'
WHERE UPPER(TABLE_NAME) = 'CITY'
WHERE LOWER(TABLE_NAME) = 'city'



Unicode Support

1033

Searches in INFORMATION_SCHEMA string columns for values that refer to INFORMATION_SCHEMA
itself do use the utf8_general_ci collation because INFORMATION_SCHEMA is a “virtual” database
not represented in the file system. For example, comparisons with SCHEMATA.SCHEMA_NAME match
'information_schema' or 'INFORMATION_SCHEMA' regardless of platform:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
       WHERE SCHEMA_NAME = 'information_schema';
+--------------------+
| SCHEMA_NAME        |
+--------------------+
| information_schema |
+--------------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
       WHERE SCHEMA_NAME = 'INFORMATION_SCHEMA';
+--------------------+
| SCHEMA_NAME        |
+--------------------+
| information_schema |
+--------------------+

10.1.9 Unicode Support

The Unicode Standard includes characters from the Basic Multilingual Plane (BMP) and supplementary
characters that lie outside the BMP. This section describes support for Unicode in MySQL. For
information about the Unicode Standard itself, visit the Unicode Consortium Web site.

BMP characters have these characteristics:

• Their code point values are between 0 and 65535 (or U+0000 and U+FFFF).

• They can be encoded in a variable-length encoding using 8, 16, or 24 bits (1 to 3 bytes).

• They can be encoded in a fixed-length encoding using 16 bits (2 bytes).

• They are sufficient for almost all characters in major languages.

Supplementary characters lie outside the BMP. Their code point values are between U+10000 and U
+10FFFF). Unicode support for supplementary characters requires character sets that have a range
outside BMP characters and therefore take more space than BMP characters.

MySQL supports these Unicode character sets:

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.

• ucs2, the UCS-2 encoding of the Unicode character set using two bytes per character.

• utf8mb4, a UTF-8 encoding of the Unicode character set using one to four bytes per character.

• utf16, the UTF-16 encoding for the Unicode character set using two or four bytes per character.
Like ucs2 but with an extension for supplementary characters.

• utf32, the UTF-32 encoding for the Unicode character set using four bytes per character.

MySQL 5.5.3 and higher supports all Unicode character sets in the preceding list. Prior to 5.5.3,
MySQL supports only utf8 and ucs2.

Table 10.2, “Unicode Character Set General Characteristics”, summarizes the general characteristics
of Unicode character sets supported by MySQL.

Table 10.2 Unicode Character Set General Characteristics

Character Set Supported Characters Required Storage Per Character

utf8 BMP only 1, 2, or 3 bytes

http://www.unicode.org/


Unicode Support

1034

Character Set Supported Characters Required Storage Per Character

ucs2 BMP only 2 bytes

utf8mb4 BMP and supplementary 1, 2, 3, or 4 bytes

utf16 BMP and supplementary 2 or 4 bytes

utf32 BMP and supplementary 4 bytes

Characters outside the BMP compare as REPLACEMENT CHARACTER and convert to '?' when
converted to a Unicode character set that supports only BMP characters (utf8 or ucs2).

If you use character sets that support supplementary characters and thus are “wider” than the BMP-
only utf8 and ucs2 character sets, there are potential incompatibility issues for your applications;
see Section 10.1.9.7, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”. That section
also describes how to convert tables from utf8 to the (4-byte) utf8mb4 character set, and what
constraints may apply in doing so.

A similar set of collations is available for each Unicode character set. For example, each has a Danish
collation, the names of which are ucs2_danish_ci, utf16_danish_ci, utf32_danish_ci,
utf8_danish_ci, and utf8mb4_danish_ci. For information about Unicode collations and
their differentiating properties, including collation properties for supplementary characters, see
Section 10.1.10.1, “Unicode Character Sets”.

Although many of the supplementary characters come from East Asian languages, what MySQL 5.5
adds is support for more Japanese and Chinese characters in Unicode character sets, not support for
new Japanese and Chinese character sets.

The MySQL implementation of UCS-2, UTF-16, and UTF-32 stores characters in big-endian byte order
and does not use a byte order mark (BOM) at the beginning of values. Other database systems might
use little-endian byte order or a BOM. In such cases, conversion of values will need to be performed
when transferring data between those systems and MySQL.

MySQL uses no BOM for UTF-8 values.

Client applications that communicate with the server using Unicode should set the client character
set accordingly; for example, by issuing a SET NAMES 'utf8' statement. ucs2, utf16, and utf32
cannot be used as a client character set, which means that they do not work for SET NAMES or SET
CHARACTER SET. (See Section 10.1.4, “Connection Character Sets and Collations”.)

The following sections provide additional detail on the Unicode character sets in MySQL.

10.1.9.1 The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)

UTF-8 (Unicode Transformation Format with 8-bit units) is an alternative way to store Unicode data.
It is implemented according to RFC 3629, which describes encoding sequences that take from one to
four bytes. (An older standard for UTF-8 encoding, RFC 2279, describes UTF-8 sequences that take
from one to six bytes. RFC 3629 renders RFC 2279 obsolete; for this reason, sequences with five and
six bytes are no longer used.)

The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of different
lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a 2-byte sequence: extended Latin letters (with
tilde, macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac,
and others.

• Korean, Chinese, and Japanese ideographs use 3-byte or 4-byte sequences.

The utf8 character set in MySQL has these characteristics:



Unicode Support

1035

• No support for supplementary characters (BMP characters only).

• A maximum of three bytes per multibyte character.

Exactly the same set of characters is available in utf8 and ucs2. That is, they have the same
repertoire.

Tip

To save space with UTF-8, use VARCHAR instead of CHAR. Otherwise, MySQL
must reserve three bytes for each character in a CHAR CHARACTER SET utf8
column because that is the maximum possible character length. For example,
MySQL must reserve 30 bytes for a CHAR(10) CHARACTER SET utf8
column.

For additional information about data type storage, see Section 11.7, “Data Type Storage
Requirements”. For information about InnoDB physical row storage, including how InnoDB tables
that use COMPACT row format handle UTF-8 CHAR(N) columns internally, see Section 14.11.1.2, “The
Physical Row Structure of an InnoDB Table”.

10.1.9.2 The utf8mb3 Character Set (Alias for utf8)

The utf8 character set uses a maximum of three bytes per character. As of MySQL 5.5.3, to make this
character limit explicit (much as the limit of four bytes per character is explicit in the utf8mb4 character
set name, use the character set name utf8mb3, which is an alias for utf8. utf8mb3 can be used
in CHARACTER SET clauses, and utf8mb3_collation_substring in COLLATE clauses, where
collation_substring is bin, czech_ci, danish_ci, esperanto_ci, estonian_ci, and so
forth. For example:

CREATE TABLE t (s1 CHAR(1) CHARACTER SET utf8mb3;
SELECT * FROM t WHERE s1 COLLATE utf8mb3_general_ci = 'x';
DECLARE x VARCHAR(5) CHARACTER SET utf8mb3 COLLATE utf8mb3_danish_ci;
SELECT CAST('a' AS CHAR CHARACTER SET utf8) COLLATE utf8_czech_ci;

MySQL immediately converts instances of utf8mb3 in an alias to utf8, so in
statements such as SHOW CREATE TABLE or SELECT CHARACTER_SET_NAME
FROM INFORMATION_SCHEMA.COLUMNS or SELECT COLLATION_NAME FROM
INFORMATION_SCHEMA.COLUMNS, users will see the true name, utf8 or
utf8_collation_substring.

The utf8mb3 alias is also valid in certain places other than CHARACTER SET clauses. For example,
these are legal:

mysqld --character-set-server=utf8mb3
SET NAMES 'utf8mb3'; /* and other SET statements that have similar effect */
SELECT _utf8mb3 'a';

10.1.9.3 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

The character set named utf8 uses a maximum of three bytes per character and contains only
BMP characters. As of MySQL 5.5.3, the utf8mb4 character set uses a maximum of four bytes per
character supports supplementary characters:

• For a BMP character, utf8 and utf8mb4 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8 cannot store the character at all, whereas utf8mb4 requires
four bytes to store it. Because utf8 cannot store the character at all, you have no supplementary
characters in utf8 columns and need not worry about converting characters or losing data when
upgrading utf8 data from older versions of MySQL.



Unicode Support

1036

utf8mb4 is a superset of utf8, so for an operation such as the following concatenation, the result has
character set utf8mb4 and the collation of utf8mb4_col:

SELECT CONCAT(utf8_col, utf8mb4_col);

Similarly, the following comparison in the WHERE clause works according to the collation of
utf8mb4_col:

SELECT * FROM utf8_tbl, utf8mb4_tbl
WHERE utf8_tbl.utf8_col = utf8mb4_tbl.utf8mb4_col;

Tip: To save space with utf8mb4, use VARCHAR instead of CHAR. Otherwise, MySQL must reserve
four bytes for each character in a CHAR CHARACTER SET utf8mb4 column because that is the
maximum possible length. For example, MySQL must reserve 40 bytes for a CHAR(10) CHARACTER
SET utf8mb4 column.

10.1.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding)

In UCS-2, every character is represented by a 2-byte Unicode code with the most significant byte
first. For example: LATIN CAPITAL LETTER A has the code 0x0041 and it is stored as a 2-byte
sequence: 0x00 0x41. CYRILLIC SMALL LETTER YERU (Unicode 0x044B) is stored as a 2-
byte sequence: 0x04 0x4B. For Unicode characters and their codes, please refer to the Unicode
Consortium Web site.

In MySQL, the ucs2 character set is a fixed-length 16-bit encoding for Unicode BMP characters.

10.1.9.5 The utf16 Character Set (UTF-16 Unicode Encoding)

The utf16 character set is the ucs2 character set with an extension that enables encoding of
supplementary characters:

• For a BMP character, utf16 and ucs2 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf16 has a special sequence for representing the character using
32 bits. This is called the “surrogate” mechanism: For a number greater than 0xffff, take 10 bits
and add them to 0xd800 and put them in the first 16-bit word, take 10 more bits and add them to
0xdc00 and put them in the next 16-bit word. Consequently, all supplementary characters require
32 bits, where the first 16 bits are a number between 0xd800 and 0xdbff, and the last 16 bits
are a number between 0xdc00 and 0xdfff. Examples are in Section 15.5 Surrogates Area of the
Unicode 4.0 document.

Because utf16 supports surrogates and ucs2 does not, there is a validity check that applies only in
utf16: You cannot insert a top surrogate without a bottom surrogate, or vice versa. For example:

INSERT INTO t (ucs2_column) VALUES (0xd800); /* legal */
INSERT INTO t (utf16_column)VALUES (0xd800); /* illegal */

There is no validity check for characters that are technically valid but are not true Unicode (that is,
characters that Unicode considers to be “unassigned code points” or “private use” characters or even
“illegals” like 0xffff). For example, since U+F8FF is the Apple Logo, this is legal:

INSERT INTO t (utf16_column)VALUES (0xf8ff); /* legal */

Such characters cannot be expected to mean the same thing to everyone.

Because MySQL must allow for the worst case (that one character requires four bytes) the maximum
length of a utf16 column or index is only half of the maximum length for a ucs2 column or index. For

http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/versions/Unicode4.0.0/ch15.pdf


Unicode Support

1037

example, the maximum length of a MEMORY table index key is 3072 bytes, so these statements create
tables with the longest permitted indexes for ucs2 and utf16 columns:

CREATE TABLE tf (s1 VARCHAR(1536) CHARACTER SET ucs2) ENGINE=MEMORY;
CREATE INDEX i ON tf (s1);
CREATE TABLE tg (s1 VARCHAR(768) CHARACTER SET utf16) ENGINE=MEMORY;
CREATE INDEX i ON tg (s1);

10.1.9.6 The utf32 Character Set (UTF-32 Unicode Encoding)

The utf32 character set is fixed length (like ucs2 and unlike utf16). utf32 uses 32 bits for every
character, unlike ucs2 (which uses 16 bits for every character), and unlike utf16 (which uses 16 bits
for some characters and 32 bits for others).

utf32 takes twice as much space as ucs2 and more space than utf16, but utf32 has the same
advantage as ucs2 that it is predictable for storage: The required number of bytes for utf32 equals
the number of characters times 4. Also, unlike utf16, there are no tricks for encoding in utf32, so the
stored value equals the code value.

To demonstrate how the latter advantage is useful, here is an example that shows how to determine a
utf8mb4 value given the utf32 code value:

/* Assume code value = 100cc LINEAR B WHEELED CHARIOT */
CREATE TABLE tmp (utf32_col CHAR(1) CHARACTER SET utf32,
                  utf8mb4_col CHAR(1) CHARACTER SET utf8mb4);
INSERT INTO tmp VALUES (0x000100cc,NULL);
UPDATE tmp SET utf8mb4_col = utf32_col;
SELECT HEX(utf32_col),HEX(utf8mb4_col) FROM tmp;

MySQL is very forgiving about additions of unassigned Unicode characters or private-use-area
characters. There is in fact only one validity check for utf32: No code value may be greater than
0x10ffff. For example, this is illegal:

INSERT INTO t (utf32_column) VALUES (0x110000); /* illegal */

10.1.9.7 Converting Between 3-Byte and 4-Byte Unicode Character Sets

This section describes issues that you may face when converting from the utf8 character set to the
utf8mb4 character set, or vice versa.

Note

The discussion here focuses primarily on converting between utf8 and
utf8mb4, but similar principles apply to converting between the ucs2 character
set and character sets such as utf16 or utf32.

The utf8 and utf8mb4 character sets differ as follows:

• utf8 supports only characters in the Basic Multilingual Plane (BMP). utf8mb4 additionally supports
supplementary characters that lie outside the BMP.

• utf8 uses a maximum of three bytes per character. utf8mb4 uses a maximum of four bytes per
character.

One advantage of converting from ut8 to utf8mb4 is that this enables applications to use
supplementary characters. One tradeoff is that this may increase data storage space requirements.

In most respects, converting from utf8 to utf8mb4 should present few problems. These are the
primary potential areas of incompatibility:

• For the variable-length character data types (VARCHAR and the TEXT types), the maximum permitted
length in characters is less for utf8mb4 columns than for utf8 columns.



Unicode Support

1038

• For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of
characters that can be indexed is less for utf8mb4 columns than for utf8 columns.

Consequently, to convert tables from utf8 to utf8mb4, it may be necessary to change some column
or index definitions.

Tables can be converted from utf8 to utf8mb4 by using ALTER TABLE. Suppose that a table was
originally defined as follows:

CREATE TABLE t1 (
  col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL,
  col2 CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL
) CHARACTER SET utf8;

The following statement converts t1 to use utf8mb4:

ALTER TABLE t1
  DEFAULT CHARACTER SET utf8mb4,
  MODIFY col1 CHAR(10)
    CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
  MODIFY col2 CHAR(10)
    CHARACTER SET utf8mb4 COLLATE utf8mb4_bin NOT NULL;

In terms of table content, conversion from utf8 to utf8mb4 presents no problems:

• For a BMP character, utf8 and utf8mb4 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf8 cannot store the character at all, whereas utf8mb4 requires
four bytes. Because utf8 cannot store the character at all, utf8 columns have no supplementary
characters and you need not worry about converting characters or losing data when converting to
utf8mb4.

In terms of table structure, the catch when converting from utf8 to utf8mb4 is that the maximum
length of a column or index key is unchanged in terms of bytes. Therefore, it is smaller in terms of
characters because the maximum length of a character is four bytes instead of three. For the CHAR,
VARCHAR, and TEXT data types, watch for these issues when converting your MySQL tables:

• Check all definitions of utf8 columns and make sure they will not exceed the maximum length for
the storage engine.

• Check all indexes on utf8 columns and make sure they will not exceed the maximum length for the
storage engine. Sometimes the maximum can change due to storage engine enhancements.

If the preceding conditions apply, you must either reduce the defined length of columns or indexes, or
continue to use utf8 rather than utf8mb4.

Here are some examples where structural changes may be needed:

• A TINYTEXT column can hold up to 255 bytes, so it can hold up to 85 3-byte or 63 4-byte characters.
Suppose that you have a TINYTEXT column that uses utf8 but must be able to contain more than
63 characters. You cannot convert it to utf8mb4 unless you also change the data type to a longer
type such as TEXT.

Similarly, a very long VARCHAR column may need to be changed to one of the longer TEXT types if
you want to convert it from utf8 to utf8mb4.

• InnoDB has a maximum index length of 767 bytes, so for utf8 or utf8mb4 columns, you can index
a maximum of 255 or 191 characters, respectively. If you currently have utf8 columns with indexes
longer than 191 characters, you will need to index a smaller number of characters. In an InnoDB
table, these column and index definitions are legal:



Supported Character Sets and Collations

1039

col1 VARCHAR(500) CHARACTER SET utf8, INDEX (col1(255))

To use utf8mb4 instead, the index must be smaller:

col1 VARCHAR(500) CHARACTER SET utf8mb4, INDEX (col1(191))

The preceding types of changes are most likely to be required only if you have very long columns
or indexes. Otherwise, you should be able to convert your tables from utf8 to utf8mb4 without
problems, using ALTER TABLE as described previously.

The following items summarize other potential areas of incompatibility:

• Performance of 4-byte UTF-8 (utf8mb4) is slower than for 3-byte UTF-8 (utf8). To avoid this
penalty, continue to use utf8.

• SET NAMES 'utf8mb4' causes use of the 4-byte character set for connection character sets. As
long as no 4-byte characters are sent from the server, there should be no problems. Otherwise,
applications that expect to receive a maximum of three bytes per character may have problems.
Conversely, applications that expect to send 4-byte characters must ensure that the server
understands them. More generally, applications cannot send utf8mb4, utf16, or utf32 character
data to an older server that does not understand it. utf8mb4, utf16, and utf32 are not recognized
before MySQL 5.5.3.

• For replication, if character sets that support supplementary characters are to be used on the master,
all slaves must understand them as well. If you attempt to replicate from a newer master to an older
slave, utf8 data will be seen as utf8 by the slave and should replicate correctly. But you cannot
send utf8mb4, utf16, or utf32 data to an older slave that does not understand it. utf8mb4,
utf16, and utf32 are not recognized before MySQL 5.5.3.

Also, keep in mind the general principle that if a table has different definitions on the master and
slave, this can lead to unexpected results. For example, the differences in maximum index key length
make it risky to use utf8 on the master and utf8mb4 on the slave.

If you have converted to utf8mb4, utf16, or utf32, and then decide to convert back to utf8 or
ucs2 (for example, to downgrade to an older version of MySQL), these considerations apply:

• utf8 and ucs2 data should present no problems.

• The server must be recent enough to recognize definitions referring to the character set from which
you are converting.

• For object definitions that refer to the utf8mb4 character set, you can dump them with mysqldump
prior to downgrading, edit the dump file to change instances of utf8mb4 to utf8, and reload the file
in the older server, as long as there are no 4-byte characters in the data. The older server will see
utf8 in the dump file object definitions and create new objects that use the (3-byte) utf8 character
set.

10.1.10 Supported Character Sets and Collations

This section indicates which character sets MySQL supports. There is one subsection for each group of
related character sets. For each character set, the permissible collations are listed.

To list the available character sets and their default collations, use the SHOW CHARACTER SET
statement or query the INFORMATION_SCHEMA CHARACTER_SETS table. For example:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset  | Description                 | Default collation   | Maxlen |
+----------+-----------------------------+---------------------+--------+
| big5     | Big5 Traditional Chinese    | big5_chinese_ci     |      2 |



Supported Character Sets and Collations

1040

| dec8     | DEC West European           | dec8_swedish_ci     |      1 |
| cp850    | DOS West European           | cp850_general_ci    |      1 |
| hp8      | HP West European            | hp8_english_ci      |      1 |
| koi8r    | KOI8-R Relcom Russian       | koi8r_general_ci    |      1 |
| latin1   | cp1252 West European        | latin1_swedish_ci   |      1 |
| latin2   | ISO 8859-2 Central European | latin2_general_ci   |      1 |
| swe7     | 7bit Swedish                | swe7_swedish_ci     |      1 |
| ascii    | US ASCII                    | ascii_general_ci    |      1 |
| ujis     | EUC-JP Japanese             | ujis_japanese_ci    |      3 |
| sjis     | Shift-JIS Japanese          | sjis_japanese_ci    |      2 |
| hebrew   | ISO 8859-8 Hebrew           | hebrew_general_ci   |      1 |
| tis620   | TIS620 Thai                 | tis620_thai_ci      |      1 |
| euckr    | EUC-KR Korean               | euckr_korean_ci     |      2 |
| koi8u    | KOI8-U Ukrainian            | koi8u_general_ci    |      1 |
| gb2312   | GB2312 Simplified Chinese   | gb2312_chinese_ci   |      2 |
| greek    | ISO 8859-7 Greek            | greek_general_ci    |      1 |
| cp1250   | Windows Central European    | cp1250_general_ci   |      1 |
| gbk      | GBK Simplified Chinese      | gbk_chinese_ci      |      2 |
| latin5   | ISO 8859-9 Turkish          | latin5_turkish_ci   |      1 |
| armscii8 | ARMSCII-8 Armenian          | armscii8_general_ci |      1 |
| utf8     | UTF-8 Unicode               | utf8_general_ci     |      3 |
| ucs2     | UCS-2 Unicode               | ucs2_general_ci     |      2 |
| cp866    | DOS Russian                 | cp866_general_ci    |      1 |
| keybcs2  | DOS Kamenicky Czech-Slovak  | keybcs2_general_ci  |      1 |
| macce    | Mac Central European        | macce_general_ci    |      1 |
| macroman | Mac West European           | macroman_general_ci |      1 |
| cp852    | DOS Central European        | cp852_general_ci    |      1 |
| latin7   | ISO 8859-13 Baltic          | latin7_general_ci   |      1 |
| utf8mb4  | UTF-8 Unicode               | utf8mb4_general_ci  |      4 |
| cp1251   | Windows Cyrillic            | cp1251_general_ci   |      1 |
| utf16    | UTF-16 Unicode              | utf16_general_ci    |      4 |
| cp1256   | Windows Arabic              | cp1256_general_ci   |      1 |
| cp1257   | Windows Baltic              | cp1257_general_ci   |      1 |
| utf32    | UTF-32 Unicode              | utf32_general_ci    |      4 |
| binary   | Binary pseudo charset       | binary              |      1 |
| geostd8  | GEOSTD8 Georgian            | geostd8_general_ci  |      1 |
| cp932    | SJIS for Windows Japanese   | cp932_japanese_ci   |      2 |
| eucjpms  | UJIS for Windows Japanese   | eucjpms_japanese_ci |      3 |
+----------+-----------------------------+---------------------+--------+

The utf8mb4, utf16, and utf32 character sets were added in MySQL 5.5.3.

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform
some comparisons with representative data values to make sure that a given collation sorts values the
way you expect.

10.1.10.1 Unicode Character Sets

MySQL supports multiple Unicode character sets:

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.

• ucs2, the UCS-2 encoding of the Unicode character set using two bytes per character.

• utf8mb4, a UTF-8 encoding of the Unicode character set using one to four bytes per character.

• utf16, the UTF-16 encoding for the Unicode character set using two or four bytes per character.
Like ucs2 but with an extension for supplementary characters.

• utf32, the UTF-32 encoding for the Unicode character set using four bytes per character.

utf8 and ucs2 support Basic Multilingual Plane (BMP) characters. utf8mb4, utf16, and utf32
support BMP and supplementary characters. The utf8mb4, utf16, and utf32 character sets were
added in MySQL 5.5.3.

This section describes the collations available for Unicode character sets and their differentiating
properties. For general information about Unicode, see Section 10.1.9, “Unicode Support”.



Supported Character Sets and Collations

1041

Most Unicode character sets have a general collection (indicated by _general in the name or
by the absence of a language specifier), a binary collation (indicated by _bin in the name), and
several language-specific collations (indicated by language specifiers). For example, for utf8,
utf8_general_ci and utf8_bin are its general and binary collations, and utf8_danish_ci is
one of its language-specific collations.

A language name shown in the following table indicates a language-specific collation. Unicode
character sets may include collations for one or more of these languages.

Table 10.3 Unicode Collation Language Specifiers

Language Language Specifier

Classical Latin roman

Czech czech

Danish danish

Esperanto esperanto

Estonian estonian

Hungarian hungarian

Icelandic icelandic

Latvian latvian

Lithuanian lithuanian

Persian persian

Polish polish

Romanian romanian

Sinhala sinhala

Slovak slovak

Slovenian slovenian

Modern Spanish spanish

Traditional Spanish spanish2

Swedish swedish

Turkish turkish

Danish collations may also be used for Norwegian.

For Classical Latin collations, I and J compare as equal, and U and V compare as equal.

Spanish collations are available for modern and traditional Spanish. For both, ñ (n-tilde) is a separate
letter between n and o. In addition, for traditional Spanish, ch is a separate letter between c and d, and
ll is a separate letter between l and m.

Traditional Spanish collations may also be used for Asturian and Galician.

Swedish collations include Swedish rules. For example, in Swedish, the following relationship holds,
which is not something expected by a German or French speaker:

Ü = Y < Ö

For questions about particular language orderings, unicode.org provides Common Locale Data
Repository (CLDR) collation charts at http://www.unicode.org/cldr/charts/30/collation/index.html.

The xxx_general_mysql500_ci collations were added in MySQL 5.5.21. They preserve the
pre-5.1.24 ordering of the original xxx_general_ci collations and permit upgrades for tables created
before MySQL 5.1.24 (Bug #27877).

unicode.org
http://www.unicode.org/cldr/charts/30/collation/index.html


Supported Character Sets and Collations

1042

MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm
(UCA) described at http://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA
weight keys: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. The xxx_unicode_ci
collations have only partial support for the Unicode Collation Algorithm. Some characters are not
supported, and combining marks are not fully supported. This affects primarily Vietnamese, Yoruba,
and some smaller languages such as Navajo. A combined character is considered different from the
same character written with a single unicode character in string comparisons, and the two characters
are considered to have a different length (for example, as returned by the CHAR_LENGTH() function or
in result set metadata).

MySQL implements language-specific Unicode collations if the ordering based only on UCA does
not work well for a language. Language-specific collations are UCA-based, with additional language
tailoring rules.

For any Unicode character set, operations performed using the xxx_general_ci collation are faster
than those for the xxx_unicode_ci collation. For example, comparisons for the utf8_general_ci
collation are faster, but slightly less correct, than comparisons for utf8_unicode_ci. The reason for
this is that utf8_unicode_ci supports mappings such as expansions; that is, when one character
compares as equal to combinations of other characters. For example, in German and some other
languages ß is equal to ss. utf8_unicode_ci also supports contractions and ignorable characters.
utf8_general_ci is a legacy collation that does not support expansions, contractions, or ignorable
characters. It can make only one-to-one comparisons between characters.

To further illustrate, the following equalities hold in both utf8_general_ci and utf8_unicode_ci
(for the effect of this in comparisons or searches, see Section 10.1.8.6, “Examples of the Effect of
Collation”):

Ä = A
Ö = O
Ü = U

A difference between the collations is that this is true for utf8_general_ci:

ß = s

Whereas this is true for utf8_unicode_ci, which supports the German DIN-1 ordering (also known
as dictionary order):

ß = ss

MySQL implements utf8 language-specific collations if the ordering with utf8_unicode_ci does
not work well for a language. For example, utf8_unicode_ci works fine for German dictionary order
and French, so there is no need to create special utf8 collations.

utf8_general_ci also is satisfactory for both German and French, except that ß is equal to s, and
not to ss. If this is acceptable for your application, you should use utf8_general_ci because it is
faster. Otherwise, use utf8_unicode_ci because it is more accurate.

For all Unicode collations except the binary (_bin) collations, MySQL performs a table lookup to find
a character's collating weight. If a character is not in the table (for example, because it is a “new”
character), collating weight determination becomes more complex:

• For BMP characters in general collations (xxx_general_ci), weight = code point.

• For BMP characters in UCA collations (for example, xxx_unicode_ci and language-specific
collations), the following algorithm applies:

http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt


Supported Character Sets and Collations

1043

if (code >= 0x3400 && code <= 0x4DB5)
  base= 0xFB80; /* CJK Ideograph Extension */
else if (code >= 0x4E00 && code <= 0x9FA5)
  base= 0xFB40; /* CJK Ideograph */
else
  base= 0xFBC0; /* All other characters */
aaaa= base +  (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

The result is a sequence of two collating elements, aaaa followed by bbbb.

Thus, U+04cf CYRILLIC SMALL LETTER PALOCHKA currently is, with all UCA collations,
greater than U+04c0 CYRILLIC LETTER PALOCHKA. Eventually, after further collation tuning, all
palochkas will sort together.

• For supplementary characters in general collations, the weight is the weight for 0xfffd
REPLACEMENT CHARACTER. For supplementary characters in UCA collations, their collating weight
is 0xfffd. That is, to MySQL, all supplementary characters are equal to each other, and greater
than almost all BMP characters.

An example with Deseret characters and COUNT(DISTINCT):

CREATE TABLE t (s1 VARCHAR(5) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0xfffd);   /* REPLACEMENT CHARACTER */
INSERT INTO t VALUES (0x010412); /* DESERET CAPITAL LETTER BEE */
INSERT INTO t VALUES (0x010413); /* DESERET CAPITAL LETTER TEE */
SELECT COUNT(DISTINCT s1) FROM t;

The result is 2 because in the MySQL xxx_unicode_ci collations, the replacement character has
a weight of 0x0dc6, whereas Deseret Bee and Deseret Tee both have a weight of 0xfffd. (Were
the utf32_general_ci collation used instead, the result is 1 because all three characters have a
weight of 0xfffd in that collation.)

The rule that all supplementary characters are equal to each other is nonoptimal but is not expected to
cause trouble. These characters are very rare, so it is very rare that a multi-character string consists
entirely of supplementary characters. In Japan, since the supplementary characters are obscure Kanji
ideographs, the typical user does not care what order they are in, anyway. If you really want rows
sorted by the MySQL rule and secondarily by code point value, it is easy:

ORDER BY s1 COLLATE utf32_unicode_ci, s1 COLLATE utf32_bin

There is a difference between “ordering by the character's code value” and “ordering by the character's
binary representation,” a difference that appears only with utf16_bin, because of surrogates.

Suppose that utf16_bin (the binary collation for utf16) was a binary comparison “byte by byte”
rather than “character by character.” If that were so, the order of characters in utf16_bin would differ
from the order in utf8_bin. For example, the following chart shows two rare characters. The first
character is in the range E000-FFFF, so it is greater than a surrogate but less than a supplementary.
The second character is a supplementary.

Code point  Character                    utf8         utf16
----------  ---------                    ----         -----
0FF9D       HALFWIDTH KATAKANA LETTER N  EF BE 9D     FF 9D
10384       UGARITIC LETTER DELTA        F0 90 8E 84  D8 00 DF 84

The two characters in the chart are in order by code point value because 0xff9d < 0x10384. And
they are in order by utf8 value because 0xef < 0xf0. But they are not in order by utf16 value, if we
use byte-by-byte comparison, because 0xff > 0xd8.

So MySQL's utf16_bin collation is not “byte by byte.” It is “by code point.” When MySQL sees a
supplementary-character encoding in utf16, it converts to the character's code-point value, and then



Supported Character Sets and Collations

1044

compares. Therefore, utf8_bin and utf16_bin are the same ordering. This is consistent with the
SQL:2008 standard requirement for a UCS_BASIC collation: “UCS_BASIC is a collation in which the
ordering is determined entirely by the Unicode scalar values of the characters in the strings being
sorted. It is applicable to the UCS character repertoire. Since every character repertoire is a subset of
the UCS repertoire, the UCS_BASIC collation is potentially applicable to every character set. NOTE 11:
The Unicode scalar value of a character is its code point treated as an unsigned integer.”

If the character set is ucs2, comparison is byte-by-byte, but ucs2 strings should not contain
surrogates, anyway.

10.1.10.2 West European Character Sets

Western European character sets cover most West European languages, such as French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish,
Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

latin1 is the default character set. MySQL's latin1 is the same as the Windows cp1252
character set. This means it is the same as the official ISO 8859-1 or IANA (Internet Assigned
Numbers Authority) latin1, except that IANA latin1 treats the code points between 0x80 and
0x9f as “undefined,” whereas cp1252, and therefore MySQL's latin1, assign characters for



Supported Character Sets and Collations

1045

those positions. For example, 0x80 is the Euro sign. For the “undefined” entries in cp1252, MySQL
translates 0x81 to Unicode 0x0081, 0x8d to 0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and 0x9d
to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL
customers. Although it is frequently said that it is based on the Swedish/Finnish collation rules, there
are Swedes and Finns who disagree with this statement.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and
DIN-2 standards, where DIN stands for Deutsches Institut für Normung (the German equivalent of
ANSI). DIN-1 is called the “dictionary collation” and DIN-2 is called the “phone book collation.” For
an example of the effect this has in comparisons or when doing searches, see Section 10.1.8.6,
“Examples of the Effect of Collation”.

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

In the latin1_spanish_ci collation, ñ (n-tilde) is a separate letter between n and o.

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

10.1.10.3 Central European Character Sets

MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary,
Romania, Slovenia, Croatia, Poland, and Serbia (Latin).

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

• cp1250_general_ci (default)

• cp1250_polish_ci

• cp852 (DOS Central European) collations:

• cp852_bin



Supported Character Sets and Collations

1046

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

• macce_general_ci (default)

10.1.10.4 South European and Middle East Character Sets

South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic,
Georgian, Greek, Hebrew, and Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:



Supported Character Sets and Collations

1047

• latin5_bin

• latin5_turkish_ci (default)

10.1.10.5 Baltic Character Sets

The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

10.1.10.6 Cyrillic Character Sets

The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian,
and Serbian (Cyrillic) languages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

• koi8u_general_ci (default)

10.1.10.7 Asian Character Sets



Supported Character Sets and Collations

1048

The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can be
complicated. For example, the Chinese sets must allow for thousands of different characters. See The
cp932 Character Set, for additional information about the cp932 and sjis character sets.

For answers to some common questions and problems relating support for Asian character sets in
MySQL, see Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

The big5_chinese_ci collation sorts on number of strokes.



Supported Character Sets and Collations

1049

The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA,
which supports JIS X0201 and JIS X0208 characters. (See http://www.iana.org/assignments/character-
sets.)

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often
includes the extensions to Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of
Shift_JIS and its exact name is Microsoft Windows Codepage : 932 or cp932. In addition to
the characters supported by Shift_JIS, cp932 supports extension characters such as NEC special
characters, NEC selected—IBM extended characters, and IBM selected characters.

Many Japanese users have experienced problems using these extension characters. These problems
stem from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted using Unicode (ucs2).

• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters
are converted to Unicode differently depending on the conversion rule. MySQL supports only one of
these rules (described later).

The MySQL cp932 character set is designed to solve these problems.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and
cp932 into two different character sets because they provide different conversion rules.

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected—IBM extended characters, and IBM
selected characters.

• Some cp932 characters have two different code points, both of which convert to the same Unicode
code point. When converting from Unicode back to cp932, one of the code points must be
selected. For this “round trip conversion,” the rule recommended by Microsoft is used. (See http://
support.microsoft.com/kb/170559/EN-US/.)

The conversion rule works like this:

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X
0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point
of NEC special characters.

• If the character is in both IBM selected characters and NEC selected—IBM extended characters,
use the code point of IBM extended characters.

The table shown at https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx provides information
about the Unicode values of cp932 characters. For cp932 table entries with characters under which
a four-digit number appears, the number represents the corresponding Unicode (ucs2) encoding.
For table entries with an underlined two-digit value appears, there is a range of cp932 character

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets
http://support.microsoft.com/kb/170559/EN-US/
http://support.microsoft.com/kb/170559/EN-US/
https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx


Supported Character Sets and Collations

1050

values that begin with those two digits. Clicking such a table entry takes you to a page that displays
the Unicode value for each of the cp932 characters that begin with those digits.

The following links are of special interest. They correspond to the encodings for the following sets of
characters:

• NEC special characters (lead byte 0x87):

https://msdn.microsoft.com/en-us/goglobal/gg674964

• NEC selected—IBM extended characters (lead byte 0xED and 0xEE):

https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838

• IBM selected characters (lead byte 0xFA, 0xFB, 0xFC):

https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841

• cp932 supports conversion of user-defined characters in combination with eucjpms, and solves
the problems with sjis/ujis conversion. For details, please refer to http://www.sljfaq.org/afaq/
encodings.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following
tables illustrate these differences.

Conversion to ucs2:

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

7E 007E 007E

815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

81CA 00AC FFE2

Conversion from ucs2:

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

2015 815C 815C

https://msdn.microsoft.com/en-us/goglobal/gg674964
https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838
https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841
http://www.sljfaq.org/afaq/encodings.html
http://www.sljfaq.org/afaq/encodings.html


Supported Character Sets and Collations

1051

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using --character-set-client-
handshake (or --skip-character-set-client-handshake) has an important effect. See
Section 5.1.4, “Server Command Options”.

10.1.10.8 The Binary Character Set

The binary character set is the chararcter set of binary strings, which are sequences of bytes. The
binary character set has one collation, also named binary. Comparison and sorting are based on
numeric byte values. The effect is that lettercase and accent differences are significant in comparisons.
That is, the binary collation is case sensitive and accent sensitive.

mysql> SET NAMES 'binary';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+------------------+
| binary         | binary           |
+----------------+------------------+
mysql> SELECT 'abc' = 'ABC', 'a' = 'ä';
+---------------+------------+
| 'abc' = 'ABC' | 'a' = 'ä'  |
+---------------+------------+
|             0 |          0 |
+---------------+------------+

For information about the differences between the binary collation of the binary character set and
the _bin collations of nonbinary character sets, see Section 10.1.8.5, “The binary Collation Compared
to _bin Collations”.

To convert a string expression to a binary string, any of these constructs are equivalent:

BINARY expr
CAST(expr AS BINARY)
CONVERT(expr USING BINARY)

If expr is a character string literal, the _binary introducer may be used to designate it as a binary
string. For example:

_binary 'a'

The _binary introducer is permitted for hexadecimal literals and bit-value literals as well, but
unnecessary; such literals are binary strings by default.

For more information about introducers, see Section 10.1.3.8, “Character Set Introducers”.



Setting the Error Message Language

1052

10.2 Setting the Error Message Language

By default, mysqld produces error messages in English, but they can also be displayed in any of
several other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian,
Japanese, Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak,
Spanish, or Swedish.

You can select which language the server uses for error messages using the instructions in this
section.

As of MySQL 5.5, the server searches for the error message file in two locations:

• It tries to find the file in a directory constructed from two system variable values, lc_messages_dir
and lc_messages, with the latter converted to a language name. Suppose that you start the server
using this command:

shell> mysqld --lc_messages_dir=/usr/share/mysql --lc_messages=fr_FR

In this case, mysqld maps the locale fr_FR to the language french and looks for the error file in
the /usr/share/mysql/french directory.

• If the message file cannot be found in the directory constructed as just described, the server ignores
the lc_messages value and uses only the lc_messages_dir value as the location in which to
look.

The lc_messages_dir system variable has only a global value and is read only. lc_messages
has global and session values and can be modified at runtime, so the error message language can be
changed while the server is running, and individual clients each can have a different error message
language by changing their session lc_messages value to a different locale name. For example, if
the server is using the fr_FR locale for error messages, a client can execute this statement to receive
error messages in English:

mysql> SET lc_messages = 'en_US';

Before MySQL 5.5, the lc_messages_dir and lc_messages system variables were unavailable. To
start mysqld with a particular language for error messages, the --language or -L option were used.
The option value can be a language name or the full path to the error message file. For example:

shell> mysqld --language=french

Or:

shell> mysqld --language=/usr/local/share/french

Specify the language name in lowercase.

MySQL 5.5 treats --language as an alias for lc_messages_dir.

By default, the language files are located in the share/mysql/LANGUAGE directory under the MySQL
base directory.

For information about changing the character set for error messages (rather than the language), see
Section 10.1.6, “Error Message Character Set”.

You can change the content of the error messages produced by the server using the instructions in
the MySQL Internals manual, available at MySQL Internals: Error Messages. If you do change the
content of error messages, remember to repeat your changes after each upgrade to a newer version of
MySQL.

http://dev.mysql.com/doc/internals/en/error-messages.html


Adding a Character Set

1053

10.3 Adding a Character Set

This section discusses the procedure for adding a character set to MySQL. The proper procedure
depends on whether the character set is simple or complex:

• If the character set does not need special string collating routines for sorting and does not need
multibyte character support, it is simple.

• If the character set needs either of those features, it is complex.

For example, greek and swe7 are simple character sets, whereas big5 and czech are complex
character sets.

To use the following instructions, you must have a MySQL source distribution. In the instructions,
MYSET represents the name of the character set that you want to add.

1. Add a <charset> element for MYSET to the sql/share/charsets/Index.xml file. Use the
existing contents in the file as a guide to adding new contents. A partial listing for the latin1
<charset> element follows:

<charset name="latin1">
  <family>Western</family>
  <description>cp1252 West European</description>
  ...
  <collation name="latin1_swedish_ci" id="8" order="Finnish, Swedish">
    <flag>primary</flag>
    <flag>compiled</flag>
  </collation>
  <collation name="latin1_danish_ci" id="15" order="Danish"/>
  ...
  <collation name="latin1_bin" id="47" order="Binary">
    <flag>binary</flag>
    <flag>compiled</flag>
  </collation>
  ...
</charset>

The <charset> element must list all the collations for the character set. These must include at
least a binary collation and a default (primary) collation. The default collation is often named using
a suffix of general_ci (general, case insensitive). It is possible for the binary collation to be the
default collation, but usually they are different. The default collation should have a primary flag.
The binary collation should have a binary flag.

You must assign a unique ID number to each collation. The range of IDs from 1024 to 2047 is
reserved for user-defined collations. Before MySQL 5.5, the ID must be chosen from the range 1 to
254. To find the maximum of the currently used collation IDs, use this query:

SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

2. This step depends on whether you are adding a simple or complex character set. A simple
character set requires only a configuration file, whereas a complex character set requires C source
file that defines collation functions, multibyte functions, or both.

For a simple character set, create a configuration file, MYSET.xml, that describes the character
set properties. Create this file in the sql/share/charsets directory. You can use a copy of
latin1.xml as the basis for this file. The syntax for the file is very simple:

• Comments are written as ordinary XML comments (<!-- text -->).

• Words within <map> array elements are separated by arbitrary amounts of whitespace.

• Each word within <map> array elements must be a number in hexadecimal format.



Character Definition Arrays

1054

• The <map> array element for the <ctype> element has 257 words. The other <map> array
elements after that have 256 words. See Section 10.3.1, “Character Definition Arrays”.

• For each collation listed in the <charset> element for the character set in Index.xml,
MYSET.xml must contain a <collation> element that defines the character ordering.

For a complex character set, create a C source file that describes the character set properties and
defines the support routines necessary to properly perform operations on the character set:

• Create the file ctype-MYSET.c in the strings directory. Look at one of the existing ctype-
*.c files (such as ctype-big5.c) to see what needs to be defined. The arrays in your file must
have names like ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays
for a simple character set. See Section 10.3.1, “Character Definition Arrays”.

• For each <collation> element listed in the <charset> element for the character set in
Index.xml, the ctype-MYSET.c file must provide an implementation of the collation.

• If the character set requires string collating functions, see Section 10.3.2, “String Collating
Support for Complex Character Sets”.

• If the character set requires multibyte character support, see Section 10.3.3, “Multi-Byte
Character Support for Complex Character Sets”.

3. Modify the configuration information. Use the existing configuration information as a guide to adding
information for MYSYS. The example here assumes that the character set has default and binary
collations, but more lines are needed if MYSET has additional collations.

a. Edit mysys/charset-def.c, and “register” the collations for the new character set.

Add these lines to the “declaration” section:

#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif

Add these lines to the “registration” section:

#ifdef HAVE_CHARSET_MYSET
  add_compiled_collation(&my_charset_MYSET_general_ci);
  add_compiled_collation(&my_charset_MYSET_bin);
#endif

b. If the character set uses ctype-MYSET.c, edit strings/CMakeLists.txt and add
ctype-MYSET.c to the definition of the STRINGS_SOURCES variable.

c. Edit cmake/character_sets.cmake:

i. Add MYSET to the value of with CHARSETS_AVAILABLE in alphabetic order.

ii. Add MYSET to the value of CHARSETS_COMPLEX in alphabetic order. This is needed even
for simple character sets, or CMake will not recognize -DDEFAULT_CHARSET=MYSET.

4. Reconfigure, recompile, and test.

10.3.1 Character Definition Arrays

Each simple character set has a configuration file located in the sql/share/charsets directory.
For a character set named MYSYS, the file is named MYSET.xml. It uses <map> array elements to list
character set properties. <map> elements appear within these elements:



String Collating Support for Complex Character Sets

1055

• <ctype> defines attributes for each character.

• <lower> and <upper> list the lowercase and uppercase characters.

• <unicode> maps 8-bit character values to Unicode values.

• <collation> elements indicate character ordering for comparison and sorting, one element per
collation. Binary collations need no <map> element because the character codes themselves provide
the ordering.

For a complex character set as implemented in a ctype-MYSET.c file in the strings directory,
there are corresponding arrays: ctype_MYSET[], to_lower_MYSET[], and so forth. Not every
complex character set has all of the arrays. See also the existing ctype-*.c files for examples. See
the CHARSET_INFO.txt file in the strings directory for additional information.

Most of the arrays are indexed by character value and have 256 elements. The <ctype> array is
indexed by character value + 1 and has 257 elements. This is a legacy convention for handling EOF.

<ctype> array elements are bit values. Each element describes the attributes of a single character in
the character set. Each attribute is associated with a bitmask, as defined in include/m_ctype.h:

#define _MY_U   01      /* Upper case */
#define _MY_L   02      /* Lower case */
#define _MY_NMR 04      /* Numeral (digit) */
#define _MY_SPC 010     /* Spacing character */
#define _MY_PNT 020     /* Punctuation */
#define _MY_CTR 040     /* Control character */
#define _MY_B   0100    /* Blank */
#define _MY_X   0200    /* heXadecimal digit */

The <ctype> value for a given character should be the union of the applicable bitmask values that
describe the character. For example, 'A' is an uppercase character (_MY_U) as well as a hexadecimal
digit (_MY_X), so its ctype value should be defined like this:

ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201

The bitmask values in m_ctype.h are octal values, but the elements of the <ctype> array in
MYSET.xml should be written as hexadecimal values.

The <lower> and <upper> arrays hold the lowercase and uppercase characters corresponding to
each member of the character set. For example:

lower['A'] should contain 'a'
upper['a'] should contain 'A'

Each <collation> array indicates how characters should be ordered for comparison and sorting
purposes. MySQL sorts characters based on the values of this information. In some cases, this is
the same as the <upper> array, which means that sorting is case-insensitive. For more complicated
sorting rules (for complex character sets), see the discussion of string collating in Section 10.3.2,
“String Collating Support for Complex Character Sets”.

10.3.2 String Collating Support for Complex Character Sets

For a simple character set named MYSET, sorting rules are specified in the MYSET.xml configuration
file using <map> array elements within <collation> elements. If the sorting rules for your language
are too complex to be handled with simple arrays, you must define string collating functions in the
ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the
big5, czech, gbk, sjis, and tis160 character sets. Take a look at the MY_COLLATION_HANDLER



Multi-Byte Character Support for Complex Character Sets

1056

structures to see how they are used. See also the CHARSET_INFO.txt file in the strings directory
for additional information.

10.3.3 Multi-Byte Character Support for Complex Character Sets

If you want to add support for a new character set named MYSET that includes multibyte characters,
you must use multibyte character functions in the ctype-MYSET.c source file in the strings
directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the
euc_kr, gb2312, gbk, sjis, and ujis character sets. Take a look at the MY_CHARSET_HANDLER
structures to see how they are used. See also the CHARSET_INFO.txt file in the strings directory
for additional information.

10.4 Adding a Collation to a Character Set
A collation is a set of rules that defines how to compare and sort character strings. Each collation in
MySQL belongs to a single character set. Every character set has at least one collation, and most have
two or more collations.

A collation orders characters based on weights. Each character in a character set maps to a weight.
Characters with equal weights compare as equal, and characters with unequal weights compare
according to the relative magnitude of their weights.

MySQL supports several collation implementations, as discussed in Section 10.4.1, “Collation
Implementation Types”. Some of these can be added to MySQL without recompiling:

• Simple collations for 8-bit character sets.

• UCA-based collations for Unicode character sets.

• Binary (xxx_bin) collations.

The following sections describe how to add collations of the first two types to existing character sets. All
existing character sets already have a binary collation, so there is no need here to describe how to add
one.

Summary of the procedure for adding a new collation:

1. Choose a collation ID.

2. Add configuration information that names the collation and describes the character-ordering rules.

3. Restart the server.

4. Verify that the collation is present.

The instructions here cover only collations that can be added without recompiling MySQL. To add
a collation that does require recompiling (as implemented by means of functions in a C source file),
use the instructions in Section 10.3, “Adding a Character Set”. However, instead of adding all the
information required for a complete character set, just modify the appropriate files for an existing
character set. That is, based on what is already present for the character set's current collations, add
data structures, functions, and configuration information for the new collation.

Note

If you modify an existing collation, that may affect the ordering of rows for
indexes on columns that use the collation. In this case, rebuild any such
indexes to avoid problems such as incorrect query results. See Section 2.11.3,
“Rebuilding or Repairing Tables or Indexes”.



Additional Resources

1057

Additional Resources

• The Unicode Collation Algorithm (UCA) specification: http://www.unicode.org/reports/tr10/

• The Locale Data Markup Language (LDML) specification: http://www.unicode.org/reports/tr35/

10.4.1 Collation Implementation Types

MySQL implements several types of collations:

Simple collations for 8-bit character sets

This kind of collation is implemented using an array of 256 weights that defines a one-to-one mapping
from character codes to weights. latin1_swedish_ci is an example. It is a case-insensitive
collation, so the uppercase and lowercase versions of a character have the same weights and they
compare as equal.

mysql> SET NAMES 'latin1' COLLATE 'latin1_swedish_ci';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT 'a' = 'A';
+-----------+
| 'a' = 'A' |
+-----------+
|         1 |
+-----------+
1 row in set (0.00 sec)

For implementation instructions, see Section 10.4.3, “Adding a Simple Collation to an 8-Bit Character
Set”.

Complex collations for 8-bit character sets

This kind of collation is implemented using functions in a C source file that define how to order
characters, as described in Section 10.3, “Adding a Character Set”.

Collations for non-Unicode multibyte character sets

For this type of collation, 8-bit (single-byte) and multibyte characters are handled differently. For 8-bit
characters, character codes map to weights in case-insensitive fashion. (For example, the single-byte
characters 'a' and 'A' both have a weight of 0x41.) For multibyte characters, there are two types of
relationship between character codes and weights:

• Weights equal character codes. sjis_japanese_ci is an example of this kind of collation. The
multibyte character 'ぢ' has a character code of 0x82C0, and the weight is also 0x82C0.

• Character codes map one-to-one to weights, but a code is not necessarily equal to the weight.
gbk_chinese_ci is an example of this kind of collation. The multibyte character '膰' has a
character code of 0x81B0 but a weight of 0xC286.

For implementation instructions, see Section 10.3, “Adding a Character Set”.

Collations for Unicode multibyte character sets

Some of these collations are based on the Unicode Collation Algorithm (UCA), others are not.

Non-UCA collations have a one-to-one mapping from character code to weight. In MySQL, such
collations are case insensitive and accent insensitive. utf8_general_ci is an example: 'a', 'A',
'À', and 'á' each have different character codes but all have a weight of 0x0041 and compare as
equal.

mysql> SET NAMES 'utf8' COLLATE 'utf8_general_ci';
Query OK, 0 rows affected (0.00 sec)

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr35/


Choosing a Collation ID

1058

mysql> SELECT 'a' = 'A', 'a' = 'À', 'a' = 'á';
+-----------+-----------+-----------+
| 'a' = 'A' | 'a' = 'À' | 'a' = 'á' |
+-----------+-----------+-----------+
|         1 |         1 |         1 |
+-----------+-----------+-----------+
1 row in set (0.06 sec)

UCA-based collations in MySQL have these properties:

• If a character has weights, each weight uses 2 bytes (16 bits).

• A character may have zero weights (or an empty weight). In this case, the character is ignorable.
Example: "U+0000 NULL" does not have a weight and is ignorable.

• A character may have one weight. Example: 'a' has a weight of 0x0E33.

• A character may have many weights. This is an expansion. Example: The German letter 'ß' (SZ
ligature, or SHARP S) has a weight of 0x0FEA0FEA.

• Many characters may have one weight. This is a contraction. Example: 'ch' is a single letter in
Czech and has a weight of 0x0EE2.

A many-characters-to-many-weights mapping is also possible (this is contraction with expansion), but
is not supported by MySQL.

For implementation instructions, for a non-UCA collation, see Section 10.3, “Adding a Character Set”.
For a UCA collation, see Section 10.4.4, “Adding a UCA Collation to a Unicode Character Set”.

Miscellaneous collations

There are also a few collations that do not fall into any of the previous categories.

10.4.2 Choosing a Collation ID

Each collation must have a unique ID. To add a collation, you must choose an ID value that is not
currently used. The range of IDs from 1024 to 2047 is reserved for user-defined collations. Before
MySQL 5.5, an ID must be chosen from the range 1 to 254. As of MySQL 5.5, the 254 limit is removed
for MyISAM tables with the introduction of support for two-byte collation IDs. Two-byte collation ID
support for InnoDB tables is not added until MySQL 5.6.3.

The collation ID that you choose will appear in these contexts:

• The ID column of the INFORMATION_SCHEMA.COLLATIONS table.

• The Id column of SHOW COLLATION output.

• The charsetnr member of the MYSQL_FIELD C API data structure.

• The number member of the MY_CHARSET_INFO data structure returned by the
mysql_get_character_set_info() C API function.

To determine the largest currently used ID, issue the following statement:

mysql> SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;
+---------+
| MAX(ID) |
+---------+
|     210 |
+---------+

To display a list of all currently used IDs, issue this statement:

mysql> SELECT ID FROM INFORMATION_SCHEMA.COLLATIONS ORDER BY ID;



Adding a Simple Collation to an 8-Bit Character Set

1059

+-----+
| ID  |
+-----+
|   1 |
|   2 |
| ... |
|  52 |
|  53 |
|  57 |
|  58 |
| ... |
|  98 |
|  99 |
| 128 |
| 129 |
| ... |
| 210 |
+-----+

Warning

Before MySQL 5.5, which provides for a range of user-defined collation IDs,
you must choose an ID in the range from 1 to 254. In this case, if you upgrade
MySQL, you may find that the collation ID you choose has been assigned to a
collation included in the new MySQL distribution. In this case, you will need to
choose a new value for your own collation.

In addition, before upgrading, you should save the configuration files that you
change. If you upgrade in place, the process will replace the your modified files.

10.4.3 Adding a Simple Collation to an 8-Bit Character Set

This section describes how to add a simple collation for an 8-bit character set by writing the
<collation> elements associated with a <charset> character set description in the MySQL
Index.xml file. The procedure described here does not require recompiling MySQL. The example
adds a collation named latin1_test_ci to the latin1 character set.

1. Choose a collation ID, as shown in Section 10.4.2, “Choosing a Collation ID”. The following steps
use an ID of 1024.

2. Modify the Index.xml and latin1.xml configuration files. These files are located in the directory
named by the character_sets_dir system variable. You can check the variable value as
follows, although the path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+-----------------------------------------+
| Variable_name      | Value                                   |
+--------------------+-----------------------------------------+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+-----------------------------------------+

3. Choose a name for the collation and list it in the Index.xml file. Find the <charset> element
for the character set to which the collation is being added, and add a <collation> element that
indicates the collation name and ID, to associate the name with the ID. For example:

<charset name="latin1">
  ...
  <collation name="latin1_test_ci" id="1024"/>
  ...
</charset>

4. In the latin1.xml configuration file, add a <collation> element that names the collation and
that contains a <map> element that defines a character code-to-weight mapping table for character
codes 0 to 255. Each value within the <map> element must be a number in hexadecimal format.



Adding a UCA Collation to a Unicode Character Set

1060

<collation name="latin1_test_ci">
<map>
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C D7 5C 55 55 55 59 59 DE DF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C F7 5C 55 55 55 59 59 DE FF
</map>
</collation>

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION WHERE Collation = 'latin1_test_ci';
+----------------+---------+------+---------+----------+---------+
| Collation      | Charset | Id   | Default | Compiled | Sortlen |
+----------------+---------+------+---------+----------+---------+
| latin1_test_ci | latin1  | 1024 |         |          |       1 |
+----------------+---------+------+---------+----------+---------+

10.4.4 Adding a UCA Collation to a Unicode Character Set

This section describes how to add a UCA collation for a Unicode character set by writing the
<collation> element within a <charset> character set description in the MySQL Index.xml file.
The procedure described here does not require recompiling MySQL. It uses a subset of the Locale
Data Markup Language (LDML) specification, which is available at http://www.unicode.org/reports/tr35/.
With this method, you need not define the entire collation. Instead, you begin with an existing “base”
collation and describe the new collation in terms of how it differs from the base collation. The following
table lists the base collations of the Unicode character sets for which UCA collations can be defined.

Table 10.4 MySQL Character Sets Available for User-Defined UCA Collations

Character Set Base Collation

utf8 utf8_unicode_ci

ucs2 ucs2_unicode_ci

utf16 utf16_unicode_ci

utf32 utf32_unicode_ci

The following sections show how to add a collation that is defined using LDML syntax, and provide a
summary of LDML rules supported in MySQL.

10.4.4.1 Defining a UCA Collation Using LDML Syntax

To add a UCA collation for a Unicode character set without recompiling MySQL, use the
following procedure. If you are unfamiliar with the LDML rules used to describe the collation's sort
characteristics, see Section 10.4.4.2, “LDML Syntax Supported in MySQL”.

The example adds a collation named utf8_phone_ci to the utf8 character set. The collation is
designed for a scenario involving a Web application for which users post their names and phone
numbers. Phone numbers can be given in very different formats:

http://www.unicode.org/reports/tr35/


Adding a UCA Collation to a Unicode Character Set

1061

+7-12345-67
+7-12-345-67
+7 12 345 67
+7 (12) 345 67
+71234567

The problem raised by dealing with these kinds of values is that the varying permissible formats make
searching for a specific phone number very difficult. The solution is to define a new collation that
reorders punctuation characters, making them ignorable.

1. Choose a collation ID, as shown in Section 10.4.2, “Choosing a Collation ID”. The following steps
use an ID of 1029.

2. To modify the Index.xml configuration file. This file is located in the directory named by the
character_sets_dir system variable. You can check the variable value as follows, although the
path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+-----------------------------------------+
| Variable_name      | Value                                   |
+--------------------+-----------------------------------------+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+-----------------------------------------+

3. Choose a name for the collation and list it in the Index.xml file. In addition, you'll need to provide
the collation ordering rules. Find the <charset> element for the character set to which the
collation is being added, and add a <collation> element that indicates the collation name and
ID, to associate the name with the ID. Within the <collation> element, provide a <rules>
element containing the ordering rules:

<charset name="utf8">
  ...
  <collation name="utf8_phone_ci" id="1029">
    <rules>
      <reset>\u0000</reset>
      <i>\u0020</i> <!-- space -->
      <i>\u0028</i> <!-- left parenthesis -->
      <i>\u0029</i> <!-- right parenthesis -->
      <i>\u002B</i> <!-- plus -->
      <i>\u002D</i> <!-- hyphen -->
    </rules>
  </collation>
  ...
</charset>

4. If you want a similar collation for other Unicode character sets, add other <collation> elements.
For example, to define ucs2_phone_ci, add a <collation> element to the <charset
name="ucs2"> element. Remember that each collation must have its own unique ID.

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION WHERE Collation = 'utf8_phone_ci';
+---------------+---------+------+---------+----------+---------+
| Collation     | Charset | Id   | Default | Compiled | Sortlen |
+---------------+---------+------+---------+----------+---------+
| utf8_phone_ci | utf8    | 1029 |         |          |       8 |
+---------------+---------+------+---------+----------+---------+

Now test the collation to make sure that it has the desired properties.

Create a table containing some sample phone numbers using the new collation:

mysql> CREATE TABLE phonebook (



Adding a UCA Collation to a Unicode Character Set

1062

         name VARCHAR(64),
         phone VARCHAR(64) CHARACTER SET utf8 COLLATE utf8_phone_ci
       );
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO phonebook VALUES ('Svoj','+7 912 800 80 02');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Hf','+7 (912) 800 80 04');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Bar','+7-912-800-80-01');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Ramil','(7912) 800 80 03');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Sanja','+380 (912) 8008005');
Query OK, 1 row affected (0.00 sec)

Run some queries to see whether the ignored punctuation characters are in fact ignored for
comparison and sorting:

mysql> SELECT * FROM phonebook ORDER BY phone;
+-------+--------------------+
| name  | phone              |
+-------+--------------------+
| Sanja | +380 (912) 8008005 |
| Bar   | +7-912-800-80-01   |
| Svoj  | +7 912 800 80 02   |
| Ramil | (7912) 800 80 03   |
| Hf    | +7 (912) 800 80 04 |
+-------+--------------------+
5 rows in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='+7(912)800-80-01';
+------+------------------+
| name | phone            |
+------+------------------+
| Bar  | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='79128008001';
+------+------------------+
| name | phone            |
+------+------------------+
| Bar  | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='7 9 1 2 8 0 0 8 0 0 1';
+------+------------------+
| name | phone            |
+------+------------------+
| Bar  | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

10.4.4.2 LDML Syntax Supported in MySQL

This section describes the LDML syntax that MySQL recognizes. This is a subset of the syntax
described in the LDML specification available at http://www.unicode.org/reports/tr35/, which should
be consulted for further information. The rules described here are all supported except that character
sorting occurs only at the primary level. Rules that specify differences at secondary or higher sort levels
are recognized (and thus can be included in collation definitions) but are treated as equality at the
primary level.

Character Representation

http://www.unicode.org/reports/tr35/


Character Set Configuration

1063

Characters named in LDML rules can be written in \unnnn format, where nnnn is the hexadecimal
Unicode code point value. Within hexadecimal values, the digits A through F are not case sensitive;
\u00E1 and \u00e1 are equivalent. Basic Latin letters A-Z and a-z can also be written literally (this
is a MySQL limitation; the LDML specification permits literal non-Latin1 characters in the rules). Only
characters in the Basic Multilingual Plane can be specified. This notation does not apply to characters
outside the BMP range of 0000 to FFFF.

The Index.xml file itself should be written using ASCII encoding.

Syntax Rules

LDML has reset rules and shift rules to specify character ordering. Orderings are given as a set of rules
that begin with a reset rule that establishes an anchor point, followed by shift rules that indicate how
characters sort relative to the anchor point.

• A <reset> rule does not specify any ordering in and of itself. Instead, it “resets” the ordering for
subsequent shift rules to cause them to be taken in relation to a given character. Either of the
following rules resets subsequent shift rules to be taken in relation to the letter 'A':

<reset>A</reset>

<reset>\u0041</reset>

• The <p>, <s>, and <t> shift rules define primary, secondary, and tertiary differences of a character
from another character:

• Use primary differences to distinguish separate letters.

• Use secondary differences to distinguish accent variations.

• Use tertiary differences to distinguish lettercase variations.

Either of these rules specifies a primary shift rule for the 'G' character:

<p>G</p>

<p>\u0047</p>

• The <i> shift rule indicates that one character sorts identically to another. The following rules cause
'b' to sort the same as 'a':

<reset>a</reset>
<i>b</i>

The <i> shift rules is supported as of MySQL 5.5.3. Prior to 5.5.3, use <s> ... </s> instead.

10.5 Character Set Configuration
You can change the default server character set and collation with the --character-set-server
and --collation-server options when you start the server. The collation must be a legal collation
for the default character set. (Use the SHOW COLLATION statement to determine which collations are
available for each character set.) See Section 5.1.4, “Server Command Options”.

If you try to use a character set that is not compiled into your binary, you might run into the following
problems:

• Your program uses an incorrect path to determine where the character sets are stored (which is
typically the share/mysql/charsets or share/charsets directory under the MySQL installation
directory). This can be fixed by using the --character-sets-dir option when you run the
program in question. For example, to specify a directory to be used by MySQL client programs, list



MySQL Server Time Zone Support

1064

it in the [client] group of your option file. The examples given here show what the setting might
look like for Unix or Windows, respectively:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 5.5/share/charsets"

• The character set is a complex character set that cannot be loaded dynamically. In this case, you
must recompile the program with support for the character set.

For Unicode character sets, you can define collations without recompiling by using LDML notation.
See Section 10.4.4, “Adding a UCA Collation to a Unicode Character Set”.

• The character set is a dynamic character set, but you do not have a configuration file for it. In this
case, you should install the configuration file for the character set from a new MySQL distribution.

• If your character set index file does not contain the name for the character set, your program displays
an error message. The file is named Index.xml and the message is:

Character set 'charset_name' is not a compiled character set and is not
specified in the '/usr/share/mysql/charsets/Index.xml' file

To solve this problem, you should either get a new index file or manually add the name of any
missing character sets to the current file.

You can force client programs to use specific character set as follows:

[client]
default-character-set=charset_name

This is normally unnecessary. However, when character_set_system differs from
character_set_server or character_set_client, and you input characters manually (as
database object identifiers, column values, or both), these may be displayed incorrectly in output from
the client or the output itself may be formatted incorrectly. In such cases, starting the mysql client with
--default-character-set=system_character_set—that is, setting the client character set to
match the system character set—should fix the problem.

For MyISAM tables, you can check the character set name and number for a table with myisamchk -
dvv tbl_name.

10.6 MySQL Server Time Zone Support

MySQL Server maintains several time zone settings:

• The system time zone. When the server starts, it attempts to determine the time zone of the host
machine and uses it to set the system_time_zone system variable. The value does not change
thereafter.

You can set the system time zone for MySQL Server at startup with the --
timezone=timezone_name option to mysqld_safe. You can also set it by setting the TZ
environment variable before you start mysqld. The permissible values for --timezone or TZ
are system dependent. Consult your operating system documentation to see what values are
acceptable.

• The server's current time zone. The global time_zone system variable indicates the time zone the
server currently is operating in. The initial value for time_zone is 'SYSTEM', which indicates that
the server time zone is the same as the system time zone.



Populating the Time Zone Tables

1065

The initial global server time zone value can be specified explicitly at startup with the --default-
time-zone=timezone option on the command line, or you can use the following line in an option
file:

default-time-zone='timezone'

If you have the SUPER privilege, you can set the global server time zone value at runtime with this
statement:

mysql> SET GLOBAL time_zone = timezone;

• Per-connection time zones. Each client that connects has its own time zone setting, given by
the session time_zone variable. Initially, the session variable takes its value from the global
time_zone variable, but the client can change its own time zone with this statement:

mysql> SET time_zone = timezone;

The current session time zone setting affects display and storage of time values that are zone-
sensitive. This includes the values displayed by functions such as NOW() or CURTIME(), and values
stored in and retrieved from TIMESTAMP columns. Values for TIMESTAMP columns are converted from
the current time zone to UTC for storage, and from UTC to the current time zone for retrieval.

The current time zone setting does not affect values displayed by functions such as
UTC_TIMESTAMP() or values in DATE, TIME, or DATETIME columns. Nor are values in those data
types stored in UTC; the time zone applies for them only when converting from TIMESTAMP values. If
you want locale-specific arithmetic for DATE, TIME, or DATETIME values, convert them to UTC, perform
the arithmetic, and then convert back.

The current values of the global and client-specific time zones can be retrieved like this:

mysql> SELECT @@global.time_zone, @@session.time_zone;

timezone values can be given in several formats, none of which are case sensitive:

• The value 'SYSTEM' indicates that the time zone should be the same as the system time zone.

• The value can be given as a string indicating an offset from UTC, such as '+10:00' or '-6:00'.

• The value can be given as a named time zone, such as 'Europe/Helsinki', 'US/Eastern',
or 'MET'. Named time zones can be used only if the time zone information tables in the mysql
database have been created and populated.

Populating the Time Zone Tables

Several tables in the mysql system database exist to maintain time zone information (see Section 5.3,
“The mysql System Database”). The MySQL installation procedure creates the time zone tables, but
does not load them. You must do so manually using the following instructions.

Note

Loading the time zone information is not necessarily a one-time operation
because the information changes occasionally. When such changes occur,
applications that use the old rules become out of date and you may find it
necessary to reload the time zone tables to keep the information used by your
MySQL server current. See the notes at the end of this section.

If your system has its own zoneinfo database (the set of files describing time zones), you should use
the mysql_tzinfo_to_sql program for filling the time zone tables. Examples of such systems are



Populating the Time Zone Tables

1066

Linux, FreeBSD, Solaris, and OS X. One likely location for these files is the /usr/share/zoneinfo
directory. If your system does not have a zoneinfo database, you can use the downloadable package
described later in this section.

The mysql_tzinfo_to_sql program is used to load the time zone tables. On the command line,
pass the zoneinfo directory path name to mysql_tzinfo_to_sql and send the output into the mysql
program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from
them. mysql processes those statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file or to generate leap second
information:

• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke
mysql_tzinfo_to_sql like this:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

With this approach, you must execute a separate command to load the time zone file for each named
zone that the server needs to know about.

• If your time zone needs to account for leap seconds, initialize the leap second information like this,
where tz_file is the name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

• After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to
use any previously cached time zone data.

If your system is one that has no zoneinfo database (for example, Windows), you can use a package
that is available for download at the MySQL Developer Zone:

http://dev.mysql.com/downloads/timezones.html

You can use either a package that contains SQL statements to populate your existing time zone tables,
or a package that contains pre-built MyISAM time zone tables to replace your existing tables:

• To use a time zone package that contains SQL statements, download and unpack it, then load the
package file contents into your existing time zone tables:

shell> mysql -u root mysql < file_name

Then restart the server.

• To use a time zone package that contains .frm, .MYD, and .MYI files for the MyISAM time zone
tables, download and unpack it. These table files are part of the mysql database, so you should
place the files in the mysql subdirectory of your MySQL server's data directory. Stop the server
before doing this and restart it afterward.

Warning

Do not use a downloadable package if your system has a zoneinfo database.
Use the mysql_tzinfo_to_sql utility instead. Otherwise, you may cause a
difference in datetime handling between MySQL and other applications on your
system.

http://dev.mysql.com/downloads/timezones.html


Staying Current with Time Zone Changes

1067

For information about time zone settings in replication setup, please see Section 17.4.1, “Replication
Features and Issues”.

10.6.1 Staying Current with Time Zone Changes

When time zone rules change, applications that use the old rules become out of date. To stay current,
it is necessary to make sure that your system uses current time zone information is used. For MySQL,
there are two factors to consider in staying current:

• The operating system time affects the value that the MySQL server uses for times if its time zone
is set to SYSTEM. Make sure that your operating system is using the latest time zone information.
For most operating systems, the latest update or service pack prepares your system for the time
changes. Check the Web site for your operating system vendor for an update that addresses the
time changes.

• If you replace the system's /etc/localtime timezone file with a version that uses rules differing
from those in effect at mysqld startup, you should restart mysqld so that it uses the updated rules.
Otherwise, mysqld might not notice when the system changes its time.

• If you use named time zones with MySQL, make sure that the time zone tables in the mysql
database are up to date. If your system has its own zoneinfo database, you should reload the
MySQL time zone tables whenever the zoneinfo database is updated. For systems that do not
have their own zoneinfo database, check the MySQL Developer Zone for updates. When a new
update is available, download it and use it to replace the content of your current time zone tables.
For instructions for both methods, see Populating the Time Zone Tables. mysqld caches time zone
information that it looks up, so after updating the time zone tables, you should restart mysqld to
make sure that it does not continue to serve outdated time zone data.

If you are uncertain whether named time zones are available, for use either as the server's time zone
setting or by clients that set their own time zone, check whether your time zone tables are empty. The
following query determines whether the table that contains time zone names has any rows:

mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+
|        0 |
+----------+

A count of zero indicates that the table is empty. In this case, no one can be using named time zones,
and you don't need to update the tables. A count greater than zero indicates that the table is not empty
and that its contents are available to be used for named time zone support. In this case, you should be
sure to reload your time zone tables so that anyone who uses named time zones will get correct query
results.

To check whether your MySQL installation is updated properly for a change in Daylight Saving Time
rules, use a test like the one following. The example uses values that are appropriate for the 2007 DST
1-hour change that occurs in the United States on March 11 at 2 a.m.

The test uses these two queries:

SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');

The two time values indicate the times at which the DST change occurs, and the use of named time
zones requires that the time zone tables be used. The desired result is that both queries return the
same result (the input time, converted to the equivalent value in the 'US/Central' time zone).

Before updating the time zone tables, you would see an incorrect result like this:



Time Zone Leap Second Support

1068

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 01:00:00                                        |
+------------------------------------------------------------+

mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 02:00:00                                        |
+------------------------------------------------------------+

After updating the tables, you should see the correct result:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 01:00:00                                        |
+------------------------------------------------------------+

mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 01:00:00                                        |
+------------------------------------------------------------+

10.6.2 Time Zone Leap Second Support

Leap second values are returned with a time part that ends with :59:59. This means that a function
such as NOW() can return the same value for two or three consecutive seconds during the leap
second. It remains true that literal temporal values having a time part that ends with :59:60 or :59:61
are considered invalid.

If it is necessary to search for TIMESTAMP values one second before the leap second, anomalous
results may be obtained if you use a comparison with 'YYYY-MM-DD hh:mm:ss' values. The
following example demonstrates this. It changes the local time zone to UTC so there is no difference
between internal values (which are in UTC) and displayed values (which have time zone correction
applied).

mysql> CREATE TABLE t1 (
         a INT,
         ts TIMESTAMP DEFAULT NOW(),
         PRIMARY KEY (ts)
       );
Query OK, 0 rows affected (0.01 sec)

mysql> -- change to UTC
mysql> SET time_zone = '+00:00';
Query OK, 0 rows affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:59'
mysql> SET timestamp = 1230767999;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (1);
Query OK, 1 row affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:60'
mysql> SET timestamp = 1230768000;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (2);
Query OK, 1 row affected (0.00 sec)



MySQL Server Locale Support

1069

mysql> -- values differ internally but display the same
mysql> SELECT a, ts, UNIX_TIMESTAMP(ts) FROM t1;
+------+---------------------+--------------------+
| a    | ts                  | UNIX_TIMESTAMP(ts) |
+------+---------------------+--------------------+
|    1 | 2008-12-31 23:59:59 |         1230767999 |
|    2 | 2008-12-31 23:59:59 |         1230768000 |
+------+---------------------+--------------------+
2 rows in set (0.00 sec)

mysql> -- only the non-leap value matches
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:59';
+------+---------------------+
| a    | ts                  |
+------+---------------------+
|    1 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

mysql> -- the leap value with seconds=60 is invalid
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:60';
Empty set, 2 warnings (0.00 sec)

To work around this, you can use a comparison based on the UTC value actually stored in column,
which has the leap second correction applied:

mysql> -- selecting using UNIX_TIMESTAMP value return leap value
mysql> SELECT * FROM t1 WHERE UNIX_TIMESTAMP(ts) = 1230768000;
+------+---------------------+
| a    | ts                  |
+------+---------------------+
|    2 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

10.7 MySQL Server Locale Support
The locale indicated by the lc_time_names system variable controls the language used to display
day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(),
DAYNAME(), and MONTHNAME() functions.

lc_time_names does not affect the STR_TO_DATE() or GET_FORMAT() function.

The lc_time_names value does not affect the result from FORMAT(), but this function takes an
optional third parameter that enables a locale to be specified to be used for the result number's decimal
point, thousands separator, and grouping between separators. Permissible locale values are the same
as the legal values for the lc_time_names system variable.

Locale names have language and region subtags listed by IANA (http://www.iana.org/assignments/
language-subtag-registry) such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of
your system's locale setting, but you can set the value at server startup or set the GLOBAL value if you
have the SUPER privilege. Any client can examine the value of lc_time_names or set its SESSION
value to affect the locale for its own connection.

mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US           |
+-----------------+
1 row in set (0.00 sec)

http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry


MySQL Server Locale Support

1070

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| Friday                | January                 |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+-----------------------------------------+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+-----------------------------------------+
| Friday Fri January Jan                  |
+-----------------------------------------+
1 row in set (0.00 sec)

mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX           |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| viernes               | enero                   |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+-----------------------------------------+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+-----------------------------------------+
| viernes vie enero ene                   |
+-----------------------------------------+
1 row in set (0.00 sec)

The day or month name for each of the affected functions is converted from utf8 to the character set
indicated by the character_set_connection system variable.

lc_time_names may be set to any of the following locale values. The set of locales supported by
MySQL may differ from those supported by your operating system.

ar_AE: Arabic - United Arab Emirates ar_BH: Arabic - Bahrain

ar_DZ: Arabic - Algeria ar_EG: Arabic - Egypt

ar_IN: Arabic - India ar_IQ: Arabic - Iraq

ar_JO: Arabic - Jordan ar_KW: Arabic - Kuwait

ar_LB: Arabic - Lebanon ar_LY: Arabic - Libya

ar_MA: Arabic - Morocco ar_OM: Arabic - Oman

ar_QA: Arabic - Qatar ar_SA: Arabic - Saudi Arabia

ar_SD: Arabic - Sudan ar_SY: Arabic - Syria

ar_TN: Arabic - Tunisia ar_YE: Arabic - Yemen

be_BY: Belarusian - Belarus bg_BG: Bulgarian - Bulgaria

ca_ES: Catalan - Spain cs_CZ: Czech - Czech Republic

da_DK: Danish - Denmark de_AT: German - Austria

de_BE: German - Belgium de_CH: German - Switzerland



MySQL Server Locale Support

1071

de_DE: German - Germany de_LU: German - Luxembourg

el_GR: Greek - Greece en_AU: English - Australia

en_CA: English - Canada en_GB: English - United Kingdom

en_IN: English - India en_NZ: English - New Zealand

en_PH: English - Philippines en_US: English - United States

en_ZA: English - South Africa en_ZW: English - Zimbabwe

es_AR: Spanish - Argentina es_BO: Spanish - Bolivia

es_CL: Spanish - Chile es_CO: Spanish - Columbia

es_CR: Spanish - Costa Rica es_DO: Spanish - Dominican Republic

es_EC: Spanish - Ecuador es_ES: Spanish - Spain

es_GT: Spanish - Guatemala es_HN: Spanish - Honduras

es_MX: Spanish - Mexico es_NI: Spanish - Nicaragua

es_PA: Spanish - Panama es_PE: Spanish - Peru

es_PR: Spanish - Puerto Rico es_PY: Spanish - Paraguay

es_SV: Spanish - El Salvador es_US: Spanish - United States

es_UY: Spanish - Uruguay es_VE: Spanish - Venezuela

et_EE: Estonian - Estonia eu_ES: Basque - Basque

fi_FI: Finnish - Finland fo_FO: Faroese - Faroe Islands

fr_BE: French - Belgium fr_CA: French - Canada

fr_CH: French - Switzerland fr_FR: French - France

fr_LU: French - Luxembourg gl_ES: Galician - Spain

gu_IN: Gujarati - India he_IL: Hebrew - Israel

hi_IN: Hindi - India hr_HR: Croatian - Croatia

hu_HU: Hungarian - Hungary id_ID: Indonesian - Indonesia

is_IS: Icelandic - Iceland it_CH: Italian - Switzerland

it_IT: Italian - Italy ja_JP: Japanese - Japan

ko_KR: Korean - Republic of Korea lt_LT: Lithuanian - Lithuania

lv_LV: Latvian - Latvia mk_MK: Macedonian - FYROM

mn_MN: Mongolia - Mongolian ms_MY: Malay - Malaysia

nb_NO: Norwegian(Bokmål) - Norway nl_BE: Dutch - Belgium

nl_NL: Dutch - The Netherlands no_NO: Norwegian - Norway

pl_PL: Polish - Poland pt_BR: Portugese - Brazil

pt_PT: Portugese - Portugal ro_RO: Romanian - Romania

ru_RU: Russian - Russia ru_UA: Russian - Ukraine

sk_SK: Slovak - Slovakia sl_SI: Slovenian - Slovenia

sq_AL: Albanian - Albania sr_RS: Serbian - Yugoslavia

sv_FI: Swedish - Finland sv_SE: Swedish - Sweden

ta_IN: Tamil - India te_IN: Telugu - India

th_TH: Thai - Thailand tr_TR: Turkish - Turkey

uk_UA: Ukrainian - Ukraine ur_PK: Urdu - Pakistan

vi_VN: Vietnamese - Viet Nam zh_CN: Chinese - China

zh_HK: Chinese - Hong Kong zh_TW: Chinese - Taiwan Province of China



1072



1073

Chapter 11 Data Types

Table of Contents
11.1 Data Type Overview ........................................................................................................ 1074

11.1.1 Numeric Type Overview ........................................................................................ 1074
11.1.2 Date and Time Type Overview .............................................................................. 1077
11.1.3 String Type Overview ............................................................................................ 1078

11.2 Numeric Types ................................................................................................................ 1081
11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT ........................................................................................................................... 1082
11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC ........................................ 1082
11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE ................................ 1083
11.2.4 Bit-Value Type - BIT ............................................................................................. 1083
11.2.5 Numeric Type Attributes ........................................................................................ 1083
11.2.6 Out-of-Range and Overflow Handling ..................................................................... 1084

11.3 Date and Time Types ...................................................................................................... 1086
11.3.1 The DATE, DATETIME, and TIMESTAMP Types ................................................... 1087
11.3.2 The TIME Type .................................................................................................... 1088
11.3.3 The YEAR Type ................................................................................................... 1089
11.3.4 YEAR(2) Limitations and Migrating to YEAR(4) ...................................................... 1090
11.3.5 Automatic Initialization and Updating for TIMESTAMP ............................................ 1091
11.3.6 Fractional Seconds in Time Values ........................................................................ 1094
11.3.7 Conversion Between Date and Time Types ............................................................ 1094
11.3.8 Two-Digit Years in Dates ...................................................................................... 1095

11.4 String Types .................................................................................................................... 1096
11.4.1 The CHAR and VARCHAR Types ......................................................................... 1096
11.4.2 The BINARY and VARBINARY Types ................................................................... 1097
11.4.3 The BLOB and TEXT Types ................................................................................. 1099
11.4.4 The ENUM Type .................................................................................................. 1100
11.4.5 The SET Type ...................................................................................................... 1103

11.5 Extensions for Spatial Data .............................................................................................. 1105
11.5.1 Spatial Data Types ............................................................................................... 1107
11.5.2 The OpenGIS Geometry Model ............................................................................. 1107
11.5.3 Using Spatial Data ................................................................................................ 1113

11.6 Data Type Default Values ................................................................................................ 1120
11.7 Data Type Storage Requirements .................................................................................... 1122
11.8 Choosing the Right Type for a Column ............................................................................. 1125
11.9 Using Data Types from Other Database Engines .............................................................. 1126

MySQL supports a number of SQL data types in several categories: numeric types, date and time
types, string (character and byte) types, and spatial types. This chapter provides an overview of these
data types, a more detailed description of the properties of the types in each category, and a summary
of the data type storage requirements. The initial overview is intentionally brief. The more detailed
descriptions later in the chapter should be consulted for additional information about particular data
types, such as the permissible formats in which you can specify values.

Data type descriptions use these conventions:

•       M indicates the maximum display width for integer types. For floating-point and fixed-point types,
M is the total number of digits that can be stored (the precision). For string types, M is the maximum
length. The maximum permissible value of M depends on the data type.

•     D applies to floating-point and fixed-point types and indicates the number of digits following the
decimal point (the scale). The maximum possible value is 30, but should be no greater than M−2.

•   Square brackets ([ and ]) indicate optional parts of type definitions.



Data Type Overview

1074

11.1 Data Type Overview

11.1.1 Numeric Type Overview

A summary of the numeric data types follows. For additional information about properties and storage
requirements of the numeric types, see Section 11.2, “Numeric Types”, and Section 11.7, “Data Type
Storage Requirements”.

M indicates the maximum display width for integer types. The maximum display width is 255. Display
width is unrelated to the range of values a type can contain, as described in Section 11.2, “Numeric
Types”. For floating-point and fixed-point types, M is the total number of digits that can be stored.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to
the column.

Numeric data types that permit the UNSIGNED attribute also permit SIGNED. However, these data types
are signed by default, so the SIGNED attribute has no effect.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

Warning

When you use subtraction between integer values where one is of type
UNSIGNED, the result is unsigned unless the NO_UNSIGNED_SUBTRACTION
SQL mode is enabled. See Section 12.10, “Cast Functions and Operators”.

•   BIT[(M)]

A bit-value type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.

•   TINYINT[(M)] [UNSIGNED] [ZEROFILL]

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

•     BOOL, BOOLEAN

These types are synonyms for TINYINT(1). A value of zero is considered false. Nonzero values are
considered true:

mysql> SELECT IF(0, 'true', 'false');
+------------------------+
| IF(0, 'true', 'false') |
+------------------------+
| false                  |
+------------------------+

mysql> SELECT IF(1, 'true', 'false');
+------------------------+
| IF(1, 'true', 'false') |
+------------------------+
| true                   |
+------------------------+

mysql> SELECT IF(2, 'true', 'false');
+------------------------+
| IF(2, 'true', 'false') |
+------------------------+
| true                   |
+------------------------+



Numeric Type Overview

1075

However, the values TRUE and FALSE are merely aliases for 1 and 0, respectively, as shown here:

mysql> SELECT IF(0 = FALSE, 'true', 'false');
+--------------------------------+
| IF(0 = FALSE, 'true', 'false') |
+--------------------------------+
| true                           |
+--------------------------------+

mysql> SELECT IF(1 = TRUE, 'true', 'false');
+-------------------------------+
| IF(1 = TRUE, 'true', 'false') |
+-------------------------------+
| true                          |
+-------------------------------+

mysql> SELECT IF(2 = TRUE, 'true', 'false');
+-------------------------------+
| IF(2 = TRUE, 'true', 'false') |
+-------------------------------+
| false                         |
+-------------------------------+

mysql> SELECT IF(2 = FALSE, 'true', 'false');
+--------------------------------+
| IF(2 = FALSE, 'true', 'false') |
+--------------------------------+
| false                          |
+--------------------------------+

The last two statements display the results shown because 2 is equal to neither 1 nor 0.

•   SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

•   MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to
16777215.

•   INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is 0
to 4294967295.

•   INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This type is a synonym for INT.

•    BIGINT[(M)] [UNSIGNED] [ZEROFILL]

A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The
unsigned range is 0 to 18446744073709551615.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

Some things you should be aware of with respect to BIGINT columns:

•  All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned
big integers larger than 9223372036854775807 (63 bits) except with bit functions! If you do that,
some of the last digits in the result may be wrong because of rounding errors when converting a
BIGINT value to a DOUBLE.

MySQL can handle BIGINT in the following cases:



Numeric Type Overview

1076

• When using integers to store large unsigned values in a BIGINT column.

• In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT column.

• When using operators (+, -, *, and so on) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it using a string. In
this case, MySQL performs a string-to-number conversion that involves no intermediate double-
precision representation.

• The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This
means that if you multiply two big integers (or results from functions that return integers), you may
get unexpected results when the result is larger than 9223372036854775807.

•   DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

A packed “exact” fixed-point number. M is the total number of digits (the precision) and D is the
number of digits after the decimal point (the scale). The decimal point and (for negative numbers) the
- sign are not counted in M. If D is 0, values have no decimal point or fractional part. The maximum
number of digits (M) for DECIMAL is 65. The maximum number of supported decimals (D) is 30. If D is
omitted, the default is 0. If M is omitted, the default is 10.

UNSIGNED, if specified, disallows negative values.

All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.

•       DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED]
[ZEROFILL], FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with
other database systems.

•   FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Permissible values are -3.402823466E+38 to
-1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. These are the theoretical
limits, based on the IEEE standard. The actual range might be slightly smaller depending on your
hardware or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A single-precision floating-point
number is accurate to approximately 7 decimal places.

UNSIGNED, if specified, disallows negative values.

Using FLOAT might give you some unexpected problems because all calculations in MySQL are
done with double precision. See Section B.5.4.7, “Solving Problems with No Matching Rows”.

•     DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

A normal-size (double-precision) floating-point number. Permissible values are
-1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. These are the theoretical limits,
based on the IEEE standard. The actual range might be slightly smaller depending on your hardware
or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A double-precision floating-point
number is accurate to approximately 15 decimal places.

UNSIGNED, if specified, disallows negative values.



Date and Time Type Overview

1077

•     DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED]
[ZEROFILL]

These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled,
REAL is a synonym for FLOAT rather than DOUBLE.

•    FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision in bits, but MySQL uses this value only to
determine whether to use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the data
type becomes FLOAT with no M or D values. If p is from 25 to 53, the data type becomes DOUBLE
with no M or D values. The range of the resulting column is the same as for the single-precision
FLOAT or double-precision DOUBLE data types described earlier in this section.

  FLOAT(p) syntax is provided for ODBC compatibility.

11.1.2 Date and Time Type Overview

A summary of the temporal data types follows. For additional information about properties and storage
requirements of the temporal types, see Section 11.3, “Date and Time Types”, and Section 11.7,
“Data Type Storage Requirements”. For descriptions of functions that operate on temporal values, see
Section 12.7, “Date and Time Functions”.

For the DATE and DATETIME range descriptions, “supported” means that although earlier values might
work, there is no guarantee.

•   DATE

A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE values
in 'YYYY-MM-DD' format, but permits assignment of values to DATE columns using either strings or
numbers.

•   DATETIME

A date and time combination. The supported range is '1000-01-01 00:00:00' to '9999-12-31
23:59:59'. MySQL displays DATETIME values in 'YYYY-MM-DD HH:MM:SS' format, but permits
assignment of values to DATETIME columns using either strings or numbers.

•   TIMESTAMP

A timestamp. The range is '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07'
UTC. TIMESTAMP values are stored as the number of seconds since the epoch ('1970-01-01
00:00:00' UTC). A TIMESTAMP cannot represent the value '1970-01-01 00:00:00' because
that is equivalent to 0 seconds from the epoch and the value 0 is reserved for representing
'0000-00-00 00:00:00', the “zero” TIMESTAMP value.

Unless specified otherwise, the first TIMESTAMP column in a table is defined to be automatically set
to the date and time of the most recent modification if not explicitly assigned a value. This makes
TIMESTAMP useful for recording the timestamp of an INSERT or UPDATE operation. You can also
set any TIMESTAMP column to the current date and time by assigning it a NULL value, unless it
has been defined with the NULL attribute to permit NULL values. The automatic initialization and
updating to the current date and time can be specified using DEFAULT CURRENT_TIMESTAMP and
ON UPDATE CURRENT_TIMESTAMP clauses, as described in Section 11.3.5, “Automatic Initialization
and Updating for TIMESTAMP”.

•   TIME

A time. The range is '-838:59:59' to '838:59:59'. MySQL displays TIME values in
'HH:MM:SS' format, but permits assignment of values to TIME columns using either strings or
numbers.



String Type Overview

1078

•   YEAR[(2|4)]

A year in two-digit or four-digit format. The default is four-digit format. YEAR(2) or YEAR(4) differ
in display format, but have the same range of values. In four-digit format, values display as 1901 to
2155, and 0000. In two-digit format, values display as 70 to 69, representing years from 1970 to
2069. MySQL displays YEAR values in YYYY or YY format, but permits assignment of values to YEAR
columns using either strings or numbers.

Note

The YEAR(2) data type has certain issues that you should consider before
choosing to use it. As of MySQL 5.5.27, YEAR(2) is deprecated. For more
information, see Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”.

For additional information about YEAR display format and interpretation of input values, see
Section 11.3.3, “The YEAR Type”.

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values
to numbers, losing everything after the first nonnumeric character.) To work around this problem,
convert to numeric units, perform the aggregate operation, and convert back to a temporal value.
Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that
a table is created, TIMESTAMP columns are created as DATETIME columns. As
a result, such columns use DATETIME display format, have the same range of
values, and there is no automatic initialization or updating to the current date
and time. See Section 5.1.8, “Server SQL Modes”.

11.1.3 String Type Overview

A summary of the string data types follows. For additional information about properties and storage
requirements of the string types, see Section 11.4, “String Types”, and Section 11.7, “Data Type
Storage Requirements”.

In some cases, MySQL may change a string column to a type different from that given in a CREATE
TABLE or ALTER TABLE statement. See Section 13.1.17.7, “Silent Column Specification Changes”.

MySQL interprets length specifications in character column definitions in character units. This applies
to CHAR, VARCHAR, and the TEXT types.

Column definitions for many string data types can include attributes that specify the character set or
collation of the column. These attributes apply to the CHAR, VARCHAR, the TEXT types, ENUM, and SET
data types:

• The CHARACTER SET attribute specifies the character set, and the COLLATE attribute specifies a
collation for the character set. For example:

CREATE TABLE t
(
    c1 VARCHAR(20) CHARACTER SET utf8,
    c2 TEXT CHARACTER SET latin1 COLLATE latin1_general_cs
);



String Type Overview

1079

This table definition creates a column named c1 that has a character set of utf8 with the default
collation for that character set, and a column named c2 that has a character set of latin1 and a
case-sensitive collation.

The rules for assigning the character set and collation when either or both of the CHARACTER SET
and COLLATE attributes are missing are described in Section 10.1.3.5, “Column Character Set and
Collation”.

CHARSET is a synonym for CHARACTER SET.

• Specifying the CHARACTER SET binary attribute for a character string data type causes the
column to be created as the corresponding binary string data type: CHAR becomes BINARY,
VARCHAR becomes VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this
does not occur; they are created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
  c1 VARCHAR(10) CHARACTER SET binary,
  c2 TEXT CHARACTER SET binary,
  c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
  c1 VARBINARY(10),
  c2 BLOB,
  c3 ENUM('a','b','c') CHARACTER SET binary
);

• The BINARY attribute is shorthand for specifying the table default character set and the binary
(_bin) collation of that character set. In this case, comparison and sorting are based on numeric
character code values.

• The ASCII attribute is shorthand for CHARACTER SET latin1.

• The UNICODE attribute is shorthand for CHARACTER SET ucs2.

Character column comparison and sorting are based on the collation assigned to the column. For the
CHAR, VARCHAR, TEXT, ENUM, and SET data types, you can declare a column with a binary (_bin)
collation or the BINARY attribute to cause comparison and sorting to use the underlying character code
values rather than a lexical ordering.

For additional information about use of character sets in MySQL, see Section 10.1, “Character Set
Support”.

•         [NATIONAL] CHAR[(M)] [CHARACTER SET charset_name] [COLLATE
collation_name]

A fixed-length string that is always right-padded with spaces to the specified length when stored. M
represents the column length in characters. The range of M is 0 to 255. If M is omitted, the length is 1.

Note

Trailing spaces are removed when CHAR values are retrieved unless the
PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is the
standard SQL way to define that a CHAR column should use some predefined character set. MySQL
uses utf8 as this predefined character set. Section 10.1.3.7, “The National Character Set”.



String Type Overview

1080

The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.

MySQL permits you to create a column of type CHAR(0). This is useful primarily when you have to
be compliant with old applications that depend on the existence of a column but that do not actually
use its value. CHAR(0) is also quite nice when you need a column that can take only two values: A
column that is defined as CHAR(0) NULL occupies only one bit and can take only the values NULL
and '' (the empty string).

•             [NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE
collation_name]

A variable-length string. M represents the maximum column length in characters. The range of M
is 0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size
(65,535 bytes, which is shared among all columns) and the character set used. For example, utf8
characters can require up to three bytes per character, so a VARCHAR column that uses the utf8
character set can be declared to be a maximum of 21,844 characters. See Section C.10.4, “Limits on
Table Column Count and Row Size”.

MySQL stores VARCHAR values as a 1-byte or 2-byte length prefix plus data. The length prefix
indicates the number of bytes in the value. A VARCHAR column uses one length byte if values require
no more than 255 bytes, two length bytes if values may require more than 255 bytes.

Note

MySQL follows the standard SQL specification, and does not remove trailing
spaces from VARCHAR values.

VARCHAR is shorthand for CHARACTER VARYING. NATIONAL VARCHAR is the standard SQL way to
define that a VARCHAR column should use some predefined character set. MySQL uses utf8 as this
predefined character set. Section 10.1.3.7, “The National Character Set”. NVARCHAR is shorthand for
NATIONAL VARCHAR.

•   BINARY(M)

The BINARY type is similar to the CHAR type, but stores binary byte strings rather than nonbinary
character strings. M represents the column length in bytes.

•   VARBINARY(M)

The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than
nonbinary character strings. M represents the maximum column length in bytes.

•   TINYBLOB

A BLOB column with a maximum length of 255 (28 − 1) bytes. Each TINYBLOB value is stored using
a 1-byte length prefix that indicates the number of bytes in the value.

•   TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 255 (28 − 1) characters. The effective maximum length is
less if the value contains multibyte characters. Each TINYTEXT value is stored using a 1-byte length
prefix that indicates the number of bytes in the value.

•   BLOB[(M)]

A BLOB column with a maximum length of 65,535 (216 − 1) bytes. Each BLOB value is stored using a
2-byte length prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the
smallest BLOB type large enough to hold values M bytes long.



Numeric Types

1081

•   TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 65,535 (216 − 1) characters. The effective maximum length
is less if the value contains multibyte characters. Each TEXT value is stored using a 2-byte length
prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the
smallest TEXT type large enough to hold values M characters long.

•   MEDIUMBLOB

A BLOB column with a maximum length of 16,777,215 (224 − 1) bytes. Each MEDIUMBLOB value is
stored using a 3-byte length prefix that indicates the number of bytes in the value.

•   MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 16,777,215 (224 − 1) characters. The effective maximum
length is less if the value contains multibyte characters. Each MEDIUMTEXT value is stored using a 3-
byte length prefix that indicates the number of bytes in the value.

•   LONGBLOB

A BLOB column with a maximum length of 4,294,967,295 or 4GB (232 − 1) bytes. The effective
maximum length of LONGBLOB columns depends on the configured maximum packet size in the
client/server protocol and available memory. Each LONGBLOB value is stored using a 4-byte length
prefix that indicates the number of bytes in the value.

•   LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 4,294,967,295 or 4GB (232 − 1) characters. The effective
maximum length is less if the value contains multibyte characters. The effective maximum length
of LONGTEXT columns also depends on the configured maximum packet size in the client/server
protocol and available memory. Each LONGTEXT value is stored using a 4-byte length prefix that
indicates the number of bytes in the value.

•   ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

An enumeration. A string object that can have only one value, chosen from the list of values
'value1', 'value2', ..., NULL or the special '' error value. ENUM values are represented
internally as integers.

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than
3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET
columns considered as a group. For more information on these limits, see Section C.10.5, “Limits
Imposed by .frm File Structure”.

•   SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

A set. A string object that can have zero or more values, each of which must be chosen from the list
of values 'value1', 'value2', ... SET values are represented internally as integers.

A SET column can have a maximum of 64 distinct members. A table can have no more than 255
unique element list definitions among its ENUM and SET columns considered as a group. For more
information on this limit, see Section C.10.5, “Limits Imposed by .frm File Structure”.

11.2 Numeric Types
MySQL supports all standard SQL numeric data types. These types include the exact numeric data
types (INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric data



Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT

1082

types (FLOAT, REAL, and DOUBLE PRECISION). The keyword INT is a synonym for INTEGER, and
the keywords DEC and FIXED are synonyms for DECIMAL. MySQL treats DOUBLE as a synonym for
DOUBLE PRECISION (a nonstandard extension). MySQL also treats REAL as a synonym for DOUBLE
PRECISION (a nonstandard variation), unless the REAL_AS_FLOAT SQL mode is enabled.

The BIT data type stores bit values and is supported for MyISAM, MEMORY, InnoDB, and NDBCLUSTER
tables.

For information about how MySQL handles assignment of out-of-range values to columns and overflow
during expression evaluation, see Section 11.2.6, “Out-of-Range and Overflow Handling”.

For information about numeric type storage requirements, see Section 11.7, “Data Type Storage
Requirements”.

The data type used for the result of a calculation on numeric operands depends on the types of the
operands and the operations performed on them. For more information, see Section 12.6.1, “Arithmetic
Operators”.

11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT

MySQL supports the SQL standard integer types INTEGER (or INT) and SMALLINT. As an extension
to the standard, MySQL also supports the integer types TINYINT, MEDIUMINT, and BIGINT. The
following table shows the required storage and range for each integer type.

Type Storage Minimum Value Maximum Value

 (Bytes) (Signed/Unsigned) (Signed/Unsigned)

TINYINT 1 -128 127

  0 255

SMALLINT 2 -32768 32767

  0 65535

MEDIUMINT 3 -8388608 8388607

  0 16777215

INT 4 -2147483648 2147483647

  0 4294967295

BIGINT 8 -9223372036854775808 9223372036854775807

  0 18446744073709551615

11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC

The DECIMAL and NUMERIC types store exact numeric data values. These types are used when it
is important to preserve exact precision, for example with monetary data. In MySQL, NUMERIC is
implemented as DECIMAL, so the following remarks about DECIMAL apply equally to NUMERIC.

MySQL stores DECIMAL values in binary format. See Section 12.18, “Precision Math”.

In a DECIMAL column declaration, the precision and scale can be (and usually is) specified; for
example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of significant
digits that are stored for values, and the scale represents the number of digits that can be stored
following the decimal point.



Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

1083

Standard SQL requires that DECIMAL(5,2) be able to store any value with five digits and two
decimals, so values that can be stored in the salary column range from -999.99 to 999.99.

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax
DECIMAL is equivalent to DECIMAL(M,0), where the implementation is permitted to decide the value
of M. MySQL supports both of these variant forms of DECIMAL syntax. The default value of M is 10.

If the scale is 0, DECIMAL values contain no decimal point or fractional part.

The maximum number of digits for DECIMAL is 65, but the actual range for a given DECIMAL column
can be constrained by the precision or scale for a given column. When such a column is assigned a
value with more digits following the decimal point than are permitted by the specified scale, the value is
converted to that scale. (The precise behavior is operating system-specific, but generally the effect is
truncation to the permissible number of digits.)

11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

The FLOAT and DOUBLE types represent approximate numeric data values. MySQL uses four bytes for
single-precision values and eight bytes for double-precision values.

For FLOAT, the SQL standard permits an optional specification of the precision (but not the range of
the exponent) in bits following the keyword FLOAT in parentheses. MySQL also supports this optional
precision specification, but the precision value is used only to determine storage size. A precision from
0 to 23 results in a 4-byte single-precision FLOAT column. A precision from 24 to 53 results in an 8-byte
double-precision DOUBLE column.

MySQL permits a nonstandard syntax: FLOAT(M,D) or REAL(M,D) or DOUBLE PRECISION(M,D).
Here, (M,D) means than values can be stored with up to M digits in total, of which D digits may be
after the decimal point. For example, a column defined as FLOAT(7,4) will look like -999.9999
when displayed. MySQL performs rounding when storing values, so if you insert 999.00009 into a
FLOAT(7,4) column, the approximate result is 999.0001.

Because floating-point values are approximate and not stored as exact values, attempts to treat them
as exact in comparisons may lead to problems. They are also subject to platform or implementation
dependencies. For more information, see Section B.5.4.8, “Problems with Floating-Point Values”

For maximum portability, code requiring storage of approximate numeric data values should use FLOAT
or DOUBLE PRECISION with no specification of precision or number of digits.

11.2.4 Bit-Value Type - BIT

The BIT data type is used to store bit values. A type of BIT(M) enables storage of M-bit values. M can
range from 1 to 64.

To specify bit values, b'value' notation can be used. value is a binary value written using zeros and
ones. For example, b'111' and b'10000000' represent 7 and 128, respectively. See Section 9.1.5,
“Bit-Value Literals”.

If you assign a value to a BIT(M) column that is less than M bits long, the value is padded on the left
with zeros. For example, assigning a value of b'101' to a BIT(6) column is, in effect, the same as
assigning b'000101'.

NDB Cluster.  The maximum combined size of all BIT columns used in a given NDB table must not
exceed 4096 bits.

11.2.5 Numeric Type Attributes

MySQL supports an extension for optionally specifying the display width of integer data types in
parentheses following the base keyword for the type. For example, INT(4) specifies an INT with a
display width of four digits. This optional display width may be used by applications to display integer
values having a width less than the width specified for the column by left-padding them with spaces.



Out-of-Range and Overflow Handling

1084

(That is, this width is present in the metadata returned with result sets. Whether it is used or not is up to
the application.)

The display width does not constrain the range of values that can be stored in the column. Nor does
it prevent values wider than the column display width from being displayed correctly. For example, a
column specified as SMALLINT(3) has the usual SMALLINT range of -32768 to 32767, and values
outside the range permitted by three digits are displayed in full using more than three digits.

When used in conjunction with the optional (nonstandard) attribute ZEROFILL, the default padding of
spaces is replaced with zeros. For example, for a column declared as INT(4) ZEROFILL, a value of 5
is retrieved as 0005.

Note

The ZEROFILL attribute is ignored when a column is involved in expressions or
UNION queries.

If you store values larger than the display width in an integer column that has
the ZEROFILL attribute, you may experience problems when MySQL generates
temporary tables for some complicated joins. In these cases, MySQL assumes
that the data values fit within the column display width.

All integer types can have an optional (nonstandard) attribute UNSIGNED. Unsigned type can be used
to permit only nonnegative numbers in a column or when you need a larger upper numeric range for
the column. For example, if an INT column is UNSIGNED, the size of the column's range is the same
but its endpoints shift from -2147483648 and 2147483647 up to 0 and 4294967295.

Floating-point and fixed-point types also can be UNSIGNED. As with integer types, this attribute
prevents negative values from being stored in the column. Unlike the integer types, the upper range of
column values remains the same.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to
the column.

Integer or floating-point data types can have the additional attribute AUTO_INCREMENT. When you
insert a value of NULL into an indexed AUTO_INCREMENT column, the column is set to the next
sequence value. Typically this is value+1, where value is the largest value for the column currently in
the table. (AUTO_INCREMENT sequences begin with 1.)

Storing 0 into an AUTO_INCREMENT column has the same effect as storing NULL, unless the
NO_AUTO_VALUE_ON_ZERO SQL mode is enabled.

Inserting NULL to generate AUTO_INCREMENT values requires that the column be declared NOT NULL.
If the column is declared NULL, inserting NULL stores a NULL. When you insert any other value into an
AUTO_INCREMENT column, the column is set to that value and the sequence is reset so that the next
automatically generated value follows sequentially from the inserted value.

As of MySQL 5.5.29, negative values for AUTO_INCREMENT columns are not supported.

11.2.6 Out-of-Range and Overflow Handling

When MySQL stores a value in a numeric column that is outside the permissible range of the column
data type, the result depends on the SQL mode in effect at the time:

• If strict SQL mode is enabled, MySQL rejects the out-of-range value with an error, and the insert
fails, in accordance with the SQL standard.

• If no restrictive modes are enabled, MySQL clips the value to the appropriate endpoint of the column
data type range and stores the resulting value instead.

When an out-of-range value is assigned to an integer column, MySQL stores the value representing
the corresponding endpoint of the column data type range.



Out-of-Range and Overflow Handling

1085

When a floating-point or fixed-point column is assigned a value that exceeds the range implied by the
specified (or default) precision and scale, MySQL stores the value representing the corresponding
endpoint of that range.

Suppose that a table t1 has this definition:

CREATE TABLE t1 (i1 TINYINT, i2 TINYINT UNSIGNED);

With strict SQL mode enabled, an out of range error occurs:

mysql> SET sql_mode = 'TRADITIONAL';
mysql> INSERT INTO t1 (i1, i2) VALUES(256, 256);
ERROR 1264 (22003): Out of range value for column 'i1' at row 1
mysql> SELECT * FROM t1;
Empty set (0.00 sec)

With strict SQL mode not enabled, clipping with warnings occurs:

mysql> SET sql_mode = '';
mysql> INSERT INTO t1 (i1, i2) VALUES(256, 256);
mysql> SHOW WARNINGS;
+---------+------+---------------------------------------------+
| Level   | Code | Message                                     |
+---------+------+---------------------------------------------+
| Warning | 1264 | Out of range value for column 'i1' at row 1 |
| Warning | 1264 | Out of range value for column 'i2' at row 1 |
+---------+------+---------------------------------------------+
mysql> SELECT * FROM t1;
+------+------+
| i1   | i2   |
+------+------+
|  127 |  255 |
+------+------+

When strict SQL mode is not enabled, column-assignment conversions that occur due to clipping are
reported as warnings for ALTER TABLE, LOAD DATA INFILE, UPDATE, and multiple-row INSERT
statements. In strict mode, these statements fail, and some or all the values are not inserted or
changed, depending on whether the table is a transactional table and other factors. For details, see
Section 5.1.8, “Server SQL Modes”.

Overflow during numeric expression evaluation results in an error. For example, the largest signed
BIGINT value is 9223372036854775807, so the following expression produces an error:

mysql> SELECT 9223372036854775807 + 1;
ERROR 1690 (22003): BIGINT value is out of range in '(9223372036854775807 + 1)'

To enable the operation to succeed in this case, convert the value to unsigned;

mysql> SELECT CAST(9223372036854775807 AS UNSIGNED) + 1;
+-------------------------------------------+
| CAST(9223372036854775807 AS UNSIGNED) + 1 |
+-------------------------------------------+
|                       9223372036854775808 |
+-------------------------------------------+

Whether overflow occurs depends on the range of the operands, so another way to handle the
preceding expression is to use exact-value arithmetic because DECIMAL values have a larger range
than integers:

mysql> SELECT 9223372036854775807.0 + 1;
+---------------------------+



Date and Time Types

1086

| 9223372036854775807.0 + 1 |
+---------------------------+
|     9223372036854775808.0 |
+---------------------------+

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by
default. If the result would otherwise have been negative, an error results:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
|                      -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped to
the maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is enabled. If
strict SQL mode is enabled, an error occurs and the column remains unchanged.

11.3 Date and Time Types

The date and time types for representing temporal values are DATE, TIME, DATETIME, TIMESTAMP,
and YEAR. Each temporal type has a range of valid values, as well as a “zero” value that may be
used when you specify an invalid value that MySQL cannot represent. The TIMESTAMP type has
special automatic updating behavior, described later. For temporal type storage requirements, see
Section 11.7, “Data Type Storage Requirements”.

Keep in mind these general considerations when working with date and time types:

• MySQL retrieves values for a given date or time type in a standard output format, but it attempts to
interpret a variety of formats for input values that you supply (for example, when you specify a value
to be assigned to or compared to a date or time type). For a description of the permitted formats for
date and time types, see Section 9.1.3, “Date and Time Literals”. It is expected that you supply valid
values. Unpredictable results may occur if you use values in other formats.

• Although MySQL tries to interpret values in several formats, date parts must always be given in year-
month-day order (for example, '98-09-04'), rather than in the month-day-year or day-month-year
orders commonly used elsewhere (for example, '09-04-98', '04-09-98').

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 70-99 are converted to 1970-1999.

• Year values in the range 00-69 are converted to 2000-2069.

See also Section 11.3.8, “Two-Digit Years in Dates”.

• Conversion of values from one temporal type to another occurs according to the rules in
Section 11.3.7, “Conversion Between Date and Time Types”.

• MySQL automatically converts a date or time value to a number if the value is used in a numeric
context and vice versa.



The DATE, DATETIME, and TIMESTAMP Types

1087

• By default, when MySQL encounters a value for a date or time type that is out of range or otherwise
invalid for the type, it converts the value to the “zero” value for that type. The exception is that out-of-
range TIME values are clipped to the appropriate endpoint of the TIME range.

• By setting the SQL mode to the appropriate value, you can specify more exactly what kind of dates
you want MySQL to support. (See Section 5.1.8, “Server SQL Modes”.) You can get MySQL to
accept certain dates, such as '2009-11-31', by enabling the ALLOW_INVALID_DATES SQL
mode. This is useful when you want to store a “possibly wrong” value which the user has specified
(for example, in a web form) in the database for future processing. Under this mode, MySQL verifies
only that the month is in the range from 1 to 12 and that the day is in the range from 1 to 31.

• MySQL permits you to store dates where the day or month and day are zero in a DATE or DATETIME
column. This is useful for applications that need to store birthdates for which you may not know
the exact date. In this case, you simply store the date as '2009-00-00' or '2009-01-00'. If
you store dates such as these, you should not expect to get correct results for functions such as
DATE_SUB() or DATE_ADD() that require complete dates. To disallow zero month or day parts in
dates, enable the NO_ZERO_IN_DATE SQL mode.

• MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some
cases more convenient than using NULL values, and uses less data and index space. To disallow
'0000-00-00', enable the NO_ZERO_DATE SQL mode.

• “Zero” date or time values used through Connector/ODBC are converted automatically to NULL
because ODBC cannot handle such values.

The following table shows the format of the “zero” value for each type. The “zero” values are special,
but you can store or refer to them explicitly using the values shown in the table. You can also do this
using the values '0' or 0, which are easier to write. For temporal types that include a date part (DATE,
DATETIME, and TIMESTAMP), use of these values produces warnings if the NO_ZERO_DATE SQL
mode is enabled.

Data Type “Zero” Value

DATE '0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'

TIMESTAMP '0000-00-00 00:00:00'

YEAR 0000

11.3.1 The DATE, DATETIME, and TIMESTAMP Types

The DATE, DATETIME, and TIMESTAMP types are related. This section describes their characteristics,
how they are similar, and how they differ. MySQL recognizes DATE, DATETIME, and TIMESTAMP
values in several formats, described in Section 9.1.3, “Date and Time Literals”. For the DATE and
DATETIME range descriptions, “supported” means that although earlier values might work, there is no
guarantee.

The DATE type is used for values with a date part but no time part. MySQL retrieves and displays DATE
values in 'YYYY-MM-DD' format. The supported range is '1000-01-01' to '9999-12-31'.

The DATETIME type is used for values that contain both date and time parts. MySQL retrieves
and displays DATETIME values in 'YYYY-MM-DD HH:MM:SS' format. The supported range is
'1000-01-01 00:00:00' to '9999-12-31 23:59:59'.

The TIMESTAMP data type is used for values that contain both date and time parts. TIMESTAMP has a
range of '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.

MySQL converts TIMESTAMP values from the current time zone to UTC for storage, and back from
UTC to the current time zone for retrieval. (This does not occur for other types such as DATETIME.)
By default, the current time zone for each connection is the server's time. The time zone can be set



The TIME Type

1088

on a per-connection basis. As long as the time zone setting remains constant, you get back the same
value you store. If you store a TIMESTAMP value, and then change the time zone and retrieve the
value, the retrieved value is different from the value you stored. This occurs because the same time
zone was not used for conversion in both directions. The current time zone is available as the value of
the time_zone system variable. For more information, see Section 10.6, “MySQL Server Time Zone
Support”.

The TIMESTAMP data type offers automatic initialization and updating to the current date and time. For
more information, see Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. Although this fractional part is recognized, it is discarded from values stored into
DATETIME or TIMESTAMP columns. For information about fractional seconds support in MySQL, see
Section 11.3.6, “Fractional Seconds in Time Values”.

Invalid DATE, DATETIME, or TIMESTAMP values are converted to the “zero” value of the appropriate
type ('0000-00-00' or '0000-00-00 00:00:00').

Be aware of certain properties of date value interpretation in MySQL:

• MySQL permits a “relaxed” format for values specified as strings, in which any punctuation character
may be used as the delimiter between date parts or time parts. In some cases, this syntax can be
deceiving. For example, a value such as '10:11:12' might look like a time value because of the
:, but is interpreted as the year '2010-11-12' if used in a date context. The value '10:45:15' is
converted to '0000-00-00' because '45' is not a valid month.

• The server requires that month and day values be valid, and not merely in the range 1 to 12 and 1
to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted
to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate
an error. To permit such dates, enable ALLOW_INVALID_DATES. See Section 5.1.8, “Server SQL
Modes”, for more information.

• MySQL does not accept TIMESTAMP values that include a zero in the day or month column or values
that are not a valid date. The sole exception to this rule is the special “zero” value '0000-00-00
00:00:00'.

• CAST() treats a TIMESTAMP value as a string when not selecting from a table. (This is true even if
you specify FROM DUAL.) See Section 12.10, “Cast Functions and Operators”.

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

See also Section 11.3.8, “Two-Digit Years in Dates”.

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that
a table is created, TIMESTAMP columns are created as DATETIME columns. As
a result, such columns use DATETIME display format, have the same range of
values, and there is no automatic initialization or updating to the current date
and time. See Section 5.1.8, “Server SQL Modes”.

11.3.2 The TIME Type

MySQL retrieves and displays TIME values in 'HH:MM:SS' format (or 'HHH:MM:SS' format for large
hours values). TIME values may range from '-838:59:59' to '838:59:59'. The hours part may



The YEAR Type

1089

be so large because the TIME type can be used not only to represent a time of day (which must be
less than 24 hours), but also elapsed time or a time interval between two events (which may be much
greater than 24 hours, or even negative).

MySQL recognizes TIME values in several formats, described in Section 9.1.3, “Date and Time
Literals”. Some of these formats can include a trailing fractional seconds part in up to microseconds (6
digits) precision. Although this fractional part is recognized, it is discarded from values stored into TIME
columns. For information about fractional seconds support in MySQL, see Section 11.3.6, “Fractional
Seconds in Time Values”.

Be careful about assigning abbreviated values to a TIME column. MySQL interprets abbreviated TIME
values with colons as time of the day. That is, '11:12' means '11:12:00', not '00:11:12'.
MySQL interprets abbreviated values without colons using the assumption that the two rightmost digits
represent seconds (that is, as elapsed time rather than as time of day). For example, you might think of
'1112' and 1112 as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them
as '00:11:12' (11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'.

By default, values that lie outside the TIME range but are otherwise valid are clipped to the
closest endpoint of the range. For example, '-850:00:00' and '850:00:00' are converted to
'-838:59:59' and '838:59:59'. Invalid TIME values are converted to '00:00:00'. Note that
because '00:00:00' is itself a valid TIME value, there is no way to tell, from a value of '00:00:00'
stored in a table, whether the original value was specified as '00:00:00' or whether it was invalid.

For more restrictive treatment of invalid TIME values, enable strict SQL mode to cause errors to occur.
See Section 5.1.8, “Server SQL Modes”.

11.3.3 The YEAR Type

The YEAR type is a 1-byte type used to represent year values. It can be declared as YEAR(4) or
YEAR(2) to specify a display width of four or two characters. The default is four characters if no width
is given.

Note

The YEAR(2) data type has certain issues that you should consider before
choosing to use it. As of MySQL 5.5.27, YEAR(2) is deprecated. For more
information, see Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”.

YEAR(4) and YEAR(2) differ in display format, but have the same range of values. For 4-digit format,
MySQL displays YEAR values in YYYY format, with a range of 1901 to 2155, or 0000. For 2-digit
format, MySQL displays only the last two (least significant) digits; for example, 70 (1970 or 2070) or 69
(2069).

You can specify input YEAR values in a variety of formats:

• As a 4-digit number in the range 1901 to 2155.

• As a 4-digit string in the range '1901' to '2155'.

• As a 1- or 2-digit number in the range 1 to 99. MySQL converts values in the ranges 1 to 69 and 70
to 99 to YEAR values in the ranges 2001 to 2069 and 1970 to 1999.

• As a 1- or 2-digit string in the range '0' to '99'. MySQL converts values in the ranges '0' to '69'
and '70' to '99' to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.

• Inserting a numeric 0 has a different effect for YEAR(2) and YEAR(4). For YEAR(2), the result has
a display value of 00 and an internal value of 2000. For YEAR(4), the result has a display value
of 0000 and an internal value of 0000. To specify zero for YEAR(4) and have it be interpreted as
2000, specify it as a string '0' or '00'.



YEAR(2) Limitations and Migrating to YEAR(4)

1090

• As the result of a function that returns a value that is acceptable in a YEAR context, such as NOW().

MySQL converts invalid YEAR values to 0000.

See also Section 11.3.8, “Two-Digit Years in Dates”.

11.3.4 YEAR(2) Limitations and Migrating to YEAR(4)

This section describes problems that can occur when using YEAR(2) and provides information about
converting existing YEAR(2) columns to YEAR(4).

Although the internal range of values for YEAR(4) and YEAR(2) is the same (1901 to 2155, and
0000), the display width for YEAR(2) makes that type inherently ambiguous because displayed
values indicate only the last two digits of the internal values and omit the century digits. The result can
be a loss of information under certain circumstances. For this reason, consider avoiding YEAR(2)
throughout your applications and using YEAR(4) wherever you need a YEAR data type. Note that
conversion will become necessary at some point because support for YEAR data types with display
values other than 4, most notably YEAR(2), is reduced as of MySQL 5.6.6 and will be removed entirely
in a future release.

YEAR(2) Limitations

Issues with the YEAR(2) data type include ambiguity of displayed values, and possible loss of
information when values are dumped and reloaded or converted to strings.

• Displayed YEAR(2) values can be ambiguous. It is possible for up to three YEAR(2) values
that have different internal values to have the same displayed value, as the following example
demonstrates:

mysql> CREATE TABLE t (y2 YEAR(2), y4 YEAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t (y2) VALUES(1912),(2012),(2112);
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0

mysql> UPDATE t SET y4 = y2;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3  Changed: 3  Warnings: 0

mysql> SELECT * FROM t;
+------+------+
| y2   | y4   |
+------+------+
|   12 | 1912 |
|   12 | 2012 |
|   12 | 2112 |
+------+------+
3 rows in set (0.00 sec)

• If you use mysqldump to dump the table created in the preceding item, the dump file represents all
y2 values using the same 2-digit representation (12). If you reload the table from the dump file, all
resulting rows have internal value 2012 and display value 12, thus losing the distinctions among
them.

• Conversion of a YEAR(2) or YEAR(4) data value to string form uses the display width of the YEAR
type. Suppose that YEAR(2) and YEAR(4) columns both contain the value 1970. Assigning each
column to a string results in a value of '70' or '1970', respectively. That is, loss of information
occurs for conversion from YEAR(2) to string.

• Values outside the range from 1970 to 2069 are stored incorrectly when inserted into a YEAR(2)
column in a CSV table. For example, inserting 2111 results in a display value of 11 but an internal
value of 2011.



Automatic Initialization and Updating for TIMESTAMP

1091

To avoid these problems, use YEAR(4) rather than YEAR(2). Suggestions regarding migration
strategies appear later in this section.

Migrating from YEAR(2) to YEAR(4)

To convert YEAR(2) columns to YEAR(4), use ALTER TABLE. Suppose that a table t1 has this
definition:

CREATE TABLE t1 (ycol YEAR(2) NOT NULL DEFAULT '70');

Modify the column using ALTER TABLE as follows. Remember to include any column attributes such
as NOT NULL or DEFAULT:

ALTER TABLE t1 MODIFY ycol YEAR(4) NOT NULL DEFAULT '1970';

The ALTER TABLE statement converts the table without changing YEAR(2) values. If the server is
a replication master, the ALTER TABLE statement replicates to slaves and makes the corresponding
table change on each one.

One migration method should be avoided: Do not dump your data with mysqldump and reload the
dump file after upgrading. This has the potential to change YEAR(2) values, as described previously.

A migration from YEAR(2) to YEAR(4) should also involve examining application code for the
possibility of changed behavior under conditions such as these:

• Code that expects selecting a YEAR column to produce exactly two digits.

• Code that does not account for different handling for inserts of numeric 0: Inserting 0 into YEAR(2)
or YEAR(4) results in an internal value of 2000 or 0000, respectively.

11.3.5 Automatic Initialization and Updating for TIMESTAMP

Note

In older versions of MySQL (prior to 4.1), the properties of the TIMESTAMP
data type differed significantly in several ways from what is described in this
section (see the MySQL 3.23, 4.0, 4.1 Reference Manual for details); these
include syntax extensions which are deprecated in MySQL 5.1, and no longer
supported in MySQL 5.5. This has implications for performing a dump and
restore or replicating between MySQL Server versions. If you are using columns
that are defined using the old TIMESTAMP(N) syntax, see Section 2.11.1.1,
“Changes Affecting Upgrades to MySQL 5.5”, prior to upgrading to MySQL 5.5.

The TIMESTAMP data type offers automatic initialization and updating to the current date and time (that
is, the current timestamp). You can choose whether to use these properties and which column should
have them:

• One TIMESTAMP column in a table can have the current timestamp as the default value for initializing
the column, as the auto-update value, or both. It is not possible to have the current timestamp be the
default value for one column and the auto-update value for another column.

• If the column is auto-initialized, it is set to the current timestamp for inserted rows that specify no
value for the column.

• If the column is auto-updated, it is automatically updated to the current timestamp when the value
of any other column in the row is changed from its current value. The column remains unchanged
if all other columns are set to their current values. To prevent the column from updating when
other columns change, explicitly set it to its current value. To update the column even when
other columns do not change, explicitly set it to the value it should have (for example, set it to
CURRENT_TIMESTAMP).



Automatic Initialization and Updating for TIMESTAMP

1092

In addition, you can initialize or update any TIMESTAMP column to the current date and time by
assigning it a NULL value, unless it has been defined with the NULL attribute to permit NULL values.

To specify automatic properties, use the DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP clauses. The order of the clauses does not matter. If both are present in a
column definition, either can occur first. Any of the synonyms for CURRENT_TIMESTAMP have the
same meaning as CURRENT_TIMESTAMP. These are CURRENT_TIMESTAMP(), NOW(), LOCALTIME,
LOCALTIME(), LOCALTIMESTAMP, and LOCALTIMESTAMP().

Use of DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP is specific to
TIMESTAMP. The DEFAULT clause also can be used to specify a constant (nonautomatic) default
value; for example, DEFAULT 0 or DEFAULT '2000-01-01 00:00:00'.

Note

The following examples use DEFAULT 0, a default that can produce warnings
or errors depending on whether strict SQL mode or the NO_ZERO_DATE SQL
mode is enabled. Be aware that the TRADITIONAL SQL mode includes strict
mode and NO_ZERO_DATE. See Section 5.1.8, “Server SQL Modes”.

The following rules describe the possibilities for defining the first TIMESTAMP column in a table with the
current timestamp for both the default and auto-update values, for one but not the other, or for neither:

• With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP, the column
has the current timestamp for its default value and is automatically updated to the current timestamp.

CREATE TABLE t1 (
  ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

• With neither DEFAULT CURRENT_TIMESTAMP nor ON UPDATE CURRENT_TIMESTAMP, it is the
same as specifying both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP.

CREATE TABLE t1 (
  ts TIMESTAMP
);

• With a DEFAULT clause but no ON UPDATE CURRENT_TIMESTAMP clause, the column has the
given default value and is not automatically updated to the current timestamp.

The default depends on whether the DEFAULT clause specifies CURRENT_TIMESTAMP or a constant
value. With CURRENT_TIMESTAMP, the default is the current timestamp.

CREATE TABLE t1 (
  ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

With a constant, the default is the given value. In this case, the column has no automatic properties
at all.

CREATE TABLE t1 (
  ts TIMESTAMP DEFAULT 0
);

• With an ON UPDATE CURRENT_TIMESTAMP clause and a constant DEFAULT clause, the column is
automatically updated to the current timestamp and has the given constant default value.

CREATE TABLE t1 (
  ts TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP
);



Automatic Initialization and Updating for TIMESTAMP

1093

• With an ON UPDATE CURRENT_TIMESTAMP clause but no DEFAULT clause, the column is
automatically updated to the current timestamp. The default is 0 unless the column is defined with
the NULL attribute, in which case the default is NULL.

CREATE TABLE t1 (
  ts TIMESTAMP ON UPDATE CURRENT_TIMESTAMP      -- default 0
);
CREATE TABLE t2 (
  ts TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP -- default NULL
);

It need not be the first TIMESTAMP column in a table that is automatically initialized or updated to the
current timestamp. However, to specify automatic initialization or updating for a different TIMESTAMP
column, you must suppress the automatic properties for the first one. Then, for the other TIMESTAMP
column, the rules for the DEFAULT and ON UPDATE clauses are the same as for the first TIMESTAMP
column, except that if you omit both clauses, no automatic initialization or updating occurs.

To suppress automatic properties for the first TIMESTAMP column, do either of the following:

• Define the column with a DEFAULT clause that specifies a constant default value.

• Specify the NULL attribute. This also causes the column to permit NULL values, which means that
you cannot assign the current timestamp by setting the column to NULL. Assigning NULL sets the
column to NULL.

Consider these table definitions:

CREATE TABLE t1 (
  ts1 TIMESTAMP DEFAULT 0,
  ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t2 (
  ts1 TIMESTAMP NULL,
  ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t3 (
  ts1 TIMESTAMP NULL DEFAULT 0,
  ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                ON UPDATE CURRENT_TIMESTAMP);

The tables have these properties:

• In each table definition, the first TIMESTAMP column has no automatic initialization or updating.

• The tables differ in how the ts1 column handles NULL values. For t1, ts1 is NOT NULL and
assigning it a value of NULL sets it to the current timestamp. For t2 and t3, ts1 permits NULL and
assigning it a value of NULL sets it to NULL.

• t2 and t3 differ in the default value for ts1. For t2, ts1 is defined to permit NULL, so the default
is also NULL in the absence of an explicit DEFAULT clause. For t3, ts1 permits NULL but has an
explicit default of 0.

TIMESTAMP Initialization and the NULL Attribute

By default, TIMESTAMP columns are NOT NULL, cannot contain NULL values, and assigning NULL
assigns the current timestamp. To permit a TIMESTAMP column to contain NULL, explicitly declare
it with the NULL attribute. In this case, the default value also becomes NULL unless overridden with
a DEFAULT clause that specifies a different default value. DEFAULT NULL can be used to explicitly
specify NULL as the default value. (For a TIMESTAMP column not declared with the NULL attribute,
DEFAULT NULL is invalid.) If a TIMESTAMP column permits NULL values, assigning NULL sets it to
NULL, not to the current timestamp.

The following table contains several TIMESTAMP columns that permit NULL values:



Fractional Seconds in Time Values

1094

CREATE TABLE t
(
  ts1 TIMESTAMP NULL DEFAULT NULL,
  ts2 TIMESTAMP NULL DEFAULT 0,
  ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP
);

A TIMESTAMP column that permits NULL values does not take on the current timestamp at insert time
except under one of the following conditions:

• Its default value is defined as CURRENT_TIMESTAMP and no value is specified for the column

• CURRENT_TIMESTAMP or any of its synonyms such as NOW() is explicitly inserted into the column

In other words, a TIMESTAMP column defined to permit NULL values auto-initializes only if its definition
includes DEFAULT CURRENT_TIMESTAMP:

CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);

If the TIMESTAMP column permits NULL values but its definition does not include DEFAULT
CURRENT_TIMESTAMP, you must explicitly insert a value corresponding to the current date and time.
Suppose that tables t1 and t2 have these definitions:

CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT NULL);

To set the TIMESTAMP column in either table to the current timestamp at insert time, explicitly assign it
that value. For example:

INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);
INSERT INTO t1 VALUES (NOW());

11.3.6 Fractional Seconds in Time Values

A trailing fractional seconds part is permissible for temporal values in contexts such as literal values,
and in the arguments to or return values from some temporal functions. Example:

mysql> SELECT MICROSECOND('2010-12-10 14:12:09.019473');
+-------------------------------------------+
| MICROSECOND('2010-12-10 14:12:09.019473') |
+-------------------------------------------+
|                                     19473 |
+-------------------------------------------+

However, when MySQL stores a value into a column of any temporal data type, it discards any
fractional part and does not store it.

11.3.7 Conversion Between Date and Time Types

To some extent, you can convert a value from one temporal type to another. However, there may be
some alteration of the value or loss of information. In all cases, conversion between temporal types
is subject to the range of valid values for the resulting type. For example, although DATE, DATETIME,
and TIMESTAMP values all can be specified using the same set of formats, the types do not all
have the same range of values. TIMESTAMP values cannot be earlier than 1970 UTC or later than
'2038-01-19 03:14:07' UTC. This means that a date such as '1968-01-01', while valid as a
DATE or DATETIME value, is not valid as a TIMESTAMP value and is converted to 0.

Conversion of DATE values:



Two-Digit Years in Dates

1095

• Conversion to a DATETIME or TIMESTAMP value adds a time part of '00:00:00' because the
DATE value contains no time information.

• Conversion to a TIME value is not useful; the result is '00:00:00'.

Conversion of DATETIME and TIMESTAMP values:

• Conversion to a DATE value discards the time part because the DATE type contains no time
information.

• Conversion to a TIME value discards the date part because the TIME type contains no date
information.

Conversion of TIME values:

MySQL converts a time value to a date or date-and-time value by parsing the string value of the time
as a date or date-and-time. This is unlikely to be useful. For example, '23:12:31' interpreted as a
date becomes '2023-12-31'. Time values not valid as dates become '0000-00-00' or NULL.

Explicit conversion can be used to override implicit conversion. For example, in comparison of DATE
and DATETIME values, the DATE value is coerced to the DATETIME type by adding a time part of
'00:00:00'. To perform the comparison by ignoring the time part of the DATETIME value instead,
use the CAST() function in the following way:

date_col = CAST(datetime_col AS DATE)

Conversion of TIME or DATETIME values to numeric form (for example, by adding +0) results in a
double-precision value with a microseconds part of .000000:

mysql> SELECT CURTIME(), CURTIME()+0;
+-----------+---------------+
| CURTIME() | CURTIME()+0   |
+-----------+---------------+
| 10:41:36  | 104136.000000 |
+-----------+---------------+
mysql> SELECT NOW(), NOW()+0;
+---------------------+-----------------------+
| NOW()               | NOW()+0               |
+---------------------+-----------------------+
| 2007-11-30 10:41:47 | 20071130104147.000000 |
+---------------------+-----------------------+

11.3.8 Two-Digit Years in Dates

Date values with two-digit years are ambiguous because the century is unknown. Such values must be
interpreted into four-digit form because MySQL stores years internally using four digits.

For DATETIME, DATE, and TIMESTAMP types, MySQL interprets dates specified with ambiguous year
values using these rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

For YEAR, the rules are the same, with this exception: A numeric 00 inserted into YEAR(4) results in
0000 rather than 2000. To specify zero for YEAR(4) and have it be interpreted as 2000, specify it as a
string '0' or '00'.

Remember that these rules are only heuristics that provide reasonable guesses as to what your data
values mean. If the rules used by MySQL do not produce the values you require, you must provide
unambiguous input containing four-digit year values.

ORDER BY properly sorts YEAR values that have two-digit years.



String Types

1096

Some functions like MIN() and MAX() convert a YEAR to a number. This means that a value with a
two-digit year does not work properly with these functions. The fix in this case is to convert the YEAR to
four-digit year format.

11.4 String Types

The string types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET. This
section describes how these types work and how to use them in your queries. For string type storage
requirements, see Section 11.7, “Data Type Storage Requirements”.

11.4.1 The CHAR and VARCHAR Types

The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved. They also
differ in maximum length and in whether trailing spaces are retained.

The CHAR and VARCHAR types are declared with a length that indicates the maximum number of
characters you want to store. For example, CHAR(30) can hold up to 30 characters.

The length of a CHAR column is fixed to the length that you declare when you create the table. The
length can be any value from 0 to 255. When CHAR values are stored, they are right-padded with
spaces to the specified length. When CHAR values are retrieved, trailing spaces are removed unless
the PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

Values in VARCHAR columns are variable-length strings. The length can be specified as a value from
0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535
bytes, which is shared among all columns) and the character set used. See Section C.10.4, “Limits on
Table Column Count and Row Size”.

In contrast to CHAR, VARCHAR values are stored as a 1-byte or 2-byte length prefix plus data. The
length prefix indicates the number of bytes in the value. A column uses one length byte if values
require no more than 255 bytes, two length bytes if values may require more than 255 bytes.

If strict SQL mode is not enabled and you assign a value to a CHAR or VARCHAR column that exceeds
the column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion
of the value by using strict SQL mode. See Section 5.1.8, “Server SQL Modes”.

For VARCHAR columns, trailing spaces in excess of the column length are truncated prior to insertion
and a warning is generated, regardless of the SQL mode in use. For CHAR columns, truncation of
excess trailing spaces from inserted values is performed silently regardless of the SQL mode.

VARCHAR values are not padded when they are stored. Trailing spaces are retained when values are
stored and retrieved, in conformance with standard SQL.

The following table illustrates the differences between CHAR and VARCHAR by showing the result of
storing various string values into CHAR(4) and VARCHAR(4) columns (assuming that the column uses
a single-byte character set such as latin1).

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

'' '    ' 4 bytes '' 1 byte

'ab' 'ab  ' 4 bytes 'ab' 3 bytes

'abcd' 'abcd' 4 bytes 'abcd' 5 bytes

'abcdefgh' 'abcd' 4 bytes 'abcd' 5 bytes

The values shown as stored in the last row of the table apply only when not using strict mode; if
MySQL is running in strict mode, values that exceed the column length are not stored, and an error
results.



The BINARY and VARBINARY Types

1097

InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length
fields, which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the
maximum byte length of the character set is greater than 3, as it is with utf8mb4.

If a given value is stored into the CHAR(4) and VARCHAR(4) columns, the values retrieved from the
columns are not always the same because trailing spaces are removed from CHAR columns upon
retrieval. The following example illustrates this difference:

mysql> CREATE TABLE vc (v VARCHAR(4), c CHAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO vc VALUES ('ab  ', 'ab  ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT CONCAT('(', v, ')'), CONCAT('(', c, ')') FROM vc;
+---------------------+---------------------+
| CONCAT('(', v, ')') | CONCAT('(', c, ')') |
+---------------------+---------------------+
| (ab  )              | (ab)                |
+---------------------+---------------------+
1 row in set (0.06 sec)

Values in CHAR and VARCHAR columns are sorted and compared according to the character set
collation assigned to the column.

All MySQL collations are of type PAD SPACE. This means that all CHAR, VARCHAR, and TEXT values
are compared without regard to any trailing spaces. “Comparison” in this context does not include the
LIKE pattern-matching operator, for which trailing spaces are significant. For example:

mysql> CREATE TABLE names (myname CHAR(10));
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO names VALUES ('Monty');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT myname = 'Monty', myname = 'Monty  ' FROM names;
+------------------+--------------------+
| myname = 'Monty' | myname = 'Monty  ' |
+------------------+--------------------+
|                1 |                  1 |
+------------------+--------------------+
1 row in set (0.00 sec)

mysql> SELECT myname LIKE 'Monty', myname LIKE 'Monty  ' FROM names;
+---------------------+-----------------------+
| myname LIKE 'Monty' | myname LIKE 'Monty  ' |
+---------------------+-----------------------+
|                   1 |                     0 |
+---------------------+-----------------------+
1 row in set (0.00 sec)

This is true for all MySQL versions, and is not affected by the server SQL mode.

Note

For more information about MySQL character sets and collations, see
Section 10.1, “Character Set Support”. For additional information about storage
requirements, see Section 11.7, “Data Type Storage Requirements”.

For those cases where trailing pad characters are stripped or comparisons ignore them, if a column
has an index that requires unique values, inserting into the column values that differ only in number
of trailing pad characters will result in a duplicate-key error. For example, if a table contains 'a', an
attempt to store 'a ' causes a duplicate-key error.

11.4.2 The BINARY and VARBINARY Types



The BINARY and VARBINARY Types

1098

The BINARY and VARBINARY types are similar to CHAR and VARCHAR, except that they contain binary
strings rather than nonbinary strings. That is, they contain byte strings rather than character strings.
This means they have the binary character set and collation, and comparison and sorting are based
on the numeric values of the bytes in the values.

The permissible maximum length is the same for BINARY and VARBINARY as it is for CHAR and
VARCHAR, except that the length for BINARY and VARBINARY is a length in bytes rather than in
characters.

The BINARY and VARBINARY data types are distinct from the CHAR BINARY and VARCHAR BINARY
data types. For the latter types, the BINARY attribute does not cause the column to be treated as a
binary string column. Instead, it causes the binary (_bin) collation for the column character set to
be used, and the column itself contains nonbinary character strings rather than binary byte strings.
For example, CHAR(5) BINARY is treated as CHAR(5) CHARACTER SET latin1 COLLATE
latin1_bin, assuming that the default character set is latin1. This differs from BINARY(5), which
stores 5-bytes binary strings that have the binary character set and collation. For information about
differences between binary strings and binary collations for nonbinary strings, see Section 10.1.8.5,
“The binary Collation Compared to _bin Collations”.

If strict SQL mode is not enabled and you assign a value to a BINARY or VARBINARY column that
exceeds the column's maximum length, the value is truncated to fit and a warning is generated. For
cases of truncation, you can cause an error to occur (rather than a warning) and suppress insertion of
the value by using strict SQL mode. See Section 5.1.8, “Server SQL Modes”.

When BINARY values are stored, they are right-padded with the pad value to the specified length. The
pad value is 0x00 (the zero byte). Values are right-padded with 0x00 on insert, and no trailing bytes
are removed on select. All bytes are significant in comparisons, including ORDER BY and DISTINCT
operations. 0x00 bytes and spaces are different in comparisons, with 0x00 < space.

Example: For a BINARY(3) column, 'a ' becomes 'a \0' when inserted. 'a\0' becomes 'a
\0\0' when inserted. Both inserted values remain unchanged when selected.

For VARBINARY, there is no padding on insert and no bytes are stripped on select. All bytes are
significant in comparisons, including ORDER BY and DISTINCT operations. 0x00 bytes and spaces
are different in comparisons, with 0x00 < space.

For those cases where trailing pad bytes are stripped or comparisons ignore them, if a column has an
index that requires unique values, inserting into the column values that differ only in number of trailing
pad bytes will result in a duplicate-key error. For example, if a table contains 'a', an attempt to store
'a\0' causes a duplicate-key error.

You should consider the preceding padding and stripping characteristics carefully if you plan to use the
BINARY data type for storing binary data and you require that the value retrieved be exactly the same
as the value stored. The following example illustrates how 0x00-padding of BINARY values affects
column value comparisons:

mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 |       0 |           1 |
+--------+---------+-------------+
1 row in set (0.09 sec)

If the value retrieved must be the same as the value specified for storage with no padding, it might be
preferable to use VARBINARY or one of the BLOB data types instead.



The BLOB and TEXT Types

1099

11.4.3 The BLOB and TEXT Types

A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. These differ only in the maximum length of the
values they can hold. The four TEXT types are TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. These
correspond to the four BLOB types and have the same maximum lengths and storage requirements.
See Section 11.7, “Data Type Storage Requirements”.

BLOB values are treated as binary strings (byte strings). They have the binary character set and
collation, and comparison and sorting are based on the numeric values of the bytes in column values.
TEXT values are treated as nonbinary strings (character strings). They have a character set other than
binary, and values are sorted and compared based on the collation of the character set.

If strict SQL mode is not enabled and you assign a value to a BLOB or TEXT column that exceeds the
column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion
of the value by using strict SQL mode. See Section 5.1.8, “Server SQL Modes”.

Truncation of excess trailing spaces from values to be inserted into TEXT columns always generates a
warning, regardless of the SQL mode.

For TEXT and BLOB columns, there is no padding on insert and no bytes are stripped on select.

If a TEXT column is indexed, index entry comparisons are space-padded at the end. This means that, if
the index requires unique values, duplicate-key errors will occur for values that differ only in the number
of trailing spaces. For example, if a table contains 'a', an attempt to store 'a ' causes a duplicate-
key error. This is not true for BLOB columns.

In most respects, you can regard a BLOB column as a VARBINARY column that can be as large as
you like. Similarly, you can regard a TEXT column as a VARCHAR column. BLOB and TEXT differ from
VARBINARY and VARCHAR in the following ways:

• For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR and
VARCHAR, a prefix length is optional. See Section 8.3.4, “Column Indexes”.

•    BLOB and TEXT columns cannot have DEFAULT values.

If you use the BINARY attribute with a TEXT data type, the column is assigned the binary (_bin)
collation of the column character set.

LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a compatibility feature.

MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as
LONGVARCHAR.

Because BLOB and TEXT values can be extremely long, you might encounter some constraints in using
them:

• Only the first max_sort_length bytes of the column are used when sorting. The default value
of max_sort_length is 1024. You can make more bytes significant in sorting or grouping by
increasing the value of max_sort_length at server startup or runtime. Any client can change the
value of its session max_sort_length variable:

mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM t
    -> ORDER BY comment;

• Instances of BLOB or TEXT columns in the result of a query that is processed using a temporary table
causes the server to use a table on disk rather than in memory because the MEMORY storage engine
does not support those data types (see Section 8.4.4, “Internal Temporary Table Use in MySQL”).



The ENUM Type

1100

Use of disk incurs a performance penalty, so include BLOB or TEXT columns in the query result only
if they are really needed. For example, avoid using SELECT *, which selects all columns.

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest value you
actually can transmit between the client and server is determined by the amount of available memory
and the size of the communications buffers. You can change the message buffer size by changing
the value of the max_allowed_packet variable, but you must do so for both the server and your
client program. For example, both mysql and mysqldump enable you to change the client-side
max_allowed_packet value. See Section 5.1.1, “Configuring the Server”, Section 4.5.1, “mysql
— The MySQL Command-Line Tool”, and Section 4.5.4, “mysqldump — A Database Backup
Program”. You may also want to compare the packet sizes and the size of the data objects you are
storing with the storage requirements, see Section 11.7, “Data Type Storage Requirements”

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in contrast
to all other data types, for which storage is allocated once per column when the table is opened.

In some cases, it may be desirable to store binary data such as media files in BLOB or TEXT columns.
You may find MySQL's string handling functions useful for working with such data. See Section 12.5,
“String Functions”. For security and other reasons, it is usually preferable to do so using application
code rather than giving application users the FILE privilege. You can discuss specifics for various
languages and platforms in the MySQL Forums (http://forums.mysql.com/).

11.4.4 The ENUM Type

An ENUM is a string object with a value chosen from a list of permitted values that are enumerated
explicitly in the column specification at table creation time. It has these advantages:

• Compact data storage in situations where a column has a limited set of possible values. The strings
you specify as input values are automatically encoded as numbers. See Section 11.7, “Data Type
Storage Requirements” for the storage requirements for ENUM types.

• Readable queries and output. The numbers are translated back to the corresponding strings in query
results.

and these potential issues to consider:

• If you make enumeration values that look like numbers, it is easy to mix up the literal values with
their internal index numbers, as explained in Enumeration Limitations.

• Using ENUM columns in ORDER BY clauses requires extra care, as explained in Enumeration Sorting.

• Creating and Using ENUM Columns

• Index Values for Enumeration Literals

• Handling of Enumeration Literals

• Empty or NULL Enumeration Values

• Enumeration Sorting

• Enumeration Limitations

Creating and Using ENUM Columns

An enumeration value must be a quoted string literal. For example, you can create a table with an
ENUM column like this:

CREATE TABLE shirts (
    name VARCHAR(40),
    size ENUM('x-small', 'small', 'medium', 'large', 'x-large')
);

http://forums.mysql.com/


The ENUM Type

1101

INSERT INTO shirts (name, size) VALUES ('dress shirt','large'), ('t-shirt','medium'),
  ('polo shirt','small');
SELECT name, size FROM shirts WHERE size = 'medium';
+---------+--------+
| name    | size   |
+---------+--------+
| t-shirt | medium |
+---------+--------+
UPDATE shirts SET size = 'small' WHERE size = 'large';
COMMIT;

Inserting 1 million rows into this table with a value of 'medium' would require 1 million bytes of
storage, as opposed to 6 million bytes if you stored the actual string 'medium' in a VARCHAR column.

Index Values for Enumeration Literals

Each enumeration value has an index:

• The elements listed in the column specification are assigned index numbers, beginning with 1.

• The index value of the empty string error value is 0. This means that you can use the following
SELECT statement to find rows into which invalid ENUM values were assigned:

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

• The term “index” here refers to a position within the list of enumeration values. It has nothing to do
with table indexes.

For example, a column specified as ENUM('Mercury', 'Venus', 'Earth') can have any of the
values shown here. The index of each value is also shown.

Value Index

NULL NULL

'' 0

'Mercury' 1

'Venus' 2

'Earth' 3

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than
3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET
columns considered as a group. For more information on these limits, see Section C.10.5, “Limits
Imposed by .frm File Structure”.

If you retrieve an ENUM value in a numeric context, the column value's index is returned. For example,
you can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For ENUM values, the index number is used in the calculation.

Handling of Enumeration Literals

Trailing spaces are automatically deleted from ENUM member values in the table definition when a table
is created.

When retrieved, values stored into an ENUM column are displayed using the lettercase that was used
in the column definition. Note that ENUM columns can be assigned a character set and collation. For



The ENUM Type

1102

binary or case-sensitive collations, lettercase is taken into account when assigning values to the
column.

If you store a number into an ENUM column, the number is treated as the index into the possible values,
and the value stored is the enumeration member with that index. (However, this does not work with
LOAD DATA, which treats all input as strings.) If the numeric value is quoted, it is still interpreted as
an index if there is no matching string in the list of enumeration values. For these reasons, it is not
advisable to define an ENUM column with enumeration values that look like numbers, because this can
easily become confusing. For example, the following column has enumeration members with string
values of '0', '1', and '2', but numeric index values of 1, 2, and 3:

numbers ENUM('0','1','2')

If you store 2, it is interpreted as an index value, and becomes '1' (the value with index 2). If you store
'2', it matches an enumeration value, so it is stored as '2'. If you store '3', it does not match any
enumeration value, so it is treated as an index and becomes '2' (the value with index 3).

mysql> INSERT INTO t (numbers) VALUES(2),('2'),('3');
mysql> SELECT * FROM t;
+---------+
| numbers |
+---------+
| 1       |
| 2       |
| 2       |
+---------+

To determine all possible values for an ENUM column, use SHOW COLUMNS FROM tbl_name LIKE
'enum_col' and parse the ENUM definition in the Type column of the output.

In the C API, ENUM values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see Section 23.8.5, “C API Data Structures”.

Empty or NULL Enumeration Values

An enumeration value can also be the empty string ('') or NULL under certain circumstances:

• If you insert an invalid value into an ENUM (that is, a string not present in the list of permitted values),
the empty string is inserted instead as a special error value. This string can be distinguished from
a “normal” empty string by the fact that this string has the numeric value 0. See Index Values for
Enumeration Literals for details about the numeric indexes for the enumeration values.

If strict SQL mode is enabled, attempts to insert invalid ENUM values result in an error.

• If an ENUM column is declared to permit NULL, the NULL value is a valid value for the column, and the
default value is NULL. If an ENUM column is declared NOT NULL, its default value is the first element
of the list of permitted values.

Enumeration Sorting

ENUM values are sorted based on their index numbers, which depend on the order in which the
enumeration members were listed in the column specification. For example, 'b' sorts before 'a' for
ENUM('b', 'a'). The empty string sorts before nonempty strings, and NULL values sort before all
other enumeration values.

To prevent unexpected results when using the ORDER BY clause on an ENUM column, use one of these
techniques:

• Specify the ENUM list in alphabetic order.

• Make sure that the column is sorted lexically rather than by index number by coding ORDER BY
CAST(col AS CHAR) or ORDER BY CONCAT(col).



The SET Type

1103

Enumeration Limitations

An enumeration value cannot be an expression, even one that evaluates to a string value.

For example, this CREATE TABLE statement does not work because the CONCAT function cannot be
used to construct an enumeration value:

CREATE TABLE sizes (
    size ENUM('small', CONCAT('med','ium'), 'large')
);

You also cannot employ a user variable as an enumeration value. This pair of statements do not work:

SET @mysize = 'medium';

CREATE TABLE sizes (
    size ENUM('small', @mysize, 'large')
);

We strongly recommend that you do not use numbers as enumeration values, because it does not
save on storage over the appropriate TINYINT or SMALLINT type, and it is easy to mix up the strings
and the underlying number values (which might not be the same) if you quote the ENUM values
incorrectly. If you do use a number as an enumeration value, always enclose it in quotation marks. If
the quotation marks are omitted, the number is regarded as an index. See Handling of Enumeration
Literals to see how even a quoted number could be mistakenly used as a numeric index value.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

11.4.5 The SET Type

A SET is a string object that can have zero or more values, each of which must be chosen from a list
of permitted values specified when the table is created. SET column values that consist of multiple set
members are specified with members separated by commas (,). A consequence of this is that SET
member values should not themselves contain commas.

For example, a column specified as SET('one', 'two') NOT NULL can have any of these values:

''
'one'
'two'
'one,two'

A SET column can have a maximum of 64 distinct members. A table can have no more than 255
unique element list definitions among its ENUM and SET columns considered as a group. For more
information on this limit, see Section C.10.5, “Limits Imposed by .frm File Structure”.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

Trailing spaces are automatically deleted from SET member values in the table definition when a table
is created.

When retrieved, values stored in a SET column are displayed using the lettercase that was used in the
column definition. Note that SET columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to
the first set member. If you retrieve a SET value in a numeric context, the value retrieved has bits set
corresponding to the set members that make up the column value. For example, you can retrieve
numeric values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;



The SET Type

1104

If a number is stored into a SET column, the bits that are set in the binary representation of the number
determine the set members in the column value. For a column specified as SET('a','b','c','d'),
the members have the following decimal and binary values.

SET Member Decimal Value Binary Value

'a' 1 0001

'b' 2 0010

'c' 4 0100

'd' 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value
members 'a' and 'd' are selected and the resulting value is 'a,d'.

For a value containing more than one SET element, it does not matter what order the elements are
listed in when you insert the value. It also does not matter how many times a given element is listed in
the value. When the value is retrieved later, each element in the value appears once, with elements
listed according to the order in which they were specified at table creation time. For example, suppose
that a column is specified as SET('a','b','c','d'):

mysql> CREATE TABLE myset (col SET('a', 'b', 'c', 'd'));

If you insert the values 'a,d', 'd,a', 'a,d,d', 'a,d,a', and 'd,a,d':

mysql> INSERT INTO myset (col) VALUES 
-> ('a,d'), ('d,a'), ('a,d,a'), ('a,d,d'), ('d,a,d');
Query OK, 5 rows affected (0.01 sec)
Records: 5  Duplicates: 0  Warnings: 0

Then all these values appear as 'a,d' when retrieved:

mysql> SELECT col FROM myset;
+------+
| col  |
+------+
| a,d  |
| a,d  |
| a,d  |
| a,d  |
| a,d  |
+------+
5 rows in set (0.04 sec)

If you set a SET column to an unsupported value, the value is ignored and a warning is issued:

mysql> INSERT INTO myset (col) VALUES ('a,d,d,s');
Query OK, 1 row affected, 1 warning (0.03 sec)

mysql> SHOW WARNINGS;
+---------+------+------------------------------------------+
| Level   | Code | Message                                  |
+---------+------+------------------------------------------+
| Warning | 1265 | Data truncated for column 'col' at row 1 |
+---------+------+------------------------------------------+
1 row in set (0.04 sec)

mysql> SELECT col FROM myset;
+------+
| col  |
+------+
| a,d  |
| a,d  |
| a,d  |



Extensions for Spatial Data

1105

| a,d  |
| a,d  |
| a,d  |
+------+
6 rows in set (0.01 sec)

If strict SQL mode is enabled, attempts to insert invalid SET values result in an error.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For SET values, the cast operation causes the numeric value to be used.

Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';

The first statement finds rows where set_col contains the value set member. The second is similar,
but not the same: It finds rows where set_col contains value anywhere, even as a substring of
another set member.

The following statements also are permitted:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;
mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';

The first of these statements looks for values containing the first set member. The second looks for an
exact match. Be careful with comparisons of the second type. Comparing set values to 'val1,val2'
returns different results than comparing values to 'val2,val1'. You should specify the values in the
same order they are listed in the column definition.

To determine all possible values for a SET column, use SHOW COLUMNS FROM tbl_name LIKE
set_col and parse the SET definition in the Type column of the output.

In the C API, SET values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see Section 23.8.5, “C API Data Structures”.

11.5 Extensions for Spatial Data
The Open Geospatial Consortium (OGC) is an international consortium of more than 250 companies,
agencies, and universities participating in the development of publicly available conceptual solutions
that can be useful with all kinds of applications that manage spatial data.

The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple feature access - Part 2: SQL option, a document that proposes several conceptual
ways for extending an SQL RDBMS to support spatial data. This specification is available from the
OGC Web site at http://www.opengeospatial.org/standards/sfs.

Following the OGC specification, MySQL implements spatial extensions as a subset of the SQL with
Geometry Types environment. This term refers to an SQL environment that has been extended
with a set of geometry types. A geometry-valued SQL column is implemented as a column that has a
geometry type. The specification describes a set of SQL geometry types, as well as functions on those
types to create and analyze geometry values.

MySQL spatial extensions enable the generation, storage, and analysis of geographic features:

• Data types for representing spatial values

• Functions for manipulating spatial values

• Spatial indexing for improved access times to spatial columns

http://www.opengeospatial.org/standards/sfs


MySQL GIS Conformance and Compatibility

1106

The data types and functions are available for MyISAM, InnoDB, NDB, and ARCHIVE tables. For
indexing spatial columns, MyISAM supports both SPATIAL and non-SPATIAL indexes. The other
storage engines support non-SPATIAL indexes, as described in Section 13.1.13, “CREATE INDEX
Syntax”.

A geographic feature is anything in the world that has a location. A feature can be:

• An entity. For example, a mountain, a pond, a city.

• A space. For example, town district, the tropics.

• A definable location. For example, a crossroad, as a particular place where two streets intersect.

Some documents use the term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. Originally the word geometry meant
measurement of the earth. Another meaning comes from cartography, referring to the geometric
features that cartographers use to map the world.

The discussion here considers these terms synonymous: geographic feature, geospatial feature,
feature, or geometry. The term most commonly used is geometry, defined as a point or an aggregate
of points representing anything in the world that has a location.

The following material covers these topics:

• The spatial data types implemented in MySQL model

• The basis of the spatial extensions in the OpenGIS geometry model

• Data formats for representing spatial data

• How to use spatial data in MySQL

• Use of indexing for spatial data

• MySQL differences from the OpenGIS specification

For information about functions that operate on spatial data, see Section 12.15, “Spatial Analysis
Functions”.

MySQL GIS Conformance and Compatibility

MySQL does not implement the following GIS features:

• Additional Metadata Views

OpenGIS specifications propose several additional metadata views. For example, a system view
named GEOMETRY_COLUMNS contains a description of geometry columns, one row for each
geometry column in the database.

• The OpenGIS function Length() on LineString and MultiLineString should be called in
MySQL as GLength()

The problem is that there is an existing SQL function Length() that calculates the length of string
values, and sometimes it is not possible to distinguish whether the function is called in a textual or
spatial context.

Additional Resources

• The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple feature access - Part 2: SQL option, a document that proposes several



Spatial Data Types

1107

conceptual ways for extending an SQL RDBMS to support spatial data. The Open Geospatial
Consortium (OGC) maintains a Web site at http://www.opengeospatial.org/. The specification is
available there at http://www.opengeospatial.org/standards/sfs. It contains additional information
relevant to the material here.

• If you have questions or concerns about the use of the spatial extensions to MySQL, you can discuss
them in the GIS forum: http://forums.mysql.com/list.php?23.

11.5.1 Spatial Data Types

MySQL has data types that correspond to OpenGIS classes. Some of these types hold single geometry
values:

• GEOMETRY

• POINT

• LINESTRING

• POLYGON

GEOMETRY can store geometry values of any type. The other single-value types (POINT, LINESTRING,
and POLYGON) restrict their values to a particular geometry type.

The other data types hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types
(MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, and GEOMETRYCOLLECTION) restrict collection
members to those having a particular geometry type.

MySQL spatial data types have their basis in the OpenGIS geometry model, described in
Section 11.5.2, “The OpenGIS Geometry Model”. For examples showing how to use spatial data types
in MySQL, see Section 11.5.3, “Using Spatial Data”.

11.5.2 The OpenGIS Geometry Model

The set of geometry types proposed by OGC's SQL with Geometry Types environment is based
on the OpenGIS Geometry Model. In this model, each geometric object has the following general
properties:

• It is associated with a spatial reference system, which describes the coordinate space in which the
object is defined.

• It belongs to some geometry class.

11.5.2.1 The Geometry Class Hierarchy

The geometry classes define a hierarchy as follows:

• Geometry (noninstantiable)

• Point (instantiable)

• Curve (noninstantiable)

http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/sfs
http://forums.mysql.com/list.php?23


The OpenGIS Geometry Model

1108

• LineString (instantiable)

• Line

• LinearRing

• Surface (noninstantiable)

• Polygon (instantiable)

• GeometryCollection (instantiable)

• MultiPoint (instantiable)

• MultiCurve (noninstantiable)

• MultiLineString (instantiable)

• MultiSurface (noninstantiable)

• MultiPolygon (instantiable)

It is not possible to create objects in noninstantiable classes. It is possible to create objects in
instantiable classes. All classes have properties, and instantiable classes may also have assertions
(rules that define valid class instances).

Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry
are restricted to zero-, one-, and two-dimensional geometric objects that exist in two-dimensional
coordinate space. All instantiable geometry classes are defined so that valid instances of a geometry
class are topologically closed (that is, all defined geometries include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:

• Point represents zero-dimensional objects.

• Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses
Line and LinearRing.

• Surface is designed for two-dimensional objects and has subclass Polygon.

• GeometryCollection has specialized zero-, one-, and two-dimensional collection classes named
MultiPoint, MultiLineString, and MultiPolygon for modeling geometries corresponding
to collections of Points, LineStrings, and Polygons, respectively. MultiCurve and
MultiSurface are introduced as abstract superclasses that generalize the collection interfaces to
handle Curves and Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as noninstantiable
classes. They define a common set of methods for their subclasses and are included for extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and
MultiPolygon are instantiable classes.

11.5.2.2 Geometry Class

Geometry is the root class of the hierarchy. It is a noninstantiable class but has a number of
properties, described in the following list, that are common to all geometry values created from any of
the Geometry subclasses. Particular subclasses have their own specific properties, described later.

Geometry Properties

A geometry value has the following properties:



The OpenGIS Geometry Model

1109

• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.

• Its SRID, or spatial reference identifier. This value identifies the geometry's associated spatial
reference system that describes the coordinate space in which the geometry object is defined.

In MySQL, the SRID value is an integer associated with the geometry value. The maximum usable
SRID value is 232−1. If a larger value is given, only the lower 32 bits are used. All computations
are done assuming SRID 0, regardless of the actual SRID value. SRID 0 represents an infinite flat
Cartesian plane with no units assigned to its axes.

• Its coordinates in its spatial reference system, represented as double-precision (8-byte) numbers.
All nonempty geometries include at least one pair of (X,Y) coordinates. Empty geometries contain no
coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the distance
between two objects may differ even when objects have the same coordinates, because the distance
on the planar coordinate system and the distance on the geodetic system (coordinates on the
Earth's surface) are different things.

• Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space not
occupied by the geometry. The interior is the space occupied by the geometry. The boundary is the
interface between the geometry's interior and exterior.

• Its MBR (minimum bounding rectangle), or envelope. This is the bounding geometry, formed by the
minimum and maximum (X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• Whether the value is simple or nonsimple. Geometry values of types (LineString, MultiPoint,
MultiLineString) are either simple or nonsimple. Each type determines its own assertions for
being simple or nonsimple.

• Whether the value is closed or not closed. Geometry values of types (LineString,
MultiString) are either closed or not closed. Each type determines its own assertions for being
closed or not closed.

• Whether the value is empty or nonempty A geometry is empty if it does not have any points.
Exterior, interior, and boundary of an empty geometry are not defined (that is, they are represented
by a NULL value). An empty geometry is defined to be always simple and has an area of 0.

• Its dimension. A geometry can have a dimension of −1, 0, 1, or 2:

• −1 for an empty geometry.

• 0 for a geometry with no length and no area.

• 1 for a geometry with nonzero length and zero area.

• 2 for a geometry with nonzero area.

Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon
objects have a dimension of 2. The dimensions of MultiPoint, MultiLineString, and
MultiPolygon objects are the same as the dimensions of the elements they consist of.

11.5.2.3 Point Class

A Point is a geometry that represents a single location in coordinate space.

Point Examples



The OpenGIS Geometry Model

1110

• Imagine a large-scale map of the world with many cities. A Point object could represent each city.

• On a city map, a Point object could represent a bus stop.

Point Properties

• X-coordinate value.

• Y-coordinate value.

• Point is defined as a zero-dimensional geometry.

• The boundary of a Point is the empty set.

11.5.2.4 Curve Class

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular
subclasses of Curve define the type of interpolation between points. Curve is a noninstantiable class.

Curve Properties

• A Curve has the coordinates of its points.

• A Curve is defined as a one-dimensional geometry.

• A Curve is simple if it does not pass through the same point twice, with the exception that a curve
can still be simple if the start and end points are the same.

• A Curve is closed if its start point is equal to its endpoint.

• The boundary of a closed Curve is empty.

• The boundary of a nonclosed Curve consists of its two endpoints.

• A Curve that is simple and closed is a LinearRing.

11.5.2.5 LineString Class

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

LineString Properties

• A LineString has coordinates of segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

• A LineString is a LinearRing if it is both closed and simple.

11.5.2.6 Surface Class

A Surface is a two-dimensional geometry. It is a noninstantiable class. Its only instantiable subclass is
Polygon.

Surface Properties

• A Surface is defined as a two-dimensional geometry.



The OpenGIS Geometry Model

1111

• The OpenGIS specification defines a simple Surface as a geometry that consists of a single “patch”
that is associated with a single exterior boundary and zero or more interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its exterior and
interior boundaries.

11.5.2.7 Polygon Class

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single exterior
boundary and zero or more interior boundaries, where each interior boundary defines a hole in the
Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, and so on.

Polygon Assertions

• The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString objects
that are both simple and closed) that make up its exterior and interior boundaries.

• A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a
Point, but only as a tangent.

• A Polygon has no lines, spikes, or punctures.

• A Polygon has an interior that is a connected point set.

• A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each hole
defines a connected component of the exterior.

The preceding assertions make a Polygon a simple geometry.

11.5.2.8 GeometryCollection Class

A GeometryCollection is a geometry that is a collection of one or more geometries of any class.

All the elements in a GeometryCollection must be in the same spatial reference system
(that is, in the same coordinate system). There are no other constraints on the elements of a
GeometryCollection, although the subclasses of GeometryCollection described in the
following sections may restrict membership. Restrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

• Dimension

• Constraints on the degree of spatial overlap between elements

11.5.2.9 MultiPoint Class

A MultiPoint is a geometry collection composed of Point elements. The points are not connected
or ordered in any way.

MultiPoint Examples

• On a world map, a MultiPoint could represent a chain of small islands.

• On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties

• A MultiPoint is a zero-dimensional geometry.



The OpenGIS Geometry Model

1112

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate values).

• The boundary of a MultiPoint is the empty set.

11.5.2.10 MultiCurve Class

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a
noninstantiable class.

MultiCurve Properties

• A MultiCurve is a one-dimensional geometry.

• A MultiCurve is simple if and only if all of its elements are simple; the only intersections between
any two elements occur at points that are on the boundaries of both elements.

• A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as the “odd-
even rule”): A point is in the boundary of a MultiCurve if it is in the boundaries of an odd number of
Curve elements.

• A MultiCurve is closed if all of its elements are closed.

• The boundary of a closed MultiCurve is always empty.

11.5.2.11 MultiLineString Class

A MultiLineString is a MultiCurve geometry collection composed of LineString elements.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway system.

11.5.2.12 MultiSurface Class

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a
noninstantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions

• Surfaces within a MultiSurface have no interiors that intersect.

• Surfaces within a MultiSurface have boundaries that intersect at most at a finite number of points.

11.5.2.13 MultiPolygon Class

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

MultiPolygon Assertions

• A MultiPolygon has no two Polygon elements with interiors that intersect.

• A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the
previous assertion), or that touch at an infinite number of points.

• A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regular,
closed point set.

• A MultiPolygon that has more than one Polygon has an interior that is not connected. The
number of connected components of the interior of a MultiPolygon is equal to the number of
Polygon values in the MultiPolygon.



Using Spatial Data

1113

MultiPolygon Properties

• A MultiPolygon is a two-dimensional geometry.

• A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to the
boundaries of its Polygon elements.

• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Polygon
element.

• Every Curve in the boundary of an Polygon element is in the boundary of the MultiPolygon.

11.5.3 Using Spatial Data

This section describes how to create tables that include spatial data type columns, and how to
manipulate spatial information.

11.5.3.1 Supported Spatial Data Formats

Two standard spatial data formats are used to represent geometry objects in queries:

• Well-Known Text (WKT) format

• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB format.
(Internal format is like WKB but with an initial 4 bytes to indicate the SRID.)

There are functions available to convert between different data formats; see Section 12.15.6,
“Geometry Format Conversion Functions”.

The following sections describe the spatial data formats MySQL uses:

• Well-Known Text (WKT) Format

• Well-Known Binary (WKB) Format

• Internal Geometry Storage Format

Well-Known Text (WKT) Format

The Well-Known Text (WKT) representation of geometry values is designed for exchanging geometry
data in ASCII form. The OpenGIS specification provides a Backus-Naur grammar that specifies the
formal production rules for writing WKT values (see Section 11.5, “Extensions for Spatial Data”).

Examples of WKT representations of geometry objects:

• A Point:

POINT(15 20)

The point coordinates are specified with no separating comma. This differs from the syntax for the
SQL Point() function, which requires a comma between the coordinates. Take care to use the
syntax appropriate to the context of a given spatial operation. For example, the following statements
both use X() to extract the X-coordinate from a Point object. The first produces the object directly
using the Point() function. The second uses a WKT representation converted to a Point with
GeomFromText().

mysql> SELECT X(Point(15, 20));
+------------------+



Using Spatial Data

1114

| X(POINT(15, 20)) |
+------------------+
|               15 |
+------------------+

mysql> SELECT X(GeomFromText('POINT(15 20)'));
+---------------------------------+
| X(GeomFromText('POINT(15 20)')) |
+---------------------------------+
|                              15 |
+---------------------------------+

• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

The point coordinate pairs are separated by commas.

• A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:

MULTIPOINT(0 0, 20 20, 60 60)

• A MultiLineString with two LineString values:

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

• A MultiPolygon with two Polygon values:

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

Well-Known Binary (WKB) Format

The Well-Known Binary (WKB) representation of geometric values is used for exchanging geometry
data as binary streams represented by BLOB values containing geometric WKB information. This
format is defined by the OpenGIS specification (see Section 11.5, “Extensions for Spatial Data”). It is
also defined in the ISO SQL/MM Part 3: Spatial standard.

WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision numbers
(IEEE 754 format). A byte is eight bits.

For example, a WKB value that corresponds to POINT(1 -1) consists of this sequence of 21 bytes,
each represented by two hexadecimal digits:

0101000000000000000000F03F000000000000F0BF

The sequence consists of the components shown in the following table.

Table 11.1 WKB Components Example

Component Size Value

Byte order 1 byte 01



Using Spatial Data

1115

Component Size Value

WKB type 4 bytes 01000000

X coordinate 8 bytes 000000000000F03F

Y coordinate 8 bytes 000000000000F0BF

Component representation is as follows:

• The byte order indicator is either 1 or 0 to signify little-endian or big-endian storage. The little-endian
and big-endian byte orders are also known as Network Data Representation (NDR) and External
Data Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. MySQL uses values from 1 through 7 to
indicate Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection.

• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values have more complex data structures, as detailed in the
OpenGIS specification.

Internal Geometry Storage Format

MySQL stores geometry values using 4 bytes to indicate the SRID followed by the WKB representation
of the value. For a description of WKB format, see Well-Known Binary (WKB) Format.

For the WKB part, these MySQL-specific considerations apply:

• The byte-order indicator byte is 1 because MySQL stores geometries as little-ending values.

• MySQL supports geometry types of Point, LineString, Polygon, MultiPoint,
MultiLineString, MultiPolygon, and GeometryCollection. Other geometry types are not
supported.

The LENGTH() function returns the space in bytes required for value storage. Example:

mysql> SET @g = GeomFromText('POINT(1 -1)');
mysql> SELECT LENGTH(@g);
+------------+
| LENGTH(@g) |
+------------+
|         25 |
+------------+
mysql> SELECT HEX(@g);
+----------------------------------------------------+
| HEX(@g)                                            |
+----------------------------------------------------+
| 000000000101000000000000000000F03F000000000000F0BF |
+----------------------------------------------------+

The value length is 25 bytes, made up of these components (as can be seen from the hexadecimal
value):

• 4 bytes for integer SRID (0)

• 1 byte for integer byte order (1 = little-endian)

• 4 bytes for integer type information (1 = Point)

• 8 bytes for double-precision X coordinate (1)

• 8 bytes for double-precision Y coordinate (−1)



Using Spatial Data

1116

11.5.3.2 Creating Spatial Columns

MySQL provides a standard way of creating spatial columns for geometry types, for example, with
CREATE TABLE or ALTER TABLE. Spatial columns are supported for MyISAM, InnoDB, NDB, and
ARCHIVE tables. See also the notes about spatial indexes under Section 11.5.3.6, “Creating Spatial
Indexes”.

• Use the CREATE TABLE statement to create a table with a spatial column:

CREATE TABLE geom (g GEOMETRY);

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:

ALTER TABLE geom ADD pt POINT;
ALTER TABLE geom DROP pt;

11.5.3.3 Populating Spatial Columns

After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that format
from either Well-Known Text (WKT) or Well-Known Binary (WKB) format. The following examples
demonstrate how to insert geometry values into a table by converting WKT values to internal geometry
format:

• Perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (GeomFromText('POINT(1 1)'));

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (GeomFromText(@g));

• Perform the conversion prior to the INSERT:

SET @g = GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomFromText(@g));

The preceding examples use GeomFromText() to create geometry values. You can also use type-
specific functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (PointFromText(@g));

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (LineStringFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (PolygonFromText(@g));



Using Spatial Data

1117

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomCollFromText(@g));

A client application program that wants to use WKB representations of geometry values is responsible
for sending correctly formed WKB in queries to the server. There are several ways to satisfy this
requirement. For example:

• Inserting a POINT(1 1) value with hex literal syntax:

mysql> INSERT INTO geom VALUES
       (GeomFromWKB(X'0101000000000000000000F03F000000000000F03F'));

• An ODBC application can send a WKB representation, binding it to a placeholder using an argument
of BLOB type:

INSERT INTO geom VALUES (GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.

• In a C program, you can escape a binary value using mysql_real_escape_string()
and include the result in a query string that is sent to the server. See Section 23.8.7.53,
“mysql_real_escape_string()”.

11.5.3.4 Fetching Spatial Data

Geometry values stored in a table can be fetched in internal format. You can also convert them to WKT
or WKB format.

• Fetching spatial data in internal format:

Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

• Fetching spatial data in WKT format:

The AsText() function converts a geometry from internal format to a WKT string.

SELECT AsText(g) FROM geom;

• Fetching spatial data in WKB format:

The AsBinary() function converts a geometry from internal format to a BLOB containing the WKB
value.

SELECT AsBinary(g) FROM geom;

11.5.3.5 Optimizing Spatial Analysis

For MyISAM tables, search operations in columns containing spatial data can be optimized using
SPATIAL indexes. The most typical operations are:

• Point queries that search for all objects that contain a given point

• Region queries that search for all objects that overlap a given region

MySQL uses R-Trees with quadratic splitting for SPATIAL indexes on spatial columns. A SPATIAL
index is built using the minimum bounding rectangle (MBR) of a geometry. For most geometries, the
MBR is a minimum rectangle that surrounds the geometries. For a horizontal or a vertical linestring, the



Using Spatial Data

1118

MBR is a rectangle degenerated into the linestring. For a point, the MBR is a rectangle degenerated
into the point.

It is also possible to create normal indexes on spatial columns. In a non-SPATIAL index, you must
declare a prefix for any spatial column except for POINT columns.

MyISAM supports both SPATIAL and non-SPATIAL indexes. Other storage engines support
non-SPATIAL indexes, as described in Section 13.1.13, “CREATE INDEX Syntax”.

11.5.3.6 Creating Spatial Indexes

For MyISAM tables, MySQL can create spatial indexes using syntax similar to that for creating regular
indexes, but using the SPATIAL keyword. Columns in spatial indexes must be declared NOT NULL.
The following examples demonstrate how to create spatial indexes:

• With CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g)) ENGINE=MyISAM;

• With ALTER TABLE:

ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:

CREATE SPATIAL INDEX sp_index ON geom (g);

SPATIAL INDEX creates an R-tree index. For storage engines that support nonspatial indexing of
spatial columns, the engine creates a B-tree index. A B-tree index on spatial values is useful for exact-
value lookups, but not for range scans.

For more information on indexing spatial columns, see Section 13.1.13, “CREATE INDEX Syntax”.

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

• With ALTER TABLE:

ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:

DROP INDEX sp_index ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the
column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for storing object
ID values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type     | Null | Key | Default | Extra          |
+-------+----------+------+-----+---------+----------------+
| fid   | int(11)  |      | PRI | NULL    | auto_increment |
| g     | geometry |      |     |         |                |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
|    32376 |



Using Spatial Data

1119

+----------+
1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g) ENGINE=MyISAM;
Query OK, 32376 rows affected (4.05 sec)
Records: 32376  Duplicates: 0  Warnings: 0

11.5.3.7 Using Spatial Indexes

The optimizer investigates whether available spatial indexes can be involved in the search for queries
that use a function such as MBRContains() or MBRWithin() in the WHERE clause. The following
query finds all objects that are in the given rectangle:

mysql> SET @poly =
    -> 'Polygon((30000 15000,
                 31000 15000,
                 31000 16000,
                 30000 16000,
                 30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom WHERE
    -> MBRContains(GeomFromText(@poly),g);
+-----+---------------------------------------------------------------+
| fid | AsText(g)                                                     |
+-----+---------------------------------------------------------------+
|  21 | LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ... |
|  22 | LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ... |
|  23 | LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ... |
|  24 | LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ... |
|  25 | LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ... |
|  26 | LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ... |
| 249 | LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ... |
|   1 | LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ... |
|   2 | LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ... |
|   3 | LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ... |
|   4 | LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ... |
|   5 | LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ... |
|   6 | LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ... |
|   7 | LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ... |
|  10 | LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ... |
|  11 | LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ... |
|  13 | LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ... |
| 154 | LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ... |
| 155 | LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ... |
| 157 | LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ... |
+-----+---------------------------------------------------------------+
20 rows in set (0.00 sec)

Use EXPLAIN to check the way this query is executed:

mysql> SET @poly =
    -> 'Polygon((30000 15000,
                 31000 15000,
                 31000 16000,
                 30000 16000,
                 30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE
    -> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: geom
         type: range
possible_keys: g
          key: g
      key_len: 32
          ref: NULL



Data Type Default Values

1120

         rows: 50
        Extra: Using where
1 row in set (0.00 sec)

Check what would happen without a spatial index:

mysql> SET @poly =
    -> 'Polygon((30000 15000,
                 31000 15000,
                 31000 16000,
                 30000 16000,
                 30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE
    -> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: geom
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 32376
        Extra: Using where
1 row in set (0.00 sec)

Executing the SELECT statement without the spatial index yields the same result but causes the
execution time to rise from 0.00 seconds to 0.46 seconds:

mysql> SET @poly =
    -> 'Polygon((30000 15000,
                 31000 15000,
                 31000 16000,
                 30000 16000,
                 30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE
    -> MBRContains(GeomFromText(@poly),g);
+-----+---------------------------------------------------------------+
| fid | AsText(g)                                                     |
+-----+---------------------------------------------------------------+
|   1 | LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ... |
|   2 | LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ... |
|   3 | LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ... |
|   4 | LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ... |
|   5 | LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ... |
|   6 | LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ... |
|   7 | LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ... |
|  10 | LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ... |
|  11 | LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ... |
|  13 | LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ... |
|  21 | LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ... |
|  22 | LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ... |
|  23 | LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ... |
|  24 | LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ... |
|  25 | LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ... |
|  26 | LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ... |
| 154 | LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ... |
| 155 | LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ... |
| 157 | LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ... |
| 249 | LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ... |
+-----+---------------------------------------------------------------+
20 rows in set (0.46 sec)

11.6 Data Type Default Values

The DEFAULT value clause in a data type specification indicates a default value for a column. With
one exception, the default value must be a constant; it cannot be a function or an expression. This



Data Type Default Values

1121

means, for example, that you cannot set the default for a date column to be the value of a function
such as NOW() or CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as
the default for a TIMESTAMP column. See Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”.

BLOB and TEXT columns cannot be assigned a default value.

If a column definition includes no explicit DEFAULT value, MySQL determines the default value as
follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.

If the column cannot take NULL as the value, MySQL defines the column with no explicit DEFAULT
clause. Exception: If the column is defined as part of a PRIMARY KEY but not explicitly as NOT NULL,
MySQL creates it as a NOT NULL column (because PRIMARY KEY columns must be NOT NULL), but
also assigns it a DEFAULT clause using the implicit default value. To prevent this, include an explicit
NOT NULL in the definition of any PRIMARY KEY column.

For data entry into a NOT NULL column that has no explicit DEFAULT clause, if an INSERT or REPLACE
statement includes no value for the column, or an UPDATE statement sets the column to NULL, MySQL
handles the column according to the SQL mode in effect at the time:

• If strict SQL mode is enabled, an error occurs for transactional tables and the statement is rolled
back. For nontransactional tables, an error occurs, but if this happens for the second or subsequent
row of a multiple-row statement, the preceding rows will have been inserted.

• If strict mode is not enabled, MySQL sets the column to the implicit default value for the column data
type.

Suppose that a table t is defined as follows:

CREATE TABLE t (i INT NOT NULL);

In this case, i has no explicit default, so in strict mode each of the following statements produce an
error and no row is inserted. When not using strict mode, only the third statement produces an error;
the implicit default is inserted for the first two statements, but the third fails because DEFAULT(i)
cannot produce a value:

INSERT INTO t VALUES();
INSERT INTO t VALUES(DEFAULT);
INSERT INTO t VALUES(DEFAULT(i));

See Section 5.1.8, “Server SQL Modes”.

For a given table, you can use the SHOW CREATE TABLE statement to see which columns have an
explicit DEFAULT clause.

Implicit defaults are defined as follows:

• For numeric types, the default is 0, with the exception that for integer or floating-point types declared
with the AUTO_INCREMENT attribute, the default is the next value in the sequence.

• For date and time types other than TIMESTAMP, the default is the appropriate “zero” value for the
type. For the first TIMESTAMP column in a table, the default value is the current date and time. See
Section 11.3, “Date and Time Types”.

• For string types other than ENUM, the default value is the empty string. For ENUM, the default is the
first enumeration value.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.



Data Type Storage Requirements

1122

11.7 Data Type Storage Requirements

• InnoDB Table Storage Requirements

• NDBCLUSTER Table Storage Requirements

• Numeric Type Storage Requirements

• Date and Time Type Storage Requirements

• String Type Storage Requirements

• Spatial Type Storage Requirements

The storage requirements for data vary, according to the storage engine being used for the table in
question. Different storage engines use different methods for recording the raw data and different data
types. In addition, some engines may compress the information in a given row, either on a column or
entire row basis, making calculation of the storage requirements for a given table or column structure.

However, all storage engines must communicate and exchange information on a given row within a
table using the same structure, and this information is consistent, irrespective of the storage engine
used to write the information to disk.

This sections includes some guideliness and information for the storage requirements for each data
type supported by MySQL, including details for the internal format and the sizes used by storage
engines that used a fixed size representation for different types. Information is listed by category or
storage engine.

The internal representation of a table has a maximum row size of 65,535 bytes, even if the storage
engine is capable of supporting larger rows. This figure excludes BLOB or TEXT columns, which
contribute only 9 to 12 bytes toward this size. For BLOB and TEXT data, the information is stored
internally in a different area of memory than the row buffer. Different storage engines handle the
allocation and storage of this data in different ways, according to the method they use for handling
the corresponding types. For more information, see Chapter 15, Alternative Storage Engines, and
Section C.10.4, “Limits on Table Column Count and Row Size”.

InnoDB Table Storage Requirements

See Section 14.11.1.2, “The Physical Row Structure of an InnoDB Table” for information about storage
requirements for InnoDB tables.

NDBCLUSTER Table Storage Requirements

Important

For tables using the NDBCLUSTER storage engine, there is the factor of 4-byte
alignment to be taken into account when calculating storage requirements.
This means that all NDB data storage is done in multiples of 4 bytes. Thus,
a column value that would take 15 bytes in a table using a storage engine
other than NDB requires 16 bytes in an NDB table. This requirement applies
in addition to any other considerations that are discussed in this section. For
example, in NDBCLUSTER tables, the TINYINT, SMALLINT, MEDIUMINT, and
INTEGER (INT) column types each require 4 bytes storage per record due to
the alignment factor.

An exception to this rule is the BIT type, which is not 4-byte aligned. In NDB
Cluster tables, a BIT(M) column takes M bits of storage space. However, if
a table definition contains 1 or more BIT columns (up to 32 BIT columns),
then NDBCLUSTER reserves 4 bytes (32 bits) per row for these. If a table



Numeric Type Storage Requirements

1123

definition contains more than 32 BIT columns (up to 64 such columns), then
NDBCLUSTER reserves 8 bytes (that is, 64 bits) per row.

In addition, while a NULL itself does not require any storage space,
NDBCLUSTER reserves 4 bytes per row if the table definition contains any
columns defined as NULL, up to 32 NULL columns. (If an NDB Cluster table is
defined with more than 32 NULL columns up to 64 NULL columns, then 8 bytes
per row is reserved.)

When calculating storage requirements for NDB Cluster tables, you must also remember that every
table using the NDBCLUSTER storage engine requires a primary key; if no primary key is defined by
the user, then a “hidden” primary key will be created by NDB. This hidden primary key consumes 31-35
bytes per table record.

You may find the ndb_size.pl utility to be useful for estimating NDB storage requirements. This
Perl script connects to a current MySQL (non-Cluster) database and creates a report on how much
space that database would require if it used the NDBCLUSTER storage engine. See Section 18.4.25,
“ndb_size.pl — NDBCLUSTER Size Requirement Estimator”, for more information.

Numeric Type Storage Requirements

Data Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

DOUBLE [PRECISION], REAL 8 bytes

DECIMAL(M,D), NUMERIC(M,D) Varies; see following discussion

BIT(M) approximately (M+7)/8 bytes

Values for DECIMAL (and NUMERIC) columns are represented using a binary format that packs nine
decimal (base 10) digits into four bytes. Storage for the integer and fractional parts of each value are
determined separately. Each multiple of nine digits requires four bytes, and the “leftover” digits require
some fraction of four bytes. The storage required for excess digits is given by the following table.

Leftover Digits Number of Bytes

0 0

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

Date and Time Type Storage Requirements



String Type Storage Requirements

1124

Data Type Storage Required

DATE 3 bytes

TIME 3 bytes

DATETIME 8 bytes

TIMESTAMP 4 bytes

YEAR 1 byte

For details about internal representation of temporal values, see MySQL Internals: Important
Algorithms and Structures.

String Type Storage Requirements

In the following table, M represents the declared column length in characters for nonbinary string types
and bytes for binary string types. L represents the actual length in bytes of a given string value.

Data Type Storage Required

CHAR(M) M × w bytes, 0 <= M <= 255, where w is the number of bytes
required for the maximum-length character in the character
set. See Section 14.11.1.2, “The Physical Row Structure
of an InnoDB Table” for information about CHAR data type
storage requirements for InnoDB tables.

BINARY(M) M bytes, 0 <= M <= 255

VARCHAR(M), VARBINARY(M) L + 1 bytes if column values require 0 − 255 bytes, L + 2
bytes if values may require more than 255 bytes

TINYBLOB, TINYTEXT L + 1 bytes, where L < 28

BLOB, TEXT L + 2 bytes, where L < 216

MEDIUMBLOB, MEDIUMTEXT L + 3 bytes, where L < 224

LONGBLOB, LONGTEXT L + 4 bytes, where L < 232

ENUM('value1','value2',...) 1 or 2 bytes, depending on the number of enumeration
values (65,535 values maximum)

SET('value1','value2',...) 1, 2, 3, 4, or 8 bytes, depending on the number of set
members (64 members maximum)

Variable-length string types are stored using a length prefix plus data. The length prefix requires from
one to four bytes depending on the data type, and the value of the prefix is L (the byte length of the
string). For example, storage for a MEDIUMTEXT value requires L bytes to store the value plus three
bytes to store the length of the value.

To calculate the number of bytes used to store a particular CHAR, VARCHAR, or TEXT column value, you
must take into account the character set used for that column and whether the value contains multibyte
characters. In particular, when using a utf8 Unicode character set, you must keep in mind that not
all characters use the same number of bytes. utf8mb3 and utf8mb4 character sets can require up
to three and four bytes per character, respectively. For a breakdown of the storage used for different
categories of utf8mb3 or utf8mb4 characters, see Section 10.1.9, “Unicode Support”.

VARCHAR, VARBINARY, and the BLOB and TEXT types are variable-length types. For each, the storage
requirements depend on these factors:

• The actual length of the column value

• The column's maximum possible length

• The character set used for the column, because some character sets contain multibyte characters

http://dev.mysql.com/doc/internals/en/algorithms.html
http://dev.mysql.com/doc/internals/en/algorithms.html


Spatial Type Storage Requirements

1125

For example, a VARCHAR(255) column can hold a string with a maximum length of 255 characters.
Assuming that the column uses the latin1 character set (one byte per character), the actual storage
required is the length of the string (L), plus one byte to record the length of the string. For the string
'abcd', L is 4 and the storage requirement is five bytes. If the same column is instead declared to use
the ucs2 double-byte character set, the storage requirement is 10 bytes: The length of 'abcd' is eight
bytes and the column requires two bytes to store lengths because the maximum length is greater than
255 (up to 510 bytes).

The effective maximum number of bytes that can be stored in a VARCHAR or VARBINARY column is
subject to the maximum row size of 65,535 bytes, which is shared among all columns. For a VARCHAR
column that stores multibyte characters, the effective maximum number of characters is less. For
example, utf8mb3 characters can require up to three bytes per character, so a VARCHAR column
that uses the utf8mb3 character set can be declared to be a maximum of 21,844 characters. See
Section C.10.4, “Limits on Table Column Count and Row Size”.

InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length
fields, which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the
maximum byte length of the character set is greater than 3, as it is with utf8mb4.

The NDBCLUSTER storage engine supports variable-width columns. This means that a VARCHAR
column in an NDB Cluster table requires the same amount of storage as would any other storage
engine, with the exception that such values are 4-byte aligned. Thus, the string 'abcd' stored in a
VARCHAR(50) column using the latin1 character set requires 8 bytes (rather than 5 bytes for the
same column value in a MyISAM table).

TEXT and BLOB columns are implemented differently in the NDB Cluster storage engine, wherein each
row in a TEXT column is made up of two separate parts. One of these is of fixed size (256 bytes), and
is actually stored in the original table. The other consists of any data in excess of 256 bytes, which
is stored in a hidden table. The rows in this second table are always 2,000 bytes long. This means
that the size of a TEXT column is 256 if size <= 256 (where size represents the size of the row);
otherwise, the size is 256 + size + (2000 − (size − 256) % 2000).

The size of an ENUM object is determined by the number of different enumeration values. One byte is
used for enumerations with up to 255 possible values. Two bytes are used for enumerations having
between 256 and 65,535 possible values. See Section 11.4.4, “The ENUM Type”.

The size of a SET object is determined by the number of different set members. If the set size is N, the
object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maximum of 64
members. See Section 11.4.5, “The SET Type”.

Spatial Type Storage Requirements

MySQL stores geometry values using 4 bytes to indicate the SRID followed by the WKB representation
of the value. The LENGTH() function returns the space in bytes required for value storage.

For descriptions of WKB and internal storage formats for spatial values, see Section 11.5.3.1,
“Supported Spatial Data Formats”.

11.8 Choosing the Right Type for a Column

For optimum storage, you should try to use the most precise type in all cases. For example, if an
integer column is used for values in the range from 1 to 99999, MEDIUMINT UNSIGNED is the best
type. Of the types that represent all the required values, this type uses the least amount of storage.

All basic calculations (+, -, *, and /) with DECIMAL columns are done with precision of 65 decimal
(base 10) digits. See Section 11.1.1, “Numeric Type Overview”.

If accuracy is not too important or if speed is the highest priority, the DOUBLE type may be good
enough. For high precision, you can always convert to a fixed-point type stored in a BIGINT. This



Using Data Types from Other Database Engines

1126

enables you to do all calculations with 64-bit integers and then convert results back to floating-point
values as necessary.

PROCEDURE ANALYSE can be used to obtain suggestions for optimal column data types. For more
information, see Section 8.4.2.4, “Using PROCEDURE ANALYSE”.

11.9 Using Data Types from Other Database Engines

To facilitate the use of code written for SQL implementations from other vendors, MySQL maps data
types as shown in the following table. These mappings make it easier to import table definitions from
other database systems into MySQL.

Other Vendor Type MySQL Type

BOOL TINYINT

BOOLEAN TINYINT

CHARACTER VARYING(M) VARCHAR(M)

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

NUMERIC DECIMAL

Data type mapping occurs at table creation time, after which the original type specifications are
discarded. If you create a table with types used by other vendors and then issue a DESCRIBE
tbl_name statement, MySQL reports the table structure using the equivalent MySQL types. For
example:

mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);
Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type          | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
| a     | tinyint(1)    | YES  |     | NULL    |       |
| b     | double        | YES  |     | NULL    |       |
| c     | mediumtext    | YES  |     | NULL    |       |
| d     | decimal(10,0) | YES  |     | NULL    |       |
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)



1127

Chapter 12 Functions and Operators

Table of Contents
12.1 Function and Operator Reference .................................................................................... 1128
12.2 Type Conversion in Expression Evaluation ....................................................................... 1137
12.3 Operators ........................................................................................................................ 1139

12.3.1 Operator Precedence ............................................................................................ 1140
12.3.2 Comparison Functions and Operators .................................................................... 1141
12.3.3 Logical Operators ................................................................................................. 1147
12.3.4 Assignment Operators ........................................................................................... 1149

12.4 Control Flow Functions .................................................................................................... 1150
12.5 String Functions .............................................................................................................. 1152

12.5.1 String Comparison Functions ................................................................................. 1164
12.5.2 Regular Expressions ............................................................................................. 1167
12.5.3 Character Set and Collation of Function Results ..................................................... 1173

12.6 Numeric Functions and Operators .................................................................................... 1174
12.6.1 Arithmetic Operators ............................................................................................. 1175
12.6.2 Mathematical Functions ......................................................................................... 1177

12.7 Date and Time Functions ................................................................................................. 1185
12.8 What Calendar Is Used By MySQL? ................................................................................ 1207
12.9 Full-Text Search Functions .............................................................................................. 1207

12.9.1 Natural Language Full-Text Searches .................................................................... 1208
12.9.2 Boolean Full-Text Searches .................................................................................. 1212
12.9.3 Full-Text Searches with Query Expansion .............................................................. 1214
12.9.4 Full-Text Stopwords .............................................................................................. 1215
12.9.5 Full-Text Restrictions ............................................................................................ 1218
12.9.6 Fine-Tuning MySQL Full-Text Search .................................................................... 1218
12.9.7 Adding a Collation for Full-Text Indexing ................................................................ 1220

12.10 Cast Functions and Operators ........................................................................................ 1222
12.11 XML Functions .............................................................................................................. 1228
12.12 Bit Functions and Operators ........................................................................................... 1239
12.13 Encryption and Compression Functions .......................................................................... 1240
12.14 Information Functions ..................................................................................................... 1247
12.15 Spatial Analysis Functions ............................................................................................. 1257

12.15.1 Spatial Function Reference ................................................................................. 1257
12.15.2 Argument Handling by Spatial Functions .............................................................. 1259
12.15.3 Functions That Create Geometry Values from WKT Values ................................... 1259
12.15.4 Functions That Create Geometry Values from WKB Values ................................... 1260
12.15.5 MySQL-Specific Functions That Create Geometry Values ..................................... 1260
12.15.6 Geometry Format Conversion Functions .............................................................. 1261
12.15.7 Geometry Property Functions .............................................................................. 1262
12.15.8 Spatial Operator Functions .................................................................................. 1267
12.15.9 Functions That Test Spatial Relations Between Geometry Objects ......................... 1267

12.16 Aggregate (GROUP BY) Functions ................................................................................. 1269
12.16.1 Aggregate (GROUP BY) Function Descriptions .................................................... 1269
12.16.2 GROUP BY Modifiers ......................................................................................... 1274
12.16.3 MySQL Handling of GROUP BY .......................................................................... 1277

12.17 Miscellaneous Functions ................................................................................................ 1278
12.18 Precision Math .............................................................................................................. 1283

12.18.1 Types of Numeric Values .................................................................................... 1284
12.18.2 DECIMAL Data Type Characteristics ................................................................... 1284
12.18.3 Expression Handling ........................................................................................... 1285
12.18.4 Rounding Behavior ............................................................................................. 1287
12.18.5 Precision Math Examples .................................................................................... 1287



Function and Operator Reference

1128

Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING
clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE statement,
or in SET statements. Expressions can be written using literal values, column values, NULL, built-in
functions, stored functions, user-defined functions, and operators. This chapter describes the functions
and operators that are permitted for writing expressions in MySQL. Instructions for writing stored
functions and user-defined functions are given in Section 20.2, “Using Stored Routines (Procedures
and Functions)”, and Section 24.4, “Adding New Functions to MySQL”. See Section 9.2.4, “Function
Name Parsing and Resolution”, for the rules describing how the server interprets references to different
kinds of functions.

An expression that contains NULL always produces a NULL value unless otherwise indicated in the
documentation for a particular function or operator.

Note

By default, there must be no whitespace between a function name and the
parenthesis following it. This helps the MySQL parser distinguish between
function calls and references to tables or columns that happen to have the same
name as a function. However, spaces around function arguments are permitted.

You can tell the MySQL server to accept spaces after function names by starting it with the --sql-
mode=IGNORE_SPACE option. (See Section 5.1.8, “Server SQL Modes”.) Individual client programs
can request this behavior by using the CLIENT_IGNORE_SPACE option for mysql_real_connect().
In either case, all function names become reserved words.

For the sake of brevity, most examples in this chapter display the output from the mysql program in
abbreviated form. Rather than showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
|         2 |
+-----------+
1 rows in set (0.00 sec)

This format is used instead:

mysql> SELECT MOD(29,9);
        -> 2

12.1 Function and Operator Reference
Table 12.1 Functions/Operators

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

AND, && Logical AND

Area() Return Polygon or MultiPolygon area

AsBinary(), AsWKB() Convert from internal geometry format to WKB

ASCII() Return numeric value of left-most character

ASIN() Return the arc sine



Function and Operator Reference

1129

Name Description

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

AsText(), AsWKT() Convert from internal geometry format to WKT

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

AVG() Return the average value of the argument

BENCHMARK() Repeatedly execute an expression

BETWEEN ... AND ... Check whether a value is within a range of values

BIN() Return a string containing binary representation of a number

BINARY Cast a string to a binary string

BIT_AND() Return bitwise AND

BIT_COUNT() Return the number of bits that are set

BIT_LENGTH() Return length of argument in bits

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

& Bitwise AND

~ Bitwise inversion

| Bitwise OR

^ Bitwise XOR

CASE Case operator

CAST() Cast a value as a certain type

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

Centroid() Return centroid as a point

CHAR() Return the character for each integer passed

CHAR_LENGTH() Return number of characters in argument

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CHARSET() Return the character set of the argument

COALESCE() Return the first non-NULL argument

COERCIBILITY() Return the collation coercibility value of the string argument

COLLATION() Return the collation of the string argument

COMPRESS() Return result as a binary string

CONCAT() Return concatenated string

CONCAT_WS() Return concatenate with separator

CONNECTION_ID() Return the connection ID (thread ID) for the connection

Contains() Whether MBR of one geometry contains MBR of another

CONV() Convert numbers between different number bases

CONVERT() Cast a value as a certain type

CONVERT_TZ() Convert from one time zone to another

COS() Return the cosine



Function and Operator Reference

1130

Name Description

COT() Return the cotangent

COUNT() Return a count of the number of rows returned

COUNT(DISTINCT) Return the count of a number of different values

CRC32() Compute a cyclic redundancy check value

Crosses() Whether one geometry crosses another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

CURTIME() Return the current time

DATABASE() Return the default (current) database name

DATE() Extract the date part of a date or datetime expression

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

DECODE() Decodes a string encrypted using ENCODE()

DEFAULT() Return the default value for a table column

DEGREES() Convert radians to degrees

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

Dimension() Dimension of geometry

Disjoint() Whether MBRs of two geometries are disjoint

DIV Integer division

/ Division operator

ELT() Return string at index number

ENCODE() Encode a string

ENCRYPT() Encrypt a string

EndPoint() End Point of LineString

Envelope() Return MBR of geometry

= Equal operator

<=> NULL-safe equal to operator

Equals() Whether MBRs of two geometries are equal

EXP() Raise to the power of



Function and Operator Reference

1131

Name Description

EXPORT_SET() Return a string such that for every bit set in the value bits,
you get an on string and for every unset bit, you get an off
string

ExteriorRing() Return exterior ring of Polygon

EXTRACT() Extract part of a date

ExtractValue() Extracts a value from an XML string using XPath notation

FIELD() Return the index (position) of the first argument in the
subsequent arguments

FIND_IN_SET() Return the index position of the first argument within the
second argument

FLOOR() Return the largest integer value not greater than the
argument

FORMAT() Return a number formatted to specified number of decimal
places

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that
would be returned were there no LIMIT clause

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format Unix timestamp as a date

GeomCollFromText(),
GeometryCollectionFromText()

Return geometry collection from WKT

GeomCollFromWKB(),
GeometryCollectionFromWKB()

Return geometry collection from WKB

GeometryCollection() Construct geometry collection from geometries

GeometryN() Return N-th geometry from geometry collection

GeometryType() Return name of geometry type

GeomFromText(),
GeometryFromText()

Return geometry from WKT

GeomFromWKB(),
GeometryFromWKB()

Return geometry from WKB

GET_FORMAT() Return a date format string

GET_LOCK() Get a named lock

GLength() Return length of LineString

> Greater than operator

>= Greater than or equal operator

GREATEST() Return the largest argument

GROUP_CONCAT() Return a concatenated string

HEX() Return a hexadecimal representation of a decimal or string
value

HOUR() Extract the hour

IF() If/else construct

IFNULL() Null if/else construct

IN() Check whether a value is within a set of values

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value



Function and Operator Reference

1132

Name Description

INSERT() Insert a substring at the specified position up to the specified
number of characters

INSTR() Return the index of the first occurrence of substring

InteriorRingN() Return N-th interior ring of Polygon

Intersects() Whether MBRs of two geometries intersect

INTERVAL() Return the index of the argument that is less than the first
argument

IS Test a value against a boolean

IS_FREE_LOCK() Whether the named lock is free

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

IS_USED_LOCK() Whether the named lock is in use; return connection
identifier if true

IsClosed() Whether a geometry is closed and simple

IsEmpty() Placeholder function

ISNULL() Test whether the argument is NULL

IsSimple() Whether a geometry is simple

LAST_DAY Return the last day of the month for the argument

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

LCASE() Synonym for LOWER()

LEAST() Return the smallest argument

LEFT() Return the leftmost number of characters as specified

<< Left shift

LENGTH() Return the length of a string in bytes

< Less than operator

<= Less than or equal operator

LIKE Simple pattern matching

LineFromText(),
LineStringFromText()

Construct LineString from WKT

LineFromWKB(),
LineStringFromWKB()

Construct LineString from WKB

LineString() Construct LineString from Point values

LN() Return the natural logarithm of the argument

LOAD_FILE() Load the named file

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

LOCATE() Return the position of the first occurrence of substring

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument



Function and Operator Reference

1133

Name Description

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the specified
string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have the
corresponding bit in bits set

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to
the specified position

MATCH Perform full-text search

MAX() Return the maximum value

MBRContains() Whether MBR of one geometry contains MBR of another

MBRDisjoint() Whether MBRs of two geometries are disjoint

MBREqual() Whether MBRs of two geometries are equal

MBRIntersects() Whether MBRs of two geometries intersect

MBROverlaps() Whether MBRs of two geometries overlap

MBRTouches() Whether MBRs of two geometries touch

MBRWithin() Whether MBR of one geometry is within MBR of another

MD5() Calculate MD5 checksum

MICROSECOND() Return the microseconds from argument

MID() Return a substring starting from the specified position

MIN() Return the minimum value

- Minus operator

MINUTE() Return the minute from the argument

MLineFromText(),
MultiLineStringFromText()

Construct MultiLineString from WKT

MLineFromWKB(),
MultiLineStringFromWKB()

Construct MultiLineString from WKB

MOD() Return the remainder

%, MOD Modulo operator

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

MPointFromText(),
MultiPointFromText()

Construct MultiPoint from WKT

MPointFromWKB(),
MultiPointFromWKB()

Construct MultiPoint from WKB

MPolyFromText(),
MultiPolygonFromText()

Construct MultiPolygon from WKT

MPolyFromWKB(),
MultiPolygonFromWKB()

Construct MultiPolygon from WKB

MultiLineString() Contruct MultiLineString from LineString values

MultiPoint() Construct MultiPoint from Point values



Function and Operator Reference

1134

Name Description

MultiPolygon() Construct MultiPolygon from Polygon values

NAME_CONST() Causes the column to have the given name

NOT, ! Negates value

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT IN() Check whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

NOW() Return the current date and time

NULLIF() Return NULL if expr1 = expr2

NumGeometries() Return number of geometries in geometry collection

NumInteriorRings() Return number of interior rings in Polygon

NumPoints() Return number of points in LineString

OCT() Return a string containing octal representation of a number

OCTET_LENGTH() Synonym for LENGTH()

OLD_PASSWORD() Return the value of the pre-4.1 implementation of
PASSWORD

||, OR Logical OR

ORD() Return character code for leftmost character of the argument

Overlaps() Whether MBRs of two geometries overlap

PASSWORD() Calculate and return a password string

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

PI() Return the value of pi

+ Addition operator

Point() Construct Point from coordinates

PointFromText() Construct Point from WKT

PointFromWKB() Construct Point from WKB

PointN() Return N-th point from LineString

PolyFromText(),
PolygonFromText()

Construct Polygon from WKT

PolyFromWKB(),
PolygonFromWKB()

Construct Polygon from WKB

Polygon() Construct Polygon from LineString arguments

POSITION() Synonym for LOCATE()

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

PROCEDURE ANALYSE() Analyze the results of a query

QUARTER() Return the quarter from a date argument

QUOTE() Escape the argument for use in an SQL statement

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value



Function and Operator Reference

1135

Name Description

REGEXP Pattern matching using regular expressions

RELEASE_LOCK() Releases the named lock

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

>> Right shift

RLIKE Synonym for REGEXP

ROUND() Round the argument

ROW_COUNT() The number of rows updated

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SCHEMA() Synonym for DATABASE()

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

SECOND() Return the second (0-59)

SESSION_USER() Synonym for USER()

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

SHA2() Calculate an SHA-2 checksum

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SLEEP() Sleep for a number of seconds

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

SQRT() Return the square root of the argument

SRID() Return spatial reference system ID for geometry

StartPoint() Start Point of LineString

STD() Return the population standard deviation

STDDEV() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

STR_TO_DATE() Convert a string to a date

STRCMP() Compare two strings

SUBDATE() Synonym for DATE_SUB() when invoked with three
arguments

SUBSTR() Return the substring as specified

SUBSTRING() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified number
of occurrences of the delimiter

SUBTIME() Subtract times

SUM() Return the sum



Function and Operator Reference

1136

Name Description

SYSDATE() Return the time at which the function executes

SYSTEM_USER() Synonym for USER()

TAN() Return the tangent of the argument

TIME() Extract the time portion of the expression passed

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIMEDIFF() Subtract time

* Multiplication operator

TIMESTAMP() With a single argument, this function returns the date or
datetime expression; with two arguments, the sum of the
arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

TO_SECONDS() Return the date or datetime argument converted to seconds
since Year 0

Touches() Whether one geometry touches another

TRIM() Remove leading and trailing spaces

TRUNCATE() Truncate to specified number of decimal places

UCASE() Synonym for UPPER()

- Change the sign of the argument

UNCOMPRESS() Uncompress a string compressed

UNCOMPRESSED_LENGTH() Return the length of a string before compression

UNHEX() Return a string containing hex representation of a number

UNIX_TIMESTAMP() Return a Unix timestamp

UpdateXML() Return replaced XML fragment

UPPER() Convert to uppercase

USER() The user name and host name provided by the client

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

UUID() Return a Universal Unique Identifier (UUID)

UUID_SHORT() Return an integer-valued universal identifier

VALUES() Defines the values to be used during an INSERT

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

VERSION() Return a string that indicates the MySQL server version

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

Within() Whether MBR of one geometry is within MBR of another



Type Conversion in Expression Evaluation

1137

Name Description

X() Return X coordinate of Point

XOR Logical XOR

Y() Return Y coordinate of Point

YEAR() Return the year

YEARWEEK() Return the year and week

12.2 Type Conversion in Expression Evaluation
When an operator is used with operands of different types, type conversion occurs to make the
operands compatible. Some conversions occur implicitly. For example, MySQL automatically converts
numbers to strings as necessary, and vice versa.

mysql> SELECT 1+'1';
        -> 2
mysql> SELECT CONCAT(2,' test');
        -> '2 test'

It is also possible to convert a number to a string explicitly using the CAST() function. Conversion
occurs implicitly with the CONCAT() function because it expects string arguments.

mysql> SELECT 38.8, CAST(38.8 AS CHAR);
        -> 38.8, '38.8'
mysql> SELECT 38.8, CONCAT(38.8);
        -> 38.8, '38.8'

See later in this section for information about the character set of implicit number-to-string conversions,
and for modified rules that apply to CREATE TABLE ... SELECT statements.

The following rules describe how conversion occurs for comparison operations:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-safe
<=> equality comparison operator. For NULL <=> NULL, the result is true. No conversion is needed.

• If both arguments in a comparison operation are strings, they are compared as strings.

• If both arguments are integers, they are compared as integers.

• Hexadecimal values are treated as binary strings if not compared to a number.

•   If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a
constant, the constant is converted to a timestamp before the comparison is performed. This is done
to be more ODBC-friendly. Note that this is not done for the arguments to IN()! To be safe, always
use complete datetime, date, or time strings when doing comparisons. For example, to achieve best
results when using BETWEEN with date or time values, use CAST() to explicitly convert the values to
the desired data type.

• If one of the arguments is a decimal value, comparison depends on the other argument. The
arguments are compared as decimal values if the other argument is a decimal or integer value, or as
floating-point values if the other argument is a floating-point value.

• In all other cases, the arguments are compared as floating-point (real) numbers.

For information about conversion of values from one temporal type to another, see Section 11.3.7,
“Conversion Between Date and Time Types”.

The following examples illustrate conversion of strings to numbers for comparison operations:

mysql> SELECT 1 > '6x';



Type Conversion in Expression Evaluation

1138

        -> 0
mysql> SELECT 7 > '6x';
        -> 1
mysql> SELECT 0 > 'x6';
        -> 0
mysql> SELECT 0 = 'x6';
        -> 1

For comparisons of a string column with a number, MySQL cannot use an index on the column to
look up the value quickly. If str_col is an indexed string column, the index cannot be used when
performing the lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1, such as
'1', ' 1', or '1a'.

Comparisons that use floating-point numbers (or values that are converted to floating-point
numbers) are approximate because such numbers are inexact. This might lead to results that appear
inconsistent:

mysql> SELECT '18015376320243458' = 18015376320243458;
        -> 1
mysql> SELECT '18015376320243459' = 18015376320243459;
        -> 0

Such results can occur because the values are converted to floating-point numbers, which have only
53 bits of precision and are subject to rounding:

mysql> SELECT '18015376320243459'+0.0;
        -> 1.8015376320243e+16

Furthermore, the conversion from string to floating-point and from integer to floating-point do not
necessarily occur the same way. The integer may be converted to floating-point by the CPU, whereas
the string is converted digit by digit in an operation that involves floating-point multiplications.

The results shown will vary on different systems, and can be affected by factors such as computer
architecture or the compiler version or optimization level. One way to avoid such problems is to use
CAST() so that a value is not converted implicitly to a float-point number:

mysql> SELECT CAST('18015376320243459' AS UNSIGNED) = 18015376320243459;
        -> 1

For more information about floating-point comparisons, see Section B.5.4.8, “Problems with Floating-
Point Values”.

As of MySQL 5.5.3, the server includes dtoa, a conversion library that provides the basis for improved
conversion between string or DECIMAL values and approximate-value (FLOAT/DOUBLE) numbers:

• Consistent conversion results across platforms, which eliminates, for example, Unix versus Windows
conversion differences.

• Accurate representation of values in cases where results previously did not provide sufficient
precision, such as for values close to IEEE limits.

• Conversion of numbers to string format with the best possible precision. The precision of dtoa is
always the same or better than that of the standard C library functions.

Because the conversions produced by this library differ in some cases from non-dtoa results,
the potential exists for incompatibilities in applications that rely on previous results. For example,
applications that depend on a specific exact result from previous conversions might need adjustment to
accommodate additional precision.



Operators

1139

The dtoa library provides conversions with the following properties. D represents a value with a
DECIMAL or string representation, and F represents a floating-point number in native binary (IEEE)
format.

• F -> D conversion is done with the best possible precision, returning D as the shortest string that
yields F when read back in and rounded to the nearest value in native binary format as specified by
IEEE.

• D -> F conversion is done such that F is the nearest native binary number to the input decimal string
D.

These properties imply that F -> D -> F conversions are lossless unless F is -inf, +inf, or NaN. The
latter values are not supported because the SQL standard defines them as invalid values for FLOAT or
DOUBLE.

For D -> F -> D conversions, a sufficient condition for losslessness is that D uses 15 or fewer digits of
precision, is not a denormal value, -inf, +inf, or NaN. In some cases, the conversion is lossless even
if D has more than 15 digits of precision, but this is not always the case.

As of MySQL 5.5.3, implicit conversion of a numeric or temporal value to string produces a value
that has a character set and collation determined by the character_set_connection and
collation_connection system variables. (These variables commonly are set with SET NAMES.
For information about connection character sets, see Section 10.1.4, “Connection Character Sets and
Collations”.)

This change means that such a conversion results in a character (nonbinary) string (a CHAR, VARCHAR,
or LONGTEXT value), except when the connection character set is set to binary. In that case, the
conversion result is a binary string (a BINARY, VARBINARY, or LONGBLOB value).

Before MySQL 5.5.3, an implicit conversion always produced a binary string, regardless of the
connection character set. Such implicit conversions to string typically occur for functions that are
passed numeric or temporal values when string values are more usual, and thus could have effects
beyond the type of the converted value. Consider the expression CONCAT(1, 'abc'). The numeric
argument 1 was converted to the binary string '1' and the concatenation of that value with the
nonbinary string 'abc' produced the binary string '1abc'.

Some functions are unaffected by this change in behavior:

• CHAR() without a USING clause still returns VARBINARY.

• Functions that previously returned utf8 strings still do so. Examples include CHARSET() and
COLLATION().

• Encryption and compression functions that expect string arguments and previously returned binary
strings are unaffected if the return value can contain non-ASCII characters. Examples include
AES_ENCRYPT() and COMPRESS(). If the return value contains only ASCII characters, the function
now returns a character string with the connection character set and collation. Examples include
MD5() and PASSWORD().

12.3 Operators
Table 12.2 Operators

Name Description

AND, && Logical AND

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

BETWEEN ... AND ... Check whether a value is within a range of values

BINARY Cast a string to a binary string



Operator Precedence

1140

Name Description

& Bitwise AND

~ Bitwise inversion

| Bitwise OR

^ Bitwise XOR

CASE Case operator

DIV Integer division

/ Division operator

= Equal operator

<=> NULL-safe equal to operator

> Greater than operator

>= Greater than or equal operator

IS Test a value against a boolean

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

<< Left shift

< Less than operator

<= Less than or equal operator

LIKE Simple pattern matching

- Minus operator

%, MOD Modulo operator

NOT, ! Negates value

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

||, OR Logical OR

+ Addition operator

REGEXP Pattern matching using regular expressions

>> Right shift

RLIKE Synonym for REGEXP

SOUNDS LIKE Compare sounds

* Multiplication operator

- Change the sign of the argument

XOR Logical XOR

12.3.1 Operator Precedence

Operator precedences are shown in the following list, from highest precedence to the lowest. Operators
that are shown together on a line have the same precedence.

INTERVAL
BINARY, COLLATE
!



Comparison Functions and Operators

1141

- (unary minus), ~ (unary bit inversion)
^
*, /, DIV, %, MOD
-, +
<<, >>
&
|
= (comparison), <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN
BETWEEN, CASE, WHEN, THEN, ELSE
NOT
AND, &&
XOR
OR, ||
= (assignment), :=

The precedence of = depends on whether it is used as a comparison operator (=) or as an assignment
operator (=). When used as a comparison operator, it has the same precedence as <=>, >=, >,
<=, <, <>, !=, IS, LIKE, REGEXP, and IN. When used as an assignment operator, it has the same
precedence as :=. Section 13.7.4.1, “SET Syntax for Variable Assignment”, and Section 9.4, “User-
Defined Variables”, explain how MySQL determines which interpretation of = should apply.

For operators that occur at the same precedence level within an expression, evaluation proceeds left to
right, with the exception that assignments evaluate right to left.

The meaning of some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 5.1.8, “Server SQL Modes”.

The precedence of operators determines the order of evaluation of terms in an expression. To override
this order and group terms explicitly, use parentheses. For example:

mysql> SELECT 1+2*3;
        -> 7
mysql> SELECT (1+2)*3;
        -> 9

12.3.2 Comparison Functions and Operators

Table 12.3 Comparison Operators

Name Description

BETWEEN ... AND ... Check whether a value is within a range of values

COALESCE() Return the first non-NULL argument

= Equal operator

<=> NULL-safe equal to operator

> Greater than operator

>= Greater than or equal operator

GREATEST() Return the largest argument

IN() Check whether a value is within a set of values

INTERVAL() Return the index of the argument that is less than the first
argument

IS Test a value against a boolean

IS NOT Test a value against a boolean



Comparison Functions and Operators

1142

Name Description

IS NOT NULL NOT NULL value test

IS NULL NULL value test

ISNULL() Test whether the argument is NULL

LEAST() Return the smallest argument

< Less than operator

<= Less than or equal operator

LIKE Simple pattern matching

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT IN() Check whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work for
both numbers and strings. Strings are automatically converted to numbers and numbers to strings as
necessary.

The following relational comparison operators can be used to compare not only scalar operands, but
row operands:

=  >  <  >=  <=  <>  !=

The descriptions for those operators later in this section detail how they work with row operands. For
additional examples of row comparisons in the context of row subqueries, see Section 13.2.10.5, “Row
Subqueries”.

Some of the functions in this section return values other than 1 (TRUE), 0 (FALSE), or NULL. For
example, LEAST() and GREATEST(). However, the value they return is based on comparison
operations performed according to the rules described in Section 12.2, “Type Conversion in Expression
Evaluation”.

To convert a value to a specific type for comparison purposes, you can use the CAST() function.
String values can be converted to a different character set using CONVERT(). See Section 12.10, “Cast
Functions and Operators”.

By default, string comparisons are not case sensitive and use the current character set. The default is
latin1 (cp1252 West European), which also works well for English.

•   =

Equal:

mysql> SELECT 1 = 0;
        -> 0
mysql> SELECT '0' = 0;
        -> 1
mysql> SELECT '0.0' = 0;
        -> 1
mysql> SELECT '0.01' = 0;
        -> 0
mysql> SELECT '.01' = 0.01;
        -> 1

For row comparisons, (a, b) = (x, y) is equivalent to:



Comparison Functions and Operators

1143

(a = x) AND (b = y)

•   <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but returns 1
rather than NULL if both operands are NULL, and 0 rather than NULL if one operand is NULL.

The <=> operator is equivalent to the standard SQL IS NOT DISTINCT FROM operator.

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
        -> 1, 1, 0
mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
        -> 1, NULL, NULL

For row comparisons, (a, b) <=> (x, y) is equivalent to:

(a <=> x) AND (b <=> y)

•     <>, !=

Not equal:

mysql> SELECT '.01' <> '0.01';
        -> 1
mysql> SELECT .01 <> '0.01';
        -> 0
mysql> SELECT 'zapp' <> 'zappp';
        -> 1

For row comparisons, (a, b) <> (x, y) and (a, b) != (x, y) are equivalent to:

(a <> x) OR (b <> y)

•   <=

Less than or equal:

mysql> SELECT 0.1 <= 2;
        -> 1

For row comparisons, (a, b) <= (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b <= y))

•   <

Less than:

mysql> SELECT 2 < 2;
        -> 0

For row comparisons, (a, b) < (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b < y))

•   >=

Greater than or equal:



Comparison Functions and Operators

1144

mysql> SELECT 2 >= 2;
        -> 1

For row comparisons, (a, b) >= (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b >= y))

•   >

Greater than:

mysql> SELECT 2 > 2;
        -> 0

For row comparisons, (a, b) > (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b > y))

•     IS boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;
        -> 1, 1, 1

•     IS NOT boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
        -> 1, 1, 0

•   IS NULL

Tests whether a value is NULL.

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
        -> 0, 0, 1

  To work well with ODBC programs, MySQL supports the following extra features when using IS
NULL:

• If sql_auto_is_null variable is set to 1, then after a statement that successfully inserts an
automatically generated AUTO_INCREMENT value, you can find that value by issuing a statement
of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert,
see Section 12.14, “Information Functions”. If no AUTO_INCREMENT value was successfully
inserted, the SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison can be
disabled by setting sql_auto_is_null = 0. See Section 5.1.5, “Server System Variables”.

The default value of sql_auto_is_null is 0 as of MySQL 5.5.3, and 1 for earlier versions.



Comparison Functions and Operators

1145

• For DATE and DATETIME columns that are declared as NOT NULL, you can find the special date
'0000-00-00' by using a statement like this:

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC does not support a
'0000-00-00' date value.

See Obtaining Auto-Increment Values, and the description for the FLAG_AUTO_IS_NULL option at
Connector/ODBC Connection Parameters.

•   IS NOT NULL

Tests whether a value is not NULL.

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
        -> 1, 1, 0

•  expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1,
otherwise it returns 0. This is equivalent to the expression (min <= expr AND expr <= max) if
all the arguments are of the same type. Otherwise type conversion takes place according to the rules
described in Section 12.2, “Type Conversion in Expression Evaluation”, but applied to all the three
arguments.

mysql> SELECT 2 BETWEEN 1 AND 3, 2 BETWEEN 3 and 1;
        -> 1, 0
mysql> SELECT 1 BETWEEN 2 AND 3;
        -> 0
mysql> SELECT 'b' BETWEEN 'a' AND 'c';
        -> 1
mysql> SELECT 2 BETWEEN 2 AND '3';
        -> 1
mysql> SELECT 2 BETWEEN 2 AND 'x-3';
        -> 0

For best results when using BETWEEN with date or time values, use CAST() to explicitly convert
the values to the desired data type. Examples: If you compare a DATETIME to two DATE values,
convert the DATE values to DATETIME values. If you use a string constant such as '2001-1-1' in a
comparison to a DATE, cast the string to a DATE.

•  expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).

•   COALESCE(value,...)

Returns the first non-NULL value in the list, or NULL if there are no non-NULL values.

The return type of COALESCE() is the aggregated type of the argument types.

mysql> SELECT COALESCE(NULL,1);
        -> 1
mysql> SELECT COALESCE(NULL,NULL,NULL);
        -> NULL

•  GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The arguments are
compared using the same rules as for LEAST().

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-connection-parameters.html


Comparison Functions and Operators

1146

mysql> SELECT GREATEST(2,0);
        -> 2
mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
        -> 767.0
mysql> SELECT GREATEST('B','A','C');
        -> 'C'

GREATEST() returns NULL if any argument is NULL.

•  expr IN (value,...)

Returns 1 if expr is equal to any of the values in the IN list, else returns 0. If all values are
constants, they are evaluated according to the type of expr and sorted. The search for the item then
is done using a binary search. This means IN is very quick if the IN value list consists entirely of
constants. Otherwise, type conversion takes place according to the rules described in Section 12.2,
“Type Conversion in Expression Evaluation”, but applied to all the arguments.

mysql> SELECT 2 IN (0,3,5,7);
        -> 0
mysql> SELECT 'wefwf' IN ('wee','wefwf','weg');
        -> 1

IN can be used to compare row constructors:

mysql> SELECT (3,4) IN ((1,2), (3,4));
        -> 1
mysql> SELECT (3,4) IN ((1,2), (3,5));
        -> 0

You should never mix quoted and unquoted values in an IN list because the comparison rules for
quoted values (such as strings) and unquoted values (such as numbers) differ. Mixing types may
therefore lead to inconsistent results. For example, do not write an IN expression like this:

SELECT val1 FROM tbl1 WHERE val1 IN (1,2,'a');

Instead, write it like this:

SELECT val1 FROM tbl1 WHERE val1 IN ('1','2','a');

The number of values in the IN list is only limited by the max_allowed_packet value.

To comply with the SQL standard, IN returns NULL not only if the expression on the left hand side is
NULL, but also if no match is found in the list and one of the expressions in the list is NULL.

IN() syntax can also be used to write certain types of subqueries. See Section 13.2.10.3,
“Subqueries with ANY, IN, or SOME”.

•  expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).

•  ISNULL(expr)

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

mysql> SELECT ISNULL(1+1);
        -> 0
mysql> SELECT ISNULL(1/0);
        -> 1



Logical Operators

1147

ISNULL() can be used instead of = to test whether a value is NULL. (Comparing a value to NULL
using = always yields NULL.)

The ISNULL() function shares some special behaviors with the IS NULL comparison operator. See
the description of IS NULL.

•  INTERVAL(N,N1,N2,N3,...)

Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are treated as integers. It
is required that N1 < N2 < N3 < ... < Nn for this function to work correctly. This is because a binary
search is used (very fast).

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);
        -> 3
mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
        -> 2
mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
        -> 0

•  LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are
compared using the following rules:

• If any argument is NULL, the result is NULL. No comparison is needed.

• If all arguments are integer-valued, they are compared as integers.

• If at least one argument is double precision, they are compared as double-precision values.
Otherwise, if at least one argument is a DECIMAL value, they are compared as DECIMAL values.

• If the arguments comprise a mix of numbers and strings, they are compared as numbers.

• If any argument is a nonbinary (character) string, the arguments are compared as nonbinary
strings.

• In all other cases, the arguments are compared as binary strings.

The return type of LEAST() is the aggregated type of the comparison argument types.

mysql> SELECT LEAST(2,0);
        -> 0
mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
        -> 3.0
mysql> SELECT LEAST('B','A','C');
        -> 'A'

12.3.3 Logical Operators
Table 12.4 Logical Operators

Name Description

AND, && Logical AND

NOT, ! Negates value

||, OR Logical OR

XOR Logical XOR

In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these are
implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common to different SQL database
servers, although some servers may return any nonzero value for TRUE.



Logical Operators

1148

MySQL evaluates any nonzero, non-NULL value to TRUE. For example, the following statements all
assess to TRUE:

mysql> SELECT 10 IS TRUE;
-> 1
mysql> SELECT -10 IS TRUE;
-> 1
mysql> SELECT 'string' IS NOT NULL;
-> 1

•   NOT, !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is nonzero, and NOT NULL
returns NULL.

mysql> SELECT NOT 10;
        -> 0
mysql> SELECT NOT 0;
        -> 1
mysql> SELECT NOT NULL;
        -> NULL
mysql> SELECT ! (1+1);
        -> 0
mysql> SELECT ! 1+1;
        -> 1

The last example produces 1 because the expression evaluates the same way as (!1)+1.

•   AND, &&

Logical AND. Evaluates to 1 if all operands are nonzero and not NULL, to 0 if one or more operands
are 0, otherwise NULL is returned.

mysql> SELECT 1 AND 1;
        -> 1
mysql> SELECT 1 AND 0;
        -> 0
mysql> SELECT 1 AND NULL;
        -> NULL
mysql> SELECT 0 AND NULL;
        -> 0
mysql> SELECT NULL AND 0;
        -> 0

•   OR, ||

Logical OR. When both operands are non-NULL, the result is 1 if any operand is nonzero, and 0
otherwise. With a NULL operand, the result is 1 if the other operand is nonzero, and NULL otherwise.
If both operands are NULL, the result is NULL.

mysql> SELECT 1 OR 1;
        -> 1
mysql> SELECT 1 OR 0;
        -> 1
mysql> SELECT 0 OR 0;
        -> 0
mysql> SELECT 0 OR NULL;
        -> NULL
mysql> SELECT 1 OR NULL;
        -> 1

•  XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an
odd number of operands is nonzero, otherwise 0 is returned.



Assignment Operators

1149

mysql> SELECT 1 XOR 1;
        -> 0
mysql> SELECT 1 XOR 0;
        -> 1
mysql> SELECT 1 XOR NULL;
        -> NULL
mysql> SELECT 1 XOR 1 XOR 1;
        -> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

12.3.4 Assignment Operators

Table 12.5 Assignment Operators

Name Description

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

•   :=

Assignment operator. Causes the user variable on the left hand side of the operator to take on the
value to its right. The value on the right hand side may be a literal value, another variable storing a
value, or any legal expression that yields a scalar value, including the result of a query (provided that
this value is a scalar value). You can perform multiple assignments in the same SET statement. You
can perform multiple assignments in the same statement.

Unlike =, the := operator is never interpreted as a comparison operator. This means you can use :=
in any valid SQL statement (not just in SET statements) to assign a value to a variable.

mysql> SELECT @var1, @var2;
        -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
        -> 1, NULL
mysql> SELECT @var1, @var2;
        -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
        -> 1, 1
mysql> SELECT @var1, @var2;
        -> 1, 1

mysql> SELECT @var1:=COUNT(*) FROM t1;
        -> 4
mysql> SELECT @var1;
        -> 4

You can make value assignments using := in other statements besides SELECT, such as UPDATE,
as shown here:

mysql> SELECT @var1;
        -> 4
mysql> SELECT * FROM t1;
        -> 1, 3, 5, 7

mysql> UPDATE t1 SET c1 = 2 WHERE c1 = @var1:= 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> SELECT @var1;
        -> 1
mysql> SELECT * FROM t1;



Control Flow Functions

1150

        -> 2, 3, 5, 7

While it is also possible both to set and to read the value of the same variable in a single SQL
statement using the := operator, this is not recommended. Section 9.4, “User-Defined Variables”,
explains why you should avoid doing this.

•    =

This operator is used to perform value assignments in two cases, described in the next two
paragraphs.

Within a SET statement, = is treated as an assignment operator that causes the user variable on the
left hand side of the operator to take on the value to its right. (In other words, when used in a SET
statement, = is treated identically to :=.) The value on the right hand side may be a literal value,
another variable storing a value, or any legal expression that yields a scalar value, including the
result of a query (provided that this value is a scalar value). You can perform multiple assignments in
the same SET statement.

In the SET clause of an UPDATE statement, = also acts as an assignment operator; in this case,
however, it causes the column named on the left hand side of the operator to assume the value
given to the right, provided any WHERE conditions that are part of the UPDATE are met. You can make
multiple assignments in the same SET clause of an UPDATE statement.

In any other context, = is treated as a comparison operator.

mysql> SELECT @var1, @var2;
        -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
        -> 1, NULL
mysql> SELECT @var1, @var2;
        -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
        -> 1, 1
mysql> SELECT @var1, @var2;
        -> 1, 1

For more information, see Section 13.7.4.1, “SET Syntax for Variable Assignment”, Section 13.2.11,
“UPDATE Syntax”, and Section 13.2.10, “Subquery Syntax”.

12.4 Control Flow Functions

Table 12.6 Flow Control Operators

Name Description

CASE Case operator

IF() If/else construct

IFNULL() Null if/else construct

NULLIF() Return NULL if expr1 = expr2

•  CASE value WHEN [compare_value] THEN result [WHEN [compare_value] THEN
result ...] [ELSE result] END

CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...] [ELSE
result] END

The first CASE syntax returns the result for the first value=compare_value comparison that
is true. The second syntax returns the result for the first condition that is true. If no comparison or
condition is true, the result after ELSE is returned, or NULL if there is no ELSE part.



Control Flow Functions

1151

Note

The syntax of the CASE expression described here differs slightly from that of
the SQL CASE statement described in Section 13.6.5.1, “CASE Syntax”, for
use inside stored programs. The CASE statement cannot have an ELSE NULL
clause, and it is terminated with END CASE instead of END.

The return type of a CASE expression result is the aggregated type of all result values.

mysql> SELECT CASE 1 WHEN 1 THEN 'one'
    ->     WHEN 2 THEN 'two' ELSE 'more' END;
        -> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;
        -> 'true'
mysql> SELECT CASE BINARY 'B'
    ->     WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;
        -> NULL

•  IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL), IF() returns expr2. Otherwise, it returns
expr3.

Note

There is also an IF statement, which differs from the IF() function described
here. See Section 13.6.5.2, “IF Syntax”.

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the type of
the non-NULL expression.

The default return type of IF() (which may matter when it is stored into a temporary table) is
calculated as follows:

• If expr2 or expr3 produce a string, the result is a string.

If expr2 and expr3 are both strings, the result is case sensitive if either string is case sensitive.

• If expr2 or expr3 produce a floating-point value, the result is a floating-point value.

• If expr2 or expr3 produce an integer, the result is an integer.

mysql> SELECT IF(1>2,2,3);
        -> 3
mysql> SELECT IF(1<2,'yes','no');
        -> 'yes'
mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
        -> 'no'

•   IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2.

mysql> SELECT IFNULL(1,0);
        -> 1
mysql> SELECT IFNULL(NULL,10);
        -> 10
mysql> SELECT IFNULL(1/0,10);
        -> 10
mysql> SELECT IFNULL(1/0,'yes');
        -> 'yes'



String Functions

1152

The default return type of IFNULL(expr1,expr2) is the more “general” of the two expressions, in
the order STRING, REAL, or INTEGER. Consider the case of a table based on expressions or where
MySQL must internally store a value returned by IFNULL() in a temporary table:

mysql> CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;
mysql> DESCRIBE tmp;
+-------+--------------+------+-----+---------+-------+
| Field | Type         | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| test  | varbinary(4) | NO   |     |         |       |
+-------+--------------+------+-----+---------+-------+

In this example, the type of the test column is VARBINARY(4) (a string type).

•  NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE WHEN
expr1 = expr2 THEN NULL ELSE expr1 END.

The return value has the same type as the first argument.

mysql> SELECT NULLIF(1,1);
        -> NULL
mysql> SELECT NULLIF(1,2);
        -> 1

Note

MySQL evaluates expr1 twice if the arguments are not equal.

12.5 String Functions
Table 12.7 String Operators

Name Description

ASCII() Return numeric value of left-most character

BIN() Return a string containing binary representation of a number

BIT_LENGTH() Return length of argument in bits

CHAR() Return the character for each integer passed

CHAR_LENGTH() Return number of characters in argument

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CONCAT() Return concatenated string

CONCAT_WS() Return concatenate with separator

ELT() Return string at index number

EXPORT_SET() Return a string such that for every bit set in the value bits,
you get an on string and for every unset bit, you get an off
string

FIELD() Return the index (position) of the first argument in the
subsequent arguments

FIND_IN_SET() Return the index position of the first argument within the
second argument

FORMAT() Return a number formatted to specified number of decimal
places



String Functions

1153

Name Description

HEX() Return a hexadecimal representation of a decimal or string
value

INSERT() Insert a substring at the specified position up to the specified
number of characters

INSTR() Return the index of the first occurrence of substring

LCASE() Synonym for LOWER()

LEFT() Return the leftmost number of characters as specified

LENGTH() Return the length of a string in bytes

LIKE Simple pattern matching

LOAD_FILE() Load the named file

LOCATE() Return the position of the first occurrence of substring

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the specified
string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have the
corresponding bit in bits set

MATCH Perform full-text search

MID() Return a substring starting from the specified position

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OCT() Return a string containing octal representation of a number

OCTET_LENGTH() Synonym for LENGTH()

ORD() Return character code for leftmost character of the argument

POSITION() Synonym for LOCATE()

QUOTE() Escape the argument for use in an SQL statement

REGEXP Pattern matching using regular expressions

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

RLIKE Synonym for REGEXP

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

STRCMP() Compare two strings

SUBSTR() Return the substring as specified

SUBSTRING() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified number
of occurrences of the delimiter



String Functions

1154

Name Description

TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX() Return a string containing hex representation of a number

UPPER() Convert to uppercase

String-valued functions return NULL if the length of the result would be greater than the value of the
max_allowed_packet system variable. See Section 5.1.1, “Configuring the Server”.

For functions that operate on string positions, the first position is numbered 1.

For functions that take length arguments, noninteger arguments are rounded to the nearest integer.

•  ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty
string. Returns NULL if str is NULL. ASCII() works for 8-bit characters.

mysql> SELECT ASCII('2');
        -> 50
mysql> SELECT ASCII(2);
        -> 50
mysql> SELECT ASCII('dx');
        -> 100

See also the ORD() function.

•  BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number.
This is equivalent to CONV(N,10,2). Returns NULL if N is NULL.

mysql> SELECT BIN(12);
        -> '1100'

•  BIT_LENGTH(str)

Returns the length of the string str in bits.

mysql> SELECT BIT_LENGTH('text');
        -> 32

•  CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string consisting of the characters
given by the code values of those integers. NULL values are skipped.

mysql> SELECT CHAR(77,121,83,81,'76');
        -> 'MySQL'
mysql> SELECT CHAR(77,77.3,'77.3');
        -> 'MMM'

CHAR() arguments larger than 255 are converted into multiple result bytes. For example,
CHAR(256) is equivalent to CHAR(1,0), and CHAR(256*256) is equivalent to CHAR(1,0,0):

mysql> SELECT HEX(CHAR(1,0)), HEX(CHAR(256));
+----------------+----------------+
| HEX(CHAR(1,0)) | HEX(CHAR(256)) |
+----------------+----------------+
| 0100           | 0100           |



String Functions

1155

+----------------+----------------+
mysql> SELECT HEX(CHAR(1,0,0)), HEX(CHAR(256*256));
+------------------+--------------------+
| HEX(CHAR(1,0,0)) | HEX(CHAR(256*256)) |
+------------------+--------------------+
| 010000           | 010000             |
+------------------+--------------------+

By default, CHAR() returns a binary string. To produce a string in a given character set, use the
optional USING clause:

mysql> SELECT CHARSET(CHAR(X'65')), CHARSET(CHAR(X'65' USING utf8));
+----------------------+---------------------------------+
| CHARSET(CHAR(X'65')) | CHARSET(CHAR(X'65' USING utf8)) |
+----------------------+---------------------------------+
| binary               | utf8                            |
+----------------------+---------------------------------+

If USING is given and the result string is illegal for the given character set, a warning is issued. Also,
if strict SQL mode is enabled, the result from CHAR() becomes NULL.

•  CHAR_LENGTH(str)

Returns the length of the string str, measured in characters. A multibyte character counts as a
single character. This means that for a string containing five 2-byte characters, LENGTH() returns
10, whereas CHAR_LENGTH() returns 5.

•  CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

•    CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have one or more arguments.
If all arguments are nonbinary strings, the result is a nonbinary string. If the arguments include any
binary strings, the result is a binary string. A numeric argument is converted to its equivalent string
form. This is a nonbinary string as of MySQL 5.5.3. Before 5.5.3, it is a binary string; to avoid that
and produce a nonbinary string, you can use an explicit type cast, as in this example:

SELECT CONCAT(CAST(int_col AS CHAR), char_col);

CONCAT() returns NULL if any argument is NULL.

mysql> SELECT CONCAT('My', 'S', 'QL');
        -> 'MySQL'
mysql> SELECT CONCAT('My', NULL, 'QL');
        -> NULL
mysql> SELECT CONCAT(14.3);
        -> '14.3'

For quoted strings, concatenation can be performed by placing the strings next to each other:

mysql> SELECT 'My' 'S' 'QL';
        -> 'MySQL'

•  CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The first
argument is the separator for the rest of the arguments. The separator is added between the strings
to be concatenated. The separator can be a string, as can the rest of the arguments. If the separator
is NULL, the result is NULL.



String Functions

1156

mysql> SELECT CONCAT_WS(',','First name','Second name','Last Name');
        -> 'First name,Second name,Last Name'
mysql> SELECT CONCAT_WS(',','First name',NULL,'Last Name');
        -> 'First name,Last Name'

CONCAT_WS() does not skip empty strings. However, it does skip any NULL values after the
separator argument.

•  ELT(N,str1,str2,str3,...)

ELT() returns the Nth element of the list of strings: str1 if N = 1, str2 if N = 2, and so on. Returns
NULL if N is less than 1 or greater than the number of arguments. ELT() is the complement of
FIELD().

mysql> SELECT ELT(1, 'ej', 'Heja', 'hej', 'foo');
        -> 'ej'
mysql> SELECT ELT(4, 'ej', 'Heja', 'hej', 'foo');
        -> 'foo'

•  EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns a string such that for every bit set in the value bits, you get an on string and for every
bit not set in the value, you get an off string. Bits in bits are examined from right to left (from
low-order to high-order bits). Strings are added to the result from left to right, separated by the
separator string (the default being the comma character ,). The number of bits examined is
given by number_of_bits, which has a default of 64 if not specified. number_of_bits is silently
clipped to 64 if larger than 64. It is treated as an unsigned integer, so a value of −1 is effectively the
same as 64.

mysql> SELECT EXPORT_SET(5,'Y','N',',',4);
        -> 'Y,N,Y,N'
mysql> SELECT EXPORT_SET(6,'1','0',',',10);
        -> '0,1,1,0,0,0,0,0,0,0'

•  FIELD(str,str1,str2,str3,...)

Returns the index (position) of str in the str1, str2, str3, ... list. Returns 0 if str is not found.

If all arguments to FIELD() are strings, all arguments are compared as strings. If all arguments are
numbers, they are compared as numbers. Otherwise, the arguments are compared as double.

If str is NULL, the return value is 0 because NULL fails equality comparison with any value.
FIELD() is the complement of ELT().

mysql> SELECT FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo');
        -> 2
mysql> SELECT FIELD('fo', 'Hej', 'ej', 'Heja', 'hej', 'foo');
        -> 0

•  FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of
N substrings. A string list is a string composed of substrings separated by , characters. If the first
argument is a constant string and the second is a column of type SET, the FIND_IN_SET() function
is optimized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is the empty
string. Returns NULL if either argument is NULL. This function does not work properly if the first
argument contains a comma (,) character.

mysql> SELECT FIND_IN_SET('b','a,b,c,d');
        -> 2



String Functions

1157

•  FORMAT(X,D[,locale])

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. If D is 0, the result has no decimal point or fractional part.

The optional third parameter enables a locale to be specified to be used for the result number's
decimal point, thousands separator, and grouping between separators. Permissible locale values are
the same as the legal values for the lc_time_names system variable (see Section 10.7, “MySQL
Server Locale Support”). If no locale is specified, the default is 'en_US'.

mysql> SELECT FORMAT(12332.123456, 4);
        -> '12,332.1235'
mysql> SELECT FORMAT(12332.1,4);
        -> '12,332.1000'
mysql> SELECT FORMAT(12332.2,0);
        -> '12,332'
mysql> SELECT FORMAT(12332.2,2,'de_DE');
        -> '12.332,20'

•  HEX(str), HEX(N)

For a string argument str, HEX() returns a hexadecimal string representation of str where each
byte of each character in str is converted to two hexadecimal digits. (Multibyte characters therefore
become more than two digits.) The inverse of this operation is performed by the UNHEX() function.

For a numeric argument N, HEX() returns a hexadecimal string representation of the value of N
treated as a longlong (BIGINT) number. This is equivalent to CONV(N,10,16). The inverse of this
operation is performed by CONV(HEX(N),16,10).

mysql> SELECT X'616263', HEX('abc'), UNHEX(HEX('abc'));
        -> 'abc', 616263, 'abc'
mysql> SELECT HEX(255), CONV(HEX(255),16,10);
        -> 'FF', 255

•  INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long
replaced by the string newstr. Returns the original string if pos is not within the length of the string.
Replaces the rest of the string from position pos if len is not within the length of the rest of the
string. Returns NULL if any argument is NULL.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
        -> 'QuWhattic'
mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
        -> 'Quadratic'
mysql> SELECT INSERT('Quadratic', 3, 100, 'What');
        -> 'QuWhat'

This function is multibyte safe.

•  INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same as
the two-argument form of LOCATE(), except that the order of the arguments is reversed.

mysql> SELECT INSTR('foobarbar', 'bar');
        -> 4
mysql> SELECT INSTR('xbar', 'foobar');
        -> 0

This function is multibyte safe, and is case sensitive only if at least one argument is a binary string.



String Functions

1158

•  LCASE(str)

LCASE() is a synonym for LOWER().

•  LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT LEFT('foobarbar', 5);
        -> 'fooba'

This function is multibyte safe.

•  LENGTH(str)

Returns the length of the string str, measured in bytes. A multibyte character counts as multiple
bytes. This means that for a string containing five 2-byte characters, LENGTH() returns 10, whereas
CHAR_LENGTH() returns 5.

mysql> SELECT LENGTH('text');
        -> 4

Note

The Length() OpenGIS spatial function is named GLength() in MySQL.

•   LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. To use this function, the file must be located
on the server host, you must specify the full path name to the file, and you must have the FILE
privilege. The file must be readable by all and its size less than max_allowed_packet bytes. If the
secure_file_priv system variable is set to a nonempty directory name, the file to be loaded must
be located in that directory.

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied,
the function returns NULL.

The character_set_filesystem system variable controls interpretation of file names that are
given as literal strings.

mysql> UPDATE t
            SET blob_col=LOAD_FILE('/tmp/picture')
            WHERE id=1;

•  LOCATE(substr,str), LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str. The
second syntax returns the position of the first occurrence of substring substr in string str, starting
at position pos. Returns 0 if substr is not in str. Returns NULL if substr or str is NULL.

mysql> SELECT LOCATE('bar', 'foobarbar');
        -> 4
mysql> SELECT LOCATE('xbar', 'foobar');
        -> 0
mysql> SELECT LOCATE('bar', 'foobarbar', 5);
        -> 7

This function is multibyte safe, and is case-sensitive only if at least one argument is a binary string.

•  LOWER(str)



String Functions

1159

Returns the string str with all characters changed to lowercase according to the current character
set mapping. The default is latin1 (cp1252 West European).

mysql> SELECT LOWER('QUADRATICALLY');
        -> 'quadratically'

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY,
BLOB). To perform lettercase conversion, convert the string to a nonbinary string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York    | new york                          |
+-------------+-----------------------------------+

This function is multibyte safe.

•  LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

mysql> SELECT LPAD('hi',4,'??');
        -> '??hi'
mysql> SELECT LPAD('hi',1,'??');
        -> 'h'

•  LTRIM(str)

Returns the string str with leading space characters removed.

mysql> SELECT LTRIM('  barbar');
        -> 'barbar'

This function is multibyte safe.

•  MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by , characters) consisting of the
strings that have the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so
on. NULL values in str1, str2, ... are not appended to the result.

mysql> SELECT MAKE_SET(1,'a','b','c');
        -> 'a'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
        -> 'hello,world'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
        -> 'hello'
mysql> SELECT MAKE_SET(0,'a','b','c');
        -> ''

•  MID(str,pos,len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

•  OCT(N)

Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This
is equivalent to CONV(N,10,8). Returns NULL if N is NULL.



String Functions

1160

mysql> SELECT OCT(12);
        -> '14'

•  OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

•  ORD(str)

If the leftmost character of the string str is a multibyte character, returns the code for that character,
calculated from the numeric values of its constituent bytes using this formula:

  (1st byte code)
+ (2nd byte code * 256)
+ (3rd byte code * 2562) ...

If the leftmost character is not a multibyte character, ORD() returns the same value as the ASCII()
function.

mysql> SELECT ORD('2');
        -> 50

•  POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

•  QUOTE(str)

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL
statement. The string is returned enclosed by single quotation marks and with each instance of
backslash (\), single quote ('), ASCII NUL, and Control+Z preceded by a backslash. If the argument
is NULL, the return value is the word “NULL” without enclosing single quotation marks.

mysql> SELECT QUOTE('Don\'t!');
        -> 'Don\'t!'
mysql> SELECT QUOTE(NULL);
        -> NULL

For comparison, see the quoting rules for literal strings and within the C API in Section 9.1.1, “String
Literals”, and Section 23.8.7.53, “mysql_real_escape_string()”.

•  REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count is less than 1, returns
an empty string. Returns NULL if str or count are NULL.

mysql> SELECT REPEAT('MySQL', 3);
        -> 'MySQLMySQLMySQL'

•  REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string to_str.
REPLACE() performs a case-sensitive match when searching for from_str.

mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
        -> 'WwWwWw.mysql.com'

This function is multibyte safe.



String Functions

1161

•  REVERSE(str)

Returns the string str with the order of the characters reversed.

mysql> SELECT REVERSE('abc');
        -> 'cba'

This function is multibyte safe.

•  RIGHT(str,len)

Returns the rightmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT RIGHT('foobarbar', 4);
        -> 'rbar'

This function is multibyte safe.

•  RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

mysql> SELECT RPAD('hi',5,'?');
        -> 'hi???'
mysql> SELECT RPAD('hi',1,'?');
        -> 'h'

This function is multibyte safe.

•  RTRIM(str)

Returns the string str with trailing space characters removed.

mysql> SELECT RTRIM('barbar   ');
        -> 'barbar'

This function is multibyte safe.

•  SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have identical
soundex strings. A standard soundex string is four characters long, but the SOUNDEX() function
returns an arbitrarily long string. You can use SUBSTRING() on the result to get a standard soundex
string. All nonalphabetic characters in str are ignored. All international alphabetic characters outside
the A-Z range are treated as vowels.

Important

When using SOUNDEX(), you should be aware of the following limitations:

• This function, as currently implemented, is intended to work well with strings that are in the English
language only. Strings in other languages may not produce reliable results.

• This function is not guaranteed to provide consistent results with strings that use multibyte
character sets, including utf-8.

We hope to remove these limitations in a future release. See Bug #22638 for more information.

mysql> SELECT SOUNDEX('Hello');



String Functions

1162

        -> 'H400'
mysql> SELECT SOUNDEX('Quadratically');
        -> 'Q36324'

Note

This function implements the original Soundex algorithm, not the more
popular enhanced version (also described by D. Knuth). The difference is
that original version discards vowels first and duplicates second, whereas the
enhanced version discards duplicates first and vowels second.

•  expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).

•  SPACE(N)

Returns a string consisting of N space characters.

mysql> SELECT SPACE(6);
        -> '      '

•  SUBSTR(str,pos), SUBSTR(str FROM pos), SUBSTR(str,pos,len), SUBSTR(str FROM
pos FOR len)

SUBSTR() is a synonym for SUBSTRING().

•  SUBSTRING(str,pos), SUBSTRING(str FROM pos), SUBSTRING(str,pos,len),
SUBSTRING(str FROM pos FOR len)

The forms without a len argument return a substring from string str starting at position pos.
The forms with a len argument return a substring len characters long from string str, starting at
position pos. The forms that use FROM are standard SQL syntax. It is also possible to use a negative
value for pos. In this case, the beginning of the substring is pos characters from the end of the
string, rather than the beginning. A negative value may be used for pos in any of the forms of this
function.

For all forms of SUBSTRING(), the position of the first character in the string from which the
substring is to be extracted is reckoned as 1.

mysql> SELECT SUBSTRING('Quadratically',5);
        -> 'ratically'
mysql> SELECT SUBSTRING('foobarbar' FROM 4);
        -> 'barbar'
mysql> SELECT SUBSTRING('Quadratically',5,6);
        -> 'ratica'
mysql> SELECT SUBSTRING('Sakila', -3);
        -> 'ila'
mysql> SELECT SUBSTRING('Sakila', -5, 3);
        -> 'aki'
mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
        -> 'ki'

This function is multibyte safe.

If len is less than 1, the result is the empty string.

•  SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If count
is positive, everything to the left of the final delimiter (counting from the left) is returned. If count
is negative, everything to the right of the final delimiter (counting from the right) is returned.
SUBSTRING_INDEX() performs a case-sensitive match when searching for delim.



String Functions

1163

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
        -> 'www.mysql'
mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
        -> 'mysql.com'

This function is multibyte safe.

•  TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM]
str)

Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH,
LEADING, or TRAILING is given, BOTH is assumed. remstr is optional and, if not specified, spaces
are removed.

mysql> SELECT TRIM('  bar   ');
        -> 'bar'
mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
        -> 'barxxx'
mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
        -> 'bar'
mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
        -> 'barx'

This function is multibyte safe.

•  UCASE(str)

UCASE() is a synonym for UPPER().

•  UNHEX(str)

For a string argument str, UNHEX(str) interprets each pair of characters in the argument as a
hexadecimal number and converts it to the byte represented by the number. The return value is a
binary string.

mysql> SELECT UNHEX('4D7953514C');
        -> 'MySQL'
mysql> SELECT X'4D7953514C';
        -> 'MySQL'
mysql> SELECT UNHEX(HEX('string'));
        -> 'string'
mysql> SELECT HEX(UNHEX('1267'));
        -> '1267'

The characters in the argument string must be legal hexadecimal digits: '0' .. '9', 'A' .. 'F', 'a'
.. 'f'. If the argument contains any nonhexadecimal digits, the result is NULL:

mysql> SELECT UNHEX('GG');
+-------------+
| UNHEX('GG') |
+-------------+
| NULL        |
+-------------+

A NULL result can occur if the argument to UNHEX() is a BINARY column, because values are
padded with 0x00 bytes when stored but those bytes are not stripped on retrieval. For example,
'41' is stored into a CHAR(3) column as '41 ' and retrieved as '41' (with the trailing pad
space stripped), so UNHEX() for the column value returns 'A'. By contrast '41' is stored into
a BINARY(3) column as '41\0' and retrieved as '41\0' (with the trailing pad 0x00 byte not
stripped). '\0' is not a legal hexadecimal digit, so UNHEX() for the column value returns NULL.



String Comparison Functions

1164

For a numeric argument N, the inverse of HEX(N) is not performed by UNHEX(). Use
CONV(HEX(N),16,10) instead. See the description of HEX().

•  UPPER(str)

Returns the string str with all characters changed to uppercase according to the current character
set mapping. The default is latin1 (cp1252 West European).

mysql> SELECT UPPER('Hej');
        -> 'HEJ'

See the description of LOWER() for information that also applies to UPPER(), such as information
about how to perform lettercase conversion of binary strings (BINARY, VARBINARY, BLOB) for which
these functions are ineffective.

This function is multibyte safe.

12.5.1 String Comparison Functions
Table 12.8 String Comparison Operators

Name Description

LIKE Simple pattern matching

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

If a string function is given a binary string as an argument, the resulting string is also a binary string. A
number converted to a string is treated as a binary string. This affects only comparisons.

Normally, if any expression in a string comparison is case sensitive, the comparison is performed in
case-sensitive fashion.

•  expr LIKE pat [ESCAPE 'escape_char']

Pattern matching using an SQL pattern. Returns 1 (TRUE) or 0 (FALSE). If either expr or pat is
NULL, the result is NULL.

The pattern need not be a literal string. For example, it can be specified as a string expression or
table column.

Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results
different from the = comparison operator:

mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+-----------------------------------------+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+-----------------------------------------+
|                                       0 |
+-----------------------------------------+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
|                                    1 |
+--------------------------------------+

In particular, trailing spaces are significant, which is not true for CHAR or VARCHAR comparisons
performed with the = operator:

mysql> SELECT 'a' = 'a ', 'a' LIKE 'a ';



String Comparison Functions

1165

+------------+---------------+
| 'a' = 'a ' | 'a' LIKE 'a ' |
+------------+---------------+
|          1 |             0 |
+------------+---------------+
1 row in set (0.00 sec)

With LIKE you can use the following two wildcard characters in the pattern:

• % matches any number of characters, even zero characters.

• _ matches exactly one character.

mysql> SELECT 'David!' LIKE 'David_';
        -> 1
mysql> SELECT 'David!' LIKE '%D%v%';
        -> 1

To test for literal instances of a wildcard character, precede it by the escape character. If you do not
specify the ESCAPE character, \ is assumed.

• \% matches one % character.

• \_ matches one _ character.

mysql> SELECT 'David!' LIKE 'David\_';
        -> 0
mysql> SELECT 'David_' LIKE 'David\_';
        -> 1

To specify a different escape character, use the ESCAPE clause:

mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';
        -> 1

The escape sequence should be empty or one character long. The expression must evaluate as a
constant at execution time. If the NO_BACKSLASH_ESCAPES SQL mode is enabled, the sequence
cannot be empty.

The following two statements illustrate that string comparisons are not case sensitive unless one of
the operands is a case sensitive (uses a case-sensitive collation or is a binary string):

mysql> SELECT 'abc' LIKE 'ABC';
        -> 1
mysql> SELECT 'abc' LIKE _latin1 'ABC' COLLATE latin1_general_cs;
        -> 0
mysql> SELECT 'abc' LIKE _latin1 'ABC' COLLATE latin1_bin;
        -> 0
mysql> SELECT 'abc' LIKE BINARY 'ABC';
        -> 0

As an extension to standard SQL, MySQL permits LIKE on numeric expressions.

mysql> SELECT 10 LIKE '1%';
        -> 1

Note

Because MySQL uses C escape syntax in strings (for example, \n to
represent a newline character), you must double any \ that you use in LIKE
strings. For example, to search for \n, specify it as \\n. To search for \,
specify it as \\\\; this is because the backslashes are stripped once by the



String Comparison Functions

1166

parser and again when the pattern match is made, leaving a single backslash
to be matched against.

Exception: At the end of the pattern string, backslash can be specified as \\.
At the end of the string, backslash stands for itself because there is nothing
following to escape. Suppose that a table contains the following values:

mysql> SELECT filename FROM t1;
+--------------+
| filename     |
+--------------+
| C:           |
| C:\          |
| C:\Programs  |
| C:\Programs\ |
+--------------+

To test for values that end with backslash, you can match the values using
either of the following patterns:

mysql> SELECT filename, filename LIKE '%\\' FROM t1;
+--------------+---------------------+
| filename     | filename LIKE '%\\' |
+--------------+---------------------+
| C:           |                   0 |
| C:\          |                   1 |
| C:\Programs  |                   0 |
| C:\Programs\ |                   1 |
+--------------+---------------------+

mysql> SELECT filename, filename LIKE '%\\\\' FROM t1;
+--------------+-----------------------+
| filename     | filename LIKE '%\\\\' |
+--------------+-----------------------+
| C:           |                     0 |
| C:\          |                     1 |
| C:\Programs  |                     0 |
| C:\Programs\ |                     1 |
+--------------+-----------------------+

•  expr NOT LIKE pat [ESCAPE 'escape_char']

This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).

Note

Aggregate queries involving NOT LIKE comparisons with columns containing
NULL may yield unexpected results. For example, consider the following table
and data:

CREATE TABLE foo (bar VARCHAR(10));

INSERT INTO foo VALUES (NULL), (NULL);

The query SELECT COUNT(*) FROM foo WHERE bar LIKE '%baz%';
returns 0. You might assume that SELECT COUNT(*) FROM foo WHERE
bar NOT LIKE '%baz%'; would return 2. However, this is not the case:
The second query returns 0. This is because NULL NOT LIKE expr always
returns NULL, regardless of the value of expr. The same is true for aggregate
queries involving NULL and comparisons using NOT RLIKE or NOT REGEXP.
In such cases, you must test explicitly for NOT NULL using OR (and not AND),
as shown here:



Regular Expressions

1167

SELECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%' OR bar IS NULL;

•  STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second
according to the current sort order, and 1 otherwise.

mysql> SELECT STRCMP('text', 'text2');
        -> -1
mysql> SELECT STRCMP('text2', 'text');
        -> 1
mysql> SELECT STRCMP('text', 'text');
        -> 0

STRCMP() performs the comparison using the collation of the arguments.

mysql> SET @s1 = _latin1 'x' COLLATE latin1_general_ci;
mysql> SET @s2 = _latin1 'X' COLLATE latin1_general_ci;
mysql> SET @s3 = _latin1 'x' COLLATE latin1_general_cs;
mysql> SET @s4 = _latin1 'X' COLLATE latin1_general_cs;
mysql> SELECT STRCMP(@s1, @s2), STRCMP(@s3, @s4);
+------------------+------------------+
| STRCMP(@s1, @s2) | STRCMP(@s3, @s4) |
+------------------+------------------+
|                0 |                1 |
+------------------+------------------+

If the collations are incompatible, one of the arguments must be converted to be compatible with the
other. See Section 10.1.8.4, “Collation Coercibility in Expressions”.

mysql> SELECT STRCMP(@s1, @s3);
ERROR 1267 (HY000): Illegal mix of collations (latin1_general_ci,IMPLICIT)
and (latin1_general_cs,IMPLICIT) for operation 'strcmp'
mysql> SELECT STRCMP(@s1, @s3 COLLATE latin1_general_ci);
+--------------------------------------------+
| STRCMP(@s1, @s3 COLLATE latin1_general_ci) |
+--------------------------------------------+
|                                          0 |
+--------------------------------------------+

12.5.2 Regular Expressions

Table 12.9 String Regular Expression Operators

Name Description

NOT REGEXP Negation of REGEXP

REGEXP Pattern matching using regular expressions

RLIKE Synonym for REGEXP

A regular expression is a powerful way of specifying a pattern for a complex search.

MySQL uses Henry Spencer's implementation of regular expressions, which is aimed at conformance
with POSIX 1003.2. MySQL uses the extended version to support pattern-matching operations
performed with the REGEXP operator in SQL statements.

This section summarizes, with examples, the special characters and constructs that can be used in
MySQL for REGEXP operations. It does not contain all the details that can be found in Henry Spencer's
regex(7) manual page. That manual page is included in MySQL source distributions, in the regex.7
file under the regex directory. See also Section 3.3.4.7, “Pattern Matching”.



Regular Expressions

1168

Regular Expression Operators

•  expr NOT REGEXP pat, expr NOT RLIKE pat

This is the same as NOT (expr REGEXP pat).

•     expr REGEXP pat, expr RLIKE pat

Performs a pattern match of a string expression expr against a pattern pat. The pattern can be an
extended regular expression, the syntax for which is discussed later in this section. Returns 1 if expr
matches pat; otherwise it returns 0. If either expr or pat is NULL, the result is NULL. RLIKE is a
synonym for REGEXP, provided for mSQL compatibility.

The pattern need not be a literal string. For example, it can be specified as a string expression or
table column.

Note

Because MySQL uses the C escape syntax in strings (for example, \n to
represent the newline character), you must double any \ that you use in your
REGEXP strings.

REGEXP is not case sensitive, except when used with binary strings.

mysql> SELECT 'Michael!' REGEXP '.*';
        -> 1
mysql> SELECT 'new*\n*line' REGEXP 'new\\*.\\*line';
        -> 1
mysql> SELECT 'a' REGEXP 'A', 'a' REGEXP BINARY 'A';
        -> 1  0
mysql> SELECT 'a' REGEXP '^[a-d]';
        -> 1

REGEXP and RLIKE use the character set and collations of the arguments when deciding the
type of a character and performing the comparison. If the arguments have different character sets
or collations, coercibility rules apply as described in Section 10.1.8.4, “Collation Coercibility in
Expressions”.

Warning

The REGEXP and RLIKE operators work in byte-wise fashion, so they are not
multibyte safe and may produce unexpected results with multibyte character
sets. In addition, these operators compare characters by their byte values
and accented characters may not compare as equal even if a given collation
treats them as equal.

Syntax of Regular Expressions

A regular expression describes a set of strings. The simplest regular expression is one that has no
special characters in it. For example, the regular expression hello matches hello and nothing else.

Nontrivial regular expressions use certain special constructs so that they can match more than one
string. For example, the regular expression hello|word matches either the string hello or the string
word.

As a more complex example, the regular expression B[an]*s matches any of the strings Bananas,
Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any number of a
or n characters in between.

A regular expression for the REGEXP operator may use any of the following special characters and
constructs:



Regular Expressions

1169

• ^

Match the beginning of a string.

mysql> SELECT 'fo\nfo' REGEXP '^fo$';                   -> 0
mysql> SELECT 'fofo' REGEXP '^fo';                      -> 1

• $

Match the end of a string.

mysql> SELECT 'fo\no' REGEXP '^fo\no$';                 -> 1
mysql> SELECT 'fo\no' REGEXP '^fo$';                    -> 0

• .

Match any character (including carriage return and newline).

mysql> SELECT 'fofo' REGEXP '^f.*$';                    -> 1
mysql> SELECT 'fo\r\nfo' REGEXP '^f.*$';                -> 1

• a*

Match any sequence of zero or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba*n';                     -> 1
mysql> SELECT 'Baaan' REGEXP '^Ba*n';                   -> 1
mysql> SELECT 'Bn' REGEXP '^Ba*n';                      -> 1

• a+

Match any sequence of one or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba+n';                     -> 1
mysql> SELECT 'Bn' REGEXP '^Ba+n';                      -> 0

• a?

Match either zero or one a character.

mysql> SELECT 'Bn' REGEXP '^Ba?n';                      -> 1
mysql> SELECT 'Ban' REGEXP '^Ba?n';                     -> 1
mysql> SELECT 'Baan' REGEXP '^Ba?n';                    -> 0

• de|abc

Match either of the sequences de or abc.

mysql> SELECT 'pi' REGEXP 'pi|apa';                     -> 1
mysql> SELECT 'axe' REGEXP 'pi|apa';                    -> 0
mysql> SELECT 'apa' REGEXP 'pi|apa';                    -> 1
mysql> SELECT 'apa' REGEXP '^(pi|apa)$';                -> 1
mysql> SELECT 'pi' REGEXP '^(pi|apa)$';                 -> 1
mysql> SELECT 'pix' REGEXP '^(pi|apa)$';                -> 0

• (abc)*

Match zero or more instances of the sequence abc.

mysql> SELECT 'pi' REGEXP '^(pi)*$';                    -> 1
mysql> SELECT 'pip' REGEXP '^(pi)*$';                   -> 0



Regular Expressions

1170

mysql> SELECT 'pipi' REGEXP '^(pi)*$';                  -> 1

• {1}, {2,3}

{n} or {m,n} notation provides a more general way of writing regular expressions that match many
occurrences of the previous atom (or “piece”) of the pattern. m and n are integers.

• a*

Can be written as a{0,}.

• a+

Can be written as a{1,}.

• a?

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more instances of
a. a{m,n} matches m through n instances of a, inclusive.

m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive. If both m and n are
given, m must be less than or equal to n.

mysql> SELECT 'abcde' REGEXP 'a[bcd]{2}e';              -> 0
mysql> SELECT 'abcde' REGEXP 'a[bcd]{3}e';              -> 1
mysql> SELECT 'abcde' REGEXP 'a[bcd]{1,10}e';           -> 1

• [a-dX], [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character between two
other characters forms a range that matches all characters from the first character to the second.
For example, [0-9] matches any decimal digit. To include a literal ] character, it must immediately
follow the opening bracket [. To include a literal - character, it must be written first or last. Any
character that does not have a defined special meaning inside a [] pair matches only itself.

mysql> SELECT 'aXbc' REGEXP '[a-dXYZ]';                 -> 1
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]$';               -> 0
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]+$';              -> 1
mysql> SELECT 'aXbc' REGEXP '^[^a-dXYZ]+$';             -> 0
mysql> SELECT 'gheis' REGEXP '^[^a-dXYZ]+$';            -> 1
mysql> SELECT 'gheisa' REGEXP '^[^a-dXYZ]+$';           -> 0

• [.characters.]

Within a bracket expression (written using [ and ]), matches the sequence of characters of that
collating element. characters is either a single character or a character name like newline. The
following table lists the permissible character names.

The following table shows the permissible character names and the characters that they match. For
characters given as numeric values, the values are represented in octal.

Name Character Name Character

NUL 0 SOH 001

STX 002 ETX 003

EOT 004 ENQ 005

ACK 006 BEL 007

alert 007 BS 010



Regular Expressions

1171

Name Character Name Character

backspace '\b' HT 011

tab '\t' LF 012

newline '\n' VT 013

vertical-tab '\v' FF 014

form-feed '\f' CR 015

carriage-return '\r' SO 016

SI 017 DLE 020

DC1 021 DC2 022

DC3 023 DC4 024

NAK 025 SYN 026

ETB 027 CAN 030

EM 031 SUB 032

ESC 033 IS4 034

FS 034 IS3 035

GS 035 IS2 036

RS 036 IS1 037

US 037 space ' '

exclamation-mark '!' quotation-mark '"'

number-sign '#' dollar-sign '$'

percent-sign '%' ampersand '&'

apostrophe '\'' left-parenthesis '('

right-parenthesis ')' asterisk '*'

plus-sign '+' comma ','

hyphen '-' hyphen-minus '-'

period '.' full-stop '.'

slash '/' solidus '/'

zero '0' one '1'

two '2' three '3'

four '4' five '5'

six '6' seven '7'

eight '8' nine '9'

colon ':' semicolon ';'

less-than-sign '<' equals-sign '='

greater-than-sign '>' question-mark '?'

commercial-at '@' left-square-
bracket

'['

backslash '\\' reverse-solidus '\\'

right-square-
bracket

']' circumflex '^'

circumflex-accent '^' underscore '_'

low-line '_' grave-accent '`'



Regular Expressions

1172

Name Character Name Character

left-brace '{' left-curly-
bracket

'{'

vertical-line '|' right-brace '}'

right-curly-
bracket

'}' tilde '~'

DEL 177   

mysql> SELECT '~' REGEXP '[[.~.]]';                     -> 1
mysql> SELECT '~' REGEXP '[[.tilde.]]';                 -> 1

• [=character_class=]

Within a bracket expression (written using [ and ]), [=character_class=] represents an
equivalence class. It matches all characters with the same collation value, including itself. For
example, if o and (+) are the members of an equivalence class, [[=o=]], [[=(+)=]], and
[o(+)] are all synonymous. An equivalence class may not be used as an endpoint of a range.

• [:character_class:]

Within a bracket expression (written using [ and ]), [:character_class:] represents a
character class that matches all characters belonging to that class. The following table lists the
standard class names. These names stand for the character classes defined in the ctype(3)
manual page. A particular locale may provide other class names. A character class may not be used
as an endpoint of a range.

Character Class
Name

Meaning

alnum Alphanumeric characters

alpha Alphabetic characters

blank Whitespace characters

cntrl Control characters

digit Digit characters

graph Graphic characters

lower Lowercase alphabetic characters

print Graphic or space characters

punct Punctuation characters

space Space, tab, newline, and carriage return

upper Uppercase alphabetic characters

xdigit Hexadecimal digit characters

mysql> SELECT 'justalnums' REGEXP '[[:alnum:]]+';       -> 1
mysql> SELECT '!!' REGEXP '[[:alnum:]]+';               -> 0

• [[:<:]], [[:>:]]

These markers stand for word boundaries. They match the beginning and end of words, respectively.
A word is a sequence of word characters that is not preceded by or followed by word characters. A
word character is an alphanumeric character in the alnum class or an underscore (_).

mysql> SELECT 'a word a' REGEXP '[[:<:]]word[[:>:]]';   -> 1
mysql> SELECT 'a xword a' REGEXP '[[:<:]]word[[:>:]]';  -> 0



Character Set and Collation of Function Results

1173

To use a literal instance of a special character in a regular expression, precede it by two backslash (\)
characters. The MySQL parser interprets one of the backslashes, and the regular expression library
interprets the other. For example, to match the string 1+2 that contains the special + character, only
the last of the following regular expressions is the correct one:

mysql> SELECT '1+2' REGEXP '1+2';                       -> 0
mysql> SELECT '1+2' REGEXP '1\+2';                      -> 0
mysql> SELECT '1+2' REGEXP '1\\+2';                     -> 1

12.5.3 Character Set and Collation of Function Results

MySQL has many operators and functions that return a string. This section answers the question: What
is the character set and collation of such a string?

For simple functions that take string input and return a string result as output, the output's character
set and collation are the same as those of the principal input value. For example, UPPER(X) returns
a string with the same character string and collation as X. The same applies for INSTR(), LCASE(),
LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(), RIGHT(), RPAD(), RTRIM(),
SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UPPER().

Note

The REPLACE() function, unlike all other functions, always ignores the collation
of the string input and performs a case-sensitive comparison.

If a string input or function result is a binary string, the string has the binary character set and
collation. This can be checked by using the CHARSET() and COLLATION() functions, both of which
return binary for a binary string argument:

mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+
| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |
+---------------------+-----------------------+
| binary              | binary                |
+---------------------+-----------------------+

For operations that combine multiple string inputs and return a single string output, the “aggregation
rules” of standard SQL apply for determining the collation of the result:

• If an explicit COLLATE Y occurs, use Y.

• If explicit COLLATE Y and COLLATE Z occur, raise an error.

• Otherwise, if all collations are Y, use Y.

• Otherwise, the result has no collation.

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resulting
collation is X. The same applies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and
LEAST().

For operations that convert to character data, the character set and collation of the strings
that result from the operations are defined by the character_set_connection and
collation_connection system variables that determine the default connection character set
and collation (see Section 10.1.4, “Connection Character Sets and Collations”). This applies only to
CAST(), CONV(), FORMAT(), HEX(), and SPACE().

If there is any question about the character set or collation of the result returned by a string function,
use the CHARSET() or COLLATION() function to find out:



Numeric Functions and Operators

1174

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+----------------+-----------------+-------------------+
| USER()         | CHARSET(USER()) | COLLATION(USER()) |
+----------------+-----------------+-------------------+
| test@localhost | utf8            | utf8_general_ci   |
+----------------+-----------------+-------------------+
mysql> SELECT CHARSET(COMPRESS('abc')), COLLATION(COMPRESS('abc'));
+--------------------------+----------------------------+
| CHARSET(COMPRESS('abc')) | COLLATION(COMPRESS('abc')) |
+--------------------------+----------------------------+
| binary                   | binary                     |
+--------------------------+----------------------------+

12.6 Numeric Functions and Operators

Table 12.10 Numeric Functions and Operators

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

DIV Integer division

/ Division operator

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the
argument

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

- Minus operator

MOD() Return the remainder

%, MOD Modulo operator

PI() Return the value of pi

+ Addition operator

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument



Arithmetic Operators

1175

Name Description

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

* Multiplication operator

TRUNCATE() Truncate to specified number of decimal places

- Change the sign of the argument

12.6.1 Arithmetic Operators

Table 12.11 Arithmetic Operators

Name Description

DIV Integer division

/ Division operator

- Minus operator

%, MOD Modulo operator

+ Addition operator

* Multiplication operator

- Change the sign of the argument

The usual arithmetic operators are available. The result is determined according to the following rules:

• In the case of -, +, and *, the result is calculated with BIGINT (64-bit) precision if both operands are
integers.

• If both operands are integers and any of them are unsigned, the result is an unsigned integer. For
subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is signed even if
any operand is unsigned.

• If any of the operands of a +, -, /, *, % is a real or string value, the precision of the result is the
precision of the operand with the maximum precision.

• In division performed with /, the scale of the result when using two exact-value operands is the scale
of the first operand plus the value of the div_precision_increment system variable (which is
4 by default). For example, the result of the expression 5.05 / 0.014 has a scale of six decimal
places (360.714286).

These rules are applied for each operation, such that nested calculations imply the precision of each
component. Hence, (14620 / 9432456) / (24250 / 9432456), resolves first to (0.0014) /
(0.0026), with the final result having 8 decimal places (0.60288653).

Because of these rules and the way they are applied, care should be taken to ensure that components
and subcomponents of a calculation use the appropriate level of precision. See Section 12.10, “Cast
Functions and Operators”.

For information about handling of overflow in numeric expression evaluation, see Section 11.2.6, “Out-
of-Range and Overflow Handling”.

Arithmetic operators apply to numbers. For other types of values, alternative operations may be
available. For example, to add date values, use DATE_ADD(); see Section 12.7, “Date and Time
Functions”.

•   +



Arithmetic Operators

1176

Addition:

mysql> SELECT 3+5;
        -> 8

•   -

Subtraction:

mysql> SELECT 3-5;
        -> -2

•    -

Unary minus. This operator changes the sign of the operand.

mysql> SELECT - 2;
        -> -2

Note

If this operator is used with a BIGINT, the return value is also a BIGINT. This
means that you should avoid using - on integers that may have the value of
−263.

•   *

Multiplication:

mysql> SELECT 3*5;
        -> 15
mysql> SELECT 18014398509481984*18014398509481984.0;
        -> 324518553658426726783156020576256.0
mysql> SELECT 18014398509481984*18014398509481984;
        -> out-of-range error

The last expression produces an error because the result of the integer multiplication exceeds the
64-bit range of BIGINT calculations. (See Section 11.2, “Numeric Types”.)

•   /

Division:

mysql> SELECT 3/5;
        -> 0.60

Division by zero produces a NULL result:

mysql> SELECT 102/(1-1);
        -> NULL

A division is calculated with BIGINT arithmetic only if performed in a context where its result is
converted to an integer.

•  DIV

Integer division. Discards from the division result any fractional part to the right of the decimal point.

As of MySQL 5.5.3, if either operand has a noninteger type, the operands are converted to DECIMAL
and divided using DECIMAL arithmetic before converting the result to BIGINT. If the result exceeds



Mathematical Functions

1177

BIGINT range, an error occurs. Before MySQL 5.5.3, incorrect results may occur for noninteger
operands that exceed BIGINT range.

mysql> SELECT 5 DIV 2, -5 DIV 2, 5 DIV -2, -5 DIV -2;
        -> 2, -2, -2, 2

•  N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M. For more information, see the description
for the MOD() function in Section 12.6.2, “Mathematical Functions”.

12.6.2 Mathematical Functions

Table 12.12 Mathematical Functions

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the
argument

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places



Mathematical Functions

1178

All mathematical functions return NULL in the event of an error.

•  ABS(X)

Returns the absolute value of X.

mysql> SELECT ABS(2);
        -> 2
mysql> SELECT ABS(-32);
        -> 32

This function is safe to use with BIGINT values.

•  ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the range
-1 to 1.

mysql> SELECT ACOS(1);
        -> 0
mysql> SELECT ACOS(1.0001);
        -> NULL
mysql> SELECT ACOS(0);
        -> 1.5707963267949

•  ASIN(X)

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1
to 1.

mysql> SELECT ASIN(0.2);
        -> 0.20135792079033
mysql> SELECT ASIN('foo');

+-------------+
| ASIN('foo') |
+-------------+
|           0 |
+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+-----------------------------------------+
| Level   | Code | Message                                 |
+---------+------+-----------------------------------------+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+-----------------------------------------+

•  ATAN(X)

Returns the arc tangent of X, that is, the value whose tangent is X.

mysql> SELECT ATAN(2);
        -> 1.1071487177941
mysql> SELECT ATAN(-2);
        -> -1.1071487177941

•  ATAN(Y,X), ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y /
X, except that the signs of both arguments are used to determine the quadrant of the result.

mysql> SELECT ATAN(-2,2);
        -> -0.78539816339745



Mathematical Functions

1179

mysql> SELECT ATAN2(PI(),0);
        -> 1.5707963267949

•  CEIL(X)

CEIL() is a synonym for CEILING().

•  CEILING(X)

Returns the smallest integer value not less than X.

mysql> SELECT CEILING(1.23);
        -> 2
mysql> SELECT CEILING(-1.23);
        -> -1

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

•  CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the number
N, converted from base from_base to base to_base. Returns NULL if any argument is NULL. The
argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum
base is 2 and the maximum base is 36. If from_base is a negative number, N is regarded as a
signed number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.

mysql> SELECT CONV('a',16,2);
        -> '1010'
mysql> SELECT CONV('6E',18,8);
        -> '172'
mysql> SELECT CONV(-17,10,-18);
        -> '-H'
mysql> SELECT CONV(10+'10'+'10'+X'0a',10,10);
        -> '40'

•  COS(X)

Returns the cosine of X, where X is given in radians.

mysql> SELECT COS(PI());
        -> -1

•  COT(X)

Returns the cotangent of X.

mysql> SELECT COT(12);
        -> -1.5726734063977
mysql> SELECT COT(0);
        -> out-of-range error

•  CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is NULL if
the argument is NULL. The argument is expected to be a string and (if possible) is treated as one if it
is not.

mysql> SELECT CRC32('MySQL');
        -> 3259397556
mysql> SELECT CRC32('mysql');
        -> 2501908538



Mathematical Functions

1180

•  DEGREES(X)

Returns the argument X, converted from radians to degrees.

mysql> SELECT DEGREES(PI());
        -> 180
mysql> SELECT DEGREES(PI() / 2);
        -> 90

•  EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X. The inverse of this
function is LOG() (using a single argument only) or LN().

mysql> SELECT EXP(2);
        -> 7.3890560989307
mysql> SELECT EXP(-2);
        -> 0.13533528323661
mysql> SELECT EXP(0);
        -> 1

•  FLOOR(X)

Returns the largest integer value not greater than X.

mysql> SELECT FLOOR(1.23), FLOOR(-1.23);
        -> 1, -2

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. For details, see Section 12.5, “String Functions”.

•  HEX(N_or_S)

This function can be used to obtain a hexadecimal representation of a decimal number or a
string; the manner in which it does so varies according to the argument's type. See this function's
description in Section 12.5, “String Functions”, for details.

•  LN(X)

Returns the natural logarithm of X; that is, the base-e logarithm of X. If X is less than or equal to 0,
then NULL is returned.

mysql> SELECT LN(2);
        -> 0.69314718055995
mysql> SELECT LN(-2);
        -> NULL

This function is synonymous with LOG(X). The inverse of this function is the EXP() function.

•  LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X. If X is less than or equal
to 0, then NULL is returned.

The inverse of this function (when called with a single argument) is the EXP() function.

mysql> SELECT LOG(2);



Mathematical Functions

1181

        -> 0.69314718055995
mysql> SELECT LOG(-2);
        -> NULL

If called with two parameters, this function returns the logarithm of X to the base B. If X is less than or
equal to 0, or if B is less than or equal to 1, then NULL is returned.

mysql> SELECT LOG(2,65536);
        -> 16
mysql> SELECT LOG(10,100);
        -> 2
mysql> SELECT LOG(1,100);
        -> NULL

LOG(B,X) is equivalent to LOG(X) / LOG(B).

•  LOG2(X)

Returns the base-2 logarithm of X.

mysql> SELECT LOG2(65536);
        -> 16
mysql> SELECT LOG2(-100);
        -> NULL

LOG2() is useful for finding out how many bits a number requires for storage. This function is
equivalent to the expression LOG(X) / LOG(2).

•  LOG10(X)

Returns the base-10 logarithm of X.

mysql> SELECT LOG10(2);
        -> 0.30102999566398
mysql> SELECT LOG10(100);
        -> 2
mysql> SELECT LOG10(-100);
        -> NULL

LOG10(X) is equivalent to LOG(10,X).

•      MOD(N,M), N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M.

mysql> SELECT MOD(234, 10);
        -> 4
mysql> SELECT 253 % 7;
        -> 1
mysql> SELECT MOD(29,9);
        -> 2
mysql> SELECT 29 MOD 9;
        -> 2

This function is safe to use with BIGINT values.

MOD() also works on values that have a fractional part and returns the exact remainder after
division:

mysql> SELECT MOD(34.5,3);
        -> 1.5

MOD(N,0) returns NULL.



Mathematical Functions

1182

•  PI()

Returns the value of π (pi). The default number of decimal places displayed is seven, but MySQL
uses the full double-precision value internally.

mysql> SELECT PI();
        -> 3.141593
mysql> SELECT PI()+0.000000000000000000;
        -> 3.141592653589793116

•  POW(X,Y)

Returns the value of X raised to the power of Y.

mysql> SELECT POW(2,2);
        -> 4
mysql> SELECT POW(2,-2);
        -> 0.25

•  POWER(X,Y)

This is a synonym for POW().

•  RADIANS(X)

Returns the argument X, converted from degrees to radians. (Note that π radians equals 180
degrees.)

mysql> SELECT RADIANS(90);
        -> 1.5707963267949

•  RAND([N])

Returns a random floating-point value v in the range 0 <= v < 1.0. To obtain a random integer R in
the range i <= R < j, use the expression FLOOR(i + RAND() * (j − i)). For example, to obtain
a random integer in the range the range 7 <= R < 12, use the following statement:

SELECT FLOOR(7 + (RAND() * 5));

If an integer argument N is specified, it is used as the seed value:

• With a constant initializer argument, the seed is initialized once when the statement is prepared,
prior to execution.

• With a nonconstant initializer argument (such as a column name), the seed is initialized with the
value for each invocation of RAND().

One implication of this behavior is that for equal argument values, RAND(N) returns the same value
each time, and thus produces a repeatable sequence of column values. In the following example, the
sequence of values produced by RAND(3) is the same both places it occurs.

mysql> CREATE TABLE t (i INT);
Query OK, 0 rows affected (0.42 sec)

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i    | RAND()           |



Mathematical Functions

1183

+------+------------------+
|    1 | 0.61914388706828 |
|    2 | 0.93845168309142 |
|    3 | 0.83482678498591 |
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i    | RAND(3)          |
+------+------------------+
|    1 | 0.90576975597606 |
|    2 | 0.37307905813035 |
|    3 | 0.14808605345719 |
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i    | RAND()           |
+------+------------------+
|    1 | 0.35877890638893 |
|    2 | 0.28941420772058 |
|    3 | 0.37073435016976 |
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i    | RAND(3)          |
+------+------------------+
|    1 | 0.90576975597606 |
|    2 | 0.37307905813035 |
|    3 | 0.14808605345719 |
+------+------------------+
3 rows in set (0.01 sec)

RAND() in a WHERE clause is evaluated for every row (when selecting from one table) or combination
of rows (when selecting from a multiple-table join). Thus, for optimizer purposes, RAND() is
not a constant value and cannot be used for index optimizations. For more information, see
Section 8.2.1.14, “Function Call Optimization”.

Use of a column with RAND() values in an ORDER BY or GROUP BY clause may yield unexpected
results because for either clause a RAND() expression can be evaluated multiple times for the same
row, each time returning a different result. If the goal is to retrieve rows in random order, you can use
a statement like this:

SELECT * FROM tbl_name ORDER BY RAND();

To select a random sample from a set of rows, combine ORDER BY RAND() with LIMIT:

SELECT * FROM table1, table2 WHERE a=b AND c<d ORDER BY RAND() LIMIT 1000;

RAND() is not meant to be a perfect random generator. It is a fast way to generate random numbers
on demand that is portable between platforms for the same MySQL version.

This function is unsafe for statement-based replication. Beginning with MySQL 5.5.2, a warning is
logged if you use this function when binlog_format is set to STATEMENT. (Bug #49222)

•  ROUND(X), ROUND(X,D)

Rounds the argument X to D decimal places. The rounding algorithm depends on the data type of
X. D defaults to 0 if not specified. D can be negative to cause D digits left of the decimal point of the
value X to become zero.



Mathematical Functions

1184

mysql> SELECT ROUND(-1.23);
        -> -1
mysql> SELECT ROUND(-1.58);
        -> -2
mysql> SELECT ROUND(1.58);
        -> 2
mysql> SELECT ROUND(1.298, 1);
        -> 1.3
mysql> SELECT ROUND(1.298, 0);
        -> 1
mysql> SELECT ROUND(23.298, -1);
        -> 20

The return value has the same type as the first argument (assuming that it is integer, double, or
decimal). This means that for an integer argument, the result is an integer (no decimal places):

mysql> SELECT ROUND(150.000,2), ROUND(150,2);
+------------------+--------------+
| ROUND(150.000,2) | ROUND(150,2) |
+------------------+--------------+
|           150.00 |          150 |
+------------------+--------------+

ROUND() uses the following rules depending on the type of the first argument:

• For exact-value numbers, ROUND() uses the “round half away from zero” or “round toward
nearest” rule: A value with a fractional part of .5 or greater is rounded up to the next integer if
positive or down to the next integer if negative. (In other words, it is rounded away from zero.) A
value with a fractional part less than .5 is rounded down to the next integer if positive or up to the
next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this
means that ROUND() uses the "round to nearest even" rule: A value with any fractional part is
rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3          |            2 |
+------------+--------------+

For more information, see Section 12.18, “Precision Math”.

•  SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or
positive.

mysql> SELECT SIGN(-32);
        -> -1
mysql> SELECT SIGN(0);
        -> 0
mysql> SELECT SIGN(234);
        -> 1

•  SIN(X)

Returns the sine of X, where X is given in radians.

mysql> SELECT SIN(PI());
        -> 1.2246063538224e-16



Date and Time Functions

1185

mysql> SELECT ROUND(SIN(PI()));
        -> 0

•  SQRT(X)

Returns the square root of a nonnegative number X.

mysql> SELECT SQRT(4);
        -> 2
mysql> SELECT SQRT(20);
        -> 4.4721359549996
mysql> SELECT SQRT(-16);
        -> NULL

•  TAN(X)

Returns the tangent of X, where X is given in radians.

mysql> SELECT TAN(PI());
        -> -1.2246063538224e-16
mysql> SELECT TAN(PI()+1);
        -> 1.5574077246549

•  TRUNCATE(X,D)

Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or
fractional part. D can be negative to cause D digits left of the decimal point of the value X to become
zero.

mysql> SELECT TRUNCATE(1.223,1);
        -> 1.2
mysql> SELECT TRUNCATE(1.999,1);
        -> 1.9
mysql> SELECT TRUNCATE(1.999,0);
        -> 1
mysql> SELECT TRUNCATE(-1.999,1);
        -> -1.9
mysql> SELECT TRUNCATE(122,-2);
       -> 100
mysql> SELECT TRUNCATE(10.28*100,0);
       -> 1028

All numbers are rounded toward zero.

12.7 Date and Time Functions

This section describes the functions that can be used to manipulate temporal values. See Section 11.3,
“Date and Time Types”, for a description of the range of values each date and time type has and the
valid formats in which values may be specified.

Table 12.13 Date/Time Functions

Name Description

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

CONVERT_TZ() Convert from one time zone to another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()



Date and Time Functions

1186

Name Description

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURTIME() Return the current time

DATE() Extract the date part of a date or datetime expression

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT() Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format Unix timestamp as a date

GET_FORMAT() Return a date format string

HOUR() Extract the hour

LAST_DAY Return the last day of the month for the argument

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MICROSECOND() Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

SECOND() Return the second (0-59)

STR_TO_DATE() Convert a string to a date

SUBDATE() Synonym for DATE_SUB() when invoked with three
arguments

SUBTIME() Subtract times

SYSDATE() Return the time at which the function executes

TIME() Extract the time portion of the expression passed

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds



Date and Time Functions

1187

Name Description

TIMEDIFF() Subtract time

TIMESTAMP() With a single argument, this function returns the date or
datetime expression; with two arguments, the sum of the
arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

TO_SECONDS() Return the date or datetime argument converted to seconds
since Year 0

UNIX_TIMESTAMP() Return a Unix timestamp

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

YEAR() Return the year

YEARWEEK() Return the year and week

Here is an example that uses date functions. The following query selects all rows with a date_col
value from within the last 30 days:

mysql> SELECT something FROM tbl_name
    -> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

The query also selects rows with dates that lie in the future.

Functions that expect date values usually accept datetime values and ignore the time part. Functions
that expect time values usually accept datetime values and ignore the date part.

Functions that return the current date or time each are evaluated only once per query at the start of
query execution. This means that multiple references to a function such as NOW() within a single query
always produce the same result. (For our purposes, a single query also includes a call to a stored
program (stored routine, trigger, or event) and all subprograms called by that program.) This principle
also applies to CURDATE(), CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to
any of their synonyms.

The CURRENT_TIMESTAMP(), CURRENT_TIME(), CURRENT_DATE(), and FROM_UNIXTIME()
functions return values in the connection's current time zone, which is available as the value of the
time_zone system variable. In addition, UNIX_TIMESTAMP() assumes that its argument is a
datetime value in the current time zone. See Section 10.6, “MySQL Server Time Zone Support”.

Some date functions can be used with “zero” dates or incomplete dates such as '2001-11-00',
whereas others cannot. Functions that extract parts of dates typically work with incomplete dates and
thus can return 0 when you might otherwise expect a nonzero value. For example:

mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
        -> 0, 0

Other functions expect complete dates and return NULL for incomplete dates. These include functions
that perform date arithmetic or that map parts of dates to names. For example:



Date and Time Functions

1188

mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
        -> NULL
mysql> SELECT DAYNAME('2006-05-00');
        -> NULL

Note

From MySQL 5.5.16 to 5.5.20, a change in handling of a date-related assertion
caused several functions to become more strict when passed a DATE()
function value as their argument and reject incomplete dates with a day
part of zero. These functions are affected: CONVERT_TZ(), DATE_ADD(),
DATE_SUB(), DAYOFYEAR(), LAST_DAY(), TIMESTAMPDIFF(), TO_DAYS(),
TO_SECONDS(), WEEK(), WEEKDAY(), WEEKOFYEAR(), YEARWEEK().
Because this changes date-handling behavior in General Availability-status
series MySQL 5.5, the change was reverted in 5.5.21.

•  ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for
DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For information on
the INTERVAL unit argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_ADD('2008-01-02', INTERVAL 31 DAY);
        -> '2008-02-02'
mysql> SELECT ADDDATE('2008-01-02', INTERVAL 31 DAY);
        -> '2008-02-02'

When invoked with the days form of the second argument, MySQL treats it as an integer number of
days to be added to expr.

mysql> SELECT ADDDATE('2008-01-02', 31);
        -> '2008-02-02'

•  ADDTIME(expr1,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression,
and expr2 is a time expression.

mysql> SELECT ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002');
        -> '2008-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');
        -> '03:00:01.999997'

•  CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time
zone given by to_tz and returns the resulting value. Time zones are specified as described in
Section 10.6, “MySQL Server Time Zone Support”. This function returns NULL if the arguments are
invalid.

If the value falls out of the supported range of the TIMESTAMP type when converted from from_tz
to UTC, no conversion occurs. The TIMESTAMP range is described in Section 11.1.2, “Date and
Time Type Overview”.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
        -> '2004-01-01 13:00:00'
mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
        -> '2004-01-01 22:00:00'



Date and Time Functions

1189

Note

To use named time zones such as 'MET' or 'Europe/Moscow', the time
zone tables must be properly set up. See Section 10.6, “MySQL Server Time
Zone Support”, for instructions.

•  CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether
the function is used in a string or numeric context.

mysql> SELECT CURDATE();
        -> '2008-06-13'
mysql> SELECT CURDATE() + 0;
        -> 20080613

•  CURRENT_DATE, CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

•  CURRENT_TIME, CURRENT_TIME()

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

•  CURRENT_TIMESTAMP, CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

•  CURTIME()

Returns the current time as a value in 'HH:MM:SS' or HHMMSS.uuuuuu format, depending on
whether the function is used in a string or numeric context. The value is expressed in the current time
zone.

mysql> SELECT CURTIME();
        -> '23:50:26'
mysql> SELECT CURTIME() + 0;
        -> 235026.000000

•  DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
        -> '2003-12-31'

•  DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 − expr2 expressed as a value in days from one date to the other.
expr1 and expr2 are date or date-and-time expressions. Only the date parts of the values are used
in the calculation.

mysql> SELECT DATEDIFF('2007-12-31 23:59:59','2007-12-30');
        -> 1
mysql> SELECT DATEDIFF('2010-11-30 23:59:59','2010-12-31');
        -> -31

•   DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. The date argument specifies the starting date or datetime
value. expr is an expression specifying the interval value to be added or subtracted from the starting



Date and Time Functions

1190

date. expr is a string; it may start with a - for negative intervals. unit is a keyword indicating the
units in which the expression should be interpreted.

The INTERVAL keyword and the unit specifier are not case sensitive.

The following table shows the expected form of the expr argument for each unit value.

unit Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES:SECONDS.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS:MINUTES:SECONDS.MICROSECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS
HOURS:MINUTES:SECONDS.MICROSECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

The return value depends on the arguments:

• DATETIME if the first argument is a DATETIME (or TIMESTAMP) value, or if the first argument is a
DATE and the unit value uses HOURS, MINUTES, or SECONDS.

• String otherwise.

To ensure that the result is DATETIME, you can use CAST() to convert the first argument to
DATETIME.

MySQL permits any punctuation delimiter in the expr format. Those shown in the table are the
suggested delimiters. If the date argument is a DATE value and your calculations involve only YEAR,
MONTH, and DAY parts (that is, no time parts), the result is a DATE value. Otherwise, the result is a
DATETIME value.

Date arithmetic also can be performed using INTERVAL together with the + or - operator:

date + INTERVAL expr unit
date - INTERVAL expr unit



Date and Time Functions

1191

INTERVAL expr unit is permitted on either side of the + operator if the expression on the other
side is a date or datetime value. For the - operator, INTERVAL expr unit is permitted only on the
right side, because it makes no sense to subtract a date or datetime value from an interval.

mysql> SELECT '2008-12-31 23:59:59' + INTERVAL 1 SECOND;
        -> '2009-01-01 00:00:00'
mysql> SELECT INTERVAL 1 DAY + '2008-12-31';
        -> '2009-01-01'
mysql> SELECT '2005-01-01' - INTERVAL 1 SECOND;
        -> '2004-12-31 23:59:59'
mysql> SELECT DATE_ADD('2000-12-31 23:59:59',
    ->                 INTERVAL 1 SECOND);
        -> '2001-01-01 00:00:00'
mysql> SELECT DATE_ADD('2010-12-31 23:59:59',
    ->                 INTERVAL 1 DAY);
        -> '2011-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
    ->                 INTERVAL '1:1' MINUTE_SECOND);
        -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2005-01-01 00:00:00',
    ->                 INTERVAL '1 1:1:1' DAY_SECOND);
        -> '2004-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
    ->                 INTERVAL '-1 10' DAY_HOUR);
        -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
        -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
    ->            INTERVAL '1.999999' SECOND_MICROSECOND);
        -> '1993-01-01 00:00:01.000001'

If you specify an interval value that is too short (does not include all the interval parts that would
be expected from the unit keyword), MySQL assumes that you have left out the leftmost parts
of the interval value. For example, if you specify a unit of DAY_SECOND, the value of expr is
expected to have days, hours, minutes, and seconds parts. If you specify a value like '1:10',
MySQL assumes that the days and hours parts are missing and the value represents minutes and
seconds. In other words, '1:10' DAY_SECOND is interpreted in such a way that it is equivalent to
'1:10' MINUTE_SECOND. This is analogous to the way that MySQL interprets TIME values as
representing elapsed time rather than as a time of day.

Because expr is treated as a string, be careful if you specify a nonstring value with INTERVAL. For
example, with an interval specifier of HOUR_MINUTE, 6/4 evaluates to 1.5000 and is treated as 1
hour, 5000 minutes:

mysql> SELECT 6/4;
        -> 1.5000
mysql> SELECT DATE_ADD('2009-01-01', INTERVAL 6/4 HOUR_MINUTE);
        -> '2009-01-04 12:20:00'

To ensure interpretation of the interval value as you expect, a CAST() operation may be used. To
treat 6/4 as 1 hour, 5 minutes, cast it to a DECIMAL value with a single fractional digit:

mysql> SELECT CAST(6/4 AS DECIMAL(3,1));
        -> 1.5
mysql> SELECT DATE_ADD('1970-01-01 12:00:00',
    ->                 INTERVAL CAST(6/4 AS DECIMAL(3,1)) HOUR_MINUTE);
        -> '1970-01-01 13:05:00'

If you add to or subtract from a date value something that contains a time part, the result is
automatically converted to a datetime value:

mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 DAY);



Date and Time Functions

1192

        -> '2013-01-02'
mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 HOUR);
        -> '2013-01-01 01:00:00'

If you add MONTH, YEAR_MONTH, or YEAR and the resulting date has a day that is larger than the
maximum day for the new month, the day is adjusted to the maximum days in the new month:

mysql> SELECT DATE_ADD('2009-01-30', INTERVAL 1 MONTH);
        -> '2009-02-28'

Date arithmetic operations require complete dates and do not work with incomplete dates such as
'2006-07-00' or badly malformed dates:

mysql> SELECT DATE_ADD('2006-07-00', INTERVAL 1 DAY);
        -> NULL
mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
        -> NULL

•  DATE_FORMAT(date,format)

Formats the date value according to the format string.

The following specifiers may be used in the format string. The % character is required before format
specifier characters.

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

%b Abbreviated month name (Jan..Dec)

%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, …)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the week; WEEK() mode 0

%u Week (00..53), where Monday is the first day of the week; WEEK() mode 1



Date and Time Functions

1193

Specifier Description

%V Week (01..53), where Sunday is the first day of the week; WEEK() mode 2;
used with %X

%v Week (01..53), where Monday is the first day of the week; WEEK() mode 3;
used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric, four
digits; used with %V

%x Year for the week, where Monday is the first day of the week, numeric, four
digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric (two digits)

%% A literal % character

%x x, for any “x” not listed above

Ranges for the month and day specifiers begin with zero due to the fact that MySQL permits the
storing of incomplete dates such as '2014-00-00'.

The language used for day and month names and abbreviations is controlled by the value of the
lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).

For the %U, %u, %V, and %v specifiers, see the description of the WEEK() function for information
about the mode values. The mode affects how week numbering occurs.

DATE_FORMAT() returns a string with a character set and collation given by
character_set_connection and collation_connection so that it can return month and
weekday names containing non-ASCII characters.

mysql> SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');
        -> 'Sunday October 2009'
mysql> SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');
        -> '22:23:00'
mysql> SELECT DATE_FORMAT('1900-10-04 22:23:00',
    ->                 '%D %y %a %d %m %b %j');
        -> '4th 00 Thu 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
    ->                 '%H %k %I %r %T %S %w');
        -> '22 22 10 10:23:00 PM 22:23:00 00 6'
mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
        -> '1998 52'
mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
        -> '00'

•  DATE_SUB(date,INTERVAL expr unit)

See the description for DATE_ADD().

•  DAY(date)

DAY() is a synonym for DAYOFMONTH().

•  DAYNAME(date)

Returns the name of the weekday for date. The language used for the name is controlled by the
value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).

mysql> SELECT DAYNAME('2007-02-03');



Date and Time Functions

1194

        -> 'Saturday'

•  DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31, or 0 for dates such as '0000-00-00'
or '2008-00-00' that have a zero day part.

mysql> SELECT DAYOFMONTH('2007-02-03');
        -> 3

•  DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, …, 7 = Saturday). These index
values correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK('2007-02-03');
        -> 7

•  DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysql> SELECT DAYOFYEAR('2007-02-03');
        -> 34

•  EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(),
but extracts parts from the date rather than performing date arithmetic.

mysql> SELECT EXTRACT(YEAR FROM '2009-07-02');
       -> 2009
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2009-07-02 01:02:03');
       -> 200907
mysql> SELECT EXTRACT(DAY_MINUTE FROM '2009-07-02 01:02:03');
       -> 20102
mysql> SELECT EXTRACT(MICROSECOND
    ->                FROM '2003-01-02 10:30:00.000123');
        -> 123

•  FROM_DAYS(N)

Given a day number N, returns a DATE value.

mysql> SELECT FROM_DAYS(730669);
        -> '2007-07-03'

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the
advent of the Gregorian calendar (1582). See Section 12.8, “What Calendar Is Used By MySQL?”.

•  FROM_UNIXTIME(unix_timestamp), FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD
HH:MM:SS' or YYYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a
string or numeric context. The value is expressed in the current time zone. unix_timestamp is an
internal timestamp value such as is produced by the UNIX_TIMESTAMP() function.

If format is given, the result is formatted according to the format string, which is used the same
way as listed in the entry for the DATE_FORMAT() function.

mysql> SELECT FROM_UNIXTIME(1447430881);



Date and Time Functions

1195

        -> '2015-11-13 10:08:01'
mysql> SELECT FROM_UNIXTIME(1447430881) + 0;
        -> 20151113100801
mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),
    ->                      '%Y %D %M %h:%i:%s %x');
        -> '2015 13th November 10:08:01 2015'

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP
values and Unix timestamp values, the conversion is lossy because the mapping is not one-to-one in
both directions. For details, see the description of the UNIX_TIMESTAMP() function.

•  GET_FORMAT({DATE|TIME|DATETIME}, {'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL'})

Returns a format string. This function is useful in combination with the DATE_FORMAT() and the
STR_TO_DATE() functions.

The possible values for the first and second arguments result in several possible format strings (for
the specifiers used, see the table in the DATE_FORMAT() function description). ISO format refers to
ISO 9075, not ISO 8601.

Function Call Result

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%s'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

TIMESTAMP can also be used as the first argument to GET_FORMAT(), in which case the function
returns the same values as for DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
        -> '03.10.2003'
mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
        -> '2003-10-31'

•  HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However,
the range of TIME values actually is much larger, so HOUR can return values greater than 23.

mysql> SELECT HOUR('10:05:03');
        -> 10
mysql> SELECT HOUR('272:59:59');
        -> 272



Date and Time Functions

1196

•  LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month.
Returns NULL if the argument is invalid.

mysql> SELECT LAST_DAY('2003-02-05');
        -> '2003-02-28'
mysql> SELECT LAST_DAY('2004-02-05');
        -> '2004-02-29'
mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
        -> '2004-01-31'
mysql> SELECT LAST_DAY('2003-03-32');
        -> NULL

•  LOCALTIME, LOCALTIME()

LOCALTIME and LOCALTIME() are synonyms for NOW().

•  LOCALTIMESTAMP, LOCALTIMESTAMP()

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

•  MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result
is NULL.

mysql> SELECT MAKEDATE(2011,31), MAKEDATE(2011,32);
        -> '2011-01-31', '2011-02-01'
mysql> SELECT MAKEDATE(2011,365), MAKEDATE(2014,365);
        -> '2011-12-31', '2014-12-31'
mysql> SELECT MAKEDATE(2011,0);
        -> NULL

•  MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments.

mysql> SELECT MAKETIME(12,15,30);
        -> '12:15:30'

•  MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range from
0 to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456');
        -> 123456
mysql> SELECT MICROSECOND('2009-12-31 23:59:59.000010');
        -> 10

•  MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE('2008-02-03 10:05:03');
        -> 5

•  MONTH(date)

Returns the month for date, in the range 1 to 12 for January to December, or 0 for dates such as
'0000-00-00' or '2008-00-00' that have a zero month part.



Date and Time Functions

1197

mysql> SELECT MONTH('2008-02-03');
        -> 2

•  MONTHNAME(date)

Returns the full name of the month for date. The language used for the name is controlled by the
value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).

mysql> SELECT MONTHNAME('2008-02-03');
        -> 'February'

•  NOW()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or
YYYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a string or numeric
context. The value is expressed in the current time zone.

mysql> SELECT NOW();
        -> '2007-12-15 23:50:26'
mysql> SELECT NOW() + 0;
        -> 20071215235026.000000

NOW() returns a constant time that indicates the time at which the statement began to execute.
(Within a stored function or trigger, NOW() returns the time at which the function or triggering
statement began to execute.) This differs from the behavior for SYSDATE(), which returns the exact
time at which it executes.

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW()               | SLEEP(2) | NOW()               |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 |        0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE()           | SLEEP(2) | SYSDATE()           |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 |        0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by
SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations
of SYSDATE(). Setting the timestamp to a nonzero value causes each subsequent invocation of
NOW() to return that value. Setting the timestamp to zero cancels this effect so that NOW() once
again returns the current date and time.

See the description for SYSDATE() for additional information about the differences between the two
functions.

•  PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM.
Note that the period argument P is not a date value.

mysql> SELECT PERIOD_ADD(200801,2);
        -> 200803

•  PERIOD_DIFF(P1,P2)



Date and Time Functions

1198

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM
or YYYYMM. Note that the period arguments P1 and P2 are not date values.

mysql> SELECT PERIOD_DIFF(200802,200703);
        -> 11

•  QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysql> SELECT QUARTER('2008-04-01');
        -> 2

•  SECOND(time)

Returns the second for time, in the range 0 to 59.

mysql> SELECT SECOND('10:05:03');
        -> 3

•  SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a TIME value. The
range of the result is constrained to that of the TIME data type. A warning occurs if the argument
corresponds to a value outside that range.

mysql> SELECT SEC_TO_TIME(2378);
        -> '00:39:38'
mysql> SELECT SEC_TO_TIME(2378) + 0;
        -> 3938

•  STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string
format. STR_TO_DATE() returns a DATETIME value if the format string contains both date and
time parts, or a DATE or TIME value if the string contains only date or time parts. If the date, time,
or datetime value extracted from str is illegal, STR_TO_DATE() returns NULL and produces a
warning.

The server scans str attempting to match format to it. The format string can contain literal
characters and format specifiers beginning with %. Literal characters in format must match literally
in str. Format specifiers in format must match a date or time part in str. For the specifiers that
can be used in format, see the DATE_FORMAT() function description.

mysql> SELECT STR_TO_DATE('01,5,2013','%d,%m,%Y');
        -> '2013-05-01'
mysql> SELECT STR_TO_DATE('May 1, 2013','%M %d,%Y');
        -> '2013-05-01'

Scanning starts at the beginning of str and fails if format is found not to match. Extra characters at
the end of str are ignored.

mysql> SELECT STR_TO_DATE('a09:30:17','a%h:%i:%s');
        -> '09:30:17'
mysql> SELECT STR_TO_DATE('a09:30:17','%h:%i:%s');
        -> NULL
mysql> SELECT STR_TO_DATE('09:30:17a','%h:%i:%s');
        -> '09:30:17'



Date and Time Functions

1199

Unspecified date or time parts have a value of 0, so incompletely specified values in str produce a
result with some or all parts set to 0:

mysql> SELECT STR_TO_DATE('abc','abc');
        -> '0000-00-00'
mysql> SELECT STR_TO_DATE('9','%m');
        -> '0000-09-00'
mysql> SELECT STR_TO_DATE('9','%s');
        -> '00:00:09'

Range checking on the parts of date values is as described in Section 11.3.1, “The DATE,
DATETIME, and TIMESTAMP Types”. This means, for example, that “zero” dates or dates with part
values of 0 are permitted unless the SQL mode is set to disallow such values.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
        -> '0000-00-00'
mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
        -> '2004-04-31'

If the NO_ZERO_DATE or NO_ZERO_IN_DATE SQL mode is enabled, zero dates or part of dates are
disallowed. In that case, STR_TO_DATE() returns NULL and generates a warning:

mysql> SET sql_mode = '';
mysql> SELECT STR_TO_DATE('15:35:00', '%H:%i:%s');
+-------------------------------------+
| STR_TO_DATE('15:35:00', '%H:%i:%s') |
+-------------------------------------+
| 15:35:00                            |
+-------------------------------------+
mysql> SET sql_mode = 'NO_ZERO_IN_DATE';
mysql> SELECT STR_TO_DATE('15:35:00', '%h:%i:%s');
+-------------------------------------+
| STR_TO_DATE('15:35:00', '%h:%i:%s') |
+-------------------------------------+
| NULL                                |
+-------------------------------------+
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Warning
   Code: 1411
Message: Incorrect datetime value: '15:35:00' for function str_to_date

Note

You cannot use format "%X%V" to convert a year-week string to a date
because the combination of a year and week does not uniquely identify a year
and month if the week crosses a month boundary. To convert a year-week to
a date, you should also specify the weekday:

mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
        -> '2004-10-18'

•  SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym
for DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for
DATE_ADD().

mysql> SELECT DATE_SUB('2008-01-02', INTERVAL 31 DAY);
        -> '2007-12-02'
mysql> SELECT SUBDATE('2008-01-02', INTERVAL 31 DAY);
        -> '2007-12-02'



Date and Time Functions

1200

The second form enables the use of an integer value for days. In such cases, it is interpreted as the
number of days to be subtracted from the date or datetime expression expr.

mysql> SELECT SUBDATE('2008-01-02 12:00:00', 31);
        -> '2007-12-02 12:00:00'

•  SUBTIME(expr1,expr2)

SUBTIME() returns expr1 − expr2 expressed as a value in the same format as expr1. expr1 is a
time or datetime expression, and expr2 is a time expression.

mysql> SELECT SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002');
        -> '2007-12-30 22:58:58.999997'
mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
        -> '-00:59:59.999999'

•  SYSDATE()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or
YYYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a string or numeric
context.

SYSDATE() returns the time at which it executes. This differs from the behavior for NOW(), which
returns a constant time that indicates the time at which the statement began to execute. (Within a
stored function or trigger, NOW() returns the time at which the function or triggering statement began
to execute.)

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW()               | SLEEP(2) | NOW()               |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 |        0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE()           | SLEEP(2) | SYSDATE()           |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 |        0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by
SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations of
SYSDATE().

Because SYSDATE() can return different values even within the same statement, and is not affected
by SET TIMESTAMP, it is nondeterministic and therefore unsafe for replication if statement-based
binary logging is used. If that is a problem, you can use row-based logging.

Alternatively, you can use the --sysdate-is-now option to cause SYSDATE() to be an alias for
NOW(). This works if the option is used on both the master and the slave.

The nondeterministic nature of SYSDATE() also means that indexes cannot be used for evaluating
expressions that refer to it.

•  TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string.

This function is unsafe for statement-based replication. Beginning with MySQL 5.5.1, a warning is
logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)



Date and Time Functions

1201

mysql> SELECT TIME('2003-12-31 01:02:03');
        -> '01:02:03'
mysql> SELECT TIME('2003-12-31 01:02:03.000123');
        -> '01:02:03.000123'

•  TIMEDIFF(expr1,expr2)

TIMEDIFF() returns expr1 − expr2 expressed as a time value. expr1 and expr2 are time or
date-and-time expressions, but both must be of the same type.

The result returned by TIMEDIFF() is limited to the range allowed for TIME values. Alternatively,
you can use either of the functions TIMESTAMPDIFF() and UNIX_TIMESTAMP(), both of which
return integers.

mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
    ->                 '2000:01:01 00:00:00.000001');
        -> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('2008-12-31 23:59:59.000001',
    ->                 '2008-12-30 01:01:01.000002');
        -> '46:58:57.999999'

•  TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime
value. With two arguments, it adds the time expression expr2 to the date or datetime expression
expr1 and returns the result as a datetime value.

mysql> SELECT TIMESTAMP('2003-12-31');
        -> '2003-12-31 00:00:00'
mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
        -> '2004-01-01 00:00:00'

•  TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The
unit for interval is given by the unit argument, which should be one of the following values:
MICROSECOND (microseconds), SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

It is possible to use FRAC_SECOND in place of MICROSECOND, but FRAC_SECOND is deprecated.
FRAC_SECOND was removed in MySQL 5.5.3.

The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_.
For example, DAY and SQL_TSI_DAY both are legal.

mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
        -> '2003-01-02 00:01:00'
mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
        -> '2003-01-09'

•  TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns datetime_expr2 − datetime_expr1, where datetime_expr1 and datetime_expr2
are date or datetime expressions. One expression may be a date and the other a datetime; a date
value is treated as a datetime having the time part '00:00:00' where necessary. The unit for the
result (an integer) is given by the unit argument. The legal values for unit are the same as those
listed in the description of the TIMESTAMPADD() function.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
        -> 3
mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');



Date and Time Functions

1202

        -> -1
mysql> SELECT TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55');
        -> 128885

Note

The order of the date or datetime arguments for this function is the opposite
of that used with the TIMESTAMP() function when invoked with 2 arguments.

•  TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format specifiers
only for hours, minutes, seconds, and microseconds. Other specifiers produce a NULL value or 0.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers
produce a value larger than the usual range of 0..23. The other hour format specifiers produce the
hour value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
        -> '100 100 04 04 4'

•  TIME_TO_SEC(time)

Returns the time argument, converted to seconds.

mysql> SELECT TIME_TO_SEC('22:23:00');
        -> 80580
mysql> SELECT TIME_TO_SEC('00:39:38');
        -> 2378

•  TO_DAYS(date)

Given a date date, returns a day number (the number of days since year 0).

mysql> SELECT TO_DAYS(950501);
        -> 728779
mysql> SELECT TO_DAYS('2007-10-07');
        -> 733321

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calendar
(1582), because it does not take into account the days that were lost when the calendar was
changed. For dates before 1582 (and possibly a later year in other locales), results from this function
are not reliable. See Section 12.8, “What Calendar Is Used By MySQL?”, for details.

Remember that MySQL converts two-digit year values in dates to four-digit form using the rules in
Section 11.3, “Date and Time Types”. For example, '2008-10-07' and '08-10-07' are seen as
identical dates:

mysql> SELECT TO_DAYS('2008-10-07'), TO_DAYS('08-10-07');
        -> 733687, 733687

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered
invalid. This means that, for '0000-00-00' and '0000-01-01', TO_DAYS() returns the values
shown here:

mysql> SELECT TO_DAYS('0000-00-00');
+-----------------------+
| to_days('0000-00-00') |
+-----------------------+
|                  NULL |
+-----------------------+



Date and Time Functions

1203

1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+----------------------------------------+
| Level   | Code | Message                                |
+---------+------+----------------------------------------+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+----------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT TO_DAYS('0000-01-01');
+-----------------------+
| to_days('0000-01-01') |
+-----------------------+
|                     1 |
+-----------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

•  TO_SECONDS(expr)

Given a date or datetime expr, returns a the number of seconds since the year 0. If expr is not a
valid date or datetime value, returns NULL.

mysql> SELECT TO_SECONDS(950501);
        -> 62966505600
mysql> SELECT TO_SECONDS('2009-11-29');
        -> 63426672000
mysql> SELECT TO_SECONDS('2009-11-29 13:43:32');
        -> 63426721412
mysql> SELECT TO_SECONDS( NOW() );
        -> 63426721458

Like TO_DAYS(), TO_SECONDS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582), because it does not take into account the days that were lost when the
calendar was changed. For dates before 1582 (and possibly a later year in other locales), results
from this function are not reliable. See Section 12.8, “What Calendar Is Used By MySQL?”, for
details.

Like TO_DAYS(), TO_SECONDS(), converts two-digit year values in dates to four-digit form using the
rules in Section 11.3, “Date and Time Types”.

TO_SECONDS() is available beginning with MySQL 5.5.0.

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered
invalid. This means that, for '0000-00-00' and '0000-01-01', TO_SECONDS() returns the
values shown here:

mysql> SELECT TO_SECONDS('0000-00-00');
+--------------------------+
| TO_SECONDS('0000-00-00') |
+--------------------------+
|                     NULL |
+--------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+----------------------------------------+
| Level   | Code | Message                                |
+---------+------+----------------------------------------+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+----------------------------------------+
1 row in set (0.00 sec)



Date and Time Functions

1204

mysql> SELECT TO_SECONDS('0000-01-01');
+--------------------------+
| TO_SECONDS('0000-01-01') |
+--------------------------+
|                    86400 |
+--------------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

•  UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since '1970-01-01 00:00:00'
UTC) as an unsigned integer. If UNIX_TIMESTAMP() is called with a date argument, it returns the
value of the argument as seconds since '1970-01-01 00:00:00' UTC. The date argument may
be a DATE, DATETIME, or TIMESTAMP string, or a number in YYMMDD, YYMMDDHHMMSS, YYYYMMDD,
or YYYYMMDDHHMMSS format. The server interprets date as a value in the current time zone and
converts it to an internal value in UTC. Clients can set their time zone as described in Section 10.6,
“MySQL Server Time Zone Support”.

mysql> SELECT UNIX_TIMESTAMP();
        -> 1447431666
mysql> SELECT UNIX_TIMESTAMP('2015-11-13 10:20:19');
        -> 1447431619

When UNIX_TIMESTAMP() is used on a TIMESTAMP column, the function returns the internal
timestamp value directly, with no implicit “string-to-Unix-timestamp” conversion. If you pass an
out-of-range date to UNIX_TIMESTAMP(), it returns 0. The valid range of values is the same
as for the TIMESTAMP data type: '1970-01-01 00:00:01.000000' UTC to '2038-01-19
03:14:07.999999' UTC.

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP
values and Unix timestamp values, the conversion is lossy because the mapping is not one-to-
one in both directions. For example, due to conventions for local time zone changes, it is possible
for two UNIX_TIMESTAMP() to map two TIMESTAMP values to the same Unix timestamp value.
FROM_UNIXTIME() will map that value back to only one of the original TIMESTAMP values. Here is
an example, using TIMESTAMP values in the CET time zone:

mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
|                            1111885200 |
+---------------------------------------+
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
|                            1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00       |
+---------------------------+

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast the result to signed
integers. See Section 12.10, “Cast Functions and Operators”.

•  UTC_DATE, UTC_DATE()



Date and Time Functions

1205

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on
whether the function is used in a string or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
        -> '2003-08-14', 20030814

•  UTC_TIME, UTC_TIME()

Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS.uuuuuu format, depending on
whether the function is used in a string or numeric context.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
        -> '18:07:53', 180753.000000

•  UTC_TIMESTAMP, UTC_TIMESTAMP()

Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or
YYYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a string or numeric
context.

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
        -> '2003-08-14 18:08:04', 20030814180804.000000

•  WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() enables you
to specify whether the week starts on Sunday or Monday and whether the return value should
be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value of the
default_week_format system variable is used. See Section 5.1.5, “Server System Variables”.

The following table describes how the mode argument works.

Mode First day of week Range Week 1 is the first week …

0 Sunday 0-53 with a Sunday in this year

1 Monday 0-53 with 4 or more days this year

2 Sunday 1-53 with a Sunday in this year

3 Monday 1-53 with 4 or more days this year

4 Sunday 0-53 with 4 or more days this year

5 Monday 0-53 with a Monday in this year

6 Sunday 1-53 with 4 or more days this year

7 Monday 1-53 with a Monday in this year

For mode values with a meaning of “with 4 or more days this year,” weeks are numbered according
to ISO 8601:1988:

• If the week containing January 1 has 4 or more days in the new year, it is week 1.

• Otherwise, it is the last week of the previous year, and the next week is week 1.

mysql> SELECT WEEK('2008-02-20');
        -> 7
mysql> SELECT WEEK('2008-02-20',0);
        -> 7
mysql> SELECT WEEK('2008-02-20',1);
        -> 8
mysql> SELECT WEEK('2008-12-31',1);



Date and Time Functions

1206

        -> 53

Note that if a date falls in the last week of the previous year, MySQL returns 0 if you do not use 2, 3,
6, or 7 as the optional mode argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
        -> 2000, 0

One might argue that WEEK() should return 52 because the given date actually occurs in the 52nd
week of 1999. WEEK() returns 0 instead so that the return value is “the week number in the given
year.” This makes use of the WEEK() function reliable when combined with other functions that
extract a date part from a date.

If you prefer a result evaluated with respect to the year that contains the first day of the week for the
given date, use 0, 2, 5, or 7 as the optional mode argument.

mysql> SELECT WEEK('2000-01-01',2);
        -> 52

Alternatively, use the YEARWEEK() function:

mysql> SELECT YEARWEEK('2000-01-01');
        -> 199952
mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
        -> '52'

•  WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, … 6 = Sunday).

mysql> SELECT WEEKDAY('2008-02-03 22:23:00');
        -> 6
mysql> SELECT WEEKDAY('2007-11-06');
        -> 1

•  WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a
compatibility function that is equivalent to WEEK(date,3).

mysql> SELECT WEEKOFYEAR('2008-02-20');
        -> 8

•  YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date.

mysql> SELECT YEAR('1987-01-01');
        -> 1987

•  YEARWEEK(date), YEARWEEK(date,mode)

Returns year and week for a date. The year in the result may be different from the year in the date
argument for the first and the last week of the year.

The mode argument works exactly like the mode argument to WEEK(). For the single-argument
syntax, a mode value of 0 is used. Unlike WEEK(), the value of default_week_format does not
influence YEARWEEK().

mysql> SELECT YEARWEEK('1987-01-01');



What Calendar Is Used By MySQL?

1207

        -> 198652

Note that the week number is different from what the WEEK() function would return (0) for optional
arguments 0 or 1, as WEEK() then returns the week in the context of the given year.

12.8 What Calendar Is Used By MySQL?
MySQL uses what is known as a proleptic Gregorian calendar.

Every country that has switched from the Julian to the Gregorian calendar has had to discard at least
ten days during the switch. To see how this works, consider the month of October 1582, when the first
Julian-to-Gregorian switch occurred.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 4 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

There are no dates between October 4 and October 15. This discontinuity is called the cutover. Any
dates before the cutover are Julian, and any dates following the cutover are Gregorian. Dates during a
cutover are nonexistent.

A calendar applied to dates when it was not actually in use is called proleptic. Thus, if we assume there
was never a cutover and Gregorian rules always rule, we have a proleptic Gregorian calendar. This
is what is used by MySQL, as is required by standard SQL. For this reason, dates prior to the cutover
stored as MySQL DATE or DATETIME values must be adjusted to compensate for the difference. It
is important to realize that the cutover did not occur at the same time in all countries, and that the
later it happened, the more days were lost. For example, in Great Britain, it took place in 1752, when
Wednesday September 2 was followed by Thursday September 14. Russia remained on the Julian
calendar until 1918, losing 13 days in the process, and what is popularly referred to as its “October
Revolution” occurred in November according to the Gregorian calendar.

For integer expressions, the preceding remarks about expression evaluation apply somewhat
differently for expression assignment; for example, in a statement such as this:

CREATE TABLE t SELECT integer_expr;

In this case, the table in the column resulting from the expression has type INT or BIGINT depending
on the length of the integer expression. If the maximum length of the expression does not fit in an INT,
BIGINT is used instead. The length is taken from the max_length value of the SELECT result set
metadata (see Section 23.8.5, “C API Data Structures”). This means that you can force a BIGINT
rather than INT by use of a sufficiently long expression:

CREATE TABLE t SELECT 000000000000000000000;

12.9 Full-Text Search Functions
MATCH (col1,col2,...) AGAINST (expr [search_modifier])

search_modifier:
  {
       IN NATURAL LANGUAGE MODE
     | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
     | IN BOOLEAN MODE
     | WITH QUERY EXPANSION
  }

MySQL has support for full-text indexing and searching:

• A full-text index in MySQL is an index of type FULLTEXT.



Natural Language Full-Text Searches

1208

• Full-text indexes can be used only with MyISAM tables. (In MySQL 5.6 and up, they can also be used
with InnoDB tables.) Full-text indexes can be created only for CHAR, VARCHAR, or TEXT columns.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is created,
or added later using ALTER TABLE or CREATE INDEX.

• For large data sets, it is much faster to load your data into a table that has no FULLTEXT index and
then create the index after that, than to load data into a table that has an existing FULLTEXT index.

Full-text searching is performed using MATCH() ... AGAINST syntax. MATCH() takes a comma-
separated list that names the columns to be searched. AGAINST takes a string to search for, and an
optional modifier that indicates what type of search to perform. The search string must be a string value
that is constant during query evaluation. This rules out, for example, a table column because that can
differ for each row.

There are three types of full-text searches:

• A natural language search interprets the search string as a phrase in natural human language
(a phrase in free text). There are no special operators, with the exception of double quote (")
characters. The stopword list applies. In addition, words that are present in 50% or more of the rows
are considered common and do not match.

Full-text searches are natural language searches if the IN NATURAL LANGUAGE MODE modifier is
given or if no modifier is given. For more information, see Section 12.9.1, “Natural Language Full-
Text Searches”.

• A boolean search interprets the search string using the rules of a special query language. The string
contains the words to search for. It can also contain operators that specify requirements such that a
word must be present or absent in matching rows, or that it should be weighted higher or lower than
usual. Common words such as “some” or “then” are stopwords and do not match if present in the
search string. The IN BOOLEAN MODE modifier specifies a boolean search. For more information,
see Section 12.9.2, “Boolean Full-Text Searches”.

• A query expansion search is a modification of a natural language search. The search string is used
to perform a natural language search. Then words from the most relevant rows returned by the
search are added to the search string and the search is done again. The query returns the rows
from the second search. The IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION or
WITH QUERY EXPANSION modifier specifies a query expansion search. For more information, see
Section 12.9.3, “Full-Text Searches with Query Expansion”.

Constraints on full-text searching are listed in Section 12.9.5, “Full-Text Restrictions”.

The myisam_ftdump utility can be used to dump the contents of a full-text index. This may be helpful
for debugging full-text queries. See Section 4.6.2, “myisam_ftdump — Display Full-Text Index
information”.

12.9.1 Natural Language Full-Text Searches

By default or with the IN NATURAL LANGUAGE MODE modifier, the MATCH() function performs a
natural language search for a string against a text collection. A collection is a set of one or more
columns included in a FULLTEXT index. The search string is given as the argument to AGAINST(). For
each row in the table, MATCH() returns a relevance value; that is, a similarity measure between the
search string and the text in that row in the columns named in the MATCH() list.

mysql> CREATE TABLE articles (
          id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
          title VARCHAR(200),
          body TEXT,
          FULLTEXT (title,body)
        ) ENGINE=InnoDB;
Query OK, 0 rows affected (0.08 sec)



Natural Language Full-Text Searches

1209

mysql> INSERT INTO articles (title,body) VALUES
        ('MySQL Tutorial','DBMS stands for DataBase ...'),
        ('How To Use MySQL Well','After you went through a ...'),
        ('Optimizing MySQL','In this tutorial we will show ...'),
        ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
        ('MySQL vs. YourSQL','In the following database comparison ...'),
        ('MySQL Security','When configured properly, MySQL ...');
Query OK, 6 rows affected (0.01 sec)
Records: 6  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM articles
        WHERE MATCH (title,body)
        AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+------------------------------------------+
| id | title             | body                                     |
+----+-------------------+------------------------------------------+
|  1 | MySQL Tutorial    | DBMS stands for DataBase ...             |
|  5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+------------------------------------------+
2 rows in set (0.00 sec)

By default, the search is performed in case-insensitive fashion. However, you can perform a case-
sensitive full-text search by using a binary collation for the indexed columns. For example, a column
that uses the latin1 character set of can be assigned a collation of latin1_bin to make it case
sensitive for full-text searches.

When MATCH() is used in a WHERE clause, as in the example shown earlier, the rows returned are
automatically sorted with the highest relevance first. Relevance values are nonnegative floating-
point numbers. Zero relevance means no similarity. Relevance is computed based on the number of
words in the row (document), the number of unique words in the row, the total number of words in the
collection, and the number of rows that contain a particular word.

Note

The term “document” may be used interchangeably with the term “row”, and
both terms refer to the indexed part of the row. The term “collection” refers to
the indexed columns and encompasses all rows.

To simply count matches, you could use a query like this:

mysql> SELECT COUNT(*) FROM articles
    -> WHERE MATCH (title,body)
    -> AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----------+
| COUNT(*) |
+----------+
|        2 |
+----------+
1 row in set (0.00 sec)

However, you might find it quicker to rewrite the query as follows:

mysql> SELECT
    -> COUNT(IF(MATCH (title,body) AGAINST ('database' IN NATURAL LANGUAGE MODE), 1, NULL))
    -> AS count
    -> FROM articles;
+-------+
| count |
+-------+
|     2 |
+-------+
1 row in set (0.03 sec)

The first query sorts the results by relevance whereas the second does not. However, the second
query performs a full table scan and the first does not. The first may be faster if the search matches few
rows; otherwise, the second may be faster because it would read many rows anyway.



Natural Language Full-Text Searches

1210

For natural-language full-text searches, it is a requirement that the columns named in the MATCH()
function be the same columns included in some FULLTEXT index in your table. For the preceding
query, note that the columns named in the MATCH() function (title and body) are the same as those
named in the definition of the article table's FULLTEXT index. If you wanted to search the title or
body separately, you would need to create separate FULLTEXT indexes for each column.

It is also possible to perform a boolean search or a search with query expansion. These search types
are described in Section 12.9.2, “Boolean Full-Text Searches”, and Section 12.9.3, “Full-Text Searches
with Query Expansion”.

A full-text search that uses an index can name columns only from a single table in the MATCH() clause
because an index cannot span multiple tables. A boolean search can be done in the absence of an
index (albeit more slowly), in which case it is possible to name columns from multiple tables.

The preceding example is a basic illustration that shows how to use the MATCH() function where rows
are returned in order of decreasing relevance. The next example shows how to retrieve the relevance
values explicitly. Returned rows are not ordered because the SELECT statement includes neither
WHERE nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body)
    -> AGAINST ('Tutorial' IN NATURAL LANGUAGE MODE) AS score
    -> FROM articles;
+----+------------------+
| id | score            |
+----+------------------+
|  1 | 0.65545833110809 |
|  2 |                0 |
|  3 | 0.66266459226608 |
|  4 |                0 |
|  5 |                0 |
|  6 |                0 |
+----+------------------+
6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also sorts the
rows in order of decreasing relevance. To achieve this result, specify MATCH() twice: once in the
SELECT list and once in the WHERE clause. This causes no additional overhead, because the MySQL
optimizer notices that the two MATCH() calls are identical and invokes the full-text search code only
once.

mysql> SELECT id, body, MATCH (title,body) AGAINST
    -> ('Security implications of running MySQL as root'
    -> IN NATURAL LANGUAGE MODE) AS score
    -> FROM articles WHERE MATCH (title,body) AGAINST
    -> ('Security implications of running MySQL as root'
    -> IN NATURAL LANGUAGE MODE);
+----+-------------------------------------+-----------------+
| id | body                                | score           |
+----+-------------------------------------+-----------------+
|  4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |
|  6 | When configured properly, MySQL ... | 1.3114095926285 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

A phrase that is enclosed within double quote (") characters matches only rows that contain the phrase
literally, as it was typed. The full-text engine splits the phrase into words and performs a search in the
FULLTEXT index for the words. Nonword characters need not be matched exactly: Phrase searching
requires only that matches contain exactly the same words as the phrase and in the same order. For
example, "test phrase" matches "test, phrase". If the phrase contains no words that are in the
index, the result is empty. For example, if all words are either stopwords or shorter than the minimum
length of indexed words, the result is empty.

The MySQL FULLTEXT implementation regards any sequence of true word characters (letters, digits,
and underscores) as a word. That sequence may also contain apostrophes ('), but not more than one



Natural Language Full-Text Searches

1211

in a row. This means that aaa'bbb is regarded as one word, but aaa''bbb is regarded as two words.
Apostrophes at the beginning or the end of a word are stripped by the FULLTEXT parser; 'aaa'bbb'
would be parsed as aaa'bbb.

The FULLTEXT parser determines where words start and end by looking for certain delimiter
characters; for example,   (space), , (comma), and . (period). If words are not separated by delimiters
(as in, for example, Chinese), the FULLTEXT parser cannot determine where a word begins or ends.
To be able to add words or other indexed terms in such languages to a FULLTEXT index, you must
preprocess them so that they are separated by some arbitrary delimiter.

It is possible to write a plugin that replaces the built-in full-text parser. For details, see Section 24.2,
“The MySQL Plugin API”. For example parser plugin source code, see the plugin/fulltext
directory of a MySQL source distribution.

Some words are ignored in full-text searches:

• Any word that is too short is ignored. The default minimum length of words that are found by full-text
searches is four characters.

• Words in the stopword list are ignored. A stopword is a word such as “the” or “some” that is so
common that it is considered to have zero semantic value. There is a built-in stopword list, but it can
be overwritten by a user-defined list.

The default stopword list is given in Section 12.9.4, “Full-Text Stopwords”. The default minimum word
length and stopword list can be changed as described in Section 12.9.6, “Fine-Tuning MySQL Full-Text
Search”.

Every correct word in the collection and in the query is weighted according to its significance in the
collection or query. Consequently, a word that is present in many documents has a lower weight
(and may even have a zero weight), because it has lower semantic value in this particular collection.
Conversely, if the word is rare, it receives a higher weight. The weights of the words are combined to
compute the relevance of the row.

Such a technique works best with large collections (in fact, it was carefully tuned this way). For very
small tables, word distribution does not adequately reflect their semantic value, and this model may
sometimes produce bizarre results. For example, although the word “MySQL” is present in every row of
the articles table shown earlier, a search for the word produces no results:

mysql> SELECT * FROM articles
    -> WHERE MATCH (title,body)
    -> AGAINST ('MySQL' IN NATURAL LANGUAGE MODE);
Empty set (0.00 sec)

The search result is empty because the word “MySQL” is present in at least 50% of the rows. As such,
it is effectively treated as a stopword. For large data sets, this is the most desirable behavior: A natural
language query should not return every second row from a 1GB table. For small data sets, it may be
less desirable.

A word that matches half of the rows in a table is less likely to locate relevant documents. In fact,
it most likely finds plenty of irrelevant documents. We all know this happens far too often when we
are trying to find something on the Internet with a search engine. It is with this reasoning that rows
containing the word are assigned a low semantic value for the particular data set in which they occur. A
given word may reach the 50% threshold in one data set but not another.

The 50% threshold has a significant implication when you first try full-text searching to see how it
works: If you create a table and insert only one or two rows of text into it, every word in the text occurs
in at least 50% of the rows. As a result, no search returns any results. Be sure to insert at least three
rows, and preferably many more. Users who need to bypass the 50% limitation can use the boolean
search mode; see Section 12.9.2, “Boolean Full-Text Searches”.



Boolean Full-Text Searches

1212

12.9.2 Boolean Full-Text Searches

MySQL can perform boolean full-text searches using the IN BOOLEAN MODE modifier. With this
modifier, certain characters have special meaning at the beginning or end of words in the search string.
In the following query, the + and - operators indicate that a word is required to be present or absent,
respectively, for a match to occur. Thus, the query retrieves all the rows that contain the word “MySQL”
but that do not contain the word “YourSQL”:

mysql> SELECT * FROM articles WHERE MATCH (title,body)
    -> AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);
+----+-----------------------+-------------------------------------+
| id | title                 | body                                |
+----+-----------------------+-------------------------------------+
|  1 | MySQL Tutorial        | DBMS stands for DataBase ...        |
|  2 | How To Use MySQL Well | After you went through a ...        |
|  3 | Optimizing MySQL      | In this tutorial we will show ...   |
|  4 | 1001 MySQL Tricks     | 1. Never run mysqld as root. 2. ... |
|  6 | MySQL Security        | When configured properly, MySQL ... |
+----+-----------------------+-------------------------------------+

Note

In implementing this feature, MySQL uses what is sometimes referred to as
implied Boolean logic, in which

• + stands for AND

• - stands for NOT

• [no operator] implies OR

Boolean full-text searches have these characteristics:

• They do not use the 50% threshold.

• They do not automatically sort rows in order of decreasing relevance. You can see this from the
preceding query result: The row with the highest relevance is the one that contains “MySQL” twice,
but it is listed last, not first.

• They can work even without a FULLTEXT index, although a search executed in this fashion would be
quite slow.

• The minimum and maximum word length full-text parameters apply.

• The stopword list applies.

The boolean full-text search capability supports the following operators:

• +

A leading plus sign indicates that this word must be present in each row that is returned.

• -

A leading minus sign indicates that this word must not be present in any of the rows that are
returned.

Note: The - operator acts only to exclude rows that are otherwise matched by other search terms.
Thus, a boolean-mode search that contains only terms preceded by - returns an empty result. It
does not return “all rows except those containing any of the excluded terms.”

• (no operator)



Boolean Full-Text Searches

1213

By default (when neither + nor - is specified) the word is optional, but the rows that contain it are
rated higher. This mimics the behavior of MATCH() ... AGAINST() without the IN BOOLEAN
MODE modifier.

• > <

These two operators are used to change a word's contribution to the relevance value that is assigned
to a row. The > operator increases the contribution and the < operator decreases it. See the example
following this list.

• ( )

Parentheses group words into subexpressions. Parenthesized groups can be nested.

• ~

A leading tilde acts as a negation operator, causing the word's contribution to the row's relevance to
be negative. This is useful for marking “noise” words. A row containing such a word is rated lower
than others, but is not excluded altogether, as it would be with the - operator.

• *

The asterisk serves as the truncation (or wildcard) operator. Unlike the other operators, it should
be appended to the word to be affected. Words match if they begin with the word preceding the *
operator.

If a word is specified with the truncation operator, it is not stripped from a boolean query, even if it is
too short (as determined from the ft_min_word_len setting) or a stopword. This occurs because
the word is not seen as too short or a stopword, but as a prefix that must be present in the document
in the form of a word that begins with the prefix. Suppose that ft_min_word_len=4. Then a search
for '+word +the*' will likely return fewer rows than a search for '+word +the':

• The former query remains as is and requires both word and the* (a word starting with the) to be
present in the document.

• The latter query is transformed to +word (requiring only word to be present). the is both too short
and a stopword, and either condition is enough to cause it to be ignored.

• "

A phrase that is enclosed within double quote (") characters matches only rows that contain the
phrase literally, as it was typed. The full-text engine splits the phrase into words and performs a
search in the FULLTEXT index for the words. Nonword characters need not be matched exactly:
Phrase searching requires only that matches contain exactly the same words as the phrase and in
the same order. For example, "test phrase" matches "test, phrase".

If the phrase contains no words that are in the index, the result is empty. For example, if all words
are either stopwords or shorter than the minimum length of indexed words, the result is empty.

The following examples demonstrate some search strings that use boolean full-text operators:

• 'apple banana'

Find rows that contain at least one of the two words.

• '+apple +juice'

Find rows that contain both words.

• '+apple macintosh'

Find rows that contain the word “apple”, but rank rows higher if they also contain “macintosh”.



Full-Text Searches with Query Expansion

1214

• '+apple -macintosh'

Find rows that contain the word “apple” but not “macintosh”.

• '+apple ~macintosh'

Find rows that contain the word “apple”, but if the row also contains the word “macintosh”, rate it
lower than if row does not. This is “softer” than a search for '+apple -macintosh', for which the
presence of “macintosh” causes the row not to be returned at all.

• '+apple +(>turnover <strudel)'

Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in any order), but
rank “apple turnover” higher than “apple strudel”.

• 'apple*'

Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.

• '"some words"'

Find rows that contain the exact phrase “some words” (for example, rows that contain “some words
of wisdom” but not “some noise words”). Note that the " characters that enclose the phrase are
operator characters that delimit the phrase. They are not the quotation marks that enclose the search
string itself.

12.9.3 Full-Text Searches with Query Expansion

Full-text search supports query expansion (and in particular, its variant “blind query expansion”). This
is generally useful when a search phrase is too short, which often means that the user is relying on
implied knowledge that the full-text search engine lacks. For example, a user searching for “database”
may really mean that “MySQL”, “Oracle”, “DB2”, and “RDBMS” all are phrases that should match
“databases” and should be returned, too. This is implied knowledge.

Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH
QUERY EXPANSION or IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION following the
search phrase. It works by performing the search twice, where the search phrase for the second search
is the original search phrase concatenated with the few most highly relevant documents from the first
search. Thus, if one of these documents contains the word “databases” and the word “MySQL”, the
second search finds the documents that contain the word “MySQL” even if they do not contain the word
“database”. The following example shows this difference:

mysql> SELECT * FROM articles
    -> WHERE MATCH (title,body)
    -> AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+------------------------------------------+
| id | title             | body                                     |
+----+-------------------+------------------------------------------+
|  5 | MySQL vs. YourSQL | In the following database comparison ... |
|  1 | MySQL Tutorial    | DBMS stands for DataBase ...             |
+----+-------------------+------------------------------------------+
2 rows in set (0.00 sec)

mysql> SELECT * FROM articles
    -> WHERE MATCH (title,body)
    -> AGAINST ('database' WITH QUERY EXPANSION);
+----+-------------------+------------------------------------------+
| id | title             | body                                     |
+----+-------------------+------------------------------------------+
|  1 | MySQL Tutorial    | DBMS stands for DataBase ...             |
|  5 | MySQL vs. YourSQL | In the following database comparison ... |
|  3 | Optimizing MySQL  | In this tutorial we will show ...        |
+----+-------------------+------------------------------------------+
3 rows in set (0.00 sec)



Full-Text Stopwords

1215

Another example could be searching for books by Georges Simenon about Maigret, when a user is not
sure how to spell “Maigret”. A search for “Megre and the reluctant witnesses” finds only “Maigret and
the Reluctant Witnesses” without query expansion. A search with query expansion finds all books with
the word “Maigret” on the second pass.

Note

Because blind query expansion tends to increase noise significantly by returning
nonrelevant documents, it is meaningful to use only when a search phrase is
rather short.

12.9.4 Full-Text Stopwords

The stopword list is loaded and searched for full-text queries using the server character set and
collation (the values of the character_set_server and collation_server system variables).
False hits or misses may occur for stopword lookups if the stopword file or columns used for full-text
indexing or searches have a character set or collation different from character_set_server or
collation_server.

Case sensitivity of stopword lookups depends on the server collation. For example, lookups are case
insensitive if the collation is latin1_swedish_ci, whereas lookups are case sensitive if the collation
is latin1_general_cs or latin1_bin.

As of MySQL 5.5.6, the stopword file is loaded and searched using latin1 if
character_set_server is ucs2, utf16, or utf32. If any table was created with FULLTEXT
indexes while the server character set was ucs2, utf16, or utf32, it should be repaired using this
statement:

REPAIR TABLE tbl_name QUICK;

The following table shows the default list of full-text stopwords. In a MySQL source distribution, you can
find this list in the storage/myisam/ft_static.c file.

a's able about above according

accordingly across actually after afterwards

again against ain't all allow

allows almost alone along already

also although always am among

amongst an and another any

anybody anyhow anyone anything anyway

anyways anywhere apart appear appreciate

appropriate are aren't around as

aside ask asking associated at

available away awfully be became

because become becomes becoming been

before beforehand behind being believe

below beside besides best better

between beyond both brief but

by c'mon c's came can

can't cannot cant cause causes

certain certainly changes clearly co

com come comes concerning consequently



Full-Text Stopwords

1216

consider considering contain containing contains

corresponding could couldn't course currently

definitely described despite did didn't

different do does doesn't doing

don't done down downwards during

each edu eg eight either

else elsewhere enough entirely especially

et etc even ever every

everybody everyone everything everywhere ex

exactly example except far few

fifth first five followed following

follows for former formerly forth

four from further furthermore get

gets getting given gives go

goes going gone got gotten

greetings had hadn't happens hardly

has hasn't have haven't having

he he's hello help hence

her here here's hereafter hereby

herein hereupon hers herself hi

him himself his hither hopefully

how howbeit however i'd i'll

i'm i've ie if ignored

immediate in inasmuch inc indeed

indicate indicated indicates inner insofar

instead into inward is isn't

it it'd it'll it's its

itself just keep keeps kept

know known knows last lately

later latter latterly least less

lest let let's like liked

likely little look looking looks

ltd mainly many may maybe

me mean meanwhile merely might

more moreover most mostly much

must my myself name namely

nd near nearly necessary need

needs neither never nevertheless new

next nine no nobody non

none noone nor normally not

nothing novel now nowhere obviously

of off often oh ok



Full-Text Stopwords

1217

okay old on once one

ones only onto or other

others otherwise ought our ours

ourselves out outside over overall

own particular particularly per perhaps

placed please plus possible presumably

probably provides que quite qv

rather rd re really reasonably

regarding regardless regards relatively respectively

right said same saw say

saying says second secondly see

seeing seem seemed seeming seems

seen self selves sensible sent

serious seriously seven several shall

she should shouldn't since six

so some somebody somehow someone

something sometime sometimes somewhat somewhere

soon sorry specified specify specifying

still sub such sup sure

t's take taken tell tends

th than thank thanks thanx

that that's thats the their

theirs them themselves then thence

there there's thereafter thereby therefore

therein theres thereupon these they

they'd they'll they're they've think

third this thorough thoroughly those

though three through throughout thru

thus to together too took

toward towards tried tries truly

try trying twice two un

under unfortunately unless unlikely until

unto up upon us use

used useful uses using usually

value various very via viz

vs want wants was wasn't

way we we'd we'll we're

we've welcome well went were

weren't what what's whatever when

whence whenever where where's whereafter

whereas whereby wherein whereupon wherever

whether which while whither who



Full-Text Restrictions

1218

who's whoever whole whom whose

why will willing wish with

within without won't wonder would

wouldn't yes yet you you'd

you'll you're you've your yours

yourself yourselves zero   

12.9.5 Full-Text Restrictions

• Full-text searches are supported for MyISAM tables only. (In MySQL 5.6 and up, they can also be
used with InnoDB tables.)

• Full-text searches are not supported for partitioned tables. See Section 19.5, “Restrictions and
Limitations on Partitioning”.

• Full-text searches can be used with most multibyte character sets. The exception is that for Unicode,
the utf8 character set can be used, but not the ucs2 character set. However, although FULLTEXT
indexes on ucs2 columns cannot be used, you can perform IN BOOLEAN MODE searches on a
ucs2 column that has no such index.

The remarks for utf8 also apply to utf8mb4, and the remarks for ucs2 also apply to utf16 and
utf32.

• Ideographic languages such as Chinese and Japanese do not have word delimiters. Therefore, the
FULLTEXT parser cannot determine where words begin and end in these and other such languages.
The implications of this and some workarounds for the problem are described in Section 12.9, “Full-
Text Search Functions”.

• Although the use of multiple character sets within a single table is supported, all columns in a
FULLTEXT index must use the same character set and collation.

• The MATCH() column list must match exactly the column list in some FULLTEXT index definition
for the table, unless this MATCH() is IN BOOLEAN MODE. Boolean-mode searches can be done on
nonindexed columns, although they are likely to be slow.

• The argument to AGAINST() must be a string value that is constant during query evaluation. This
rules out, for example, a table column because that can differ for each row.

• Index hints are more limited for FULLTEXT searches than for non-FULLTEXT searches. See
Section 8.9.3, “Index Hints”.

• The '%' character is not a supported wildcard character for full-text searches.

12.9.6 Fine-Tuning MySQL Full-Text Search

MySQL's full-text search capability has few user-tunable parameters. You can exert more control over
full-text searching behavior if you have a MySQL source distribution because some changes require
source code modifications. See Section 2.9, “Installing MySQL from Source”.

Full-text search is carefully tuned for the most effectiveness. Modifying the default behavior in most
cases can actually decrease effectiveness. Do not alter the MySQL sources unless you know what you
are doing.

Most full-text variables described in this section must be set at server startup time. A server restart is
required to change them; they cannot be modified while the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions for
doing so are given later in this section.



Fine-Tuning MySQL Full-Text Search

1219

• The minimum and maximum lengths of words to be indexed are defined by the ft_min_word_len
and ft_max_word_len system variables. (See Section 5.1.5, “Server System Variables”.) The
default minimum value is four characters; the default maximum is version dependent. If you change
either value, you must rebuild your FULLTEXT indexes. For example, if you want three-character
words to be searchable, you can set the ft_min_word_len variable by putting the following lines in
an option file:

[mysqld]
ft_min_word_len=3

Then restart the server and rebuild your FULLTEXT indexes. Note particularly the remarks regarding
myisamchk in the instructions following this list.

•   To override the default stopword list, set the ft_stopword_file system variable. (See
Section 5.1.5, “Server System Variables”.) The variable value should be the path name of the file
containing the stopword list, or the empty string to disable stopword filtering. The server looks for the
file in the data directory unless an absolute path name is given to specify a different directory. After
changing the value of this variable or the contents of the stopword file, restart the server and rebuild
your FULLTEXT indexes.

The stopword list is free-form. That is, you may use any nonalphanumeric character such as newline,
space, or comma to separate stopwords. Exceptions are the underscore character (_) and a single
apostrophe (') which are treated as part of a word. The character set of the stopword list is the
server's default character set; see Section 10.1.3.2, “Server Character Set and Collation”.

• The 50% threshold for natural language searches is determined by the particular weighting scheme
chosen. To disable it, look for the following line in storage/myisam/ftdefs.h:

#define GWS_IN_USE GWS_PROB

Change that line to this:

#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case.

Note

By making this change, you severely decrease MySQL's ability to provide
adequate relevance values for the MATCH() function. If you really need
to search for such common words, it would be better to search using IN
BOOLEAN MODE instead, which does not observe the 50% threshold.

• To change the operators used for boolean full-text searches, set the ft_boolean_syntax system
variable. This variable can be changed while the server is running, but you must have the SUPER
privilege to do so. No rebuilding of indexes is necessary in this case. See Section 5.1.5, “Server
System Variables”, which describes the rules governing how to set this variable.

• If you want to change the set of characters that are considered word characters, you can do so in
several ways, as described in the following list. After making the modification, you must rebuild the
indexes for each table that contains any FULLTEXT indexes. Suppose that you want to treat the
hyphen character ('-') as a word character. Use one of these methods:

• Modify the MySQL source: In storage/myisam/ftdefs.h, see the true_word_char() and
misc_word_char() macros. Add '-' to one of those macros and recompile MySQL.

• Modify a character set file: This requires no recompilation. The true_word_char() macro uses
a “character type” table to distinguish letters and numbers from other characters. . You can edit the
contents of the <ctype><map> array in one of the character set XML files to specify that '-' is



Adding a Collation for Full-Text Indexing

1220

a “letter.” Then use the given character set for your FULLTEXT indexes. For information about the
<ctype><map> array format, see Section 10.3.1, “Character Definition Arrays”.

• Add a new collation for the character set used by the indexed columns, and alter the columns to
use that collation. For general information about adding collations, see Section 10.4, “Adding a
Collation to a Character Set”. For an example specific to full-text indexing, see Section 12.9.7,
“Adding a Collation for Full-Text Indexing”.

If you modify full-text variables that affect indexing (ft_min_word_len, ft_max_word_len, or
ft_stopword_file), or if you change the stopword file itself, you must rebuild your FULLTEXT
indexes after making the changes and restarting the server. To rebuild the indexes in this case, it is
sufficient to do a QUICK repair operation:

mysql> REPAIR TABLE tbl_name QUICK;

Alternatively, use ALTER TABLE with the DROP INDEX and ADD INDEX options to drop and re-create
each FULLTEXT index. In some cases, this may be faster than a repair operation.

Each table that contains any FULLTEXT index must be repaired as just shown. Otherwise, queries for
the table may yield incorrect results, and modifications to the table will cause the server to see the table
as corrupt and in need of repair.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze),
the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum word length,
maximum word length, and stopword file unless you specify otherwise. This can result in queries
failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length
or stopword file values used by the server, specify the same ft_min_word_len, ft_max_word_len,
and ft_stopword_file values for myisamchk that you use for mysqld. For example, if you have
set the minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, place each
one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk for index modification is to use the REPAIR TABLE, ANALYZE
TABLE, OPTIMIZE TABLE, or ALTER TABLE statements. These statements are performed by the
server, which knows the proper full-text parameter values to use.

12.9.7 Adding a Collation for Full-Text Indexing

This section describes how to add a new collation for full-text searches. The sample collation is like
latin1_swedish_ci but treats the '-' character as a letter rather than as a punctuation character
so that it can be indexed as a word character. General information about adding collations is given
in Section 10.4, “Adding a Collation to a Character Set”; it is assumed that you have read it and are
familiar with the files involved.

To add a collation for full-text indexing, use the following procedure. The instructions here add a
collation for a simple character set, which as discussed in Section 10.4, “Adding a Collation to a
Character Set”, can be created using a configuration file that describes the character set properties.



Adding a Collation for Full-Text Indexing

1221

For a complex character set such as Unicode, create collations using C source files that describe the
character set properties.

1. Add a collation to the Index.xml file. The collation ID must be unused, so choose a value different
from 62 if that ID is already taken on your system.

<charset name="latin1">
...
<collation name="latin1_fulltext_ci" id="62"/>
</charset>

2. Declare the sort order for the collation in the latin1.xml file. In this case, the order can be copied
from latin1_swedish_ci:

<collation name="latin1_fulltext_ci">
<map>
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D D7 D8 55 55 55 59 59 DE DF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D F7 D8 55 55 55 59 59 DE FF
</map>
</collation>

3. Modify the ctype array in latin1.xml. Change the value corresponding to 0x2D (which is the
code for the '-' character) from 10 (punctuation) to 01 (small letter). In the following array, this is
the element in the fourth row down, third value from the end.

<ctype>
<map>
00
20 20 20 20 20 20 20 20 20 28 28 28 28 28 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
48 10 10 10 10 10 10 10 10 10 10 10 10 01 10 10
84 84 84 84 84 84 84 84 84 84 10 10 10 10 10 10
10 81 81 81 81 81 81 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 10 10 10 10 10
10 82 82 82 82 82 82 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 02 02 02 02 10 10 10 10 20
10 00 10 02 10 10 10 10 10 10 01 10 01 00 01 00
00 10 10 10 10 10 10 10 10 10 02 10 02 00 02 01
48 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 02
02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 10 02 02 02 02 02 02 02 02
</map>
</ctype>

4. Restart the server.

5. To employ the new collation, include it in the definition of columns that are to use it:

mysql> DROP TABLE IF EXISTS t1;



Cast Functions and Operators

1222

Query OK, 0 rows affected (0.13 sec)

mysql> CREATE TABLE t1 (
    -> a TEXT CHARACTER SET latin1 COLLATE latin1_fulltext_ci,
    -> FULLTEXT INDEX(a)
    -> ) ENGINE=MyISAM;
Query OK, 0 rows affected (0.47 sec)

6. Test the collation to verify that hyphen is considered as a word character:

mysql> INSERT INTO t1 VALUEs ('----'),('....'),('abcd');
Query OK, 3 rows affected (0.22 sec)
Records: 3  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM t1 WHERE MATCH a AGAINST ('----' IN BOOLEAN MODE);
+------+
| a    |
+------+
| ---- |
+------+
1 row in set (0.00 sec)

12.10 Cast Functions and Operators
Table 12.14 Cast Functions and Operators

Name Description

BINARY Cast a string to a binary string

CAST() Cast a value as a certain type

CONVERT() Cast a value as a certain type

Cast functions and operators enable conversion of values from one data type to another.

CONVERT() with a USING clause provides a way to convert data between different character sets:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT(_latin1'Müller' USING utf8);
INSERT INTO utf8_table (utf8_column)
    SELECT CONVERT(latin1_column USING utf8) FROM latin1_table;

You can also use CONVERT() without USING or CAST() to convert strings between different character
sets:

CONVERT(string, CHAR[(N)] CHARACTER SET charset_name)
CAST(string AS CHAR[(N)] CHARACTER SET charset_name)

Examples:

SELECT CONVERT('test', CHAR CHARACTER SET utf8);
SELECT CAST('test' AS CHAR CHARACTER SET utf8);

If you specify CHARACTER SET charset_name as just shown, the resulting character set
and collation are charset_name and the default collation of charset_name. If you omit
CHARACTER SET charset_name, the resulting character set and collation are defined by the
character_set_connection and collation_connection system variables that determine the
default connection character set and collation (see Section 10.1.4, “Connection Character Sets and
Collations”).



Cast Functions and Operators

1223

A COLLATE clause is not permitted within a CONVERT() or CAST() call, but you can apply it to the
function result. For example, this is legal:

SELECT CAST('test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

But this is illegal:

SELECT CAST('test' AS CHAR CHARACTER SET utf8 COLLATE utf8_bin);

Normally, you cannot compare a BLOB value or other binary string in case-insensitive fashion because
binary strings use the binary character set, which has no collation with the concept of lettercase. To
perform a case-insensitive comparison, use the CONVERT() or CAST() function to convert the value to
a nonbinary string. Comparisons of the resulting string use its collation. For example, if the conversion
result character set has a case-insensitive collation, a LIKE operation is not case sensitive:

SELECT 'A' LIKE CONVERT(blob_col USING latin1)
  FROM tbl_name;

To use a different character set, substitute its name for latin1 in the preceding statement. To specify
a particular collation for the converted string, use a COLLATE clause following the CONVERT() call:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) COLLATE latin1_german1_ci
  FROM tbl_name;

CONVERT() and CAST() can be used more generally for comparing strings that are represented in
different character sets. For example, a comparison of these strings results in an error because they
have different character sets:

mysql> SET @s1 = _latin1 'abc', @s2 = _latin2 'abc';
mysql> SELECT @s1 = @s2;
ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (latin2_general_ci,IMPLICIT) for operation '='

Converting one of the strings to a character set compatible with the other enables the comparison to
occur without error:

mysql> SELECT @s1 = CONVERT(@s2 USING latin1);
+---------------------------------+
| @s1 = CONVERT(@s2 USING latin1) |
+---------------------------------+
|                               1 |
+---------------------------------+

For string literals, another way to specify the character set is to use a character set introducer
(_latin1 and _latin2 in the preceding example are instances of introducers). Unlike conversion
functions such as CAST(), or CONVERT(), which convert a string from one character set to another, an
introducer designates a string literal as having a particular character set, with no conversion involved.
For more information, see Section 10.1.3.8, “Character Set Introducers”.

Character set conversion is also useful preceding lettercase conversion of binary strings. LOWER() and
UPPER() are ineffective when applied directly to binary strings because the concept of lettercase does
not apply. To perform lettercase conversion of a binary string, first convert it to a nonbinary string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York    | new york                          |
+-------------+-----------------------------------+



Cast Functions and Operators

1224

If you convert an indexed column using BINARY, CAST(), or CONVERT(), MySQL may not be able to
use the index efficiently.

The cast functions are useful for creating a column with a specific type in a CREATE TABLE ...
SELECT statement:

mysql> CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE) AS c1;
mysql> SHOW CREATE TABLE new_table\G
*************************** 1. row ***************************
       Table: new_table
Create Table: CREATE TABLE `new_table` (
  `c1` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1

The cast functions are useful for sorting ENUM columns in lexical order. Normally, sorting of ENUM
columns occurs using the internal numeric values. Casting the values to CHAR results in a lexical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST() also changes the result if you use it as part of a more complex expression such as
CONCAT('Date: ',CAST(NOW() AS DATE)).

For temporal values, there is little need to use CAST() to extract data in different formats. Instead, use
a function such as EXTRACT(), DATE_FORMAT(), or TIME_FORMAT(). See Section 12.7, “Date and
Time Functions”.

To cast a string to a number, you normally need do nothing other than use the string value in numeric
context:

mysql> SELECT 1+'1';
       -> 2

That is also true for hexadecimal and bit literals, which are binary strings by default:

mysql> SELECT X'41', X'41'+0;
        -> 'A', 65
mysql> SELECT b'1100001', b'1100001'+0;
        -> 'a', 97

A string used in an arithmetic operation is converted to a floating-point number during expression
evaluation.

A number used in string context is converted to a string:

mysql> SELECT CONCAT('hello you ',2);
        -> 'hello you 2'

For information about implicit conversion of numbers to strings, see Section 12.2, “Type Conversion in
Expression Evaluation”.

When using an explicit CAST() on a TIMESTAMP value in a statement that does not select from any
tables, the value is treated by MySQL as a string prior to performing any conversion. This results in the
value being truncated when casting to a numeric type, as shown here:

mysql> SELECT CAST(TIMESTAMP '2014-09-08 18:07:54' AS SIGNED);
+-------------------------------------------------+
| CAST(TIMESTAMP '2014-09-08 18:07:54' AS SIGNED) |
+-------------------------------------------------+
|                                            2014 |
+-------------------------------------------------+
1 row in set, 1 warning (0.00 sec)



Cast Functions and Operators

1225

mysql> SHOW WARNINGS;
+---------+------+----------------------------------------------------------+
| Level   | Code | Message                                                  |
+---------+------+----------------------------------------------------------+
| Warning | 1292 | Truncated incorrect INTEGER value: '2014-09-08 18:07:54' |
+---------+------+----------------------------------------------------------+
1 row in set (0.00 sec)

This does not apply when selecting rows from a table, as shown here:

mysql> USE test;

Database changed
mysql> CREATE TABLE c_test (col TIMESTAMP);
Query OK, 0 rows affected (0.07 sec)

mysql> INSERT INTO c_test VALUES ('2014-09-08 18:07:54');
Query OK, 1 row affected (0.05 sec)

mysql> SELECT col, CAST(col AS UNSIGNED) AS c_col FROM c_test;
+---------------------+----------------+
| col                 | c_col          |
+---------------------+----------------+
| 2014-09-08 18:07:54 | 20140908180754 |
+---------------------+----------------+
1 row in set (0.00 sec)

This is a known issue which is resolved in MySQL 5.6.

MySQL supports arithmetic with both signed and unsigned 64-bit values. For numeric operators (such
as + or -) where one of the operands is an unsigned integer, the result is unsigned by default (see
Section 12.6.1, “Arithmetic Operators”). To override this, use the SIGNED or UNSIGNED cast operator
to cast a value to a signed or unsigned 64-bit integer, respectively.

mysql> SELECT 1 - 2;
        -> -1
mysql> SELECT CAST(1 - 2 AS UNSIGNED);
        -> 18446744073709551615
mysql> SELECT CAST(CAST(1 - 2 AS UNSIGNED) AS SIGNED);
        -> -1

If either operand is a floating-point value, the result is a floating-point value and is not affected by the
preceding rule. (In this context, DECIMAL column values are regarded as floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
        -> -1.0

The SQL mode affects the result of conversion operations (see Section 5.1.8, “Server SQL Modes”).
Examples:

• For conversion of a “zero” date string to a date, CONVERT() and CAST() return NULL and produce a
warning when the NO_ZERO_DATE SQL mode is enabled.

• For integer subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the subtraction
result is signed even if any operand is unsigned.

The following list describes the available cast functions and operators:

•  BINARY expr

The BINARY operator converts the expression to a binary string. A common use for BINARY is to
force a character string comparison to be done byte by byte rather than character by character, in
effect becoming case sensitive. The BINARY operator also causes trailing spaces in comparisons to
be significant.



Cast Functions and Operators

1226

mysql> SELECT 'a' = 'A';
        -> 1
mysql> SELECT BINARY 'a' = 'A';
        -> 0
mysql> SELECT 'a' = 'a ';
        -> 1
mysql> SELECT BINARY 'a' = 'a ';
        -> 0

In a comparison, BINARY affects the entire operation; it can be given before either operand with the
same result.

For purposes of converting a string expression to a binary string, these constructs are equivalent:

BINARY expr
CAST(expr AS BINARY)
CONVERT(expr USING BINARY)

If a value is a string literal, it can be designated as a binary string without performing any conversion
by using the _binary character set introducer:

mysql> SELECT 'a' = 'A';
        -> 1
mysql> SELECT _binary 'a' = 'A';
        -> 0

For information about introducers, see Section 10.1.3.8, “Character Set Introducers”.

The BINARY operator in expressions differs in effect from the BINARY attribute in character column
definitions. A character column defined with the BINARY attribute is assigned table default character
set and the binary (_bin) collation of that character set. Every nonbinary character set has a _bin
collation. For example, the binary collation for the utf8 character set is utf8_bin, so if the table
default character set is utf8, these two column definitions are equivalent:

CHAR(10) BINARY
CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin

The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column causes
the column to be treated as the corresponding binary string data type. For example, the following
pairs of definitions are equivalent:

CHAR(10) CHARACTER SET binary
BINARY(10)

VARCHAR(10) CHARACTER SET binary
VARBINARY(10)

TEXT CHARACTER SET binary
BLOB

•  CAST(expr AS type)

The CAST() function takes an expression of any type and produces a result value of the specified
type, similar to CONVERT(). For more information, see the description of CONVERT().

CAST() is standard SQL syntax.

•  CONVERT(expr,type), CONVERT(expr USING transcoding_name)

The CONVERT() function takes an expression of any type and produces a result value of the
specified type.



Cast Functions and Operators

1227

Discussion of CONVERT(expr, type) syntax here also applies to CAST(expr AS type), which
is equivalent.

CONVERT(... USING ...) is standard SQL syntax. The non-USING form of CONVERT() is ODBC
syntax.

CONVERT() with USING converts data between different character sets. In MySQL, transcoding
names are the same as the corresponding character set names. For example, this statement
converts the string 'abc' in the default character set to the corresponding string in the utf8
character set:

SELECT CONVERT('abc' USING utf8);

CONVERT() without USING and CAST() take an expression and a type value specifying the result
type. These type values are permitted:

• BINARY[(N)]

Produces a string with the BINARY data type. See Section 11.4.2, “The BINARY and VARBINARY
Types” for a description of how this affects comparisons. If the optional length N is given,
BINARY(N) causes the cast to use no more than N bytes of the argument. Values shorter than N
bytes are padded with 0x00 bytes to a length of N.

• CHAR[(N)] [charset_info]

Produces a string with the CHAR data type. If the optional length N is given, CHAR(N) causes the
cast to use no more than N characters of the argument. No padding occurs for values shorter than
N characters.

With no charset_info clause, CHAR produces a string with the default character set. To specify
the character set explicitly, these charset_info values are permitted:

• CHARACTER SET charset_name: Produces a string with the given character set.

• ASCII: Shorthand for CHARACTER SET latin1.

• UNICODE: Shorthand for CHARACTER SET ucs2.

In all cases, the string has the default collation for the character set.

• DATE

Produces a DATE value.

• DATETIME

Produces a DATETIME value.

• DECIMAL[(M[,D])]

Produces a DECIMAL value. If the optional M and D values are given, they specify the maximum
number of digits (the precision) and the number of digits following the decimal point (the scale).

• NCHAR[(N)]

Like CHAR, but produces a string with the national character set. See Section 10.1.3.7, “The
National Character Set”.

Unlike CHAR, NCHAR does not permit trailing character set information to be specified.



XML Functions

1228

• SIGNED [INTEGER]

Produces a signed integer value.

• TIME

Produces a TIME value.

• UNSIGNED [INTEGER]

Produces an unsigned integer value.

12.11 XML Functions
Table 12.15 XML Functions

Name Description

ExtractValue() Extracts a value from an XML string using XPath notation

UpdateXML() Return replaced XML fragment

This section discusses XML and related functionality in MySQL.

Note

It is possible to obtain XML-formatted output from MySQL in the mysql and
mysqldump clients by invoking them with the --xml option. See Section 4.5.1,
“mysql — The MySQL Command-Line Tool”, and Section 4.5.4, “mysqldump
— A Database Backup Program”.

Two functions providing basic XPath 1.0 (XML Path Language, version 1.0) capabilities are available.
Some basic information about XPath syntax and usage is provided later in this section; however, an
in-depth discussion of these topics is beyond the scope of this Manual, and you should refer to the
XML Path Language (XPath) 1.0 standard for definitive information. A useful resource for those new
to XPath or who desire a refresher in the basics is the Zvon.org XPath Tutorial, which is available in
several languages.

Note

These functions remain under development. We continue to improve these and
other aspects of XML and XPath functionality in MySQL 5.5 and onwards. You
may discuss these, ask questions about them, and obtain help from other users
with them in the MySQL XML User Forum.

XPath expressions used with these functions support user variables and local stored program
variables. User variables are weakly checked; variables local to stored programs are strongly checked
(see also Bug #26518):

• User variables (weak checking).  Variables using the syntax $@variable_name (that is,
user variables) are not checked. No warnings or errors are issued by the server if a variable
has the wrong type or has previously not been assigned a value. This also means the user is
fully responsible for any typographical errors, since no warnings will be given if (for example)
$@myvariable is used where $@myvariable was intended.

Example:

mysql> SET @xml = '<a><b>X</b><b>Y</b></a>';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @i =1, @j = 2;
Query OK, 0 rows affected (0.00 sec)

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/
http://forums.mysql.com/list.php?44


XML Functions

1229

mysql> SELECT @i, ExtractValue(@xml, '//b[$@i]');
+------+--------------------------------+
| @i   | ExtractValue(@xml, '//b[$@i]') |
+------+--------------------------------+
|    1 | X                              |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @j, ExtractValue(@xml, '//b[$@j]');
+------+--------------------------------+
| @j   | ExtractValue(@xml, '//b[$@j]') |
+------+--------------------------------+
|    2 | Y                              |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @k, ExtractValue(@xml, '//b[$@k]');
+------+--------------------------------+
| @k   | ExtractValue(@xml, '//b[$@k]') |
+------+--------------------------------+
| NULL |                                |
+------+--------------------------------+
1 row in set (0.00 sec)

• Variables in stored programs (strong checking).  Variables using the syntax $variable_name
can be declared and used with these functions when they are called inside stored programs. Such
variables are local to the stored program in which they are defined, and are strongly checked for type
and value.

Example:

mysql> DELIMITER |

mysql> CREATE PROCEDURE myproc ()
    -> BEGIN
    ->   DECLARE i INT DEFAULT 1;
    ->   DECLARE xml VARCHAR(25) DEFAULT '<a>X</a><a>Y</a><a>Z</a>';
    ->
    ->   WHILE i < 4 DO
    ->     SELECT xml, i, ExtractValue(xml, '//a[$i]');
    ->     SET i = i+1;
    ->   END WHILE;
    -> END |
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

mysql> CALL myproc();
+--------------------------+---+------------------------------+
| xml                      | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X</a><a>Y</a><a>Z</a> | 1 | X                            |
+--------------------------+---+------------------------------+
1 row in set (0.00 sec)

+--------------------------+---+------------------------------+
| xml                      | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X</a><a>Y</a><a>Z</a> | 2 | Y                            |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

+--------------------------+---+------------------------------+
| xml                      | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X</a><a>Y</a><a>Z</a> | 3 | Z                            |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)



XML Functions

1230

Parameters.  Variables used in XPath expressions inside stored routines that are passed in as
parameters are also subject to strong checking.

Expressions containing user variables or variables local to stored programs must otherwise (except
for notation) conform to the rules for XPath expressions containing variables as given in the XPath 1.0
specification.

Note

A user variable used to store an XPath expression is treated as an empty
string. Because of this, it is not possible to store an XPath expression as a user
variable. (Bug #32911)

•  ExtractValue(xml_frag, xpath_expr)

ExtractValue() takes two string arguments, a fragment of XML markup xml_frag and an XPath
expression xpath_expr (also known as a locator); it returns the text (CDATA) of the first text node
which is a child of the elements or elements matched by the XPath expression. In MySQL 5.5, the
XPath expression can contain at most 127 characters. (This limitation is lifted in MySQL 5.6.)

Using this function is the equivalent of performing a match using the xpath_expr after appending
/text(). In other words, ExtractValue('<a><b>Sakila</b></a>', '/a/b') and
ExtractValue('<a><b>Sakila</b></a>', '/a/b/text()') produce the same result.

If multiple matches are found, the content of the first child text node of each matching element is
returned (in the order matched) as a single, space-delimited string.

If no matching text node is found for the expression (including the implicit /text())—for whatever
reason, as long as xpath_expr is valid, and xml_frag consists of elements which are properly
nested and closed—an empty string is returned. No distinction is made between a match on an
empty element and no match at all. This is by design.

If you need to determine whether no matching element was found in xml_frag or such an element
was found but contained no child text nodes, you should test the result of an expression that uses
the XPath count() function. For example, both of these statements return an empty string, as
shown here:

mysql> SELECT ExtractValue('<a><b/></a>', '/a/b');
+-------------------------------------+
| ExtractValue('<a><b/></a>', '/a/b') |
+-------------------------------------+
|                                     |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/></a>', '/a/b');
+-------------------------------------+
| ExtractValue('<a><c/></a>', '/a/b') |
+-------------------------------------+
|                                     |
+-------------------------------------+
1 row in set (0.00 sec)

However, you can determine whether there was actually a matching element using the following:

mysql> SELECT ExtractValue('<a><b/></a>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a><b/></a>', 'count(/a/b)') |
+-------------------------------------+
| 1                                   |
+-------------------------------------+
1 row in set (0.00 sec)



XML Functions

1231

mysql> SELECT ExtractValue('<a><c/></a>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a><c/></a>', 'count(/a/b)') |
+-------------------------------------+
| 0                                   |
+-------------------------------------+
1 row in set (0.01 sec)

Important

ExtractValue() returns only CDATA, and does not return any tags that
might be contained within a matching tag, nor any of their content (see the
result returned as val1 in the following example).

mysql> SELECT
    ->   ExtractValue('<a>ccc<b>ddd</b></a>', '/a') AS val1,
    ->   ExtractValue('<a>ccc<b>ddd</b></a>', '/a/b') AS val2,
    ->   ExtractValue('<a>ccc<b>ddd</b></a>', '//b') AS val3,
    ->   ExtractValue('<a>ccc<b>ddd</b></a>', '/b') AS val4,
    ->   ExtractValue('<a>ccc<b>ddd</b><b>eee</b></a>', '//b') AS val5;

+------+------+------+------+---------+
| val1 | val2 | val3 | val4 | val5    |
+------+------+------+------+---------+
| ccc  | ddd  | ddd  |      | ddd eee |
+------+------+------+------+---------+

This function uses the current SQL collation for making comparisons with contains(), performing
the same collation aggregation as other string functions (such as CONCAT()), in taking into
account the collation coercibility of their arguments; see Section 10.1.8.4, “Collation Coercibility in
Expressions”, for an explanation of the rules governing this behavior.

(Previously, binary—that is, case-sensitive—comparison was always used.)

NULL is returned if xml_frag contains elements which are not properly nested or closed, and a
warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c</a><b', '//a');
+-----------------------------------+
| ExtractValue('<a>c</a><b', '//a') |
+-----------------------------------+
| NULL                              |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Warning
   Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
         END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c</a><b/>', '//a');
+-------------------------------------+
| ExtractValue('<a>c</a><b/>', '//a') |
+-------------------------------------+
| c                                   |
+-------------------------------------+
1 row in set (0.00 sec)

•  UpdateXML(xml_target, xpath_expr, new_xml)

This function replaces a single portion of a given fragment of XML markup xml_target with a new
XML fragment new_xml, and then returns the changed XML. The portion of xml_target that is



XML Functions

1232

replaced matches an XPath expression xpath_expr supplied by the user. In MySQL 5.5, the XPath
expression can contain at most 127 characters. (This limitation is lifted in MySQL 5.6.)

If no expression matching xpath_expr is found, or if multiple matches are found, the function
returns the original xml_target XML fragment. All three arguments should be strings.

mysql> SELECT
    ->   UpdateXML('<a><b>ccc</b><d></d></a>', '/a', '<e>fff</e>') AS val1,
    ->   UpdateXML('<a><b>ccc</b><d></d></a>', '/b', '<e>fff</e>') AS val2,
    ->   UpdateXML('<a><b>ccc</b><d></d></a>', '//b', '<e>fff</e>') AS val3,
    ->   UpdateXML('<a><b>ccc</b><d></d></a>', '/a/d', '<e>fff</e>') AS val4,
    ->   UpdateXML('<a><d></d><b>ccc</b><d></d></a>', '/a/d', '<e>fff</e>') AS val5
    -> \G

*************************** 1. row ***************************
val1: <e>fff</e>
val2: <a><b>ccc</b><d></d></a>
val3: <a><e>fff</e><d></d></a>
val4: <a><b>ccc</b><e>fff</e></a>
val5: <a><d></d><b>ccc</b><d></d></a>

Note

A discussion in depth of XPath syntax and usage are beyond the scope of
this Manual. Please see the XML Path Language (XPath) 1.0 specification
for definitive information. A useful resource for those new to XPath or who
are wishing a refresher in the basics is the Zvon.org XPath Tutorial, which is
available in several languages.

Descriptions and examples of some basic XPath expressions follow:

• /tag

Matches <tag/> if and only if <tag/> is the root element.

Example: /a has a match in <a><b/></a> because it matches the outermost (root) tag. It does
not match the inner a element in <b><a/></b> because in this instance it is the child of another
element.

• /tag1/tag2

Matches <tag2/> if and only if it is a child of <tag1/>, and <tag1/> is the root element.

Example: /a/b matches the b element in the XML fragment <a><b/></a> because it is a child of
the root element a. It does not have a match in <b><a/></b> because in this case, b is the root
element (and hence the child of no other element). Nor does the XPath expression have a match in
<a><c><b/></c></a>; here, b is a descendant of a, but not actually a child of a.

This construct is extendable to three or more elements. For example, the XPath expression /a/b/c
matches the c element in the fragment <a><b><c/></b></a>.

• //tag

Matches any instance of <tag>.

Example: //a matches the a element in any of the following: <a><b><c/></b></a>; <c><a><b/
></a></b>; <c><b><a/></b></c>.

// can be combined with /. For example, //a/b matches the b element in either of the fragments
<a><b/></a> or <a><b><c/></b></a>

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/


XML Functions

1233

Note

//tag is the equivalent of /descendant-or-self::*/tag. A common
error is to confuse this with /descendant-or-self::tag, although the
latter expression can actually lead to very different results, as can be seen
here:

mysql> SET @xml = '<a><b><c>w</c><b>x</b><d>y</d>z</b></a>';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @xml;
+-----------------------------------------+
| @xml                                    |
+-----------------------------------------+
| <a><b><c>w</c><b>x</b><d>y</d>z</b></a> |
+-----------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[1]');
+------------------------------+
| ExtractValue(@xml, '//b[1]') |
+------------------------------+
| x z                          |
+------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[2]');
+------------------------------+
| ExtractValue(@xml, '//b[2]') |
+------------------------------+
|                              |
+------------------------------+
1 row in set (0.01 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[1]');
+---------------------------------------------------+
| ExtractValue(@xml, '/descendant-or-self::*/b[1]') |
+---------------------------------------------------+
| x z                                               |
+---------------------------------------------------+
1 row in set (0.06 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[2]');
+---------------------------------------------------+
| ExtractValue(@xml, '/descendant-or-self::*/b[2]') |
+---------------------------------------------------+
|                                                   |
+---------------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[1]');
+-------------------------------------------------+
| ExtractValue(@xml, '/descendant-or-self::b[1]') |
+-------------------------------------------------+
| z                                               |
+-------------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[2]');
+-------------------------------------------------+
| ExtractValue(@xml, '/descendant-or-self::b[2]') |
+-------------------------------------------------+
| x                                               |
+-------------------------------------------------+
1 row in set (0.00 sec)



XML Functions

1234

• The * operator acts as a “wildcard” that matches any element. For example, the expression /*/b
matches the b element in either of the XML fragments <a><b/></a> or <c><b/></c>. However,
the expression does not produce a match in the fragment <b><a/></b> because b must be a child
of some other element. The wildcard may be used in any position: The expression /*/b/* will
match any child of a b element that is itself not the root element.

• You can match any of several locators using the | (UNION) operator. For example, the expression
//b|//c matches all b and c elements in the XML target.

• It is also possible to match an element based on the value of one or more of its attributes. This done
using the syntax tag[@attribute="value"]. For example, the expression //b[@id="idB"]
matches the second b element in the fragment <a><b id="idA"/><c/><b id="idB"/></
a>. To match against any element having attribute="value", use the XPath expression //
*[attribute="value"].

To filter multiple attribute values, simply use multiple attribute-comparison clauses in succession.
For example, the expression //b[@c="x"][@d="y"] matches the element <b c="x" d="y"/>
occurring anywhere in a given XML fragment.

To find elements for which the same attribute matches any of several values, you can use multiple
locators joined by the | operator. For example, to match all b elements whose c attributes have
either of the values 23 or 17, use the expression //b[@c="23"]|//b[@c="17"]. You can also
use the logical or operator for this purpose: //b[@c="23" or @c="17"].

Note

The difference between or and | is that or joins conditions, while | joins
result sets.

XPath Limitations.  The XPath syntax supported by these functions is currently subject to the
following limitations:

• Nodeset-to-nodeset comparison (such as '/a/b[@c=@d]') is not supported.

• All of the standard XPath comparison operators are supported. (Bug #22823)

• Relative locator expressions are resolved in the context of the root node. For example, consider the
following query and result:

mysql> SELECT ExtractValue(
    ->   '<a><b c="1">X</b><b c="2">Y</b></a>',
    ->    'a/b'
    -> ) AS result;
+--------+
| result |
+--------+
| X Y    |
+--------+
1 row in set (0.03 sec)

In this case, the locator a/b resolves to /a/b.

Relative locators are also supported within predicates. In the following example, d[../@c="1"] is
resolved as /a/b[@c="1"]/d:

mysql> SELECT ExtractValue(
    ->      '<a>
    ->        <b c="1"><d>X</d></b>
    ->        <b c="2"><d>X</d></b>
    ->      </a>',
    ->      'a/b/d[../@c="1"]')
    -> AS result;
+--------+



XML Functions

1235

| result |
+--------+
| X      |
+--------+
1 row in set (0.00 sec)

• Locators prefixed with expressions that evaluate as scalar values—including variable references,
literals, numbers, and scalar function calls—are not permitted, and their use results in an error.

• The :: operator is not supported in combination with node types such as the following:

• axis::comment()

• axis::text()

• axis::processing-instructions()

• axis::node()

However, name tests (such as axis::name and axis::*) are supported, as shown in these
examples:

mysql> SELECT ExtractValue('<a><b>x</b><c>y</c></a>','/a/child::b');
+-------------------------------------------------------+
| ExtractValue('<a><b>x</b><c>y</c></a>','/a/child::b') |
+-------------------------------------------------------+
| x                                                     |
+-------------------------------------------------------+
1 row in set (0.02 sec)

mysql> SELECT ExtractValue('<a><b>x</b><c>y</c></a>','/a/child::*');
+-------------------------------------------------------+
| ExtractValue('<a><b>x</b><c>y</c></a>','/a/child::*') |
+-------------------------------------------------------+
| x y                                                   |
+-------------------------------------------------------+
1 row in set (0.01 sec)

• “Up-and-down” navigation is not supported in cases where the path would lead “above” the root
element. That is, you cannot use expressions which match on descendants of ancestors of a given
element, where one or more of the ancestors of the current element is also an ancestor of the root
element (see Bug #16321).

• The following XPath functions are not supported, or have known issues as indicated:

• id()

• lang()

• local-name()

• name()

• namespace-uri()

• normalize-space()

• starts-with()

• string()

• substring-after()

• substring-before()



XML Functions

1236

• translate()

• The following axes are not supported:

• following-sibling

• following

• preceding-sibling

• preceding

XPath expressions passed as arguments to ExtractValue() and UpdateXML() may contain
the colon character (:) in element selectors, which enables their use with markup employing XML
namespaces notation. For example:

mysql> SET @xml = '<a>111<b:c>222<d>333</d><e:f>444</e:f></b:c></a>';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//e:f');
+-----------------------------+
| ExtractValue(@xml, '//e:f') |
+-----------------------------+
| 444                         |
+-----------------------------+
1 row in set (0.00 sec)

mysql> SELECT UpdateXML(@xml, '//b:c', '<g:h>555</g:h>');
+--------------------------------------------+
| UpdateXML(@xml, '//b:c', '<g:h>555</g:h>') |
+--------------------------------------------+
| <a>111<g:h>555</g:h></a>                   |
+--------------------------------------------+
1 row in set (0.00 sec)

This is similar in some respects to what is permitted by Apache Xalan and some other parsers, and
is much simpler than requiring namespace declarations or the use of the namespace-uri() and
local-name() functions.

Error handling.  For both ExtractValue() and UpdateXML(), the XPath locator used must be
valid and the XML to be searched must consist of elements which are properly nested and closed. If
the locator is invalid, an error is generated:

mysql> SELECT ExtractValue('<a>c</a><b/>', '/&a');
ERROR 1105 (HY000): XPATH syntax error: '&a'

If xml_frag does not consist of elements which are properly nested and closed, NULL is returned and
a warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c</a><b', '//a');
+-----------------------------------+
| ExtractValue('<a>c</a><b', '//a') |
+-----------------------------------+
| NULL                              |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Warning
   Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
         END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

http://xalan.apache.org/


XML Functions

1237

mysql> SELECT ExtractValue('<a>c</a><b/>', '//a');
+-------------------------------------+
| ExtractValue('<a>c</a><b/>', '//a') |
+-------------------------------------+
| c                                   |
+-------------------------------------+
1 row in set (0.00 sec)

Important

The replacement XML used as the third argument to UpdateXML() is not
checked to determine whether it consists solely of elements which are properly
nested and closed.

XPath Injection.  code injection occurs when malicious code is introduced into the system to gain
unauthorized access to privileges and data. It is based on exploiting assumptions made by developers
about the type and content of data input from users. XPath is no exception in this regard.

A common scenario in which this can happen is the case of application which handles authorization
by matching the combination of a login name and password with those found in an XML file, using an
XPath expression like this one:

//user[login/text()='neapolitan' and password/text()='1c3cr34m']/attribute::id

This is the XPath equivalent of an SQL statement like this one:

SELECT id FROM users WHERE login='neapolitan' AND password='1c3cr34m';

A PHP application employing XPath might handle the login process like this:

<?php

  $file     =   "users.xml";

  $login    =   $POST["login"];
  $password =   $POST["password"];

  $xpath = "//user[login/text()=$login and password/text()=$password]/attribute::id";

  if( file_exists($file) )
  {
    $xml = simplexml_load_file($file);

    if($result = $xml->xpath($xpath))
      echo "You are now logged in as user $result[0].";
    else
      echo "Invalid login name or password.";
  }
  else
    exit("Failed to open $file.");

?>

No checks are performed on the input. This means that a malevolent user can “short-circuit” the test
by entering ' or 1=1 for both the login name and password, resulting in $xpath being evaluated as
shown here:

//user[login/text()='' or 1=1 and password/text()='' or 1=1]/attribute::id

Since the expression inside the square brackets always evaluates as true, it is effectively the same as
this one, which matches the id attribute of every user element in the XML document:

//user/attribute::id



XML Functions

1238

One way in which this particular attack can be circumvented is simply by quoting the variable names to
be interpolated in the definition of $xpath, forcing the values passed from a Web form to be converted
to strings:

$xpath = "//user[login/text()='$login' and password/text()='$password']/attribute::id";

This is the same strategy that is often recommended for preventing SQL injection attacks. In general,
the practices you should follow for preventing XPath injection attacks are the same as for preventing
SQL injection:

• Never accepted untested data from users in your application.

• Check all user-submitted data for type; reject or convert data that is of the wrong type

• Test numeric data for out of range values; truncate, round, or reject values that are out of range. Test
strings for illegal characters and either strip them out or reject input containing them.

• Do not output explicit error messages that might provide an unauthorized user with clues that could
be used to compromise the system; log these to a file or database table instead.

Just as SQL injection attacks can be used to obtain information about database schemas, so can
XPath injection be used to traverse XML files to uncover their structure, as discussed in Amit Klein's
paper Blind XPath Injection (PDF file, 46KB).

It is also important to check the output being sent back to the client. Consider what can happen when
we use the MySQL ExtractValue() function:

mysql> SELECT ExtractValue(
    ->     LOAD_FILE('users.xml'),
    ->     '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
    -> ) AS id;
+-------------------------------+
| id                            |
+-------------------------------+
| 00327 13579 02403 42354 28570 |
+-------------------------------+
1 row in set (0.01 sec)

Because ExtractValue() returns multiple matches as a single space-delimited string, this injection
attack provides every valid ID contained within users.xml to the user as a single row of output. As an
extra safeguard, you should also test output before returning it to the user. Here is a simple example:

mysql> SELECT @id = ExtractValue(
    ->     LOAD_FILE('users.xml'),
    ->     '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
    -> );
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT IF(
    ->     INSTR(@id, ' ') = 0,
    ->     @id,
    ->     'Unable to retrieve user ID')
    -> AS singleID;
+----------------------------+
| singleID                   |
+----------------------------+
| Unable to retrieve user ID |
+----------------------------+
1 row in set (0.00 sec)

In general, the guidelines for returning data to users securely are the same as for accepting user input.
These can be summed up as:

• Always test outgoing data for type and permissible values.

http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf


Bit Functions and Operators

1239

• Never permit unauthorized users to view error messages that might provide information about the
application that could be used to exploit it.

12.12 Bit Functions and Operators

Table 12.16 Bit Functions and Operators

Name Description

BIT_COUNT() Return the number of bits that are set

& Bitwise AND

~ Bitwise inversion

| Bitwise OR

^ Bitwise XOR

<< Left shift

>> Right shift

Bit functions and operators comprise BIT_COUNT(), BIT_AND(), BIT_OR(), BIT_XOR(), &, |,
^, ~, <<, and >>. (BIT_AND(), BIT_OR(), and BIT_XOR() are aggregate functions described at
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”.) Bit functions and operators require
BIGINT (64-bit integer) arguments and return BIGINT values, so they have a maximum range of 64
bits. Arguments of other types (such as the BINARY and VARBINARY binary string types) are converted
to BIGINT and truncation might occur.

The following list describes available bit functions and operators:

•   |

Bitwise OR.

The result is an unsigned 64-bit integer.

mysql> SELECT 29 | 15;
        -> 31

•   &

Bitwise AND.

The result is an unsigned 64-bit integer.

mysql> SELECT 29 & 15;
        -> 13

•   ^

Bitwise XOR.

The result is an unsigned 64-bit integer.

mysql> SELECT 1 ^ 1;
        -> 0
mysql> SELECT 1 ^ 0;
        -> 1
mysql> SELECT 11 ^ 3;
        -> 8

•  <<



Encryption and Compression Functions

1240

Shifts a longlong (BIGINT) number to the left.

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift
count is greater or equal to the width of an unsigned 64-bit number, the result is zero.

mysql> SELECT 1 << 2;
        -> 4

•  >>

Shifts a longlong (BIGINT) number to the right.

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift
count is greater or equal to the width of an unsigned 64-bit number, the result is zero.

mysql> SELECT 4 >> 2;
        -> 1

•  ~

Invert all bits.

The result is an unsigned 64-bit integer.

mysql> SELECT 5 & ~1;
        -> 4

•  BIT_COUNT(N)

Returns the number of bits that are set in the argument N as an unsigned 64-bit integer, or NULL if
the argument is NULL.

mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
        -> 4, 3

12.13 Encryption and Compression Functions

Table 12.17 Encryption Functions

Name Description

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

COMPRESS() Return result as a binary string

DECODE() Decodes a string encrypted using ENCODE()

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

ENCODE() Encode a string

ENCRYPT() Encrypt a string

MD5() Calculate MD5 checksum

OLD_PASSWORD() Return the value of the pre-4.1 implementation of
PASSWORD

PASSWORD() Calculate and return a password string

SHA1(), SHA() Calculate an SHA-1 160-bit checksum



Encryption and Compression Functions

1241

Name Description

SHA2() Calculate an SHA-2 checksum

UNCOMPRESS() Uncompress a string compressed

UNCOMPRESSED_LENGTH() Return the length of a string before compression

Many encryption and compression functions return strings for which the result might contain arbitrary
byte values. If you want to store these results, use a column with a VARBINARY or BLOB binary string
data type. This will avoid potential problems with trailing space removal or character set conversion that
would change data values, such as may occur if you use a nonbinary string data type (CHAR, VARCHAR,
TEXT).

Some encryption functions return strings of ASCII characters: MD5(), OLD_PASSWORD(),
PASSWORD(), SHA(), SHA1(). As of MySQL 5.5.3, their return value is a nonbinary string
that has a character set and collation determined by the character_set_connection and
collation_connection system variables. Before 5.5.3, these functions return binary strings. The
same change was made for SHA2() in MySQL 5.5.6.

For versions in which functions such as MD5() or SHA1() return a string of hexadecimal digits as
a binary string, the return value cannot be converted to uppercase or compared in case-insensitive
fashion as is. You must convert the value to a nonbinary string. See the discussion of binary string
conversion in Section 12.10, “Cast Functions and Operators”.

If an application stores values from a function such as MD5() or SHA1() that returns a string of hex
digits, more efficient storage and comparisons can be obtained by converting the hex representation to
binary using UNHEX() and storing the result in a BINARY(N) column. Each pair of hexadecimal digits
requires one byte in binary form, so the value of N depends on the length of the hex string. N is 16 for
an MD5() value and 20 for a SHA1() value. For SHA2(), N ranges from 28 to 32 depending on the
argument specifying the desired bit length of the result.

The size penalty for storing the hex string in a CHAR column is at least two times, up to eight times if
the value is stored in a column that uses the utf8 character set (where each character uses 4 bytes).
Storing the string also results in slower comparisons because of the larger values and the need to take
character set collation rules into account.

Suppose that an application stores MD5() string values in a CHAR(32) column:

CREATE TABLE md5_tbl (md5_val CHAR(32), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(MD5('abcdef'), ...);

To convert hex strings to more compact form, modify the application to use UNHEX() and
BINARY(16) instead as follows:

CREATE TABLE md5_tbl (md5_val BINARY(16), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(UNHEX(MD5('abcdef')), ...);

Applications should be prepared to handle the very rare case that a hashing function produces the
same value for two different input values. One way to make collisions detectable is to make the hash
column a primary key.

Note

Exploits for the MD5 and SHA-1 algorithms have become known. You may wish
to consider using another one-way encryption function described in this section
instead, such as SHA2().

Caution

Passwords or other sensitive values supplied as arguments to encryption
functions are sent in cleartext to the MySQL server unless an SSL connection



Encryption and Compression Functions

1242

is used. Also, such values will appear in any MySQL logs to which they are
written. To avoid these types of exposure, applications can encrypt sensitive
values on the client side before sending them to the server. The same
considerations apply to encryption keys. To avoid exposing these, applications
can use stored procedures to encrypt and decrypt values on the server side.

•  AES_DECRYPT(crypt_str,key_str)

This function decrypts data using the official AES (Advanced Encryption Standard) algorithm. For
more information, see the description of AES_ENCRYPT().

•  AES_ENCRYPT(str,key_str)

AES_ENCRYPT() and AES_DECRYPT() implement encryption and decryption of data using the
official AES (Advanced Encryption Standard) algorithm, previously known as “Rijndael.” The AES
standard permits various key lengths. These functions implement AES with a 128-bit key length,
but you can extend them to 256 bits by modifying the source. The key length is a trade off between
performance and security.

AES_ENCRYPT() encrypts the string str using the key string key_str and returns a binary string
containing the encrypted output. AES_DECRYPT() decrypts the encrypted string crypt_str using
the key string key_str and returns the original cleartext string. If either function argument is NULL,
the function returns NULL.

The str and crypt_str arguments can be any length, and padding is automatically added to
str so it is a multiple of a block as required by block-based algorithms such as AES. This padding
is automatically removed by the AES_DECRYPT() function. The length of crypt_str can be
calculated using this formula:

16 * (trunc(string_length / 16) + 1)

For a key length of 128 bits, the most secure way to pass a key to the key_str argument is to
create a truly random 128-bit value and pass it as a binary value. For example:

INSERT INTO t
VALUES (1,AES_ENCRYPT('text',UNHEX('F3229A0B371ED2D9441B830D21A390C3')));

A passphrase can be used to generate an AES key by hashing the passphrase. For example:

INSERT INTO t
VALUES (1,AES_ENCRYPT('text', UNHEX(SHA2('My secret passphrase',512))));

Do not pass a password or passphrase directly to crypt_str, hash it first. Previous versions of this
documentation suggested the former approach, but it is no longer recommended as the examples
shown here are more secure.

If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL. However, it is possible
for AES_DECRYPT() to return a non-NULL value (possibly garbage) if the input data or the key is
invalid.

•  COMPRESS(string_to_compress)

Compresses a string and returns the result as a binary string. This function requires MySQL to have
been compiled with a compression library such as zlib. Otherwise, the return value is always NULL.
The compressed string can be uncompressed with UNCOMPRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
        -> 21
mysql> SELECT LENGTH(COMPRESS(''));
        -> 0



Encryption and Compression Functions

1243

mysql> SELECT LENGTH(COMPRESS('a'));
        -> 13
mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
        -> 15

The compressed string contents are stored the following way:

• Empty strings are stored as empty strings.

• Nonempty strings are stored as a 4-byte length of the uncompressed string (low byte first),
followed by the compressed string. If the string ends with space, an extra . character is added
to avoid problems with endspace trimming should the result be stored in a CHAR or VARCHAR
column. (However, use of nonbinary string data types such as CHAR or VARCHAR to store
compressed strings is not recommended anyway because character set conversion may occur.
Use a VARBINARY or BLOB binary string column instead.)

•  DECODE(crypt_str,pass_str)

Decrypts the encrypted string crypt_str using pass_str as the password. crypt_str should be
a string returned from ENCODE().

•  DES_DECRYPT(crypt_str[,key_str])

Decrypts a string encrypted with DES_ENCRYPT(). If an error occurs, this function returns NULL.

This function works only if MySQL has been configured with SSL support. See Section 6.4, “Using
Secure Connections”.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted string
to determine the DES key number that was used to encrypt the original string, and then reads the
key from the DES key file to decrypt the message. For this to work, the user must have the SUPER
privilege. The key file can be specified with the --des-key-file server option.

If you pass this function a key_str argument, that string is used as the key for decrypting the
message.

If the crypt_str argument does not appear to be an encrypted string, MySQL returns the given
crypt_str.

•  DES_ENCRYPT(str[,{key_num|key_str}])

Encrypts the string with the given key using the Triple-DES algorithm.

This function works only if MySQL has been configured with SSL support. See Section 6.4, “Using
Secure Connections”.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if one was
given. With no argument, the first key from the DES key file is used. With a key_num argument, the
given key number (0 to 9) from the DES key file is used. With a key_str argument, the given key
string is used to encrypt str.

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128 | key_num). If an error
occurs, DES_ENCRYPT() returns NULL.

The 128 is added to make it easier to recognize an encrypted key. If you use a string key, key_num
is 127.

The string length for the result is given by this formula:

new_len = orig_len + (8 - (orig_len % 8)) + 1



Encryption and Compression Functions

1244

Each line in the DES key file has the following format:

key_num des_key_str

Each key_num value must be a number in the range from 0 to 9. Lines in the file may be in any
order. des_key_str is the string that is used to encrypt the message. There should be at least one
space between the number and the key. The first key is the default key that is used if you do not
specify any key argument to DES_ENCRYPT().

You can tell MySQL to read new key values from the key file with the FLUSH DES_KEY_FILE
statement. This requires the RELOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for the
existence of encrypted column values, without giving the end user the right to decrypt those values.

mysql> SELECT customer_address FROM customer_table 
     > WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');

•  ENCODE(str,pass_str)

Encrypt str using pass_str as the password. The result is a binary string of the same length as
str. To decrypt the result, use DECODE().

The ENCODE() function should no longer be used. If you still need to use ENCODE(), a salt value
must be used with it to reduce risk. For example:

ENCODE('cleartext', CONCAT('my_random_salt','my_secret_password'))

A new random salt value must be used whenever a password is updated.

•  ENCRYPT(str[,salt])

Encrypts str using the Unix crypt() system call and returns a binary string. The salt argument
must be a string with at least two characters or the result will be NULL. If no salt argument is given,
a random value is used.

mysql> SELECT ENCRYPT('hello');
        -> 'VxuFAJXVARROc'

ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This behavior
is determined by the implementation of the underlying crypt() system call.

The use of ENCRYPT() with the ucs2, utf16, or utf32 multibyte character sets is not
recommended because the system call expects a string terminated by a zero byte.

If crypt() is not available on your system (as is the case with Windows), ENCRYPT() always
returns NULL.

•  MD5(str)

Calculates an MD5 128-bit checksum for the string. The value is returned as a string of 32
hexadecimal digits, or NULL if the argument was NULL. The return value can, for example, be used
as a hash key. See the notes at the beginning of this section about storing hash values efficiently.

As of MySQL 5.5.3, the return value is a nonbinary string in the connection character set. Before
5.5.3, the return value is a binary string; see the notes at the beginning of this section about using
the value as a nonbinary string.



Encryption and Compression Functions

1245

mysql> SELECT MD5('testing');
        -> 'ae2b1fca515949e5d54fb22b8ed95575'

This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”

See the note regarding the MD5 algorithm at the beginning this section.

•  OLD_PASSWORD(str)

OLD_PASSWORD() was added when the implementation of PASSWORD() was changed in MySQL
4.1 to improve security. OLD_PASSWORD() returns the value of the pre-4.1 implementation of
PASSWORD() as a string, and is intended to permit you to reset passwords for any pre-4.1 clients
that need to connect to your MySQL server without locking them out. See Section 6.1.2.4, “Password
Hashing in MySQL”.

As of MySQL 5.5.3, the return value is a nonbinary string in the connection character set. Before
5.5.3, the return value is a binary string.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided.

•  PASSWORD(str)

Returns a hashed password string calculated from the cleartext password str. The return value is a
nonbinary string in the connection character set (a binary string before MySQL 5.5.3), or NULL if the
argument is NULL. This function is the SQL interface to the algorithm used by the server to encrypt
MySQL passwords for storage in the mysql.user grant table.

The old_passwords system variable controls the password hashing method used by the
PASSWORD() function. It also influences password hashing performed by CREATE USER and GRANT
statements that specify a password using an IDENTIFIED BY clause.

The following table shows the permitted values of old_passwords, the password hashing method
for each value, and which authentication plugins use passwords hashed with each method.

Value Password Hashing Method Associated Authentication Plugin

0 or OFF MySQL 4.1 native hashing mysql_native_password

1 or ON Pre-4.1 (“old”) hashing mysql_old_password

If old_passwords=1, PASSWORD(str) returns the same value as OLD_PASSWORD(str). The
latter function is not affected by the value of old_passwords.

mysql> SET old_passwords = 0;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+-------------------------------------------+------------------------+
| PASSWORD('mypass')                        | OLD_PASSWORD('mypass') |
+-------------------------------------------+------------------------+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 | 6f8c114b58f2ce9e       |
+-------------------------------------------+------------------------+

mysql> SET old_passwords = 1;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+--------------------+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |
+--------------------+------------------------+
| 6f8c114b58f2ce9e   | 6f8c114b58f2ce9e       |
+--------------------+------------------------+



Encryption and Compression Functions

1246

 Encryption performed by PASSWORD() is one-way (not reversible). It is not the same type of
encryption as used for Unix passwords; for that, use ENCRYPT().

Note

PASSWORD() is used by the authentication system in MySQL Server; you
should not use it in your own applications. For that purpose, consider a more
secure function such as AES_ENCRYPT() or SHA2() instead. Also see RFC
2195, section 2 (Challenge-Response Authentication Mechanism (CRAM)),
for more information about handling passwords and authentication securely in
your applications.

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided.

Caution

Statements that invoke PASSWORD() may be recorded in server logs or on
the client side in a history file such as ~/.mysql_history, which means
that cleartext passwords may be read by anyone having read access to that
information. For information about password logging in the server logs, see
Section 6.1.2.3, “Passwords and Logging”. For similar information about
client-side logging, see Section 4.5.1.3, “mysql Logging”.

•   SHA1(str), SHA(str)

Calculates an SHA-1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash
Algorithm). The value is returned as a string of 40 hexadecimal digits, or NULL if the argument was
NULL. One of the possible uses for this function is as a hash key. See the notes at the beginning
of this section about storing hash values efficiently. You can also use SHA1() as a cryptographic
function for storing passwords. SHA() is synonymous with SHA1().

As of MySQL 5.5.3, the return value is a nonbinary string in the connection character set. Before
5.5.3, the return value is a binary string; see the notes at the beginning of this section about using
the value as a nonbinary string.

mysql> SELECT SHA1('abc');
        -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1() can be considered a cryptographically more secure equivalent of MD5(). However, see the
note regarding the MD5 and SHA-1 algorithms at the beginning this section.

•  SHA2(str, hash_length)

Calculates the SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The
first argument is the cleartext string to be hashed. The second argument indicates the desired bit
length of the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256).
If either argument is NULL or the hash length is not one of the permitted values, the return value is
NULL. Otherwise, the function result is a hash value containing the desired number of bits. See the
notes at the beginning of this section about storing hash values efficiently.

As of MySQL 5.5.6, the return value is a nonbinary string in the connection character set. Before
5.5.6, the return value is a binary string; see the notes at the beginning of this section about using
the value as a nonbinary string.

mysql> SELECT SHA2('abc', 224);

http://www.faqs.org/rfcs/rfc2195.html
http://www.faqs.org/rfcs/rfc2195.html


Information Functions

1247

        -> '23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7'

This function works only if MySQL has been configured with SSL support. See Section 6.4, “Using
Secure Connections”.

SHA2() can be considered cryptographically more secure than MD5() or SHA1().

SHA2() was added in MySQL 5.5.5.

•  UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a
compressed value, the result is NULL. This function requires MySQL to have been compiled with a
compression library such as zlib. Otherwise, the return value is always NULL.

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
        -> 'any string'
mysql> SELECT UNCOMPRESS('any string');
        -> NULL

•  UNCOMPRESSED_LENGTH(compressed_string)

Returns the length that the compressed string had before being compressed.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
        -> 30

12.14 Information Functions

Table 12.18 Information Functions

Name Description

BENCHMARK() Repeatedly execute an expression

CHARSET() Return the character set of the argument

COERCIBILITY() Return the collation coercibility value of the string argument

COLLATION() Return the collation of the string argument

CONNECTION_ID() Return the connection ID (thread ID) for the connection

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

DATABASE() Return the default (current) database name

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that
would be returned were there no LIMIT clause

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

ROW_COUNT() The number of rows updated

SCHEMA() Synonym for DATABASE()

SESSION_USER() Synonym for USER()

SYSTEM_USER() Synonym for USER()

USER() The user name and host name provided by the client

VERSION() Return a string that indicates the MySQL server version

•  BENCHMARK(count,expr)

The BENCHMARK() function executes the expression expr repeatedly count times. It may be used
to time how quickly MySQL processes the expression. The result value is always 0. The intended
use is from within the mysql client, which reports query execution times:



Information Functions

1248

mysql> SELECT BENCHMARK(1000000,ENCODE('hello','goodbye'));
+----------------------------------------------+
| BENCHMARK(1000000,ENCODE('hello','goodbye')) |
+----------------------------------------------+
|                                            0 |
+----------------------------------------------+
1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server end. It is advisable
to execute BENCHMARK() several times, and to interpret the result with regard to how heavily loaded
the server machine is.

BENCHMARK() is intended for measuring the runtime performance of scalar expressions, which has
some significant implications for the way that you use it and interpret the results:

• Only scalar expressions can be used. Although the expression can be a subquery, it must return a
single column and at most a single row. For example, BENCHMARK(10, (SELECT * FROM t))
will fail if the table t has more than one column or more than one row.

• Executing a SELECT expr statement N times differs from executing SELECT BENCHMARK(N,
expr) in terms of the amount of overhead involved. The two have very different execution profiles
and you should not expect them to take the same amount of time. The former involves the parser,
optimizer, table locking, and runtime evaluation N times each. The latter involves only runtime
evaluation N times, and all the other components just once. Memory structures already allocated
are reused, and runtime optimizations such as local caching of results already evaluated for
aggregate functions can alter the results. Use of BENCHMARK() thus measures performance of the
runtime component by giving more weight to that component and removing the “noise” introduced
by the network, parser, optimizer, and so forth.

•  CHARSET(str)

Returns the character set of the string argument.

mysql> SELECT CHARSET('abc');
        -> 'latin1'
mysql> SELECT CHARSET(CONVERT('abc' USING utf8));
        -> 'utf8'
mysql> SELECT CHARSET(USER());
        -> 'utf8'

•  COERCIBILITY(str)

Returns the collation coercibility value of the string argument.

mysql> SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);
        -> 0
mysql> SELECT COERCIBILITY(USER());
        -> 3
mysql> SELECT COERCIBILITY('abc');
        -> 4
mysql> SELECT COERCIBILITY(1000);
        -> 5

The return values have the meanings shown in the following table. Lower values have higher
precedence.

Coercibility Meaning Example

0 Explicit
collation

Value with COLLATE clause

1 No collation Concatenation of strings with different collations



Information Functions

1249

Coercibility Meaning Example

2 Implicit
collation

Column value, stored routine parameter or local variable

3 System
constant

USER() return value

4 Coercible Literal string

5 Numeric Numeric or temporal value

5 Ignorable NULL or an expression derived from NULL

For more information, see Section 10.1.8.4, “Collation Coercibility in Expressions”.

•  COLLATION(str)

Returns the collation of the string argument.

mysql> SELECT COLLATION('abc');
        -> 'latin1_swedish_ci'
mysql> SELECT COLLATION(_utf8'abc');
        -> 'utf8_general_ci'

•  CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has an ID that is unique
among the set of currently connected clients.

The value returned by CONNECTION_ID() is the same type of value as displayed in the ID column
of the INFORMATION_SCHEMA.PROCESSLIST table, the Id column of SHOW PROCESSLIST output,
and the PROCESSLIST_ID column of the Performance Schema threads table.

mysql> SELECT CONNECTION_ID();
        -> 23786

•  CURRENT_USER, CURRENT_USER()

Returns the user name and host name combination for the MySQL account that the server used to
authenticate the current client. This account determines your access privileges. The return value is a
string in the utf8 character set.

The value of CURRENT_USER() can differ from the value of USER().

mysql> SELECT USER();
        -> 'davida@localhost'
mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();
        -> '@localhost'

The example illustrates that although the client specified a user name of davida (as indicated by the
value of the USER() function), the server authenticated the client using an anonymous user account
(as seen by the empty user name part of the CURRENT_USER() value). One way this might occur is
that there is no account listed in the grant tables for davida.

Within a stored program or view, CURRENT_USER() returns the account for the user who defined
the object (as given by its DEFINER value) unless defined with the SQL SECURITY INVOKER
characteristic. In the latter case, CURRENT_USER() returns the object's invoker.



Information Functions

1250

Triggers and events have no option to define the SQL SECURITY characteristic, so for these objects,
CURRENT_USER() returns the account for the user who defined the object. To return the invoker,
use USER() or SESSION_USER().

The following statements support use of the CURRENT_USER() function to take the place of the
name of (and, possibly, a host for) an affected user or a definer; in such cases, CURRENT_USER() is
expanded where and as needed:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

For information about the implications that this expansion of CURRENT_USER() has for replication,
see Section 17.4.1.8, “Replication of CURRENT_USER()”.

•  DATABASE()

Returns the default (current) database name as a string in the utf8 character set. If there is no
default database, DATABASE() returns NULL. Within a stored routine, the default database is the
database that the routine is associated with, which is not necessarily the same as the database that
is the default in the calling context.

mysql> SELECT DATABASE();
        -> 'test'

If there is no default database, DATABASE() returns NULL.

•   FOUND_ROWS()

A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns to
the client. In some cases, it is desirable to know how many rows the statement would have returned
without the LIMIT, but without running the statement again. To obtain this row count, include
an SQL_CALC_FOUND_ROWS option in the SELECT statement, and then invoke FOUND_ROWS()
afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
    -> WHERE id > 100 LIMIT 10;
mysql> SELECT FOUND_ROWS();



Information Functions

1251

The second SELECT returns a number indicating how many rows the first SELECT would have
returned had it been written without the LIMIT clause.

In the absence of the SQL_CALC_FOUND_ROWS option in the most recent successful SELECT
statement, FOUND_ROWS() returns the number of rows in the result set returned by that statement. If
the statement includes a LIMIT clause, FOUND_ROWS() returns the number of rows up to the limit.
For example, FOUND_ROWS() returns 10 or 60, respectively, if the statement includes LIMIT 10 or
LIMIT 50, 10.

The row count available through FOUND_ROWS() is transient and not intended to be available past
the statement following the SELECT SQL_CALC_FOUND_ROWS statement. If you need to refer to the
value later, save it:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM ... ;
mysql> SET @rows = FOUND_ROWS();

If you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how many rows are in
the full result set. However, this is faster than running the query again without LIMIT, because the
result set need not be sent to the client.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to restrict
the number of rows that a query returns, but also determine the number of rows in the full result
set without running the query again. An example is a Web script that presents a paged display
containing links to the pages that show other sections of a search result. Using FOUND_ROWS()
enables you to determine how many other pages are needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION statements
than for simple SELECT statements, because LIMIT may occur at multiple places in a UNION. It may
be applied to individual SELECT statements in the UNION, or global to the UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that would
be returned without a global LIMIT. The conditions for use of SQL_CALC_FOUND_ROWS with UNION
are:

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is used,
duplicate removal occurs and the value of FOUND_ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the number
of rows in the temporary table that is created to process the UNION.

Beyond the cases described here, the behavior of FOUND_ROWS() is undefined (for example, its
value following a SELECT statement that fails with an error).

Important

FOUND_ROWS() is not replicated reliably using statement-based replication.
This function is automatically replicated using row-based replication.

•  LAST_INSERT_ID(), LAST_INSERT_ID(expr)

With no argument, LAST_INSERT_ID() returns a 64-bit value representing the first automatically
generated value successfully inserted for an AUTO_INCREMENT column as a result of the most
recently executed INSERT statement. The value has a type of BIGINT UNSIGNED as of MySQL
5.5.29, BIGINT (signed) before that. The value of LAST_INSERT_ID() remains unchanged if no
rows are successfully inserted.



Information Functions

1252

With an argument, LAST_INSERT_ID() returns an unsigned integer as of MySQL 5.5.29, a signed
integer before that.

For example, after inserting a row that generates an AUTO_INCREMENT value, you can get the value
like this:

mysql> SELECT LAST_INSERT_ID();
        -> 195

The currently executing statement does not affect the value of LAST_INSERT_ID().
Suppose that you generate an AUTO_INCREMENT value with one statement, and then refer to
LAST_INSERT_ID() in a multiple-row INSERT statement that inserts rows into a table with its own
AUTO_INCREMENT column. The value of LAST_INSERT_ID() will remain stable in the second
statement; its value for the second and later rows is not affected by the earlier row insertions.
(However, if you mix references to LAST_INSERT_ID() and LAST_INSERT_ID(expr), the effect
is undefined.)

If the previous statement returned an error, the value of LAST_INSERT_ID() is undefined. For
transactional tables, if the statement is rolled back due to an error, the value of LAST_INSERT_ID()
is left undefined. For manual ROLLBACK, the value of LAST_INSERT_ID() is not restored to that
before the transaction; it remains as it was at the point of the ROLLBACK.

Prior to MySQL 5.5.35, this function was not replicated correctly if replication filtering rules were in
use. (Bug #17234370, Bug #69861)

Within the body of a stored routine (procedure or function) or a trigger, the value of
LAST_INSERT_ID() changes the same way as for statements executed outside the body of these
kinds of objects. The effect of a stored routine or trigger upon the value of LAST_INSERT_ID() that
is seen by following statements depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so following statements will not see a changed value.

The ID that was generated is maintained in the server on a per-connection basis. This means that
the value returned by the function to a given client is the first AUTO_INCREMENT value generated for
most recent statement affecting an AUTO_INCREMENT column by that client. This value cannot be
affected by other clients, even if they generate AUTO_INCREMENT values of their own. This behavior
ensures that each client can retrieve its own ID without concern for the activity of other clients, and
without the need for locks or transactions.

The value of LAST_INSERT_ID() is not changed if you set the AUTO_INCREMENT column of a row
to a non-“magic” value (that is, a value that is not NULL and not 0).

Important

If you insert multiple rows using a single INSERT statement,
LAST_INSERT_ID() returns the value generated for the first inserted row
only. The reason for this is to make it possible to reproduce easily the same
INSERT statement against some other server.

For example:

mysql> USE test;
Database changed
mysql> CREATE TABLE t (
    ->   id INT AUTO_INCREMENT NOT NULL PRIMARY KEY,



Information Functions

1253

    ->   name VARCHAR(10) NOT NULL
    -> );
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO t VALUES (NULL, 'Bob');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
|  1 | Bob  |
+----+------+
1 row in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
|                1 |
+------------------+
1 row in set (0.00 sec)

mysql> INSERT INTO t VALUES
    -> (NULL, 'Mary'), (NULL, 'Jane'), (NULL, 'Lisa');
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
|  1 | Bob  |
|  2 | Mary |
|  3 | Jane |
|  4 | Lisa |
+----+------+
4 rows in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
|                2 |
+------------------+
1 row in set (0.00 sec)

Although the second INSERT statement inserted three new rows into t, the ID generated for the first
of these rows was 2, and it is this value that is returned by LAST_INSERT_ID() for the following
SELECT statement.

If you use INSERT IGNORE and the row is ignored, the LAST_INSERT_ID() remains unchanged
from the current value (or 0 is returned if the connection has not yet performed a successful INSERT)
and, for non-transactional tables, the AUTO_INCREMENT counter is not incremented. For InnoDB
tables, the AUTO_INCREMENT counter is incremented if innodb_autoinc_lock_mode is set to 1
or 2, as demonstrated in the following example:

mysql> USE test;
Database changed

mysql> SELECT @@innodb_autoinc_lock_mode;
+----------------------------+
| @@innodb_autoinc_lock_mode |
+----------------------------+
|                          1 |
+----------------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE `t` (
`id` INT(11) NOT NULL AUTO_INCREMENT,



Information Functions

1254

`val` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
Query OK, 0 rows affected (0.02 sec)

-- Insert two rows

mysql> INSERT INTO t (val) VALUES (1),(2);
Query OK, 2 rows affected (0.00 sec)
Records: 2  Duplicates: 0  Warnings: 0

-- With auto_increment_offset=1, the inserted rows
-- result in an AUTO_INCREMENT value of 3

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
       Table: t
Create Table: CREATE TABLE `t` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `val` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `i1` (`val`)
) ENGINE=MyISAM AUTO_INCREMENT=3 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

-- LAST_INSERT_ID() returns the first automatically generated
-- value that is successfully inserted for the AUTO_INCREMENT column

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
|                1 |
+------------------+
1 row in set (0.00 sec)

-- The attempted insertion of duplicate rows fail but errors are ignored   

mysql> INSERT IGNORE INTO t (val) VALUES (1),(2);
Query OK, 0 rows affected (0.00 sec)
Records: 2  Duplicates: 2  Warnings: 0

-- With innodb_autoinc_lock_mode=1, the AUTO_INCREMENT counter
-- is incremented for the ignored rows

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
       Table: t
Create Table: CREATE TABLE `t` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `val` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `i1` (`val`)
) ENGINE=MyISAM AUTO_INCREMENT=5 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

-- The LAST_INSERT_ID is unchanged becuase the previous insert was unsuccessful

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
|                1 |
+------------------+
1 row in set (0.00 sec)        

See Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB” for more information.



Information Functions

1255

 If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is returned by
the function and is remembered as the next value to be returned by LAST_INSERT_ID(). This can
be used to simulate sequences:

1. Create a table to hold the sequence counter and initialize it:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

2. Use the table to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to
LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that
value. The mysql_insert_id() C API function can also be used to get the value. See
Section 23.8.7.37, “mysql_insert_id()”.

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the
function this way is that the ID value is maintained in the server as the last automatically generated
value. It is multi-user safe because multiple clients can issue the UPDATE statement and get their
own sequence value with the SELECT statement (or mysql_insert_id()), without affecting or
being affected by other clients that generate their own sequence values.

Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so you
cannot use the C API function to retrieve the value for LAST_INSERT_ID(expr) after executing
other SQL statements like SELECT or SET.

•  ROW_COUNT()

Before MySQL 5.5.5, ROW_COUNT() returns the number of rows changed, deleted, or inserted by the
last statement if it was an UPDATE, DELETE, or INSERT. For other statements, the value may not be
meaningful.

As of MySQL 5.5.5, ROW_COUNT() returns a value as follows:

• DDL statements: 0. This applies to statements such as CREATE TABLE or DROP TABLE.

• DML statements other than SELECT: The number of affected rows. This applies to statements
such as UPDATE, INSERT, or DELETE (as before), but now also to statements such as ALTER
TABLE and LOAD DATA INFILE.

• SELECT: -1 if the statement returns a result set, or the number of rows “affected” if it does not. For
example, for SELECT * FROM t1, ROW_COUNT() returns -1. For SELECT * FROM t1 INTO
OUTFILE 'file_name', ROW_COUNT() returns the number of rows written to the file.

• SIGNAL statements: 0.

For UPDATE statements, the affected-rows value by default is the number of rows actually changed.
If you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to
mysqld, the affected-rows value is the number of rows “found”; that is, matched by the WHERE
clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value per row is 1 if
the row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its



Information Functions

1256

current values. If you specify the CLIENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if
an existing row is set to its current values.

The ROW_COUNT() value is similar to the value from the mysql_affected_rows() C API function
and the row count that the mysql client displays following statement execution.

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
|           3 |
+-------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t WHERE i IN(1,2);
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
|           2 |
+-------------+
1 row in set (0.00 sec)

Important

ROW_COUNT() is not replicated reliably using statement-based replication.
This function is automatically replicated using row-based replication.

•  SCHEMA()

This function is a synonym for DATABASE().

•  SESSION_USER()

SESSION_USER() is a synonym for USER().

•  SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().

•  USER()

Returns the current MySQL user name and host name as a string in the utf8 character set.

mysql> SELECT USER();
        -> 'davida@localhost'

The value indicates the user name you specified when connecting to the server, and the client host
from which you connected. The value can be different from that of CURRENT_USER().

•  VERSION()

Returns a string that indicates the MySQL server version. The string uses the utf8 character set.
The value might have a suffix in addition to the version number. See the description of the version
system variable in Section 5.1.5, “Server System Variables”.

This function is unsafe for statement-based replication. Beginning with MySQL 5.5.1, a warning is
logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)



Spatial Analysis Functions

1257

mysql> SELECT VERSION();
        -> '5.5.58-standard'

12.15 Spatial Analysis Functions
MySQL provides functions to perform various operations on spatial data. These functions can be
grouped into several major categories according to the type of operation they perform:

• Functions that create geometries in various formats (WKT, WKB, internal)

• Functions that convert geometries between formats

• Functions that access qualitative or quantitative properties of a geometry

• Functions that describe relations between two geometries

• Functions that create new geometries from existing ones

For general background about MySQL support for using spatial data, see Section 11.5, “Extensions for
Spatial Data”.

12.15.1 Spatial Function Reference

The following table lists each spatial function and provides a short description of each one.

Table 12.19 Spatial Functions

Name Description

Area() Return Polygon or MultiPolygon area

AsBinary(), AsWKB() Convert from internal geometry format to WKB

AsText(), AsWKT() Convert from internal geometry format to WKT

Centroid() Return centroid as a point

Contains() Whether MBR of one geometry contains MBR of another

Crosses() Whether one geometry crosses another

Dimension() Dimension of geometry

Disjoint() Whether MBRs of two geometries are disjoint

EndPoint() End Point of LineString

Envelope() Return MBR of geometry

Equals() Whether MBRs of two geometries are equal

ExteriorRing() Return exterior ring of Polygon

GeomCollFromText(),
GeometryCollectionFromText()

Return geometry collection from WKT

GeomCollFromWKB(),
GeometryCollectionFromWKB()

Return geometry collection from WKB

GeometryCollection() Construct geometry collection from geometries

GeometryN() Return N-th geometry from geometry collection

GeometryType() Return name of geometry type

GeomFromText(),
GeometryFromText()

Return geometry from WKT

GeomFromWKB(),
GeometryFromWKB()

Return geometry from WKB

GLength() Return length of LineString



Spatial Function Reference

1258

Name Description

InteriorRingN() Return N-th interior ring of Polygon

Intersects() Whether MBRs of two geometries intersect

IsClosed() Whether a geometry is closed and simple

IsEmpty() Placeholder function

IsSimple() Whether a geometry is simple

LineFromText(),
LineStringFromText()

Construct LineString from WKT

LineFromWKB(),
LineStringFromWKB()

Construct LineString from WKB

LineString() Construct LineString from Point values

MBRContains() Whether MBR of one geometry contains MBR of another

MBRDisjoint() Whether MBRs of two geometries are disjoint

MBREqual() Whether MBRs of two geometries are equal

MBRIntersects() Whether MBRs of two geometries intersect

MBROverlaps() Whether MBRs of two geometries overlap

MBRTouches() Whether MBRs of two geometries touch

MBRWithin() Whether MBR of one geometry is within MBR of another

MLineFromText(),
MultiLineStringFromText()

Construct MultiLineString from WKT

MLineFromWKB(),
MultiLineStringFromWKB()

Construct MultiLineString from WKB

MPointFromText(),
MultiPointFromText()

Construct MultiPoint from WKT

MPointFromWKB(),
MultiPointFromWKB()

Construct MultiPoint from WKB

MPolyFromText(),
MultiPolygonFromText()

Construct MultiPolygon from WKT

MPolyFromWKB(),
MultiPolygonFromWKB()

Construct MultiPolygon from WKB

MultiLineString() Contruct MultiLineString from LineString values

MultiPoint() Construct MultiPoint from Point values

MultiPolygon() Construct MultiPolygon from Polygon values

NumGeometries() Return number of geometries in geometry collection

NumInteriorRings() Return number of interior rings in Polygon

NumPoints() Return number of points in LineString

Overlaps() Whether MBRs of two geometries overlap

Point() Construct Point from coordinates

PointFromText() Construct Point from WKT

PointFromWKB() Construct Point from WKB

PointN() Return N-th point from LineString

PolyFromText(),
PolygonFromText()

Construct Polygon from WKT

PolyFromWKB(),
PolygonFromWKB()

Construct Polygon from WKB



Argument Handling by Spatial Functions

1259

Name Description

Polygon() Construct Polygon from LineString arguments

SRID() Return spatial reference system ID for geometry

StartPoint() Start Point of LineString

Touches() Whether one geometry touches another

Within() Whether MBR of one geometry is within MBR of another

X() Return X coordinate of Point

Y() Return Y coordinate of Point

12.15.2 Argument Handling by Spatial Functions

Spatial values, or geometries, have the properties described at Section 11.5.2.2, “Geometry Class”.
The following discussion lists general spatial function argument-handling characteristics. Specific
functions or groups of functions may have additional argument-handling characteristics, as discussed
in the sections where those function descriptions occur.

Spatial functions are defined only for valid geometry values. If an invalid geometry is passed to a
spatial function, the result is undefined.

The spatial reference identifier (SRID) of a geometry identifies the coordinate space in which the
geometry is defined. In MySQL, the SRID value is an integer associated with the geometry value. The
maximum usable SRID value is 232−1. If a larger value is given, only the lower 32 bits are used.

Geometry values produced by any spatial function inherit the SRID of the geometry arguments.

12.15.3 Functions That Create Geometry Values from WKT Values

These functions take as arguments a Well-Known Text (WKT) representation and, optionally, a spatial
reference system identifier (SRID). They return the corresponding geometry.

GeomFromText() accepts a WKT value of any geometry type as its first argument. Other functions
provide type-specific construction functions for construction of geometry values of each geometry type.

For a description of WKT format, see Well-Known Text (WKT) Format.

•   GeomCollFromText(wkt[, srid]), GeometryCollectionFromText(wkt[, srid])

Constructs a GeometryCollection value using its WKT representation and SRID.

•   GeomFromText(wkt[, srid]), GeometryFromText(wkt[, srid])

Constructs a geometry value of any type using its WKT representation and SRID.

•   LineFromText(wkt[, srid]), LineStringFromText(wkt[, srid])

Constructs a LineString value using its WKT representation and SRID.

•   MLineFromText(wkt[, srid]), MultiLineStringFromText(wkt[, srid])

Constructs a MultiLineString value using its WKT representation and SRID.

•   MPointFromText(wkt[, srid]), MultiPointFromText(wkt[, srid])

Constructs a MultiPoint value using its WKT representation and SRID.

•   MPolyFromText(wkt[, srid]), MultiPolygonFromText(wkt[, srid])

Constructs a MultiPolygon value using its WKT representation and SRID.



Functions That Create Geometry Values from WKB Values

1260

•  PointFromText(wkt[, srid])

Constructs a Point value using its WKT representation and SRID.

•   PolyFromText(wkt[, srid]), PolygonFromText(wkt[, srid])

Constructs a Polygon value using its WKT representation and SRID.

12.15.4 Functions That Create Geometry Values from WKB Values

These functions take as arguments a BLOB containing a Well-Known Binary (WKB) representation and,
optionally, a spatial reference system identifier (SRID). They return the corresponding geometry.

GeomFromWKB() accepts a WKB value of any geometry type as its first argument. Other functions
provide type-specific construction functions for construction of geometry values of each geometry type.

These functions also accept geometry objects as returned by the functions in Section 12.15.5,
“MySQL-Specific Functions That Create Geometry Values”. Thus, those functions may be used to
provide the first argument to the functions in this section.

For a description of WKB format, see Well-Known Binary (WKB) Format.

•   GeomCollFromWKB(wkb[, srid]), GeometryCollectionFromWKB(wkb[, srid])

Constructs a GeometryCollection value using its WKB representation and SRID.

•   GeomFromWKB(wkb[, srid]), GeometryFromWKB(wkb[, srid])

Constructs a geometry value of any type using its WKB representation and SRID.

•   LineFromWKB(wkb[, srid]), LineStringFromWKB(wkb[, srid])

Constructs a LineString value using its WKB representation and SRID.

•   MLineFromWKB(wkb[, srid]), MultiLineStringFromWKB(wkb[, srid])

Constructs a MultiLineString value using its WKB representation and SRID.

•   MPointFromWKB(wkb[, srid]), MultiPointFromWKB(wkb[, srid])

Constructs a MultiPoint value using its WKB representation and SRID.

•   MPolyFromWKB(wkb[, srid]), MultiPolygonFromWKB(wkb[, srid])

Constructs a MultiPolygon value using its WKB representation and SRID.

•  PointFromWKB(wkb[, srid])

Constructs a Point value using its WKB representation and SRID.

•   PolyFromWKB(wkb[, srid]), PolygonFromWKB(wkb[, srid])

Constructs a Polygon value using its WKB representation and SRID.

12.15.5 MySQL-Specific Functions That Create Geometry Values

MySQL provides a set of useful nonstandard functions for creating geometry values. The functions
described in this section are MySQL extensions to the OpenGIS specification.

These functions produce geometry objects from either WKB values or geometry objects as arguments.
If any argument is not a proper WKB or geometry representation of the proper object type, the return
value is NULL.



Geometry Format Conversion Functions

1261

For example, you can insert the geometry return value from Point() directly into a POINT column:

INSERT INTO t1 (pt_col) VALUES(Point(1,2));

•  GeometryCollection(g1, g2, ...)

Constructs a GeometryCollection.

If the argument contains a nonsupported geometry, the return value is NULL.

•  LineString(pt1, pt2, ...)

Constructs a LineString value from a number of Point or WKB Point arguments. If the number
of arguments is less than two, the return value is NULL.

•  MultiLineString(ls1, ls2, ...)

Constructs a MultiLineString value using LineString or WKB LineString arguments.

•  MultiPoint(pt1, pt2, ...)

Constructs a MultiPoint value using Point or WKB Point arguments.

•  MultiPolygon(poly1, poly2, ...)

Constructs a MultiPolygon value from a set of Polygon or WKB Polygon arguments.

•  Point(x, y)

Constructs a Point using its coordinates.

•  Polygon(ls1, ls2, ...)

Constructs a Polygon value from a number of LineString or WKB LineString arguments. If
any argument does not represent a LinearRing (that is, not a closed and simple LineString),
the return value is NULL.

12.15.6 Geometry Format Conversion Functions

MySQL supports the functions listed in this section for converting geometry values from internal
geometry format to WKT or WKB format.

There are also functions to convert a string from WKT or WKB format to internal geometry format. See
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”, and Section 12.15.4,
“Functions That Create Geometry Values from WKB Values”.

• AsBinary(g), AsWKB(g)

Converts a value in internal geometry format to its WKB representation and returns the binary result.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.

SELECT AsBinary(g) FROM geom;

• AsText(g), AsWKT(g)

Converts a value in internal geometry format to its WKT representation and returns the string result.

The result is NULL if the geometry argument is NULL or not a syntactically well-formed geometry.



Geometry Property Functions

1262

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(GeomFromText(@g));
+--------------------------+
| AsText(GeomFromText(@g)) |
+--------------------------+
| LINESTRING(1 1,2 2,3 3)  |
+--------------------------+

12.15.7 Geometry Property Functions

Each function that belongs to this group takes a geometry value as its argument and returns some
quantitative or qualitative property of the geometry. Some functions restrict their argument type. Such
functions return NULL if the argument is of an incorrect geometry type. For example, the Area()
polygon function returns NULL if the object type is neither Polygon nor MultiPolygon.

12.15.7.1 General Geometry Property Functions

The functions listed in this section do not restrict their argument and accept a geometry value of any
type.

• Dimension(g)

Returns the inherent dimension of the geometry value g. The result can be −1, 0, 1, or 2. The
meaning of these values is given in Section 11.5.2.2, “Geometry Class”.

mysql> SELECT Dimension(GeomFromText('LineString(1 1,2 2)'));
+------------------------------------------------+
| Dimension(GeomFromText('LineString(1 1,2 2)')) |
+------------------------------------------------+
|                                              1 |
+------------------------------------------------+

• Envelope(g)

Returns the minimum bounding rectangle (MBR) for the geometry value g. The result is returned as
a Polygon value that is defined by the corner points of the bounding box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

mysql> SELECT AsText(Envelope(GeomFromText('LineString(1 1,2 2)')));
+-------------------------------------------------------+
| AsText(Envelope(GeomFromText('LineString(1 1,2 2)'))) |
+-------------------------------------------------------+
| POLYGON((1 1,2 1,2 2,1 2,1 1))                        |
+-------------------------------------------------------+

• GeometryType(g)

Returns a binary string indicating the name of the geometry type of which the geometry instance g is
a member. The name corresponds to one of the instantiable Geometry subclasses.

mysql> SELECT GeometryType(GeomFromText('POINT(1 1)'));
+------------------------------------------+
| GeometryType(GeomFromText('POINT(1 1)')) |
+------------------------------------------+
| POINT                                    |
+------------------------------------------+

• IsEmpty(g)

This function is a placeholder that returns 0 for any valid geometry value, 1 for any invalid geometry
value or NULL.



Geometry Property Functions

1263

MySQL does not support GIS EMPTY values such as POINT EMPTY.

• IsSimple(g)

In MySQL 5.5, this function is a placeholder that always returns 0.

The description of each instantiable geometric class given earlier in the chapter includes the specific
conditions that cause an instance of that class to be classified as not simple. (See Section 11.5.2.1,
“The Geometry Class Hierarchy”.)

• SRID(g)

Returns an integer indicating the spatial reference system ID associated with the geometry value g.

mysql> SELECT SRID(GeomFromText('LineString(1 1,2 2)',101));
+-----------------------------------------------+
| SRID(GeomFromText('LineString(1 1,2 2)',101)) |
+-----------------------------------------------+
|                                           101 |
+-----------------------------------------------+

12.15.7.2 Point Property Functions

A Point consists of X and Y coordinates, which may be obtained using the following functions:

•  X(p)

Returns the X-coordinate value for the Point object p as a double-precision number.

mysql> SELECT X(Point(56.7, 53.34));
+-----------------------+
| X(Point(56.7, 53.34)) |
+-----------------------+
|                  56.7 |
+-----------------------+

•  Y(p)

Returns the Y-coordinate value for the Point object p as a double-precision number.

mysql> SELECT Y(Point(56.7, 53.34));
+-----------------------+
| Y(Point(56.7, 53.34)) |
+-----------------------+
|                 53.34 |
+-----------------------+

12.15.7.3 LineString and MultiLineString Property Functions

A LineString consists of Point values. You can extract particular points of a LineString, count
the number of points that it contains, or obtain its length.

Some functions in this section also work for MultiLineString values.

•  EndPoint(ls)

Returns the Point that is the endpoint of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(EndPoint(GeomFromText(@ls)));
+-------------------------------------+



Geometry Property Functions

1264

| AsText(EndPoint(GeomFromText(@ls))) |
+-------------------------------------+
| POINT(3 3)                          |
+-------------------------------------+

•  GLength(ls)

Returns a double-precision number indicating the length of the LineString or MultiLineString
value ls in its associated spatial reference. The length of a MultiLineString value is equal to the
sum of the lengths of its elements.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT GLength(GeomFromText(@ls));
+----------------------------+
| GLength(GeomFromText(@ls)) |
+----------------------------+
|         2.8284271247461903 |
+----------------------------+

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT GLength(GeomFromText(@mls));
+-----------------------------+
| GLength(GeomFromText(@mls)) |
+-----------------------------+
|           4.242640687119286 |
+-----------------------------+

GLength() is a nonstandard name. It corresponds to the OpenGIS Length() function. (There is an
existing SQL function Length() that calculates the length of string values.)

•  IsClosed(ls)

For a LineString value ls, IsClosed() returns 1 if ls is closed (that is, its StartPoint() and
EndPoint() values are the same).

For a MultiLineString value ls, IsClosed() returns 1 if ls is closed (that is, the
StartPoint() and EndPoint() values are the same for each LineString in ls).

IsClosed() returns 0 if ls is not closed, and NULL if ls is NULL.

mysql> SET @ls1 = 'LineString(1 1,2 2,3 3,2 2)';
mysql> SET @ls2 = 'LineString(1 1,2 2,3 3,1 1)';

mysql> SELECT IsClosed(GeomFromText(@ls1));
+------------------------------+
| IsClosed(GeomFromText(@ls1)) |
+------------------------------+
|                            0 |
+------------------------------+

mysql> SELECT IsClosed(GeomFromText(@ls2));
+------------------------------+
| IsClosed(GeomFromText(@ls2)) |
+------------------------------+
|                            1 |
+------------------------------+

mysql> SET @ls3 = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';

mysql> SELECT IsClosed(GeomFromText(@ls3));
+------------------------------+
| IsClosed(GeomFromText(@ls3)) |
+------------------------------+
|                            0 |
+------------------------------+

•  NumPoints(ls)



Geometry Property Functions

1265

Returns the number of Point objects in the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT NumPoints(GeomFromText(@ls));
+------------------------------+
| NumPoints(GeomFromText(@ls)) |
+------------------------------+
|                            3 |
+------------------------------+

•  PointN(ls, N)

Returns the N-th Point in the Linestring value ls. Points are numbered beginning with 1.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(PointN(GeomFromText(@ls),2));
+-------------------------------------+
| AsText(PointN(GeomFromText(@ls),2)) |
+-------------------------------------+
| POINT(2 2)                          |
+-------------------------------------+

•  StartPoint(ls)

Returns the Point that is the start point of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(StartPoint(GeomFromText(@ls)));
+---------------------------------------+
| AsText(StartPoint(GeomFromText(@ls))) |
+---------------------------------------+
| POINT(1 1)                            |
+---------------------------------------+

12.15.7.4 Polygon and MultiPolygon Property Functions

These functions return properties of Polygon or MultiPolygon values.

•  Area(poly)

Returns a double-precision number indicating the area of the argument, as measured in its spatial
reference system. For arguments of dimension 0 or 1, the result is 0.

mysql> SET @poly = 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT Area(GeomFromText(@poly));
+---------------------------+
| Area(GeomFromText(@poly)) |
+---------------------------+
|                         4 |
+---------------------------+

mysql> SET @mpoly =
    -> 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';
mysql> SELECT Area(GeomFromText(@mpoly));
+----------------------------+
| Area(GeomFromText(@mpoly)) |
+----------------------------+
|                          8 |
+----------------------------+

•  Centroid(mpoly)

Returns the mathematical centroid for the MultiPolygon value mpoly as a Point. The result is
not guaranteed to be on the MultiPolygon.



Geometry Property Functions

1266

mysql> SET @poly =
    -> GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7,5 5))');
mysql> SELECT GeometryType(@poly),AsText(Centroid(@poly));
+---------------------+--------------------------------------------+
| GeometryType(@poly) | AsText(Centroid(@poly))                    |
+---------------------+--------------------------------------------+
| POLYGON             | POINT(4.958333333333333 4.958333333333333) |
+---------------------+--------------------------------------------+

•  ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString.

mysql> SET @poly =
    -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT AsText(ExteriorRing(GeomFromText(@poly)));
+-------------------------------------------+
| AsText(ExteriorRing(GeomFromText(@poly))) |
+-------------------------------------------+
| LINESTRING(0 0,0 3,3 3,3 0,0 0)           |
+-------------------------------------------+

•  InteriorRingN(poly, N)

Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are numbered
beginning with 1.

mysql> SET @poly =
    -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT AsText(InteriorRingN(GeomFromText(@poly),1));
+----------------------------------------------+
| AsText(InteriorRingN(GeomFromText(@poly),1)) |
+----------------------------------------------+
| LINESTRING(1 1,1 2,2 2,2 1,1 1)              |
+----------------------------------------------+

•  NumInteriorRings(poly)

Returns the number of interior rings in the Polygon value poly.

mysql> SET @poly =
    -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT NumInteriorRings(GeomFromText(@poly));
+---------------------------------------+
| NumInteriorRings(GeomFromText(@poly)) |
+---------------------------------------+
|                                     1 |
+---------------------------------------+

12.15.7.5 GeometryCollection Property Functions

These functions return properties of GeometryCollection values.

•  GeometryN(gc, N)

Returns the N-th geometry in the GeometryCollection value gc. Geometries are numbered
beginning with 1.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT AsText(GeometryN(GeomFromText(@gc),1));
+----------------------------------------+
| AsText(GeometryN(GeomFromText(@gc),1)) |
+----------------------------------------+



Spatial Operator Functions

1267

| POINT(1 1)                             |
+----------------------------------------+

•  NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT NumGeometries(GeomFromText(@gc));
+----------------------------------+
| NumGeometries(GeomFromText(@gc)) |
+----------------------------------+
|                                2 |
+----------------------------------+

12.15.8 Spatial Operator Functions

Section 12.15.7, “Geometry Property Functions”, discusses several functions that construct new
geometries from existing ones. See that section for descriptions of these functions:

• Envelope(g)

• StartPoint(ls)

• EndPoint(ls)

• PointN(ls, N)

• ExteriorRing(poly)

• InteriorRingN(poly, N)

• GeometryN(gc, N)

12.15.9 Functions That Test Spatial Relations Between Geometry Objects

The functions described in this section take two geometries as arguments and return a qualitative or
quantitative relation between them.

MySQL implements two sets of functions using function names defined by the OpenGIS specification.
One set tests the relationship between two geometry values using precise object shapes, the other set
uses object minimum bounding rectangles (MBRs).

There is also a MySQL-specific set of MBR-based functions available to test the relationship between
two geometry values.

12.15.9.1 Spatial Relation Functions That Use Object Shapes

The OpenGIS specification defines the following functions. They test the relationship between two
geometry values g1 and g2, using precise object shapes. The return values 1 and 0 indicate true and
false, respectively.

•  Crosses(g1, g2)

Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2
is a Point or a MultiPoint. Otherwise, returns 0.

The term spatially crosses denotes a spatial relation between two given geometries that has the
following properties:

• The two geometries intersect



Functions That Test Spatial Relations Between Geometry Objects

1268

• Their intersection results in a geometry that has a dimension that is one less than the maximum
dimension of the two given geometries

• Their intersection is not equal to either of the two given geometries

•  Touches(g1, g2)

Returns 1 or 0 to indicate whether g1 spatially touches g2. Two geometries spatially touch if the
interiors of the geometries do not intersect, but the boundary of one of the geometries intersects
either the boundary or the interior of the other.

12.15.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)

The OpenGIS specification defines the following functions that test the relationship between two
geometry values g1 and g2. The MySQL implementation uses minimum bounding rectangles, so these
functions return the same result as the corresponding MBR-based functions. The return values 1 and 0
indicate true and false, respectively.

•  Contains(g1, g2)

Returns 1 or 0 to indicate whether g1 completely contains g2. This tests the opposite relationship as
Within().

•  Disjoint(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.

•  Equals(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

•  Intersects(g1, g2)

Returns 1 or 0 to indicate whether g1 spatially intersects g2.

•  Overlaps(g1, g2)

Returns 1 or 0 to indicate whether g1 spatially overlaps g2. The term spatially overlaps is used if two
geometries intersect and their intersection results in a geometry of the same dimension but not equal
to either of the given geometries.

•  Within(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as
Contains().

12.15.9.3 MySQL-Specific Spatial Relation Functions That Use Minimum Bounding
Rectangles (MBRs)

MySQL provides several MySQL-specific functions that test relations between minimum bounding
rectangles of two geometries g1 and g2. The return values 1 and 0 indicate true and false,
respectively.

•  MBRContains(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 contains the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRWithin().

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRWithin(@g2,@g1);



Aggregate (GROUP BY) Functions

1269

+----------------------+--------------------+
| MBRContains(@g1,@g2) | MBRWithin(@g2,@g1) |
+----------------------+--------------------+
|                    1 |                  1 |
+----------------------+--------------------+

•  MBRDisjoint(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 are disjoint (do not intersect).

•  MBREqual(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 are the same.

•  MBRIntersects(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 intersect.

•  MBROverlaps(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 overlap. The term spatially overlaps is used if two geometries intersect and their intersection
results in a geometry of the same dimension but not equal to either of the given geometries.

•  MBRTouches(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 touch. Two geometries spatially touch if the interiors of the geometries do not intersect, but the
boundary of one of the geometries intersects either the boundary or the interior of the other.

•  MBRWithin(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 is within the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRContains().

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
|                  1 |                  0 |
+--------------------+--------------------+

12.16 Aggregate (GROUP BY) Functions

12.16.1 Aggregate (GROUP BY) Function Descriptions

Table 12.20 Aggregate (GROUP BY) Functions

Name Description

AVG() Return the average value of the argument

BIT_AND() Return bitwise AND

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

COUNT() Return a count of the number of rows returned

COUNT(DISTINCT) Return the count of a number of different values



Aggregate (GROUP BY) Function Descriptions

1270

Name Description

GROUP_CONCAT() Return a concatenated string

MAX() Return the maximum value

MIN() Return the minimum value

STD() Return the population standard deviation

STDDEV() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

SUM() Return the sum

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

This section describes group (aggregate) functions that operate on sets of values. Unless otherwise
stated, group functions ignore NULL values.

If you use a group function in a statement containing no GROUP BY clause, it is equivalent to grouping
on all rows. For more information, see Section 12.16.3, “MySQL Handling of GROUP BY”.

For numeric arguments, the variance and standard deviation functions return a DOUBLE value. The
SUM() and AVG() functions return a DECIMAL value for exact-value arguments (integer or DECIMAL),
and a DOUBLE value for approximate-value arguments (FLOAT or DOUBLE).

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values
to numbers, losing everything after the first nonnumeric character.) To work around this problem,
convert to numeric units, perform the aggregate operation, and convert back to a temporal value.
Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number
if necessary. For SET or ENUM values, the cast operation causes the underlying numeric value to be
used.

The BIT_AND(), BIT_OR(), and BIT_XOR() aggregate functions perform bit operations. They
require BIGINT (64-bit integer) arguments and return BIGINT values. Arguments of other types are
converted to BIGINT and truncation might occur.

•    AVG([DISTINCT] expr)

Returns the average value of expr. The DISTINCT option can be used to return the average of the
distinct values of expr.

If there are no matching rows, AVG() returns NULL.

mysql> SELECT student_name, AVG(test_score)
    ->        FROM student
    ->        GROUP BY student_name;

•  BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

If there are no matching rows, BIT_AND() returns a neutral value (all bits set to 1).



Aggregate (GROUP BY) Function Descriptions

1271

•  BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

If there are no matching rows, BIT_OR() returns a neutral value (all bits set to 0).

•  BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

If there are no matching rows, BIT_XOR() returns a neutral value (all bits set to 0).

•  COUNT(expr)

Returns a count of the number of non-NULL values of expr in the rows retrieved by a SELECT
statement. The result is a BIGINT value.

If there are no matching rows, COUNT() returns 0.

mysql> SELECT student.student_name,COUNT(*)
    ->        FROM student,course
    ->        WHERE student.student_id=course.student_id
    ->        GROUP BY student_name;

COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved, whether or
not they contain NULL values.

For MyISAM tables, COUNT(*) is optimized to return very quickly if the SELECT retrieves from one
table, no other columns are retrieved, and there is no WHERE clause. For example:

mysql> SELECT COUNT(*) FROM student;

This optimization only applies to MyISAM tables, because an exact row count is stored for
this storage engine and can be accessed very quickly. COUNT(1) is only subject to the same
optimization if the first column is defined as NOT NULL.

For transactional storage engines such as InnoDB, storing an exact row count is problematic
because multiple transactions may be occurring, each of which may affect the count. For more
information about how InnoDB handles COUNT(*) operations, see Section 14.11.1.7, “Limits on
InnoDB Tables”.

•   COUNT(DISTINCT expr,[expr...])

Returns a count of the number of rows with different non-NULL expr values.

If there are no matching rows, COUNT(DISTINCT) returns 0.

mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL, you can obtain the number of distinct expression combinations that do not contain
NULL by giving a list of expressions. In standard SQL, you would have to do a concatenation of all
expressions inside COUNT(DISTINCT ...).

•  GROUP_CONCAT(expr)

This function returns a string result with the concatenated non-NULL values from a group. It returns
NULL if there are no non-NULL values. The full syntax is as follows:



Aggregate (GROUP BY) Function Descriptions

1272

GROUP_CONCAT([DISTINCT] expr [,expr ...]
             [ORDER BY {unsigned_integer | col_name | expr}
                 [ASC | DESC] [,col_name ...]]
             [SEPARATOR str_val])

mysql> SELECT student_name,
    ->     GROUP_CONCAT(test_score)
    ->     FROM student
    ->     GROUP BY student_name;

Or:

mysql> SELECT student_name,
    ->     GROUP_CONCAT(DISTINCT test_score
    ->               ORDER BY test_score DESC SEPARATOR ' ')
    ->     FROM student
    ->     GROUP BY student_name;

In MySQL, you can get the concatenated values of expression combinations. To eliminate duplicate
values, use the DISTINCT clause. To sort values in the result, use the ORDER BY clause. To sort
in reverse order, add the DESC (descending) keyword to the name of the column you are sorting by
in the ORDER BY clause. The default is ascending order; this may be specified explicitly using the
ASC keyword. The default separator between values in a group is comma (,). To specify a separator
explicitly, use SEPARATOR followed by the string literal value that should be inserted between group
values. To eliminate the separator altogether, specify SEPARATOR ''.

The result is truncated to the maximum length that is given by the group_concat_max_len system
variable, which has a default value of 1024. The value can be set higher, although the effective
maximum length of the return value is constrained by the value of max_allowed_packet. The
syntax to change the value of group_concat_max_len at runtime is as follows, where val is an
unsigned integer:

SET [GLOBAL | SESSION] group_concat_max_len = val;

The return value is a nonbinary or binary string, depending on whether the arguments are nonbinary
or binary strings. The result type is TEXT or BLOB unless group_concat_max_len is less than or
equal to 512, in which case the result type is VARCHAR or VARBINARY.

See also CONCAT() and CONCAT_WS(): Section 12.5, “String Functions”.

•    MAX([DISTINCT] expr)

Returns the maximum value of expr. MAX() may take a string argument; in such cases, it returns
the maximum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword
can be used to find the maximum of the distinct values of expr, however, this produces the same
result as omitting DISTINCT.

If there are no matching rows, MAX() returns NULL.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
    ->        FROM student
    ->        GROUP BY student_name;

For MAX(), MySQL currently compares ENUM and SET columns by their string value rather than
by the string's relative position in the set. This differs from how ORDER BY compares them. This is
expected to be rectified in a future MySQL release.

•    MIN([DISTINCT] expr)

Returns the minimum value of expr. MIN() may take a string argument; in such cases, it returns the
minimum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can



Aggregate (GROUP BY) Function Descriptions

1273

be used to find the minimum of the distinct values of expr, however, this produces the same result
as omitting DISTINCT.

If there are no matching rows, MIN() returns NULL.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
    ->        FROM student
    ->        GROUP BY student_name;

For MIN(), MySQL currently compares ENUM and SET columns by their string value rather than
by the string's relative position in the set. This differs from how ORDER BY compares them. This is
expected to be rectified in a future MySQL release.

•  STD(expr)

Returns the population standard deviation of expr. This is an extension to standard SQL. The
standard SQL function STDDEV_POP() can be used instead.

If there are no matching rows, STD() returns NULL.

•    STDDEV(expr)

Returns the population standard deviation of expr. This function is provided for compatibility with
Oracle. The standard SQL function STDDEV_POP() can be used instead.

If there are no matching rows, STDDEV() returns NULL.

•  STDDEV_POP(expr)

Returns the population standard deviation of expr (the square root of VAR_POP()). You can also
use STD() or STDDEV(), which are equivalent but not standard SQL.

If there are no matching rows, STDDEV_POP() returns NULL.

•  STDDEV_SAMP(expr)

Returns the sample standard deviation of expr (the square root of VAR_SAMP().

If there are no matching rows, STDDEV_SAMP() returns NULL.

•    SUM([DISTINCT] expr)

Returns the sum of expr. If the return set has no rows, SUM() returns NULL. The DISTINCT
keyword can be used to sum only the distinct values of expr.

If there are no matching rows, SUM() returns NULL.

•  VAR_POP(expr)

Returns the population standard variance of expr. It considers rows as the whole population, not as
a sample, so it has the number of rows as the denominator. You can also use VARIANCE(), which is
equivalent but is not standard SQL.

If there are no matching rows, VAR_POP() returns NULL.

•  VAR_SAMP(expr)

Returns the sample variance of expr. That is, the denominator is the number of rows minus one.

If there are no matching rows, VAR_SAMP() returns NULL.

•  VARIANCE(expr)



GROUP BY Modifiers

1274

Returns the population standard variance of expr. This is an extension to standard SQL. The
standard SQL function VAR_POP() can be used instead.

If there are no matching rows, VARIANCE() returns NULL.

12.16.2 GROUP BY Modifiers

The GROUP BY clause permits a WITH ROLLUP modifier that causes summary output to include extra
rows that represent higher-level (that is, super-aggregate) summary operations. ROLLUP thus enables
you to answer questions at multiple levels of analysis with a single query. For example, ROLLUP can be
used to provide support for OLAP (Online Analytical Processing) operations.

Suppose that a sales table has year, country, product, and profit columns for recording sales
profitability:

CREATE TABLE sales
(
    year    INT,
    country VARCHAR(20),
    product VARCHAR(32),
    profit  INT
);

To summarize table contents per year, use a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) AS profit
       FROM sales
       GROUP BY year ASC;
+------+--------+
| year | profit |
+------+--------+
| 2000 |   4525 |
| 2001 |   3010 |
+------+--------+

The output shows the total profit for each year. To also determine the total profit summed over all
years, you must add up the individual values yourself or run an additional query. Or you can use
ROLLUP, which provides both levels of analysis with a single query. Adding a WITH ROLLUP modifier to
the GROUP BY clause causes the query to produce another row that shows the grand total over all year
values:

mysql> SELECT year, SUM(profit) AS profit
       FROM sales
       GROUP BY year ASC WITH ROLLUP;
+------+--------+
| year | profit |
+------+--------+
| 2000 |   4525 |
| 2001 |   3010 |
| NULL |   7535 |
+------+--------+

The NULL value in the year column identifies the grand total super-aggregate line.

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each
time there is a change in value in any but the last grouping column, the query produces an extra super-
aggregate summary row.

For example, without ROLLUP, a summary of the sales table based on year, country, and product
might look like this, where the output indicates summary values only at the year/country/product level of
analysis:



GROUP BY Modifiers

1275

mysql> SELECT year, country, product, SUM(profit) AS profit
       FROM sales
       GROUP BY year ASC, country ASC, product ASC;
+------+---------+------------+--------+
| year | country | product    | profit |
+------+---------+------------+--------+
| 2000 | Finland | Computer   |   1500 |
| 2000 | Finland | Phone      |    100 |
| 2000 | India   | Calculator |    150 |
| 2000 | India   | Computer   |   1200 |
| 2000 | USA     | Calculator |     75 |
| 2000 | USA     | Computer   |   1500 |
| 2001 | Finland | Phone      |     10 |
| 2001 | USA     | Calculator |     50 |
| 2001 | USA     | Computer   |   2700 |
| 2001 | USA     | TV         |    250 |
+------+---------+------------+--------+

With ROLLUP added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit) AS profit
       FROM sales
       GROUP BY year ASC, country ASC, product ASC WITH ROLLUP;
+------+---------+------------+--------+
| year | country | product    | profit |
+------+---------+------------+--------+
| 2000 | Finland | Computer   |   1500 |
| 2000 | Finland | Phone      |    100 |
| 2000 | Finland | NULL       |   1600 |
| 2000 | India   | Calculator |    150 |
| 2000 | India   | Computer   |   1200 |
| 2000 | India   | NULL       |   1350 |
| 2000 | USA     | Calculator |     75 |
| 2000 | USA     | Computer   |   1500 |
| 2000 | USA     | NULL       |   1575 |
| 2000 | NULL    | NULL       |   4525 |
| 2001 | Finland | Phone      |     10 |
| 2001 | Finland | NULL       |     10 |
| 2001 | USA     | Calculator |     50 |
| 2001 | USA     | Computer   |   2700 |
| 2001 | USA     | TV         |    250 |
| 2001 | USA     | NULL       |   3000 |
| 2001 | NULL    | NULL       |   3010 |
| NULL | NULL    | NULL       |   7535 |
+------+---------+------------+--------+

Now the output includes summary information at four levels of analysis, not just one:

• Following each set of product rows for a given year and country, an extra summary row appears
showing the total for all products. These rows have the product column set to NULL.

• Following each set of rows for a given year, an extra summary row appears showing the total for all
countries and products. These rows have the country and products columns set to NULL.

• Finally, following all other rows, an extra summary row appears showing the grand total for all years,
countries, and products. This row has the year, country, and products columns set to NULL.

Other Considerations When using ROLLUP

The following discussion lists some behaviors specific to the MySQL implementation of ROLLUP.

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other words,
ROLLUP and ORDER BY are mutually exclusive in MySQL. However, you still have some control over
sort order. GROUP BY in MySQL implicitly sorts results by default (in the absence of ASC or DESC
designators). However, implicit GROUP BY sorting in MySQL is deprecated. To achieve a specific sort
order of grouped results:



GROUP BY Modifiers

1276

• Use explicit ASC and DESC keywords with columns named in the GROUP BY list to specify sort order
for individual columns. In this case, the super-aggregate summary rows added by ROLLUP still
appear after the rows from which they are calculated, regardless of the sort order.

• To work around the restriction that prevents using ROLLUP with ORDER BY, generate the grouped
result set as a derived table and apply ORDER BY to it. For example:

SELECT * FROM
(SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP) AS dt
ORDER BY year;

In this case, the super-aggregate summary rows sort with the rows from which they are calculated,
and their placement depends on sort order (at the beginning for ascending sort, at the end for
descending sort).

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after
ROLLUP, so the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit) AS profit
       FROM sales
       GROUP BY year ASC, country ASC, product ASC WITH ROLLUP
       LIMIT 5;
+------+---------+------------+--------+
| year | country | product    | profit |
+------+---------+------------+--------+
| 2000 | Finland | Computer   |   1500 |
| 2000 | Finland | Phone      |    100 |
| 2000 | Finland | NULL       |   1600 |
| 2000 | India   | Calculator |    150 |
| 2000 | India   | Computer   |   1200 |
+------+---------+------------+--------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because there is less
context for understanding the super-aggregate rows.

The NULL indicators in each super-aggregate row are produced when the row is sent to the client.
The server looks at the columns named in the GROUP BY clause following the leftmost one that has
changed value. For any column in the result set with a name that matches any of those names, its
value is set to NULL. (If you specify grouping columns by column position, the server identifies which
columns to set to NULL by position.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a late
stage in query processing, you can test them as NULL values only in the select list or HAVING clause.
You cannot test them as NULL values in join conditions or the WHERE clause to determine which rows
to select. For example, you cannot add WHERE product IS NULL to the query to eliminate from the
output all but the super-aggregate rows.

The NULL values do appear as NULL on the client side and can be tested as such using any MySQL
client programming interface. However, at this point, you cannot distinguish whether a NULL represents
a regular grouped value or a super-aggregate value.

A MySQL extension permits a column that does not appear in the GROUP BY list to be named in
the select list. (For information about nonaggregated columns and GROUP BY, see Section 12.16.3,
“MySQL Handling of GROUP BY”.) In this case, the server is free to choose any value from this
nonaggregated column in summary rows, and this includes the extra rows added by WITH ROLLUP.
For example, in the following query, country is a nonaggregated column that does not appear in the
GROUP BY list and values chosen for this column are indeterminate:

mysql> SELECT year, country, SUM(profit) AS profit
       FROM sales
       GROUP BY year ASC WITH ROLLUP;
+------+---------+--------+



MySQL Handling of GROUP BY

1277

| year | country | profit |
+------+---------+--------+
| 2000 | India   |   4525 |
| 2001 | USA     |   3010 |
| NULL | USA     |   7535 |
+------+---------+--------+

This behavior is permitted when the ONLY_FULL_GROUP_BY SQL mode is not enabled. If that mode is
enabled, the server rejects the query as illegal because country is not listed in the GROUP BY clause.

12.16.3 MySQL Handling of GROUP BY

In standard SQL, a query that includes a GROUP BY clause cannot refer to nonaggregated columns in
the select list that are not named in the GROUP BY clause. For example, this query is illegal in standard
SQL because the nonaggregated name column in the select list does not appear in the GROUP BY:

SELECT o.custid, c.name, MAX(o.payment)
  FROM orders AS o, customers AS c
  WHERE o.custid = c.custid
  GROUP BY o.custid;

For the query to be legal, the name column must be omitted from the select list or named in the GROUP
BY clause.

MySQL extends the standard SQL use of GROUP BY so that the select list can refer to nonaggregated
columns not named in the GROUP BY clause. This means that the preceding query is legal in MySQL.
You can use this feature to get better performance by avoiding unnecessary column sorting and
grouping. However, this is useful primarily when all values in each nonaggregated column not named in
the GROUP BY are the same for each group. The server is free to choose any value from each group,
so unless they are the same, the values chosen are indeterminate. Furthermore, the selection of values
from each group cannot be influenced by adding an ORDER BY clause. Result set sorting occurs after
values have been chosen, and ORDER BY does not affect which values within each group the server
chooses.

A similar MySQL extension applies to the HAVING clause. In standard SQL, a query cannot refer to
nonaggregated columns in the HAVING clause that are not named in the GROUP BY clause. To simplify
calculations, a MySQL extension permits references to such columns. This extension assumes that the
nongrouped columns have the same group-wise values. Otherwise, the result is indeterminate.

To disable the MySQL GROUP BY extension and enable standard SQL behavior, enable the
ONLY_FULL_GROUP_BY SQL mode. In this case, columns not named in the GROUP BY clause cannot
be used in the select list or HAVING clause unless enclosed in an aggregate function.

The select list extension also applies to ORDER BY. That is, you can refer to nonaggregated columns in
the ORDER BY clause that do not appear in the GROUP BY clause. (However, as mentioned previously,
ORDER BY does not affect which values are chosen from nonaggregated columns; it only sorts them
after they have been chosen.) This extension does not apply if the ONLY_FULL_GROUP_BY SQL mode
is enabled.

If a query has aggregate functions and no GROUP BY clause, it cannot have nonaggregated columns in
the select list, HAVING condition, or ORDER BY list with ONLY_FULL_GROUP_BY enabled:

mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...)
with no GROUP columns is illegal if there is no GROUP BY clause

Without GROUP BY, there is a single group and it is indeterminate which name value to choose for the
group.

Another MySQL extension to standard SQL permits references in the HAVING clause to aliased
expressions in the select list. Enabling ONLY_FULL_GROUP_BY prevents this. For example, the



Miscellaneous Functions

1278

following query returns name values that occur only once in table orders; the query is accepted
regardless of whether ONLY_FULL_GROUP_BY is enabled:

SELECT name, COUNT(name) FROM orders
  GROUP BY name
  HAVING COUNT(name) = 1;

The following query is accepted only if ONLY_FULL_GROUP_BY is disabled.

SELECT name, COUNT(name) AS c FROM orders
  GROUP BY name
  HAVING c = 1;

If you are trying to follow standard SQL, you can use only column expressions in GROUP BY clauses.
As a workaround, use an alias for the expression:

SELECT id, FLOOR(value/100) AS val
  FROM tbl_name
  GROUP BY id, val;

MySQL permits noncolumn expressions in GROUP BY clauses, so the alias is unnecessary:

SELECT id, FLOOR(value/100)
  FROM tbl_name
  GROUP BY id, FLOOR(value/100);

12.17 Miscellaneous Functions
Table 12.21 Miscellaneous Functions

Name Description

DEFAULT() Return the default value for a table column

GET_LOCK() Get a named lock

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

IS_FREE_LOCK() Whether the named lock is free

IS_USED_LOCK() Whether the named lock is in use; return connection
identifier if true

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to
the specified position

NAME_CONST() Causes the column to have the given name

RAND() Return a random floating-point value

RELEASE_LOCK() Releases the named lock

SLEEP() Sleep for a number of seconds

UUID() Return a Universal Unique Identifier (UUID)

UUID_SHORT() Return an integer-valued universal identifier

VALUES() Defines the values to be used during an INSERT

•  DEFAULT(col_name)

Returns the default value for a table column. An error results if the column has no default value.

mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;



Miscellaneous Functions

1279

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. For details, see Section 12.5, “String Functions”.

•   GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, using a timeout of timeout seconds.
Before MySQL 5.5.8, a negative timeout value means infinite timeout on Windows. As of 5.5.8, this
behavior applies on all platforms.

Returns 1 if the lock was obtained successfully, 0 if the attempt timed out (for example, because
another client has previously locked the name), or NULL if an error occurred (such as running out of
memory or the thread was killed with mysqladmin kill).

A lock obtained with GET_LOCK() is released explicitly by executing RELEASE_LOCK() or implicitly
when your session terminates (either normally or abnormally).

Locks obtained with GET_LOCK() are not released when transactions commit or roll back.

Important

The behavior of GET_LOCK() changes in MySQL 5.7. In consideration of
future upgrades, limit the str value to 64 characters or less and do not rely
on subsequent calls to GET_LOCK() releasing previous locks.

GET_LOCK() can be used to implement application locks or to simulate record locks. Names are
locked on a server-wide basis. If a name has been locked within one session, GET_LOCK() blocks
any request by another session for a lock with the same name. This enables clients that agree on a
given lock name to use the name to perform cooperative advisory locking. But be aware that it also
enables a client that is not among the set of cooperating clients to lock a name, either inadvertently
or deliberately, and thus prevent any of the cooperating clients from locking that name. One way to
reduce the likelihood of this is to use lock names that are database-specific or application-specific.
For example, use lock names of the form db_name.str or app_name.str.

mysql> SELECT GET_LOCK('lock1',10);
        -> 1
mysql> SELECT IS_FREE_LOCK('lock2');
        -> 1
mysql> SELECT GET_LOCK('lock2',10);
        -> 1
mysql> SELECT RELEASE_LOCK('lock2');
        -> 1
mysql> SELECT RELEASE_LOCK('lock1');
        -> NULL

The second RELEASE_LOCK() call returns NULL because the lock 'lock1' was automatically
released by the second GET_LOCK() call.

If multiple clients are waiting for a lock, the order in which they will acquire it is undefined.
Applications should not assume that clients will acquire the lock in the same order that they issued
the lock requests.

Note

Before MySQL 5.5.3, if a client attempts to acquire a lock that is already held
by another client, it blocks according to the timeout argument. If the blocked
client terminates, its thread does not die until the lock request times out.

GET_LOCK() is unsafe for statement-based replication. Beginning with MySQL 5.5.1, a warning is
logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)



Miscellaneous Functions

1280

•  INET_ATON(expr)

Given the dotted-quad representation of an IPv4 network address as a string, returns an integer
that represents the numeric value of the address in network byte order (big endian). INET_ATON()
returns NULL if it does not understand its argument.

mysql> SELECT INET_ATON('10.0.5.9');
        -> 167773449

For this example, the return value is calculated as 10×2563 + 0×2562 + 5×256 + 9.

INET_ATON() may or may not return a non-NULL result for short-form IP addresses (such as
'127.1' as a representation of '127.0.0.1'). Because of this, INET_ATON()a should not be
used for such addresses.

Note

To store values generated by INET_ATON(), use an INT UNSIGNED
column rather than INT, which is signed. If you use a signed column, values
corresponding to IP addresses for which the first octet is greater than 127
cannot be stored correctly. See Section 11.2.6, “Out-of-Range and Overflow
Handling”.

•  INET_NTOA(expr)

Given a numeric IPv4 network address in network byte order, returns the dotted-quad representation
of the address as a string. INET_NTOA() returns NULL if it does not understand its argument.

As of MySQL 5.5.3, the return value is a nonbinary string in the connection character set. Before
5.5.3, the return value is a binary string.

mysql> SELECT INET_NTOA(167773449);
        -> '10.0.5.9'

•  IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free
(no one is using the lock), 0 if the lock is in use, and NULL if an error occurs (such as an incorrect
argument).

This function is unsafe for statement-based replication. Beginning with MySQL 5.5.1, a warning is
logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)

•  IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the connection
identifier of the client session that holds the lock. Otherwise, it returns NULL.

This function is unsafe for statement-based replication. Beginning with MySQL 5.5.1, a warning is
logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)

•  MASTER_POS_WAIT(log_name,log_pos[,timeout])

This function is useful for control of master/slave synchronization. It blocks until the slave has read
and applied all updates up to the specified position in the master log. The return value is the number
of log events the slave had to wait for to advance to the specified position. The function returns NULL
if the slave SQL thread is not started, the slave's master information is not initialized, the arguments
are incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the slave SQL
thread stops while MASTER_POS_WAIT() is waiting, the function returns NULL. If the slave is past
the specified position, the function returns immediately.



Miscellaneous Functions

1281

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have
elapsed. timeout must be greater than 0; a zero or negative timeout means no timeout. The lock
is exclusive. While held by one session, other sessions cannot obtain a lock of the same name.

This function is unsafe for statement-based replication. Beginning with MySQL 5.5.1, a warning is
logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)

•  NAME_CONST(name,value)

Returns the given value. When used to produce a result set column, NAME_CONST() causes the
column to have the given name. The arguments should be constants.

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
|     14 |
+--------+

This function is for internal use only. The server uses it when writing statements from stored
programs that contain references to local program variables, as described in Section 20.7, “Binary
Logging of Stored Programs”, You might see this function in the output from mysqlbinlog.

For your applications, you can obtain exactly the same result as in the example just shown by using
simple aliasing, like this:

mysql> SELECT 14 AS myname;
+--------+
| myname |
+--------+
|     14 |
+--------+
1 row in set (0.00 sec)

See Section 13.2.9, “SELECT Syntax”, for more information about column aliases.

•  RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the
lock was released, 0 if the lock was not established by this thread (in which case the lock is not
released), and NULL if the named lock did not exist. The lock does not exist if it was never obtained
by a call to GET_LOCK() or if it has previously been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 13.2.3, “DO Syntax”.

This function is unsafe for statement-based replication. Beginning with MySQL 5.5.1, a warning is
logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)

•  SLEEP(duration)

Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. If
SLEEP() is interrupted, it returns 1. The duration may have a fractional part.

When sleep returns normally (without interruption), it returns 0:

mysql> SELECT SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
|           0 |
+-------------+



Miscellaneous Functions

1282

When SLEEP() is the only thing invoked by a query that is interrupted, it returns 1 and the query
itself returns no error. This statement is interrupted using KILL QUERY from another session:

mysql> SELECT SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
|           1 |
+-------------+

When SLEEP() is only part of a query that is interrupted, the query returns an error. This statement
is interrupted using KILL QUERY from another session:

mysql> SELECT 1 FROM t1 WHERE SLEEP(1000);
ERROR 1317 (70100): Query execution was interrupted

This function is unsafe for statement-based replication. Beginning with MySQL 5.5.1, a warning is
logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)

•  UUID()

Returns a Universal Unique Identifier (UUID) generated according to RFC 4122, “A Universally
Unique IDentifier (UUID) URN Namespace” (http://www.ietf.org/rfc/rfc4122.txt).

A UUID is designed as a number that is globally unique in space and time. Two calls to UUID() are
expected to generate two different values, even if these calls are performed on two separate devices
not connected to each other.

Warning

Although UUID() values are intended to be unique, they are not necessarily
unguessable or unpredictable. If unpredictability is required, UUID values
should be generated some other way.

UUID() returns a value that conforms to UUID version 1 as described in RFC 4122. The value is
a 128-bit number represented as a utf8 string of five hexadecimal numbers in aaaaaaaa-bbbb-
cccc-dddd-eeeeeeeeeeee format:

• The first three numbers are generated from the low, middle, and high parts of a timestamp. The
high part also includes the UUID version number.

• The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity
(for example, due to daylight saving time).

• The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number
is substituted if the latter is not available (for example, because the host device has no Ethernet
card, or it is unknown how to find the hardware address of an interface on the host operating
system). In this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should
have very low probability.

The MAC address of an interface is taken into account only on FreeBSD and Linux. On other
operating systems, MySQL uses a randomly generated 48-bit number.

mysql> SELECT UUID();
        -> '6ccd780c-baba-1026-9564-5b8c656024db'

Note

UUID() does not work with statement-based replication.

http://www.ietf.org/rfc/rfc4122.txt


Precision Math

1283

•  UUID_SHORT()

Returns a “short” universal identifier as a 64-bit unsigned integer. Values returned by
UUID_SHORT() differ from the string-format 128-bit identifiers returned by the UUID() function and
have different uniqueness properties. The value of UUID_SHORT() is guaranteed to be unique if the
following conditions hold:

• The server_id value of the current server is between 0 and 255 and is unique among your set of
master and slave servers

• You do not set back the system time for your server host between mysqld restarts

• You invoke UUID_SHORT() on average fewer than 16 million times per second between mysqld
restarts

The UUID_SHORT() return value is constructed this way:

  (server_id & 255) << 56
+ (server_startup_time_in_seconds << 24)
+ incremented_variable++;

mysql> SELECT UUID_SHORT();
        -> 92395783831158784

Note

UUID_SHORT() does not work with statement-based replication.

•  VALUES(col_name)

In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the
VALUES(col_name) function in the UPDATE clause to refer to column values from the INSERT
portion of the statement. In other words, VALUES(col_name) in the UPDATE clause refers to the
value of col_name that would be inserted, had no duplicate-key conflict occurred. This function
is especially useful in multiple-row inserts. The VALUES() function is meaningful only in the
ON DUPLICATE KEY UPDATE clause of INSERT statements and returns NULL otherwise. See
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
    -> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

12.18 Precision Math
MySQL provides support for precision math: numeric value handling that results in extremely accurate
results and a high degree control over invalid values. Precision math is based on these two features:

• SQL modes that control how strict the server is about accepting or rejecting invalid data.

• The MySQL library for fixed-point arithmetic.

These features have several implications for numeric operations and provide a high degree of
compliance with standard SQL:

• Precise calculations: For exact-value numbers, calculations do not introduce floating-point errors.
Instead, exact precision is used. For example, MySQL treats a number such as .0001 as an exact
value rather than as an approximation, and summing it 10,000 times produces a result of exactly 1,
not a value that is merely “close” to 1.

• Well-defined rounding behavior: For exact-value numbers, the result of ROUND() depends on its
argument, not on environmental factors such as how the underlying C library works.



Types of Numeric Values

1284

• Platform independence: Operations on exact numeric values are the same across different
platforms such as Windows and Unix.

• Control over handling of invalid values: Overflow and division by zero are detectable and can be
treated as errors. For example, you can treat a value that is too large for a column as an error rather
than having the value truncated to lie within the range of the column's data type. Similarly, you can
treat division by zero as an error rather than as an operation that produces a result of NULL. The
choice of which approach to take is determined by the setting of the server SQL mode.

The following discussion covers several aspects of how precision math works, including possible
incompatibilities with older applications. At the end, some examples are given that demonstrate how
MySQL handles numeric operations precisely. For information about controlling the SQL mode, see
Section 5.1.8, “Server SQL Modes”.

12.18.1 Types of Numeric Values

The scope of precision math for exact-value operations includes the exact-value data types (integer
and DECIMAL types) and exact-value numeric literals. Approximate-value data types and numeric
literals are handled as floating-point numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed.
Examples: 1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-
point) number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In
MySQL, types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

12.18.2 DECIMAL Data Type Characteristics

This section discusses the characteristics of the DECIMAL data type (and its synonyms), with particular
regard to the following topics:

• Maximum number of digits

• Storage format

• Storage requirements

• The nonstandard MySQL extension to the upper range of DECIMAL columns

Possible incompatibilities with applications that are written for older versions of MySQL (prior to 5.0.3)
are noted throughout this section.

The declaration syntax for a DECIMAL column is DECIMAL(M,D). The ranges of values for the
arguments are as follows:

• M is the maximum number of digits (the precision). It has a range of 1 to 65. (Older versions of
MySQL permitted a range of 1 to 254.)

• D is the number of digits to the right of the decimal point (the scale). It has a range of 0 to 30 and
must be no larger than M.

The maximum value of 65 for M means that calculations on DECIMAL values are accurate up to 65
digits. This limit of 65 digits of precision also applies to exact-value numeric literals, so the maximum



Expression Handling

1285

range of such literals differs from before. (In older versions of MySQL, decimal values could have up
to 254 digits. However, calculations were done using floating-point and thus were approximate, not
exact.)

Values for DECIMAL columns are stored using a binary format that packs nine decimal digits into 4
bytes. The storage requirements for the integer and fractional parts of each value are determined
separately. Each multiple of nine digits requires 4 bytes, and any remaining digits left over require
some fraction of 4 bytes. The storage required for remaining digits is given by the following table.

Leftover Digits Number of Bytes

0 0

1–2 1

3–4 2

5–6 3

7–9 4

For example, a DECIMAL(18,9) column has nine digits on either side of the decimal point, so the
integer part and the fractional part each require 4 bytes. A DECIMAL(20,6) column has fourteen
integer digits and six fractional digits. The integer digits require four bytes for nine of the digits and 3
bytes for the remaining five digits. The six fractional digits require 3 bytes.

Unlike some older versions of MySQL, DECIMAL columns in MySQL 5.5 do not store a leading +
character or - character or leading 0 digits. If you insert +0003.1 into a DECIMAL(5,1) column, it is
stored as 3.1. For negative numbers, a literal - character is not stored. Applications that rely on the
older behavior must be modified to account for this change.

DECIMAL columns do not permit values larger than the range implied by the column definition. For
example, a DECIMAL(3,0) column supports a range of -999 to 999. A DECIMAL(M,D) column
permits at most M - D digits to the left of the decimal point. This is not compatible with applications
relying on older versions of MySQL that permitted storing an extra digit in lieu of a + sign.

The SQL standard requires that the precision of NUMERIC(M,D) be exactly M digits. For
DECIMAL(M,D), the standard requires a precision of at least M digits but permits more. In MySQL,
DECIMAL(M,D) and NUMERIC(M,D) are the same, and both have a precision of exactly M digits.

For a full explanation of the internal format of DECIMAL values, see the file strings/decimal.c in a
MySQL source distribution. The format is explained (with an example) in the decimal2bin() function.

For more detailed information about porting applications that rely on the old treatment of the DECIMAL
data type, see the MySQL 5.0 Reference Manual.

12.18.3 Expression Handling

With precision math, exact-value numbers are used as given whenever possible. For example,
numbers in comparisons are used exactly as given without a change in value. In strict SQL mode,
for INSERT into a column with an exact data type (DECIMAL or integer), a number is inserted with its
exact value if it is within the column range. When retrieved, the value should be the same as what was
inserted. (If strict SQL mode is not enabled, truncation for INSERT is permissible.)

Handling of a numeric expression depends on what kind of values the expression contains:

• If any approximate values are present, the expression is approximate and is evaluated using floating-
point arithmetic.

• If no approximate values are present, the expression contains only exact values. If any exact value
contains a fractional part (a value following the decimal point), the expression is evaluated using
DECIMAL exact arithmetic and has a precision of 65 digits. The term “exact” is subject to the limits of



Expression Handling

1286

what can be represented in binary. For example, 1.0/3.0 can be approximated in decimal notation
as .333..., but not written as an exact number, so (1.0/3.0)*3.0 does not evaluate to exactly
1.0.

• Otherwise, the expression contains only integer values. The expression is exact and is evaluated
using integer arithmetic and has a precision the same as BIGINT (64 bits).

If a numeric expression contains any strings, they are converted to double-precision floating-point
values and the expression is approximate.

Inserts into numeric columns are affected by the SQL mode, which is controlled by the sql_mode
system variable. (See Section 5.1.8, “Server SQL Modes”.) The following discussion mentions
strict mode (selected by the STRICT_ALL_TABLES or STRICT_TRANS_TABLES mode values) and
ERROR_FOR_DIVISION_BY_ZERO. To turn on all restrictions, you can simply use TRADITIONAL
mode, which includes both strict mode values and ERROR_FOR_DIVISION_BY_ZERO:

mysql> SET sql_mode='TRADITIONAL';

If a number is inserted into an exact type column (DECIMAL or integer), it is inserted with its exact value
if it is within the column range.

If the value has too many digits in the fractional part, rounding occurs and a warning is generated.
Rounding is done as described in Section 12.18.4, “Rounding Behavior”.

If the value has too many digits in the integer part, it is too large and is handled as follows:

• If strict mode is not enabled, the value is truncated to the nearest legal value and a warning is
generated.

• If strict mode is enabled, an overflow error occurs.

Underflow is not detected, so underflow handling is undefined.

For inserts of strings into numeric columns, conversion from string to number is handled as follows if
the string has nonnumeric contents:

• A string that does not begin with a number cannot be used as a number and produces an error in
strict mode, or a warning otherwise. This includes the empty string.

• A string that begins with a number can be converted, but the trailing nonnumeric portion is truncated.
If the truncated portion contains anything other than spaces, this produces an error in strict mode, or
a warning otherwise.

By default, division by zero produces a result of NULL and no warning. By setting the SQL mode
appropriately, division by zero can be restricted.

With the ERROR_FOR_DIVISION_BY_ZERO SQL mode enabled, MySQL handles division by zero
differently:

• If strict mode is not enabled, a warning occurs.

• If strict mode is enabled, inserts and updates involving division by zero are prohibited, and an error
occurs.

In other words, inserts and updates involving expressions that perform division by zero can be treated
as errors, but this requires ERROR_FOR_DIVISION_BY_ZERO in addition to strict mode.

Suppose that we have this statement:

INSERT INTO t SET i = 1/0;



Rounding Behavior

1287

This is what happens for combinations of strict and ERROR_FOR_DIVISION_BY_ZERO modes.

sql_mode Value Result

'' (Default) No warning, no error; i is set to NULL.

strict No warning, no error; i is set to NULL.

ERROR_FOR_DIVISION_BY_ZERO Warning, no error; i is set to NULL.

strict,ERROR_FOR_DIVISION_BY_ZERO Error condition; no row is inserted.

12.18.4 Rounding Behavior

This section discusses precision math rounding for the ROUND() function and for inserts into columns
with exact-value types (DECIMAL and integer).

The ROUND() function rounds differently depending on whether its argument is exact or approximate:

• For exact-value numbers, ROUND() uses the “round half up” rule: A value with a fractional part of .5
or greater is rounded up to the next integer if positive or down to the next integer if negative. (In other
words, it is rounded away from zero.) A value with a fractional part less than .5 is rounded down to
the next integer if positive or up to the next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this means
that ROUND() uses the “round to nearest even” rule: A value with any fractional part is rounded to the
nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3          |            2 |
+------------+--------------+

For inserts into a DECIMAL or integer column, the target is an exact data type, so rounding uses “round
half away from zero,” regardless of whether the value to be inserted is exact or approximate:

mysql> CREATE TABLE t (d DECIMAL(10,0));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t VALUES(2.5),(2.5E0);
Query OK, 2 rows affected, 2 warnings (0.00 sec)
Records: 2  Duplicates: 0  Warnings: 2

mysql> SELECT d FROM t;
+------+
| d    |
+------+
| 3    |
| 3    |
+------+

12.18.5 Precision Math Examples

This section provides some examples that show precision math query results in MySQL. These
examples demonstrate the principles described in Section 12.18.3, “Expression Handling”, and
Section 12.18.4, “Rounding Behavior”.

Example 1. Numbers are used with their exact value as given when possible:

mysql> SELECT (.1 + .2) = .3;



Precision Math Examples

1288

+----------------+
| (.1 + .2) = .3 |
+----------------+
|              1 |
+----------------+

For floating-point values, results are inexact:

mysql> SELECT (.1E0 + .2E0) = .3E0;
+----------------------+
| (.1E0 + .2E0) = .3E0 |
+----------------------+
|                    0 |
+----------------------+

Another way to see the difference in exact and approximate value handling is to add a small number
to a sum many times. Consider the following stored procedure, which adds .0001 to a variable 1,000
times.

CREATE PROCEDURE p ()
BEGIN
  DECLARE i INT DEFAULT 0;
  DECLARE d DECIMAL(10,4) DEFAULT 0;
  DECLARE f FLOAT DEFAULT 0;
  WHILE i < 10000 DO
    SET d = d + .0001;
    SET f = f + .0001E0;
    SET i = i + 1;
  END WHILE;
  SELECT d, f;
END;

The sum for both d and f logically should be 1, but that is true only for the decimal calculation. The
floating-point calculation introduces small errors:

+--------+------------------+
| d      | f                |
+--------+------------------+
| 1.0000 | 0.99999999999991 |
+--------+------------------+

Example 2. Multiplication is performed with the scale required by standard SQL. That is, for two
numbers X1 and X2 that have scale S1 and S2, the scale of the result is S1 + S2:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.0001    |
+-----------+

Example 3. Rounding behavior for exact-value numbers is well-defined:

Rounding behavior (for example, with the ROUND() function) is independent of the implementation of
the underlying C library, which means that results are consistent from platform to platform.

• Rounding for exact-value columns (DECIMAL and integer) and exact-valued numbers uses the
“round half away from zero” rule. Values with a fractional part of .5 or greater are rounded away from
zero to the nearest integer, as shown here:

mysql> SELECT ROUND(2.5), ROUND(-2.5);
+------------+-------------+
| ROUND(2.5) | ROUND(-2.5) |
+------------+-------------+



Precision Math Examples

1289

| 3          | -3          |
+------------+-------------+

• Rounding for floating-point values uses the C library, which on many systems uses the “round to
nearest even” rule. Values with any fractional part on such systems are rounded to the nearest even
integer:

mysql> SELECT ROUND(2.5E0), ROUND(-2.5E0);
+--------------+---------------+
| ROUND(2.5E0) | ROUND(-2.5E0) |
+--------------+---------------+
|            2 |            -2 |
+--------------+---------------+

Example 4. In strict mode, inserting a value that is out of range for a column causes an error, rather
than truncation to a legal value.

When MySQL is not running in strict mode, truncation to a legal value occurs:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET i = 128;
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i    |
+------+
|  127 |
+------+
1 row in set (0.00 sec)

However, an error occurs if strict mode is in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 128;
ERROR 1264 (22003): Out of range value adjusted for column 'i' at row 1

mysql> SELECT i FROM t;
Empty set (0.00 sec)

Example 5: In strict mode and with ERROR_FOR_DIVISION_BY_ZERO set, division by zero causes an
error, not a result of NULL.

In nonstrict mode, division by zero has a result of NULL:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT i FROM t;
+------+



Precision Math Examples

1290

| i    |
+------+
| NULL |
+------+
1 row in set (0.03 sec)

However, division by zero is an error if the proper SQL modes are in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
ERROR 1365 (22012): Division by 0

mysql> SELECT i FROM t;
Empty set (0.01 sec)

Example 6. Exact-value literals are evaluated as exact values.

Prior to MySQL 5.0.3, exact-value and approximate-value literals both are evaluated as double-
precision floating-point values:

mysql> SELECT VERSION();
+------------+
| VERSION()  |
+------------+
| 4.1.18-log |
+------------+
1 row in set (0.01 sec)

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.07 sec)
Records: 1  Duplicates: 0  Warnings: 0

mysql> DESCRIBE t;
+-------+-------------+------+-----+---------+-------+
| Field | Type        | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| a     | double(3,1) |      |     | 0.0     |       |
| b     | double      |      |     | 0       |       |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.04 sec)

As of MySQL 5.0.3, the approximate-value literal is evaluated using floating point, but the exact-value
literal is handled as DECIMAL:

mysql> SELECT VERSION();
+-----------------+
| VERSION()       |
+-----------------+
| 5.1.6-alpha-log |
+-----------------+
1 row in set (0.11 sec)

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.01 sec)
Records: 1  Duplicates: 0  Warnings: 0

mysql> DESCRIBE t;
+-------+-----------------------+------+-----+---------+-------+
| Field | Type                  | Null | Key | Default | Extra |
+-------+-----------------------+------+-----+---------+-------+
| a     | decimal(2,1) unsigned | NO   |     | 0.0     |       |
| b     | double                | NO   |     | 0       |       |
+-------+-----------------------+------+-----+---------+-------+



Precision Math Examples

1291

2 rows in set (0.01 sec)

Example 7. If the argument to an aggregate function is an exact numeric type, the result is also an
exact numeric type, with a scale at least that of the argument.

Consider these statements:

mysql> CREATE TABLE t (i INT, d DECIMAL, f FLOAT);
mysql> INSERT INTO t VALUES(1,1,1);
mysql> CREATE TABLE y SELECT AVG(i), AVG(d), AVG(f) FROM t;

Before MySQL 5.0.3, the result is a double no matter the argument type:

mysql> DESCRIBE y;
+--------+--------------+------+-----+---------+-------+
| Field  | Type         | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
| AVG(i) | double(17,4) | YES  |     | NULL    |       |
| AVG(d) | double(17,4) | YES  |     | NULL    |       |
| AVG(f) | double       | YES  |     | NULL    |       |
+--------+--------------+------+-----+---------+-------+

As of MySQL 5.0.3, the result is a double only for the floating-point argument. For exact type
arguments, the result is also an exact type:

mysql> DESCRIBE y;
+--------+---------------+------+-----+---------+-------+
| Field  | Type          | Null | Key | Default | Extra |
+--------+---------------+------+-----+---------+-------+
| AVG(i) | decimal(14,4) | YES  |     | NULL    |       |
| AVG(d) | decimal(14,4) | YES  |     | NULL    |       |
| AVG(f) | double        | YES  |     | NULL    |       |
+--------+---------------+------+-----+---------+-------+

The result is a double only for the floating-point argument. For exact type arguments, the result is also
an exact type.



1292



1293

Chapter 13 SQL Statement Syntax

Table of Contents
13.1 Data Definition Statements ............................................................................................... 1294

13.1.1 ALTER DATABASE Syntax ................................................................................... 1294
13.1.2 ALTER EVENT Syntax ......................................................................................... 1295
13.1.3 ALTER FUNCTION Syntax ................................................................................... 1297
13.1.4 ALTER LOGFILE GROUP Syntax ......................................................................... 1297
13.1.5 ALTER PROCEDURE Syntax ............................................................................... 1298
13.1.6 ALTER SERVER Syntax ....................................................................................... 1299
13.1.7 ALTER TABLE Syntax .......................................................................................... 1299
13.1.8 ALTER TABLESPACE Syntax ............................................................................... 1319
13.1.9 ALTER VIEW Syntax ............................................................................................ 1320
13.1.10 CREATE DATABASE Syntax .............................................................................. 1321
13.1.11 CREATE EVENT Syntax ..................................................................................... 1321
13.1.12 CREATE FUNCTION Syntax ............................................................................... 1326
13.1.13 CREATE INDEX Syntax ...................................................................................... 1326
13.1.14 CREATE LOGFILE GROUP Syntax ..................................................................... 1330
13.1.15 CREATE PROCEDURE and CREATE FUNCTION Syntax .................................... 1332
13.1.16 CREATE SERVER Syntax .................................................................................. 1337
13.1.17 CREATE TABLE Syntax ..................................................................................... 1338
13.1.18 CREATE TABLESPACE Syntax .......................................................................... 1368
13.1.19 CREATE TRIGGER Syntax ................................................................................. 1370
13.1.20 CREATE VIEW Syntax ....................................................................................... 1372
13.1.21 DROP DATABASE Syntax .................................................................................. 1376
13.1.22 DROP EVENT Syntax ......................................................................................... 1377
13.1.23 DROP FUNCTION Syntax ................................................................................... 1377
13.1.24 DROP INDEX Syntax .......................................................................................... 1377
13.1.25 DROP LOGFILE GROUP Syntax ......................................................................... 1378
13.1.26 DROP PROCEDURE and DROP FUNCTION Syntax ........................................... 1378
13.1.27 DROP SERVER Syntax ...................................................................................... 1379
13.1.28 DROP TABLE Syntax ......................................................................................... 1379
13.1.29 DROP TABLESPACE Syntax .............................................................................. 1379
13.1.30 DROP TRIGGER Syntax ..................................................................................... 1380
13.1.31 DROP VIEW Syntax ........................................................................................... 1380
13.1.32 RENAME TABLE Syntax ..................................................................................... 1380
13.1.33 TRUNCATE TABLE Syntax ................................................................................. 1382

13.2 Data Manipulation Statements .......................................................................................... 1383
13.2.1 CALL Syntax ........................................................................................................ 1383
13.2.2 DELETE Syntax .................................................................................................... 1385
13.2.3 DO Syntax ........................................................................................................... 1388
13.2.4 HANDLER Syntax ................................................................................................. 1389
13.2.5 INSERT Syntax .................................................................................................... 1391
13.2.6 LOAD DATA INFILE Syntax .................................................................................. 1399
13.2.7 LOAD XML Syntax ............................................................................................... 1408
13.2.8 REPLACE Syntax ................................................................................................. 1415
13.2.9 SELECT Syntax .................................................................................................... 1417
13.2.10 Subquery Syntax ................................................................................................ 1432
13.2.11 UPDATE Syntax ................................................................................................. 1444

13.3 Transactional and Locking Statements ............................................................................. 1446
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax ................................... 1446
13.3.2 Statements That Cannot Be Rolled Back ............................................................... 1449
13.3.3 Statements That Cause an Implicit Commit ............................................................ 1449
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax ..... 1450
13.3.5 LOCK TABLES and UNLOCK TABLES Syntax ...................................................... 1451



Data Definition Statements

1294

13.3.6 SET TRANSACTION Syntax ................................................................................. 1456
13.3.7 XA Transactions ................................................................................................... 1457

13.4 Replication Statements .................................................................................................... 1461
13.4.1 SQL Statements for Controlling Master Servers ...................................................... 1461
13.4.2 SQL Statements for Controlling Slave Servers ....................................................... 1463

13.5 Prepared SQL Statement Syntax ..................................................................................... 1470
13.5.1 PREPARE Syntax ................................................................................................. 1473
13.5.2 EXECUTE Syntax ................................................................................................. 1473
13.5.3 DEALLOCATE PREPARE Syntax .......................................................................... 1474
13.5.4 Automatic Prepared Statement Repreparation ........................................................ 1474

13.6 Compound-Statement Syntax ........................................................................................... 1474
13.6.1 BEGIN ... END Compound-Statement Syntax ......................................................... 1474
13.6.2 Statement Label Syntax ........................................................................................ 1475
13.6.3 DECLARE Syntax ................................................................................................. 1476
13.6.4 Variables in Stored Programs ................................................................................ 1476
13.6.5 Flow Control Statements ....................................................................................... 1478
13.6.6 Cursors ................................................................................................................ 1482
13.6.7 Condition Handling ................................................................................................ 1483

13.7 Database Administration Statements ................................................................................ 1498
13.7.1 Account Management Statements ......................................................................... 1498
13.7.2 Table Maintenance Statements ............................................................................. 1515
13.7.3 Plugin and User-Defined Function Statements ........................................................ 1523
13.7.4 SET Syntax .......................................................................................................... 1526
13.7.5 SHOW Syntax ...................................................................................................... 1530
13.7.6 Other Administrative Statements ............................................................................ 1572

13.8 Utility Statements ............................................................................................................ 1580
13.8.1 DESCRIBE Syntax ................................................................................................ 1580
13.8.2 EXPLAIN Syntax .................................................................................................. 1580
13.8.3 HELP Syntax ........................................................................................................ 1581
13.8.4 USE Syntax .......................................................................................................... 1583

This chapter describes the syntax for the SQL statements supported by MySQL.

13.1 Data Definition Statements

13.1.1 ALTER DATABASE Syntax

ALTER {DATABASE | SCHEMA} [db_name]
    alter_specification ...
ALTER {DATABASE | SCHEMA} db_name
    UPGRADE DATA DIRECTORY NAME

alter_specification:
    [DEFAULT] CHARACTER SET [=] charset_name
  | [DEFAULT] COLLATE [=] collation_name

ALTER DATABASE enables you to change the overall characteristics of a database. These
characteristics are stored in the db.opt file in the database directory. To use ALTER DATABASE, you
need the ALTER privilege on the database. ALTER SCHEMA is a synonym for ALTER DATABASE.

The database name can be omitted from the first syntax, in which case the statement applies to the
default database.

National Language Characteristics

The CHARACTER SET clause changes the default database character set. The COLLATE clause
changes the default database collation. Section 10.1, “Character Set Support”, discusses character set
and collation names.



ALTER EVENT Syntax

1295

You can see what character sets and collations are available using, respectively, the SHOW
CHARACTER SET and SHOW COLLATION statements. See Section 13.7.5.4, “SHOW CHARACTER
SET Syntax”, and Section 13.7.5.5, “SHOW COLLATION Syntax”, for more information.

If you change the default character set or collation for a database, stored routines that use the
database defaults must be dropped and recreated so that they use the new defaults. (In a stored
routine, variables with character data types use the database defaults if the character set or collation
are not specified explicitly. See Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION
Syntax”.)

Upgrading from Versions Older than MySQL 5.1

The syntax that includes the UPGRADE DATA DIRECTORY NAME clause updates the name of the
directory associated with the database to use the encoding implemented in MySQL 5.1 for mapping
database names to database directory names (see Section 9.2.3, “Mapping of Identifiers to File
Names”). This clause is for use under these conditions:

• It is intended when upgrading MySQL to 5.1 or later from older versions.

• It is intended to update a database directory name to the current encoding format if the name
contains special characters that need encoding.

• The statement is used by mysqlcheck (as invoked by mysql_upgrade).

For example, if a database in MySQL 5.0 has the name a-b-c, the name contains instances of
the - (dash) character. In MySQL 5.0, the database directory is also named a-b-c, which is not
necessarily safe for all file systems. In MySQL 5.1 and later, the same database name is encoded as
a@002db@002dc to produce a file system-neutral directory name.

When a MySQL installation is upgraded to MySQL 5.1 or later from an older version,the server displays
a name such as a-b-c (which is in the old format) as #mysql50#a-b-c, and you must refer to the
name using the #mysql50# prefix. Use UPGRADE DATA DIRECTORY NAME in this case to explicitly
tell the server to re-encode the database directory name to the current encoding format:

ALTER DATABASE `#mysql50#a-b-c` UPGRADE DATA DIRECTORY NAME;

After executing this statement, you can refer to the database as a-b-c without the special #mysql50#
prefix.

13.1.2 ALTER EVENT Syntax

ALTER
    [DEFINER = { user | CURRENT_USER }]
    EVENT event_name
    [ON SCHEDULE schedule]
    [ON COMPLETION [NOT] PRESERVE]
    [RENAME TO new_event_name]
    [ENABLE | DISABLE | DISABLE ON SLAVE]
    [COMMENT 'comment']
    [DO event_body]

The ALTER EVENT statement changes one or more of the characteristics of an existing event
without the need to drop and recreate it. The syntax for each of the DEFINER, ON SCHEDULE, ON
COMPLETION, COMMENT, ENABLE / DISABLE, and DO clauses is exactly the same as when used with
CREATE EVENT. (See Section 13.1.11, “CREATE EVENT Syntax”.)

Any user can alter an event defined on a database for which that user has the EVENT privilege. When
a user executes a successful ALTER EVENT statement, that user becomes the definer for the affected
event.

ALTER EVENT works only with an existing event:



ALTER EVENT Syntax

1296

mysql> ALTER EVENT no_such_event 
     >     ON SCHEDULE 
     >       EVERY '2:3' DAY_HOUR;
ERROR 1517 (HY000): Unknown event 'no_such_event'

In each of the following examples, assume that the event named myevent is defined as shown here:

CREATE EVENT myevent
    ON SCHEDULE
      EVERY 6 HOUR
    COMMENT 'A sample comment.'
    DO
      UPDATE myschema.mytable SET mycol = mycol + 1;

The following statement changes the schedule for myevent from once every six hours starting
immediately to once every twelve hours, starting four hours from the time the statement is run:

ALTER EVENT myevent
    ON SCHEDULE
      EVERY 12 HOUR
    STARTS CURRENT_TIMESTAMP + INTERVAL 4 HOUR;

It is possible to change multiple characteristics of an event in a single statement. This example
changes the SQL statement executed by myevent to one that deletes all records from mytable; it
also changes the schedule for the event such that it executes once, one day after this ALTER EVENT
statement is run.

ALTER EVENT myevent
    ON SCHEDULE
      AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
    DO
      TRUNCATE TABLE myschema.mytable;

Specify the options in an ALTER EVENT statement only for those characteristics that you want to
change; omitted options keep their existing values. This includes any default values for CREATE
EVENT such as ENABLE.

To disable myevent, use this ALTER EVENT statement:

ALTER EVENT myevent
    DISABLE;

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables
to obtain any of the timestamp or interval values which it contains. You cannot use stored routines
or user-defined functions in such expressions, and you cannot use any table references; however, you
can use SELECT FROM DUAL. This is true for both ALTER EVENT and CREATE EVENT statements.
References to stored routines, user-defined functions, and tables in such cases are specifically not
permitted, and fail with an error (see Bug #22830).

Although an ALTER EVENT statement that contains another ALTER EVENT statement in its DO clause
appears to succeed, when the server attempts to execute the resulting scheduled event, the execution
fails with an error.

To rename an event, use the ALTER EVENT statement's RENAME TO clause. This statement renames
the event myevent to yourevent:

ALTER EVENT myevent
    RENAME TO yourevent;

You can also move an event to a different database using ALTER EVENT ... RENAME TO ... and
db_name.event_name notation, as shown here:



ALTER FUNCTION Syntax

1297

ALTER EVENT olddb.myevent
    RENAME TO newdb.myevent;

To execute the previous statement, the user executing it must have the EVENT privilege on both the
olddb and newdb databases.

Note

There is no RENAME EVENT statement.

The value DISABLE ON SLAVE is used on a replication slave instead of ENABLE or DISABLE to
indicate an event that was created on the master and replicated to the slave, but that is not executed
on the slave. Normally, DISABLE ON SLAVE is set automatically as required; however, there are
some circumstances under which you may want or need to change it manually. See Section 17.4.1.12,
“Replication of Invoked Features”, for more information.

13.1.3 ALTER FUNCTION Syntax

ALTER FUNCTION func_name [characteristic ...]

characteristic:
    COMMENT 'string'
  | LANGUAGE SQL
  | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
  | SQL SECURITY { DEFINER | INVOKER }

This statement can be used to change the characteristics of a stored function. More than one change
may be specified in an ALTER FUNCTION statement. However, you cannot change the parameters or
body of a stored function using this statement; to make such changes, you must drop and re-create the
function using DROP FUNCTION and CREATE FUNCTION.

You must have the ALTER ROUTINE privilege for the function. (That privilege is granted automatically
to the function creator.) If binary logging is enabled, the ALTER FUNCTION statement might also
require the SUPER privilege, as described in Section 20.7, “Binary Logging of Stored Programs”.

13.1.4 ALTER LOGFILE GROUP Syntax

ALTER LOGFILE GROUP logfile_group
    ADD UNDOFILE 'file_name'
    [INITIAL_SIZE [=] size]
    [WAIT]
    ENGINE [=] engine_name

This statement adds an UNDO file named 'file_name' to an existing log file group logfile_group.
An ALTER LOGFILE GROUP statement has one and only one ADD UNDOFILE clause. No DROP
UNDOFILE clause is currently supported.

Note

All NDB Cluster Disk Data objects share the same namespace. This means
that each Disk Data object must be uniquely named (and not merely each Disk
Data object of a given type). For example, you cannot have a tablespace and
an undo log file with the same name, or an undo log file and a data file with the
same name.

The optional INITIAL_SIZE parameter sets the UNDO file's initial size in bytes; if not specified,
the initial size defaults to 134217728 (128 MB). Prior to MySQL NDB Cluster 7.2.14, this value was
required to be specified using digits (Bug #13116514, Bug #16104705, Bug #62858); in MySQL NDB
Cluster 7.2.14 and later, you may optionally follow size with a one-letter abbreviation for an order of
magnitude, similar to those used in my.cnf. Generally, this is one of the letters M (megabytes) or G
(gigabytes).



ALTER PROCEDURE Syntax

1298

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

The minimum allowed value for INITIAL_SIZE is 1048576 (1 MB). (Bug #29574)

Note

WAIT is parsed but otherwise ignored. This keyword currently has no effect, and
is intended for future expansion.

The ENGINE parameter (required) determines the storage engine which is used by this log file group,
with engine_name being the name of the storage engine. Currently, the only accepted values for
engine_name are “NDBCLUSTER” and “NDB”. The two values are equivalent.

Here is an example, which assumes that the log file group lg_3 has already been created using
CREATE LOGFILE GROUP (see Section 13.1.14, “CREATE LOGFILE GROUP Syntax”):

ALTER LOGFILE GROUP lg_3
    ADD UNDOFILE 'undo_10.dat'
    INITIAL_SIZE=32M
    ENGINE=NDBCLUSTER;

When ALTER LOGFILE GROUP is used with ENGINE = NDBCLUSTER (alternatively, ENGINE =
NDB), an UNDO log file is created on each NDB Cluster data node. You can verify that the UNDO files
were created and obtain information about them by querying the INFORMATION_SCHEMA.FILES
table. For example:

mysql> SELECT FILE_NAME, LOGFILE_GROUP_NUMBER, EXTRA
    -> FROM INFORMATION_SCHEMA.FILES
    -> WHERE LOGFILE_GROUP_NAME = 'lg_3';
+-------------+----------------------+----------------+
| FILE_NAME   | LOGFILE_GROUP_NUMBER | EXTRA          |
+-------------+----------------------+----------------+
| newdata.dat |                    0 | CLUSTER_NODE=3 |
| newdata.dat |                    0 | CLUSTER_NODE=4 |
| undo_10.dat |                   11 | CLUSTER_NODE=3 |
| undo_10.dat |                   11 | CLUSTER_NODE=4 |
+-------------+----------------------+----------------+
4 rows in set (0.01 sec)

(See Section 21.29.1, “The INFORMATION_SCHEMA FILES Table”.)

Memory used for UNDO_BUFFER_SIZE comes from the global pool whose size is determined by the
value of the SharedGlobalMemory data node configuration parameter. This includes any default
value implied for this option by the setting of the InitialLogFileGroup data node configuration
parameter.

ALTER LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. For more information,
see Section 18.5.12, “NDB Cluster Disk Data Tables”.

13.1.5 ALTER PROCEDURE Syntax

ALTER PROCEDURE proc_name [characteristic ...]

characteristic:
    COMMENT 'string'
  | LANGUAGE SQL
  | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
  | SQL SECURITY { DEFINER | INVOKER }

This statement can be used to change the characteristics of a stored procedure. More than one change
may be specified in an ALTER PROCEDURE statement. However, you cannot change the parameters or
body of a stored procedure using this statement; to make such changes, you must drop and re-create
the procedure using DROP PROCEDURE and CREATE PROCEDURE.



ALTER SERVER Syntax

1299

You must have the ALTER ROUTINE privilege for the procedure. By default, that privilege is
granted automatically to the procedure creator. This behavior can be changed by disabling the
automatic_sp_privileges system variable. See Section 20.2.2, “Stored Routines and MySQL
Privileges”.

13.1.6 ALTER SERVER Syntax

ALTER SERVER  server_name
    OPTIONS (option [, option] ...)

Alters the server information for server_name, adjusting any of the options permitted in the CREATE
SERVER statement. The corresponding fields in the mysql.servers table are updated accordingly.
This statement requires the SUPER privilege.

For example, to update the USER option:

ALTER SERVER s OPTIONS (USER 'sally');

ALTER SERVER does not cause an automatic commit.

In MySQL 5.5, ALTER SERVER is not written to the binary log, regardless of the logging format that is
in use.

13.1.7 ALTER TABLE Syntax

ALTER [ONLINE | OFFLINE] [IGNORE] TABLE tbl_name
    [alter_specification [, alter_specification] ...]
    [partition_options]

alter_specification:
    table_options
  | ADD [COLUMN] col_name column_definition
        [FIRST | AFTER col_name ]
  | ADD [COLUMN] (col_name column_definition,...)
  | ADD {INDEX|KEY} [index_name]
        [index_type] (index_col_name,...) [index_option] ...
  | ADD [CONSTRAINT [symbol]] PRIMARY KEY
        [index_type] (index_col_name,...) [index_option] ...
  | ADD [CONSTRAINT [symbol]]
        UNIQUE [INDEX|KEY] [index_name]
        [index_type] (index_col_name,...) [index_option] ...
  | ADD FULLTEXT [INDEX|KEY] [index_name]
        (index_col_name,...) [index_option] ...
  | ADD SPATIAL [INDEX|KEY] [index_name]
        (index_col_name,...) [index_option] ...
  | ADD [CONSTRAINT [symbol]]
        FOREIGN KEY [index_name] (index_col_name,...)
        reference_definition
  | ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}
  | CHANGE [COLUMN] old_col_name new_col_name column_definition
        [FIRST|AFTER col_name]
  | MODIFY [COLUMN] col_name column_definition
        [FIRST | AFTER col_name]
  | DROP [COLUMN] col_name
  | DROP PRIMARY KEY
  | DROP {INDEX|KEY} index_name
  | DROP FOREIGN KEY fk_symbol
  | DISABLE KEYS
  | ENABLE KEYS
  | RENAME [TO|AS] new_tbl_name
  | ORDER BY col_name [, col_name] ...
  | CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
  | [DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=] collation_name]
  | DISCARD TABLESPACE
  | IMPORT TABLESPACE
  | FORCE
  | ADD PARTITION (partition_definition)



ALTER TABLE Syntax

1300

  | DROP PARTITION partition_names
  | TRUNCATE PARTITION {partition_names | ALL}
  | COALESCE PARTITION number
  | REORGANIZE PARTITION [partition_names INTO (partition_definitions)]
  | ANALYZE PARTITION {partition_names | ALL}
  | CHECK PARTITION {partition_names | ALL}
  | OPTIMIZE PARTITION {partition_names | ALL}
  | REBUILD PARTITION {partition_names | ALL}
  | REPAIR PARTITION {partition_names | ALL}
  | PARTITION BY partitioning_expression
  | REMOVE PARTITIONING

index_col_name:
    col_name [(length)] [ASC | DESC]

index_type:
    USING {BTREE | HASH}

index_option:
    KEY_BLOCK_SIZE [=] value
  | index_type
  | WITH PARSER parser_name
  | COMMENT 'string'

table_options:
    table_option [[,] table_option] ...

table_option:
    ENGINE [=] engine_name
  | AUTO_INCREMENT [=] value
  | AVG_ROW_LENGTH [=] value
  | [DEFAULT] CHARACTER SET [=] charset_name
  | CHECKSUM [=] {0 | 1}
  | [DEFAULT] COLLATE [=] collation_name
  | COMMENT [=] 'string'
  | CONNECTION [=] 'connect_string'
  | DATA DIRECTORY [=] 'absolute path to directory'
  | DELAY_KEY_WRITE [=] {0 | 1}
  | INDEX DIRECTORY [=] 'absolute path to directory'
  | INSERT_METHOD [=] { NO | FIRST | LAST }
  | KEY_BLOCK_SIZE [=] value
  | MAX_ROWS [=] value
  | MIN_ROWS [=] value
  | PACK_KEYS [=] {0 | 1 | DEFAULT}
  | PASSWORD [=] 'string'
  | ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
  | TABLESPACE tablespace_name [STORAGE {DISK|MEMORY|DEFAULT}]
  | UNION [=] (tbl_name[,tbl_name]...)

ALTER TABLE changes the structure of a table. For example, you can add or delete columns, create
or destroy indexes, change the type of existing columns, or rename columns or the table itself. You can
also change characteristics such as the storage engine used for the table or the table comment.

• To use ALTER TABLE, you need ALTER, CREATE, and INSERT privileges for the table. Renaming a
table requires ALTER and DROP on the old table, ALTER, CREATE, and INSERT on the new table.

• Following the table name, specify the alterations to be made. If none are given, ALTER TABLE does
nothing.

• The syntax for many of the permissible alterations is similar to clauses of the CREATE TABLE
statement. column_definition clauses use the same syntax for ADD and CHANGE as for CREATE
TABLE. See Section 13.1.17, “CREATE TABLE Syntax”, for more information.

• The word COLUMN is optional and can be omitted.

• You can issue multiple ADD, ALTER, DROP, and CHANGE clauses in a single ALTER TABLE
statement, separated by commas. This is a MySQL extension to standard SQL, which permits only
one of each clause per ALTER TABLE statement. For example, to drop multiple columns in a single
statement, do this:



ALTER TABLE Syntax

1301

ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

• Some operations may result in warnings if attempted on a table for which the storage engine
does not support the operation. These warnings can be displayed with SHOW WARNINGS. See
Section 13.7.5.41, “SHOW WARNINGS Syntax”. For information on troubleshooting ALTER TABLE,
see Section B.5.6.1, “Problems with ALTER TABLE”.

• For usage examples, see Section 13.1.7.3, “ALTER TABLE Examples”.

•
With the mysql_info() C API function, you can find out how many rows were copied by ALTER
TABLE, and (when IGNORE is used) how many rows were deleted due to duplication of unique key
values. See Section 23.8.7.35, “mysql_info()”.

There are several additional aspects to the ALTER TABLE statement, described under the following
topics in this section:

• Table Options

• Performance, Storage, and Concurrency Considerations

• Column Attributes

• Primary Keys and Indexes

• Foreign Keys

• Dropping Columns

• Changing the Character Set

• Discarding and Importing InnoDB Tablespaces

• Row Order for MyISAM Tables

• Partitioning Options

Table Options

table_options signifies table options of the kind that can be used in the CREATE TABLE statement,
such as ENGINE, AUTO_INCREMENT, AVG_ROW_LENGTH, MAX_ROWS, or ROW_FORMAT.

For descriptions of all table options, see Section 13.1.17, “CREATE TABLE Syntax”. However, ALTER
TABLE ignores DATA DIRECTORY and INDEX DIRECTORY when given as table options. ALTER
TABLE permits them only as partitioning options, and, as of MySQL 5.5.54, requires that you have the
FILE privilege.

Use of table options with ALTER TABLE provides a convenient way of altering single table
characteristics. For example:

• If t1 is currently not an InnoDB table, this statement changes its storage engine to InnoDB:

ALTER TABLE t1 ENGINE = InnoDB;

• See Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB” for considerations when
switching tables to the InnoDB storage engine.

• When you specify an ENGINE clause, ALTER TABLE rebuilds the table. This is true even if the
table already has the specified storage engine.

You can also use ALTER TABLE tbl_name FORCE to perform a “null” alter operation that
rebuilds the table.



ALTER TABLE Syntax

1302

• The outcome of attempting to change the storage engine of a table is affected by whether the
desired storage engine is available and the setting of the NO_ENGINE_SUBSTITUTION SQL
mode, as described in Section 5.1.8, “Server SQL Modes”.

• To prevent inadvertent loss of data, ALTER TABLE cannot be used to change the storage engine
of a table to MERGE or BLACKHOLE.

• To change the InnoDB table to use compressed row-storage format:

ALTER TABLE t1 ROW_FORMAT = COMPRESSED;

• To reset the current auto-increment value:

ALTER TABLE t1 AUTO_INCREMENT = 13;

You cannot reset the counter to a value less than or equal to any that have already been used. For
MyISAM, if the value is less than or equal to the maximum value currently in the AUTO_INCREMENT
column, the value is reset to the current maximum plus one. For InnoDB, if the value is less than
the current maximum value in the column, no error occurs and the current sequence value is not
changed.

• To change the default table character set:

ALTER TABLE t1 CHARACTER SET = utf8;

• To add (or change) a table comment:

ALTER TABLE t1 COMMENT = 'New table comment';

To verify that the table options were changed as intended, use SHOW CREATE TABLE, or query
INFORMATION_SCHEMA.TABLES.

Performance, Storage, and Concurrency Considerations

In most cases, ALTER TABLE makes a temporary copy of the original table. MySQL waits for other
operations that are modifying the table, then proceeds. It incorporates the alteration into the copy,
deletes the original table, and renames the new one. While ALTER TABLE is executing, the original
table is readable by other sessions (with the exception noted shortly). Updates and writes to the table
that begin after the ALTER TABLE operation begins are stalled until the new table is ready, then are
automatically redirected to the new table without any failed updates. The temporary copy of the original
table is created in the database directory of the new table. This can differ from the database directory
of the original table for ALTER TABLE operations that rename the table to a different database.

The exception referred to earlier is that ALTER TABLE blocks reads (not just writes) at the point where
it is ready to install a new version of the table .frm file, discard the old file, and clear outdated table
structures from the table and table definition caches. At this point, it must acquire an exclusive lock. To
do so, it waits for current readers to finish, and blocks new reads (and writes).

For MyISAM tables, you can speed up index re-creation (the slowest part of the alteration process) by
setting the myisam_sort_buffer_size system variable to a high value.

For InnoDB tables, a table-copying ALTER TABLE operation on table that resides in a shared
tablespace such as the system tablespace can increase the amount of space used by the tablespace.
Such operations require as much additional space as the data in the table plus indexes. For a table
that resides in a shared tablespace, the additional space used during a table-copying ALTER TABLE
operation is not released back to the operating system as it is for a table that resides in a file-per-table
tablespace.



ALTER TABLE Syntax

1303

Some ALTER TABLE operations are performed in place, which does not require creating a temporary
copy of the original table:

• For ALTER TABLE tbl_name RENAME TO new_tbl_name without any other options, MySQL
renames files that correspond to the table tbl_name without making a copy. (You can also use
the RENAME TABLE statement to rename tables. See Section 13.1.32, “RENAME TABLE Syntax”.)
Privileges granted specifically for the renamed table are not migrated to the new name. They must
be changed manually.

• Alterations that modify only table metadata and not table data are immediate because the server only
needs to alter the table .frm file, not touch table contents. The following changes are fast alterations
that can be made this way:

• Renaming a column, except for the InnoDB storage engine.

• Changing the default value of a column (except for NDB tables; see Limitations of NDBCLUSTER
online operations).

• Changing the definition of an ENUM or SET column by adding new enumeration or set members
to the end of the list of valid member values, as long as the storage size of the data type does
not change. For example, adding a member to a SET column that has 8 members changes the
required storage per value from 1 byte to 2 bytes; this will require a table copy. Adding members in
the middle of the list causes renumbering of existing members, which requires a table copy.

• Renaming an index, except for InnoDB.

• Adding or dropping an index, for InnoDB and NDB. See Section 14.16, “InnoDB Fast Index Creation”.

• For NDBCLUSTER tables, operations that add and drop indexes on variable-width columns occur
online, without table copying and without blocking concurrent DML actions for most of their duration.
See Section 13.1.7.2, “ALTER TABLE Online Operations in NDB Cluster 7.2”.

You can force an ALTER TABLE operation that would otherwise not use the table copy method (as
supported in MySQL 5.0) by setting the old_alter_table system variable to ON.

ALTER TABLE with ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REBUILD
PARTITION, or REORGANIZE PARTITION does not create temporary tables (except when used with
NDB tables); however, these operations can and do create temporary partition files.

ADD or DROP operations for RANGE or LIST partitions are immediate operations or nearly so. ADD or
COALESCE operations for HASH or KEY partitions copy data between all partitions, unless LINEAR
HASH or LINEAR KEY was used; this is effectively the same as creating a new table, although the ADD
or COALESCE operation is performed partition by partition. REORGANIZE operations copy only changed
partitions and do not touch unchanged ones.

Note

Pending INSERT DELAYED statements are lost if a table is write locked and
ALTER TABLE is used to modify the table structure.

Column Attributes

• You can rename a column using a CHANGE old_col_name new_col_name
column_definition clause. To do so, specify the old and new column names and the definition
that the column currently has. For example, to rename an INTEGER column from a to b, you can do
this:

ALTER TABLE t1 CHANGE a b INTEGER;

• To change a column's type but not the name, CHANGE syntax still requires an old and new column
name, even if they are the same. For example:



ALTER TABLE Syntax

1304

ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;

• You can also use MODIFY to change a column's type without renaming it:

ALTER TABLE t1 MODIFY b BIGINT NOT NULL;

MODIFY is an extension to ALTER TABLE for Oracle compatibility.

• When you use CHANGE or MODIFY, column_definition must include the data type and all
attributes that should apply to the new column, other than index attributes such as PRIMARY KEY
or UNIQUE. Attributes present in the original definition but not specified for the new definition are not
carried forward. Suppose that a column col1 is defined as INT UNSIGNED DEFAULT 1 COMMENT
'my column' and you modify the column as follows:

ALTER TABLE t1 MODIFY col1 BIGINT;

The resulting column will be defined as BIGINT, but will not include the attributes UNSIGNED
DEFAULT 1 COMMENT 'my column'. To retain them, the statement should be:

ALTER TABLE t1 MODIFY col1 BIGINT UNSIGNED DEFAULT 1 COMMENT 'my column';

• When you change a data type using CHANGE or MODIFY, MySQL tries to convert existing column
values to the new type as well as possible.

Warning

This conversion may result in alteration of data. For example, if you shorten
a string column, values may be truncated. To prevent the operation from
succeeding if conversions to the new data type would result in loss of data,
enable strict SQL mode before using ALTER TABLE (see Section 5.1.8,
“Server SQL Modes”).

• To add a column at a specific position within a table row, use FIRST or AFTER col_name. The
default is to add the column last. You can also use FIRST and AFTER in CHANGE or MODIFY
operations to reorder columns within a table.

• If you use CHANGE or MODIFY to shorten a column for which an index exists on the column, and the
resulting column length is less than the index length, MySQL shortens the index automatically.

• CHANGE col_name is a MySQL extension to standard SQL.

•      ALTER ... SET DEFAULT or ALTER ... DROP DEFAULT specify a new default value for a
column or remove the old default value, respectively. If the old default is removed and the column
can be NULL, the new default is NULL. If the column cannot be NULL, MySQL assigns a default value
as described in Section 11.6, “Data Type Default Values”.

Primary Keys and Indexes

•    DROP PRIMARY KEY drops the primary key. If there is no primary key, an error occurs. For
information about the performance characteristics of primary keys, especially for InnoDB tables, see
Section 8.3.2, “Using Primary Keys”.

• If you add a UNIQUE INDEX or PRIMARY KEY to a table, MySQL stores it before any nonunique
index to permit detection of duplicate keys as early as possible.

• IGNORE is a MySQL extension to standard SQL. It controls how ALTER TABLE works if there are
duplicates on unique keys in the new table or if warnings occur when strict mode is enabled. If
IGNORE is not specified, the copy is aborted and rolled back if duplicate-key errors occur. If IGNORE



ALTER TABLE Syntax

1305

is specified, only one row is used of rows with duplicates on a unique key. The other conflicting rows
are deleted. Incorrect values are truncated to the closest matching acceptable value.

Note

Due to a bug related to Fast Index Creation (Bug #40344), ALTER
IGNORE TABLE ... ADD UNIQUE INDEX does not delete duplicate
rows. The IGNORE keyword is ignored. If any duplicate rows exist, the
operation fails with a Duplicate entry error. A workaround is to set
old_alter_table=1 prior to running an ALTER IGNORE TABLE ... ADD
UNIQUE INDEX statement.

SET SESSION old_alter_table=1

•    DROP INDEX removes an index. This is a MySQL extension to standard SQL. See
Section 13.1.24, “DROP INDEX Syntax”. If you are unsure of the index name, use SHOW INDEX
FROM tbl_name.

• Some storage engines permit you to specify an index type when creating an index. The syntax for
the index_type specifier is USING type_name. For details about USING, see Section 13.1.13,
“CREATE INDEX Syntax”. The preferred position is after the column list. Support for use of the
option before the column list will be removed in a future MySQL release.

• index_option values specify additional options for an index. For details about permissible
index_option values, see Section 13.1.13, “CREATE INDEX Syntax”.

•    If you use ALTER TABLE on a MyISAM table, all nonunique indexes are created in a separate
batch (as for REPAIR TABLE). This should make ALTER TABLE much faster when you have many
indexes.

• For MyISAM tables, key updating can be controlled explicitly. Use ALTER TABLE ... DISABLE
KEYS to tell MySQL to stop updating nonunique indexes. Then use ALTER TABLE ... ENABLE
KEYS to re-create missing indexes. MyISAM does this with a special algorithm that is much faster
than inserting keys one by one, so disabling keys before performing bulk insert operations should
give a considerable speedup. Using ALTER TABLE ... DISABLE KEYS requires the INDEX
privilege in addition to the privileges mentioned earlier.

While the nonunique indexes are disabled, they are ignored for statements such as SELECT and
EXPLAIN that otherwise would use them.

• After an ALTER TABLE statement, it may be necessary to run ANALYZE TABLE to update index
cardinality information. See Section 13.7.5.23, “SHOW INDEX Syntax”.

Foreign Keys

• If ALTER TABLE for an InnoDB table results in changes to column values (for example, because a
column is truncated), InnoDB's FOREIGN KEY constraint checks do not notice possible violations
caused by changing the values.

•   The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB storage engine,
which implements ADD [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (...)
REFERENCES ... (...). See Section 14.11.1.6, “InnoDB and FOREIGN KEY Constraints”. For
other storage engines, the clauses are parsed but ignored. The CHECK clause is parsed but ignored
by all storage engines. See Section 13.1.17, “CREATE TABLE Syntax”. The reason for accepting but
ignoring syntax clauses is for compatibility, to make it easier to port code from other SQL servers,
and to run applications that create tables with references. See Section 1.7.2, “MySQL Differences
from Standard SQL”.

For ALTER TABLE, unlike CREATE TABLE, ADD FOREIGN KEY ignores index_name if given and
uses an automatically generated foreign key name. As a workaround, include the CONSTRAINT
clause to specify the foreign key name:



ALTER TABLE Syntax

1306

ADD CONSTRAINT name FOREIGN KEY (....) ...

Important

The inline REFERENCES specifications where the references are defined as
part of the column specification are silently ignored by InnoDB. InnoDB only
accepts REFERENCES clauses defined as part of a separate FOREIGN KEY
specification.

Note

Partitioned InnoDB tables do not support foreign keys. See Section 19.5.2,
“Partitioning Limitations Relating to Storage Engines”, for more information.

•    InnoDB supports the use of ALTER TABLE to drop foreign keys:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

• Adding and dropping a foreign key in separate clauses of a single ALTER TABLE statement may
be problematic in some cases and is therefore unsupported. Use separate statements for each
operation.

• ALTER TABLE tbl_name RENAME new_tbl_name changes internally generated foreign
key constraint names and user-defined foreign key constraint names that contain the string
“tbl_name_ibfk_” to reflect the new table name. InnoDB interprets foreign key constraint names
that contain the string “tbl_name_ibfk_” as internally generated names.

Dropping Columns

• If a table contains only one column, the column cannot be dropped. If what you intend is to remove
the table, use DROP TABLE instead.

• If columns are dropped from a table, the columns are also removed from any index of which they are
a part. If all columns that make up an index are dropped, the index is dropped as well.

• DROP col_name is a MySQL extension to standard SQL.

Changing the Character Set

 To change the table default character set and all character columns (CHAR, VARCHAR, TEXT) to a new
character set, use a statement like this:

ALTER TABLE tbl_name
CONVERT TO CHARACTER SET charset_name [COLLATE collation_name];

The statement also changes the collation of all character columns. If you specify no COLLATE clause to
indicate which collation to use, the statement uses default collation for the character set. If this collation
is inappropriate for the intended table use (for example, if it would change from a case-sensitive
collation to a case-insensitive collation), specify a collation explicitly.

For a column that has a data type of VARCHAR or one of the TEXT types, CONVERT TO CHARACTER
SET will change the data type as necessary to ensure that the new column is long enough to store
as many characters as the original column. For example, a TEXT column has two length bytes, which
store the byte-length of values in the column, up to a maximum of 65,535. For a latin1 TEXT column,
each character requires a single byte, so the column can store up to 65,535 characters. If the column
is converted to utf8, each character might require up to three bytes, for a maximum possible length
of 3 × 65,535 = 196,605 bytes. That length will not fit in a TEXT column's length bytes, so MySQL will
convert the data type to MEDIUMTEXT, which is the smallest string type for which the length bytes can
record a value of 196,605. Similarly, a VARCHAR column might be converted to MEDIUMTEXT.



ALTER TABLE Syntax

1307

To avoid data type changes of the type just described, do not use CONVERT TO CHARACTER SET.
Instead, use MODIFY to change individual columns. For example:

ALTER TABLE t MODIFY latin1_text_col TEXT CHARACTER SET utf8;
ALTER TABLE t MODIFY latin1_varchar_col VARCHAR(M) CHARACTER SET utf8;

If you specify CONVERT TO CHARACTER SET binary, the CHAR, VARCHAR, and TEXT columns are
converted to their corresponding binary string types (BINARY, VARBINARY, BLOB). This means that the
columns no longer will have a character set and a subsequent CONVERT TO operation will not apply to
them.

If charset_name is DEFAULT, the database character set is used.

Warning

The CONVERT TO operation converts column values between the character
sets. This is not what you want if you have a column in one character set (like
latin1) but the stored values actually use some other, incompatible character
set (like utf8). In this case, you have to do the following for each such column:

ALTER TABLE t1 CHANGE c1 c1 BLOB;
ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;

The reason this works is that there is no conversion when you convert to or from
BLOB columns.

To change only the default character set for a table, use this statement:

ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

The word DEFAULT is optional. The default character set is the character set that is used if you
do not specify the character set for columns that you add to a table later (for example, with ALTER
TABLE ... ADD column).

When foreign_key_checks is enabled, which is the default setting, character set conversion is
not permitted on tables that include a character string column used in a foreign key constraint. The
workaround is to disable foreign_key_checks before performing the character set conversion.
You must perform the conversion on both tables involved in the foreign key constraint before re-
enabling foreign_key_checks. If you re-enable foreign_key_checks after converting only one
of the tables, an ON DELETE CASCADE or ON UPDATE CASCADE operation could corrupt data in the
referencing table due to implicit conversion that occurs during these operations (Bug #45290, Bug
#74816).

Discarding and Importing InnoDB Tablespaces

  For an InnoDB table that is created with its own tablespace in an .ibd file, that file can be discarded
and imported. To discard the .ibd file, use this statement:

ALTER TABLE tbl_name DISCARD TABLESPACE;

This deletes the current .ibd file, so be sure that you have a backup first. Attempting to access the
table while the tablespace file is discarded results in an error.

To import the backup .ibd file back into the table, copy it into the database directory, and then issue
this statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

The tablespace file must have been created on the server into which it is imported later.



ALTER TABLE Syntax

1308

Note

The ALTER TABLE ... IMPORT TABLESPACE feature does not enforce
foreign key constraints on imported data.

See Section 14.10.4, “InnoDB File-Per-Table Tablespaces”.

Row Order for MyISAM Tables

 ORDER BY enables you to create the new table with the rows in a specific order. This option is useful
primarily when you know that you query the rows in a certain order most of the time. By using this
option after major changes to the table, you might be able to get higher performance. In some cases, it
might make sorting easier for MySQL if the table is in order by the column that you want to order it by
later.

Note

The table does not remain in the specified order after inserts and deletes.

ORDER BY syntax permits one or more column names to be specified for sorting, each of which
optionally can be followed by ASC or DESC to indicate ascending or descending sort order, respectively.
The default is ascending order. Only column names are permitted as sort criteria; arbitrary expressions
are not permitted. This clause should be given last after any other clauses.

ORDER BY does not make sense for InnoDB tables because InnoDB always orders table rows
according to the clustered index.

When used on a partitioned table, ALTER TABLE ... ORDER BY orders rows within each partition
only.

Partitioning Options

partition_options signifies options that can be used with partitioned tables for repartitioning, for
adding, dropping, merging, and splitting partitions, and for performing partitioning maintenance.

It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITIONING
clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITIONING
clause must be specified last after any other specifications. The ADD PARTITION, DROP PARTITION,
COALESCE PARTITION, REORGANIZE PARTITION, ANALYZE PARTITION, CHECK PARTITION,
and REPAIR PARTITION options cannot be combined with other alter specifications in a single ALTER
TABLE, since the options just listed act on individual partitions.

For a list of partition options and a description of each, see Section 13.1.17, “CREATE TABLE Syntax”.
For additional information, see Section 13.1.7.1, “ALTER TABLE Partition Operations”.

13.1.7.1 ALTER TABLE Partition Operations

Partitioning-related clauses for ALTER TABLE can be used with partitioned tables for repartitioning, for
adding, dropping, merging, and splitting partitions, and for performing partitioning maintenance.

• Simply using a partition_options clause with ALTER TABLE on a partitioned table repartitions
the table according to the partitioning scheme defined by the partition_options. This clause
always begins with PARTITION BY, and follows the same syntax and other rules as apply to the
partition_options clause for CREATE TABLE (see Section 13.1.17, “CREATE TABLE Syntax”,
for more detailed information), and can also be used to partition an existing table that is not already
partitioned. For example, consider a (nonpartitioned) table defined as shown here:

CREATE TABLE t1 (
    id INT,
    year_col INT
);



ALTER TABLE Syntax

1309

This table can be partitioned by HASH, using the id column as the partitioning key, into 8 partitions
by means of this statement:

ALTER TABLE t1
    PARTITION BY HASH(id)
    PARTITIONS 8;

MySQL 5.5.31 and later supports an ALGORITHM option with [SUB]PARTITION BY [LINEAR]
KEY. ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL 5.1 when
computing the placement of rows in partitions; ALGORITHM=2 means that the server employs the
key-hashing functions implemented and used by default for new KEY partitioned tables in MySQL
5.5 and later. (Partitioned tables created with the key-hashing functions employed in MySQL 5.5
and later cannot be used by a MySQL 5.1 server.) Not specifying the option has the same effect
as using ALGORITHM=2. This option is intended for use chiefly when upgrading or downgrading
[LINEAR] KEY partitioned tables between MySQL 5.1 and later MySQL versions, or for creating
tables partitioned by KEY or LINEAR KEY on a MySQL 5.5 or later server which can be used on a
MySQL 5.1 server.

To upgrade a KEY partitioned table that was created in MySQL 5.1, first execute SHOW CREATE
TABLE and note the exact columns and number of partitions shown. Now execute an ALTER TABLE
statement using exactly the same column list and number of partitions as in the CREATE TABLE
statement, while adding ALGORITHM=2 immediately following the PARTITION BY keywords. (You
should also include the LINEAR keyword if it was used for the original table definition.) An example
from a session in the mysql client is shown here:

mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
       Table: p
Create Table: CREATE TABLE `p` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `cd` datetime NOT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */
1 row in set (0.00 sec)

mysql> ALTER TABLE p PARTITION BY LINEAR KEY ALGORITHM=2 (id) PARTITIONS 32;
Query OK, 0 rows affected (5.34 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
       Table: p
Create Table: CREATE TABLE `p` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `cd` datetime NOT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */
1 row in set (0.00 sec)

Downgrading a table created using the default key-hashing used in MySQL 5.5 and later to enable
its use by a MySQL 5.1 server is similar, except in this case you should use ALGORITHM=1 to force
the table's partitions to be rebuilt using the MySQL 5.1 key-hashing functions. It is recommended that
you not do this except when necessary for compatibility with a MySQL 5.1 server, as the improved
KEY hashing functions used by default in MySQL 5.5 and later provide fixes for a number of issues
found in the older implementation.



ALTER TABLE Syntax

1310

Note

A table upgraded by means of ALTER TABLE ... PARTITION BY
ALGORITHM=2 [LINEAR] KEY ... can no longer be used by a MySQL 5.1
server. (Such a table would need to be downgraded with ALTER TABLE ...
PARTITION BY ALGORITHM=1 [LINEAR] KEY ... before it could be
used again by a MySQL 5.1 server.)

The table that results from using an ALTER TABLE ... PARTITION BY statement must follow
the same rules as one created using CREATE TABLE ... PARTITION BY. This includes the rules
governing the relationship between any unique keys (including any primary key) that the table might
have, and the column or columns used in the partitioning expression, as discussed in Section 19.5.1,
“Partitioning Keys, Primary Keys, and Unique Keys”. The CREATE TABLE ... PARTITION BY
rules for specifying the number of partitions also apply to ALTER TABLE ... PARTITION BY.

The partition_definition clause for ALTER TABLE ADD PARTITION supports the same
options as the clause of the same name for the CREATE TABLE statement. (See Section 13.1.17,
“CREATE TABLE Syntax”, for the syntax and description.) Suppose that you have the partitioned
table created as shown here:

CREATE TABLE t1 (
    id INT,
    year_col INT
)
PARTITION BY RANGE (year_col) (
    PARTITION p0 VALUES LESS THAN (1991),
    PARTITION p1 VALUES LESS THAN (1995),
    PARTITION p2 VALUES LESS THAN (1999)
);

You can add a new partition p3 to this table for storing values less than 2002 as follows:

ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));

DROP PARTITION can be used to drop one or more RANGE or LIST partitions. This statement
cannot be used with HASH or KEY partitions; instead, use COALESCE PARTITION (see below). Any
data that was stored in the dropped partitions named in the partition_names list is discarded.
For example, given the table t1 defined previously, you can drop the partitions named p0 and p1 as
shown here:

ALTER TABLE t1 DROP PARTITION p0, p1;

Note

DROP PARTITION does not work with tables that use the NDBCLUSTER
storage engine. See Section 19.3.1, “Management of RANGE and LIST
Partitions”, and Section 18.1.6, “Known Limitations of NDB Cluster”.

ADD PARTITION and DROP PARTITION do not currently support IF [NOT] EXISTS.

Renames of partitioned table are supported. You can rename individual partitions indirectly using
ALTER TABLE ... REORGANIZE PARTITION; however, this operation makes a copy of the
partition's data..

Beginning with MySQL 5.5.0, it is possible to delete rows from selected partitions using the
TRUNCATE PARTITION option. This option takes a comma-separated list of one or more partition
names. For example, consider the table t1 as defined here:



ALTER TABLE Syntax

1311

CREATE TABLE t1 (
    id INT,
    year_col INT
)
PARTITION BY RANGE (year_col) (
    PARTITION p0 VALUES LESS THAN (1991),
    PARTITION p1 VALUES LESS THAN (1995),
    PARTITION p2 VALUES LESS THAN (1999),
    PARTITION p3 VALUES LESS THAN (2003),
    PARTITION p4 VALUES LESS THAN (2007)
);

To delete all rows from partition p0, you can use the following statement:

ALTER TABLE t1 TRUNCATE PARTITION p0;

The statement just shown has the same effect as the following DELETE statement:

DELETE FROM t1 WHERE year_col < 1991;

When truncating multiple partitions, the partitions do not have to be contiguous: This can greatly
simplify delete operations on partitioned tables that would otherwise require very complex WHERE
conditions if done with DELETE statements. For example, this statement deletes all rows from
partitions p1 and p3:

ALTER TABLE t1 TRUNCATE PARTITION p1, p3;

An equivalent DELETE statement is shown here:

DELETE FROM t1 WHERE
    (year_col >= 1991 AND year_col < 1995)
    OR
    (year_col >= 2003 AND year_col < 2007);

You can also use the ALL keyword in place of the list of partition names; in this case, the statement
acts on all partitions in the table.

TRUNCATE PARTITION merely deletes rows; it does not alter the definition of the table itself, or of
any of its partitions.

Note

TRUNCATE PARTITION does not work with subpartitions.

You can verify that the rows were dropped by checking the INFORMATION_SCHEMA.PARTITIONS
table, using a query such as this one:

SELECT PARTITION_NAME, TABLE_ROWS
    FROM INFORMATION_SCHEMA.PARTITIONS
    WHERE TABLE_NAME = 't1';

TRUNCATE PARTITION is supported only for partitioned tables that use the MyISAM, InnoDB, or
MEMORY storage engine. It also works on BLACKHOLE tables (but has no effect). It is not supported
for ARCHIVE tables.

COALESCE PARTITION can be used with a table that is partitioned by HASH or KEY to reduce
the number of partitions by number. Suppose that you have created table t2 using the following
definition:

CREATE TABLE t2 (



ALTER TABLE Syntax

1312

    name VARCHAR (30),
    started DATE
)
PARTITION BY HASH( YEAR(started) )
PARTITIONS 6;

You can reduce the number of partitions used by t2 from 6 to 4 using the following statement:

ALTER TABLE t2 COALESCE PARTITION 2;

The data contained in the last number partitions will be merged into the remaining partitions. In this
case, partitions 4 and 5 will be merged into the first 4 partitions (the partitions numbered 0, 1, 2, and
3).

To change some but not all the partitions used by a partitioned table, you can use REORGANIZE
PARTITION. This statement can be used in several ways:

• To merge a set of partitions into a single partition. This can be done by naming several partitions in
the partition_names list and supplying a single definition for partition_definition.

• To split an existing partition into several partitions. You can accomplish this by naming a single
partition for partition_names and providing multiple partition_definitions.

• To change the ranges for a subset of partitions defined using VALUES LESS THAN or the value
lists for a subset of partitions defined using VALUES IN.

• This statement may also be used without the partition_names INTO
(partition_definitions) option on tables that are automatically partitioned using HASH
partitioning to force redistribution of data. (Currently, only NDB tables are automatically partitioned
in this way.) This is useful in NDB Cluster where, after you have added new NDB Cluster data
nodes online to an existing NDB Cluster, you wish to redistribute existing NDB Cluster table data
to the new data nodes. In such cases, you should invoke the statement with the ONLINE option; in
other words, as shown here:

ALTER ONLINE TABLE table REORGANIZE PARTITION;

You cannot perform other DDL concurrently with online table reorganization—that is, no other DDL
statements can be issued while an ALTER ONLINE TABLE ... REORGANIZE PARTITION
statement is executing. For more information about adding NDB Cluster data nodes online, see
Section 18.5.13, “Adding NDB Cluster Data Nodes Online”.

ALTER ONLINE TABLE ... REORGANIZE PARTITION does not work with tables which were
created using the MAX_ROWS option, because it uses the constant MAX_ROWS value specified in
the original CREATE TABLE statement to determine the number of partitions required, so no new
partitions are created. Beginning with MySQL NDB Cluster 7.2.6, you can use ALTER ONLINE
TABLE ... MAX_ROWS=rows to increase the maximum number of rows for such a table; in this
case, ALTER ONLINE TABLE ... REORGANIZE PARTITION is not needed (and causes an
error if executed). The value of rows must be greater than the value specified for MAX_ROWS in the
original CREATE TABLE statement for this to work.

Attempting to use REORGANIZE PARTITION without the partition_names INTO
(partition_definitions) option on explicitly partitioned tables results in the error
REORGANIZE PARTITION without parameters can only be used on auto-
partitioned tables using HASH partitioning.

Note

For partitions that have not been explicitly named, MySQL automatically
provides the default names p0, p1, p2, and so on. The same is true with
regard to subpartitions.



ALTER TABLE Syntax

1313

For more detailed information about and examples of ALTER TABLE ... REORGANIZE
PARTITION statements, see Section 19.3.1, “Management of RANGE and LIST Partitions”.

• Several additional options provide partition maintenance and repair functionality analogous to that
implemented for nonpartitioned tables by statements such as CHECK TABLE and REPAIR TABLE
(which are also supported for partitioned tables; see Section 13.7.2, “Table Maintenance Statements”
for more information). These include ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE
PARTITION, REBUILD PARTITION, and REPAIR PARTITION. Each of these options takes a
partition_names clause consisting of one or more names of partitions, separated by commas.
The partitions must already exist in the table to be altered. You can also use the ALL keyword in
place of partition_names, in which case the statement acts on all partitions in the table. For more
information and examples, see Section 19.3.3, “Maintenance of Partitions”.

Prior to MySQL 5.5.30, it was not safe to execute multiple concurrent REBUILD TABLE operations
on partitioned tables, whether on the same or different tables. (Bug #14589559, Bug #66645)

Some MySQL storage engines, such as InnoDB, do not support per-partition optimization. For a
partitioned table using such a storage engine, ALTER TABLE ... OPTIMIZE PARTITION rebuilds
the entire table. This is a known issue. Beginning with MySQL 5.5.30, running this statement on such
a table causes the entire table to rebuilt and analyzed, and an appropriate warning to be issued.
(Bug #11751825, Bug #42822)

To work around this problem, use the statements ALTER TABLE ... REBUILD PARTITION and
ALTER TABLE ... ANALYZE PARTITION instead.

The ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, and REPAIR
PARTITION options are not permitted for tables which are not partitioned.

• REMOVE PARTITIONING enables you to remove a table's partitioning without otherwise affecting the
table or its data. This option can be combined with other ALTER TABLE options such as those used
to add, drop, or rename columns or indexes.

• Using the ENGINE option with ALTER TABLE changes the storage engine used by the table without
affecting the partitioning.

It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITIONING
clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITIONING
clause must be specified last after any other specifications.

The ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REORGANIZE PARTITION,
ANALYZE PARTITION, CHECK PARTITION, and REPAIR PARTITION options cannot be combined
with other alter specifications in a single ALTER TABLE, since the options just listed act on individual
partitions. For more information, see Section 13.1.7.1, “ALTER TABLE Partition Operations”.

Only a single instance of any one of the following options can be used in a given ALTER TABLE
statement: PARTITION BY, ADD PARTITION, DROP PARTITION, TRUNCATE PARTITION,
REORGANIZE PARTITION, or COALESCE PARTITION, ANALYZE PARTITION, CHECK PARTITION,
OPTIMIZE PARTITION, REBUILD PARTITION, REMOVE PARTITIONING.

For example, the following two statements are invalid:

ALTER TABLE t1 ANALYZE PARTITION p1, ANALYZE PARTITION p2;

ALTER TABLE t1 ANALYZE PARTITION p1, CHECK PARTITION p2;

In the first case, you can analyze partitions p1 and p2 of table t1 concurrently using a single statement
with a single ANALYZE PARTITION option that lists both of the partitions to be analyzed, like this:

ALTER TABLE t1 ANALYZE PARTITION p1, p2;



ALTER TABLE Syntax

1314

In the second case, it is not possible to perform ANALYZE and CHECK operations on different partitions
of the same table concurrently. Instead, you must issue two separate statements, like this:

ALTER TABLE t1 ANALYZE PARTITION p1;
ALTER TABLE t1 CHECK PARTITION p2;

ANALYZE, CHECK, OPTIMIZE, REBUILD, REPAIR, and TRUNCATE operations are not supported for
subpartitions.

13.1.7.2 ALTER TABLE Online Operations in NDB Cluster 7.2

Operations that add and drop indexes on variable-width columns of NDBCLUSTER tables occur
online. Online operations are noncopying; that is, they do not require that indexes be re-created.
They do not lock the table being altered from access by other API nodes in an NDB Cluster (but see
Limitations later in this section). Such operations do not require single user mode for NDBCLUSTER
table alterations made in a cluster with multiple API nodes; transactions can continue uninterrupted
during online DDL operations.

The ONLINE keyword can be used to perform online ADD COLUMN, ADD INDEX (including CREATE
INDEX statements), and DROP INDEX operations on NDBCLUSTER tables. Online renaming of
NDBCLUSTER tables is also supported.

The ONLINE and OFFLINE keywords are supported only in NDB Cluster. For standard MySQL Server
5.5 releases:

• The server determines automatically whether an ADD INDEX or DROP INDEX operation can be
(and is) performed online or offline; if the column is of a variable-width data type, the operation is
performed online. It is not possible to override the server behavior in this regard.

• Attempting to use the ONLINE or OFFLINE keyword in an ALTER TABLE, CREATE INDEX, or DROP
INDEX statement results in an error.

Currently you cannot add disk-based columns to NDBCLUSTER tables online. This means that, if you
wish to add an in-memory column to an NDBCLUSTER table that uses a table-level STORAGE DISK
option, you must declare the new column as using memory-based storage explicitly. For example—
assuming that you have already created tablespace ts1—suppose that you create table t1 as follows:

mysql> CREATE TABLE t1 (
     >     c1 INT NOT NULL PRIMARY KEY,
     >     c2 VARCHAR(30)
     >     )
     >     TABLESPACE ts1 STORAGE DISK
     >     ENGINE NDBCLUSTER;
Query OK, 0 rows affected (1.73 sec)
Records: 0  Duplicates: 0  Warnings: 0

You can add a new in-memory column to this table online as shown here:

mysql> ALTER ONLINE TABLE t1 ADD COLUMN c3 INT COLUMN_FORMAT DYNAMIC STORAGE MEMORY;
Query OK, 0 rows affected (1.25 sec)
Records: 0  Duplicates: 0  Warnings: 0

This statement fails if the STORAGE MEMORY option is omitted:

mysql> ALTER ONLINE TABLE t1 ADD COLUMN c3 INT COLUMN_FORMAT DYNAMIC;
ERROR 1235 (42000): This version of MySQL doesn't yet support
'ALTER ONLINE TABLE t1 ADD COLUMN c3 INT COLUMN_FORMAT DYNAMIC'

If you omit the COLUMN_FORMAT DYNAMIC option, the dynamic column format is employed
automatically, but a warning is issued, as shown here:



ALTER TABLE Syntax

1315

mysql> ALTER ONLINE TABLE t1 ADD COLUMN c3 INT STORAGE MEMORY;
Query OK, 0 rows affected, 1 warning (1.17 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> SHOW WARNINGS;
+---------+------+---------------------------------------------------------------+
| Level   | Code | Message                                                       |
+---------+------+---------------------------------------------------------------+
| Warning | 1478 | Converted FIXED field to DYNAMIC to enable on-line ADD COLUMN |
+---------+------+---------------------------------------------------------------+
1 row in set (0.00 sec)

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
       Table: t1
Create Table: CREATE TABLE `t1` (
  `c1` int(11) NOT NULL,
  `c2` varchar(30) DEFAULT NULL,
  `c3` int(11) /*!50120 STORAGE MEMORY */ /*!50120 COLUMN_FORMAT DYNAMIC */ DEFAULT NULL,
  `t4` int(11) /*!50120 STORAGE MEMORY */ DEFAULT NULL,
  PRIMARY KEY (`c1`)
) /*!50100 TABLESPACE ts_1 STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.03 sec)

Note

The STORAGE and COLUMN_FORMAT keywords are supported only in NDB
Cluster; in any other version of MySQL, attempting to use either of these
keywords in a CREATE TABLE or ALTER TABLE statement results in an error.

It is also possible to use the statement ALTER ONLINE TABLE ... REORGANIZE PARTITION with
no partition_names INTO (partition_definitions) option on NDB tables. This can be used
to redistribute NDB Cluster data among new data nodes that have been added to the cluster online.
For more information about this statement, see Section 13.1.7.1, “ALTER TABLE Partition Operations”
For more information about adding data nodes online to an NDB Cluster, see Section 18.5.13, “Adding
NDB Cluster Data Nodes Online”.

Limitations of NDBCLUSTER online operations

Online DROP COLUMN operations are not supported.

Online ALTER TABLE, CREATE INDEX, or DROP INDEX statements that add columns or add or drop
indexes are subject to the following limitations:

• A given online ALTER TABLE can use only one of ADD COLUMN, ADD INDEX, or DROP INDEX.
One or more columns can be added online in a single statement; only one index may be created or
dropped online in a single statement.

• An ALTER TABLE statement that performs a rename while using the ONLINE or OFFLINE keyword
cannot perform any other operations, including but not limited to ADD COLUMN, ADD INDEX, or DROP
INDEX. Beginning with MySQL NDB Cluster 7.2.11, such statements are specifically disallowed, and
fail with ER_NOT_SUPPORTED_YET. (Bug #16021021)

• The table being altered is not locked with respect to API nodes other than the one on which an online
ALTER TABLE ADD COLUMN, ADD INDEX, or DROP INDEX operation (or CREATE INDEX or DROP
INDEX statement) is run. However, the table is locked against any other operations originating on the
same API node while the online operation is being executed.

• The table to be altered must have an explicit primary key; the hidden primary key created by the NDB
storage engine is not sufficient for this purpose.

• The storage engine used by the table cannot be changed online.

• When used with NDB Cluster Disk Data tables, it is not possible to change the storage type (DISK or
MEMORY) of a column online. This means, that when you add or drop an index in such a way that the



ALTER TABLE Syntax

1316

operation would be performed online, and you want the storage type of the column or columns to be
changed, you must use the OFFLINE keyword in the statement that adds or drops the index.

Columns to be added online cannot use the BLOB or TEXT type, and must meet the following criteria:

• The columns must be dynamic; that is, it must be possible to create them using COLUMN_FORMAT
DYNAMIC. If you omit the COLUMN_FORMAT DYNAMIC option, the dynamic column format is
employed automatically.

• The columns must permit NULL values and not have any explicit default value other than NULL.
Columns added online are automatically created as DEFAULT NULL, as can be seen here:

mysql> CREATE TABLE t1 (
     >     c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
     >     ) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER ONLINE TABLE t1
     >     ADD COLUMN c2 INT,
     >     ADD COLUMN c3 INT;
Query OK, 0 rows affected, 2 warnings (0.93 sec)

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
       Table: t1
Create Table: CREATE TABLE `t1` (
  `c1` int(11) NOT NULL AUTO_INCREMENT,
  `c2` int(11) DEFAULT NULL,
  `c3` int(11) DEFAULT NULL,
  PRIMARY KEY (`c1`)
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

• The columns must be added following any existing columns. If you attempt to add a column online
before any existing columns or using the FIRST keyword, the statement fails with an error.

• Existing table columns cannot be reordered online.

For online ALTER TABLE operations on NDB tables, fixed-format columns are converted to dynamic
when they are added online, or when indexes are created or dropped online, as shown here:

mysql> CREATE TABLE t1 (
     >     c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
     >     ) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER ONLINE TABLE t1 ADD COLUMN c2 INT, ADD COLUMN c3 INT;
Query OK, 0 rows affected, 2 warnings (0.93 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> SHOW WARNINGS;
+---------+------+---------------------------------------------------------------+
| Level   | Code | Message                                                       |
+---------+------+---------------------------------------------------------------+
| Warning | 1475 | Converted FIXED field to DYNAMIC to enable on-line ADD COLUMN |
| Warning | 1475 | Converted FIXED field to DYNAMIC to enable on-line ADD COLUMN |
+---------+------+---------------------------------------------------------------+
2 rows in set (0.00 sec)

Note

Existing columns, including the table's primary key, need not be dynamic; only
the column or columns to be added online must be dynamic.

mysql> CREATE TABLE t2 (
     >     c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY COLUMN_FORMAT FIXED



ALTER TABLE Syntax

1317

     >     ) ENGINE=NDB;
Query OK, 0 rows affected (2.10 sec)

mysql> ALTER ONLINE TABLE t2 ADD COLUMN c2 INT;
Query OK, 0 rows affected, 1 warning (0.78 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> SHOW WARNINGS;
+---------+------+---------------------------------------------------------------+
| Level   | Code | Message                                                       |
+---------+------+---------------------------------------------------------------+
| Warning | 1475 | Converted FIXED field to DYNAMIC to enable on-line ADD COLUMN |
+---------+------+---------------------------------------------------------------+
1 row in set (0.00 sec)

Columns are not converted from FIXED to DYNAMIC column format by renaming operations. For more
information about COLUMN_FORMAT, see Section 13.1.17, “CREATE TABLE Syntax”.

The KEY, CONSTRAINT, and IGNORE keywords are supported in ALTER TABLE statements using the
ONLINE keyword.

13.1.7.3 ALTER TABLE Examples

Begin with a table t1 that is created as shown here:

CREATE TABLE t1 (a INTEGER,b CHAR(10));

To rename the table from t1 to t2:

ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to
change column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

ALTER TABLE t2 ADD d TIMESTAMP;

To add an index on column d and a UNIQUE index on column a:

ALTER TABLE t2 ADD INDEX (d), ADD UNIQUE (a);

To remove column c:

ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
  ADD PRIMARY KEY (c);

We indexed c (as a PRIMARY KEY) because AUTO_INCREMENT columns must be indexed, and we
declare c as NOT NULL because primary key columns cannot be NULL.

For NDB tables, it is also possible to change the storage type used for a table or column. For example,
consider an NDB table created as shown here:

mysql> CREATE TABLE t1 (c1 INT) TABLESPACE ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.27 sec)



ALTER TABLE Syntax

1318

To convert this table to disk-based storage, you can use the following ALTER TABLE statement:

mysql> ALTER TABLE t1 TABLESPACE ts_1 STORAGE DISK;
Query OK, 0 rows affected (2.99 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
       Table: t1
Create Table: CREATE TABLE `t1` (
  `c1` int(11) DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */
ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

It is not necessary that the tablespace was referenced when the table was originally created; however,
the tablespace must be referenced by the ALTER TABLE:

mysql> CREATE TABLE t2 (c1 INT) ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.00 sec)

mysql> ALTER TABLE t2 STORAGE DISK;
ERROR 1005 (HY000): Can't create table 'c.#sql-1750_3' (errno: 140)
mysql> ALTER TABLE t2 TABLESPACE ts_1 STORAGE DISK;
Query OK, 0 rows affected (3.42 sec)
Records: 0  Duplicates: 0  Warnings: 0
mysql> SHOW CREATE TABLE t2\G
*************************** 1. row ***************************
       Table: t1
Create Table: CREATE TABLE `t2` (
  `c1` int(11) DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */
ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

To change the storage type of an individual column, you can use ALTER TABLE ... MODIFY
[COLUMN]. For example, suppose you create an NDB Cluster Disk Data table with two columns, using
this CREATE TABLE statement:

mysql> CREATE TABLE t3 (c1 INT, c2 INT)
    ->     TABLESPACE ts_1 STORAGE DISK ENGINE NDB;
Query OK, 0 rows affected (1.34 sec)

To change column c2 from disk-based to in-memory storage, include a STORAGE MEMORY clause in
the column definition used by the ALTER TABLE statement, as shown here:

mysql> ALTER TABLE t3 MODIFY c2 INT STORAGE MEMORY;
Query OK, 0 rows affected (3.14 sec)
Records: 0  Duplicates: 0  Warnings: 0

You can make an in-memory column into a disk-based column by using STORAGE DISK in a similar
fashion.

Column c1 uses disk-based storage, since this is the default for the table (determined by the table-
level STORAGE DISK clause in the CREATE TABLE statement). However, column c2 uses in-memory
storage, as can be seen here in the output of SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE t3\G
*************************** 1. row ***************************
       Table: t3
Create Table: CREATE TABLE `t3` (
  `c1` int(11) DEFAULT NULL,
  `c2` int(11) /*!50120 STORAGE MEMORY */ DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.02 sec)



ALTER TABLESPACE Syntax

1319

When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers
automatically. For MyISAM tables, you can set the first sequence number by executing SET
INSERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table option.
See Section 5.1.5, “Server System Variables”.

With MyISAM tables, if you do not change the AUTO_INCREMENT column, the sequence number is not
affected. If you drop an AUTO_INCREMENT column and then add another AUTO_INCREMENT column,
the numbers are resequenced beginning with 1.

When replication is used, adding an AUTO_INCREMENT column to a table might not produce the
same ordering of the rows on the slave and the master. This occurs because the order in which the
rows are numbered depends on the specific storage engine used for the table and the order in which
the rows were inserted. If it is important to have the same order on the master and slave, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to the table t1, the following statements produce a new table t2 identical to
t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY)
SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

This set of statements will also produce a new table t2 identical to t1, with the addition of an
AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both master and slave, all columns of t1
must be referenced in the ORDER BY clause.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column,
the final step is to drop the original table and then rename the copy:

DROP TABLE t1;
ALTER TABLE t2 RENAME t1;

13.1.8 ALTER TABLESPACE Syntax

ALTER TABLESPACE tablespace_name
    {ADD|DROP} DATAFILE 'file_name'
    [INITIAL_SIZE [=] size]
    [WAIT]
    ENGINE [=] engine_name

This statement can be used either to add a new data file, or to drop a data file from a tablespace.

The ADD DATAFILE variant enables you to specify an initial size using an INITIAL_SIZE clause,
where size is measured in bytes; the default value is 134217728 (128 MB). Prior to MySQL NDB
Cluster 7.2.14, this value was required to be specified using digits (Bug #13116514, Bug #16104705,
Bug #62858); in MySQL NDB Cluster 7.2.14 and later, you may optionally follow size with a one-letter
abbreviation for an order of magnitude, similar to those used in my.cnf. Generally, this is one of the
letters M (megabytes) or G (gigabytes).

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data



ALTER VIEW Syntax

1320

object of a given type). For example, you cannot have a tablespace and an data
file with the same name, or an undo log file and a tablespace with the same
name.

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

INITIAL_SIZE is rounded, explicitly, as for CREATE TABLESPACE.

Once a data file has been created, its size cannot be changed; however, you can add more data files to
the tablespace using additional ALTER TABLESPACE ... ADD DATAFILE statements.

Using DROP DATAFILE with ALTER TABLESPACE drops the data file 'file_name' from the
tablespace. You cannot drop a data file from a tablespace which is in use by any table; in other
words, the data file must be empty (no extents used). See Section 18.5.12.1, “NDB Cluster Disk Data
Objects”. In addition, any data file to be dropped must previously have been added to the tablespace
with CREATE TABLESPACE or ALTER TABLESPACE.

Both ALTER TABLESPACE ... ADD DATAFILE and ALTER TABLESPACE ... DROP DATAFILE
require an ENGINE clause which specifies the storage engine used by the tablespace. Currently, the
only accepted values for engine_name are NDB and NDBCLUSTER.

WAIT is parsed but otherwise ignored, and so has no effect in MySQL 5.5. It is intended for future
expansion.

When ALTER TABLESPACE ... ADD DATAFILE is used with ENGINE = NDB, a data file is created
on each Cluster data node. You can verify that the data files were created and obtain information about
them by querying the INFORMATION_SCHEMA.FILES table. For example, the following query shows
all data files belonging to the tablespace named newts:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_NAME, EXTRA
    -> FROM INFORMATION_SCHEMA.FILES
    -> WHERE TABLESPACE_NAME = 'newts' AND FILE_TYPE = 'DATAFILE';
+--------------------+--------------+----------------+
| LOGFILE_GROUP_NAME | FILE_NAME    | EXTRA          |
+--------------------+--------------+----------------+
| lg_3               | newdata.dat  | CLUSTER_NODE=3 |
| lg_3               | newdata.dat  | CLUSTER_NODE=4 |
| lg_3               | newdata2.dat | CLUSTER_NODE=3 |
| lg_3               | newdata2.dat | CLUSTER_NODE=4 |
+--------------------+--------------+----------------+
2 rows in set (0.03 sec)

See Section 21.29.1, “The INFORMATION_SCHEMA FILES Table”.

ALTER TABLESPACE is useful only with Disk Data storage for NDB Cluster. See Section 18.5.12,
“NDB Cluster Disk Data Tables”.

13.1.9 ALTER VIEW Syntax

ALTER
    [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
    [DEFINER = { user | CURRENT_USER }]
    [SQL SECURITY { DEFINER | INVOKER }]
    VIEW view_name [(column_list)]
    AS select_statement
    [WITH [CASCADED | LOCAL] CHECK OPTION]

This statement changes the definition of a view, which must exist. The syntax is similar to that for
CREATE VIEW and the effect is the same as for CREATE OR REPLACE VIEW. See Section 13.1.20,
“CREATE VIEW Syntax”. This statement requires the CREATE VIEW and DROP privileges for the view,
and some privilege for each column referred to in the SELECT statement. ALTER VIEW is permitted
only to the definer or users with the SUPER privilege.



CREATE DATABASE Syntax

1321

13.1.10 CREATE DATABASE Syntax

CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name
    [create_specification] ...

create_specification:
    [DEFAULT] CHARACTER SET [=] charset_name
  | [DEFAULT] COLLATE [=] collation_name

CREATE DATABASE creates a database with the given name. To use this statement, you need the
CREATE privilege for the database. CREATE SCHEMA is a synonym for CREATE DATABASE.

An error occurs if the database exists and you did not specify IF NOT EXISTS.

As of MySQL 5.5.3, CREATE DATABASE is not permitted within a session that has an active LOCK
TABLES statement.

create_specification options specify database characteristics. Database characteristics are
stored in the db.opt file in the database directory. The CHARACTER SET clause specifies the default
database character set. The COLLATE clause specifies the default database collation. Section 10.1,
“Character Set Support”, discusses character set and collation names.

A database in MySQL is implemented as a directory containing files that correspond to tables in
the database. Because there are no tables in a database when it is initially created, the CREATE
DATABASE statement creates only a directory under the MySQL data directory and the db.opt file.
Rules for permissible database names are given in Section 9.2, “Schema Object Names”. If a database
name contains special characters, the name for the database directory contains encoded versions of
those characters as described in Section 9.2.3, “Mapping of Identifiers to File Names”.

If you manually create a directory under the data directory (for example, with mkdir), the server
considers it a database directory and it shows up in the output of SHOW DATABASES.

You can also use the mysqladmin program to create databases. See Section 4.5.2, “mysqladmin —
Client for Administering a MySQL Server”.

13.1.11 CREATE EVENT Syntax

CREATE
    [DEFINER = { user | CURRENT_USER }]
    EVENT
    [IF NOT EXISTS]
    event_name
    ON SCHEDULE schedule
    [ON COMPLETION [NOT] PRESERVE]
    [ENABLE | DISABLE | DISABLE ON SLAVE]
    [COMMENT 'comment']
    DO event_body;

schedule:
    AT timestamp [+ INTERVAL interval] ...
  | EVERY interval
    [STARTS timestamp [+ INTERVAL interval] ...]
    [ENDS timestamp [+ INTERVAL interval] ...]

interval:
    quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |
              WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |
              DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

This statement creates and schedules a new event. The event will not run unless the Event Scheduler
is enabled. For information about checking Event Scheduler status and enabling it if necessary, see
Section 20.4.2, “Event Scheduler Configuration”.



CREATE EVENT Syntax

1322

CREATE EVENT requires the EVENT privilege for the schema in which the event is to be created. It
might also require the SUPER privilege, depending on the DEFINER value, as described later in this
section.

The minimum requirements for a valid CREATE EVENT statement are as follows:

• The keywords CREATE EVENT plus an event name, which uniquely identifies the event in a database
schema.

• An ON SCHEDULE clause, which determines when and how often the event executes.

• A DO clause, which contains the SQL statement to be executed by an event.

This is an example of a minimal CREATE EVENT statement:

CREATE EVENT myevent
    ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
    DO
      UPDATE myschema.mytable SET mycol = mycol + 1;

The previous statement creates an event named myevent. This event executes once—one
hour following its creation—by running an SQL statement that increments the value of the
myschema.mytable table's mycol column by 1.

The event_name must be a valid MySQL identifier with a maximum length of 64 characters. Event
names are not case sensitive, so you cannot have two events named myevent and MyEvent in the
same schema. In general, the rules governing event names are the same as those for names of stored
routines. See Section 9.2, “Schema Object Names”.

An event is associated with a schema. If no schema is indicated as part of event_name, the default
(current) schema is assumed. To create an event in a specific schema, qualify the event name with a
schema using schema_name.event_name syntax.

The DEFINER clause specifies the MySQL account to be used when checking access privileges
at event execution time. If a user value is given, it should be a MySQL account specified as
'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The default DEFINER value
is the user who executes the CREATE EVENT statement. This is the same as specifying DEFINER =
CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only permitted user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not exist, a warning is generated.

• Although it is possible to create an event with a nonexistent DEFINER account, an error occurs at
event execution time if the account does not exist.

For more information about event security, see Section 20.6, “Access Control for Stored Programs and
Views”.

Within an event, the CURRENT_USER() function returns the account used to check privileges at event
execution time, which is the DEFINER user. For information about user auditing within events, see
Section 6.3.8, “SQL-Based MySQL Account Activity Auditing”.

IF NOT EXISTS has the same meaning for CREATE EVENT as for CREATE TABLE: If an event
named event_name already exists in the same schema, no action is taken, and no error results.
(However, a warning is generated in such cases.)

The ON SCHEDULE clause determines when, how often, and for how long the event_body defined for
the event repeats. This clause takes one of two forms:



CREATE EVENT Syntax

1323

• AT timestamp is used for a one-time event. It specifies that the event executes one time only
at the date and time given by timestamp, which must include both the date and time, or must be
an expression that resolves to a datetime value. You may use a value of either the DATETIME or
TIMESTAMP type for this purpose. If the date is in the past, a warning occurs, as shown here:

mysql> SELECT NOW();
+---------------------+
| NOW()               |
+---------------------+
| 2006-02-10 23:59:01 |
+---------------------+
1 row in set (0.04 sec)

mysql> CREATE EVENT e_totals
    ->     ON SCHEDULE AT '2006-02-10 23:59:00'
    ->     DO INSERT INTO test.totals VALUES (NOW());
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Note
   Code: 1588
Message: Event execution time is in the past and ON COMPLETION NOT
         PRESERVE is set. The event was dropped immediately after
         creation.

CREATE EVENT statements which are themselves invalid—for whatever reason—fail with an error.

You may use CURRENT_TIMESTAMP to specify the current date and time. In such a case, the event
acts as soon as it is created.

To create an event which occurs at some point in the future relative to the current date and time—
such as that expressed by the phrase “three weeks from now”—you can use the optional clause
+ INTERVAL interval. The interval portion consists of two parts, a quantity and a unit of
time, and follows the same syntax rules that govern intervals used in the DATE_ADD() function (see
Section 12.7, “Date and Time Functions”. The units keywords are also the same, except that you
cannot use any units involving microseconds when defining an event. With some interval types,
complex time units may be used. For example, “two minutes and ten seconds” can be expressed as
+ INTERVAL '2:10' MINUTE_SECOND.

You can also combine intervals. For example, AT CURRENT_TIMESTAMP + INTERVAL 3 WEEK
+ INTERVAL 2 DAY is equivalent to “three weeks and two days from now”. Each portion of such a
clause must begin with + INTERVAL.

• To repeat actions at a regular interval, use an EVERY clause. The EVERY keyword is followed by an
interval as described in the previous discussion of the AT keyword. (+ INTERVAL is not used
with EVERY.) For example, EVERY 6 WEEK means “every six weeks”.

Although + INTERVAL clauses are not permitted in an EVERY clause, you can use the same
complex time units permitted in a + INTERVAL.

An EVERY clause may contain an optional STARTS clause. STARTS is followed by a timestamp
value that indicates when the action should begin repeating, and may also use + INTERVAL
interval to specify an amount of time “from now”. For example, EVERY 3 MONTH STARTS
CURRENT_TIMESTAMP + INTERVAL 1 WEEK means “every three months, beginning one
week from now”. Similarly, you can express “every two weeks, beginning six hours and fifteen
minutes from now” as EVERY 2 WEEK STARTS CURRENT_TIMESTAMP + INTERVAL '6:15'
HOUR_MINUTE. Not specifying STARTS is the same as using STARTS CURRENT_TIMESTAMP—that
is, the action specified for the event begins repeating immediately upon creation of the event.

An EVERY clause may contain an optional ENDS clause. The ENDS keyword is followed by a
timestamp value that tells MySQL when the event should stop repeating. You may also use +
INTERVAL interval with ENDS; for instance, EVERY 12 HOUR STARTS CURRENT_TIMESTAMP



CREATE EVENT Syntax

1324

+ INTERVAL 30 MINUTE ENDS CURRENT_TIMESTAMP + INTERVAL 4 WEEK is equivalent to
“every twelve hours, beginning thirty minutes from now, and ending four weeks from now”. Not using
ENDS means that the event continues executing indefinitely.

ENDS supports the same syntax for complex time units as STARTS does.

You may use STARTS, ENDS, both, or neither in an EVERY clause.

If a repeating event does not terminate within its scheduling interval, the result may be multiple
instances of the event executing simultaneously. If this is undesirable, you should institute a
mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK()
function, or row or table locking.

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables
to obtain any of the timestamp or interval values which it contains. You may not use stored
functions or user-defined functions in such expressions, nor may you use any table references;
however, you may use SELECT FROM DUAL. This is true for both CREATE EVENT and ALTER EVENT
statements. References to stored functions, user-defined functions, and tables in such cases are
specifically not permitted, and fail with an error (see Bug #22830).

Times in the ON SCHEDULE clause are interpreted using the current session time_zone value. This
becomes the event time zone; that is, the time zone that is used for event scheduling and is in effect
within the event as it executes. These times are converted to UTC and stored along with the event time
zone in the mysql.event table. This enables event execution to proceed as defined regardless of any
subsequent changes to the server time zone or daylight saving time effects. For additional information
about representation of event times, see Section 20.4.4, “Event Metadata”. See also Section 13.7.5.19,
“SHOW EVENTS Syntax”, and Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”.

Normally, once an event has expired, it is immediately dropped. You can override this behavior by
specifying ON COMPLETION PRESERVE. Using ON COMPLETION NOT PRESERVE merely makes the
default nonpersistent behavior explicit.

You can create an event but prevent it from being active using the DISABLE keyword. Alternatively,
you can use ENABLE to make explicit the default status, which is active. This is most useful in
conjunction with ALTER EVENT (see Section 13.1.2, “ALTER EVENT Syntax”).

A third value may also appear in place of ENABLE or DISABLE; DISABLE ON SLAVE is set for the
status of an event on a replication slave to indicate that the event was created on the master and
replicated to the slave, but is not executed on the slave. See Section 17.4.1.12, “Replication of Invoked
Features”.

You may supply a comment for an event using a COMMENT clause. comment may be any string of up
to 64 characters that you wish to use for describing the event. The comment text, being a string literal,
must be surrounded by quotation marks.

The DO clause specifies an action carried by the event, and consists of an SQL statement. Nearly
any valid MySQL statement that can be used in a stored routine can also be used as the action
statement for a scheduled event. (See Section C.1, “Restrictions on Stored Programs”.) For example,
the following event e_hourly deletes all rows from the sessions table once per hour, where this
table is part of the site_activity schema:

CREATE EVENT e_hourly
    ON SCHEDULE
      EVERY 1 HOUR
    COMMENT 'Clears out sessions table each hour.'
    DO
      DELETE FROM site_activity.sessions;

MySQL stores the sql_mode system variable setting in effect when an event is created or altered, and
always executes the event with this setting in force, regardless of the current server SQL mode when
the event begins executing.



CREATE EVENT Syntax

1325

A CREATE EVENT statement that contains an ALTER EVENT statement in its DO clause appears to
succeed; however, when the server attempts to execute the resulting scheduled event, the execution
fails with an error.

Note

Statements such as SELECT or SHOW that merely return a result set have no
effect when used in an event; the output from these is not sent to the MySQL
Monitor, nor is it stored anywhere. However, you can use statements such as
SELECT ... INTO and INSERT INTO ... SELECT that store a result. (See
the next example in this section for an instance of the latter.)

The schema to which an event belongs is the default schema for table references in the DO clause. Any
references to tables in other schemas must be qualified with the proper schema name.

As with stored routines, you can use compound-statement syntax in the DO clause by using the BEGIN
and END keywords, as shown here:

delimiter |

CREATE EVENT e_daily
    ON SCHEDULE
      EVERY 1 DAY
    COMMENT 'Saves total number of sessions then clears the table each day'
    DO
      BEGIN
        INSERT INTO site_activity.totals (time, total)
          SELECT CURRENT_TIMESTAMP, COUNT(*)
            FROM site_activity.sessions;
        DELETE FROM site_activity.sessions;
      END |

delimiter ;

This example uses the delimiter command to change the statement delimiter. See Section 20.1,
“Defining Stored Programs”.

More complex compound statements, such as those used in stored routines, are possible in an event.
This example uses local variables, an error handler, and a flow control construct:

delimiter |

CREATE EVENT e
    ON SCHEDULE
      EVERY 5 SECOND
    DO
      BEGIN
        DECLARE v INTEGER;
        DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;

        SET v = 0;

        WHILE v < 5 DO
          INSERT INTO t1 VALUES (0);
          UPDATE t2 SET s1 = s1 + 1;
          SET v = v + 1;
        END WHILE;
    END |

delimiter ;

There is no way to pass parameters directly to or from events; however, it is possible to invoke a stored
routine with parameters within an event:

CREATE EVENT e_call_myproc



CREATE FUNCTION Syntax

1326

    ON SCHEDULE
      AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
    DO CALL myproc(5, 27);

If an event's definer has the SUPER privilege, the event can read and write global variables. As granting
this privilege entails a potential for abuse, extreme care must be taken in doing so.

Generally, any statements that are valid in stored routines may be used for action statements executed
by events. For more information about statements permitted within stored routines, see Section 20.2.1,
“Stored Routine Syntax”. You can create an event as part of a stored routine, but an event cannot be
created by another event.

13.1.12 CREATE FUNCTION Syntax

The CREATE FUNCTION statement is used to create stored functions and user-defined functions
(UDFs):

• For information about creating stored functions, see Section 13.1.15, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”.

• For information about creating user-defined functions, see Section 13.7.3.1, “CREATE FUNCTION
Syntax for User-Defined Functions”.

13.1.13 CREATE INDEX Syntax

CREATE [ONLINE|OFFLINE] [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
    [index_type]
    ON tbl_name (index_col_name,...)
    [index_option] ...

index_col_name:
    col_name [(length)] [ASC | DESC]

index_option:
    KEY_BLOCK_SIZE [=] value
  | index_type
  | WITH PARSER parser_name
  | COMMENT 'string'

index_type:
    USING {BTREE | HASH}

CREATE INDEX is mapped to an ALTER TABLE statement to create indexes. See Section 13.1.7,
“ALTER TABLE Syntax”. CREATE INDEX cannot be used to create a PRIMARY KEY; use ALTER
TABLE instead. For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE.
See Section 13.1.17, “CREATE TABLE Syntax”. This guideline is especially important for InnoDB
tables, where the primary key determines the physical layout of rows in the data file. CREATE INDEX
enables you to add indexes to existing tables.

A column list of the form (col1, col2, ...) creates a multiple-column index. Index key values are
formed by concatenating the values of the given columns.

For string columns, indexes can be created that use only the leading part of column values, using
col_name(length) syntax to specify an index prefix length:

• Prefixes can be specified for CHAR, VARCHAR, BINARY, and VARBINARY column indexes.

• Prefixes must be specified for BLOB and TEXT column indexes.

• Prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE, ALTER TABLE,
and CREATE INDEX statements is interpreted as number of characters for nonbinary string types
(CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY, VARBINARY, BLOB).



CREATE INDEX Syntax

1327

Take this into account when specifying a prefix length for a nonbinary string column that uses a
multibyte character set.

• For spatial columns, prefix values cannot be given, as described later in this section.

The statement shown here creates an index using the first 10 characters of the name column
(assuming that name has a nonbinary string type):

CREATE INDEX part_of_name ON customer (name(10));

If names in the column usually differ in the first 10 characters, this index should not be much slower
than an index created from the entire name column. Also, using column prefixes for indexes can make
the index file much smaller, which could save a lot of disk space and might also speed up INSERT
operations.

Prefix support and lengths of prefixes (where supported) are storage engine dependent. For example,
a prefix can be up to 767 bytes long for InnoDB tables or 3072 bytes if the innodb_large_prefix
option is enabled. For MyISAM tables, the prefix limit is 1000 bytes. The NDB storage engine does not
support prefixes (see Section 18.1.6.6, “Unsupported or Missing Features in NDB Cluster”).

Indexes on variable-width columns of NDBCLUSTER tables are created online; that is, without any
table copying. The table is not locked against access from other NDB Cluster API nodes, although it is
locked against other operations on the same API node for the duration of the operation. This is done
automatically by the server whenever it determines that it is possible to do so; you do not have to use
any special SQL syntax or server options to cause it to happen.

In standard MySQL 5.5 releases, it is not possible to override the server when it determines that an
index is to be created without table copying. In NDB Cluster, you can create indexes offline (which
causes the table to be locked to all API nodes in the cluster) using the OFFLINE keyword. The rules
and limitations governing CREATE OFFLINE INDEX and CREATE ONLINE INDEX are the same as
for ALTER OFFLINE TABLE ... ADD INDEX and ALTER ONLINE TABLE ... ADD INDEX. You
cannot cause the noncopying creation of an index that would normally be created offline by using the
ONLINE keyword: If it is not possible to perform the CREATE INDEX operation without table copying,
the server ignores the ONLINE keyword. For more information, see Section 13.1.7.2, “ALTER TABLE
Online Operations in NDB Cluster 7.2”.

The ONLINE and OFFLINE keywords are available only in NDB Cluster; attempting to use these
keywords in standard MySQL Server 5.5 releases results in a syntax error.

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs
if you try to add a new row with a key value that matches an existing row. For all engines, a UNIQUE
index permits multiple NULL values for columns that can contain NULL. If you specify a prefix value for
a column in a UNIQUE index, the column values must be unique within the prefix.

FULLTEXT indexes are supported only for MyISAM tables and can include only CHAR, VARCHAR,
and TEXT columns. Indexing always happens over the entire column; column prefix indexing is not
supported and any prefix length is ignored if specified. See Section 12.9, “Full-Text Search Functions”,
for details of operation.

The MyISAM, InnoDB, NDB, and ARCHIVE storage engines support spatial columns such as (POINT
and GEOMETRY. (Section 11.5, “Extensions for Spatial Data”, describes the spatial data types.)
However, support for spatial column indexing varies among engines. Spatial and nonspatial indexes
are available according to the following rules.

Spatial indexes (created using SPATIAL INDEX) have these characteristics:

• Available only for MyISAM tables. Specifying SPATIAL INDEX for other storage engines results in
an error.

• Indexed columns must be NOT NULL.

• Column prefix lengths are prohibited. The full width of each column is indexed.



CREATE INDEX Syntax

1328

Characteristics of nonspatial indexes (created with INDEX, UNIQUE, or PRIMARY KEY):

• Permitted for any storage engine that supports spatial columns except ARCHIVE.

• Columns can be NULL unless the index is a primary key.

• For each spatial column in a non-SPATIAL index except POINT columns, a column prefix length
must be specified. (This is the same requirement as for indexed BLOB columns.) The prefix length is
given in bytes.

• The index type for a non-SPATIAL index depends on the storage engine. Currently, B-tree is used.

• You can add an index on a column that can have NULL values only for MyISAM, InnoDB, and
MEMORY tables

• You can add an index on a BLOB or TEXT column only for MyISAM and InnoDB tables

An index_col_name specification can end with ASC or DESC. These keywords are permitted for
future extensions for specifying ascending or descending index value storage. Currently, they are
parsed but ignored; index values are always stored in ascending order.

Following the index column list, index options can be given. An index_option value can be any of
the following:

• KEY_BLOCK_SIZE [=] value

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index
key blocks. The value is treated as a hint; a different size could be used if necessary. A
KEY_BLOCK_SIZE value specified for an individual index definition overrides a table-level
KEY_BLOCK_SIZE value.

KEY_BLOCK_SIZE is not supported at the index level for InnoDB tables. See Section 13.1.17,
“CREATE TABLE Syntax”.

• index_type

Some storage engines permit you to specify an index type when creating an index. For example:

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index ON lookup (id) USING BTREE;

Table 13.1, “Index Types Per Storage Engine” shows the permissible index type values supported by
different storage engines. Where multiple index types are listed, the first one is the default when no
index type specifier is given. Storage engines not listed in the table do not support an index_type
clause in index definitions.

Table 13.1 Index Types Per Storage Engine

Storage Engine Permissible Index Types

MyISAM BTREE

InnoDB BTREE

MEMORY/HEAP HASH, BTREE

NDB BTREE, HASH (see note in text)

The index_type clause cannot be used for FULLTEXT INDEX or SPATIAL INDEX specifications.
Full-text index implementation is storage engine dependent. Spatial indexes are implemented as R-
tree indexes.

BTREE indexes are implemented by the NDB storage engine as T-tree indexes.



CREATE INDEX Syntax

1329

Note

For indexes on NDB table columns, the USING option can be specified only
for a unique index or primary key. USING HASH prevents the creation of an
ordered index; otherwise, creating a unique index or primary key on an NDB
table automatically results in the creation of both an ordered index and a hash
index, each of which indexes the same set of columns.

For unique indexes that include one or more NULL columns of an NDB table,
the hash index can be used only to look up literal values, which means that
IS [NOT] NULL conditions require a full scan of the table. One workaround
is to make sure that a unique index using one or more NULL columns on such
a table is always created in such a way that it includes the ordered index; that
is, avoid employing USING HASH when creating the index.

If you specify an index type that is not valid for a given storage engine, but another index type is
available that the engine can use without affecting query results, the engine uses the available type.
The parser recognizes RTREE as a type name, but currently this cannot be specified for any storage
engine.

Note

Use of the index_type option before the ON tbl_name clause is
deprecated; support for use of the option in this position will be removed in a
future MySQL release. If an index_type option is given in both the earlier
and later positions, the final option applies.

TYPE type_name is recognized as a synonym for USING type_name. However, USING is the
preferred form.

For the storage engines that support an index_type option, Table 13.2, “Storage Engine Index
Characteristics” shows some characteristics of index use.

Table 13.2 Storage Engine Index Characteristics

Storage
Engine

Index
Type

Index
Class

Stores
NULL
Values

Permits
Multiple
NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary
key

No No N/A N/A

Unique Yes Yes Index Index

InnoDB BTREE

Key Yes Yes Index Index

Primary
key

No No N/A N/A

Unique Yes Yes Index Index

BTREE

Key Yes Yes Index Index

InapplicableFULLTEXT Yes Yes Table Table

MyISAM

InapplicableSPATIAL No No N/A N/A

Primary
key

No No N/A N/A

Unique Yes Yes Index Index

HASH

Key Yes Yes Index Index

MEMORY

BTREE Primary No No N/A N/A



CREATE LOGFILE GROUP Syntax

1330

Storage
Engine

Index
Type

Index
Class

Stores
NULL
Values

Permits
Multiple
NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Unique Yes Yes Index Index

Key Yes Yes Index Index

Primary
key

No No Index Index

Unique Yes Yes Index Index

BTREE

Key Yes Yes Index Index

Primary No No Table (see note 1) Table (see note 1)

Unique Yes Yes Table (see note 1) Table (see note 1)

NDB

HASH

Key Yes Yes Table (see note 1) Table (see note 1)

Table note:

1. If USING HASH is specified that prevents creation of an implicit ordered index.

• WITH PARSER parser_name

This option can be used only with FULLTEXT indexes. It associates a parser plugin with the index if
full-text indexing and searching operations need special handling. See Section 24.2, “The MySQL
Plugin API”, for details on creating plugins.

• COMMENT 'string'

As of MySQL 5.5.3, index definitions can include an optional comment of up to 1024 characters.

13.1.14 CREATE LOGFILE GROUP Syntax

CREATE LOGFILE GROUP logfile_group
    ADD UNDOFILE 'undo_file'
    [INITIAL_SIZE [=] initial_size]
    [UNDO_BUFFER_SIZE [=] undo_buffer_size]
    [REDO_BUFFER_SIZE [=] redo_buffer_size]
    [NODEGROUP [=] nodegroup_id]
    [WAIT]
    [COMMENT [=] comment_text]
    ENGINE [=] engine_name

This statement creates a new log file group named logfile_group having a single UNDO file named
'undo_file'. A CREATE LOGFILE GROUP statement has one and only one ADD UNDOFILE clause.
For rules covering the naming of log file groups, see Section 9.2, “Schema Object Names”.

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and a log
file group with the same name, or a tablespace and a data file with the same
name.

In MySQL NDB Cluster 7.2, you can have only one log file group per Cluster at any given time. (See
Bug #16386)

The optional INITIAL_SIZE parameter sets the UNDO file's initial size; if not specified, it defaults to
128M (128 megabytes). The optional UNDO_BUFFER_SIZE parameter sets the size used by the UNDO
buffer for the log file group; The default value for UNDO_BUFFER_SIZE is 8M (eight megabytes); this



CREATE LOGFILE GROUP Syntax

1331

value cannot exceed the amount of system memory available. Both of these parameters are specified
in bytes. In MySQL NDB Cluster 7.2.14 and later, you may optionally follow either or both of these with
a one-letter abbreviation for an order of magnitude, similar to those used in my.cnf. Generally, this
is one of the letters M (for megabytes) or G (for gigabytes). Prior to MySQL NDB Cluster 7.2.14, the
values for these options could only be specified using digits. (Bug #13116514, Bug #16104705, Bug
#62858)

Memory used for UNDO_BUFFER_SIZE comes from the global pool whose size is determined by the
value of the SharedGlobalMemory data node configuration parameter. This includes any default
value implied for this option by the setting of the InitialLogFileGroup data node configuration
parameter.

The maximum permitted for UNDO_BUFFER_SIZE is 629145600 (600 MB).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

The minimum allowed value for INITIAL_SIZE is 1048576 (1 MB).

The ENGINE option determines the storage engine to be used by this log file group, with engine_name
being the name of the storage engine. In MySQL 5.5, this must be NDB (or NDBCLUSTER). If ENGINE
is not set, MySQL tries to use the engine specified by the default_storage_engine server
system variable (formerly storage_engine). In any case, if the engine is not specified as NDB or
NDBCLUSTER, the CREATE LOGFILE GROUP statement appears to succeed but actually fails to create
the log file group, as shown here:

mysql> CREATE LOGFILE GROUP lg1
    ->     ADD UNDOFILE 'undo.dat' INITIAL_SIZE = 10M;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------------------------------------------------------------------+
| Level | Code | Message                                                                                        |
+-------+------+------------------------------------------------------------------------------------------------+
| Error | 1478 | Table storage engine 'InnoDB' does not support the create option 'TABLESPACE or LOGFILE GROUP' |
+-------+------+------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

mysql> DROP LOGFILE GROUP lg1 ENGINE = NDB;            
ERROR 1529 (HY000): Failed to drop LOGFILE GROUP

mysql> CREATE LOGFILE GROUP lg1
    ->     ADD UNDOFILE 'undo.dat' INITIAL_SIZE = 10M
    ->     ENGINE = NDB;
Query OK, 0 rows affected (2.97 sec)

The fact that the CREATE LOGFILE GROUP statement does not actually return an error when a
non-NDB storage engine is named, but rather appears to succeed, is a known issue which we hope to
address in a future release of NDB Cluster.

REDO_BUFFER_SIZE, NODEGROUP, WAIT, and COMMENT are parsed but ignored, and so have no effect
in MySQL 5.5. These options are intended for future expansion.

When used with ENGINE [=] NDB, a log file group and associated UNDO log file are created on each
Cluster data node. You can verify that the UNDO files were created and obtain information about them
by querying the INFORMATION_SCHEMA.FILES table. For example:

mysql> SELECT LOGFILE_GROUP_NAME, LOGFILE_GROUP_NUMBER, EXTRA
    -> FROM INFORMATION_SCHEMA.FILES
    -> WHERE FILE_NAME = 'undo_10.dat';
+--------------------+----------------------+----------------+
| LOGFILE_GROUP_NAME | LOGFILE_GROUP_NUMBER | EXTRA          |
+--------------------+----------------------+----------------+
| lg_3               |                   11 | CLUSTER_NODE=3 |
| lg_3               |                   11 | CLUSTER_NODE=4 |



CREATE PROCEDURE and CREATE FUNCTION Syntax

1332

+--------------------+----------------------+----------------+
2 rows in set (0.06 sec)

CREATE LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. See Section 18.5.12,
“NDB Cluster Disk Data Tables”.

13.1.15 CREATE PROCEDURE and CREATE FUNCTION Syntax

CREATE
    [DEFINER = { user | CURRENT_USER }]
    PROCEDURE sp_name ([proc_parameter[,...]])
    [characteristic ...] routine_body

CREATE
    [DEFINER = { user | CURRENT_USER }]
    FUNCTION sp_name ([func_parameter[,...]])
    RETURNS type
    [characteristic ...] routine_body

proc_parameter:
    [ IN | OUT | INOUT ] param_name type

func_parameter:
    param_name type

type:
    Any valid MySQL data type

characteristic:
    COMMENT 'string'
  | LANGUAGE SQL
  | [NOT] DETERMINISTIC
  | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
  | SQL SECURITY { DEFINER | INVOKER }

routine_body:
    Valid SQL routine statement

These statements create stored routines. By default, a routine is associated with the default database.
To associate the routine explicitly with a given database, specify the name as db_name.sp_name
when you create it.

The CREATE FUNCTION statement is also used in MySQL to support UDFs (user-defined functions).
See Section 24.4, “Adding New Functions to MySQL”. A UDF can be regarded as an external stored
function. Stored functions share their namespace with UDFs. See Section 9.2.4, “Function Name
Parsing and Resolution”, for the rules describing how the server interprets references to different kinds
of functions.

To invoke a stored procedure, use the CALL statement (see Section 13.2.1, “CALL Syntax”). To invoke
a stored function, refer to it in an expression. The function returns a value during expression evaluation.

CREATE PROCEDURE and CREATE FUNCTION require the CREATE ROUTINE privilege. They might
also require the SUPER privilege, depending on the DEFINER value, as described later in this section.
If binary logging is enabled, CREATE FUNCTION might require the SUPER privilege, as described in
Section 20.7, “Binary Logging of Stored Programs”.

By default, MySQL automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine
creator. This behavior can be changed by disabling the automatic_sp_privileges system
variable. See Section 20.2.2, “Stored Routines and MySQL Privileges”.

The DEFINER and SQL SECURITY clauses specify the security context to be used when checking
access privileges at routine execution time, as described later in this section.

If the routine name is the same as the name of a built-in SQL function, a syntax error occurs unless you
use a space between the name and the following parenthesis when defining the routine or invoking it
later. For this reason, avoid using the names of existing SQL functions for your own stored routines.



CREATE PROCEDURE and CREATE FUNCTION Syntax

1333

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. It is always
permissible to have spaces after a stored routine name, regardless of whether IGNORE_SPACE is
enabled.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an
empty parameter list of () should be used. Parameter names are not case sensitive.

Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword
OUT or INOUT before the parameter name.

Note

Specifying a parameter as IN, OUT, or INOUT is valid only for a PROCEDURE.
For a FUNCTION, parameters are always regarded as IN parameters.

An IN parameter passes a value into a procedure. The procedure might modify the value, but the
modification is not visible to the caller when the procedure returns. An OUT parameter passes a value
from the procedure back to the caller. Its initial value is NULL within the procedure, and its value is
visible to the caller when the procedure returns. An INOUT parameter is initialized by the caller, can
be modified by the procedure, and any change made by the procedure is visible to the caller when the
procedure returns.

For each OUT or INOUT parameter, pass a user-defined variable in the CALL statement that invokes
the procedure so that you can obtain its value when the procedure returns. If you are calling the
procedure from within another stored procedure or function, you can also pass a routine parameter or
local routine variable as an IN or INOUT parameter.

Routine parameters cannot be referenced in statements prepared within the routine; see Section C.1,
“Restrictions on Stored Programs”.

The following example shows a simple stored procedure that uses an OUT parameter:

mysql> delimiter //

mysql> CREATE PROCEDURE simpleproc (OUT param1 INT)
    -> BEGIN
    ->   SELECT COUNT(*) INTO param1 FROM t;
    -> END//
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL simpleproc(@a);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @a;
+------+
| @a   |
+------+
| 3    |
+------+
1 row in set (0.00 sec)

The example uses the mysql client delimiter command to change the statement delimiter from ; to
// while the procedure is being defined. This enables the ; delimiter used in the procedure body to be
passed through to the server rather than being interpreted by mysql itself. See Section 20.1, “Defining
Stored Programs”.

The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It indicates
the return type of the function, and the function body must contain a RETURN value statement. If
the RETURN statement returns a value of a different type, the value is coerced to the proper type.
For example, if a function specifies an ENUM or SET value in the RETURNS clause, but the RETURN



CREATE PROCEDURE and CREATE FUNCTION Syntax

1334

statement returns an integer, the value returned from the function is the string for the corresponding
ENUM member of set of SET members.

The following example function takes a parameter, performs an operation using an SQL function, and
returns the result. In this case, it is unnecessary to use delimiter because the function definition
contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
    -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world!  |
+----------------+
1 row in set (0.00 sec)

Parameter types and function return types can be declared to use any valid data type, except that
the COLLATE attribute cannot be used prior to MySQL 5.5.3. As of 5.5.3, COLLATE can be used if
preceded by the CHARACTER SET attribute.

The routine_body consists of a valid SQL routine statement. This can be a simple statement
such as SELECT or INSERT, or a compound statement written using BEGIN and END. Compound
statements can contain declarations, loops, and other control structure statements. The syntax for
these statements is described in Section 13.6, “Compound-Statement Syntax”.

MySQL permits routines to contain DDL statements, such as CREATE and DROP. MySQL also permits
stored procedures (but not stored functions) to contain SQL transaction statements such as COMMIT.
Stored functions may not contain statements that perform explicit or implicit commit or rollback. Support
for these statements is not required by the SQL standard, which states that each DBMS vendor may
decide whether to permit them.

Statements that return a result set can be used within a stored procedure but not within a stored
function. This prohibition includes SELECT statements that do not have an INTO var_list clause
and other statements such as SHOW, EXPLAIN, and CHECK TABLE. For statements that can be
determined at function definition time to return a result set, a Not allowed to return a result
set from a function error occurs (ER_SP_NO_RETSET). For statements that can be determined
only at runtime to return a result set, a PROCEDURE %s can't return a result set in the
given context error occurs (ER_SP_BADSELECT).

USE statements within stored routines are not permitted. When a routine is invoked, an implicit USE
db_name is performed (and undone when the routine terminates). The causes the routine to have the
given default database while it executes. References to objects in databases other than the routine
default database should be qualified with the appropriate database name.

For additional information about statements that are not permitted in stored routines, see Section C.1,
“Restrictions on Stored Programs”.

For information about invoking stored procedures from within programs written in a language that has a
MySQL interface, see Section 13.2.1, “CALL Syntax”.

MySQL stores the sql_mode system variable setting in effect when a routine is created or altered, and
always executes the routine with this setting in force, regardless of the current server SQL mode when
the routine begins executing.

The switch from the SQL mode of the invoker to that of the routine occurs after evaluation of arguments
and assignment of the resulting values to routine parameters. If you define a routine in strict SQL mode
but invoke it in nonstrict mode, assignment of arguments to routine parameters does not take place in
strict mode. If you require that expressions passed to a routine be assigned in strict SQL mode, you
should invoke the routine with strict mode in effect.



CREATE PROCEDURE and CREATE FUNCTION Syntax

1335

The COMMENT characteristic is a MySQL extension, and may be used to describe the stored routine.
This information is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION
statements.

The LANGUAGE characteristic indicates the language in which the routine is written. The server ignores
this characteristic; only SQL routines are supported.

A routine is considered “deterministic” if it always produces the same result for the same input
parameters, and “not deterministic” otherwise. If neither DETERMINISTIC nor NOT DETERMINISTIC
is given in the routine definition, the default is NOT DETERMINISTIC. To declare that a function is
deterministic, you must specify DETERMINISTIC explicitly.

Assessment of the nature of a routine is based on the “honesty” of the creator: MySQL does not
check that a routine declared DETERMINISTIC is free of statements that produce nondeterministic
results. However, misdeclaring a routine might affect results or affect performance. Declaring
a nondeterministic routine as DETERMINISTIC might lead to unexpected results by causing
the optimizer to make incorrect execution plan choices. Declaring a deterministic routine as
NONDETERMINISTIC might diminish performance by causing available optimizations not to be used.

If binary logging is enabled, the DETERMINISTIC characteristic affects which routine definitions
MySQL accepts. See Section 20.7, “Binary Logging of Stored Programs”.

A routine that contains the NOW() function (or its synonyms) or RAND() is nondeterministic, but it might
still be replication-safe. For NOW(), the binary log includes the timestamp and replicates correctly.
RAND() also replicates correctly as long as it is called only a single time during the execution of a
routine. (You can consider the routine execution timestamp and random number seed as implicit inputs
that are identical on the master and slave.)

Several characteristics provide information about the nature of data use by the routine. In MySQL,
these characteristics are advisory only. The server does not use them to constrain what kinds of
statements a routine will be permitted to execute.

• CONTAINS SQL indicates that the routine does not contain statements that read or write data. This
is the default if none of these characteristics is given explicitly. Examples of such statements are SET
@x = 1 or DO RELEASE_LOCK('abc'), which execute but neither read nor write data.

• NO SQL indicates that the routine contains no SQL statements.

• READS SQL DATA indicates that the routine contains statements that read data (for example,
SELECT), but not statements that write data.

• MODIFIES SQL DATA indicates that the routine contains statements that may write data (for
example, INSERT or DELETE).

The SQL SECURITY characteristic can be DEFINER or INVOKER to specify the security context; that is,
whether the routine executes using the privileges of the account named in the routine DEFINER clause
or the user who invokes it. This account must have permission to access the database with which
the routine is associated. The default value is DEFINER. The user who invokes the routine must have
the EXECUTE privilege for it, as must the DEFINER account if the routine executes in definer security
context.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at
routine execution time for routines that have the SQL SECURITY DEFINER characteristic.

If a user value is given for the DEFINER clause, it should be a MySQL account specified as
'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The default DEFINER value is
the user who executes the CREATE PROCEDURE or CREATE FUNCTION statement. This is the same
as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only permitted user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.



CREATE PROCEDURE and CREATE FUNCTION Syntax

1336

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not exist, a warning is generated.

• Although it is possible to create a routine with a nonexistent DEFINER account, an error occurs at
routine execution time if the SQL SECURITY value is DEFINER but the definer account does not
exist.

For more information about stored routine security, see Section 20.6, “Access Control for Stored
Programs and Views”.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic,
CURRENT_USER returns the routine's DEFINER value. For information about user auditing within stored
routines, see Section 6.3.8, “SQL-Based MySQL Account Activity Auditing”.

Consider the following procedure, which displays a count of the number of MySQL accounts listed in
the mysql.user table:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
BEGIN
  SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure is assigned a DEFINER account of 'admin'@'localhost' no matter which user
defines it. It executes with the privileges of that account no matter which user invokes it (because the
default security characteristic is DEFINER). The procedure succeeds or fails depending on whether
invoker has the EXECUTE privilege for it and 'admin'@'localhost' has the SELECT privilege for the
mysql.user table.

Now suppose that the procedure is defined with the SQL SECURITY INVOKER characteristic:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
SQL SECURITY INVOKER
BEGIN
  SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure still has a DEFINER of 'admin'@'localhost', but in this case, it executes with
the privileges of the invoking user. Thus, the procedure succeeds or fails depending on whether the
invoker has the EXECUTE privilege for it and the SELECT privilege for the mysql.user table.

The server handles the data type of a routine parameter, local routine variable created with DECLARE,
or function return value as follows:

• Assignments are checked for data type mismatches and overflow. Conversion and overflow
problems result in warnings, or errors in strict SQL mode.

• Only scalar values can be assigned. For example, a statement such as SET x = (SELECT 1, 2)
is invalid.

• For character data types, if there is a CHARACTER SET attribute in the declaration, the specified
character set and its default collation is used. If the COLLATE attribute is also present, that collation is
used rather than the default collation.

Prior to MySQL 5.5.3, if there is a CHARACTER SET attribute in the declaration, the COLLATE
attribute is not supported, and the character set's default collation is used. (This includes use of
BINARY, which in this context specifies the binary collation of the character set.) If there is no
CHARACTER SET attribute, the database character set and its default collation (rather than the
database collation) are used.

If CHARACTER SET and COLLATE attributes are not present, the database character set and
collation in effect at routine creation time are used. To avoid having the server use the database



CREATE SERVER Syntax

1337

character set and collation, provide explicit CHARACTER SET and COLLATE attributes for character
data parameters.

If you change the database default character set or collation, stored routines that use the database
defaults must be dropped and recreated so that they use the new defaults.

The database character set and collation are given by the value of the character_set_database
and collation_database system variables. For more information, see Section 10.1.3.3,
“Database Character Set and Collation”.

13.1.16 CREATE SERVER Syntax

CREATE SERVER server_name
    FOREIGN DATA WRAPPER wrapper_name
    OPTIONS (option [, option] ...)

option:
  { HOST character-literal
  | DATABASE character-literal
  | USER character-literal
  | PASSWORD character-literal
  | SOCKET character-literal
  | OWNER character-literal
  | PORT numeric-literal }

This statement creates the definition of a server for use with the FEDERATED storage engine. The
CREATE SERVER statement creates a new row in the servers table in the mysql database. This
statement requires the SUPER privilege.

The server_name should be a unique reference to the server. Server definitions are global within
the scope of the server, it is not possible to qualify the server definition to a specific database.
server_name has a maximum length of 64 characters (names longer than 64 characters are silently
truncated), and is case insensitive. You may specify the name as a quoted string.

The wrapper_name should be mysql, and may be quoted with single quotation marks. Other values
for wrapper_name are not currently supported.

For each option you must specify either a character literal or numeric literal. Character literals are
UTF-8, support a maximum length of 64 characters and default to a blank (empty) string. String literals
are silently truncated to 64 characters. Numeric literals must be a number between 0 and 9999, default
value is 0.

Note

The OWNER option is currently not applied, and has no effect on the ownership
or operation of the server connection that is created.

The CREATE SERVER statement creates an entry in the mysql.servers table that can later be used
with the CREATE TABLE statement when creating a FEDERATED table. The options that you specify will
be used to populate the columns in the mysql.servers table. The table columns are Server_name,
Host, Db, Username, Password, Port and Socket.

For example:

CREATE SERVER s
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');

Be sure to specify all options necessary to establish a connection to the server. The user name, host
name, and database name are mandatory. Other options might be required as well, such as password.

The data stored in the table can be used when creating a connection to a FEDERATED table:

CREATE TABLE t (s1 INT) ENGINE=FEDERATED CONNECTION='s';



CREATE TABLE Syntax

1338

For more information, see Section 15.9, “The FEDERATED Storage Engine”.

CREATE SERVER causes an implicit commit.

In MySQL 5.5, CREATE SERVER is not written to the binary log, regardless of the logging format that is
in use.

13.1.17 CREATE TABLE Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
    (create_definition,...)
    [table_options]
    [partition_options]

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
    [(create_definition,...)]
    [table_options]
    [partition_options]
    [IGNORE | REPLACE]
    [AS] query_expression

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
    { LIKE old_tbl_name | (LIKE old_tbl_name) }

create_definition:
    col_name column_definition
  | [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)
      [index_option] ...
  | {INDEX|KEY} [index_name] [index_type] (index_col_name,...)
      [index_option] ...
  | [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY]
      [index_name] [index_type] (index_col_name,...)
      [index_option] ...
  | {FULLTEXT|SPATIAL} [INDEX|KEY] [index_name] (index_col_name,...)
      [index_option] ...
  | [CONSTRAINT [symbol]] FOREIGN KEY
      [index_name] (index_col_name,...) reference_definition
  | CHECK (expr)

column_definition:
    data_type [NOT NULL | NULL] [DEFAULT default_value]
      [AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
      [COMMENT 'string']
      [COLUMN_FORMAT {FIXED|DYNAMIC|DEFAULT}]
      [STORAGE {DISK|MEMORY|DEFAULT}]
      [reference_definition]

data_type:
    BIT[(length)]
  | TINYINT[(length)] [UNSIGNED] [ZEROFILL]
  | SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
  | MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
  | INT[(length)] [UNSIGNED] [ZEROFILL]
  | INTEGER[(length)] [UNSIGNED] [ZEROFILL]
  | BIGINT[(length)] [UNSIGNED] [ZEROFILL]
  | REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
  | DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
  | FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
  | DECIMAL[(length[,decimals])] [UNSIGNED] [ZEROFILL]
  | NUMERIC[(length[,decimals])] [UNSIGNED] [ZEROFILL]
  | DATE
  | TIME
  | TIMESTAMP
  | DATETIME
  | YEAR
  | CHAR[(length)] [BINARY]
      [CHARACTER SET charset_name] [COLLATE collation_name]
  | VARCHAR(length) [BINARY]
      [CHARACTER SET charset_name] [COLLATE collation_name]
  | BINARY[(length)]



CREATE TABLE Syntax

1339

  | VARBINARY(length)
  | TINYBLOB
  | BLOB
  | MEDIUMBLOB
  | LONGBLOB
  | TINYTEXT [BINARY]
      [CHARACTER SET charset_name] [COLLATE collation_name]
  | TEXT [BINARY]
      [CHARACTER SET charset_name] [COLLATE collation_name]
  | MEDIUMTEXT [BINARY]
      [CHARACTER SET charset_name] [COLLATE collation_name]
  | LONGTEXT [BINARY]
      [CHARACTER SET charset_name] [COLLATE collation_name]
  | ENUM(value1,value2,value3,...)
      [CHARACTER SET charset_name] [COLLATE collation_name]
  | SET(value1,value2,value3,...)
      [CHARACTER SET charset_name] [COLLATE collation_name]
  | spatial_type

index_col_name:
    col_name [(length)] [ASC | DESC]

index_type:
    USING {BTREE | HASH}

index_option:
    KEY_BLOCK_SIZE [=] value
  | index_type
  | WITH PARSER parser_name
  | COMMENT 'string'

reference_definition:
    REFERENCES tbl_name (index_col_name,...)
      [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
      [ON DELETE reference_option]
      [ON UPDATE reference_option]

reference_option:
    RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

table_options:
    table_option [[,] table_option] ...

table_option:
    ENGINE [=] engine_name
  | AUTO_INCREMENT [=] value
  | AVG_ROW_LENGTH [=] value
  | [DEFAULT] CHARACTER SET [=] charset_name
  | CHECKSUM [=] {0 | 1}
  | [DEFAULT] COLLATE [=] collation_name
  | COMMENT [=] 'string'
  | CONNECTION [=] 'connect_string'
  | DATA DIRECTORY [=] 'absolute path to directory'
  | DELAY_KEY_WRITE [=] {0 | 1}
  | INDEX DIRECTORY [=] 'absolute path to directory'
  | INSERT_METHOD [=] { NO | FIRST | LAST }
  | KEY_BLOCK_SIZE [=] value
  | MAX_ROWS [=] value
  | MIN_ROWS [=] value
  | PACK_KEYS [=] {0 | 1 | DEFAULT}
  | PASSWORD [=] 'string'
  | ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
  | TABLESPACE tablespace_name [STORAGE {DISK|MEMORY|DEFAULT}]
  | UNION [=] (tbl_name[,tbl_name]...)

partition_options:
    PARTITION BY
        { [LINEAR] HASH(expr)
        | [LINEAR] KEY [ALGORITHM={1|2}] (column_list)
        | RANGE{(expr) | COLUMNS(column_list)}
        | LIST{(expr) | COLUMNS(column_list)} }
    [PARTITIONS num]



CREATE TABLE Syntax

1340

    [SUBPARTITION BY
        { [LINEAR] HASH(expr)
        | [LINEAR] KEY [ALGORITHM={1|2}] (column_list) }
      [SUBPARTITIONS num]
    ]
    [(partition_definition [, partition_definition] ...)]

partition_definition:
    PARTITION partition_name
        [VALUES
            {LESS THAN {(expr | value_list) | MAXVALUE}
            |
            IN (value_list)}]
        [[STORAGE] ENGINE [=] engine_name]
        [COMMENT [=] 'comment_text' ]
        [DATA DIRECTORY [=] 'data_dir']
        [INDEX DIRECTORY [=] 'index_dir']
        [MAX_ROWS [=] max_number_of_rows]
        [MIN_ROWS [=] min_number_of_rows]
        [TABLESPACE [=] tablespace_name]
        [NODEGROUP [=] node_group_id]
        [(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition:
    SUBPARTITION logical_name
        [[STORAGE] ENGINE [=] engine_name]
        [COMMENT [=] 'comment_text' ]
        [DATA DIRECTORY [=] 'data_dir']
        [INDEX DIRECTORY [=] 'index_dir']
        [MAX_ROWS [=] max_number_of_rows]
        [MIN_ROWS [=] min_number_of_rows]
        [TABLESPACE [=] tablespace_name]
        [NODEGROUP [=] node_group_id]

query_expression:
    SELECT ...   (Some valid select or union statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the
table.

By default, tables are created in the default database, using the InnoDB storage engine. An error
occurs if the table exists, if there is no default database, or if the database does not exist.

For information about the physical representation of a table, see Section 13.1.17.2, “Files Created by
CREATE TABLE”.

The original CREATE TABLE statement, including all specifications and table options are stored by
MySQL when the table is created. For more information, see Section 13.1.17.1, “CREATE TABLE
Statement Retention”.

There are several aspects to the CREATE TABLE statement, described under the following topics in
this section:

• Table Name

• Temporary Tables

• Cloning or Copying a Table

• Column Data Types and Attributes

• Indexes and Foreign Keys

• Table Options

• Creating Partitioned Tables



CREATE TABLE Syntax

1341

Table Name

• tbl_name

The table name can be specified as db_name.tbl_name to create the table in a specific database.
This works regardless of whether there is a default database, assuming that the database exists.
If you use quoted identifiers, quote the database and table names separately. For example, write
`mydb`.`mytbl`, not `mydb.mytbl`.

Rules for permissible table names are given in Section 9.2, “Schema Object Names”.

• IF NOT EXISTS

Prevents an error from occurring if the table exists. However, there is no verification that the existing
table has a structure identical to that indicated by the CREATE TABLE statement.

Temporary Tables

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only to the
current session, and is dropped automatically when the session is closed. For more information, see
Section 13.1.17.3, “CREATE TEMPORARY TABLE Syntax”.

Cloning or Copying a Table

• LIKE

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

For more information, see Section 13.1.17.4, “CREATE TABLE ... LIKE Syntax”.

• [AS] query_expression

To create one table from another, add a SELECT statement at the end of the CREATE TABLE
statement:

CREATE TABLE new_tbl AS SELECT * FROM orig_tbl;

For more information, see Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”.

• IGNORE|REPLACE

The IGNORE and REPLACE options indicate how to handle rows that duplicate unique key values
when copying a table using a SELECT statement.

For more information, see Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”.

Column Data Types and Attributes

There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given
table and depends on the factors discussed in Section C.10.4, “Limits on Table Column Count and
Row Size”.

• data_type

data_type represents the data type in a column definition. spatial_type represents a spatial
data type. The data type syntax shown is representative only. For a full description of the syntax
available for specifying column data types, as well as information about the properties of each type,
see Chapter 11, Data Types, and Section 11.5, “Extensions for Spatial Data”.



CREATE TABLE Syntax

1342

• Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer and
floating-point types. DEFAULT does not apply to the BLOB or TEXT types.

• Character data types (CHAR, VARCHAR, TEXT) can include CHARACTER SET and COLLATE
attributes to specify the character set and collation for the column. For details, see Section 10.1,
“Character Set Support”. CHARSET is a synonym for CHARACTER SET. Example:

CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);

MySQL 5.5 interprets length specifications in character column definitions in characters. Lengths
for BINARY and VARBINARY are in bytes.

• For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the
leading part of column values, using col_name(length) syntax to specify an index prefix length.
BLOB and TEXT columns also can be indexed, but a prefix length must be given. Prefix lengths are
given in characters for nonbinary string types and in bytes for binary string types. That is, index
entries consist of the first length characters of each column value for CHAR, VARCHAR, and TEXT
columns, and the first length bytes of each column value for BINARY, VARBINARY, and BLOB
columns. Indexing only a prefix of column values like this can make the index file much smaller.
For additional information about index prefixes, see Section 13.1.13, “CREATE INDEX Syntax”.

Only the InnoDB and MyISAM storage engines support indexing on BLOB and TEXT columns. For
example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

• NOT NULL | NULL

If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been
specified.

In MySQL 5.5, only the InnoDB, MyISAM, and MEMORY storage engines support indexes on columns
that can have NULL values. In other cases, you must declare indexed columns as NOT NULL or an
error results.

• DEFAULT

Specifies a default value for a column. With one exception, the default value must be a constant; it
cannot be a function or an expression. This means, for example, that you cannot set the default for
a date column to be the value of a function such as NOW() or CURRENT_DATE. The exception is that
you can specify CURRENT_TIMESTAMP as the default for a TIMESTAMP column. See Section 11.3.5,
“Automatic Initialization and Updating for TIMESTAMP”.

If a column definition includes no explicit DEFAULT value, MySQL determines the default value as
described in Section 11.6, “Data Type Default Values”.

BLOB and TEXT columns cannot be assigned a default value.

CREATE TABLE fails if a date-valued default is not correct according to the NO_ZERO_IN_DATE SQL
mode, even if strict SQL mode is not enabled. For example, c1 DATE DEFAULT '2010-00-00'
causes CREATE TABLE to fail with Invalid default value for 'c1'.

• AUTO_INCREMENT

An integer or floating-point column can have the additional attribute AUTO_INCREMENT. When you
insert a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column
is set to the next sequence value. Typically this is value+1, where value is the largest value for the
column currently in the table. AUTO_INCREMENT sequences begin with 1.



CREATE TABLE Syntax

1343

To retrieve an AUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. See Section 12.14, “Information Functions”,
and Section 23.8.7.37, “mysql_insert_id()”.

If the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT
columns as 0 without generating a new sequence value. See Section 5.1.8, “Server SQL Modes”.

There can be only one AUTO_INCREMENT column per table, it must be indexed, and it cannot have a
DEFAULT value. An AUTO_INCREMENT column works properly only if it contains only positive values.
Inserting a negative number is regarded as inserting a very large positive number. This is done to
avoid precision problems when numbers “wrap” over from positive to negative and also to ensure
that you do not accidentally get an AUTO_INCREMENT column that contains 0.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column
key. See Section 3.6.9, “Using AUTO_INCREMENT”.

To make MySQL compatible with some ODBC applications, you can find the AUTO_INCREMENT
value for the last inserted row with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

This method requires that sql_auto_is_null variable is not set to 0. See Section 5.1.5, “Server
System Variables”.

For information about InnoDB and AUTO_INCREMENT, see Section 14.11.1.5, “AUTO_INCREMENT
Handling in InnoDB”. For information about AUTO_INCREMENT and MySQL Replication, see
Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• COMMENT

A comment for a column can be specified with the COMMENT option, up to 1024 characters long (255
characters before MySQL 5.5.3). The comment is displayed by the SHOW CREATE TABLE and SHOW
FULL COLUMNS statements.

• COLUMN_FORMAT

In NDB Cluster, it is also possible to specify a data storage format for individual columns of NDB
tables using COLUMN_FORMAT. Permissible column formats are FIXED, DYNAMIC, and DEFAULT.
FIXED is used to specify fixed-width storage, DYNAMIC permits the column to be variable-width,
and DEFAULT causes the column to use fixed-width or variable-width storage as determined by the
column's data type (possibly overridden by a ROW_FORMAT specifier).

For NDB tables, the default value for COLUMN_FORMAT is DEFAULT.

COLUMN_FORMAT currently has no effect on columns of tables using storage engines other than NDB.
In MySQL 5.5 and later, COLUMN_FORMAT is silently ignored.

• STORAGE

For NDB tables, it is possible to specify whether the column is stored on disk or in memory by using
a STORAGE clause. STORAGE DISK causes the column to be stored on disk, and STORAGE MEMORY
causes in-memory storage to be used. The CREATE TABLE statement used must still include a
TABLESPACE clause:

mysql> CREATE TABLE t1 (
    ->     c1 INT STORAGE DISK,
    ->     c2 INT STORAGE MEMORY
    -> ) ENGINE NDB;
ERROR 1005 (HY000): Can't create table 'c.t1' (errno: 140)



CREATE TABLE Syntax

1344

mysql> CREATE TABLE t1 (
    ->     c1 INT STORAGE DISK,
    ->     c2 INT STORAGE MEMORY
    -> ) TABLESPACE ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.06 sec)

For NDB tables, STORAGE DEFAULT is equivalent to STORAGE MEMORY.

The STORAGE clause has no effect on tables using storage engines other than NDB. The STORAGE
keyword is supported only in the build of mysqld that is supplied with NDB Cluster; it is not
recognized in any other version of MySQL, where any attempt to use the STORAGE keyword causes
a syntax error.

Indexes and Foreign Keys

• CONSTRAINT symbol

If the CONSTRAINT symbol clause is given, the symbol value, if used, must be unique in the
database. A duplicate symbol results in an error. If the clause is not given, or a symbol is not
included following the CONSTRAINT keyword, a name for the constraint is created automatically.

• PRIMARY KEY

A unique index where all key columns must be defined as NOT NULL. If they are not explicitly
declared as NOT NULL, MySQL declares them so implicitly (and silently). A table can have only one
PRIMARY KEY. The name of a PRIMARY KEY is always PRIMARY, which thus cannot be used as the
name for any other kind of index.

If you do not have a PRIMARY KEY and an application asks for the PRIMARY KEY in your tables,
MySQL returns the first UNIQUE index that has no NULL columns as the PRIMARY KEY.

In InnoDB tables, keep the PRIMARY KEY short to minimize storage overhead for secondary
indexes. Each secondary index entry contains a copy of the primary key columns for the
corresponding row. (See Section 14.11.2.1, “Clustered and Secondary Indexes”.)

In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then the
nonunique indexes. This helps the MySQL optimizer to prioritize which index to use and also more
quickly to detect duplicated UNIQUE keys.

A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column
index using the PRIMARY KEY key attribute in a column specification. Doing so only marks that
single column as primary. You must use a separate PRIMARY KEY(index_col_name, ...)
clause.

If a PRIMARY KEY consists of only one column that has an integer type, you can also refer to the
column as _rowid in SELECT statements.

In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you do not assign a
name, the index is assigned the same name as the first indexed column, with an optional suffix
(_2, _3, ...) to make it unique. You can see index names for a table using SHOW INDEX FROM
tbl_name. See Section 13.7.5.23, “SHOW INDEX Syntax”.

• KEY | INDEX

KEY is normally a synonym for INDEX. The key attribute PRIMARY KEY can also be specified as just
KEY when given in a column definition. This was implemented for compatibility with other database
systems.

• UNIQUE



CREATE TABLE Syntax

1345

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error
occurs if you try to add a new row with a key value that matches an existing row. For all engines, a
UNIQUE index permits multiple NULL values for columns that can contain NULL.

If a UNIQUE index consists of only one column that has an integer type, you can also refer to the
column as _rowid in SELECT statements.

• FULLTEXT

A FULLTEXT index is a special type of index used for full-text searches. Only the MyISAM storage
engine supports FULLTEXT indexes. They can be created only from CHAR, VARCHAR, and TEXT
columns. Indexing always happens over the entire column; column prefix indexing is not supported
and any prefix length is ignored if specified. See Section 12.9, “Full-Text Search Functions”, for
details of operation. A WITH PARSER clause can be specified as an index_option value to
associate a parser plugin with the index if full-text indexing and searching operations need special
handling. This clause is valid only for FULLTEXT indexes. See Section 24.2, “The MySQL Plugin
API”, for details on creating plugins.

• SPATIAL

You can create SPATIAL indexes on spatial data types. Spatial types are supported only for MyISAM
tables and indexed columns must be declared as NOT NULL. See Section 11.5, “Extensions for
Spatial Data”.

• FOREIGN KEY

MySQL supports foreign keys, which let you cross-reference related data across tables, and
foreign key constraints, which help keep this spread-out data consistent. For definition and option
information, see reference_definition, and reference_option.

Partitioned tables employing the InnoDB storage engine do not support foreign keys. See
Section 19.5, “Restrictions and Limitations on Partitioning”, for more information.

• CHECK

The CHECK clause is parsed but ignored by all storage engines. See Section 1.7.2.3, “Foreign Key
Differences”.

• index_col_name

• An index_col_name specification can end with ASC or DESC. These keywords are permitted for
future extensions for specifying ascending or descending index value storage. Currently, they are
parsed but ignored; index values are always stored in ascending order.

• Prefixes, defined by the length attribute, can be up to 767 bytes long for InnoDB tables or 3072
bytes if the innodb_large_prefix option is enabled.

Prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE, ALTER TABLE,
and CREATE INDEX statements is interpreted as number of characters for nonbinary string types
(CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY, VARBINARY,
BLOB). Take this into account when specifying a prefix length for a nonbinary string column that
uses a multibyte character set.

• index_type

Some storage engines permit you to specify an index type when creating an index. The syntax for
the index_type specifier is USING type_name.

Example:



CREATE TABLE Syntax

1346

CREATE TABLE lookup
  (id INT, INDEX USING BTREE (id))
  ENGINE = MEMORY;

The preferred position for USING is after the index column list. It can be given before the column list,
but support for use of the option in that position is deprecated and will be removed in a future MySQL
release.

• index_option

index_option values specify additional options for an index.

• KEY_BLOCK_SIZE

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index
key blocks. The value is treated as a hint; a different size could be used if necessary. A
KEY_BLOCK_SIZE value specified for an individual index definition overrides the table-level
KEY_BLOCK_SIZE value.

For information about the table-level KEY_BLOCK_SIZE attribute, see Table Options.

• WITH PARSER

A WITH PARSER clause can be specified as an index_option value to associate a parser plugin
with the index if full-text indexing and searching operations need special handling. This clause
is valid only for FULLTEXT indexes. See Section 24.2, “The MySQL Plugin API”, for details on
creating plugins.

• COMMENT

As of MySQL 5.5.3, index definitions can include an optional comment of up to 1024 characters.

For more information about permissible index_option values, see Section 13.1.13, “CREATE
INDEX Syntax”. For more information about indexes, see Section 8.3.1, “How MySQL Uses
Indexes”.

• reference_definition

For reference_definition syntax details and examples, see Section 13.1.17.6, “Using
FOREIGN KEY Constraints”. For information specific to foreign keys in InnoDB, see
Section 14.11.1.6, “InnoDB and FOREIGN KEY Constraints”.

InnoDB tables support checking of foreign key constraints. The columns of the referenced table
must always be explicitly named. Both ON DELETE and ON UPDATE actions on foreign keys. For
more detailed information and examples, see Section 13.1.17.6, “Using FOREIGN KEY Constraints”.
For information specific to foreign keys in InnoDB, see Section 14.11.1.6, “InnoDB and FOREIGN
KEY Constraints”.

For other storage engines, MySQL Server parses and ignores the FOREIGN KEY and REFERENCES
syntax in CREATE TABLE statements. See Section 1.7.2.3, “Foreign Key Differences”.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no
storage engine, including InnoDB, recognizes or enforces the MATCH clause
used in referential integrity constraint definitions. Use of an explicit MATCH
clause will not have the specified effect, and also causes ON DELETE and ON
UPDATE clauses to be ignored. For these reasons, specifying MATCH should
be avoided.

The MATCH clause in the SQL standard controls how NULL values in a
composite (multiple-column) foreign key are handled when comparing to a



CREATE TABLE Syntax

1347

primary key. InnoDB essentially implements the semantics defined by MATCH
SIMPLE, which permit a foreign key to be all or partially NULL. In that case,
the (child table) row containing such a foreign key is permitted to be inserted,
and does not match any row in the referenced (parent) table. It is possible to
implement other semantics using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance. However, InnoDB does not enforce any requirement that the
referenced columns be declared UNIQUE or NOT NULL. The handling of
foreign key references to nonunique keys or keys that contain NULL values is
not well defined for operations such as UPDATE or DELETE CASCADE. You
are advised to use foreign keys that reference only keys that are both UNIQUE
(or PRIMARY) and NOT NULL.

MySQL parses but ignores “inline REFERENCES specifications” (as defined
in the SQL standard) where the references are defined as part of the column
specification. MySQL accepts REFERENCES clauses only when specified as
part of a separate FOREIGN KEY specification.

• reference_option

For information about the RESTRICT, CASCADE, SET NULL, NO ACTION, and SET DEFAULT
options, see Section 13.1.17.6, “Using FOREIGN KEY Constraints”.

Table Options

Table options are used to optimize the behavior of the table. In most cases, you do not have to specify
any of them. These options apply to all storage engines unless otherwise indicated. Options that do not
apply to a given storage engine may be accepted and remembered as part of the table definition. Such
options then apply if you later use ALTER TABLE to convert the table to use a different storage engine.

• ENGINE

Specifies the storage engine for the table, using one of the names shown in the following table. The
engine name can be unquoted or quoted. The quoted name 'DEFAULT' is equivalent to specifying
the default storage engine name.

Storage Engine Description

InnoDB Transaction-safe tables with row locking and foreign keys. The default
storage engine for new tables. See Chapter 14, The InnoDB Storage
Engine, and in particular Section 14.1, “Introduction to InnoDB” if you
have MySQL experience but are new to InnoDB.

MyISAM The binary portable storage engine that is primarily used for read-only
or read-mostly workloads. See Section 15.3, “The MyISAM Storage
Engine”.

MEMORY The data for this storage engine is stored only in memory. See
Section 15.4, “The MEMORY Storage Engine”.

CSV Tables that store rows in comma-separated values format. See
Section 15.5, “The CSV Storage Engine”.

ARCHIVE The archiving storage engine. See Section 15.6, “The ARCHIVE Storage
Engine”.

EXAMPLE An example engine. See Section 15.10, “The EXAMPLE Storage
Engine”.

FEDERATED Storage engine that accesses remote tables. See Section 15.9, “The
FEDERATED Storage Engine”.

HEAP This is a synonym for MEMORY.



CREATE TABLE Syntax

1348

Storage Engine Description

MERGE A collection of MyISAM tables used as one table. Also known as
MRG_MyISAM. See Section 15.8, “The MERGE Storage Engine”.

NDBCLUSTER Clustered, fault-tolerant, memory-based tables. Also known as NDB. See
Chapter 18, MySQL NDB Cluster 7.2.

If a storage engine is specified that is not available, MySQL uses the default engine instead.
Normally, this is MyISAM. For example, if a table definition includes the ENGINE=INNODB option but
the MySQL server does not support INNODB tables, the table is created as a MyISAM table. This
makes it possible to have a replication setup where you have transactional tables on the master
but tables created on the slave are nontransactional (to get more speed). In MySQL 5.5, a warning
occurs if the storage engine specification is not honored.

Engine substitution can be controlled by the setting of the NO_ENGINE_SUBSTITUTION SQL mode,
as described in Section 5.1.8, “Server SQL Modes”.

Note

The older TYPE option was synonymous with ENGINE. TYPE was deprecated
in MySQL 4.0 and removed in MySQL 5.5. When upgrading to MySQL 5.5 or
later, you must convert existing applications that rely on TYPE to use ENGINE
instead.

• AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. In MySQL 5.5, this works for MyISAM, MEMORY,
InnoDB, and ARCHIVE tables. To set the first auto-increment value for engines that do not support
the AUTO_INCREMENT table option, insert a “dummy” row with a value one less than the desired
value after creating the table, and then delete the dummy row.

For engines that support the AUTO_INCREMENT table option in CREATE TABLE statements, you can
also use ALTER TABLE tbl_name AUTO_INCREMENT = N to reset the AUTO_INCREMENT value.
The value cannot be set lower than the maximum value currently in the column.

• AVG_ROW_LENGTH

An approximation of the average row length for your table. You need to set this only for large tables
with variable-size rows.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and
AVG_ROW_LENGTH options to decide how big the resulting table is. If you don't specify either option,
the maximum size for MyISAM data and index files is 256TB by default. (If your operating system
does not support files that large, table sizes are constrained by the file size limit.) If you want to
keep down the pointer sizes to make the index smaller and faster and you don't really need big files,
you can decrease the default pointer size by setting the myisam_data_pointer_size system
variable. (See Section 5.1.5, “Server System Variables”.) If you want all your tables to be able
to grow above the default limit and are willing to have your tables slightly slower and larger than
necessary, you can increase the default pointer size by setting this variable. Setting the value to 7
permits table sizes up to 65,536TB.

• [DEFAULT] CHARACTER SET

Specifies a default character set for the table. CHARSET is a synonym for CHARACTER SET. If the
character set name is DEFAULT, the database character set is used.

• CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that
MySQL updates automatically as the table changes). This makes the table a little slower to update,



CREATE TABLE Syntax

1349

but also makes it easier to find corrupted tables. The CHECKSUM TABLE statement reports the
checksum. (MyISAM only.)

• [DEFAULT] COLLATE

Specifies a default collation for the table.

• COMMENT

A comment for the table, up to 2048 characters long (60 characters before MySQL 5.5.3).

• CONNECTION

The connection string for a FEDERATED table.

Note

Older versions of MySQL used a COMMENT option for the connection string.

• DATA DIRECTORY, INDEX DIRECTORY

By using DATA DIRECTORY='directory' or INDEX DIRECTORY='directory' you can specify
where the MyISAM storage engine should put a table's data file and index file. The directory must be
the full path name to the directory, not a relative path.

As of MySQL 5.5.54, you must have the FILE privilege to use the DATA DIRECTORY or INDEX
DIRECTORY table option.

Important

Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored
for partitioned tables. (Bug #32091)

These options work only when you are not using the --skip-symbolic-links option. Your
operating system must also have a working, thread-safe realpath() call. See Section 8.12.3.2,
“Using Symbolic Links for MyISAM Tables on Unix”, for more complete information.

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the
database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The
same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this
behavior, start the server with the --keep_files_on_create option, in which case MyISAM will
not overwrite existing files and returns an error instead.

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified
directory.

Important

You cannot use path names that contain the MySQL data directory with DATA
DIRECTORY or INDEX DIRECTORY. This includes partitioned tables and
individual table partitions. (See Bug #32167.)

• DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed. See the
description of the delay_key_write system variable in Section 5.1.5, “Server System Variables”.
(MyISAM only.)

• INSERT_METHOD



CREATE TABLE Syntax

1350

If you want to insert data into a MERGE table, you must specify with INSERT_METHOD the table into
which the row should be inserted. INSERT_METHOD is an option useful for MERGE tables only. Use a
value of FIRST or LAST to have inserts go to the first or last table, or a value of NO to prevent inserts.
See Section 15.8, “The MERGE Storage Engine”.

• KEY_BLOCK_SIZE

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index
key blocks. The value is treated as a hint; a different size could be used if necessary. A
KEY_BLOCK_SIZE value specified for an individual index definition overrides the table-level
KEY_BLOCK_SIZE value.

For InnoDB tables, KEY_BLOCK_SIZE optionally specifies the page size (in kilobytes) to use for
compressed InnoDB tables. The KEY_BLOCK_SIZE value is treated as a hint; a different size could
be used by InnoDB if necessary. Valid KEY_BLOCK_SIZE values include 0, 1, 2, 4, 8, and 16. A
value of 0 represents the default compressed page size, which is half of the InnoDB page size.

Oracle recommends enabling innodb_strict_mode when specifying KEY_BLOCK_SIZE for
InnoDB tables. When innodb_strict_mode is enabled, specifying an invalid KEY_BLOCK_SIZE
value returns an error. If innodb_strict_mode is disabled, an invalid KEY_BLOCK_SIZE value
results in a warning, and the KEY_BLOCK_SIZE option is ignored.

InnoDB only supports KEY_BLOCK_SIZE at the table level.

• MAX_ROWS

The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint
to the storage engine that the table must be able to store at least this many rows.

The NDB storage engine treats this value as a maximum. If you plan to create very large NDB Cluster
tables (containing millions of rows), you should use this option to insure that NDB allocates sufficient
number of index slots in the hash table used for storing hashes of the table's primary keys by setting
MAX_ROWS = 2 * rows, where rows is the number of rows that you expect to insert into the table.

The maximum MAX_ROWS value is 4294967295; larger values are truncated to this limit.

• MIN_ROWS

The minimum number of rows you plan to store in the table. The MEMORY storage engine uses this
option as a hint about memory use.

• PACK_KEYS

Takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller indexes.
This usually makes updates slower and reads faster. Setting the option to 0 disables all packing of
keys. Setting it to DEFAULT tells the storage engine to pack only long CHAR, VARCHAR, BINARY, or
VARBINARY columns.

If you do not use PACK_KEYS, the default is to pack strings, but not numbers. If you use
PACK_KEYS=1, numbers are packed as well.

When packing binary number keys, MySQL uses prefix compression:

• Every key needs one extra byte to indicate how many bytes of the previous key are the same for
the next key.

• The pointer to the row is stored in high-byte-first order directly after the key, to improve
compression.



CREATE TABLE Syntax

1351

This means that if you have many equal keys on two consecutive rows, all following “same” keys
usually only take two bytes (including the pointer to the row). Compare this to the ordinary case
where the following keys takes storage_size_for_key + pointer_size (where the pointer
size is usually 4). Conversely, you get a significant benefit from prefix compression only if you have
many numbers that are the same. If all keys are totally different, you use one byte more per key, if
the key is not a key that can have NULL values. (In this case, the packed key length is stored in the
same byte that is used to mark if a key is NULL.)

• PASSWORD

This option is unused. If you have a need to scramble your .frm files and make them unusable to
any other MySQL server, please contact our sales department.

• ROW_FORMAT

Defines the physical format in which the rows are stored.

When executing a CREATE TABLE statement, if you specify a row format that is not supported by
the storage engine that is used for the table, the table is created using that storage engine's default
row format. The information reported in this column in response to SHOW TABLE STATUS is the
actual row format used. This may differ from the value in the Create_options column because the
original CREATE TABLE definition is retained during creation.

Row format choices differ depending on the storage engine used for the table.

For InnoDB tables:

• Rows are stored in compact format (ROW_FORMAT=COMPACT) by default.

• The noncompact format used in older versions of MySQL can still be requested by specifying
ROW_FORMAT=REDUNDANT.

• To enable compression for InnoDB tables, specify ROW_FORMAT=COMPRESSED and follow the
procedures in Section 14.12, “InnoDB Table Compression”.

• For more efficient InnoDB storage of data types, especially BLOB types, specify
ROW_FORMAT=DYNAMIC and follow the procedures in Section 14.14.3, “DYNAMIC and
COMPRESSED Row Formats”. Both the COMPRESSED and DYNAMIC row formats require
creating the table with the configuration settings innodb_file_per_table=1 and
innodb_file_format=barracuda.

• When you specify a non-default ROW_FORMAT clause, consider also enabling the
innodb_strict_mode configuration option.

• ROW_FORMAT=FIXED is not supported. If ROW_FORMAT=FIXED is specified while
innodb_strict_mode is disabled, InnoDB issues a warning and assumes
ROW_FORMAT=COMPACT. If ROW_FORMAT=FIXED is specified while innodb_strict_mode is
enabled, InnoDB returns an error.

• For additional information about InnoDB row formats, see Section 14.14, “InnoDB Row Storage
and Row Formats”.

For MyISAM tables, the option value can be FIXED or DYNAMIC for static or variable-length row
format. myisampack sets the type to COMPRESSED. See Section 15.3.3, “MyISAM Table Storage
Formats”.

• TABLESPACE

The TABLESPACE and STORAGE table options are employed only with NDBCLUSTER tables.
The tablespace named tablespace_name must already have been created using CREATE



CREATE TABLE Syntax

1352

TABLESPACE. STORAGE determines the type of storage used (disk or memory), and can be one of
DISK, MEMORY, or DEFAULT.

TABLESPACE ... STORAGE DISK assigns a table to an NDB Cluster Disk Data tablespace. See
Section 18.5.12, “NDB Cluster Disk Data Tables”, for more information.

Important

A STORAGE clause cannot be used in a CREATE TABLE statement without a
TABLESPACE clause.

• UNION

Used to access a collection of identical MyISAM tables as one. This works only with MERGE tables.
See Section 15.8, “The MERGE Storage Engine”.

You must have SELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE table.

Note

Formerly, all tables used had to be in the same database as the MERGE table
itself. This restriction no longer applies.

Creating Partitioned Tables

partition_options can be used to control partitioning of the table created with CREATE TABLE.

Not all options shown in the syntax for partition_options at the beginning of this section
are available for all partitioning types. Please see the listings for the following individual types for
information specific to each type, and see Chapter 19, Partitioning, for more complete information
about the workings of and uses for partitioning in MySQL, as well as additional examples of table
creation and other statements relating to MySQL partitioning.

• PARTITION BY

If used, a partition_options clause begins with PARTITION BY. This clause contains the
function that is used to determine the partition; the function returns an integer value ranging from 1 to
num, where num is the number of partitions. (The maximum number of user-defined partitions which
a table may contain is 1024; the number of subpartitions—discussed later in this section—is included
in this maximum.)

Partitions can be modified, merged, added to tables, and dropped from tables. For basic information
about the MySQL statements to accomplish these tasks, see Section 13.1.7, “ALTER TABLE
Syntax”. For more detailed descriptions and examples, see Section 19.3, “Partition Management”.

Note

The expression (expr) used in a PARTITION BY clause cannot refer to any
columns not in the table being created; such references are specifically not
permitted and cause the statement to fail with an error. (Bug #29444)

• HASH(expr)

Hashes one or more columns to create a key for placing and locating rows. expr is an expression
using one or more table columns. This can be any valid MySQL expression (including MySQL
functions) that yields a single integer value. For example, these are both valid CREATE TABLE
statements using PARTITION BY HASH:

CREATE TABLE t1 (col1 INT, col2 CHAR(5))
    PARTITION BY HASH(col1);



CREATE TABLE Syntax

1353

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME)
    PARTITION BY HASH ( YEAR(col3) );

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY HASH.

PARTITION BY HASH uses the remainder of expr divided by the number of partitions (that is, the
modulus). For examples and additional information, see Section 19.2.4, “HASH Partitioning”.

The LINEAR keyword entails a somewhat different algorithm. In this case, the number of the partition
in which a row is stored is calculated as the result of one or more logical AND operations. For
discussion and examples of linear hashing, see Section 19.2.4.1, “LINEAR HASH Partitioning”.

• KEY [ALGORITHM={1|2}] (column_list): This is similar to HASH, except that MySQL supplies
the hashing function so as to guarantee an even data distribution. The column_list argument
is simply a list of 1 or more table columns (maximum: 16). This example shows a simple table
partitioned by key, with 4 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
    PARTITION BY KEY(col3)
    PARTITIONS 4;

For tables that are partitioned by key, you can employ linear partitioning by using the LINEAR
keyword. This has the same effect as with tables that are partitioned by HASH. That is, the partition
number is found using the & operator rather than the modulus (see Section 19.2.4.1, “LINEAR
HASH Partitioning”, and Section 19.2.5, “KEY Partitioning”, for details). This example uses linear
partitioning by key to distribute data between 5 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
    PARTITION BY LINEAR KEY(col3)
    PARTITIONS 5;

The ALGORITHM={1|2} option is supported with [SUB]PARTITION BY [LINEAR] KEY beginning
with MySQL 5.5.31. ALGORITHM=1 causes the server to use the same key-hashing functions as
MySQL 5.1; ALGORITHM=2 means that the server employs the key-hashing functions implemented
and used by default for new KEY partitioned tables in MySQL 5.5 and later. (Partitioned tables
created with the key-hashing functions employed in MySQL 5.5 and later cannot be used by a
MySQL 5.1 server.) Not specifying the option has the same effect as using ALGORITHM=2. This
option is intended for use chiefly when upgrading or downgrading [LINEAR] KEY partitioned
tables between MySQL 5.1 and later MySQL versions, or for creating tables partitioned by KEY or
LINEAR KEY on a MySQL 5.5 or later server which can be used on a MySQL 5.1 server. For more
information, see Section 13.1.7.1, “ALTER TABLE Partition Operations”.

mysqldump in MySQL 5.5.31 and later writes this option encased in versioned comments, like this:

CREATE TABLE t1 (a INT)
/*!50100 PARTITION BY KEY */ /*!50531 ALGORITHM = 1 */ /*!50100 ()
      PARTITIONS 3 */

This causes MySQL 5.5.30 and earlier servers to ignore the option, which would otherwise cause a
syntax error in those versions. If you plan to load a dump made on a MySQL 5.5.31 or later MySQL
5.5 server where you use tables that are partitioned or subpartitioned by KEY into a MySQL 5.6
server previous to version 5.6.11, be sure to consult Changes Affecting Upgrades to MySQL 5.6,
before proceeding. (The information found there also applies if you are loading a dump containing
KEY partitioned or subpartitioned tables made from a MySQL 5.6.11 or later server into a MySQL
5.5.30 or earlier server.)

Also in MySQL 5.5.31 and later, ALGORITHM=1 is shown when necessary in the output of SHOW
CREATE TABLE using versioned comments in the same manner as mysqldump. ALGORITHM=2 is
always omitted from SHOW CREATE TABLE output, even if this option was specified when creating
the original table.

http://dev.mysql.com/doc/refman/5.6/en/upgrading-from-previous-series.html


CREATE TABLE Syntax

1354

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY KEY.

• RANGE(expr)

In this case, expr shows a range of values using a set of VALUES LESS THAN operators. When
using range partitioning, you must define at least one partition using VALUES LESS THAN. You
cannot use VALUES IN with range partitioning.

Note

For tables partitioned by RANGE, VALUES LESS THAN must be used with
either an integer literal value or an expression that evaluates to a single
integer value. In MySQL 5.5, you can overcome this limitation in a table that
is defined using PARTITION BY RANGE COLUMNS, as described later in this
section.

Suppose that you have a table that you wish to partition on a column containing year values,
according to the following scheme.

Partition Number: Years Range:

0 1990 and earlier

1 1991 to 1994

2 1995 to 1998

3 1999 to 2002

4 2003 to 2005

5 2006 and later

A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement
shown here:

CREATE TABLE t1 (
    year_col  INT,
    some_data INT
)
PARTITION BY RANGE (year_col) (
    PARTITION p0 VALUES LESS THAN (1991),
    PARTITION p1 VALUES LESS THAN (1995),
    PARTITION p2 VALUES LESS THAN (1999),
    PARTITION p3 VALUES LESS THAN (2002),
    PARTITION p4 VALUES LESS THAN (2006),
    PARTITION p5 VALUES LESS THAN MAXVALUE
);

PARTITION ... VALUES LESS THAN ... statements work in a consecutive fashion. VALUES
LESS THAN MAXVALUE works to specify “leftover” values that are greater than the maximum value
otherwise specified.

VALUES LESS THAN clauses work sequentially in a manner similar to that of the case portions of a
switch ... case block (as found in many programming languages such as C, Java, and PHP).
That is, the clauses must be arranged in such a way that the upper limit specified in each successive
VALUES LESS THAN is greater than that of the previous one, with the one referencing MAXVALUE
coming last of all in the list.

• RANGE COLUMNS(column_list)

This variant on RANGE was introduced in MySQL 5.5.0 to facilitate partition pruning for queries using
range conditions on multiple columns (that is, having conditions such as WHERE a = 1 AND b
< 10 or WHERE a = 1 AND b = 10 AND c < 10). It enables you to specify value ranges in



CREATE TABLE Syntax

1355

multiple columns by using a list of columns in the COLUMNS clause and a set of column values in
each PARTITION ... VALUES LESS THAN (value_list) partition definition clause. (In the
simplest case, this set consists of a single column.) The maximum number of columns that can be
referenced in the column_list and value_list is 16.

The column_list used in the COLUMNS clause may contain only names of columns; each column
in the list must be one of the following MySQL data types: the integer types; the string types; and
time or date column types. Columns using BLOB, TEXT, SET, ENUM, BIT, or spatial data types are
not permitted; columns that use floating-point number types are also not permitted. You also may not
use functions or arithmetic expressions in the COLUMNS clause.

The VALUES LESS THAN clause used in a partition definition must specify a literal value for each
column that appears in the COLUMNS() clause; that is, the list of values used for each VALUES
LESS THAN clause must contain the same number of values as there are columns listed in the
COLUMNS clause. An attempt to use more or fewer values in a VALUES LESS THAN clause than
there are in the COLUMNS clause causes the statement to fail with the error Inconsistency
in usage of column lists for partitioning.... You cannot use NULL for any value
appearing in VALUES LESS THAN. It is possible to use MAXVALUE more than once for a given
column other than the first, as shown in this example:

CREATE TABLE rc (
    a INT NOT NULL,
    b INT NOT NULL
)
PARTITION BY RANGE COLUMNS(a,b) (
    PARTITION p0 VALUES LESS THAN (10,5),
    PARTITION p1 VALUES LESS THAN (20,10),
    PARTITION p2 VALUES LESS THAN (50,MAXVALUE),
    PARTITION p3 VALUES LESS THAN (65,MAXVALUE),
    PARTITION p4 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

Each value used in a VALUES LESS THAN value list must match the type of the corresponding
column exactly; no conversion is made. For example, you cannot use the string '1' for a value that
matches a column that uses an integer type (you must use the numeral 1 instead), nor can you use
the numeral 1 for a value that matches a column that uses a string type (in such a case, you must
use a quoted string: '1').

For more information, see Section 19.2.1, “RANGE Partitioning”, and Section 19.4, “Partition
Pruning”.

• LIST(expr)

This is useful when assigning partitions based on a table column with a restricted set of possible
values, such as a state or country code. In such a case, all rows pertaining to a certain state or
country can be assigned to a single partition, or a partition can be reserved for a certain set of states
or countries. It is similar to RANGE, except that only VALUES IN may be used to specify permissible
values for each partition.

VALUES IN is used with a list of values to be matched. For instance, you could create a partitioning
scheme such as the following:

CREATE TABLE client_firms (
    id   INT,
    name VARCHAR(35)
)
PARTITION BY LIST (id) (
    PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
    PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
    PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
    PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)
);



CREATE TABLE Syntax

1356

When using list partitioning, you must define at least one partition using VALUES IN. You cannot use
VALUES LESS THAN with PARTITION BY LIST.

Note

For tables partitioned by LIST, the value list used with VALUES IN must
consist of integer values only. In MySQL 5.5, you can overcome this limitation
using partitioning by LIST COLUMNS, which is described later in this section.

• LIST COLUMNS(column_list)

This variant on LIST was introduced in MySQL 5.5.0 to facilitate partition pruning for queries using
comparison conditions on multiple columns (that is, having conditions such as WHERE a = 5 AND
b = 5 or WHERE a = 1 AND b = 10 AND c = 5). It enables you to specify values in multiple
columns by using a list of columns in the COLUMNS clause and a set of column values in each
PARTITION ... VALUES IN (value_list) partition definition clause.

The rules governing regarding data types for the column list used in LIST
COLUMNS(column_list) and the value list used in VALUES IN(value_list) are the same
as those for the column list used in RANGE COLUMNS(column_list) and the value list used
in VALUES LESS THAN(value_list), respectively, except that in the VALUES IN clause,
MAXVALUE is not permitted, and you may use NULL.

There is one important difference between the list of values used for VALUES IN with PARTITION
BY LIST COLUMNS as opposed to when it is used with PARTITION BY LIST. When used with
PARTITION BY LIST COLUMNS, each element in the VALUES IN clause must be a set of column
values; the number of values in each set must be the same as the number of columns used in the
COLUMNS clause, and the data types of these values must match those of the columns (and occur in
the same order). In the simplest case, the set consists of a single column. The maximum number of
columns that can be used in the column_list and in the elements making up the value_list is
16.

The table defined by the following CREATE TABLE statement provides an example of a table using
LIST COLUMNS partitioning:

CREATE TABLE lc (
    a INT NULL,
    b INT NULL
)
PARTITION BY LIST COLUMNS(a,b) (
    PARTITION p0 VALUES IN( (0,0), (NULL,NULL) ),
    PARTITION p1 VALUES IN( (0,1), (0,2), (0,3), (1,1), (1,2) ),
    PARTITION p2 VALUES IN( (1,0), (2,0), (2,1), (3,0), (3,1) ),
    PARTITION p3 VALUES IN( (1,3), (2,2), (2,3), (3,2), (3,3) )
);

• PARTITIONS num

The number of partitions may optionally be specified with a PARTITIONS num clause, where num
is the number of partitions. If both this clause and any PARTITION clauses are used, num must be
equal to the total number of any partitions that are declared using PARTITION clauses.

Note

Whether or not you use a PARTITIONS clause in creating a table that is
partitioned by RANGE or LIST, you must still include at least one PARTITION
VALUES clause in the table definition (see below).

• SUBPARTITION BY



CREATE TABLE Syntax

1357

A partition may optionally be divided into a number of subpartitions. This can be indicated by using
the optional SUBPARTITION BY clause. Subpartitioning may be done by HASH or KEY. Either of
these may be LINEAR. These work in the same way as previously described for the equivalent
partitioning types. (It is not possible to subpartition by LIST or RANGE.)

The number of subpartitions can be indicated using the SUBPARTITIONS keyword followed by an
integer value.

• Rigorous checking of the value used in PARTITIONS or SUBPARTITIONS clauses is applied and this
value must adhere to the following rules:

• The value must be a positive, nonzero integer.

• No leading zeros are permitted.

• The value must be an integer literal, and cannot not be an expression. For example, PARTITIONS
0.2E+01 is not permitted, even though 0.2E+01 evaluates to 2. (Bug #15890)

• partition_definition

Each partition may be individually defined using a partition_definition clause. The individual
parts making up this clause are as follows:

• PARTITION partition_name

Specifies a logical name for the partition.

• VALUES

For range partitioning, each partition must include a VALUES LESS THAN clause; for list
partitioning, you must specify a VALUES IN clause for each partition. This is used to determine
which rows are to be stored in this partition. See the discussions of partitioning types in
Chapter 19, Partitioning, for syntax examples.

• COMMENT

An optional COMMENT clause may be used to specify a string that describes the partition. Example:

COMMENT = 'Data for the years previous to 1999'

• DATA DIRECTORY and INDEX DIRECTORY

DATA DIRECTORY and INDEX DIRECTORY may be used to indicate the directory where,
respectively, the data and indexes for this partition are to be stored. Both the data_dir and the
index_dir must be absolute system path names.

As of MySQL 5.5.54, you must have the FILE privilege to use the DATA DIRECTORY or INDEX
DIRECTORY partition option.

Example:

CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
  PARTITION p1999 VALUES IN (1995, 1999, 2003)
    DATA DIRECTORY = '/var/appdata/95/data'
    INDEX DIRECTORY = '/var/appdata/95/idx',
  PARTITION p2000 VALUES IN (1996, 2000, 2004)
    DATA DIRECTORY = '/var/appdata/96/data'
    INDEX DIRECTORY = '/var/appdata/96/idx',
  PARTITION p2001 VALUES IN (1997, 2001, 2005)



CREATE TABLE Syntax

1358

    DATA DIRECTORY = '/var/appdata/97/data'
    INDEX DIRECTORY = '/var/appdata/97/idx',
  PARTITION p2002 VALUES IN (1998, 2002, 2006)
    DATA DIRECTORY = '/var/appdata/98/data'
    INDEX DIRECTORY = '/var/appdata/98/idx'
);

DATA DIRECTORY and INDEX DIRECTORY behave in the same way as in the CREATE TABLE
statement's table_option clause as used for MyISAM tables.

One data directory and one index directory may be specified per partition. If left unspecified, the
data and indexes are stored by default in the table's database directory.

On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for
individual partitions or subpartitions. These options are ignored on Windows, except that a warning
is generated. (Bug #30459)

Note

The DATA DIRECTORY and INDEX DIRECTORY options are ignored for
creating partitioned tables if NO_DIR_IN_CREATE is in effect. (Bug #24633)

• MAX_ROWS and MIN_ROWS

May be used to specify, respectively, the maximum and minimum number of rows to be stored in
the partition. The values for max_number_of_rows and min_number_of_rows must be positive
integers. As with the table-level options with the same names, these act only as “suggestions” to
the server and are not hard limits.

• TABLESPACE

The optional TABLESPACE clause may be used to designate a tablespace for the partition. Used
for NDB Cluster only.

• [STORAGE] ENGINE

The partitioning handler accepts a [STORAGE] ENGINE option for both PARTITION and
SUBPARTITION. Currently, the only way in which this can be used is to set all partitions or all
subpartitions to the same storage engine, and an attempt to set different storage engines for
partitions or subpartitions in the same table will give rise to the error ERROR 1469 (HY000):
The mix of handlers in the partitions is not permitted in this version
of MySQL. We expect to lift this restriction on partitioning in a future MySQL release.

• NODEGROUP

The NODEGROUP option can be used to make this partition act as part of the node group identified
by node_group_id. This option is applicable only to NDB Cluster.

• subpartition_definition

The partition definition may optionally contain one or more subpartition_definition clauses.
Each of these consists at a minimum of the SUBPARTITION name, where name is an identifier for
the subpartition. Except for the replacement of the PARTITION keyword with SUBPARTITION, the
syntax for a subpartition definition is identical to that for a partition definition.

Subpartitioning must be done by HASH or KEY, and can be done only on RANGE or LIST partitions.
See Section 19.2.6, “Subpartitioning”.

13.1.17.1 CREATE TABLE Statement Retention

The original CREATE TABLE statement, including all specifications and table options are stored by
MySQL when the table is created. The information is retained so that if you change storage engines,



CREATE TABLE Syntax

1359

collations or other settings using an ALTER TABLE statement, the original table options specified are
retained. This enables you to change between InnoDB and MyISAM table types even though the row
formats supported by the two engines are different.

Because the text of the original statement is retained, but due to the way that certain values and
options may be silently reconfigured (such as the ROW_FORMAT), the active table definition (accessible
through DESCRIBE or with SHOW TABLE STATUS) and the table creation string (accessible through
SHOW CREATE TABLE) will report different values.

13.1.17.2 Files Created by CREATE TABLE

MySQL represents each table by an .frm table format (definition) file in the database directory. The
storage engine for the table might create other files as well.

For InnoDB tables, the file storage is controlled by the innodb_file_per_table configuration
option. For each InnoDB table created when this option is turned on, the table data and all associated
indexes are stored in a .ibd file located inside the database directory. When this option is turned off, all
InnoDB tables and indexes are stored in the system tablespace, represented by one or more ibdata*
files.

For MyISAM tables, the storage engine creates data and index files. Thus, for each MyISAM table
tbl_name, there are three disk files.

File Purpose

tbl_name.frm Table format (definition) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Chapter 15, Alternative Storage Engines, describes what files each storage engine creates to represent
tables. If a table name contains special characters, the names for the table files contain encoded
versions of those characters as described in Section 9.2.3, “Mapping of Identifiers to File Names”.

13.1.17.3 CREATE TEMPORARY TABLE Syntax

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only to the
current session, and is dropped automatically when the session is closed. This means that two different
sessions can use the same temporary table name without conflicting with each other or with an existing
non-TEMPORARY table of the same name. (The existing table is hidden until the temporary table is
dropped.)

CREATE TABLE does not automatically commit the current active transaction if you use the
TEMPORARY keyword.

TEMPORARY tables have a very loose relationship with databases (schemas). Dropping a database
does not automatically drop any TEMPORARY tables created within that database. Also, you can create
a TEMPORARY table in a nonexistent database if you qualify the table name with the database name in
the CREATE TABLE statement. In this case, all subsequent references to the table must be qualified
with the database name.

To create a temporary table, you must have the CREATE TEMPORARY TABLES privilege. However,
other operations on a temporary table, such as INSERT, UPDATE, or SELECT, require additional
privileges for those operations for the database containing the temporary table, or for the nontemporary
table of the same name.

To keep privileges for temporary and nontemporary tables separate, a common workaround for this
situation is to create a database dedicated to the use of temporary tables. Then for that database,
a user can be granted the CREATE TEMPORARY TABLES privilege, along with any other privileges
required for temporary table operations done by that user.



CREATE TABLE Syntax

1360

13.1.17.4 CREATE TABLE ... LIKE Syntax

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

The copy is created using the same version of the table storage format as the original table. The
SELECT privilege is required on the original table.

LIKE works only for base tables, not for views.

Important

Beginning with MySQL 5.5.3, you cannot execute CREATE TABLE or CREATE
TABLE ... LIKE while a LOCK TABLES statement is in effect.

Also as of MySQL 5.5.3, CREATE TABLE ... LIKE makes the same checks
as CREATE TABLE and does not just copy the .frm file. This means that if the
current SQL mode is different from the mode in effect when the original table
was created, the table definition might be considered invalid for the new mode
and the statement will fail.

CREATE TABLE ... LIKE does not preserve any DATA DIRECTORY or INDEX DIRECTORY table
options that were specified for the original table, or any foreign key definitions.

If the original table is a TEMPORARY table, CREATE TABLE ... LIKE does not preserve TEMPORARY.
To create a TEMPORARY destination table, use CREATE TEMPORARY TABLE ... LIKE.

13.1.17.5 CREATE TABLE ... SELECT Syntax

You can create one table from another by adding a SELECT statement at the end of the CREATE
TABLE statement:

CREATE TABLE new_tbl [AS] SELECT * FROM orig_tbl;

MySQL creates new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
    ->        PRIMARY KEY (a), KEY(b))
    ->        ENGINE=MyISAM SELECT b,c FROM test2;

This creates a MyISAM table with three columns, a, b, and c. The ENGINE option is part of the CREATE
TABLE statement, and should not be used following the SELECT; this would result in a syntax error.
The same is true for other CREATE TABLE options such as CHARSET.

Notice that the columns from the SELECT statement are appended to the right side of the table, not
overlapped onto it. Take the following example:

mysql> SELECT * FROM foo;
+---+
| n |
+---+
| 1 |
+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM bar;



CREATE TABLE Syntax

1361

+------+---+
| m    | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

For each row in table foo, a row is inserted in bar with the values from foo and default values for the
new columns.

In a table resulting from CREATE TABLE ... SELECT, columns named only in the CREATE TABLE
part come first. Columns named in both parts or only in the SELECT part come after that. The data type
of SELECT columns can be overridden by also specifying the column in the CREATE TABLE part.

If any errors occur while copying the data to the table, it is automatically dropped and not created.

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle rows that duplicate
unique key values. With IGNORE, rows that duplicate an existing row on a unique key value are
discarded. With REPLACE, new rows replace rows that have the same unique key value. If neither
IGNORE nor REPLACE is specified, duplicate unique key values result in an error.

Because the ordering of the rows in the underlying SELECT statements cannot always be determined,
CREATE TABLE ... IGNORE SELECT and CREATE TABLE ... REPLACE SELECT statements
in MySQL 5.5.18 and later are flagged as unsafe for statement-based replication. With this change,
such statements produce a warning in the log when using statement-based mode and are logged
using the row-based format when using MIXED mode. See also Section 17.1.2.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done
intentionally to make the statement as flexible as possible. If you want to have indexes in the created
table, you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

Some conversion of data types might occur. For example, the AUTO_INCREMENT attribute is not
preserved, and VARCHAR columns can become CHAR columns. Retrained attributes are NULL (or NOT
NULL) and, for those columns that have them, CHARACTER SET, COLLATION, COMMENT, and the
DEFAULT clause.

When creating a table with CREATE TABLE ... SELECT, make sure to alias any function calls or
expressions in the query. If you do not, the CREATE statement might fail or result in undesirable column
names.

CREATE TABLE artists_and_works
  SELECT artist.name, COUNT(work.artist_id) AS number_of_works
  FROM artist LEFT JOIN work ON artist.id = work.artist_id
  GROUP BY artist.id;

You can also explicitly specify the data type for a column in the created table:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

For CREATE TABLE ... SELECT, if IF NOT EXISTS is given and the destination table already
exists, the result is version dependent. Before MySQL 5.5.6, MySQL handles the statement as follows:

• The table definition given in the CREATE TABLE part is ignored. No error occurs, even if the
definition does not match that of the existing table. MySQL attempts to insert the rows from the
SELECT part anyway.

• If there is a mismatch between the number of columns in the table and the number of columns
produced by the SELECT part, the selected values are assigned to the rightmost columns. For



CREATE TABLE Syntax

1362

example, if the table contains n columns and the SELECT produces m columns, where m < n, the
selected values are assigned to the m rightmost columns in the table. Each of the initial n − m
columns is assigned its default value, either that specified explicitly in the column definition or the
implicit column data type default if the definition contains no default. If the SELECT part produces too
many columns (m > n), an error occurs.

• If strict SQL mode is enabled and any of these initial columns do not have an explicit default value,
the statement fails with an error.

The following example illustrates IF NOT EXISTS handling:

mysql> CREATE TABLE t1 (i1 INT DEFAULT 0, i2 INT, i3 INT, i4 INT);
Query OK, 0 rows affected (0.05 sec)

mysql> CREATE TABLE IF NOT EXISTS t1 (c1 CHAR(10)) SELECT 1, 2;
Query OK, 1 row affected, 1 warning (0.01 sec)
Records: 1  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM t1;
+------+------+------+------+
| i1   | i2   | i3   | i4   |
+------+------+------+------+
|    0 | NULL |    1 |    2 |
+------+------+------+------+
1 row in set (0.00 sec)

As of MySQL 5.5.6, handling of CREATE TABLE IF NOT EXISTS ... SELECT statements was
changed for the case that the destination table already exists. This change also involves a change in
MySQL 5.1 beginning with 5.1.51.

• Previously, for CREATE TABLE IF NOT EXISTS ... SELECT, MySQL produced a warning that
the table exists, but inserted the rows and wrote the statement to the binary log anyway. By contrast,
CREATE TABLE ... SELECT (without IF NOT EXISTS) failed with an error, but MySQL inserted
no rows and did not write the statement to the binary log.

• MySQL now handles both statements the same way when the destination table exists, in that neither
statement inserts rows or is written to the binary log. The difference between them is that MySQL
produces a warning when IF NOT EXISTS is present and an error when it is not.

This change means that, for the preceding example, the CREATE TABLE IF NOT EXISTS ...
SELECT statement inserts nothing into the destination table as of MySQL 5.5.6.

This change in handling of IF NOT EXISTS results in an incompatibility for statement-based
replication from a MySQL 5.1 master with the original behavior and a MySQL 5.5 slave with the new
behavior. Suppose that CREATE TABLE IF NOT EXISTS ... SELECT is executed on the master
and the destination table exists. The result is that rows are inserted on the master but not on the slave.
(Row-based replication does not have this problem.)

To address this issue, statement-based binary logging for CREATE TABLE IF NOT EXISTS ...
SELECT is changed in MySQL 5.1 as of 5.1.51:

• If the destination table does not exist, there is no change: The statement is logged as is.

• If the destination table does exist, the statement is logged as the equivalent pair of CREATE TABLE
IF NOT EXISTS and INSERT ... SELECT statements. (If the SELECT in the original statement
is preceded by IGNORE or REPLACE, the INSERT becomes INSERT IGNORE or REPLACE,
respectively.)

This change provides forward compatibility for statement-based replication from MySQL 5.1 to 5.5
because when the destination table exists, the rows will be inserted on both the master and slave. To
take advantage of this compatibility measure, the 5.1 server must be at least 5.1.51 and the 5.5 server
must be at least 5.5.6.



CREATE TABLE Syntax

1363

To upgrade an existing 5.1-to-5.5 replication scenario, upgrade the master first to 5.1.51 or higher.
Note that this differs from the usual replication upgrade advice of upgrading the slave first.

A workaround for applications that wish to achieve the original effect (rows inserted regardless of
whether the destination table exists) is to use CREATE TABLE IF NOT EXISTS and INSERT ...
SELECT statements rather than CREATE TABLE IF NOT EXISTS ... SELECT statements.

Along with the change just described, the following related change was made: Previously, if an existing
view was named as the destination table for CREATE TABLE IF NOT EXISTS ... SELECT, rows
were inserted into the underlying base table and the statement was written to the binary log. As of
MySQL 5.1.51 and 5.5.6, nothing is inserted or logged.

To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts during CREATE TABLE ... SELECT.

13.1.17.6 Using FOREIGN KEY Constraints

MySQL supports foreign keys, which let you cross-reference related data across tables, and foreign
key constraints, which help keep this spread-out data consistent. The essential syntax for a foreign key
constraint definition in a CREATE TABLE or ALTER TABLE statement looks like this:

[CONSTRAINT [symbol]] FOREIGN KEY
    [index_name] (index_col_name, ...)
    REFERENCES tbl_name (index_col_name,...)
    [ON DELETE reference_option]
    [ON UPDATE reference_option]

reference_option:
    RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

index_name represents a foreign key ID. The index_name value is ignored if there is already an
explicitly defined index on the child table that can support the foreign key. Otherwise, MySQL implicitly
creates a foreign key index that is named according to the following rules:

• If defined, the CONSTRAINT symbol value is used. Otherwise, the FOREIGN KEY index_name
value is used.

• If neither a CONSTRAINT symbol or FOREIGN KEY index_name is defined, the foreign key index
name is generated using the name of the referencing foreign key column.

Foreign keys definitions are subject to the following conditions:

• Foreign key relationships involve a parent table that holds the central data values, and a child table
with identical values pointing back to its parent. The FOREIGN KEY clause is specified in the child
table. The parent and child tables must use the same storage engine. They must not be TEMPORARY
tables.

In MySQL 5.5, creation of a foreign key constraint requires at least one of the SELECT, INSERT,
UPDATE, DELETE, or REFERENCES privileges for the parent table as of 5.5.41.

• Corresponding columns in the foreign key and the referenced key must have similar data types. The
size and sign of integer types must be the same. The length of string types need not be the same.
For nonbinary (character) string columns, the character set and collation must be the same.

• When foreign_key_checks is enabled, which is the default setting, character set conversion is
not permitted on tables that include a character string column used in a foreign key constraint. The
workaround is described in Section 13.1.7, “ALTER TABLE Syntax”.

• MySQL requires indexes on foreign keys and referenced keys so that foreign key checks can be
fast and not require a table scan. In the referencing table, there must be an index where the foreign
key columns are listed as the first columns in the same order. Such an index is created on the
referencing table automatically if it does not exist. This index might be silently dropped later, if you



CREATE TABLE Syntax

1364

create another index that can be used to enforce the foreign key constraint. index_name, if given, is
used as described previously.

• InnoDB permits a foreign key to reference any column or group of columns. However, in the
referenced table, there must be an index where the referenced columns are listed as the first
columns in the same order.

• Index prefixes on foreign key columns are not supported. One consequence of this is that BLOB and
TEXT columns cannot be included in a foreign key because indexes on those columns must always
include a prefix length.

• If the CONSTRAINT symbol clause is given, the symbol value, if used, must be unique in the
database. A duplicate symbol will result in an error similar to: ERROR 1005 (HY000): Can't
create table 'test.#sql-211d_3' (errno: 121). If the clause is not given, or a
symbol is not included following the CONSTRAINT keyword, a name for the constraint is created
automatically.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This
includes both parent and child tables.

Referential Actions

This section describes how foreign keys help guarantee referential integrity.

For storage engines supporting foreign keys, MySQL rejects any INSERT or UPDATE operation that
attempts to create a foreign key value in a child table if there is no a matching candidate key value in
the parent table.

When an UPDATE or DELETE operation affects a key value in the parent table that has matching rows
in the child table, the result depends on the referential action specified using ON UPDATE and ON
DELETE subclauses of the FOREIGN KEY clause. MySQL supports five options regarding the action to
be taken, listed here:

• CASCADE: Delete or update the row from the parent table, and automatically delete or update the
matching rows in the child table. Both ON DELETE CASCADE and ON UPDATE CASCADE are
supported. Between two tables, do not define several ON UPDATE CASCADE clauses that act on the
same column in the parent table or in the child table.

Note

Cascaded foreign key actions do not activate triggers.

• SET NULL: Delete or update the row from the parent table, and set the foreign key column or
columns in the child table to NULL. Both ON DELETE SET NULL and ON UPDATE SET NULL
clauses are supported.

If you specify a SET NULL action, make sure that you have not declared the columns in the child
table as NOT NULL.

• RESTRICT: Rejects the delete or update operation for the parent table. Specifying RESTRICT (or NO
ACTION) is the same as omitting the ON DELETE or ON UPDATE clause.

• NO ACTION: A keyword from standard SQL. In MySQL, equivalent to RESTRICT. The MySQL
Server rejects the delete or update operation for the parent table if there is a related foreign key
value in the referenced table. Some database systems have deferred checks, and NO ACTION is a
deferred check. In MySQL, foreign key constraints are checked immediately, so NO ACTION is the
same as RESTRICT.

• SET DEFAULT: This action is recognized by the MySQL parser, but InnoDB rejects table definitions
containing ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.



CREATE TABLE Syntax

1365

For an ON DELETE or ON UPDATE that is not specified, the default action is always RESTRICT.

MySQL supports foreign key references between one column and another within a table. (A column
cannot have a foreign key reference to itself.) In these cases, “child table records” really refers to
dependent records within the same table.

Examples of Foreign Key Clauses

Here is a simple example that relates parent and child tables through a single-column foreign key:

CREATE TABLE parent (
    id INT NOT NULL,
    PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE child (
    id INT,
    parent_id INT,
    INDEX par_ind (parent_id),
    FOREIGN KEY (parent_id)
        REFERENCES parent(id)
        ON DELETE CASCADE
) ENGINE=INNODB;

A more complex example in which a product_order table has foreign keys for two other tables. One
foreign key references a two-column index in the product table. The other references a single-column
index in the customer table:

CREATE TABLE product (
    category INT NOT NULL, id INT NOT NULL,
    price DECIMAL,
    PRIMARY KEY(category, id)
)   ENGINE=INNODB;

CREATE TABLE customer (
    id INT NOT NULL,
    PRIMARY KEY (id)
)   ENGINE=INNODB;

CREATE TABLE product_order (
    no INT NOT NULL AUTO_INCREMENT,
    product_category INT NOT NULL,
    product_id INT NOT NULL,
    customer_id INT NOT NULL,

    PRIMARY KEY(no),
    INDEX (product_category, product_id),
    INDEX (customer_id),

    FOREIGN KEY (product_category, product_id)
      REFERENCES product(category, id)
      ON UPDATE CASCADE ON DELETE RESTRICT,

    FOREIGN KEY (customer_id)
      REFERENCES customer(id)
)   ENGINE=INNODB;

Adding foreign keys

You can add a new foreign key constraint to an existing table by using ALTER TABLE. The syntax
relating to foreign keys for this statement is shown here:

ALTER TABLE tbl_name
    ADD [CONSTRAINT [symbol]] FOREIGN KEY
    [index_name] (index_col_name, ...)
    REFERENCES tbl_name (index_col_name,...)



CREATE TABLE Syntax

1366

    [ON DELETE reference_option]
    [ON UPDATE reference_option]

The foreign key can be self referential (referring to the same table). When you add a foreign key
constraint to a table using ALTER TABLE, remember to create the required indexes first.

Dropping Foreign Keys

You can also use ALTER TABLE to drop foreign keys, using the syntax shown here:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

If the FOREIGN KEY clause included a CONSTRAINT name when you created the foreign key, you can
refer to that name to drop the foreign key. Otherwise, the fk_symbol value is generated internally
when the foreign key is created. To find out the symbol value when you want to drop a foreign key, use
a SHOW CREATE TABLE statement, as shown here:

mysql> SHOW CREATE TABLE ibtest11c\G
*************************** 1. row ***************************
       Table: ibtest11c
Create Table: CREATE TABLE `ibtest11c` (
  `A` int(11) NOT NULL auto_increment,
  `D` int(11) NOT NULL default '0',
  `B` varchar(200) NOT NULL default '',
  `C` varchar(175) default NULL,
  PRIMARY KEY  (`A`,`D`,`B`),
  KEY `B` (`B`,`C`),
  KEY `C` (`C`),
  CONSTRAINT `0_38775` FOREIGN KEY (`A`, `D`)
REFERENCES `ibtest11a` (`A`, `D`)
ON DELETE CASCADE ON UPDATE CASCADE,
  CONSTRAINT `0_38776` FOREIGN KEY (`B`, `C`)
REFERENCES `ibtest11a` (`B`, `C`)
ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=INNODB CHARSET=latin1
1 row in set (0.01 sec)

mysql> ALTER TABLE ibtest11c DROP FOREIGN KEY `0_38775`;

Adding and dropping a foreign key in separate clauses of a single ALTER TABLE statement may be
problematic in some cases and is therefore unsupported. Use separate statements for each operation.

If an ALTER TABLE statement results in changes to column values (for example, because a column
is truncated), MySQL's foreign key constraint checks do not notice possible violations caused by
changing the values.

Foreign Keys and Other MySQL Statements

Table and column identifiers in a FOREIGN KEY ... REFERENCES ... clause can be quoted within
backticks (`). Alternatively, double quotation marks (") can be used if the ANSI_QUOTES SQL mode is
enabled. The setting of the lower_case_table_names system variable is also taken into account.

You can view a child table's foreign key definitions as part of the output of the SHOW CREATE TABLE
statement:

SHOW CREATE TABLE tbl_name;

You can also obtain information about foreign keys by querying the
INFORMATION_SCHEMA.KEY_COLUMN_USAGE table.

mysqldump produces correct definitions of tables in the dump file, including the foreign keys for child
tables.



CREATE TABLE Syntax

1367

To make it easier to reload dump files for tables that have foreign key relationships, mysqldump
automatically includes a statement in the dump output to set foreign_key_checks to 0. This avoids
problems with tables having to be reloaded in a particular order when the dump is reloaded. It is also
possible to set this variable manually:

mysql> SET foreign_key_checks = 0;
mysql> SOURCE dump_file_name;
mysql> SET foreign_key_checks = 1;

This enables you to import the tables in any order if the dump file contains tables that are not correctly
ordered for foreign keys. It also speeds up the import operation. Setting foreign_key_checks
to 0 can also be useful for ignoring foreign key constraints during LOAD DATA and ALTER TABLE
operations. However, even if foreign_key_checks = 0, MySQL does not permit the creation of
a foreign key constraint where a column references a nonmatching column type. Also, if a table has
foreign key constraints, ALTER TABLE cannot be used to alter the table to use another storage engine.
To change the storage engine, you must drop any foreign key constraints first.

You cannot issue DROP TABLE for a table that is referenced by a FOREIGN KEY constraint, unless you
do SET foreign_key_checks = 0. When you drop a table, any constraints that were defined in the
statement used to create that table are also dropped.

If you re-create a table that was dropped, it must have a definition that conforms to the foreign key
constraints referencing it. It must have the correct column names and types, and it must have indexes
on the referenced keys, as stated earlier. If these are not satisfied, MySQL returns Error 1005 and
refers to Error 150 in the error message, which means that a foreign key constraint was not correctly
formed. Similarly, if an ALTER TABLE fails due to Error 150, this means that a foreign key definition
would be incorrectly formed for the altered table.

For InnoDB tables, you can obtain a detailed explanation of the most recent InnoDB foreign key error
in the MySQL Server, by checking the output of SHOW ENGINE INNODB STATUS.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no storage
engine, including InnoDB, recognizes or enforces the MATCH clause used in
referential-integrity constraint definitions. Use of an explicit MATCH clause will
not have the specified effect, and also causes ON DELETE and ON UPDATE
clauses to be ignored. For these reasons, specifying MATCH should be avoided.

The MATCH clause in the SQL standard controls how NULL values in a
composite (multiple-column) foreign key are handled when comparing to a
primary key. MySQL essentially implements the semantics defined by MATCH
SIMPLE, which permit a foreign key to be all or partially NULL. In that case,
the (child table) row containing such a foreign key is permitted to be inserted,
and does not match any row in the referenced (parent) table. It is possible to
implement other semantics using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance reasons. However, the system does not enforce a requirement that
the referenced columns be UNIQUE or be declared NOT NULL. The handling of
foreign key references to nonunique keys or keys that contain NULL values is
not well defined for operations such as UPDATE or DELETE CASCADE. You are
advised to use foreign keys that reference only UNIQUE (including PRIMARY)
and NOT NULL keys.

Furthermore, MySQL parses but ignores “inline REFERENCES specifications”
(as defined in the SQL standard) where the references are defined as part of
the column specification. MySQL accepts REFERENCES clauses only when
specified as part of a separate FOREIGN KEY specification. For storage engines



CREATE TABLESPACE Syntax

1368

that do not support foreign keys (such as MyISAM), MySQL Server parses and
ignores foreign key specifications.

13.1.17.7 Silent Column Specification Changes

In some cases, MySQL silently changes column specifications from those given in a CREATE TABLE or
ALTER TABLE statement. These might be changes to a data type, to attributes associated with a data
type, or to an index specification.

All changes are subject to the internal row-size limit of 65,535 bytes, which may cause some attempts
at data type changes to fail. See Section C.10.4, “Limits on Table Column Count and Row Size”.

• TIMESTAMP display sizes are discarded.

Also note that TIMESTAMP columns are NOT NULL by default.

• Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.

• Trailing spaces are automatically deleted from ENUM and SET member values when the table is
created.

• MySQL maps certain data types used by other SQL database vendors to MySQL types. See
Section 11.9, “Using Data Types from Other Database Engines”.

• If you include a USING clause to specify an index type that is not permitted for a given storage
engine, but there is another index type available that the engine can use without affecting query
results, the engine uses the available type.

• If strict SQL mode is not enabled, a VARCHAR column with a length specification greater than 65535
is converted to TEXT, and a VARBINARY column with a length specification greater than 65535 is
converted to BLOB. Otherwise, an error occurs in either of these cases.

• Specifying the CHARACTER SET binary attribute for a character data type causes the column
to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they
are created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
  c1 VARCHAR(10) CHARACTER SET binary,
  c2 TEXT CHARACTER SET binary,
  c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
  c1 VARBINARY(10),
  c2 BLOB,
  c3 ENUM('a','b','c') CHARACTER SET binary
);

To see whether MySQL used a data type other than the one you specified, issue a DESCRIBE or SHOW
CREATE TABLE statement after creating or altering the table.

Certain other data type changes can occur if you compress a table using myisampack. See
Section 15.3.3.3, “Compressed Table Characteristics”.

13.1.18 CREATE TABLESPACE Syntax



CREATE TABLESPACE Syntax

1369

CREATE TABLESPACE tablespace_name
    ADD DATAFILE 'file_name'
    USE LOGFILE GROUP logfile_group
    [EXTENT_SIZE [=] extent_size]
    [INITIAL_SIZE [=] initial_size]
    [AUTOEXTEND_SIZE [=] autoextend_size]
    [MAX_SIZE [=] max_size]
    [NODEGROUP [=] nodegroup_id]
    [WAIT]
    [COMMENT [=] comment_text]
    ENGINE [=] engine_name

This statement is used to create a tablespace, which can contain one or more data files, providing
storage space for tables. One data file is created and added to the tablespace using this statement.
Additional data files may be added to the tablespace by using the ALTER TABLESPACE statement (see
Section 13.1.8, “ALTER TABLESPACE Syntax”). For rules covering the naming of tablespaces, see
Section 9.2, “Schema Object Names”.

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and a log
file group with the same name, or a tablespace and a data file with the same
name.

A log file group of one or more UNDO log files must be assigned to the tablespace to be created with
the USE LOGFILE GROUP clause. logfile_group must be an existing log file group created with
CREATE LOGFILE GROUP (see Section 13.1.14, “CREATE LOGFILE GROUP Syntax”). Multiple
tablespaces may use the same log file group for UNDO logging.

The EXTENT_SIZE sets the size, in bytes, of the extents used by any files belonging to the tablespace.
The default value is 1M. The minimum size is 32K, and theoretical maximum is 2G, although the
practical maximum size depends on a number of factors. In most cases, changing the extent size does
not have any measurable effect on performance, and the default value is recommended for all but the
most unusual situations.

An extent is a unit of disk space allocation. One extent is filled with as much data as that extent can
contain before another extent is used. In theory, up to 65,535 (64K) extents may used per data file;
however, the recommended maximum is 32,768 (32K). The recommended maximum size for a single
data file is 32G—that is, 32K extents × 1 MB per extent. In addition, once an extent is allocated to a
given partition, it cannot be used to store data from a different partition; an extent cannot store data
from more than one partition. This means, for example that a tablespace having a single datafile whose
INITIAL_SIZE is 256 MB and whose EXTENT_SIZE is 128M has just two extents, and so can be
used to store data from at most two different disk data table partitions.

You can see how many extents remain free in a given data file by querying the
INFORMATION_SCHEMA.FILES table, and so derive an estimate for how much space remains free
in the file. For further discussion and examples, see Section 21.29.1, “The INFORMATION_SCHEMA
FILES Table”.

The INITIAL_SIZE parameter sets the data file's total size in bytes. Once the file has been created,
its size cannot be changed; however, you can add more data files to the tablespace using ALTER
TABLESPACE ... ADD DATAFILE. See Section 13.1.8, “ALTER TABLESPACE Syntax”.

INITIAL_SIZE is optional; its default value is 134217728 (128 MB).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

When setting EXTENT_SIZE, you may optionally follow the number with a one-letter abbreviation
for an order of magnitude, similar to those used in my.cnf. Generally, this is one of the letters M (for



CREATE TRIGGER Syntax

1370

megabytes) or G (for gigabytes). In MySQL NDB Cluster 7.2.14 and later, these abbreviations are also
supported when specifying INITIAL_SIZE as well. (Bug #13116514, Bug #16104705, Bug #62858)

INITIAL_SIZE, EXTENT_SIZE, and UNDO_BUFFER_SIZE are subject to rounding as follows:

• EXTENT_SIZE and UNDO_BUFFER_SIZE are each rounded up to the nearest whole multiple of 32K.

• INITIAL_SIZE is rounded down to the nearest whole multiple of 32K.

For data files, INITIAL_SIZE is subject to further rounding; the result just obtained is rounded up to
the nearest whole multiple of EXTENT_SIZE (after any rounding).

The rounding just described is done explicitly, and a warning is issued by the MySQL Server when
any such rounding is performed. The rounded values are also used by the NDB kernel for calculating
INFORMATION_SCHEMA.FILES column values and other purposes. However, to avoid an unexpected
result, we suggest that you always use whole multiples of 32K in specifying these options.

AUTOEXTEND_SIZE, MAX_SIZE, NODEGROUP, WAIT, and COMMENT are parsed but ignored, and so
currently have no effect. These options are intended for future expansion.

The ENGINE parameter determines the storage engine which uses this tablespace, with engine_name
being the name of the storage engine. Currently, engine_name must be one of the values NDB or
NDBCLUSTER.

When CREATE TABLESPACE is used with ENGINE = NDB, a tablespace and associated data file
are created on each Cluster data node. You can verify that the data files were created and obtain
information about them by querying the INFORMATION_SCHEMA.FILES table. For example:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_NAME, EXTRA
    -> FROM INFORMATION_SCHEMA.FILES
    -> WHERE TABLESPACE_NAME = 'newts' AND FILE_TYPE = 'DATAFILE';
+--------------------+-------------+----------------+
| LOGFILE_GROUP_NAME | FILE_NAME   | EXTRA          |
+--------------------+-------------+----------------+
| lg_3               | newdata.dat | CLUSTER_NODE=3 |
| lg_3               | newdata.dat | CLUSTER_NODE=4 |
+--------------------+-------------+----------------+
2 rows in set (0.01 sec)

(See Section 21.29.1, “The INFORMATION_SCHEMA FILES Table”.)

CREATE TABLESPACE is useful only with Disk Data storage for NDB Cluster. See Section 18.5.12,
“NDB Cluster Disk Data Tables”.

13.1.19 CREATE TRIGGER Syntax

CREATE
    [DEFINER = { user | CURRENT_USER }]
    TRIGGER trigger_name
    trigger_time trigger_event
    ON tbl_name FOR EACH ROW
    trigger_body

trigger_time: { BEFORE | AFTER }

trigger_event: { INSERT | UPDATE | DELETE }

This statement creates a new trigger. A trigger is a named database object that is associated with a
table, and that activates when a particular event occurs for the table. The trigger becomes associated
with the table named tbl_name, which must refer to a permanent table. You cannot associate a trigger
with a TEMPORARY table or a view.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names
within a schema. Triggers in different schemas can have the same name.



CREATE TRIGGER Syntax

1371

This section describes CREATE TRIGGER syntax. For additional discussion, see Section 20.3.1,
“Trigger Syntax and Examples”.

CREATE TRIGGER requires the TRIGGER privilege for the table associated with the trigger. The
statement might also require the SUPER privilege, depending on the DEFINER value, as described later
in this section. If binary logging is enabled, CREATE TRIGGER might require the SUPER privilege, as
described in Section 20.7, “Binary Logging of Stored Programs”.

The DEFINER clause determines the security context to be used when checking access privileges at
trigger activation time, as described later in this section.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger
activates before or after each row to be modified.

trigger_event indicates the kind of operation that activates the trigger. These trigger_event
values are permitted:

• INSERT: The trigger activates whenever a new row is inserted into the table; for example, through
INSERT, LOAD DATA, and REPLACE statements.

• UPDATE: The trigger activates whenever a row is modified; for example, through UPDATE statements.

• DELETE: The trigger activates whenever a row is deleted from the table; for example, through
DELETE and REPLACE statements. DROP TABLE and TRUNCATE TABLE statements on the table
do not activate this trigger, because they do not use DELETE. Dropping a partition does not activate
DELETE triggers, either.

The trigger_event does not represent a literal type of SQL statement that activates the trigger so
much as it represents a type of table operation. For example, an INSERT trigger activates not only for
INSERT statements but also LOAD DATA statements because both statements insert rows into a table.

A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY
UPDATE ... syntax: a BEFORE INSERT trigger activates for every row, followed by either an AFTER
INSERT trigger or both the BEFORE UPDATE and AFTER UPDATE triggers, depending on whether
there was a duplicate key for the row.

Note

Cascaded foreign key actions do not activate triggers.

There cannot be multiple triggers for a given table that have the same trigger event and action time.
For example, you cannot have two BEFORE UPDATE triggers for a table. But you can have a BEFORE
UPDATE and a BEFORE INSERT trigger, or a BEFORE UPDATE and an AFTER UPDATE trigger.

trigger_body is the statement to execute when the trigger activates. To execute multiple
statements, use the BEGIN ... END compound statement construct. This also enables you to use
the same statements that are permissible within stored routines. See Section 13.6.1, “BEGIN ... END
Compound-Statement Syntax”. Some statements are not permitted in triggers; see Section C.1,
“Restrictions on Stored Programs”.

Within the trigger body, you can refer to columns in the subject table (the table associated with the
trigger) by using the aliases OLD and NEW. OLD.col_name refers to a column of an existing row before
it is updated or deleted. NEW.col_name refers to the column of a new row to be inserted or an existing
row after it is updated.

MySQL stores the sql_mode system variable setting in effect when a trigger is created, and always
executes the trigger body with this setting in force, regardless of the current server SQL mode when
the trigger begins executing.

The DEFINER clause specifies the MySQL account to be used when checking access privileges
at trigger activation time. If a user value is given, it should be a MySQL account specified as



CREATE VIEW Syntax

1372

'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The default DEFINER value is
the user who executes the CREATE TRIGGER statement. This is the same as specifying DEFINER =
CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only permitted user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not exist, a warning is generated.

• Although it is possible to create a trigger with a nonexistent DEFINER account, it is not a good idea
for such triggers to be activated until the account actually does exist. Otherwise, the behavior with
respect to privilege checking is undefined.

MySQL takes the DEFINER user into account when checking trigger privileges as follows:

• At CREATE TRIGGER time, the user who issues the statement must have the TRIGGER privilege.

• At trigger activation time, privileges are checked against the DEFINER user. This user must have
these privileges:

• The TRIGGER privilege for the subject table.

• The SELECT privilege for the subject table if references to table columns occur using
OLD.col_name or NEW.col_name in the trigger body.

• The UPDATE privilege for the subject table if table columns are targets of SET NEW.col_name =
value assignments in the trigger body.

• Whatever other privileges normally are required for the statements executed by the trigger.

For more information about trigger security, see Section 20.6, “Access Control for Stored Programs
and Views”.

Within a trigger body, the CURRENT_USER() function returns the account used to check privileges at
trigger activation time. This is the DEFINER user, not the user whose actions caused the trigger to be
activated. For information about user auditing within triggers, see Section 6.3.8, “SQL-Based MySQL
Account Activity Auditing”.

If you use LOCK TABLES to lock a table that has triggers, the tables used within the trigger are also
locked, as described in Section 13.3.5.2, “LOCK TABLES and Triggers”.

For additional discussion of trigger use, see Section 20.3.1, “Trigger Syntax and Examples”.

13.1.20 CREATE VIEW Syntax

CREATE
    [OR REPLACE]
    [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
    [DEFINER = { user | CURRENT_USER }]
    [SQL SECURITY { DEFINER | INVOKER }]
    VIEW view_name [(column_list)]
    AS select_statement
    [WITH [CASCADED | LOCAL] CHECK OPTION]

The CREATE VIEW statement creates a new view, or replaces an existing view if the OR REPLACE
clause is given. If the view does not exist, CREATE OR REPLACE VIEW is the same as CREATE VIEW.
If the view does exist, CREATE OR REPLACE VIEW is the same as ALTER VIEW.

For information about restrictions on view use, see Section C.5, “Restrictions on Views”.



CREATE VIEW Syntax

1373

The select_statement is a SELECT statement that provides the definition of the view. (Selecting
from the view selects, in effect, using the SELECT statement.) The select_statement can select
from base tables or other views.

The view definition is “frozen” at creation time and is not affected by subsequent changes to the
definitions of the underlying tables. For example, if a view is defined as SELECT * on a table, new
columns added to the table later do not become part of the view, and columns dropped from the table
will result in an error when selecting from the view.

The ALGORITHM clause affects how MySQL processes the view. The DEFINER and SQL SECURITY
clauses specify the security context to be used when checking access privileges at view invocation
time. The WITH CHECK OPTION clause can be given to constrain inserts or updates to rows in tables
referenced by the view. These clauses are described later in this section.

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege
for each column selected by the SELECT statement. For columns used elsewhere in the SELECT
statement, you must have the SELECT privilege. If the OR REPLACE clause is present, you must also
have the DROP privilege for the view. CREATE VIEW might also require the SUPER privilege, depending
on the DEFINER value, as described later in this section.

When a view is referenced, privilege checking occurs as described later in this section.

A view belongs to a database. By default, a new view is created in the default database. To create the
view explicitly in a given database, use db_name.view_name syntax to qualify the view name with the
database name:

CREATE VIEW test.v AS SELECT * FROM t;

Unqualified table or view names in the SELECT statement are also interpreted with respect to the
default database. A view can refer to tables or views in other databases by qualifying the table or view
name with the appropriate database name.

Within a database, base tables and views share the same namespace, so a base table and a view
cannot have the same name.

Columns retrieved by the SELECT statement can be simple references to table columns, or
expressions that use functions, constant values, operators, and so forth.

A view must have unique column names with no duplicates, just like a base table. By default, the
names of the columns retrieved by the SELECT statement are used for the view column names.
To define explicit names for the view columns, specify the optional column_list clause as a list
of comma-separated identifiers. The number of names in column_list must be the same as the
number of columns retrieved by the SELECT statement.

A view can be created from many kinds of SELECT statements. It can refer to base tables or other
views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables:

CREATE VIEW v_today (today) AS SELECT CURRENT_DATE;

The following example defines a view that selects two columns from another table as well as an
expression calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty  | price | value |
+------+-------+-------+



CREATE VIEW Syntax

1374

|    3 |    50 |   150 |
+------+-------+-------+

A view definition is subject to the following restrictions:

• The SELECT statement cannot contain a subquery in the FROM clause.

• The SELECT statement cannot refer to system variables or user-defined variables.

• Within a stored program, the SELECT statement cannot refer to program parameters or local
variables.

• The SELECT statement cannot refer to prepared statement parameters.

• Any table or view referred to in the definition must exist. If, after the view has been created, a table
or view that the definition refers to is dropped, use of the view results in an error. To check a view
definition for problems of this kind, use the CHECK TABLE statement.

• The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

• You cannot associate a trigger with a view.

• Aliases for column names in the SELECT statement are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters).

ORDER BY is permitted in a view definition, but it is ignored if you select from a view using a statement
that has its own ORDER BY or filtering or grouping. When ORDER BY is combined with LIMIT or
OFFSET in a view definition, the ordering is always enforced before the query result is used by
the outer query, but it does not guarantee that the same ordering is used in the end result. As a
workaround, add an ORDER BY clause to the outer query.

For other options or clauses in the definition, they are added to the options or clauses of the statement
that references the view, but the effect is undefined. For example, if a view definition includes a
LIMIT clause, and you select from the view using a statement that has its own LIMIT clause, it is
undefined which limit applies. This same principle applies to options such as ALL, DISTINCT, or
SQL_SMALL_RESULT that follow the SELECT keyword, and to clauses such as INTO, FOR UPDATE,
LOCK IN SHARE MODE, and PROCEDURE.

The results obtained from a view may be affected if you change the query processing environment by
changing system variables:

mysql> CREATE VIEW v (mycol) AS SELECT 'abc';
Query OK, 0 rows affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| mycol |
+-------+
1 row in set (0.01 sec)

mysql> SET sql_mode = 'ANSI_QUOTES';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| abc   |
+-------+
1 row in set (0.00 sec)



CREATE VIEW Syntax

1375

The DEFINER and SQL SECURITY clauses determine which MySQL account to use when checking
access privileges for the view when a statement is executed that references the view. The valid SQL
SECURITY characteristic values are DEFINER (the default) and INVOKER. These indicate that the
required privileges must be held by the user who defined or invoked the view, respectively.

If a user value is given for the DEFINER clause, it should be a MySQL account specified as
'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The default DEFINER value
is the user who executes the CREATE VIEW statement. This is the same as specifying DEFINER =
CURRENT_USER explicitly.

If the DEFINER clause is present, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only valid user value is your own account, either
specified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not exist, a warning is generated.

• Although it is possible to create a view with a nonexistent DEFINER account, an error occurs when
the view is referenced if the SQL SECURITY value is DEFINER but the definer account does not
exist.

For more information about view security, see Section 20.6, “Access Control for Stored Programs and
Views”.

Within a view definition, CURRENT_USER returns the view's DEFINER value by default. For views
defined with the SQL SECURITY INVOKER characteristic, CURRENT_USER returns the account for
the view's invoker. For information about user auditing within views, see Section 6.3.8, “SQL-Based
MySQL Account Activity Auditing”.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic,
CURRENT_USER returns the routine's DEFINER value. This also affects a view defined within such a
routine, if the view definition contains a DEFINER value of CURRENT_USER.

MySQL checks view privileges like this:

• At view definition time, the view creator must have the privileges needed to use the top-level objects
accessed by the view. For example, if the view definition refers to table columns, the creator must
have some privilege for each column in the select list of the definition, and the SELECT privilege
for each column used elsewhere in the definition. If the definition refers to a stored function, only
the privileges needed to invoke the function can be checked. The privileges required at function
invocation time can be checked only as it executes: For different invocations, different execution
paths within the function might be taken.

• The user who references a view must have appropriate privileges to access it (SELECT to select from
it, INSERT to insert into it, and so forth.)

• When a view has been referenced, privileges for objects accessed by the view are checked against
the privileges held by the view DEFINER account or invoker, depending on whether the SQL
SECURITY characteristic is DEFINER or INVOKER, respectively.

• If reference to a view causes execution of a stored function, privilege checking for statements
executed within the function depend on whether the function SQL SECURITY characteristic is
DEFINER or INVOKER. If the security characteristic is DEFINER, the function runs with the privileges
of the DEFINER account. If the characteristic is INVOKER, the function runs with the privileges
determined by the view's SQL SECURITY characteristic.

Example: A view might depend on a stored function, and that function might invoke other stored
routines. For example, the following view invokes a stored function f():

CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);



DROP DATABASE Syntax

1376

Suppose that f() contains a statement such as this:

IF name IS NULL then
  CALL p1();
ELSE
  CALL p2();
END IF;

The privileges required for executing statements within f() need to be checked when f() executes.
This might mean that privileges are needed for p1() or p2(), depending on the execution path within
f(). Those privileges must be checked at runtime, and the user who must possess the privileges is
determined by the SQL SECURITY values of the view v and the function f().

The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard
SQL, views are handled using the rules for SQL SECURITY DEFINER. The standard says that the
definer of the view, which is the same as the owner of the view's schema, gets applicable privileges
on the view (for example, SELECT) and may grant them. MySQL has no concept of a schema “owner”,
so MySQL adds a clause to identify the definer. The DEFINER clause is an extension where the intent
is to have what the standard has; that is, a permanent record of who defined the view. This is why the
default DEFINER value is the account of the view creator.

The optional ALGORITHM clause is a MySQL extension to standard SQL. It affects how MySQL
processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED. The default
algorithm is UNDEFINED if no ALGORITHM clause is present. For more information, see Section 20.5.2,
“View Processing Algorithms”, as well as Optimizing Derived Tables.

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or
INSERT to update the contents of the underlying table. For a view to be updatable, there must be a
one-to-one relationship between the rows in the view and the rows in the underlying table. There are
also certain other constructs that make a view nonupdatable.

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to
rows except those for which the WHERE clause in the select_statement is true.

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords
determine the scope of check testing when the view is defined in terms of another view. The LOCAL
keyword restricts the CHECK OPTION only to the view being defined. CASCADED causes the checks for
underlying views to be evaluated as well. When neither keyword is given, the default is CASCADED.

For more information about updatable views and the WITH CHECK OPTION clause, see
Section 20.5.3, “Updatable and Insertable Views”, and Section 20.5.4, “The View WITH CHECK
OPTION Clause”.

13.1.21 DROP DATABASE Syntax

DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this
statement! To use DROP DATABASE, you need the DROP privilege on the database. DROP SCHEMA is a
synonym for DROP DATABASE.

Important

When a database is dropped, user privileges on the database are not
automatically dropped. See Section 13.7.1.3, “GRANT Syntax”.

IF EXISTS is used to prevent an error from occurring if the database does not exist.

If the default database is dropped, the default database is unset (the DATABASE() function returns
NULL).

http://dev.mysql.com/doc/refman/5.6/en/derived-table-optimization.html


DROP EVENT Syntax

1377

If you use DROP DATABASE on a symbolically linked database, both the link and the original database
are deleted.

DROP DATABASE returns the number of tables that were removed. This corresponds to the number of
.frm files removed.

The DROP DATABASE statement removes from the given database directory those files and directories
that MySQL itself may create during normal operation:

• All files with the following extensions.

.BAK .DAT .HSH .MRG

.MYD .MYI .TRG .TRN

.db .frm .ibd .ndb

.par    

• The db.opt file, if it exists.

If other files or directories remain in the database directory after MySQL removes those just listed, the
database directory cannot be removed. In this case, you must remove any remaining files or directories
manually and issue the DROP DATABASE statement again.

Dropping a database does not remove any TEMPORARY tables that were created in that database.
TEMPORARY tables are automatically removed when the session that created them ends. See
Section 13.1.17.3, “CREATE TEMPORARY TABLE Syntax”.

You can also drop databases with mysqladmin. See Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”.

13.1.22 DROP EVENT Syntax

DROP EVENT [IF EXISTS] event_name

This statement drops the event named event_name. The event immediately ceases being active, and
is deleted completely from the server.

If the event does not exist, the error ERROR 1517 (HY000): Unknown event 'event_name'
results. You can override this and cause the statement to generate a warning for nonexistent events
instead using IF EXISTS.

This statement requires the EVENT privilege for the schema to which the event to be dropped belongs.

13.1.23 DROP FUNCTION Syntax

The DROP FUNCTION statement is used to drop stored functions and user-defined functions (UDFs):

• For information about dropping stored functions, see Section 13.1.26, “DROP PROCEDURE and
DROP FUNCTION Syntax”.

• For information about dropping user-defined functions, see Section 13.7.3.2, “DROP FUNCTION
Syntax”.

13.1.24 DROP INDEX Syntax

DROP [ONLINE|OFFLINE] INDEX index_name ON tbl_name

DROP INDEX drops the index named index_name from the table tbl_name. This statement is
mapped to an ALTER TABLE statement to drop the index. See Section 13.1.7, “ALTER TABLE
Syntax”.



DROP LOGFILE GROUP Syntax

1378

To drop a primary key, the index name is always PRIMARY, which must be specified as a quoted
identifier because PRIMARY is a reserved word:

DROP INDEX `PRIMARY` ON t;

Indexes on variable-width columns of NDB tables are dropped online; that is, without any table copying.
The table is not locked against access from other NDB Cluster API nodes, although it is locked against
other operations on the same API node for the duration of the operation. This is done automatically by
the server whenever it determines that it is possible to do so; you do not have to use any special SQL
syntax or server options to cause it to happen.

In standard MySQL 5.5 releases, it is not possible to override the server when it determines that an
index is to be dropped without table copying. In NDB Cluster, you can drop indexes offline (which
causes the table to be locked for all API nodes in the cluster) using the OFFLINE keyword. The rules
and limitations governing DROP OFFLINE INDEX and DROP ONLINE INDEX are the same as for
ALTER OFFLINE TABLE ... DROP INDEX and ALTER ONLINE TABLE ... DROP INDEX. You
cannot cause the noncopying dropping of an index that would normally be dropped offline by using the
ONLINE keyword: If it is not possible to perform the DROP operation without table copying, the server
ignores the ONLINE keyword. For more information, see Section 13.1.7.2, “ALTER TABLE Online
Operations in NDB Cluster 7.2”.

The ONLINE and OFFLINE keywords are available only in NDB Cluster; attempting to use these
keywords in standard MySQL Server 5.5 releases results in a syntax error.

13.1.25 DROP LOGFILE GROUP Syntax

DROP LOGFILE GROUP logfile_group
    ENGINE [=] engine_name

This statement drops the log file group named logfile_group. The log file group must already
exist or an error results. (For information on creating log file groups, see Section 13.1.14, “CREATE
LOGFILE GROUP Syntax”.)

Important

Before dropping a log file group, you must drop all tablespaces that use that log
file group for UNDO logging.

The required ENGINE clause provides the name of the storage engine used by the log file group to be
dropped. Currently, the only permitted values for engine_name are NDB and NDBCLUSTER.

DROP LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. See Section 18.5.12,
“NDB Cluster Disk Data Tables”.

13.1.26 DROP PROCEDURE and DROP FUNCTION Syntax

DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

This statement is used to drop a stored procedure or function. That is, the specified routine is
removed from the server. You must have the ALTER ROUTINE privilege for the routine. (If the
automatic_sp_privileges system variable is enabled, that privilege and EXECUTE are granted
automatically to the routine creator when the routine is created and dropped from the creator when the
routine is dropped. See Section 20.2.2, “Stored Routines and MySQL Privileges”.)

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure or
function does not exist. A warning is produced that can be viewed with SHOW WARNINGS.

DROP FUNCTION is also used to drop user-defined functions (see Section 13.7.3.2, “DROP
FUNCTION Syntax”).



DROP SERVER Syntax

1379

13.1.27 DROP SERVER Syntax

DROP SERVER [ IF EXISTS ] server_name

Drops the server definition for the server named server_name. The corresponding row in the
mysql.servers table is deleted. This statement requires the SUPER privilege.

Dropping a server for a table does not affect any FEDERATED tables that used this connection
information when they were created. See Section 13.1.16, “CREATE SERVER Syntax”.

DROP SERVER does not cause an automatic commit.

In MySQL 5.5, DROP SERVER is not written to the binary log, regardless of the logging format that is in
use.

13.1.28 DROP TABLE Syntax

DROP [TEMPORARY] TABLE [IF EXISTS]
    tbl_name [, tbl_name] ...
    [RESTRICT | CASCADE]

DROP TABLE removes one or more tables. You must have the DROP privilege for each table. All table
data and the table definition are removed, so be careful with this statement! If any of the tables named
in the argument list do not exist, MySQL returns an error indicating by name which nonexisting tables it
was unable to drop, but it also drops all of the tables in the list that do exist.

Important

When a table is dropped, user privileges on the table are not automatically
dropped. See Section 13.7.1.3, “GRANT Syntax”.

For a partitioned table, DROP TABLE permanently removes the table definition, all of its partitions, and
all of the data which was stored in those partitions. It also removes the partitioning definition (.par) file
associated with the dropped table.

Use IF EXISTS to prevent an error from occurring for tables that do not exist. A NOTE is generated for
each nonexistent table when using IF EXISTS. See Section 13.7.5.41, “SHOW WARNINGS Syntax”.

IF EXISTS can be useful for dropping tables in unusual circumstances under which there is an .frm
file but no table managed by the storage engine. (For example, if an abnormal server exit occurs after
removal of the table from the storage engine but before .frm file removal.)

RESTRICT and CASCADE are permitted to make porting easier. In MySQL 5.5, they do nothing.

Note

DROP TABLE automatically commits the current active transaction, unless you
use the TEMPORARY keyword.

The TEMPORARY keyword has the following effects:

• The statement drops only TEMPORARY tables.

• The statement does not end an ongoing transaction.

• No access rights are checked. (A TEMPORARY table is visible only to the session that created it, so
no check is necessary.)

Using TEMPORARY is a good way to ensure that you do not accidentally drop a non-TEMPORARY table.

13.1.29 DROP TABLESPACE Syntax



DROP TRIGGER Syntax

1380

DROP TABLESPACE tablespace_name
    ENGINE [=] engine_name

This statement drops a tablespace that was previously created using CREATE TABLESPACE (see
Section 13.1.18, “CREATE TABLESPACE Syntax”).

Important

The tablespace to be dropped must not contain any data files; in other words,
before you can drop a tablespace, you must first drop each of its data files using
ALTER TABLESPACE ... DROP DATAFILE (see Section 13.1.8, “ALTER
TABLESPACE Syntax”).

The ENGINE clause (required) specifies the storage engine used by the tablespace. Currently, the only
accepted values for engine_name are NDB and NDBCLUSTER.

DROP TABLESPACE is useful only with Disk Data storage for NDB Cluster. See Section 18.5.12, “NDB
Cluster Disk Data Tables”.

13.1.30 DROP TRIGGER Syntax

DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name

This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the
trigger is dropped from the default schema. DROP TRIGGER requires the TRIGGER privilege for the
table associated with the trigger.

Use IF EXISTS to prevent an error from occurring for a trigger that does not exist. A NOTE is
generated for a nonexistent trigger when using IF EXISTS. See Section 13.7.5.41, “SHOW
WARNINGS Syntax”.

Triggers for a table are also dropped if you drop the table.

Note

When upgrading from a version of MySQL older than MySQL 5.0.10 to 5.0.10
or higher—including all MySQL 5.5 releases—you must drop all triggers and re-
create them. Otherwise, DROP TRIGGER does not work for older triggers after
the upgrade. See Section 2.11.1.1, “Changes Affecting Upgrades to MySQL
5.5”, for a suggested upgrade procedure.

13.1.31 DROP VIEW Syntax

DROP VIEW [IF EXISTS]
    view_name [, view_name] ...
    [RESTRICT | CASCADE]

DROP VIEW removes one or more views. You must have the DROP privilege for each view. If any of
the views named in the argument list do not exist, MySQL returns an error indicating by name which
nonexisting views it was unable to drop, but it also drops all of the views in the list that do exist.

The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause
is given, a NOTE is generated for each nonexistent view. See Section 13.7.5.41, “SHOW WARNINGS
Syntax”.

RESTRICT and CASCADE, if given, are parsed and ignored.

13.1.32 RENAME TABLE Syntax



RENAME TABLE Syntax

1381

RENAME TABLE tbl_name TO new_tbl_name
    [, tbl_name2 TO new_tbl_name2] ...

This statement renames one or more tables. The rename operation is done atomically, which means
that no other session can access any of the tables while the rename is running.

For example, a table named old_table can be renamed to new_table as shown here:

RENAME TABLE old_table TO new_table;

This statement is equivalent to the following ALTER TABLE statement:

ALTER TABLE old_table RENAME new_table;

If the statement renames more than one table, renaming operations are done from left to right. If you
want to swap two table names, you can do so like this (assuming that tmp_table does not already
exist):

RENAME TABLE old_table TO tmp_table,
             new_table TO old_table,
             tmp_table TO new_table;

MySQL checks the destination table name before checking whether the source table exists. For
example, if new_table already exists and old_table does not, the following statement fails as
shown here:

mysql> SHOW TABLES;
+----------------+
| Tables_in_mydb |
+----------------+
| table_a        |
+----------------+
1 row in set (0.00 sec)

mysql> RENAME TABLE table_b TO table_a;
ERROR 1050 (42S01): Table 'table_a' already exists

As long as two databases are on the same file system, you can use RENAME TABLE to move a table
from one database to another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

You can use this method to move all tables from one database to a different one, in effect renaming the
database. (MySQL has no single statement to perform this task.)

If there are any triggers associated with a table which is moved to a different database using RENAME
TABLE, then the statement fails with the error Trigger in wrong schema.

RENAME TABLE changes internally generated foreign key constraint names and user-defined
foreign key constraint names that contain the string “tbl_name_ibfk_” to reflect the new table name.
InnoDB interprets foreign key constraint names that contain the string “tbl_name_ibfk_” as internally
generated names.

Foreign keys that point to the renamed table are not automatically updated. In such cases, you must
drop and re-create the foreign keys in order for them to function properly.

RENAME TABLE also works for views, as long as you do not try to rename a view into a different
database.

Any privileges granted specifically for the renamed table or view are not migrated to the new name.
They must be changed manually.



TRUNCATE TABLE Syntax

1382

When you execute RENAME TABLE, you cannot have any locked tables or active transactions. You
must also have the ALTER and DROP privileges on the original table, and the CREATE and INSERT
privileges on the new table.

If MySQL encounters any errors in a multiple-table rename, it does a reverse rename for all renamed
tables to return everything to its original state.

You cannot use RENAME TABLE to rename a TEMPORARY table. However, you can use ALTER TABLE
with temporary tables.

Like RENAME TABLE, ALTER TABLE ... RENAME can also be used to move a table to a different
database. Regardless of the statement used to perform the rename, if the rename operation would
move the table to a database located on a different file system, the success of the outcome is platform
specific and depends on the underlying operating system calls used to move the table files.

13.1.33 TRUNCATE TABLE Syntax

TRUNCATE [TABLE] tbl_name

TRUNCATE TABLE empties a table completely. It requires the DROP privilege.

Logically, TRUNCATE TABLE is similar to a DELETE statement that deletes all rows, or a sequence of
DROP TABLE and CREATE TABLE statements. To achieve high performance, it bypasses the DML
method of deleting data. Thus, it cannot be rolled back, it does not cause ON DELETE triggers to fire,
and it cannot be performed for InnoDB tables with parent-child foreign key relationships.

Although TRUNCATE TABLE is similar to DELETE, it is classified as a DDL statement rather than a DML
statement. It differs from DELETE in the following ways in MySQL 5.5:

• Truncate operations drop and re-create the table, which is much faster than deleting rows one by
one, particularly for large tables.

• Truncate operations cause an implicit commit, and so cannot be rolled back.

• Truncation operations cannot be performed if the session holds an active table lock.

• TRUNCATE TABLE fails for an InnoDB table if there are any FOREIGN KEY constraints from other
tables that reference the table. Foreign key constraints between columns of the same table are
permitted.

• Truncation operations do not return a meaningful value for the number of deleted rows. The usual
result is “0 rows affected,” which should be interpreted as “no information.”

• As long as the table format file tbl_name.frm is valid, the table can be re-created as an empty
table with TRUNCATE TABLE, even if the data or index files have become corrupted.

• Any AUTO_INCREMENT value is reset to its start value. This is true even for MyISAM and InnoDB,
which normally do not reuse sequence values.

• When used with partitioned tables, TRUNCATE TABLE preserves the partitioning; that is, the data
and index files are dropped and re-created, while the partition definitions (.par) file is unaffected.

• The TRUNCATE TABLE statement does not invoke ON DELETE triggers.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

TRUNCATE TABLE is treated for purposes of binary logging and replication as DROP TABLE followed
by CREATE TABLE—that is, as DDL rather than DML. This is due to the fact that, when using
InnoDB and other transactional storage engines where the transaction isolation level does not permit
statement-based logging (READ COMMITTED or READ UNCOMMITTED), the statement was not logged
and replicated when using STATEMENT or MIXED logging mode. (Bug #36763) However, it is still
applied on replication slaves using InnoDB in the manner described previously.



Data Manipulation Statements

1383

On a system with a large InnoDB buffer pool and innodb_adaptive_hash_index enabled,
TRUNCATE TABLE operations may cause a temporary drop in system performance due to an LRU
scan that occurs when removing an InnoDB table's adaptive hash index entries. The problem was
addressed for DROP TABLE in MySQL 5.5.23 (Bug #13704145, Bug #64284) but remains a known
issue for TRUNCATE TABLE (Bug #68184).

TRUNCATE TABLE can be used with Performance Schema summary tables, but the effect is to reset
the summary columns to 0 or NULL, not to remove rows. See Section 22.9.5, “Performance Schema
Summary Tables”.

13.2 Data Manipulation Statements

13.2.1 CALL Syntax

CALL sp_name([parameter[,...]])
CALL sp_name[()]

The CALL statement invokes a stored procedure that was defined previously with CREATE
PROCEDURE.

Stored procedures that take no arguments can be invoked without parentheses. That is, CALL p()
and CALL p are equivalent.

CALL can pass back values to its caller using parameters that are declared as OUT or INOUT
parameters. When the procedure returns, a client program can also obtain the number of rows affected
for the final statement executed within the routine: At the SQL level, call the ROW_COUNT() function;
from the C API, call the mysql_affected_rows() function.

To get back a value from a procedure using an OUT or INOUT parameter, pass the parameter by
means of a user variable, and then check the value of the variable after the procedure returns. (If you
are calling the procedure from within another stored procedure or function, you can also pass a routine
parameter or local routine variable as an IN or INOUT parameter.) For an INOUT parameter, initialize
its value before passing it to the procedure. The following procedure has an OUT parameter that the
procedure sets to the current server version, and an INOUT value that the procedure increments by
one from its current value:

CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT incr_param INT)
BEGIN
  # Set value of OUT parameter
  SELECT VERSION() INTO ver_param;
  # Increment value of INOUT parameter
  SET incr_param = incr_param + 1;
END;

Before calling the procedure, initialize the variable to be passed as the INOUT parameter. After calling
the procedure, the values of the two variables will have been set or modified:

mysql> SET @increment = 10;
mysql> CALL p(@version, @increment);
mysql> SELECT @version, @increment;
+--------------+------------+
| @version     | @increment |
+--------------+------------+
| 5.5.3-m3-log |         11 |
+--------------+------------+

In prepared CALL statements used with PREPARE and EXECUTE, placeholders can be used for IN
parameters. For OUT and INOUT parameters, placeholder support is available as of MySQL 5.5.3.
These types of parameters can be used as follows:

mysql> SET @increment = 10;



CALL Syntax

1384

mysql> PREPARE s FROM 'CALL p(?, ?)';
mysql> EXECUTE s USING @version, @increment;
mysql> SELECT @version, @increment;
+--------------+------------+
| @version     | @increment |
+--------------+------------+
| 5.5.3-m3-log |         11 |
+--------------+------------+

Before MySQL 5.5.3, placeholder support is not available for OUT or INOUT parameters. To work
around this limitation for OUT and INOUT parameters, forego the use of placeholders; instead, refer to
user variables in the CALL statement itself and do not specify them in the EXECUTE statement:

mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(@version, @increment)';
mysql> EXECUTE s;
mysql> SELECT @version, @increment;
+--------------+------------+
| @version     | @increment |
+--------------+------------+
| 5.5.0-m2-log |         11 |
+--------------+------------+

To write C programs that use the CALL SQL statement to execute stored procedures that produce
result sets, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns
a result to indicate the call status, in addition to any result sets that might be returned by statements
executed within the procedure. CLIENT_MULTI_RESULTS must also be enabled if CALL is used to
execute any stored procedure that contains prepared statements. It cannot be determined when such
a procedure is loaded whether those statements will produce result sets, so it is necessary to assume
that they will.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). As of MySQL 5.5.3,
CLIENT_MULTI_RESULTS is enabled by default.

To process the result of a CALL statement executed using mysql_query() or
mysql_real_query(), use a loop that calls mysql_next_result() to determine whether
there are more results. For an example, see Section 23.8.17, “C API Support for Multiple Statement
Execution”.

For programs written in a language that provides a MySQL interface, there is no native method prior
to MySQL 5.5.3 for directly retrieving the results of OUT or INOUT parameters from CALL statements.
To get the parameter values, pass user-defined variables to the procedure in the CALL statement and
then execute a SELECT statement to produce a result set containing the variable values. To handle an
INOUT parameter, execute a statement prior to the CALL that sets the corresponding user variable to
the value to be passed to the procedure.

The following example illustrates the technique (without error checking) for the stored procedure p
described earlier that has an OUT parameter and an INOUT parameter:

mysql_query(mysql, "SET @increment = 10");
mysql_query(mysql, "CALL p(@version, @increment)");
mysql_query(mysql, "SELECT @version, @increment");
result = mysql_store_result(mysql);
row = mysql_fetch_row(result);
mysql_free_result(result);

After the preceding code executes, row[0] and row[1] contain the values of @version and
@increment, respectively.

As of MySQL 5.5.3, C programs can use the prepared-statement interface to execute CALL statements
and access OUT and INOUT parameters. This is done by processing the result of a CALL statement



DELETE Syntax

1385

using a loop that calls mysql_stmt_next_result() to determine whether there are more results.
For an example, see Section 23.8.20, “C API Support for Prepared CALL Statements”. Languages
that provide a MySQL interface can use prepared CALL statements to directly retrieve OUT and INOUT
procedure parameters.

13.2.2 DELETE Syntax

DELETE is a DML statement that removes rows from a table.

Single-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
    [WHERE where_condition]
    [ORDER BY ...]
    [LIMIT row_count]

Multiple-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
    tbl_name[.*] [, tbl_name[.*]] ...
    FROM table_references
    [WHERE where_condition]

Or:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
    FROM tbl_name[.*] [, tbl_name[.*]] ...
    USING table_references
    [WHERE where_condition]

For the single-table syntax, the DELETE statement deletes rows from tbl_name and returns a count
of the number of deleted rows. This count can be obtained by calling the ROW_COUNT() function (see
Section 12.14, “Information Functions”). The WHERE clause, if given, specifies the conditions that
identify which rows to delete. With no WHERE clause, all rows are deleted. If the ORDER BY clause is
specified, the rows are deleted in the order that is specified. The LIMIT clause places a limit on the
number of rows that can be deleted.

For the multiple-table syntax, DELETE deletes from each tbl_name the rows that satisfy the
conditions. In this case, ORDER BY and LIMIT cannot be used.

where_condition is an expression that evaluates to true for each row to be deleted. It is specified as
described in Section 13.2.9, “SELECT Syntax”.

You cannot delete from a table and select from the same table in a subquery.

You need the DELETE privilege on a table to delete rows from it. You need only the SELECT privilege
for any columns that are only read, such as those named in the WHERE clause.

As stated, a DELETE statement with no WHERE clause deletes all rows. A faster way to do this, when
you do not need to know the number of deleted rows, is to use TRUNCATE TABLE. However, within
a transaction or if you have a lock on the table, TRUNCATE TABLE cannot be used whereas DELETE
can. See Section 13.1.33, “TRUNCATE TABLE Syntax”, and Section 13.3.5, “LOCK TABLES and
UNLOCK TABLES Syntax”.

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value
is not reused for a MyISAM or InnoDB table. If you delete all rows in the table with DELETE FROM
tbl_name (without a WHERE clause) in autocommit mode, the sequence starts over for all storage
engines except InnoDB and MyISAM. There are some exceptions to this behavior for InnoDB tables,
as discussed in Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”.



DELETE Syntax

1386

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key.
In this case, reuse of values deleted from the top of the sequence occurs even for MyISAM tables. See
Section 3.6.9, “Using AUTO_INCREMENT”.

The DELETE statement supports the following modifiers:

• If you specify LOW_PRIORITY, the server delays execution of the DELETE until no other clients are
reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

• For MyISAM tables, if you use the QUICK modifier, the storage engine does not merge index leaves
during delete, which may speed up some kinds of delete operations.

• The IGNORE modifier causes MySQL to ignore errors during the process of deleting rows. (Errors
encountered during the parsing stage are processed in the usual manner.) Errors that are ignored
due to the use of IGNORE are returned as warnings.

The speed of delete operations may also be affected by factors discussed in Section 8.2.4.3,
“Optimizing DELETE Statements”.

In MyISAM tables, deleted rows are maintained in a linked list and subsequent INSERT operations
reuse old row positions. To reclaim unused space and reduce file sizes, use the OPTIMIZE TABLE
statement or the myisamchk utility to reorganize tables. OPTIMIZE TABLE is easier to use,
but myisamchk is faster. See Section 13.7.2.4, “OPTIMIZE TABLE Syntax”, and Section 4.6.3,
“myisamchk — MyISAM Table-Maintenance Utility”.

The QUICK modifier affects whether index leaves are merged for delete operations. DELETE QUICK is
most useful for applications where index values for deleted rows are replaced by similar index values
from rows inserted later. In this case, the holes left by deleted values are reused.

DELETE QUICK is not useful when deleted values lead to underfilled index blocks spanning a range of
index values for which new inserts occur again. In this case, use of QUICK can lead to wasted space in
the index that remains unreclaimed. Here is an example of such a scenario:

1. Create a table that contains an indexed AUTO_INCREMENT column.

2. Insert many rows into the table. Each insert results in an index value that is added to the high end
of the index.

3. Delete a block of rows at the low end of the column range using DELETE QUICK.

In this scenario, the index blocks associated with the deleted index values become underfilled but
are not merged with other index blocks due to the use of QUICK. They remain underfilled when new
inserts occur, because new rows do not have index values in the deleted range. Furthermore, they
remain underfilled even if you later use DELETE without QUICK, unless some of the deleted index
values happen to lie in index blocks within or adjacent to the underfilled blocks. To reclaim unused
index space under these circumstances, use OPTIMIZE TABLE.

If you are going to delete many rows from a table, it might be faster to use DELETE QUICK followed by
OPTIMIZE TABLE. This rebuilds the index rather than performing many index block merge operations.

The MySQL-specific LIMIT row_count option to DELETE tells the server the maximum number of
rows to be deleted before control is returned to the client. This can be used to ensure that a given
DELETE statement does not take too much time. You can simply repeat the DELETE statement until the
number of affected rows is less than the LIMIT value.

If the DELETE statement includes an ORDER BY clause, rows are deleted in the order specified by the
clause. This is useful primarily in conjunction with LIMIT. For example, the following statement finds
rows matching the WHERE clause, sorts them by timestamp_column, and deletes the first (oldest)
one:



DELETE Syntax

1387

DELETE FROM somelog WHERE user = 'jcole'
ORDER BY timestamp_column LIMIT 1;

ORDER BY may also be useful in some cases to delete rows in an order required to avoid referential
integrity violations.

If you are deleting many rows from a large table, you may exceed the lock table size for an InnoDB
table. To avoid this problem, or simply to minimize the time that the table remains locked, the following
strategy (which does not use DELETE at all) might be helpful:

1. Select the rows not to be deleted into an empty table that has the same structure as the original
table:

INSERT INTO t_copy SELECT * FROM t WHERE ... ;

2. Use RENAME TABLE to atomically move the original table out of the way and rename the copy to
the original name:

RENAME TABLE t TO t_old, t_copy TO t;

3. Drop the original table:

DROP TABLE t_old;

No other sessions can access the tables involved while RENAME TABLE executes, so the rename
operation is not subject to concurrency problems. See Section 13.1.32, “RENAME TABLE Syntax”.

You can specify multiple tables in a DELETE statement to delete rows from one or more tables
depending on the particular condition in the WHERE clause. However, you cannot use ORDER BY or
LIMIT in a multiple-table DELETE. The table_references clause lists the tables involved in the join.
Its syntax is described in Section 13.2.9.2, “JOIN Syntax”.

For the first multiple-table syntax, only matching rows from the tables listed before the FROM clause are
deleted. For the second multiple-table syntax, only matching rows from the tables listed in the FROM
clause (before the USING clause) are deleted. The effect is that you can delete rows from many tables
at the same time and have additional tables that are used only for searching:

DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1, t2 USING t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three tables when searching for rows to delete, but delete matching rows only
from tables t1 and t2.

The preceding examples use INNER JOIN, but multiple-table DELETE statements can use other types
of join permitted in SELECT statements, such as LEFT JOIN. For example, to delete rows that exist in
t1 that have no match in t2, use a LEFT JOIN:

DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;

The syntax permits .* after each tbl_name for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/
child relationship. In this case, the statement fails and rolls back. Instead, you should delete from a



DO Syntax

1388

single table and rely on the ON DELETE capabilities that InnoDB provides to cause the other tables to
be modified accordingly.

Note

If you declare an alias for a table, you must use the alias when referring to the
table:

DELETE t1 FROM test AS t1, test2 WHERE ...

Table aliases in a multiple-table DELETE should be declared only in the table_references part of
the statement.

Correct:

DELETE a1, a2 FROM t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

DELETE FROM a1, a2 USING t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

Incorrect:

DELETE t1 AS a1, t2 AS a2 FROM t1 INNER JOIN t2
WHERE a1.id=a2.id;

DELETE FROM t1 AS a1, t2 AS a2 USING t1 INNER JOIN t2
WHERE a1.id=a2.id;

Declaration of aliases other than in the table_references part of the statement should be avoided
because that can lead to ambiguous statements that have unexpected results such as deleting rows
from the wrong table. This is such a statement:

DELETE t1 AS a2 FROM t1 AS a1 INNER JOIN t2 AS a2;

Before MySQL 5.5.3, alias declarations outside the table_references part of the statement
are disallowed for the USING variant of multiple-table DELETE syntax. As of MySQL 5.5.3, alias
declarations outside table_references are disallowed for all multiple-table DELETE statements.

Before MySQL 5.5.3, for alias references in the list of tables from which to delete rows in a multiple-
table delete, the default database is used unless one is specified explicitly. For example, if the default
database is db1, the following statement does not work because the unqualified alias reference a2 is
interpreted as having a database of db1:

DELETE a1, a2 FROM db1.t1 AS a1 INNER JOIN db2.t2 AS a2
WHERE a1.id=a2.id;

To correctly match an alias that refers to a table outside the default database, you must explicitly
qualify the reference with the name of the proper database:

DELETE a1, db2.a2 FROM db1.t1 AS a1 INNER JOIN db2.t2 AS a2
WHERE a1.id=a2.id;

As of MySQL 5.5.3, alias resolution does not require qualification and alias references should not be
qualified with the database name. Qualified names are interpreted as referring to tables, not aliases.

13.2.3 DO Syntax

DO expr [, expr] ...



HANDLER Syntax

1389

DO executes the expressions but does not return any results. In most respects, DO is shorthand for
SELECT expr, ..., but has the advantage that it is slightly faster when you do not care about the
result.

DO is useful primarily with functions that have side effects, such as RELEASE_LOCK().

Example: This SELECT statement pauses, but also produces a result set:

mysql> SELECT SLEEP(5);
+----------+
| SLEEP(5) |
+----------+
|        0 |
+----------+
1 row in set (5.02 sec)

DO, on the other hand, pauses without producing a result set.:

mysql> DO SLEEP(5);
Query OK, 0 rows affected (4.99 sec)

This could be useful, for example in a stored function or trigger, which prohibit statements that produce
result sets.

DO only executes expressions. It cannot be used in all cases where SELECT can be used. For example,
DO id FROM t1 is invalid because it references a table.

13.2.4 HANDLER Syntax

HANDLER tbl_name OPEN [ [AS] alias]

HANDLER tbl_name READ index_name { = | <= | >= | < | > } (value1,value2,...)
    [ WHERE where_condition ] [LIMIT ... ]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }
    [ WHERE where_condition ] [LIMIT ... ]
HANDLER tbl_name READ { FIRST | NEXT }
    [ WHERE where_condition ] [LIMIT ... ]

HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to table storage engine interfaces. It is available for
InnoDB and MyISAM tables.

The HANDLER ... OPEN statement opens a table, making it accessible using subsequent
HANDLER ... READ statements. This table object is not shared by other sessions and is not closed
until the session calls HANDLER ... CLOSE or the session terminates.

If you open the table using an alias, further references to the open table with other HANDLER
statements must use the alias rather than the table name. If you do not use an alias, but open the table
using a table name qualified by the database name, further references must use the unqualified table
name. For example, for a table opened using mydb.mytable, further references must use mytable.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given
values and the WHERE condition is met. If you have a multiple-column index, specify the index column
values as a comma-separated list. Either specify values for all the columns in the index, or specify
values for a leftmost prefix of the index columns. Suppose that an index my_idx includes three
columns named col_a, col_b, and col_c, in that order. The HANDLER statement can specify values
for all three columns in the index, or for the columns in a leftmost prefix. For example:

HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... READ my_idx = (col_a_val,col_b_val) ...
HANDLER ... READ my_idx = (col_a_val) ...



HANDLER Syntax

1390

To employ the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier
`PRIMARY`:

HANDLER tbl_name READ `PRIMARY` ...

The second HANDLER ... READ syntax fetches a row from the table in index order that matches the
WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that matches
the WHERE condition. It is faster than HANDLER tbl_name READ index_name when a full table scan
is desired. Natural row order is the order in which rows are stored in a MyISAM table data file. This
statement works for InnoDB tables as well, but there is no such concept because there is no separate
data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available. To
return a specific number of rows, include a LIMIT clause. It has the same syntax as for the SELECT
statement. See Section 13.2.9, “SELECT Syntax”.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

• HANDLER is faster than SELECT:

• A designated storage engine handler object is allocated for the HANDLER ... OPEN. The object
is reused for subsequent HANDLER statements for that table; it need not be reinitialized for each
one.

• There is less parsing involved.

• There is no optimizer or query-checking overhead.

• The handler interface does not have to provide a consistent look of the data (for example, dirty
reads are permitted), so the storage engine can use optimizations that SELECT does not normally
permit.

• HANDLER makes it easier to port to MySQL applications that use a low-level ISAM-like interface.

• HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to
accomplish with SELECT. The HANDLER interface is a more natural way to look at data when working
with applications that provide an interactive user interface to the database.

HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is,
HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table. This means
that after a HANDLER ... OPEN statement is issued, table data can be modified (by the current
session or other sessions) and these modifications might be only partially visible to HANDLER ...
NEXT or HANDLER ... PREV scans.

An open handler can be closed and marked for reopen, in which case the handler loses its position in
the table. This occurs when both of the following circumstances are true:

• Any session executes FLUSH TABLES or DDL statements on the handler's table.

• The session in which the handler is open executes non-HANDLER statements that use tables.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

If a table is flushed with FLUSH TABLES tbl_name WITH READ LOCK was opened with HANDLER,
the handler is implicitly flushed and loses its position.

HANDLER is not supported with partitioned tables.



INSERT Syntax

1391

13.2.5 INSERT Syntax

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
    [INTO] tbl_name [(col_name,...)]
    {VALUES | VALUE} ({expr | DEFAULT},...),(...),...
    [ ON DUPLICATE KEY UPDATE
      col_name=expr
        [, col_name=expr] ... ]

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
    [INTO] tbl_name
    SET col_name={expr | DEFAULT}, ...
    [ ON DUPLICATE KEY UPDATE
      col_name=expr
        [, col_name=expr] ... ]

Or:

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
    [INTO] tbl_name [(col_name,...)]
    SELECT ...
    [ ON DUPLICATE KEY UPDATE
      col_name=expr
        [, col_name=expr] ... ]

INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ... SET
forms of the statement insert rows based on explicitly specified values. The INSERT ... SELECT
form inserts rows selected from another table or tables. INSERT ... SELECT is discussed further in
Section 13.2.5.1, “INSERT ... SELECT Syntax”.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to INSERT
IGNORE in the treatment of new rows that contain unique key values that duplicate old rows: The new
rows are used to replace the old rows rather than being discarded. See Section 13.2.8, “REPLACE
Syntax”.

tbl_name is the table into which rows should be inserted. The columns for which the statement
provides values can be specified as follows:

• You can provide a comma-separated list of column names following the table name. In this case, a
value for each named column must be provided by the VALUES list or the SELECT statement.

• If you do not specify a list of column names for INSERT ... VALUES or INSERT ... SELECT,
values for every column in the table must be provided by the VALUES list or the SELECT statement. If
you do not know the order of the columns in the table, use DESCRIBE tbl_name to find out.

• The SET clause indicates the column names explicitly.

Column values can be given in several ways:

•  If you are not running in strict SQL mode, any column not explicitly given a value is set to its default
(explicit or implicit) value. For example, if you specify a column list that does not name all the
columns in the table, unnamed columns are set to their default values. Default value assignment is
described in Section 11.6, “Data Type Default Values”. See also Section 1.7.3.3, “Constraints on
Invalid Data”.

If you want an INSERT statement to generate an error unless you explicitly specify values for all
columns that do not have a default value, you should use strict mode. See Section 5.1.8, “Server
SQL Modes”.

• Use the keyword DEFAULT to set a column explicitly to its default value. This makes it easier to
write INSERT statements that assign values to all but a few columns, because it enables you to



INSERT Syntax

1392

avoid writing an incomplete VALUES list that does not include a value for each column in the table.
Otherwise, you would have to write out the list of column names corresponding to each value in the
VALUES list.

You can also use DEFAULT(col_name) as a more general form that can be used in expressions to
produce a given column's default value.

• If both the column list and the VALUES list are empty, INSERT creates a row with each column set to
its default value:

INSERT INTO tbl_name () VALUES();

In strict mode, an error occurs if any column doesn't have a default value. Otherwise, MySQL uses
the implicit default value for any column that does not have an explicitly defined default.

• You can specify an expression expr to provide a column value. This might involve type conversion
if the type of the expression does not match the type of the column, and conversion of a given value
can result in different inserted values depending on the data type. For example, inserting the string
'1999.0e-2' into an INT, FLOAT, DECIMAL(10,6), or YEAR column results in the values 1999,
19.9921, 19.992100, and 1999 being inserted, respectively. The reason the value stored in the
INT and YEAR columns is 1999 is that the string-to-integer conversion looks only at as much of the
initial part of the string as may be considered a valid integer or year. For the floating-point and fixed-
point columns, the string-to-floating-point conversion considers the entire string a valid floating-point
value.

An expression expr can refer to any column that was set earlier in a value list. For example, you can
do this because the value for col2 refers to col1, which has previously been assigned:

INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But the following is not legal, because the value for col1 refers to col2, which is assigned after
col1:

INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

One exception involves columns that contain AUTO_INCREMENT values. Because the
AUTO_INCREMENT value is generated after other value assignments, any reference to an
AUTO_INCREMENT column in the assignment returns a 0.

INSERT statements that use VALUES syntax can insert multiple rows. To do this, include multiple lists
of column values, each enclosed within parentheses and separated by commas. Example:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);

The values list for each row must be enclosed within parentheses. The following statement is illegal
because the number of values in the list does not match the number of column names:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);

VALUE is a synonym for VALUES in this context. Neither implies anything about the number of values
lists, and either may be used whether there is a single values list or multiple lists.

The affected-rows value for an INSERT can be obtained using the ROW_COUNT() function (see
Section 12.14, “Information Functions”), or the mysql_affected_rows() C API function (see
Section 23.8.7.1, “mysql_affected_rows()”).

If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SELECT, the
statement returns an information string in this format:



INSERT Syntax

1393

Records: 100 Duplicates: 0 Warnings: 0

Records indicates the number of rows processed by the statement. (This is not necessarily the
number of rows actually inserted because Duplicates can be nonzero.) Duplicates indicates the
number of rows that could not be inserted because they would duplicate some existing unique index
value. Warnings indicates the number of attempts to insert column values that were problematic in
some way. Warnings can occur under any of the following conditions:

• Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT
statements or INSERT INTO ... SELECT statements, the column is set to the implicit default
value for the column data type. This is 0 for numeric types, the empty string ('') for string types,
and the “zero” value for date and time types. INSERT INTO ... SELECT statements are handled
the same way as multiple-row inserts because the server does not examine the result set from the
SELECT to see whether it returns a single row. (For a single-row INSERT, no warning occurs when
NULL is inserted into a NOT NULL column. Instead, the statement fails with an error.)

• Setting a numeric column to a value that lies outside the column's range. The value is clipped to the
closest endpoint of the range.

• Assigning a value such as '10.34 a' to a numeric column. The trailing nonnumeric text is stripped
off and the remaining numeric part is inserted. If the string value has no leading numeric part, the
column is set to 0.

• Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the column's
maximum length. The value is truncated to the column's maximum length.

• Inserting a value into a date or time column that is illegal for the data type. The column is set to the
appropriate zero value for the type.

If you are using the C API, the information string can be obtained by invoking the mysql_info()
function. See Section 23.8.7.35, “mysql_info()”.

If INSERT inserts a row into a table that has an AUTO_INCREMENT column, you can find the value
used for that column by using the SQL LAST_INSERT_ID() function. From within the C API, use
the mysql_insert_id() function. However, you should note that the two functions do not always
behave identically. The behavior of INSERT statements with respect to AUTO_INCREMENT columns is
discussed further in Section 12.14, “Information Functions”, and Section 23.8.7.37, “mysql_insert_id()”.

The INSERT statement supports the following modifiers:

• If you use the DELAYED modifier, the server puts the row or rows to be inserted into a buffer, and
the client issuing the INSERT DELAYED statement can then continue immediately. If the table is in
use, the server holds the rows. When the table is free, the server begins inserting rows, checking
periodically to see whether there are any new read requests for the table. If there are, the delayed
row queue is suspended until the table becomes free again. See Section 13.2.5.2, “INSERT
DELAYED Syntax”.

DELAYED is ignored with INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE.

DELAYED is also disregarded for an INSERT that uses functions accessing tables or triggers, or that
is called from a function or a trigger.

• If you use the LOW_PRIORITY modifier, execution of the INSERT is delayed until no other clients
are reading from the table. This includes other clients that began reading while existing clients are
reading, and while the INSERT LOW_PRIORITY statement is waiting. It is possible, therefore, for
a client that issues an INSERT LOW_PRIORITY statement to wait for a very long time (or even
forever) in a read-heavy environment. (This is in contrast to INSERT DELAYED, which lets the client
continue at once.)



INSERT Syntax

1394

Note

LOW_PRIORITY should normally not be used with MyISAM tables because
doing so disables concurrent inserts. See Section 8.11.3, “Concurrent
Inserts”.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option
if the server was started with that option. It also causes concurrent inserts not to be used. See
Section 8.11.3, “Concurrent Inserts”.

LOW_PRIORITY and HIGH_PRIORITY affect only storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE).

• If you use the IGNORE modifier, errors that occur while executing the INSERT statement are ignored.
For example, without IGNORE, a row that duplicates an existing UNIQUE index or PRIMARY KEY
value in the table causes a duplicate-key error and the statement is aborted. With IGNORE, the row
is discarded and no error occurs. Ignored errors may generate warnings instead, although duplicate-
key errors do not.

 IGNORE has a similar effect on inserts into partitioned tables where no partition matching a given
value is found. Without IGNORE, such INSERT statements are aborted with an error; however, when
INSERT IGNORE is used, the insert operation fails silently for the row containing the unmatched
value, but any rows that are matched are inserted. For an example, see Section 19.2.2, “LIST
Partitioning”.

Data conversions that would trigger errors abort the statement if IGNORE is not specified. With
IGNORE, invalid values are adjusted to the closest values and inserted; warnings are produced but
the statement does not abort. You can determine with the mysql_info() C API function how many
rows were actually inserted into the table.

• If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate
value in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row is performed. The affected-
rows value per row is 1 if the row is inserted as a new row, 2 if an existing row is updated, and
0 if an existing row is set to its current values. If you specify the CLIENT_FOUND_ROWS flag to
mysql_real_connect() when connecting to mysqld, the affected-rows value is 1 (not 0) if an
existing row is set to its current values. See Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”.

Inserting into a table requires the INSERT privilege for the table. If the ON DUPLICATE KEY UPDATE
clause is used and a duplicate key causes an UPDATE to be performed instead, the statement requires
the UPDATE privilege for the columns to be updated. For columns that are read but not modified you
need only the SELECT privilege (such as for a column referenced only on the right hand side of an
col_name=expr assignment in an ON DUPLICATE KEY UPDATE clause).

An INSERT statement that acts on a partitioned table using a storage engine such as MyISAM that
employs table-level locks locks all partitions of the table. This does not occur with tables using storage
engines such as InnoDB that employ row-level locking. This issue is resolved in MySQL 5.6. See
Section 19.5.4, “Partitioning and Table-Level Locking”, for more information.

13.2.5.1 INSERT ... SELECT Syntax

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
    [INTO] tbl_name [(col_name,...)]
    SELECT ...
    [ ON DUPLICATE KEY UPDATE col_name=expr, ... ]

With INSERT ... SELECT, you can quickly insert many rows into a table from one or many tables.
For example:



INSERT Syntax

1395

INSERT INTO tbl_temp2 (fld_id)
  SELECT tbl_temp1.fld_order_id
  FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

The following conditions hold for a INSERT ... SELECT statements:

• Specify IGNORE to ignore rows that would cause duplicate-key violations.

• DELAYED is ignored with INSERT ... SELECT.

• The target table of the INSERT statement may appear in the FROM clause of the SELECT part of the
query. (This was not possible in some older versions of MySQL.) However, you cannot insert into a
table and select from the same table in a subquery.

When selecting from and inserting into a table at the same time, MySQL creates a temporary table
to hold the rows from the SELECT and then inserts those rows into the target table. However, it
remains true that you cannot use INSERT INTO t ... SELECT ... FROM t when t is a
TEMPORARY table, because TEMPORARY tables cannot be referred to twice in the same statement
(see Section B.5.6.2, “TEMPORARY Table Problems”).

• AUTO_INCREMENT columns work as usual.

• To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts for INSERT ... SELECT statements (see Section 8.11.3, “Concurrent Inserts”).

• To avoid ambiguous column reference problems when the SELECT and the INSERT refer to the
same table, provide a unique alias for each table used in the SELECT part, and qualify column
names in that part with the appropriate alias.

In the values part of ON DUPLICATE KEY UPDATE, you can refer to columns in other tables, as long
as you do not use GROUP BY in the SELECT part. One side effect is that you must qualify nonunique
column names in the values part.

The order in which rows are returned by a SELECT statement with no ORDER BY clause is not
determined. This means that, when using replication, there is no guarantee that such a SELECT returns
rows in the same order on the master and the slave; this can lead to inconsistencies between them.
To prevent this from occurring, you should always write INSERT ... SELECT statements that are to
be replicated as INSERT ... SELECT ... ORDER BY column. The choice of column does not
matter as long as the same order for returning the rows is enforced on both the master and the slave.
See also Section 17.4.1.16, “Replication and LIMIT”.

Due to this issue, beginning with MySQL 5.5.18, INSERT ... SELECT ON DUPLICATE KEY
UPDATE and INSERT IGNORE ... SELECT statements are flagged as unsafe for statement-based
replication. With this change, such statements produce a warning in the log when using statement-
based mode and are logged using the row-based format when using MIXED mode. (Bug #11758262,
Bug #50439)

See also Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

An INSERT ... SELECT statement that acts on partitioned tables using a storage engine such as
MyISAM that employs table-level locks locks all partitions of the source and target tables. This does
not occur with tables using storage engines such as InnoDB that employ row-level locking. This
issue is resolved in MySQL 5.6. See Section 19.5.4, “Partitioning and Table-Level Locking”, for more
information.

13.2.5.2 INSERT DELAYED Syntax

INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL that is very
useful if you have clients that cannot or need not wait for the INSERT to complete. This is a common



INSERT Syntax

1396

situation when you use MySQL for logging and you also periodically run SELECT and UPDATE
statements that take a long time to complete.

When a client uses INSERT DELAYED, it gets an okay from the server at once, and the row is queued
to be inserted when the table is not in use by any other thread.

Another major benefit of using INSERT DELAYED is that inserts from many clients are bundled
together and written in one block. This is much faster than performing many separate inserts.

Note that INSERT DELAYED is slower than a normal INSERT if the table is not otherwise in use. There
is also the additional overhead for the server to handle a separate thread for each table for which there
are delayed rows. This means that you should use INSERT DELAYED only when you are really sure
that you need it.

The queued rows are held only in memory until they are inserted into the table. This means that if you
terminate mysqld forcibly (for example, with kill -9) or if mysqld dies unexpectedly, any queued
rows that have not been written to disk are lost.

There are some constraints on the use of DELAYED:

• INSERT DELAYED works only with MyISAM, MEMORY, ARCHIVE, and BLACKHOLE tables. For
engines that do not support DELAYED, an error occurs.

• An error occurs for INSERT DELAYED if used with a table that has been locked with LOCK TABLES
because the insert must be handled by a separate thread, not by the session that holds the lock.

• For MyISAM tables, if there are no free blocks in the middle of the data file, concurrent SELECT
and INSERT statements are supported. Under these circumstances, you very seldom need to use
INSERT DELAYED with MyISAM.

• INSERT DELAYED should be used only for INSERT statements that specify value lists. The server
ignores DELAYED for INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE
statements.

• Because the INSERT DELAYED statement returns immediately, before the rows are inserted, you
cannot use LAST_INSERT_ID() to get the AUTO_INCREMENT value that the statement might
generate.

• DELAYED rows are not visible to SELECT statements until they actually have been inserted.

• Prior to MySQL 5.5.7, INSERT DELAYED was treated as a normal INSERT if the statement inserted
multiple rows, binary logging was enabled, and the global logging format was statement-based (that
is, whenever binlog_format was set to STATEMENT). Beginning with MySQL 5.5.7, INSERT
DELAYED is always handled as a simple INSERT (that is, without the DELAYED option) whenever
the value of binlog_format is STATEMENT or MIXED. (In the latter case, the statement no longer
triggers a switch to row-based logging, and so is logged using the statement-based format.)

This does not apply when using row-based binary logging mode (binlog_format set to ROW), in
which INSERT DELAYED statements are always executed using the DELAYED option as specified,
and logged as row-update events.

• DELAYED is ignored on slave replication servers, so that INSERT DELAYED is treated as a normal
INSERT on slaves. This is because DELAYED could cause the slave to have different data than the
master.

• Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is used
to modify the table structure.

• INSERT DELAYED is not supported for views.

• INSERT DELAYED is not supported for partitioned tables.



INSERT Syntax

1397

The following describes in detail what happens when you use the DELAYED option to INSERT or
REPLACE. In this description, the “thread” is the thread that received an INSERT DELAYED statement
and “handler” is the thread that handles all INSERT DELAYED statements for a particular table.

• When a thread executes a DELAYED statement for a table, a handler thread is created to process all
DELAYED statements for the table, if no such handler already exists.

• The thread checks whether the handler has previously acquired a DELAYED lock; if not, it tells the
handler thread to do so. The DELAYED lock can be obtained even if other threads have a READ or
WRITE lock on the table. However, the handler waits for all ALTER TABLE locks or FLUSH TABLES
statements to finish, to ensure that the table structure is up to date.

• The thread executes the INSERT statement, but instead of writing the row to the table, it puts a copy
of the final row into a queue that is managed by the handler thread. Any syntax errors are noticed by
the thread and reported to the client program.

• The client cannot obtain from the server the number of duplicate rows or the AUTO_INCREMENT
value for the resulting row, because the INSERT returns before the insert operation has been
completed. (If you use the C API, the mysql_info() function does not return anything meaningful,
for the same reason.)

• The binary log is updated by the handler thread when the row is inserted into the table. In case of
multiple-row inserts, the binary log is updated when the first row is inserted.

•  Each time that delayed_insert_limit rows are written, the handler checks whether any
SELECT statements are still pending. If so, it permits these to execute before continuing.

•  When the handler has no more rows in its queue, the table is unlocked. If no new INSERT
DELAYED statements are received within delayed_insert_timeout seconds, the handler
terminates.

• If more than delayed_queue_size rows are pending in a specific handler queue, the thread
requesting INSERT DELAYED waits until there is room in the queue. This is done to ensure that
mysqld does not use all memory for the delayed memory queue.

• The handler thread shows up in the MySQL process list with delayed_insert in the Command
column. It is killed if you execute a FLUSH TABLES statement or kill it with KILL thread_id.
However, before exiting, it first stores all queued rows into the table. During this time it does not
accept any new INSERT statements from other threads. If you execute an INSERT DELAYED
statement after this, a new handler thread is created.

Note that this means that INSERT DELAYED statements have higher priority than normal INSERT
statements if there is an INSERT DELAYED handler running. Other update statements have to wait
until the INSERT DELAYED queue is empty, someone terminates the handler thread (with KILL
thread_id), or someone executes a FLUSH TABLES.

• The following status variables provide information about INSERT DELAYED statements.

Status Variable Meaning

Delayed_insert_threads Number of handler threads

Delayed_writes Number of rows written with INSERT DELAYED

Not_flushed_delayed_rows Number of rows waiting to be written

You can view these variables by issuing a SHOW STATUS statement or by executing a mysqladmin
extended-status command.

13.2.5.3 INSERT ... ON DUPLICATE KEY UPDATE Syntax

If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value
in a UNIQUE index or PRIMARY KEY, MySQL performs an UPDATE of the old row. For example, if



INSERT Syntax

1398

column a is declared as UNIQUE and contains the value 1, the following two statements have similar
effect:

INSERT INTO table (a,b,c) VALUES (1,2,3)
  ON DUPLICATE KEY UPDATE c=c+1;

UPDATE table SET c=c+1 WHERE a=1;

(The effects are not identical for an InnoDB table where a is an auto-increment column. With an auto-
increment column, an INSERT statement increases the auto-increment value but UPDATE does not.)

The ON DUPLICATE KEY UPDATE clause can contain multiple column assignments, separated by
commas.

With ON DUPLICATE KEY UPDATE, the affected-rows value per row is 1 if the row is inserted as
a new row, 2 if an existing row is updated, and 0 if an existing row is set to its current values. If you
specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld, the
affected-rows value is 1 (not 0) if an existing row is set to its current values.

If column b is also unique, the INSERT is equivalent to this UPDATE statement instead:

UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

If a=1 OR b=2 matches several rows, only one row is updated. In general, you should try to avoid
using an ON DUPLICATE KEY UPDATE clause on tables with multiple unique indexes.

You can use the VALUES(col_name) function in the UPDATE clause to refer to column values from
the INSERT portion of the INSERT ... ON DUPLICATE KEY UPDATE statement. In other words,
VALUES(col_name) in the ON DUPLICATE KEY UPDATE clause refers to the value of col_name
that would be inserted, had no duplicate-key conflict occurred. This function is especially useful in
multiple-row inserts. The VALUES() function is meaningful only in INSERT ... UPDATE statements
and returns NULL otherwise. Example:

INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
  ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

INSERT INTO table (a,b,c) VALUES (1,2,3)
  ON DUPLICATE KEY UPDATE c=3;
INSERT INTO table (a,b,c) VALUES (4,5,6)
  ON DUPLICATE KEY UPDATE c=9;

If a table contains an AUTO_INCREMENT column and INSERT ... ON DUPLICATE KEY UPDATE
inserts or updates a row, the LAST_INSERT_ID() function returns the AUTO_INCREMENT value.

The DELAYED option is ignored when you use ON DUPLICATE KEY UPDATE.

Because the results of INSERT ... SELECT statements depend on the ordering of rows from
the SELECT and this order cannot always be guaranteed, it is possible when logging INSERT ...
SELECT ON DUPLICATE KEY UPDATE statements for the master and the slave to diverge. Thus,
in MySQL 5.5.18 and later, INSERT ... SELECT ON DUPLICATE KEY UPDATE statements are
flagged as unsafe for statement-based replication. With this change, such statements produce a
warning in the log when using statement-based mode and are logged using the row-based format
when using MIXED mode. In addition, beginning with MySQL 5.5.24, an INSERT ... ON DUPLICATE
KEY UPDATE statement against a table having more than one unique or primary key is also marked as
unsafe. (Bug #11765650, Bug #58637) See also Section 17.1.2.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”.

An INSERT ... ON DUPLICATE KEY UPDATE on a partitioned table using a storage engine such as
MyISAM that employs table-level locks locks all partitions of the table. This does not occur with tables



LOAD DATA INFILE Syntax

1399

using storage engines such as InnoDB that employ row-level locking. This issue is resolved in MySQL
5.6. See Section 19.5.4, “Partitioning and Table-Level Locking”, for more information.

13.2.6 LOAD DATA INFILE Syntax

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
    [REPLACE | IGNORE]
    INTO TABLE tbl_name
    [CHARACTER SET charset_name]
    [{FIELDS | COLUMNS}
        [TERMINATED BY 'string']
        [[OPTIONALLY] ENCLOSED BY 'char']
        [ESCAPED BY 'char']
    ]
    [LINES
        [STARTING BY 'string']
        [TERMINATED BY 'string']
    ]
    [IGNORE number {LINES | ROWS}]
    [(col_name_or_user_var,...)]
    [SET col_name = expr,...]

The LOAD DATA INFILE statement reads rows from a text file into a table at a very high speed.
LOAD DATA INFILE is the complement of SELECT ... INTO OUTFILE. (See Section 13.2.9.1,
“SELECT ... INTO Syntax”.) To write data from a table to a file, use SELECT ... INTO OUTFILE.
To read the file back into a table, use LOAD DATA INFILE. The syntax of the FIELDS and LINES
clauses is the same for both statements. Both clauses are optional, but FIELDS must precede LINES if
both are specified.

You can also load data files by using the mysqlimport utility; it operates by sending a LOAD DATA
INFILE statement to the server. The --local option causes mysqlimport to read data files from
the client host. You can specify the --compress option to get better performance over slow networks
if the client and server support the compressed protocol. See Section 4.5.5, “mysqlimport — A Data
Import Program”.

For more information about the efficiency of INSERT versus LOAD DATA INFILE and speeding up
LOAD DATA INFILE, see Section 8.2.4.1, “Optimizing INSERT Statements”.

The file name must be given as a literal string. On Windows, specify backslashes in path names
as forward slashes or doubled backslashes. The character_set_filesystem system variable
controls the interpretation of the file name.

The server uses the character set indicated by the character_set_database system variable to
interpret the information in the file. SET NAMES and the setting of character_set_client do not
affect interpretation of input. If the contents of the input file use a character set that differs from the
default, it is usually preferable to specify the character set of the file by using the CHARACTER SET
clause. A character set of binary specifies “no conversion.”

LOAD DATA INFILE interprets all fields in the file as having the same character set, regardless of the
data types of the columns into which field values are loaded. For proper interpretation of file contents,
you must ensure that it was written with the correct character set. For example, if you write a data file
with mysqldump -T or by issuing a SELECT ... INTO OUTFILE statement in mysql, be sure to
use a --default-character-set option so that output is written in the character set to be used
when the file is loaded with LOAD DATA INFILE.

Note

It is not possible to load data files that use the ucs2, utf16, or utf32
character set.

If you use LOW_PRIORITY, execution of the LOAD DATA statement is delayed until no other clients
are reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).



LOAD DATA INFILE Syntax

1400

If you specify CONCURRENT with a MyISAM table that satisfies the condition for concurrent inserts (that
is, it contains no free blocks in the middle), other threads can retrieve data from the table while LOAD
DATA is executing. This option affects the performance of LOAD DATA a bit, even if no other thread is
using the table at the same time.

With row-based replication, CONCURRENT is replicated regardless of MySQL version. With statement-
based replication CONCURRENT is not replicated prior to MySQL 5.5.1 (see Bug #34628). For more
information, see Section 17.4.1.17, “Replication and LOAD DATA INFILE”.

The LOCAL keyword affects expected location of the file and error handling, as described later. LOCAL
works only if your server and your client both have been configured to permit it. For example, if
mysqld was started with the local_infile system variable disabled, LOCAL does not work. See
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”.

The LOCAL keyword affects where the file is expected to be found:

• If LOCAL is specified, the file is read by the client program on the client host and sent to the server.
The file can be given as a full path name to specify its exact location. If given as a relative path
name, the name is interpreted relative to the directory in which the client program was started.

When using LOCAL with LOAD DATA, a copy of the file is created in the server's temporary directory.
This is not the directory determined by the value of tmpdir or slave_load_tmpdir, but rather the
operating system's temporary directory, and is not configurable in the MySQL Server. (Typically the
system temporary directory is /tmp on Linux systems and C:\WINDOWS\TEMP on Windows.) Lack
of sufficient space for the copy in this directory can cause the LOAD DATA LOCAL statement to fail.

• If LOCAL is not specified, the file must be located on the server host and is read directly by the
server. The server uses the following rules to locate the file:

• If the file name is an absolute path name, the server uses it as given.

• If the file name is a relative path name with one or more leading components, the server searches
for the file relative to the server's data directory.

• If a file name with no leading components is given, the server looks for the file in the database
directory of the default database.

In the non-LOCAL case, these rules mean that a file named as ./myfile.txt is read from the
server's data directory, whereas the file named as myfile.txt is read from the database directory of
the default database. For example, if db1 is the default database, the following LOAD DATA statement
reads the file data.txt from the database directory for db1, even though the statement explicitly
loads the file into a table in the db2 database:

LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;

Non-LOCAL load operations read text files located on the server. For security reasons, such operations
require that you have the FILE privilege. See Section 6.2.1, “Privileges Provided by MySQL”. Also,
non-LOCAL load operations are subject to the secure_file_priv system variable setting. If the
variable value is a nonempty directory name, the file to be loaded must be located in that directory. If
the variable value is empty (which is insecure), the file need only be readable by the server.

Using LOCAL is a bit slower than letting the server access the files directly, because the contents of the
file must be sent over the connection by the client to the server. On the other hand, you do not need
the FILE privilege to load local files.

LOCAL also affects error handling:

• With LOAD DATA INFILE, data-interpretation and duplicate-key errors terminate the operation.

• With LOAD DATA LOCAL INFILE, data-interpretation and duplicate-key errors become warnings
and the operation continues because the server has no way to stop transmission of the file in the



LOAD DATA INFILE Syntax

1401

middle of the operation. For duplicate-key errors, this is the same as if IGNORE is specified. IGNORE
is explained further later in this section.

The REPLACE and IGNORE keywords control handling of input rows that duplicate existing rows on
unique key values:

• If you specify REPLACE, input rows replace existing rows. In other words, rows that have the same
value for a primary key or unique index as an existing row. See Section 13.2.8, “REPLACE Syntax”.

• If you specify IGNORE, rows that duplicate an existing row on a unique key value are discarded.

• If you do not specify either option, the behavior depends on whether the LOCAL keyword is specified.
Without LOCAL, an error occurs when a duplicate key value is found, and the rest of the text file is
ignored. With LOCAL, the default behavior is the same as if IGNORE is specified; this is because the
server has no way to stop transmission of the file in the middle of the operation.

To ignore foreign key constraints during the load operation, issue a SET foreign_key_checks = 0
statement before executing LOAD DATA.

If you use LOAD DATA INFILE on an empty MyISAM table, all nonunique indexes are created in a
separate batch (as for REPAIR TABLE). Normally, this makes LOAD DATA INFILE much faster when
you have many indexes. In some extreme cases, you can create the indexes even faster by turning
them off with ALTER TABLE ... DISABLE KEYS before loading the file into the table and using
ALTER TABLE ... ENABLE KEYS to re-create the indexes after loading the file. See Section 8.2.4.1,
“Optimizing INSERT Statements”.

For both the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements, the syntax of the
FIELDS and LINES clauses is the same. Both clauses are optional, but FIELDS must precede LINES
if both are specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] ENCLOSED
BY, and ESCAPED BY) is also optional, except that you must specify at least one of them.

If you specify no FIELDS or LINES clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'
LINES TERMINATED BY '\n' STARTING BY ''

(Backslash is the MySQL escape character within strings in SQL statements, so to specify a literal
backslash, you must specify two backslashes for the value to be interpreted as a single backslash. The
escape sequences '\t' and '\n' specify tab and newline characters, respectively.)

In other words, the defaults cause LOAD DATA INFILE to act as follows when reading input:

• Look for line boundaries at newlines.

• Do not skip over any line prefix.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret characters preceded by the escape character \ as escape sequences. For example,
\t, \n, and \\ signify tab, newline, and backslash, respectively. See the discussion of FIELDS
ESCAPED BY later for the full list of escape sequences.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use \ to escape instances of tab, newline, or \ that occur within field values.



LOAD DATA INFILE Syntax

1402

• Write newlines at the ends of lines.

Note

If you have generated the text file on a Windows system, you might have to use
LINES TERMINATED BY '\r\n' to read the file properly, because Windows
programs typically use two characters as a line terminator. Some programs,
such as WordPad, might use \r as a line terminator when writing files. To read
such files, use LINES TERMINATED BY '\r'.

If all the lines you want to read in have a common prefix that you want to ignore, you can use LINES
STARTING BY 'prefix_string' to skip over the prefix, and anything before it. If a line does not
include the prefix, the entire line is skipped. Suppose that you issue the following statement:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test
  FIELDS TERMINATED BY ','  LINES STARTING BY 'xxx';

If the data file looks like this:

xxx"abc",1
something xxx"def",2
"ghi",3

The resulting rows will be ("abc",1) and ("def",2). The third row in the file is skipped because it
does not contain the prefix.

The IGNORE number LINES option can be used to ignore lines at the start of the file. For example,
you can use IGNORE 1 LINES to skip over an initial header line containing column names:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA INFILE to write data from
a database into a file and then read the file back into the database later, the field- and line-handling
options for both statements must match. Otherwise, LOAD DATA INFILE will not interpret the contents
of the file properly. Suppose that you use SELECT ... INTO OUTFILE to write a file with fields
delimited by commas:

SELECT * INTO OUTFILE 'data.txt'
  FIELDS TERMINATED BY ','
  FROM table2;

To read the comma-delimited file back in, the correct statement would be:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
  FIELDS TERMINATED BY ',';

If instead you tried to read in the file with the statement shown following, it wouldn't work because it
instructs LOAD DATA INFILE to look for tabs between fields:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
  FIELDS TERMINATED BY '\t';

The likely result is that each input line would be interpreted as a single field.

LOAD DATA INFILE can be used to read files obtained from external sources. For example, many
programs can export data in comma-separated values (CSV) format, such that lines have fields
separated by commas and enclosed within double quotation marks, with an initial line of column
names. If the lines in such a file are terminated by carriage return/newline pairs, the statement shown
here illustrates the field- and line-handling options you would use to load the file:



LOAD DATA INFILE Syntax

1403

LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
  FIELDS TERMINATED BY ',' ENCLOSED BY '"'
  LINES TERMINATED BY '\r\n'
  IGNORE 1 LINES;

If the input values are not necessarily enclosed within quotation marks, use OPTIONALLY before the
ENCLOSED BY keywords.

Any of the field- or line-handling options can specify an empty string (''). If not empty, the FIELDS
[OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single character. The
FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMINATED BY values can be more
than one character. For example, to write lines that are terminated by carriage return/linefeed pairs, or
to read a file containing such lines, specify a LINES TERMINATED BY '\r\n' clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

CREATE TABLE jokes
  (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
  joke TEXT NOT NULL);
LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
  FIELDS TERMINATED BY ''
  LINES TERMINATED BY '\n%%\n' (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ... INTO
OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY character.
An example of such output (using a comma as the field delimiter) is shown here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"
"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose values from columns
that have a string data type (such as CHAR, BINARY, TEXT, or ENUM):

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Occurrences of the ENCLOSED BY character within a field value are escaped by prefixing them with the
ESCAPED BY character. Also, if you specify an empty ESCAPED BY value, it is possible to inadvertently
generate output that cannot be read properly by LOAD DATA INFILE. For example, the preceding
output just shown would appear as follows if the escape character is empty. Observe that the second
field in the fourth line contains a comma following the quote, which (erroneously) appears to terminate
the field:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is true
regardless of whether OPTIONALLY is specified; OPTIONALLY has no effect on input interpretation.)
Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character are interpreted
as part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized as
terminating a field value only if followed by the field or line TERMINATED BY sequence. To avoid
ambiguity, occurrences of the ENCLOSED BY character within a field value can be doubled and are



LOAD DATA INFILE Syntax

1404

interpreted as a single instance of the character. For example, if ENCLOSED BY '"' is specified,
quotation marks are handled as shown here:

"The ""BIG"" boss"  -> The "BIG" boss
The "BIG" boss      -> The "BIG" boss
The ""BIG"" boss    -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to read or write special characters:

• For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are
stripped and the following character is taken literally as part of a field value. Some two-character
sequences that are exceptions, where the first character is the escape character. These sequences
are shown in the following table (using \ for the escape character). The rules for NULL handling are
described later in this section.

Character Escape Sequence

\0  An ASCII NUL (X'00') character

\b  A backspace character

\n    A newline (linefeed) character

\r   A carriage return character

\t  A tab character.

\Z  ASCII 26 (Control+Z)

\N NULL

For more information about \-escape syntax, see Section 9.1.1, “String Literals”.

If the FIELDS ESCAPED BY character is empty, escape-sequence interpretation does not occur.

• For output, if the FIELDS ESCAPED BY character is not empty, it is used to prefix the following
characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII 0 (what is actually written following the escape character is ASCII 0, not a zero-valued byte)

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

In certain cases, field- and line-handling options interact:

• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is nonempty, lines are
also terminated with FIELDS TERMINATED BY.

• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''), a fixed-
row (nondelimited) format is used. With fixed-row format, no delimiters are used between fields
(but you can still have a line terminator). Instead, column values are read and written using a field
width wide enough to hold all values in the field. For TINYINT, SMALLINT, MEDIUMINT, INT, and
BIGINT, the field widths are 4, 6, 8, 11, and 20, respectively, no matter what the declared display
width is.

LINES TERMINATED BY is still used to separate lines. If a line does not contain all fields, the rest of
the columns are set to their default values. If you do not have a line terminator, you should set this to
''. In this case, the text file must contain all fields for each row.



LOAD DATA INFILE Syntax

1405

Fixed-row format also affects handling of NULL values, as described later.

Note

Fixed-size format does not work if you are using a multibyte character set.

Handling of NULL values varies according to the FIELDS and LINES options in use:

• For the default FIELDS and LINES values, NULL is written as a field value of \N for output, and a
field value of \N is read as NULL for input (assuming that the ESCAPED BY character is \).

• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value is read as
a NULL value. This differs from the word NULL enclosed within FIELDS ENCLOSED BY characters,
which is read as the string 'NULL'.

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.

• With fixed-row format (which is used when FIELDS TERMINATED BY and FIELDS ENCLOSED
BY are both empty), NULL is written as an empty string. This causes both NULL values and empty
strings in the table to be indistinguishable when written to the file because both are written as empty
strings. If you need to be able to tell the two apart when reading the file back in, you should not use
fixed-row format.

An attempt to load NULL into a NOT NULL column causes assignment of the implicit default value
for the column's data type and a warning, or an error in strict SQL mode. Implicit default values are
discussed in Section 11.6, “Data Type Default Values”.

Some cases are not supported by LOAD DATA INFILE:

• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and BLOB or
TEXT columns.

• If you specify one separator that is the same as or a prefix of another, LOAD DATA INFILE cannot
interpret the input properly. For example, the following FIELDS clause would cause problems:

FIELDS TERMINATED BY '"' ENCLOSED BY '"'

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS ENCLOSED
BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value causes LOAD
DATA INFILE to stop reading a field or line too early. This happens because LOAD DATA INFILE
cannot properly determine where the field or line value ends.

The following example loads all columns of the persondata table:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;

By default, when no column list is provided at the end of the LOAD DATA INFILE statement, input
lines are expected to contain a field for each table column. If you want to load only some of a table's
columns, specify a column list:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata (col1,col2,...);

You must also specify a column list if the order of the fields in the input file differs from the order of the
columns in the table. Otherwise, MySQL cannot tell how to match input fields with table columns.

The column list can contain either column names or user variables. With user variables, the SET clause
enables you to perform transformations on their values before assigning the result to columns.

User variables in the SET clause can be used in several ways. The following example uses the first
input column directly for the value of t1.column1, and assigns the second input column to a user
variable that is subjected to a division operation before being used for the value of t1.column2:



LOAD DATA INFILE Syntax

1406

LOAD DATA INFILE 'file.txt'
  INTO TABLE t1
  (column1, @var1)
  SET column2 = @var1/100;

The SET clause can be used to supply values not derived from the input file. The following statement
sets column3 to the current date and time:

LOAD DATA INFILE 'file.txt'
  INTO TABLE t1
  (column1, column2)
  SET column3 = CURRENT_TIMESTAMP;

You can also discard an input value by assigning it to a user variable and not assigning the variable to
a table column:

LOAD DATA INFILE 'file.txt'
  INTO TABLE t1
  (column1, @dummy, column2, @dummy, column3);

Use of the column/variable list and SET clause is subject to the following restrictions:

• Assignments in the SET clause should have only column names on the left hand side of assignment
operators.

• You can use subqueries in the right hand side of SET assignments. A subquery that returns a value
to be assigned to a column may be a scalar subquery only. Also, you cannot use a subquery to
select from the table that is being loaded.

• Lines ignored by an IGNORE clause are not processed for the column/variable list or SET clause.

• User variables cannot be used when loading data with fixed-row format because user variables do
not have a display width.

When processing an input line, LOAD DATA splits it into fields and uses the values according to the
column/variable list and the SET clause, if they are present. Then the resulting row is inserted into the
table. If there are BEFORE INSERT or AFTER INSERT triggers for the table, they are activated before
or after inserting the row, respectively.

If an input line has too many fields, the extra fields are ignored and the number of warnings is
incremented.

If an input line has too few fields, the table columns for which input fields are missing are set to their
default values. Default value assignment is described in Section 11.6, “Data Type Default Values”.

An empty field value is interpreted different from a missing field:

• For string types, the column is set to the empty string.

• For numeric types, the column is set to 0.

• For date and time types, the column is set to the appropriate “zero” value for the type. See
Section 11.3, “Date and Time Types”.

These are the same values that result if you assign an empty string explicitly to a string, numeric, or
date or time type explicitly in an INSERT or UPDATE statement.

Treatment of empty or incorrect field values differs from that just described if the SQL mode is set to
a restrictive value. For example, if sql_mode is set to TRADITIONAL, conversion of an empty value
or a value such as 'x' for a numeric column results in an error, not conversion to 0. (With LOCAL
or IGNORE, warnings occur rather than errors, even with a restrictive sql_mode value, and the row



LOAD DATA INFILE Syntax

1407

is inserted using the same closest-value behavior used for nonrestrictive SQL modes. This occurs
because the server has no way to stop transmission of the file in the middle of the operation.)

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the column
(that is, \N) and the column is not declared to permit NULL values, or if the TIMESTAMP column's
default value is the current timestamp and it is omitted from the field list when a field list is specified.

LOAD DATA INFILE regards all input as strings, so you cannot use numeric values for ENUM or SET
columns the way you can with INSERT statements. All ENUM and SET values must be specified as
strings.

BIT values cannot be loaded directly using binary notation (for example, b'011010'). To work around
this, use the SET clause to strip off the leading b' and trailing ' and perform a base-2 to base-10
conversion so that MySQL loads the values into the BIT column properly:

shell> cat /tmp/bit_test.txt
b'10'
b'1111111'
shell> mysql test
mysql> LOAD DATA INFILE '/tmp/bit_test.txt'
       INTO TABLE bit_test (@var1)
       SET b = CAST(CONV(MID(@var1, 3, LENGTH(@var1)-3), 2, 10) AS UNSIGNED);
Query OK, 2 rows affected (0.00 sec)
Records: 2  Deleted: 0  Skipped: 0  Warnings: 0

mysql> SELECT BIN(b+0) FROM bit_test;
+----------+
| BIN(b+0) |
+----------+
| 10       |
| 1111111  |
+----------+
2 rows in set (0.00 sec)

For BIT values in 0b binary notation (for example, 0b011010), use this SET clause instead to strip off
the leading 0b:

SET b = CAST(CONV(MID(@var1, 3, LENGTH(@var1)-2), 2, 10) AS UNSIGNED)

On Unix, if you need LOAD DATA to read from a pipe, you can use the following technique (the
example loads a listing of the / directory into the table db1.t1):

mkfifo /mysql/data/db1/ls.dat
chmod 666 /mysql/data/db1/ls.dat
find / -ls > /mysql/data/db1/ls.dat &
mysql -e "LOAD DATA INFILE 'ls.dat' INTO TABLE t1" db1

Here you must run the command that generates the data to be loaded and the mysql commands
either on separate terminals, or run the data generation process in the background (as shown in the
preceding example). If you do not do this, the pipe will block until data is read by the mysql process.

When the LOAD DATA INFILE statement finishes, it returns an information string in the following
format:

Records: 1  Deleted: 0  Skipped: 0  Warnings: 0

Warnings occur under the same circumstances as when values are inserted using the INSERT
statement (see Section 13.2.5, “INSERT Syntax”), except that LOAD DATA INFILE also generates
warnings when there are too few or too many fields in the input row.

You can use SHOW WARNINGS to get a list of the first max_error_count warnings as information
about what went wrong. See Section 13.7.5.41, “SHOW WARNINGS Syntax”.



LOAD XML Syntax

1408

If you are using the C API, you can get information about the statement by calling the mysql_info()
function. See Section 23.8.7.35, “mysql_info()”.

For partitioned tables using storage engines that employ table locks, such as MyISAM, any locks
caused by LOAD DATA perform locks on all partitions of the table. This does not apply to tables
using storage engines which employ row-level locking, such as InnoDB. For more information, see
Section 19.5.4, “Partitioning and Table-Level Locking”.

13.2.7 LOAD XML Syntax

LOAD XML [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
    [REPLACE | IGNORE]
    INTO TABLE [db_name.]tbl_name
    [CHARACTER SET charset_name]
    [ROWS IDENTIFIED BY '<tagname>']
    [IGNORE number {LINES | ROWS}]
    [(field_name_or_user_var,...)]
    [SET col_name = expr,...]

The LOAD XML statement reads data from an XML file into a table. The file_name must be given as
a literal string. The tagname in the optional ROWS IDENTIFIED BY clause must also be given as a
literal string, and must be surrounded by angle brackets (< and >).

LOAD XML acts as the complement of running the mysql client in XML output mode (that is, starting
the client with the --xml option). To write data from a table to an XML file, you can invoke the mysql
client with the --xml and -e options from the system shell, as shown here:

shell> mysql --xml -e 'SELECT * FROM mydb.mytable' > file.xml

To read the file back into a table, use LOAD XML INFILE. By default, the <row> element is
considered to be the equivalent of a database table row; this can be changed using the ROWS
IDENTIFIED BY clause.

This statement supports three different XML formats:

• Column names as attributes and column values as attribute values:

<row column1="value1" column2="value2" .../>

• Column names as tags and column values as the content of these tags:

<row>
  <column1>value1</column1>
  <column2>value2</column2>
</row>

• Column names are the name attributes of <field> tags, and values are the contents of these tags:

<row>
  <field name='column1'>value1</field>
  <field name='column2'>value2</field>
</row>

This is the format used by other MySQL tools, such as mysqldump.

All three formats can be used in the same XML file; the import routine automatically detects the format
for each row and interprets it correctly. Tags are matched based on the tag or attribute name and the
column name.

Prior to MySQL 5.5.46, LOAD XML did not handle empty XML elements in the form <element/>
correctly. (Bug #67542, Bug #16171518)



LOAD XML Syntax

1409

The following clauses work essentially the same way for LOAD XML as they do for LOAD DATA:

• LOW_PRIORITY or CONCURRENT

• LOCAL

• REPLACE or IGNORE

• CHARACTER SET

• SET

See Section 13.2.6, “LOAD DATA INFILE Syntax”, for more information about these clauses.

(field_name_or_user_var, ...) is a comma-separated list of one or more XML fields or user
variables. The name of a user variable used for this purpose must match the name of a field from the
XML file, prefixed with @. You can use field names to select only desired fields. User variables can be
employed to store the corresponding field values for subsequent re-use.

The IGNORE number LINES or IGNORE number ROWS clause causes the first number rows in the
XML file to be skipped. It is analogous to the LOAD DATA statement's IGNORE ... LINES clause.

Suppose that we have a table named person, created as shown here:

USE test;

CREATE TABLE person (
    person_id INT NOT NULL PRIMARY KEY,
    fname VARCHAR(40) NULL,
    lname VARCHAR(40) NULL,
    created TIMESTAMP
);

Suppose further that this table is initially empty.

Now suppose that we have a simple XML file person.xml, whose contents are as shown here:

<list>
  <person person_id="1" fname="Kapek" lname="Sainnouine"/>
  <person person_id="2" fname="Sajon" lname="Rondela"/>
  <person person_id="3"><fname>Likame</fname><lname>Örrtmons</lname></person>
  <person person_id="4"><fname>Slar</fname><lname>Manlanth</lname></person>
  <person><field name="person_id">5</field><field name="fname">Stoma</field>
    <field name="lname">Milu</field></person>
  <person><field name="person_id">6</field><field name="fname">Nirtam</field>
    <field name="lname">Sklöd</field></person>
  <person person_id="7"><fname>Sungam</fname><lname>Dulbåd</lname></person>
  <person person_id="8" fname="Sraref" lname="Encmelt"/>
</list>

Each of the permissible XML formats discussed previously is represented in this example file.

To import the data in person.xml into the person table, you can use this statement:

mysql> LOAD XML LOCAL INFILE 'person.xml'
    ->   INTO TABLE person
    ->   ROWS IDENTIFIED BY '<person>';

Query OK, 8 rows affected (0.00 sec)
Records: 8  Deleted: 0  Skipped: 0  Warnings: 0

Here, we assume that person.xml is located in the MySQL data directory. If the file cannot be found,
the following error results:

ERROR 2 (HY000): File '/person.xml' not found (Errcode: 2)



LOAD XML Syntax

1410

The ROWS IDENTIFIED BY '<person>' clause means that each <person> element in the XML
file is considered equivalent to a row in the table into which the data is to be imported. In this case, this
is the person table in the test database.

As can be seen by the response from the server, 8 rows were imported into the test.person table.
This can be verified by a simple SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+------------+---------------------+
| person_id | fname  | lname      | created             |
+-----------+--------+------------+---------------------+
|         1 | Kapek  | Sainnouine | 2007-07-13 16:18:47 |
|         2 | Sajon  | Rondela    | 2007-07-13 16:18:47 |
|         3 | Likame | Örrtmons   | 2007-07-13 16:18:47 |
|         4 | Slar   | Manlanth   | 2007-07-13 16:18:47 |
|         5 | Stoma  | Nilu       | 2007-07-13 16:18:47 |
|         6 | Nirtam | Sklöd      | 2007-07-13 16:18:47 |
|         7 | Sungam | Dulbåd     | 2007-07-13 16:18:47 |
|         8 | Sreraf | Encmelt    | 2007-07-13 16:18:47 |
+-----------+--------+------------+---------------------+
8 rows in set (0.00 sec)

This shows, as stated earlier in this section, that any or all of the 3 permitted XML formats may appear
in a single file and be read in using LOAD XML.

The inverse of the import operation just shown—that is, dumping MySQL table data into an XML file—
can be accomplished using the mysql client from the system shell, as shown here:

shell> mysql --xml -e "SELECT * FROM test.person" > person-dump.xml
shell> cat person-dump.xml
<?xml version="1.0"?>

<resultset statement="SELECT * FROM test.person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <row>
 <field name="person_id">1</field>
 <field name="fname">Kapek</field>
 <field name="lname">Sainnouine</field>
  </row>

  <row>
 <field name="person_id">2</field>
 <field name="fname">Sajon</field>
 <field name="lname">Rondela</field>
  </row>

  <row>
 <field name="person_id">3</field>
 <field name="fname">Likema</field>
 <field name="lname">Örrtmons</field>
  </row>

  <row>
 <field name="person_id">4</field>
 <field name="fname">Slar</field>
 <field name="lname">Manlanth</field>
  </row>

  <row>
 <field name="person_id">5</field>
 <field name="fname">Stoma</field>
 <field name="lname">Nilu</field>
  </row>

  <row>
 <field name="person_id">6</field>
 <field name="fname">Nirtam</field>
 <field name="lname">Sklöd</field>
  </row>



LOAD XML Syntax

1411

  <row>
 <field name="person_id">7</field>
 <field name="fname">Sungam</field>
 <field name="lname">Dulbåd</field>
  </row>

  <row>
 <field name="person_id">8</field>
 <field name="fname">Sreraf</field>
 <field name="lname">Encmelt</field>
  </row>
</resultset>

Note

The --xml option causes the mysql client to use XML formatting for its output;
the -e option causes the client to execute the SQL statement immediately
following the option. See Section 4.5.1, “mysql — The MySQL Command-Line
Tool”.

You can verify that the dump is valid by creating a copy of the person table and importing the dump
file into the new table, like this:

mysql> USE test;
mysql> CREATE TABLE person2 LIKE person;
Query OK, 0 rows affected (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
    ->   INTO TABLE person2;
Query OK, 8 rows affected (0.01 sec)
Records: 8  Deleted: 0  Skipped: 0  Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+---------------------+
| person_id | fname  | lname      | created             |
+-----------+--------+------------+---------------------+
|         1 | Kapek  | Sainnouine | 2007-07-13 16:18:47 |
|         2 | Sajon  | Rondela    | 2007-07-13 16:18:47 |
|         3 | Likema | Örrtmons   | 2007-07-13 16:18:47 |
|         4 | Slar   | Manlanth   | 2007-07-13 16:18:47 |
|         5 | Stoma  | Nilu       | 2007-07-13 16:18:47 |
|         6 | Nirtam | Sklöd      | 2007-07-13 16:18:47 |
|         7 | Sungam | Dulbåd     | 2007-07-13 16:18:47 |
|         8 | Sreraf | Encmelt    | 2007-07-13 16:18:47 |
+-----------+--------+------------+---------------------+
8 rows in set (0.00 sec)

There is no requirement that every field in the XML file be matched with a column in the corresponding
table. Fields which have no corresponding columns are skipped. You can see this by first emptying the
person2 table and dropping the created column, then using the same LOAD XML statement we just
employed previously, like this:

mysql> TRUNCATE person2;
Query OK, 8 rows affected (0.26 sec)

mysql> ALTER TABLE person2 DROP COLUMN created;
Query OK, 0 rows affected (0.52 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> SHOW CREATE TABLE person2\G
*************************** 1. row ***************************
       Table: person2
Create Table: CREATE TABLE `person2` (
  `person_id` int(11) NOT NULL,
  `fname` varchar(40) DEFAULT NULL,
  `lname` varchar(40) DEFAULT NULL,
  PRIMARY KEY (`person_id`)



LOAD XML Syntax

1412

) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
    ->   INTO TABLE person2;
Query OK, 8 rows affected (0.01 sec)
Records: 8  Deleted: 0  Skipped: 0  Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+
| person_id | fname  | lname      |
+-----------+--------+------------+
|         1 | Kapek  | Sainnouine |
|         2 | Sajon  | Rondela    |
|         3 | Likema | Örrtmons   |
|         4 | Slar   | Manlanth   |
|         5 | Stoma  | Nilu       |
|         6 | Nirtam | Sklöd      |
|         7 | Sungam | Dulbåd     |
|         8 | Sreraf | Encmelt    |
+-----------+--------+------------+
8 rows in set (0.00 sec)

The order in which the fields are given within each row of the XML file does not affect the operation of
LOAD XML; the field order can vary from row to row, and is not required to be in the same order as the
corresponding columns in the table.

As mentioned previously, you can use a (field_name_or_user_var, ...) list of one or more
XML fields (to select desired fields only) or user variables (to store the corresponding field values for
later use). User variables can be especially useful when you want to insert data from an XML file into
table columns whose names do not match those of the XML fields. To see how this works, we first
create a table named individual whose structure matches that of the person table, but whose
columns are named differently:

mysql> CREATE TABLE individual (
    ->     individual_id INT NOT NULL PRIMARY KEY,
    ->     name1 VARCHAR(40) NULL,
    ->     name2 VARCHAR(40) NULL,
    ->     made TIMESTAMP
    -> );
Query OK, 0 rows affected (0.42 sec)

In this case, you cannot simply load the XML file directly into the table, because the field and column
names do not match:

mysql> LOAD XML INFILE '../bin/person-dump.xml' INTO TABLE test.individual;
ERROR 1263 (22004): Column set to default value; NULL supplied to NOT NULL column 'individual_id' at row 1

This happens because the MySQL server looks for field names matching the column names of the
target table. You can work around this problem by selecting the field values into user variables, then
setting the target table's columns equal to the values of those variables using SET. You can perform
both of these operations in a single statement, as shown here:

mysql> LOAD XML INFILE '../bin/person-dump.xml'
    ->     INTO TABLE test.individual (@person_id, @fname, @lname, @created)
    ->     SET individual_id=@person_id, name1=@fname, name2=@lname, made=@created;
Query OK, 8 rows affected (0.05 sec)
Records: 8  Deleted: 0  Skipped: 0  Warnings: 0

mysql> SELECT * FROM individual;
+---------------+--------+------------+---------------------+
| individual_id | name1  | name2      | made                |
+---------------+--------+------------+---------------------+
|             1 | Kapek  | Sainnouine | 2007-07-13 16:18:47 |
|             2 | Sajon  | Rondela    | 2007-07-13 16:18:47 |
|             3 | Likema | Örrtmons   | 2007-07-13 16:18:47 |



LOAD XML Syntax

1413

|             4 | Slar   | Manlanth   | 2007-07-13 16:18:47 |
|             5 | Stoma  | Nilu       | 2007-07-13 16:18:47 |
|             6 | Nirtam | Sklöd      | 2007-07-13 16:18:47 |
|             7 | Sungam | Dulbåd     | 2007-07-13 16:18:47 |
|             8 | Srraf  | Encmelt    | 2007-07-13 16:18:47 |
+---------------+--------+------------+---------------------+
8 rows in set (0.00 sec)

The names of the user variables must match those of the corresponding fields from the XML file, with
the addition of the required @ prefix to indicate that they are variables. The user variables need not be
listed or assigned in the same order as the corresponding fields.

Using a ROWS IDENTIFIED BY '<tagname>' clause, it is possible to import data from the same
XML file into database tables with different definitions. For this example, suppose that you have a file
named address.xml which contains the following XML:

<?xml version="1.0"?>

<list>
  <person person_id="1">
    <fname>Robert</fname>
    <lname>Jones</lname>
    <address address_id="1" street="Mill Creek Road" zip="45365" city="Sidney"/>
    <address address_id="2" street="Main Street" zip="28681" city="Taylorsville"/>
  </person>

  <person person_id="2">
    <fname>Mary</fname>
    <lname>Smith</lname>
    <address address_id="3" street="River Road" zip="80239" city="Denver"/>
    <!-- <address address_id="4" street="North Street" zip="37920" city="Knoxville"/> -->
  </person>

</list>

You can again use the test.person table as defined previously in this section, after clearing all the
existing records from the table and then showing its structure as shown here:

mysql< TRUNCATE person;
Query OK, 0 rows affected (0.04 sec)

mysql< SHOW CREATE TABLE person\G
*************************** 1. row ***************************
       Table: person
Create Table: CREATE TABLE `person` (
  `person_id` int(11) NOT NULL,
  `fname` varchar(40) DEFAULT NULL,
  `lname` varchar(40) DEFAULT NULL,
  `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY (`person_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Now create an address table in the test database using the following CREATE TABLE statement:

CREATE TABLE address (
    address_id INT NOT NULL PRIMARY KEY,
    person_id INT NULL,
    street VARCHAR(40) NULL,
    zip INT NULL,
    city VARCHAR(40) NULL,
    created TIMESTAMP
);

To import the data from the XML file into the person table, execute the following LOAD XML
statement, which specifies that rows are to be specified by the <person> element, as shown here;



LOAD XML Syntax

1414

mysql> LOAD XML LOCAL INFILE 'address.xml'
    ->   INTO TABLE person
    ->   ROWS IDENTIFIED BY '<person>';
Query OK, 2 rows affected (0.00 sec)
Records: 2  Deleted: 0  Skipped: 0  Warnings: 0

You can verify that the records were imported using a SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+-------+---------------------+
| person_id | fname  | lname | created             |
+-----------+--------+-------+---------------------+
|         1 | Robert | Jones | 2007-07-24 17:37:06 |
|         2 | Mary   | Smith | 2007-07-24 17:37:06 |
+-----------+--------+-------+---------------------+
2 rows in set (0.00 sec)

Since the <address> elements in the XML file have no corresponding columns in the person table,
they are skipped.

To import the data from the <address> elements into the address table, use the LOAD XML
statement shown here:

mysql> LOAD XML LOCAL INFILE 'address.xml'
    ->   INTO TABLE address
    ->   ROWS IDENTIFIED BY '<address>';
Query OK, 3 rows affected (0.00 sec)
Records: 3  Deleted: 0  Skipped: 0  Warnings: 0

You can see that the data was imported using a SELECT statement such as this one:

mysql> SELECT * FROM address;
+------------+-----------+-----------------+-------+--------------+---------------------+
| address_id | person_id | street          | zip   | city         | created             |
+------------+-----------+-----------------+-------+--------------+---------------------+
|          1 |         1 | Mill Creek Road | 45365 | Sidney       | 2007-07-24 17:37:37 |
|          2 |         1 | Main Street     | 28681 | Taylorsville | 2007-07-24 17:37:37 |
|          3 |         2 | River Road      | 80239 | Denver       | 2007-07-24 17:37:37 |
+------------+-----------+-----------------+-------+--------------+---------------------+
3 rows in set (0.00 sec)

The data from the <address> element that is enclosed in XML comments is not imported. However,
since there is a person_id column in the address table, the value of the person_id attribute from
the parent <person> element for each <address> is imported into the address table.

Security Considerations.  As with the LOAD DATA statement, the transfer of the XML file from the
client host to the server host is initiated by the MySQL server. In theory, a patched server could be built
that would tell the client program to transfer a file of the server's choosing rather than the file named by
the client in the LOAD XML statement. Such a server could access any file on the client host to which
the client user has read access.

In a Web environment, clients usually connect to MySQL from a Web server. A user that can run any
command against the MySQL server can use LOAD XML LOCAL to read any files to which the Web
server process has read access. In this environment, the client with respect to the MySQL server
is actually the Web server, not the remote program being run by the user who connects to the Web
server.

You can disable loading of XML files from clients by starting the server with --local-infile=0 or
--local-infile=OFF. This option can also be used when starting the mysql client to disable LOAD
XML for the duration of the client session.

To prevent a client from loading XML files from the server, do not grant the FILE privilege to the
corresponding MySQL user account, or revoke this privilege if the client user account already has it.



REPLACE Syntax

1415

Important

Revoking the FILE privilege (or not granting it in the first place) keeps the
user only from executing the LOAD XML INFILE statement (as well as the
LOAD_FILE() function; it does not prevent the user from executing LOAD XML
LOCAL INFILE. To disallow this statement, you must start the server or the
client with --local-infile=OFF.

In other words, the FILE privilege affects only whether the client can read files
on the server; it has no bearing on whether the client can read files on the local
file system.

For partitioned tables using storage engines that employ table locks, such as MyISAM, any locks
caused by LOAD XML perform locks on all partitions of the table. This does not apply to tables
using storage engines which employ row-level locking, such as InnoDB. For more information, see
Section 19.5.4, “Partitioning and Table-Level Locking”.

13.2.8 REPLACE Syntax

REPLACE [LOW_PRIORITY | DELAYED]
    [INTO] tbl_name [(col_name,...)]
    {VALUES | VALUE} ({expr | DEFAULT},...),(...),...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
    [INTO] tbl_name
    SET col_name={expr | DEFAULT}, ...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
    [INTO] tbl_name [(col_name,...)]
    SELECT ...

REPLACE works exactly like INSERT, except that if an old row in the table has the same value as a new
row for a PRIMARY KEY or a UNIQUE index, the old row is deleted before the new row is inserted. See
Section 13.2.5, “INSERT Syntax”.

REPLACE is a MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For
another MySQL extension to standard SQL—that either inserts or updates—see Section 13.2.5.3,
“INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

Note

REPLACE makes sense only if a table has a PRIMARY KEY or UNIQUE index.
Otherwise, it becomes equivalent to INSERT, because there is no index to be
used to determine whether a new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any
missing columns are set to their default values, just as happens for INSERT. You cannot refer to
values from the current row and use them in the new row. If you use an assignment such as SET
col_name = col_name + 1, the reference to the column name on the right hand side is treated as
DEFAULT(col_name), so the assignment is equivalent to SET col_name = DEFAULT(col_name)
+ 1.

To use REPLACE, you must have both the INSERT and DELETE privileges for the table.

The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of the
rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was inserted and no rows
were deleted. If the count is greater than 1, one or more old rows were deleted before the new row was



REPLACE Syntax

1416

inserted. It is possible for a single row to replace more than one old row if the table contains multiple
unique indexes and the new row duplicates values for different old rows in different unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or whether it
also replaced any rows: Check whether the count is 1 (added) or greater (replaced).

If you are using the C API, the affected-rows count can be obtained using the
mysql_affected_rows() function.

You cannot replace into a table and select from the same table in a subquery.

MySQL uses the following algorithm for REPLACE (and LOAD DATA ... REPLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary key or unique index:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

It is possible that in the case of a duplicate-key error, a storage engine may perform the REPLACE as
an update rather than a delete plus insert, but the semantics are the same. There are no user-visible
effects other than a possible difference in how the storage engine increments Handler_xxx status
variables.

Because the results of REPLACE ... SELECT statements depend on the ordering of rows from the
SELECT and this order cannot always be guaranteed, it is possible when logging these statements
for the master and the slave to diverge. For this reason, in MySQL 5.5.18 and later, REPLACE ...
SELECT statements are flagged as unsafe for statement-based replication. With this change, such
statements produce a warning in the log when using the STATEMENT binary logging mode, and are
logged using the row-based format when using MIXED mode. See also Section 17.1.2.1, “Advantages
and Disadvantages of Statement-Based and Row-Based Replication”.

When modifying an existing table that is not partitioned to accommodate partitioning, or, when
modifying the partitioning of an already partitioned table, you may consider altering the table's primary
key (see Section 19.5.1, “Partitioning Keys, Primary Keys, and Unique Keys”). You should be aware
that, if you do this, the results of REPLACE statements may be affected, just as they would be if you
modified the primary key of a nonpartitioned table. Consider the table created by the following CREATE
TABLE statement:

CREATE TABLE test (
  id INT UNSIGNED NOT NULL AUTO_INCREMENT,
  data VARCHAR(64) DEFAULT NULL,
  ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY (id)
);

When we create this table and run the statements shown in the mysql client, the result is as follows:

mysql> REPLACE INTO test VALUES (1, 'Old', '2014-08-20 18:47:00');
Query OK, 1 row affected (0.04 sec)

mysql> REPLACE INTO test VALUES (1, 'New', '2014-08-20 18:47:42');
Query OK, 2 rows affected (0.04 sec)

mysql> SELECT * FROM test;
+----+------+---------------------+
| id | data | ts                  |
+----+------+---------------------+
|  1 | New  | 2014-08-20 18:47:42 |
+----+------+---------------------+
1 row in set (0.00 sec)



SELECT Syntax

1417

Now we create a second table almost identical to the first, except that the primary key now covers 2
columns, as shown here (emphasized text):

CREATE TABLE test2 (
  id INT UNSIGNED NOT NULL AUTO_INCREMENT,
  data VARCHAR(64) DEFAULT NULL,
  ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY (id, ts)
);

When we run on test2 the same two REPLACE statements as we did on the original test table, we
obtain a different result:

mysql> REPLACE INTO test2 VALUES (1, 'Old', '2014-08-20 18:47:00');
Query OK, 1 row affected (0.05 sec)

mysql> REPLACE INTO test2 VALUES (1, 'New', '2014-08-20 18:47:42');
Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM test2;
+----+------+---------------------+
| id | data | ts                  |
+----+------+---------------------+
|  1 | Old  | 2014-08-20 18:47:00 |
|  1 | New  | 2014-08-20 18:47:42 |
+----+------+---------------------+
2 rows in set (0.00 sec)

This is due to the fact that, when run on test2, both the id and ts column values must match those
of an existing row for the row to be replaced; otherwise, a row is inserted.

A REPLACEstatement that acts on a partitioned table using a storage engine such as MyISAM that
employs table-level locks locks all partitions of the table. This does not occur with tables using storage
engines such as InnoDB that employ row-level locking. This issue is resolved in MySQL 5.6. See
Section 19.5.4, “Partitioning and Table-Level Locking”, for more information.

13.2.9 SELECT Syntax

SELECT
    [ALL | DISTINCT | DISTINCTROW ]
      [HIGH_PRIORITY]
      [STRAIGHT_JOIN]
      [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
      [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
    select_expr [, select_expr ...]
    [FROM table_references
    [WHERE where_condition]
    [GROUP BY {col_name | expr | position}
      [ASC | DESC], ... [WITH ROLLUP]]
    [HAVING where_condition]
    [ORDER BY {col_name | expr | position}
      [ASC | DESC], ...]
    [LIMIT {[offset,] row_count | row_count OFFSET offset}]
    [PROCEDURE procedure_name(argument_list)]
    [INTO OUTFILE 'file_name'
        [CHARACTER SET charset_name]
        export_options
      | INTO DUMPFILE 'file_name'
      | INTO var_name [, var_name]]
    [FOR UPDATE | LOCK IN SHARE MODE]]

SELECT is used to retrieve rows selected from one or more tables, and can include UNION statements
and subqueries. See Section 13.2.9.3, “UNION Syntax”, and Section 13.2.10, “Subquery Syntax”.

The most commonly used clauses of SELECT statements are these:



SELECT Syntax

1418

• Each select_expr indicates a column that you want to retrieve. There must be at least one
select_expr.

• table_references indicates the table or tables from which to retrieve rows. Its syntax is described
in Section 13.2.9.2, “JOIN Syntax”.

• The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be
selected. where_condition is an expression that evaluates to true for each row to be selected.
The statement selects all rows if there is no WHERE clause.

In the WHERE expression, you can use any of the functions and operators that MySQL supports,
except for aggregate (summary) functions. See Section 9.5, “Expression Syntax”, and Chapter 12,
Functions and Operators.

SELECT can also be used to retrieve rows computed without reference to any table.

For example:

mysql> SELECT 1 + 1;
        -> 2

 You are permitted to specify DUAL as a dummy table name in situations where no tables are
referenced:

mysql> SELECT 1 + 1 FROM DUAL;
        -> 2

DUAL is purely for the convenience of people who require that all SELECT statements should have
FROM and possibly other clauses. MySQL may ignore the clauses. MySQL does not require FROM
DUAL if no tables are referenced.

In general, clauses used must be given in exactly the order shown in the syntax description. For
example, a HAVING clause must come after any GROUP BY clause and before any ORDER BY
clause. The exception is that the INTO clause can appear either as shown in the syntax description or
immediately following the select_expr list. For more information about INTO, see Section 13.2.9.1,
“SELECT ... INTO Syntax”.

The list of select_expr terms comprises the select list that indicates which columns to retrieve.
Terms specify a column or expression or can use *-shorthand:

• A select list consisting only of a single unqualified * can be used as shorthand to select all columns
from all tables:

SELECT * FROM t1 INNER JOIN t2 ...

• tbl_name.* can be used as a qualified shorthand to select all columns from the named table:

SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ...

• Use of an unqualified * with other items in the select list may produce a parse error. To avoid this
problem, use a qualified tbl_name.* reference

SELECT AVG(score), t1.* FROM t1 ...

The following list provides additional information about other SELECT clauses:

•   A select_expr can be given an alias using AS alias_name. The alias is used as the
expression's column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For
example:



SELECT Syntax

1419

SELECT CONCAT(last_name,', ',first_name) AS full_name
  FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr with an identifier. The preceding example
could have been written like this:

SELECT CONCAT(last_name,', ',first_name) full_name
  FROM mytable ORDER BY full_name;

However, because the AS is optional, a subtle problem can occur if you forget the comma between
two select_expr expressions: MySQL interprets the second as an alias name. For example, in the
following statement, columnb is treated as an alias name:

SELECT columna columnb FROM mytable;

For this reason, it is good practice to be in the habit of using AS explicitly when specifying column
aliases.

It is not permissible to refer to a column alias in a WHERE clause, because the column value might not
yet be determined when the WHERE clause is executed. See Section B.5.4.4, “Problems with Column
Aliases”.

•   The FROM table_references clause indicates the table or tables from which to retrieve rows.
If you name more than one table, you are performing a join. For information on join syntax, see
Section 13.2.9.2, “JOIN Syntax”. For each table specified, you can optionally specify an alias.

tbl_name [[AS] alias] [index_hint]

The use of index hints provides the optimizer with information about how to choose indexes during
query processing. For a description of the syntax for specifying these hints, see Section 8.9.3, “Index
Hints”.

You can use SET max_seeks_for_key=value as an alternative way to force MySQL to prefer
key scans instead of table scans. See Section 5.1.5, “Server System Variables”.

• You can refer to a table within the default database as tbl_name, or as db_name.tbl_name to
specify a database explicitly. You can refer to a column as col_name, tbl_name.col_name, or
db_name.tbl_name.col_name. You need not specify a tbl_name or db_name.tbl_name prefix
for a column reference unless the reference would be ambiguous. See Section 9.2.1, “Identifier
Qualifiers”, for examples of ambiguity that require the more explicit column reference forms.

•   A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
  WHERE t1.name = t2.name;

SELECT t1.name, t2.salary FROM employee t1, info t2
  WHERE t1.name = t2.name;

•  Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using column
names, column aliases, or column positions. Column positions are integers and begin with 1:

SELECT college, region, seed FROM tournament
  ORDER BY region, seed;

SELECT college, region AS r, seed AS s FROM tournament
  ORDER BY r, s;



SELECT Syntax

1420

SELECT college, region, seed FROM tournament
  ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column in the
ORDER BY clause that you are sorting by. The default is ascending order; this can be specified
explicitly using the ASC keyword.

If ORDER BY occurs within a subquery and also is applied in the outer query, the outermost ORDER
BY takes precedence. For example, results for the following statement are sorted in descending
order, not ascending order:

(SELECT ... ORDER BY a) ORDER BY a DESC;

Use of column positions is deprecated because the syntax has been removed from the SQL
standard.

•   If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you had an
ORDER BY for the same columns. To avoid the overhead of sorting that GROUP BY produces, add
ORDER BY NULL:

SELECT a, COUNT(b) FROM test_table GROUP BY a ORDER BY NULL;

Relying on implicit GROUP BY sorting (that is, sorting in the absence of ASC or DESC designators)
is deprecated. To produce a given sort order, use explicit ASC or DESC designators for GROUP BY
columns or provide an ORDER BY clause.

•   When you use ORDER BY or GROUP BY to sort a column in a SELECT, the server sorts values using
only the initial number of bytes indicated by the max_sort_length system variable.

•  MySQL extends the GROUP BY clause so that you can also specify ASC and DESC after columns
named in the clause:

SELECT a, COUNT(b) FROM test_table GROUP BY a DESC;

• MySQL extends the use of GROUP BY to permit selecting fields that are not mentioned in the
GROUP BY clause. If you are not getting the results that you expect from your query, please read the
description of GROUP BY found in Section 12.16, “Aggregate (GROUP BY) Functions”.

• GROUP BY permits a WITH ROLLUP modifier. See Section 12.16.2, “GROUP BY Modifiers”.

•  The HAVING clause is applied nearly last, just before items are sent to the client, with no
optimization. (LIMIT is applied after HAVING.)

The SQL standard requires that HAVING must reference only columns in the GROUP BY clause or
columns used in aggregate functions. However, MySQL supports an extension to this behavior, and
permits HAVING to refer to columns in the SELECT list and columns in outer subqueries as well.

If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following
statement, col2 is ambiguous because it is used as both an alias and a column name:

SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;

Preference is given to standard SQL behavior, so if a HAVING column name is used both in GROUP
BY and as an aliased column in the output column list, preference is given to the column in the
GROUP BY column.

• Do not use HAVING for items that should be in the WHERE clause. For example, do not write the
following:



SELECT Syntax

1421

SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:

SELECT col_name FROM tbl_name WHERE col_name > 0;

• The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:

SELECT user, MAX(salary) FROM users
  GROUP BY user HAVING MAX(salary) > 10;

(This did not work in some older versions of MySQL.)

• MySQL permits duplicate column names. That is, there can be more than one select_expr with
the same name. This is an extension to standard SQL. Because MySQL also permits GROUP BY and
HAVING to refer to select_expr values, this can result in an ambiguity:

SELECT 12 AS a, a FROM t GROUP BY a;

In that statement, both columns have the name a. To ensure that the correct column is used for
grouping, use different names for each select_expr.

• MySQL resolves unqualified column or alias references in ORDER BY clauses by searching in the
select_expr values, then in the columns of the tables in the FROM clause. For GROUP BY or
HAVING clauses, it searches the FROM clause before searching in the select_expr values. (For
GROUP BY and HAVING, this differs from the pre-MySQL 5.0 behavior that used the same rules as
for ORDER BY.)

•  The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement.
LIMIT takes one or two numeric arguments, which must both be nonnegative integer constants, with
these exceptions:

• Within prepared statements, LIMIT parameters can be specified using ? placeholder markers.

• Within stored programs, LIMIT parameters can be specified using integer-valued routine
parameters or local variables as of MySQL 5.5.6.

With two arguments, the first argument specifies the offset of the first row to return, and the second
specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):

SELECT * FROM tbl LIMIT 5,10;  # Retrieve rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use some large
number for the second parameter. This statement retrieves all rows from the 96th row to the last:

SELECT * FROM tbl LIMIT 95,18446744073709551615;

With one argument, the value specifies the number of rows to return from the beginning of the result
set:

SELECT * FROM tbl LIMIT 5;     # Retrieve first 5 rows

In other words, LIMIT row_count is equivalent to LIMIT 0, row_count.

For prepared statements, you can use placeholders. The following statements will return one row
from the tbl table:

SET @a=1;



SELECT Syntax

1422

PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?';
EXECUTE STMT USING @a;

The following statements will return the second to sixth row from the tbl table:

SET @skip=1; SET @numrows=5;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?';
EXECUTE STMT USING @skip, @numrows;

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET offset
syntax.

If LIMIT occurs within a subquery and also is applied in the outer query, the outermost LIMIT takes
precedence. For example, the following statement produces two rows, not one:

(SELECT ... LIMIT 1) LIMIT 2;

•  A PROCEDURE clause names a procedure that should process the data in the result set. For an
example, see Section 8.4.2.4, “Using PROCEDURE ANALYSE”, which describes ANALYSE, a
procedure that can be used to obtain suggestions for optimal column data types that may help
reduce table sizes.

A PROCEDURE clause is not permitted in a UNION statement.

• The SELECT ... INTO form of SELECT enables the query result to be written to a file or stored in
variables. For more information, see Section 13.2.9.1, “SELECT ... INTO Syntax”.

•   If you use FOR UPDATE with a storage engine that uses page or row locks, rows examined by the
query are write-locked until the end of the current transaction. Using LOCK IN SHARE MODE sets
a shared lock that permits other transactions to read the examined rows but not to update or delete
them. See Section 14.8.2.4, “Locking Reads”.

Following the SELECT keyword, you can use a number of modifiers that affect the operation of the
statement. HIGH_PRIORITY, STRAIGHT_JOIN, and modifiers beginning with SQL_ are MySQL
extensions to standard SQL.

• The ALL and DISTINCT modifiers specify whether duplicate rows should be returned. ALL (the
default) specifies that all matching rows should be returned, including duplicates. DISTINCT
specifies removal of duplicate rows from the result set. It is an error to specify both modifiers.
DISTINCTROW is a synonym for DISTINCT.

• HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table. You should
use this only for queries that are very fast and must be done at once. A SELECT HIGH_PRIORITY
query that is issued while the table is locked for reading runs even if there is an update statement
waiting for the table to be free. This affects only storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE).

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.

• STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in the
FROM clause. You can use this to speed up a query if the optimizer joins the tables in nonoptimal
order. STRAIGHT_JOIN also can be used in the table_references list. See Section 13.2.9.2,
“JOIN Syntax”.

STRAIGHT_JOIN does not apply to any table that the optimizer treats as a const or system table.
Such a table produces a single row, is read during the optimization phase of query execution, and
references to its columns are replaced with the appropriate column values before query execution
proceeds. These tables will appear first in the query plan displayed by EXPLAIN. See Section 8.8.1,
“Optimizing Queries with EXPLAIN”. This exception may not apply to const or system tables that
are used on the NULL-complemented side of an outer join (that is, the right-side table of a LEFT
JOIN or the left-side table of a RIGHT JOIN.



SELECT Syntax

1423

• SQL_BIG_RESULT or SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the
optimizer that the result set has many rows or is small, respectively. For SQL_BIG_RESULT, MySQL
directly uses disk-based temporary tables if needed, and prefers sorting to using a temporary table
with a key on the GROUP BY elements. For SQL_SMALL_RESULT, MySQL uses fast temporary
tables to store the resulting table instead of using sorting. This should not normally be needed.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL free the
table locks early and helps in cases where it takes a long time to send the result set to the client.
This modifier can be used only for top-level SELECT statements, not for subqueries or following
UNION.

• SQL_CALC_FOUND_ROWS tells MySQL to calculate how many rows there would be in the result
set, disregarding any LIMIT clause. The number of rows can then be retrieved with SELECT
FOUND_ROWS(). See Section 12.14, “Information Functions”.

• The SQL_CACHE and SQL_NO_CACHE modifiers affect caching of query results in the query cache
(see Section 8.10.3, “The MySQL Query Cache”). SQL_CACHE tells MySQL to store the result in
the query cache if it is cacheable and the value of the query_cache_type system variable is 2
or DEMAND. With SQL_NO_CACHE, the server does not use the query cache. It neither checks the
query cache to see whether the result is already cached, nor does it cache the query result. (Due to
a limitation in the parser, a space character must precede and follow the SQL_NO_CACHE keyword; a
nonspace such as a newline causes the server to check the query cache to see whether the result is
already cached.)

For views, SQL_NO_CACHE applies if it appears in any SELECT in the query. For a cacheable query,
SQL_CACHE applies if it appears in the first SELECT of a view referred to by the query.

As of MySQL 5.5.3, these two modifiers are mutually exclusive and an error occurs if they are both
specified. Also, these modifiers are not permitted in subqueries (including subqueries in the FROM
clause), and SELECT statements in unions other than the first SELECT.

Before MySQL 5.5.3, for a query that uses UNION or subqueries, the following rules apply:

• SQL_NO_CACHE applies if it appears in any SELECT in the query.

• For a cacheable query, SQL_CACHE applies if it appears in the first SELECT of the query.

A SELECT from a partitioned table using a storage engine such as MyISAM that employs table-level
locks locks all partitions of the table. This does not occur with tables using storage engines such as
InnoDB that employ row-level locking. This issue is resolved in MySQL 5.6. See Section 19.5.4,
“Partitioning and Table-Level Locking”, for more information.

13.2.9.1 SELECT ... INTO Syntax

The SELECT ... INTO form of SELECT enables a query result to be stored in variables or written to a
file:

• SELECT ... INTO var_list selects column values and stores them into variables.

• SELECT ... INTO OUTFILE writes the selected rows to a file. Column and line terminators can be
specified to produce a specific output format.

• SELECT ... INTO DUMPFILE writes a single row to a file without any formatting.

The SELECT syntax description (see Section 13.2.9, “SELECT Syntax”) shows the INTO clause near
the end of the statement. It is also possible to use INTO immediately following the select_expr list.

An INTO clause should not be used in a nested SELECT because such a SELECT must return its result
to the outer context.

The INTO clause can name a list of one or more variables, which can be user-defined variables, stored
procedure or function parameters, or stored program local variables. (Within a prepared SELECT ...



SELECT Syntax

1424

INTO OUTFILE statement, only user-defined variables are permitted;see Section 13.6.4.2, “Local
Variable Scope and Resolution”.)

The selected values are assigned to the variables. The number of variables must match the number
of columns. The query should return a single row. If the query returns no rows, a warning with error
code 1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple
rows, error 1172 occurs (Result consisted of more than one row). If it is possible that the
statement may retrieve multiple rows, you can use LIMIT 1 to limit the result set to a single row.

SELECT id, data INTO @x, @y FROM test.t1 LIMIT 1;

User variable names are not case sensitive. See Section 9.4, “User-Defined Variables”.

The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected rows to a
file. The file is created on the server host, so you must have the FILE privilege to use this syntax.
file_name cannot be an existing file, which among other things prevents files such as /etc/passwd
and database tables from being destroyed. The character_set_filesystem system variable
controls the interpretation of the file name.

The SELECT ... INTO OUTFILE statement is intended primarily to let you very quickly dump a table
to a text file on the server machine. If you want to create the resulting file on some other host than the
server host, you normally cannot use SELECT ... INTO OUTFILE since there is no way to write a
path to the file relative to the server host's file system.

However, if the MySQL client software is installed on the remote machine, you can instead use a client
command such as mysql -e "SELECT ..." > file_name to generate the file on the client host.

It is also possible to create the resulting file on a different host other than the server host, if the location
of the file on the remote host can be accessed using a network-mapped path on the server's file
system. In this case, the presence of mysql (or some other MySQL client program) is not required on
the target host.

SELECT ... INTO OUTFILE is the complement of LOAD DATA INFILE. Column values are written
converted to the character set specified in the CHARACTER SET clause. If no such clause is present,
values are dumped using the binary character set. In effect, there is no character set conversion. If a
result set contains columns in several character sets, the output data file will as well and you may not
be able to reload the file correctly.

The syntax for the export_options part of the statement consists of the same FIELDS and LINES
clauses that are used with the LOAD DATA INFILE statement. See Section 13.2.6, “LOAD DATA
INFILE Syntax”, for information about the FIELDS and LINES clauses, including their default values
and permissible values.

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY
character is not empty, it is used when necessary to avoid ambiguity as a prefix that precedes following
characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII NUL (the zero-valued byte; what is actually written following the escape character is ASCII 0,
not a zero-valued byte)

The FIELDS TERMINATED BY, ENCLOSED BY, ESCAPED BY, or LINES TERMINATED BY
characters must be escaped so that you can read the file back in reliably. ASCII NUL is escaped to
make it easier to view with some pagers.

The resulting file does not have to conform to SQL syntax, so nothing else need be escaped.



SELECT Syntax

1425

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

Here is an example that produces a file in the comma-separated values (CSV) format used by many
programs:

SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'
  FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
  LINES TERMINATED BY '\n'
  FROM test_table;

If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the file,
without any column or line termination and without performing any escape processing. This is useful if
you want to store a BLOB value in a file.

Note

Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users
on the server host. The reason for this is that the MySQL server cannot create
a file that is owned by anyone other than the user under whose account it is
running. (You should never run mysqld as root for this and other reasons.)
The file thus must be world-writable so that you can manipulate its contents.

If the secure_file_priv system variable is set to a nonempty directory
name, the file to be written must be located in that directory.

In the context of SELECT ... INTO statements that occur as part of events executed by the Event
Scheduler, diagnostics messages (not only errors, but also warnings) are written to the error log,
and, on Windows, to the application event log. For additional information, see Section 20.4.5, “Event
Scheduler Status”.

13.2.9.2 JOIN Syntax

MySQL supports the following JOIN syntax for the table_references part of SELECT statements
and multiple-table DELETE and UPDATE statements:

table_references:
    escaped_table_reference [, escaped_table_reference] ...

escaped_table_reference:
    table_reference
  | { OJ table_reference }

table_reference:
    table_factor
  | join_table

table_factor:
    tbl_name [[AS] alias] [index_hint_list]
  | table_subquery [AS] alias
  | ( table_references )

join_table:
    table_reference [INNER | CROSS] JOIN table_factor [join_condition]
  | table_reference STRAIGHT_JOIN table_factor
  | table_reference STRAIGHT_JOIN table_factor ON conditional_expr
  | table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_condition
  | table_reference NATURAL [{LEFT|RIGHT} [OUTER]] JOIN table_factor

join_condition:
    ON conditional_expr
  | USING (column_list)



SELECT Syntax

1426

index_hint_list:
    index_hint [, index_hint] ...

index_hint:
    USE {INDEX|KEY}
      [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
  | IGNORE {INDEX|KEY}
      [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
  | FORCE {INDEX|KEY}
      [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:
    index_name [, index_name] ...

A table reference is also known as a join expression.

The syntax of table_factor is extended in MySQL in comparison with standard SQL. The standard
accepts only table_reference, not a list of them inside a pair of parentheses.

This is a conservative extension if each comma in a list of table_reference items is considered as
equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
                 ON (t2.a = t1.a AND t3.b = t1.b AND t4.c = t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
                 ON (t2.a = t1.a AND t3.b = t1.b AND t4.c = t1.c)

In MySQL, JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents (they can replace each
other). In standard SQL, they are not equivalent. INNER JOIN is used with an ON clause, CROSS
JOIN is used otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations.
MySQL also supports nested joins. See Section 8.2.1.6, “Nested Join Optimization”.

Index hints can be specified to affect how the MySQL optimizer makes use of indexes. For more
information, see Section 8.9.3, “Index Hints”. The optimizer_switch system variable is another way
to influence optimizer use of indexes. See Section 8.9.2, “Switchable Optimizations”.

The following list describes general factors to take into account when writing joins:

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary
  FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name;

SELECT t1.name, t2.salary
  FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;

• A table_subquery is also known as a derived table or subquery in the FROM clause. See
Section 13.2.10.8, “Derived Tables (Subqueries in the FROM Clause)”. Such subqueries must
include an alias to give the subquery result a table name. A trivial example follows:

SELECT * FROM (SELECT 1, 2, 3) AS t1;

• INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition: both
produce a Cartesian product between the specified tables (that is, each and every row in the first
table is joined to each and every row in the second table).

However, the precedence of the comma operator is less than that of INNER JOIN, CROSS JOIN,
LEFT JOIN, and so on. If you mix comma joins with the other join types when there is a join



SELECT Syntax

1427

condition, an error of the form Unknown column 'col_name' in 'on clause' may occur.
Information about dealing with this problem is given later in this section.

• The conditional_expr used with ON is any conditional expression of the form that can be used in
a WHERE clause. Generally, the ON clause serves for conditions that specify how to join tables, and
the WHERE clause restricts which rows to include in the result set.

• If there is no matching row for the right table in the ON or USING part in a LEFT JOIN, a row with all
columns set to NULL is used for the right table. You can use this fact to find rows in a table that have
no counterpart in another table:

SELECT left_tbl.*
  FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id
  WHERE right_tbl.id IS NULL;

This example finds all rows in left_tbl with an id value that is not present in right_tbl (that is,
all rows in left_tbl with no corresponding row in right_tbl). See Section 8.2.1.7, “Left Join and
Right Join Optimization”.

• The USING(column_list) clause names a list of columns that must exist in both tables. If tables a
and b both contain columns c1, c2, and c3, the following join compares corresponding columns from
the two tables:

a LEFT JOIN b USING (c1, c2, c3)

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an INNER
JOIN or a LEFT JOIN with a USING clause that names all columns that exist in both tables.

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it is
recommended that you use LEFT JOIN instead of RIGHT JOIN.

•   The { OJ ... } syntax shown in the join syntax description exists only for compatibility with
ODBC. The curly braces in the syntax should be written literally; they are not metasyntax as used
elsewhere in syntax descriptions.

SELECT left_tbl.*
    FROM { OJ left_tbl LEFT OUTER JOIN right_tbl ON left_tbl.id = right_tbl.id }
    WHERE right_tbl.id IS NULL;

You can use other types of joins within { OJ ... }, such as INNER JOIN or RIGHT OUTER
JOIN. This helps with compatibility with some third-party applications, but is not official ODBC
syntax.

The parser does not permit nested { OJ ... } constructs (which are not legal ODBC syntax,
anyway). Queries that use such constructs should be rewritten.

• STRAIGHT_JOIN is similar to JOIN, except that the left table is always read before the right table.
This can be used for those (few) cases for which the join optimizer processes the tables in a
suboptimal order.

Some join examples:

SELECT * FROM table1, table2;

SELECT * FROM table1 INNER JOIN table2 ON table1.id = table2.id;

SELECT * FROM table1 LEFT JOIN table2 ON table1.id = table2.id;

SELECT * FROM table1 LEFT JOIN table2 USING (id);

SELECT * FROM table1 LEFT JOIN table2 ON table1.id = table2.id



SELECT Syntax

1428

  LEFT JOIN table3 ON table2.id = table3.id;

Natural joins and joins with USING, including outer join variants, are processed according to the
SQL:2003 standard:

• Redundant columns of a NATURAL join do not appear. Consider this set of statements:

CREATE TABLE t1 (i INT, j INT);
CREATE TABLE t2 (k INT, j INT);
INSERT INTO t1 VALUES(1, 1);
INSERT INTO t2 VALUES(1, 1);
SELECT * FROM t1 NATURAL JOIN t2;
SELECT * FROM t1 JOIN t2 USING (j);

In the first SELECT statement, column j appears in both tables and thus becomes a join column,
so, according to standard SQL, it should appear only once in the output, not twice. Similarly, in the
second SELECT statement, column j is named in the USING clause and should appear only once in
the output, not twice.

Thus, the statements produce this output:

+------+------+------+
| j    | i    | k    |
+------+------+------+
|    1 |    1 |    1 |
+------+------+------+
+------+------+------+
| j    | i    | k    |
+------+------+------+
|    1 |    1 |    1 |
+------+------+------+

Redundant column elimination and column ordering occurs according to standard SQL, producing
this display order:

• First, coalesced common columns of the two joined tables, in the order in which they occur in the
first table

• Second, columns unique to the first table, in order in which they occur in that table

• Third, columns unique to the second table, in order in which they occur in that table

The single result column that replaces two common columns is defined using the coalesce
operation. That is, for two t1.a and t2.a the resulting single join column a is defined as a =
COALESCE(t1.a, t2.a), where:

COALESCE(x, y) = (CASE WHEN x IS NOT NULL THEN x ELSE y END)

If the join operation is any other join, the result columns of the join consist of the concatenation of all
columns of the joined tables.

A consequence of the definition of coalesced columns is that, for outer joins, the coalesced column
contains the value of the non-NULL column if one of the two columns is always NULL. If neither or
both columns are NULL, both common columns have the same value, so it doesn't matter which one
is chosen as the value of the coalesced column. A simple way to interpret this is to consider that
a coalesced column of an outer join is represented by the common column of the inner table of a
JOIN. Suppose that the tables t1(a, b) and t2(a, c) have the following contents:

t1    t2
----  ----
1 x   2 z
2 y   3 w



SELECT Syntax

1429

Then, for this join, column a contains the values of t1.a:

mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a    | b    | c    |
+------+------+------+
|    1 | x    | NULL |
|    2 | y    | z    |
+------+------+------+

By contrast, for this join, column a contains the values of t2.a.

mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a    | c    | b    |
+------+------+------+
|    2 | z    | y    |
|    3 | w    | NULL |
+------+------+------+

Compare those results to the otherwise equivalent queries with JOIN ... ON:

mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a    | b    | a    | c    |
+------+------+------+------+
|    1 | x    | NULL | NULL |
|    2 | y    |    2 | z    |
+------+------+------+------+

mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a    | b    | a    | c    |
+------+------+------+------+
|    2 | y    |    2 | z    |
| NULL | NULL |    3 | w    |
+------+------+------+------+

• A USING clause can be rewritten as an ON clause that compares corresponding columns. However,
although USING and ON are similar, they are not quite the same. Consider the following two queries:

a LEFT JOIN b USING (c1, c2, c3)
a LEFT JOIN b ON a.c1 = b.c1 AND a.c2 = b.c2 AND a.c3 = b.c3

With respect to determining which rows satisfy the join condition, both joins are semantically
identical.

With respect to determining which columns to display for SELECT * expansion, the two joins are
not semantically identical. The USING join selects the coalesced value of corresponding columns,
whereas the ON join selects all columns from all tables. For the USING join, SELECT * selects these
values:

COALESCE(a.c1, b.c1), COALESCE(a.c2, b.c2), COALESCE(a.c3, b.c3)

For the ON join, SELECT * selects these values:

a.c1, a.c2, a.c3, b.c1, b.c2, b.c3



SELECT Syntax

1430

With an inner join, COALESCE(a.c1, b.c1) is the same as either a.c1 or b.c1 because both
columns will have the same value. With an outer join (such as LEFT JOIN), one of the two columns
can be NULL. That column is omitted from the result.

• An ON clause can refer only to its operands.

Example:

CREATE TABLE t1 (i1 INT);
CREATE TABLE t2 (i2 INT);
CREATE TABLE t3 (i3 INT);
SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;

The statement fails with an Unknown column 'i3' in 'on clause' error because i3 is a
column in t3, which is not an operand of the ON clause. To enable the join to be processed, rewrite
the statement as follows:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);

• JOIN has higher precedence than the comma operator (,), so the join expression t1, t2
JOIN t3 is interpreted as (t1, (t2 JOIN t3)), not as ((t1, t2) JOIN t3). This affects
statements that use an ON clause because that clause can refer only to columns in the operands of
the join, and the precedence affects interpretation of what those operands are.

Example:

CREATE TABLE t1 (i1 INT, j1 INT);
CREATE TABLE t2 (i2 INT, j2 INT);
CREATE TABLE t3 (i3 INT, j3 INT);
INSERT INTO t1 VALUES(1, 1);
INSERT INTO t2 VALUES(1, 1);
INSERT INTO t3 VALUES(1, 1);
SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);

The JOIN takes precedence over the comma operator, so the operands for the ON clause are t2 and
t3. Because t1.i1 is not a column in either of the operands, the result is an Unknown column
't1.i1' in 'on clause' error.

To enable the join to be processed, use either of these strategies:

• Group the first two tables explicitly with parentheses so that the operands for the ON clause are
(t1, t2) and t3:

SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);

• Avoid the use of the comma operator and use JOIN instead:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);

The same precedence interpretation also applies to statements that mix the comma operator with
INNER JOIN, CROSS JOIN, LEFT JOIN, and RIGHT JOIN, all of which have higher precedence
than the comma operator.

• A MySQL extension compared to the SQL:2003 standard is that MySQL permits you to qualify the
common (coalesced) columns of NATURAL or USING joins, whereas the standard disallows that.

13.2.9.3 UNION Syntax



SELECT Syntax

1431

SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

UNION is used to combine the result from multiple SELECT statements into a single result set.

The column names from the first SELECT statement are used as the column names for the results
returned. Selected columns listed in corresponding positions of each SELECT statement should have
the same data type. (For example, the first column selected by the first statement should have the
same type as the first column selected by the other statements.)

If the data types of corresponding SELECT columns do not match, the types and lengths of the columns
in the UNION result take into account the values retrieved by all of the SELECT statements. For
example, consider the following:

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',10);
+---------------+
| REPEAT('a',1) |
+---------------+
| a             |
| bbbbbbbbbb    |
+---------------+

The SELECT statements are normal select statements, but with the following restrictions:

• Only the last SELECT statement can use INTO OUTFILE. (However, the entire UNION result is
written to the file.)

• HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION. If you specify
it for the first SELECT, it has no effect. If you specify it for any subsequent SELECT statements, a
syntax error results.

The default behavior for UNION is that duplicate rows are removed from the result. The optional
DISTINCT keyword has no effect other than the default because it also specifies duplicate-row
removal. With the optional ALL keyword, duplicate-row removal does not occur and the result includes
all matching rows from all the SELECT statements.

You can mix UNION ALL and UNION DISTINCT in the same query. Mixed UNION types are treated
such that a DISTINCT union overrides any ALL union to its left. A DISTINCT union can be produced
explicitly by using UNION DISTINCT or implicitly by using UNION with no following DISTINCT or ALL
keyword.

To apply ORDER BY or LIMIT to an individual SELECT, place the clause inside the parentheses that
enclose the SELECT:

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

However, use of ORDER BY for individual SELECT statements implies nothing about the order in which
the rows appear in the final result because UNION by default produces an unordered set of rows.
Therefore, the use of ORDER BY in this context is typically in conjunction with LIMIT, so that it is
used to determine the subset of the selected rows to retrieve for the SELECT, even though it does
not necessarily affect the order of those rows in the final UNION result. If ORDER BY appears without
LIMIT in a SELECT, it is optimized away because it will have no effect anyway.

To use an ORDER BY or LIMIT clause to sort or limit the entire UNION result, parenthesize the
individual SELECT statements and place the ORDER BY or LIMIT after the last one. The following
example uses both clauses:

(SELECT a FROM t1 WHERE a=10 AND B=1)
UNION



Subquery Syntax

1432

(SELECT a FROM t2 WHERE a=11 AND B=2)
ORDER BY a LIMIT 10;

A statement without parentheses is equivalent to one parenthesized as just shown.

This kind of ORDER BY cannot use column references that include a table name (that is, names in
tbl_name.col_name format). Instead, provide a column alias in the first SELECT statement and refer
to the alias in the ORDER BY. (Alternatively, refer to the column in the ORDER BY using its column
position. However, use of column positions is deprecated.)

Also, if a column to be sorted is aliased, the ORDER BY clause must refer to the alias, not the column
name. The first of the following statements will work, but the second will fail with an Unknown column
'a' in 'order clause' error:

(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b;
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;

To cause rows in a UNION result to consist of the sets of rows retrieved by each SELECT one after
the other, select an additional column in each SELECT to use as a sort column and add an ORDER BY
following the last SELECT:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;

To additionally maintain sort order within individual SELECT results, add a secondary column to the
ORDER BY clause:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;

Use of an additional column also enables you to determine which SELECT each row comes from. Extra
columns can provide other identifying information as well, such as a string that indicates a table name.

13.2.10 Subquery Syntax

A subquery is a SELECT statement within another statement.

All subquery forms and operations that the SQL standard requires are supported, as well as a few
features that are MySQL-specific.

Here is an example of a subquery:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT
column1 FROM t2) is the subquery. We say that the subquery is nested within the outer query, and
in fact it is possible to nest subqueries within other subqueries, to a considerable depth. A subquery
must always appear within parentheses.

The main advantages of subqueries are:

• They allow queries that are structured so that it is possible to isolate each part of a statement.

• They provide alternative ways to perform operations that would otherwise require complex joins and
unions.

• Many people find subqueries more readable than complex joins or unions. Indeed, it was the
innovation of subqueries that gave people the original idea of calling the early SQL “Structured Query
Language.”



Subquery Syntax

1433

Here is an example statement that shows the major points about subquery syntax as specified by the
SQL standard and supported in MySQL:

DELETE FROM t1
WHERE s11 > ANY
 (SELECT COUNT(*) /* no hint */ FROM t2
  WHERE NOT EXISTS
   (SELECT * FROM t3
    WHERE ROW(5*t2.s1,77)=
     (SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
      (SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more
rows of one or more columns). These are called scalar, column, row, and table subqueries. Subqueries
that return a particular kind of result often can be used only in certain contexts, as described in the
following sections.

There are few restrictions on the type of statements in which subqueries can be used. A subquery can
contain many of the keywords or clauses that an ordinary SELECT can contain: DISTINCT, GROUP BY,
ORDER BY, LIMIT, joins, index hints, UNION constructs, comments, functions, and so on.

A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET, or DO.

In MySQL, you cannot modify a table and select from the same table in a subquery. This applies to
statements such as DELETE, INSERT, REPLACE, UPDATE, and (because subqueries can be used in
the SET clause) LOAD DATA INFILE.

For information about how the optimizer handles subqueries, see Section 8.2.2, “Subquery
Optimization”. For a discussion of restrictions on subquery use, including performance issues for
certain forms of subquery syntax, see Section C.4, “Restrictions on Subqueries”.

13.2.10.1 The Subquery as Scalar Operand

In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is a
simple operand, and you can use it almost anywhere a single column value or literal is legal, and you
can expect it to have those characteristics that all operands have: a data type, a length, an indication
that it can be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');
SELECT (SELECT s2 FROM t1);

The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a
length of 5, a character set and collation equal to the defaults in effect at CREATE TABLE time, and
an indication that the value in the column can be NULL. Nullability of the value selected by a scalar
subquery is not copied because if the subquery result is empty, the result is NULL. For the subquery
just shown, if t1 were empty, the result would be NULL even though s2 is NOT NULL.

There are a few contexts in which a scalar subquery cannot be used. If a statement permits only a
literal value, you cannot use a subquery. For example, LIMIT requires literal integer arguments, and
LOAD DATA INFILE requires a literal string file name. You cannot use subqueries to supply these
values.

When you see examples in the following sections that contain the rather spartan construct (SELECT
column1 FROM t1), imagine that your own code contains much more diverse and complex
constructions.

Suppose that we make two tables:

CREATE TABLE t1 (s1 INT);



Subquery Syntax

1434

INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.

A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is
an operand that provides an argument for a function. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

13.2.10.2 Comparisons Using Subqueries

The most common use of a subquery is in the form:

non_subquery_operand comparison_operator (subquery)

Where comparison_operator is one of these operators:

=  >  <  >=  <=  <>  !=  <=>

For example:

... WHERE 'a' = (SELECT column1 FROM t1)

MySQL also permits this construct:

non_subquery_operand LIKE (subquery)

At one time the only legal place for a subquery was on the right side of a comparison, and you might
still find some old DBMSs that insist on this.

Here is an example of a common-form subquery comparison that you cannot do with a join. It finds all
the rows in table t1 for which the column1 value is equal to a maximum value in table t2:

SELECT * FROM t1
  WHERE column1 = (SELECT MAX(column2) FROM t2);

Here is another example, which again is impossible with a join because it involves aggregating for one
of the tables. It finds all rows in table t1 containing a value that occurs twice in a given column:

SELECT * FROM t1 AS t
  WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);

For a comparison of the subquery to a scalar, the subquery must return a scalar. For a comparison of
the subquery to a row constructor, the subquery must be a row subquery that returns a row with the
same number of values as the row constructor. See Section 13.2.10.5, “Row Subqueries”.

13.2.10.3 Subqueries with ANY, IN, or SOME

Syntax:

operand comparison_operator ANY (subquery)



Subquery Syntax

1435

operand IN (subquery)
operand comparison_operator SOME (subquery)

Where comparison_operator is one of these operators:

=  >  <  >=  <=  <>  !=

The ANY keyword, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ANY of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(21,14,7) because there is a value 7 in t2 that is less than 10. The expression is FALSE if table
t2 contains (20,10), or if table t2 is empty. The expression is unknown (that is, NULL) if table t2
contains (NULL,NULL,NULL).

When used with a subquery, the word IN is an alias for = ANY. Thus, these two statements are the
same:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN    (SELECT s1 FROM t2);

IN and = ANY are not synonyms when used with an expression list. IN can take an expression list, but
= ANY cannot. See Section 12.3.2, “Comparison Functions and Operators”.

NOT IN is not an alias for <> ANY, but for <> ALL. See Section 13.2.10.4, “Subqueries with ALL”.

The word SOME is an alias for ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY  (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but this example shows why it might be useful. To most people, the
English phrase “a is not equal to any b” means “there is no b which is equal to a,” but that is not what is
meant by the SQL syntax. The syntax means “there is some b to which a is not equal.” Using <> SOME
instead helps ensure that everyone understands the true meaning of the query.

13.2.10.4 Subqueries with ALL

Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ALL of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE if table t2
contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is greater than 10.
The expression is unknown (that is, NULL) if table t2 contains (0,NULL,1).

Finally, the expression is TRUE if table t2 is empty. So, the following expression is TRUE when table t2
is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);



Subquery Syntax

1436

But this expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables containing NULL values and empty tables are “edge cases.” When writing
subqueries, always consider whether you have taken those two possibilities into account.

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

13.2.10.5 Row Subqueries

Scalar or column subqueries return a single value or a column of values. A row subquery is a subquery
variant that returns a single row and can thus return more than one column value. Legal operators for
row subquery comparisons are:

=  >  <  >=  <=  <>  !=  <=>

Here are two examples:

SELECT * FROM t1
  WHERE (col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
SELECT * FROM t1
  WHERE ROW(col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);

For both queries, if the table t2 contains a single row with id = 10, the subquery returns a single
row. If this row has col3 and col4 values equal to the col1 and col2 values of any rows in t1, the
WHERE expression is TRUE and each query returns those t1 rows. If the t2 row col3 and col4 values
are not equal the col1 and col2 values of any t1 row, the expression is FALSE and the query returns
an empty result set. The expression is unknown (that is, NULL) if the subquery produces no rows. An
error occurs if the subquery produces multiple rows because a row subquery can return at most one
row.

For information about how each operator works for row comparisons, see Section 12.3.2, “Comparison
Functions and Operators”.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are
equivalent. The row constructor and the row returned by the subquery must contain the same number
of values.

A row constructor is used for comparisons with subqueries that return two or more columns. When
a subquery returns a single column, this is regarded as a scalar value and not as a row, so a row
constructor cannot be used with a subquery that does not return at least two columns. Thus, the
following query fails with a syntax error:

SELECT * FROM t1 WHERE ROW(1) = (SELECT column1 FROM t2)

Row constructors are legal in other contexts. For example, the following two statements are
semantically equivalent (and are handled in the same way by the optimizer):

SELECT * FROM t1 WHERE (column1,column2) = (1,1);



Subquery Syntax

1437

SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The following query answers the request, “find all rows in table t1 that also exist in table t2”:

SELECT column1,column2,column3
  FROM t1
  WHERE (column1,column2,column3) IN
         (SELECT column1,column2,column3 FROM t2);

For more information about the optimizer and row constructors, see Section 8.2.1.15, “Row Constructor
Expression Optimization”

13.2.10.6 Subqueries with EXISTS or NOT EXISTS

If a subquery returns any rows at all, EXISTS subquery is TRUE, and NOT EXISTS subquery is
FALSE. For example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or SELECT
column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it makes no
difference.

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, the
EXISTS condition is TRUE. This is actually an unlikely example because a [NOT] EXISTS subquery
almost always contains correlations. Here are some more realistic examples:

• What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM stores
  WHERE EXISTS (SELECT * FROM cities_stores
                WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in no cities?

SELECT DISTINCT store_type FROM stores
  WHERE NOT EXISTS (SELECT * FROM cities_stores
                    WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in all cities?

SELECT DISTINCT store_type FROM stores s1
  WHERE NOT EXISTS (
    SELECT * FROM cities WHERE NOT EXISTS (
      SELECT * FROM cities_stores
       WHERE cities_stores.city = cities.city
       AND cities_stores.store_type = stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause within
a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store that is not in
Stores”? But it is easier to say that a nested NOT EXISTS answers the question “is x TRUE for all y?”

13.2.10.7 Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a table that also appears in the outer
query. For example:

SELECT * FROM t1
  WHERE column1 = ANY (SELECT column1 FROM t2
                       WHERE t2.column2 = t1.column2);



Subquery Syntax

1438

Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM
clause does not mention a table t1. So, MySQL looks outside the subquery, and finds t1 in the outer
query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table
t2 contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE
column1 = ANY (SELECT column1 FROM t2) would be TRUE, but in this example, the WHERE
clause within the subquery is FALSE (because (5,6) is not equal to (5,7)), so the expression as a
whole is FALSE.

Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x
  WHERE x.column1 = (SELECT column1 FROM t2 AS x
    WHERE x.column1 = (SELECT column1 FROM t3
      WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2
AS x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ... is
an outer query that is farther out.

For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the outer
select list.

For certain cases, a correlated subquery is optimized. For example:

val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)

Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve
performance.

Aggregate functions in correlated subqueries may contain outer references, provided the function
contains nothing but outer references, and provided the function is not contained in another function or
expression.

13.2.10.8 Derived Tables (Subqueries in the FROM Clause)

A derived table is a subquery in a SELECT statement FROM clause:

SELECT ... FROM (subquery) [AS] tbl_name ...

The [AS] tbl_name clause is mandatory because every table in a FROM clause must have a name.
Any columns in the subquery select list must have unique names.

For the sake of illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here is how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3
  FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
  WHERE sb1 > 1;

Result: 2, '2', 4.0.

Here is another example: Suppose that you want to know the average of a set of sums for a grouped
table. This does not work:



Subquery Syntax

1439

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

However, this query provides the desired information:

SELECT AVG(sum_column1)
  FROM (SELECT SUM(column1) AS sum_column1
        FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the outer
query.

Derived tables can return a scalar, column, row, or table.

Derived tables cannot be correlated subqueries, or contain outer references or references to other
tables of the same SELECT.

Subqueries in the FROM clause are executed even for the EXPLAIN statement (that is, derived
temporary tables are materialized). This occurs because upper-level queries need information about
all tables during the optimization phase, and the table represented by a subquery in the FROM clause is
unavailable unless the subquery is executed.

It is possible under certain circumstances that using EXPLAIN SELECT will modify table data. This can
occur if the outer query accesses any tables and an inner query invokes a stored function that changes
one or more rows of a table. Suppose that there are two tables t1 and t2 in database d1, and a stored
function f1 that modifies t2, created as shown here:

CREATE DATABASE d1;
USE d1;
CREATE TABLE t1 (c1 INT);
CREATE TABLE t2 (c1 INT);
CREATE FUNCTION f1(p1 INT) RETURNS INT
  BEGIN
    INSERT INTO t2 VALUES (p1);
    RETURN p1;
  END;

Referencing the function directly in an EXPLAIN SELECT has no effect on t2, as shown here:

mysql> SELECT * FROM t2;
Empty set (0.02 sec)

mysql> EXPLAIN SELECT f1(5)\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: NULL
         type: NULL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: NULL
        Extra: No tables used
1 row in set (0.01 sec)

mysql> SELECT * FROM t2;
Empty set (0.01 sec)

This is because the SELECT statement did not reference any tables, as can be seen in the table and
Extra columns of the output. This is also true of the following nested SELECT:

mysql> EXPLAIN SELECT NOW() AS a1, (SELECT f1(5)) AS a2\G



Subquery Syntax

1440

*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: NULL
         type: NULL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: NULL
     filtered: NULL
        Extra: No tables used
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------------+
| Level | Code | Message                                  |
+-------+------+------------------------------------------+
| Note  | 1249 | Select 2 was reduced during optimization |
+-------+------+------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

However, if the outer SELECT references any tables, the optimizer executes the statement in the
subquery as well:

mysql> EXPLAIN SELECT * FROM t1 AS a1, (SELECT f1(5)) AS a2\G
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: <derived2>
         type: system
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: PRIMARY
        table: a1
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1
        Extra: 
*************************** 3. row ***************************
           id: 2
  select_type: DERIVED
        table: NULL
         type: NULL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: NULL
        Extra: No tables used
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+
| c1   |
+------+
|    5 |
+------+
1 row in set (0.00 sec)



Subquery Syntax

1441

This also means that an EXPLAIN SELECT statement such as the one shown here may take a long
time to execute because the BENCHMARK() function is executed once for each row in t1:

EXPLAIN SELECT * FROM t1 AS a1, (SELECT BENCHMARK(1000000, MD5(NOW())));

13.2.10.9 Subquery Errors

There are some errors that apply only to subqueries. This section describes them.

• Unsupported subquery syntax:

ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL doesn't yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"

This means that MySQL does not support statements of the following form:

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

• Incorrect number of columns from subquery:

ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error occurs in cases like this:

SELECT (SELECT column1, column2 FROM t2) FROM t1;

You may use a subquery that returns multiple columns, if the purpose is row comparison. In other
contexts, the subquery must be a scalar operand. See Section 13.2.10.5, “Row Subqueries”.

• Incorrect number of rows from subquery:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

This error occurs for statements where the subquery must return at most one row but returns multiple
rows. Consider the following example:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

If SELECT column1 FROM t2 returns just one row, the previous query will work. If the subquery
returns more than one row, error 1242 will occur. In that case, the query should be rewritten as:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

• Incorrectly used table in subquery:

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"

This error occurs in cases such as the following, which attempts to modify a table and select from the
same table in the subquery:



Subquery Syntax

1442

UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

You can use a subquery for assignment within an UPDATE statement because subqueries are legal
in UPDATE and DELETE statements as well as in SELECT statements. However, you cannot use the
same table (in this case, table t1) for both the subquery FROM clause and the update target.

For transactional storage engines, the failure of a subquery causes the entire statement to fail. For
nontransactional storage engines, data modifications made before the error was encountered are
preserved.

13.2.10.10 Optimizing Subqueries

Development is ongoing, so no optimization tip is reliable for the long term. The following list
provides some interesting tricks that you might want to play with. See also Section 8.2.2, “Subquery
Optimization”.

• Use subquery clauses that affect the number or order of the rows in the subquery. For example:

SELECT * FROM t1 WHERE t1.column1 IN
  (SELECT column1 FROM t2 ORDER BY column1);
SELECT * FROM t1 WHERE t1.column1 IN
  (SELECT DISTINCT column1 FROM t2);
SELECT * FROM t1 WHERE EXISTS
  (SELECT * FROM t2 LIMIT 1);

• Replace a join with a subquery. For example, try this:

SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
  SELECT column1 FROM t2);

Instead of this:

SELECT DISTINCT t1.column1 FROM t1, t2
  WHERE t1.column1 = t2.column1;

• Some subqueries can be transformed to joins for compatibility with older versions of MySQL that
do not support subqueries. However, in some cases, converting a subquery to a join may improve
performance. See Section 13.2.10.11, “Rewriting Subqueries as Joins”.

• Move clauses from outside to inside the subquery. For example, use this query:

SELECT * FROM t1
  WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

Instead of this query:

SELECT * FROM t1
  WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:

SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:

SELECT (SELECT column1 FROM t1) + 5 FROM t2;

• Use a row subquery instead of a correlated subquery. For example, use this query:



Subquery Syntax

1443

SELECT * FROM t1
  WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

Instead of this query:

SELECT * FROM t1
  WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
                AND t2.column2=t1.column2);

• Use NOT (a = ANY (...)) rather than a <> ALL (...).

• Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.

• Use = ANY rather than EXISTS.

• For uncorrelated subqueries that always return one row, IN is always slower than =. For example,
use this query:

SELECT * FROM t1
  WHERE t1.col_name = (SELECT a FROM t2 WHERE b = some_const);

Instead of this query:

SELECT * FROM t1
  WHERE t1.col_name IN (SELECT a FROM t2 WHERE b = some_const);

These tricks might cause programs to go faster or slower. Using MySQL facilities like the
BENCHMARK() function, you can get an idea about what helps in your own situation. See
Section 12.14, “Information Functions”.

Some optimizations that MySQL itself makes are:

• MySQL executes uncorrelated subqueries only once. Use EXPLAIN to make sure that a given
subquery really is uncorrelated.

• MySQL rewrites IN, ALL, ANY, and SOME subqueries in an attempt to take advantage of the
possibility that the select-list columns in the subquery are indexed.

• MySQL replaces subqueries of the following form with an index-lookup function, which EXPLAIN
describes as a special join type (unique_subquery or index_subquery):

... IN (SELECT indexed_column FROM single_table ...)

• MySQL enhances expressions of the following form with an expression involving MIN() or MAX(),
unless NULL values or empty sets are involved:

value {ALL|ANY|SOME} {> | < | >= | <=} (uncorrelated subquery)

For example, this WHERE clause:

WHERE 5 > ALL (SELECT x FROM t)

might be treated by the optimizer like this:

WHERE 5 > (SELECT MAX(x) FROM t)

See also MySQL Internals: How MySQL Transforms Subqueries.

http://dev.mysql.com/doc/internals/en/transformations.html


UPDATE Syntax

1444

13.2.10.11 Rewriting Subqueries as Joins

Sometimes there are other ways to test membership in a set of values than by using a subquery. Also,
on some occasions, it is not only possible to rewrite a query without a subquery, but it can be more
efficient to make use of some of these techniques rather than to use subqueries. One of these is the
IN() construct:

For example, this query:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

Can be rewritten as:

SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be rewritten as:

SELECT table1.*
  FROM table1 LEFT JOIN table2 ON table1.id=table2.id
  WHERE table2.id IS NULL;

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be able
to optimize it better—a fact that is not specific to MySQL Server alone. Prior to SQL-92, outer joins did
not exist, so subqueries were the only way to do certain things. Today, MySQL Server and many other
modern database systems offer a wide range of outer join types.

MySQL Server supports multiple-table DELETE statements that can be used to efficiently delete rows
based on information from one table or even from many tables at the same time. Multiple-table UPDATE
statements are also supported. See Section 13.2.2, “DELETE Syntax”, and Section 13.2.11, “UPDATE
Syntax”.

13.2.11 UPDATE Syntax

UPDATE is a DML statement that modifies rows in a table.

Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_reference
    SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...
    [WHERE where_condition]
    [ORDER BY ...]
    [LIMIT row_count]

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_references
    SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...
    [WHERE where_condition]

For the single-table syntax, the UPDATE statement updates columns of existing rows in the named
table with new values. The SET clause indicates which columns to modify and the values they should
be given. Each value can be given as an expression, or the keyword DEFAULT to set a column
explicitly to its default value. The WHERE clause, if given, specifies the conditions that identify which



UPDATE Syntax

1445

rows to update. With no WHERE clause, all rows are updated. If the ORDER BY clause is specified, the
rows are updated in the order that is specified. The LIMIT clause places a limit on the number of rows
that can be updated.

For the multiple-table syntax, UPDATE updates rows in each table named in table_references that
satisfy the conditions. Each matching row is updated once, even if it matches the conditions multiple
times. For multiple-table syntax, ORDER BY and LIMIT cannot be used.

where_condition is an expression that evaluates to true for each row to be updated. For expression
syntax, see Section 9.5, “Expression Syntax”.

table_references and where_condition are specified as described in Section 13.2.9, “SELECT
Syntax”.

You need the UPDATE privilege only for columns referenced in an UPDATE that are actually updated.
You need only the SELECT privilege for any columns that are read but not modified.

The UPDATE statement supports the following modifiers:

• With the LOW_PRIORITY modifier, execution of the UPDATE is delayed until no other clients are
reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

• With the IGNORE modifier, the update statement does not abort even if errors occur during the
update. Rows for which duplicate-key conflicts occur on a unique key value are not updated. Rows
updated to values that would cause data conversion errors are updated to the closest valid values
instead.

In MySQL 5.5.18 and later, UPDATE IGNORE statements, including those having an ORDER BY clause,
are flagged as unsafe for statement-based replication. (This is because the order in which the rows are
updated determines which rows are ignored.) With this change, such statements produce a warning
in the log when using statement-based mode and are logged using the row-based format when using
MIXED mode. (Bug #11758262, Bug #50439) See Section 17.1.2.3, “Determination of Safe and Unsafe
Statements in Binary Logging”, for more information.

If you access a column from the table to be updated in an expression, UPDATE uses the current value
of the column. For example, the following statement sets col1 to one more than its current value:

UPDATE t1 SET col1 = col1 + 1;

The second assignment in the following statement sets col2 to the current (updated) col1 value, not
the original col1 value. The result is that col1 and col2 have the same value. This behavior differs
from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

Single-table UPDATE assignments are generally evaluated from left to right. For multiple-table updates,
there is no guarantee that assignments are carried out in any particular order.

If you set a column to the value it currently has, MySQL notices this and does not update it.

If you update a column that has been declared NOT NULL by setting to NULL, an error occurs if strict
SQL mode is enabled; otherwise, the column is set to the implicit default value for the column data type
and the warning count is incremented. The implicit default value is 0 for numeric types, the empty string
('') for string types, and the “zero” value for date and time types. See Section 11.6, “Data Type Default
Values”.

UPDATE returns the number of rows that were actually changed. The mysql_info() C API function
returns the number of rows that were matched and updated and the number of warnings that occurred
during the UPDATE.



Transactional and Locking Statements

1446

You can use LIMIT row_count to restrict the scope of the UPDATE. A LIMIT clause is a rows-
matched restriction. The statement stops as soon as it has found row_count rows that satisfy the
WHERE clause, whether or not they actually were changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified
by the clause. This can be useful in certain situations that might otherwise result in an error. Suppose
that a table t contains a column id that has a unique index. The following statement could fail with a
duplicate-key error, depending on the order in which rows are updated:

UPDATE t SET id = id + 1;

For example, if the table contains 1 and 2 in the id column and 1 is updated to 2 before 2 is updated
to 3, an error occurs. To avoid this problem, add an ORDER BY clause to cause the rows with larger id
values to be updated before those with smaller values:

UPDATE t SET id = id + 1 ORDER BY id DESC;

You can also perform UPDATE operations covering multiple tables. However, you cannot use ORDER
BY or LIMIT with a multiple-table UPDATE. The table_references clause lists the tables involved in
the join. Its syntax is described in Section 13.2.9.2, “JOIN Syntax”. Here is an example:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

The preceding example shows an inner join that uses the comma operator, but multiple-table UPDATE
statements can use any type of join permitted in SELECT statements, such as LEFT JOIN.

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/
child relationship. In this case, the statement fails and rolls back. Instead, update a single table and
rely on the ON UPDATE capabilities that InnoDB provides to cause the other tables to be modified
accordingly. See Section 14.11.1.6, “InnoDB and FOREIGN KEY Constraints”.

You cannot update a table and select from the same table in a subquery.

Index hints (see Section 8.9.3, “Index Hints”) are accepted for UPDATE statements, but are ignored
prior to MySQL 5.5.6.

An UPDATE on a partitioned table using a storage engine such as MyISAM that employs table-level
locks locks all partitions of the table. This does not occur with tables using storage engines such as
InnoDB that employ row-level locking. This issue is resolved in MySQL 5.6. See Section 19.5.4,
“Partitioning and Table-Level Locking”, for more information.

13.3 Transactional and Locking Statements
MySQL supports local transactions (within a given client session) through statements such as SET
autocommit, START TRANSACTION, COMMIT, and ROLLBACK. See Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Syntax”. XA transaction support enables MySQL to
participate in distributed transactions as well. See Section 13.3.7, “XA Transactions”.

13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax

START TRANSACTION [WITH CONSISTENT SNAPSHOT]
BEGIN [WORK]
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
SET autocommit = {0 | 1}

These statements provide control over use of transactions:



START TRANSACTION, COMMIT, and ROLLBACK Syntax

1447

• START TRANSACTION or BEGIN start a new transaction.

• COMMIT commits the current transaction, making its changes permanent.

• ROLLBACK rolls back the current transaction, canceling its changes.

• SET autocommit disables or enables the default autocommit mode for the current session.

By default, MySQL runs with autocommit mode enabled. This means that as soon as you execute a
statement that updates (modifies) a table, MySQL stores the update on disk to make it permanent. The
change cannot be rolled back.

To disable autocommit mode implicitly for a single series of statements, use the START TRANSACTION
statement:

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with COMMIT
or ROLLBACK. The autocommit mode then reverts to its previous state.

You can also begin a transaction like this:

START TRANSACTION WITH CONSISTENT SNAPSHOT;

The WITH CONSISTENT SNAPSHOT option starts a consistent read for storage engines that are
capable of it. This applies only to InnoDB. The effect is the same as issuing a START TRANSACTION
followed by a SELECT from any InnoDB table. See Section 14.8.2.3, “Consistent Nonlocking Reads”.
The WITH CONSISTENT SNAPSHOT option does not change the current transaction isolation level, so
it provides a consistent snapshot only if the current isolation level is one that permits a consistent read.
The only isolation level that permits a consistent read is REPEATABLE READ. For all other isolation
levels, the WITH CONSISTENT SNAPSHOT clause is ignored. As of MySQL 5.5.34, a warning is
generated when the WITH CONSISTENT SNAPSHOT is ignored.

Important

Many APIs used for writing MySQL client applications (such as JDBC) provide
their own methods for starting transactions that can (and sometimes should) be
used instead of sending a START TRANSACTION statement from the client. See
Chapter 23, Connectors and APIs, or the documentation for your API, for more
information.

To disable autocommit mode explicitly, use the following statement:

SET autocommit=0;

After disabling autocommit mode by setting the autocommit variable to zero, changes to transaction-
safe tables (such as those for InnoDB or NDBCLUSTER) are not made permanent immediately. You
must use COMMIT to store your changes to disk or ROLLBACK to ignore the changes.

autocommit is a session variable and must be set for each session. To disable autocommit mode for
each new connection, see the description of the autocommit system variable at Section 5.1.5, “Server
System Variables”.

BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a transaction.
START TRANSACTION is standard SQL syntax and is the recommended way to start an ad-hoc
transaction.



START TRANSACTION, COMMIT, and ROLLBACK Syntax

1448

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not begin a transaction. See Section 13.6.1, “BEGIN ... END
Compound-Statement Syntax”.

Note

Within all stored programs (stored procedures and functions, triggers, and
events), the parser treats BEGIN [WORK] as the beginning of a BEGIN ...
END block. Begin a transaction in this context with START TRANSACTION
instead.

The optional WORK keyword is supported for COMMIT and ROLLBACK, as are the CHAIN and RELEASE
clauses. CHAIN and RELEASE can be used for additional control over transaction completion. The
value of the completion_type system variable determines the default completion behavior. See
Section 5.1.5, “Server System Variables”.

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the
new transaction has the same isolation level as the just-terminated transaction. The RELEASE clause
causes the server to disconnect the current client session after terminating the current transaction.
Including the NO keyword suppresses CHAIN or RELEASE completion, which can be useful if the
completion_type system variable is set to cause chaining or release completion by default.

Beginning a transaction causes any pending transaction to be committed. See Section 13.3.3,
“Statements That Cause an Implicit Commit”, for more information.

Beginning a transaction also causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock
acquired with FLUSH TABLES WITH READ LOCK.

For best results, transactions should be performed using only tables managed by a single transaction-
safe storage engine. Otherwise, the following problems can occur:

• If you use tables from more than one transaction-safe storage engine (such as InnoDB), and the
transaction isolation level is not SERIALIZABLE, it is possible that when one transaction commits,
another ongoing transaction that uses the same tables will see only some of the changes made
by the first transaction. That is, the atomicity of transactions is not guaranteed with mixed engines
and inconsistencies can result. (If mixed-engine transactions are infrequent, you can use SET
TRANSACTION ISOLATION LEVEL to set the isolation level to SERIALIZABLE on a per-transaction
basis as necessary.)

• If you use tables that are not transaction-safe within a transaction, changes to those tables are
stored at once, regardless of the status of autocommit mode.

• If you issue a ROLLBACK statement after updating a nontransactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables are
rolled back, but not changes to nontransaction-safe tables.

Each transaction is stored in the binary log in one chunk, upon COMMIT. Transactions that are rolled
back are not logged. (Exception: Modifications to nontransactional tables cannot be rolled back. If a
transaction that is rolled back includes modifications to nontransactional tables, the entire transaction
is logged with a ROLLBACK statement at the end to ensure that modifications to the nontransactional
tables are replicated.) See Section 5.4.4, “The Binary Log”.

You can change the isolation level for transactions with the SET TRANSACTION statement. See
Section 13.3.6, “SET TRANSACTION Syntax”.

Rolling back can be a slow operation that may occur implicitly without the user having explicitly asked
for it (for example, when an error occurs). Because of this, SHOW PROCESSLIST displays Rolling
back in the State column for the session, not only for explicit rollbacks performed with the ROLLBACK
statement but also for implicit rollbacks.



Statements That Cannot Be Rolled Back

1449

Note

In MySQL 5.5, BEGIN, COMMIT, and ROLLBACK are not affected by --
replicate-do-db or --replicate-ignore-db rules.

13.3.2 Statements That Cannot Be Rolled Back

Some statements cannot be rolled back. In general, these include data definition language (DDL)
statements, such as those that create or drop databases, those that create, drop, or alter tables or
stored routines.

You should design your transactions not to include such statements. If you issue a statement early in
a transaction that cannot be rolled back, and then another statement later fails, the full effect of the
transaction cannot be rolled back in such cases by issuing a ROLLBACK statement.

13.3.3 Statements That Cause an Implicit Commit

The statements listed in this section (and any synonyms for them) implicitly end any transaction active
in the current session, as if you had done a COMMIT before executing the statement. As of MySQL
5.5.3, most of these statements also cause an implicit commit after executing; for additional details, see
the end of this section.

• Data definition language (DDL) statements that define or modify database objects. ALTER
DATABASE ... UPGRADE DATA DIRECTORY NAME, ALTER EVENT, ALTER PROCEDURE, ALTER
SERVER, ALTER TABLE, ALTER VIEW, CREATE DATABASE, CREATE EVENT, CREATE INDEX,
CREATE PROCEDURE, CREATE SERVER, CREATE TABLE, CREATE TRIGGER, CREATE VIEW,
DROP DATABASE, DROP EVENT, DROP INDEX, DROP PROCEDURE, DROP SERVER, DROP TABLE,
DROP TRIGGER, DROP VIEW, RENAME TABLE, TRUNCATE TABLE.

ALTER FUNCTION, CREATE FUNCTION and DROP FUNCTION also cause an implicit commit when
used with stored functions, but not with user-defined functions. (ALTER FUNCTION can only be used
with stored functions.)

CREATE TABLE and DROP TABLE statements do not commit a transaction if the TEMPORARY
keyword is used. (This does not apply to other operations on temporary tables such as ALTER
TABLE and CREATE INDEX, which do cause a commit.) However, although no implicit commit
occurs, neither can the statement be rolled back, which means that the use of such statements
causes transactional atomicity to be violated. For example, if you use CREATE TEMPORARY TABLE
and then roll back the transaction, the table remains in existence.

The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that
a ROLLBACK from the user does not undo CREATE TABLE statements the user made during that
transaction.

CREATE TABLE ... SELECT causes an implicit commit before and after the statement is
executed when you are creating nontemporary tables. (No commit occurs for CREATE TEMPORARY
TABLE ... SELECT.) This is to prevent an issue during replication where the table could be
created on the master after a rollback, but fail to be recorded in the binary log, and therefore not
replicated to the slave. For more information, see Bug #22865.

• Statements that implicitly use or modify tables in the mysql database. CREATE USER, DROP
USER, GRANT, RENAME USER, REVOKE, SET PASSWORD.

• Transaction-control and locking statements. BEGIN, LOCK TABLES, SET autocommit = 1 (if
the value is not already 1), START TRANSACTION, UNLOCK TABLES.

UNLOCK TABLES commits a transaction only if any tables currently have been locked with LOCK
TABLES to acquire nontransactional table locks. A commit does not occur for UNLOCK TABLES
following FLUSH TABLES WITH READ LOCK because the latter statement does not acquire table-
level locks.



SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax

1450

Transactions cannot be nested. This is a consequence of the implicit commit performed for any
current transaction when you issue a START TRANSACTION statement or one of its synonyms.

Statements that cause an implicit commit cannot be used in an XA transaction while the transaction
is in an ACTIVE state.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not cause an implicit commit. See Section 13.6.1, “BEGIN ...
END Compound-Statement Syntax”.

• Data loading statements. LOAD DATA INFILE. LOAD DATA INFILE causes an implicit commit
only for tables using the NDB storage engine. For more information, see Bug #11151.

• Administrative statements. ANALYZE TABLE, CACHE INDEX, CHECK TABLE, LOAD INDEX INTO
CACHE, OPTIMIZE TABLE, REPAIR TABLE.

As of MySQL 5.5.3, most statements that previously caused an implicit commit before executing
also do so after executing. The intent is to handle each such statement in its own special transaction
because it cannot be rolled back anyway. The following list provides additional details pertaining to this
change:

• The CREATE TABLE variants (CREATE TABLE for InnoDB tables and CREATE TABLE ...
SELECT) that previously were special cases no longer are so because CREATE TABLE uniformly
causes an implicit commit before and after executing.

• The FLUSH and RESET statements cause an implicit commit.

• Transaction-control and locking statements behave as before. If an implicit commit occurs before
execution, another does not occur after.

13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE
SAVEPOINT Syntax

SAVEPOINT identifier
ROLLBACK [WORK] TO [SAVEPOINT] identifier
RELEASE SAVEPOINT identifier

InnoDB supports the SQL statements SAVEPOINT, ROLLBACK TO SAVEPOINT, RELEASE
SAVEPOINT and the optional WORK keyword for ROLLBACK.

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If the
current transaction has a savepoint with the same name, the old savepoint is deleted and a new one is
set.

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint without
terminating the transaction. Modifications that the current transaction made to rows after the savepoint
was set are undone in the rollback, but InnoDB does not release the row locks that were stored in
memory after the savepoint. (For a new inserted row, the lock information is carried by the transaction
ID stored in the row; the lock is not separately stored in memory. In this case, the row lock is released
in the undo.) Savepoints that were set at a later time than the named savepoint are deleted.

If the ROLLBACK TO SAVEPOINT statement returns the following error, it means that no savepoint with
the specified name exists:

ERROR 1305 (42000): SAVEPOINT identifier does not exist

The RELEASE SAVEPOINT statement removes the named savepoint from the set of savepoints of the
current transaction. No commit or rollback occurs. It is an error if the savepoint does not exist.



LOCK TABLES and UNLOCK TABLES Syntax

1451

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that does
not name a savepoint.

A new savepoint level is created when a stored function is invoked or a trigger is activated. The
savepoints on previous levels become unavailable and thus do not conflict with savepoints on the new
level. When the function or trigger terminates, any savepoints it created are released and the previous
savepoint level is restored.

13.3.5 LOCK TABLES and UNLOCK TABLES Syntax

LOCK TABLES
    tbl_name [[AS] alias] lock_type
    [, tbl_name [[AS] alias] lock_type] ...

lock_type:
    READ [LOCAL]
  | [LOW_PRIORITY] WRITE

UNLOCK TABLES

MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with
other sessions for access to tables, or to prevent other sessions from modifying tables during periods
when a session requires exclusive access to them. A session can acquire or release locks only for
itself. One session cannot acquire locks for another session or release locks held by another session.

Locks may be used to emulate transactions or to get more speed when updating tables. This is
explained in more detail later in this section.

LOCK TABLES explicitly acquires table locks for the current client session. Table locks can be acquired
for base tables or views. You must have the LOCK TABLES privilege, and the SELECT privilege for
each object to be locked.

For view locking, LOCK TABLES adds all base tables used in the view to the set of tables to be locked
and locks them automatically. If you lock a table explicitly with LOCK TABLES, any tables used in
triggers are also locked implicitly, as described in Section 13.3.5.2, “LOCK TABLES and Triggers”.

UNLOCK TABLES explicitly releases any table locks held by the current session. LOCK TABLES
implicitly releases any table locks held by the current session before acquiring new locks.

Another use for UNLOCK TABLES is to release the global read lock acquired with the FLUSH
TABLES WITH READ LOCK statement, which enables you to lock all tables in all databases. See
Section 13.7.6.3, “FLUSH Syntax”. (This is a very convenient way to get backups if you have a file
system such as Veritas that can take snapshots in time.)

A table lock only protects against inappropriate reads or writes by other sessions. A session holding
a WRITE lock can perform table-level operations such as DROP TABLE or TRUNCATE TABLE. For
sessions holding a READ lock, DROP TABLE and TRUNCATE TABLE operations are not permitted.

The following discussion applies only to non-TEMPORARY tables. LOCK TABLES is permitted (but
ignored) for a TEMPORARY table. The table can be accessed freely by the session within which it was
created, regardless of what other locking may be in effect. No lock is necessary because no other
session can see the table.

For information about other conditions on the use of LOCK TABLES and statements that cannot
be used while LOCK TABLES is in effect, see Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

Rules for Lock Acquisition

To acquire table locks within the current session, use the LOCK TABLES statement. The following lock
types are available:



LOCK TABLES and UNLOCK TABLES Syntax

1452

READ [LOCAL] lock:

• The session that holds the lock can read the table (but not write it).

• Multiple sessions can acquire a READ lock for the table at the same time.

• Other sessions can read the table without explicitly acquiring a READ lock.

• The LOCAL modifier enables nonconflicting INSERT statements (concurrent inserts) by other
sessions to execute while the lock is held. (See Section 8.11.3, “Concurrent Inserts”.) However,
READ LOCAL cannot be used if you are going to manipulate the database using processes external
to the server while you hold the lock. For InnoDB tables, READ LOCAL is the same as READ.

[LOW_PRIORITY] WRITE lock:

• The session that holds the lock can read and write the table.

• Only the session that holds the lock can access the table. No other session can access it until the
lock is released.

• Lock requests for the table by other sessions block while the WRITE lock is held.

• The LOW_PRIORITY modifier has no effect as of MySQL 5.5.3. Before 5.5.3, it affects lock
scheduling if the WRITE lock request must wait, as described later.

If the LOCK TABLES statement must wait due to locks held by other sessions on any of the tables, it
blocks until all locks can be acquired.

A session that requires locks must acquire all the locks that it needs in a single LOCK TABLES
statement. While the locks thus obtained are held, the session can access only the locked tables.
For example, in the following sequence of statements, an error occurs for the attempt to access t2
because it was not locked in the LOCK TABLES statement:

mysql> LOCK TABLES t1 READ;
mysql> SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
|        3 |
+----------+
mysql> SELECT COUNT(*) FROM t2;
ERROR 1100 (HY000): Table 't2' was not locked with LOCK TABLES

Tables in the INFORMATION_SCHEMA database are an exception. They can be accessed without being
locked explicitly even while a session holds table locks obtained with LOCK TABLES.

You cannot refer to a locked table multiple times in a single query using the same name. Use aliases
instead, and obtain a separate lock for the table and each alias:

mysql> LOCK TABLE t WRITE, t AS t1 READ;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;

The error occurs for the first INSERT because there are two references to the same name for a locked
table. The second INSERT succeeds because the references to the table use different names.

If your statements refer to a table by means of an alias, you must lock the table using that same alias. It
does not work to lock the table without specifying the alias:

mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;



LOCK TABLES and UNLOCK TABLES Syntax

1453

ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:

mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> SELECT * FROM t AS myalias;

WRITE locks normally have higher priority than READ locks to ensure that updates are processed
as soon as possible. This means that if one session obtains a READ lock and then another session
requests a WRITE lock, subsequent READ lock requests wait until the session that requested the WRITE
lock has obtained the lock and released it. Before MySQL 5.5.3, the LOW_PRIORITY modifier can be
given to affect locking behavior as follows (as of 5.5.3, it has no effect): A request for a LOW_PRIORITY
WRITE lock permits subsequent READ lock requests by other sessions to be satisfied first if they
occur while the LOW_PRIORITY WRITE request is waiting. You should use LOW_PRIORITY WRITE
locks only if you are sure that eventually there will be a time when no sessions have a READ lock. For
InnoDB tables in transactional mode (autocommit = 0), a waiting LOW_PRIORITY WRITE lock acts like
a regular WRITE lock and causes subsequent READ lock requests to wait.

LOCK TABLES acquires locks as follows:

1. Sort all tables to be locked in an internally defined order. From the user standpoint, this order is
undefined.

2. If a table is to be locked with a read and a write lock, put the write lock request before the read lock
request.

3. Lock one table at a time until the session gets all locks.

This policy ensures that table locking is deadlock free. There are, however, other things you need to
be aware of about this policy: If you are using a LOW_PRIORITY WRITE lock for a table, it means only
that MySQL waits for this particular lock until there are no other sessions that want a READ lock. When
the session has gotten the WRITE lock and is waiting to get the lock for the next table in the lock table
list, all other sessions wait for the WRITE lock to be released. If this becomes a serious problem with
your application, you should consider converting some of your tables to transaction-safe tables.

Note

LOCK TABLES or UNLOCK TABLES, when applied to a partitioned table, always
locks or unlocks the entire table. See Section 19.5.4, “Partitioning and Table-
Level Locking”.

Rules for Lock Release

When the table locks held by a session are released, they are all released at the same time. A session
can release its locks explicitly, or locks may be released implicitly under certain conditions.

• A session can release its locks explicitly with UNLOCK TABLES.

• If a session issues a LOCK TABLES statement to acquire a lock while already holding locks, its
existing locks are released implicitly before the new locks are granted.

• If a session begins a transaction (for example, with START TRANSACTION), an implicit UNLOCK
TABLES is performed, which causes existing locks to be released. (For additional information about
the interaction between table locking and transactions, see Section 13.3.5.1, “Interaction of Table
Locking and Transactions”.)

If the connection for a client session terminates, whether normally or abnormally, the server implicitly
releases all table locks held by the session (transactional and nontransactional). If the client
reconnects, the locks will no longer be in effect. In addition, if the client had an active transaction, the



LOCK TABLES and UNLOCK TABLES Syntax

1454

server rolls back the transaction upon disconnect, and if reconnect occurs, the new session begins with
autocommit enabled. For this reason, clients may wish to disable auto-reconnect. With auto-reconnect
in effect, the client is not notified if reconnect occurs but any table locks or current transaction will have
been lost. With auto-reconnect disabled, if the connection drops, an error occurs for the next statement
issued. The client can detect the error and take appropriate action such as reacquiring the locks or
redoing the transaction. See Section 23.8.16, “Controlling Automatic Reconnection Behavior”.

Note

If you use ALTER TABLE on a locked table, it may become unlocked. For
example, if you attempt a second ALTER TABLE operation, the result may be
an error Table 'tbl_name' was not locked with LOCK TABLES.
To handle this, lock the table again prior to the second alteration. See also
Section B.5.6.1, “Problems with ALTER TABLE”.

13.3.5.1 Interaction of Table Locking and Transactions

LOCK TABLES and UNLOCK TABLES interact with the use of transactions as follows:

• LOCK TABLES is not transaction-safe and implicitly commits any active transaction before attempting
to lock the tables.

• UNLOCK TABLES implicitly commits any active transaction, but only if LOCK TABLES has been used
to acquire table locks. For example, in the following set of statements, UNLOCK TABLES releases the
global read lock but does not commit the transaction because no table locks are in effect:

FLUSH TABLES WITH READ LOCK;
START TRANSACTION;
SELECT ... ;
UNLOCK TABLES;

• Beginning a transaction (for example, with START TRANSACTION) implicitly commits any current
transaction and releases existing table locks.

• FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits. For example, START TRANSACTION does not release the global read lock.
See Section 13.7.6.3, “FLUSH Syntax”.

• Other statements that implicitly cause transactions to be committed do not release existing table
locks. For a list of such statements, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

• The correct way to use LOCK TABLES and UNLOCK TABLES with transactional tables, such as
InnoDB tables, is to begin a transaction with SET autocommit = 0 (not START TRANSACTION)
followed by LOCK TABLES, and to not call UNLOCK TABLES until you commit the transaction
explicitly. For example, if you need to write to table t1 and read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

When you call LOCK TABLES, InnoDB internally takes its own table lock, and MySQL takes its own
table lock. InnoDB releases its internal table lock at the next commit, but for MySQL to release its
table lock, you have to call UNLOCK TABLES. You should not have autocommit = 1, because then
InnoDB releases its internal table lock immediately after the call of LOCK TABLES, and deadlocks
can very easily happen. InnoDB does not acquire the internal table lock at all if autocommit = 1,
to help old applications avoid unnecessary deadlocks.

• ROLLBACK does not release table locks.



LOCK TABLES and UNLOCK TABLES Syntax

1455

13.3.5.2 LOCK TABLES and Triggers

If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly:

• The locks are taken as the same time as those acquired explicitly with the LOCK TABLES statement.

• The lock on a table used in a trigger depends on whether the table is used only for reading. If so, a
read lock suffices. Otherwise, a write lock is used.

• If a table is locked explicitly for reading with LOCK TABLES, but needs to be locked for writing
because it might be modified within a trigger, a write lock is taken rather than a read lock. (That is, an
implicit write lock needed due to the table's appearance within a trigger causes an explicit read lock
request for the table to be converted to a write lock request.)

Suppose that you lock two tables, t1 and t2, using this statement:

LOCK TABLES t1 WRITE, t2 READ;

If t1 or t2 have any triggers, tables used within the triggers will also be locked. Suppose that t1 has a
trigger defined like this:

CREATE TRIGGER t1_a_ins AFTER INSERT ON t1 FOR EACH ROW
BEGIN
  UPDATE t4 SET count = count+1
      WHERE id = NEW.id AND EXISTS (SELECT a FROM t3);
  INSERT INTO t2 VALUES(1, 2);
END;

The result of the LOCK TABLES statement is that t1 and t2 are locked because they appear in the
statement, and t3 and t4 are locked because they are used within the trigger:

• t1 is locked for writing per the WRITE lock request.

• t2 is locked for writing, even though the request is for a READ lock. This occurs because t2 is
inserted into within the trigger, so the READ request is converted to a WRITE request.

• t3 is locked for reading because it is only read from within the trigger.

• t4 is locked for writing because it might be updated within the trigger.

13.3.5.3 Table-Locking Restrictions and Conditions

You can safely use KILL to terminate a session that is waiting for a table lock. See Section 13.7.6.4,
“KILL Syntax”.

You should not lock any tables that you are using with INSERT DELAYED. An INSERT DELAYED
in this case results in an error because the insert must be handled by a separate thread, not by the
session which holds the lock.

LOCK TABLES and UNLOCK TABLES cannot be used within stored programs.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

The following statements are prohibited while a LOCK TABLES statement is in effect:

• As of MySQL 5.5.3, CREATE TABLE, CREATE TABLE ... LIKE, CREATE VIEW, DROP VIEW, and
DDL statements on stored procedures and functions.

• As of MySQL 5.5.8, DDL statements on events

For some operations, system tables in the mysql database must be accessed. For example, the HELP
statement requires the contents of the server-side help tables, and CONVERT_TZ() might need to read



SET TRANSACTION Syntax

1456

the time zone tables. The server implicitly locks the system tables for reading as necessary so that you
need not lock them explicitly. These tables are treated as just described:

mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.proc
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name
mysql.time_zone_transition
mysql.time_zone_transition_type

If you want to explicitly place a WRITE lock on any of those tables with a LOCK TABLES statement, the
table must be the only one locked; no other table can be locked with the same statement.

Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other
session can interfere with any other currently executing SQL statement. However, there are a few
cases when locking tables may provide an advantage:

• If you are going to run many operations on a set of MyISAM tables, it is much faster to lock the tables
you are going to use. Locking MyISAM tables speeds up inserting, updating, or deleting on them
because MySQL does not flush the key cache for the locked tables until UNLOCK TABLES is called.
Normally, the key cache is flushed after each SQL statement.

The downside to locking the tables is that no session can update a READ-locked table (including the
one holding the lock) and no session can access a WRITE-locked table other than the one holding
the lock.

• If you are using tables for a nontransactional storage engine, you must use LOCK TABLES if you
want to ensure that no other session modifies the tables between a SELECT and an UPDATE. The
example shown here requires LOCK TABLES to execute safely:

LOCK TABLES trans READ, customer WRITE;
SELECT SUM(value) FROM trans WHERE customer_id=some_id;
UPDATE customer
  SET total_value=sum_from_previous_statement
  WHERE customer_id=some_id;
UNLOCK TABLES;

Without LOCK TABLES, it is possible that another session might insert a new row in the trans table
between execution of the SELECT and UPDATE statements.

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer
SET value=value+new_value) or the LAST_INSERT_ID() function.

You can also avoid locking tables in some cases by using the user-level advisory lock functions
GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and
implemented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See
Section 12.17, “Miscellaneous Functions”.

See Section 8.11.1, “Internal Locking Methods”, for more information on locking policy.

13.3.6 SET TRANSACTION Syntax

SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL
  {
       REPEATABLE READ
     | READ COMMITTED
     | READ UNCOMMITTED
     | SERIALIZABLE
   }



XA Transactions

1457

This statement sets the transaction isolation level, used for operations on InnoDB tables.

Scope of the Isolation Level

You can set the isolation level globally, for the current session, or for the next transaction:

• With the GLOBAL keyword, the statement sets the default transaction level globally for all subsequent
sessions. Existing sessions are unaffected.

• With the SESSION keyword, the statement sets the default transaction level for all subsequent
transactions performed within the current session.

• Without any SESSION or GLOBAL keyword, the statement sets the isolation level for the next (not
started) transaction performed within the current session. Subsequent transactions revert to using
the SESSION isolation level.

A change to the global default isolation level requires the SUPER privilege. Any session is free to
change its session isolation level (even in the middle of a transaction), or the isolation level for its next
transaction.

SET TRANSACTION ISOLATION LEVEL without GLOBAL or SESSION is not permitted while there is
an active transaction:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.02 sec)

mysql> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
ERROR 1568 (25001): Transaction isolation level can't be changed
while a transaction is in progress

To set the global default isolation level at server startup, use the --transaction-
isolation=level option to mysqld on the command line or in an option file. Values of level for
this option use dashes rather than spaces, so the permissible values are READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. For example, to set the default isolation level to
REPEATABLE READ, use these lines in the [mysqld] section of an option file:

[mysqld]
transaction-isolation = REPEATABLE-READ

It is possible to check or set the global and session transaction isolation levels at runtime by using the
tx_isolation system variable:

SELECT @@GLOBAL.tx_isolation, @@tx_isolation;
SET GLOBAL tx_isolation='REPEATABLE-READ';
SET SESSION tx_isolation='SERIALIZABLE';

Transaction Isolation Levels

For information about transaction isolation levels, see Section 14.8.2.1, “Transaction Isolation Levels”.

13.3.7 XA Transactions

Support for XA transactions is available for the InnoDB storage engine. The MySQL XA
implementation is based on the X/Open CAE document Distributed Transaction Processing:
The XA Specification. This document is published by The Open Group and available at http://
www.opengroup.org/public/pubs/catalog/c193.htm. Limitations of the current XA implementation are
described in Section C.6, “Restrictions on XA Transactions”.

On the client side, there are no special requirements. The XA interface to a MySQL server consists of
SQL statements that begin with the XA keyword. MySQL client programs must be able to send SQL

http://www.opengroup.org/public/pubs/catalog/c193.htm
http://www.opengroup.org/public/pubs/catalog/c193.htm


XA Transactions

1458

statements and to understand the semantics of the XA statement interface. They do not need be linked
against a recent client library. Older client libraries also will work.

Among the MySQL Connectors, MySQL Connector/J 5.0.0 supports XA directly (by means of a class
interface that handles the XA SQL statement interface for you).

XA supports distributed transactions, that is, the ability to permit multiple separate transactional
resources to participate in a global transaction. Transactional resources often are RDBMSs but may be
other kinds of resources.

A global transaction involves several actions that are transactional in themselves, but that all must
either complete successfully as a group, or all be rolled back as a group. In essence, this extends ACID
properties “up a level” so that multiple ACID transactions can be executed in concert as components of
a global operation that also has ACID properties. (As with nondistributed transactions, SERIALIZABLE
may be preferred if your applications are sensitive to read phenomena. REPEATABLE READ may not
be sufficient for distributed transactions.)

Some examples of distributed transactions:

• An application may act as an integration tool that combines a messaging service with an RDBMS.
The application makes sure that transactions dealing with message sending, retrieval, and
processing that also involve a transactional database all happen in a global transaction. You can
think of this as “transactional email.”

• An application performs actions that involve different database servers, such as a MySQL server
and an Oracle server (or multiple MySQL servers), where actions that involve multiple servers must
happen as part of a global transaction, rather than as separate transactions local to each server.

• A bank keeps account information in an RDBMS and distributes and receives money through
automated teller machines (ATMs). It is necessary to ensure that ATM actions are correctly reflected
in the accounts, but this cannot be done with the RDBMS alone. A global transaction manager
integrates the ATM and database resources to ensure overall consistency of financial transactions.

Applications that use global transactions involve one or more Resource Managers and a Transaction
Manager:

• A Resource Manager (RM) provides access to transactional resources. A database server is one
kind of resource manager. It must be possible to either commit or roll back transactions managed by
the RM.

• A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It
communicates with the RMs that handle each of these transactions. The individual transactions
within a global transaction are “branches” of the global transaction. Global transactions and their
branches are identified by a naming scheme described later.

The MySQL implementation of XA enables a MySQL server to act as a Resource Manager that
handles XA transactions within a global transaction. A client program that connects to the MySQL
server acts as the Transaction Manager.

To carry out a global transaction, it is necessary to know which components are involved, and
bring each component to a point when it can be committed or rolled back. Depending on what each
component reports about its ability to succeed, they must all commit or roll back as an atomic group.
That is, either all components must commit, or all components must roll back. To manage a global
transaction, it is necessary to take into account that any component or the connecting network might
fail.

The process for executing a global transaction uses two-phase commit (2PC). This takes place after
the actions performed by the branches of the global transaction have been executed.

1. In the first phase, all branches are prepared. That is, they are told by the TM to get ready to
commit. Typically, this means each RM that manages a branch records the actions for the branch in



XA Transactions

1459

stable storage. The branches indicate whether they are able to do this, and these results are used
for the second phase.

2. In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated
when they were prepared that they will be able to commit, all branches are told to commit. If any
branch indicated when it was prepared that it will not be able to commit, all branches are told to roll
back.

In some cases, a global transaction might use one-phase commit (1PC). For example, when a
Transaction Manager finds that a global transaction consists of only one transactional resource (that is,
a single branch), that resource can be told to prepare and commit at the same time.

13.3.7.1 XA Transaction SQL Syntax

To perform XA transactions in MySQL, use the following statements:

XA {START|BEGIN} xid [JOIN|RESUME]

XA END xid [SUSPEND [FOR MIGRATE]]

XA PREPARE xid

XA COMMIT xid [ONE PHASE]

XA ROLLBACK xid

XA RECOVER

For XA START, the JOIN and RESUME clauses are not supported.

For XA END the SUSPEND [FOR MIGRATE] clause is not supported.

Each XA statement begins with the XA keyword, and most of them require an xid value. An xid is
an XA transaction identifier. It indicates which transaction the statement applies to. xid values are
supplied by the client, or generated by the MySQL server. An xid value has from one to three parts:

xid: gtrid [, bqual [, formatID ]]

gtrid is a global transaction identifier, bqual is a branch qualifier, and formatID is a number that
identifies the format used by the gtrid and bqual values. As indicated by the syntax, bqual and
formatID are optional. The default bqual value is '' if not given. The default formatID value is 1 if
not given.

gtrid and bqual must be string literals, each up to 64 bytes (not characters) long. gtrid and bqual
can be specified in several ways. You can use a quoted string ('ab'), hex string (X'6162', 0x6162),
or bit value (b'nnnn').

formatID is an unsigned integer.

The gtrid and bqual values are interpreted in bytes by the MySQL server's underlying XA support
routines. However, while an SQL statement containing an XA statement is being parsed, the server
works with some specific character set. To be safe, write gtrid and bqual as hex strings.

xid values typically are generated by the Transaction Manager. Values generated by one TM must
be different from values generated by other TMs. A given TM must be able to recognize its own xid
values in a list of values returned by the XA RECOVER statement.

For XA START xid starts an XA transaction with the given xid value. Each XA transaction must have
a unique xid value, so the value must not currently be used by another XA transaction. Uniqueness is
assessed using the gtrid and bqual values. All following XA statements for the XA transaction must
be specified using the same xid value as that given in the XA START statement. If you use any of



XA Transactions

1460

those statements but specify an xid value that does not correspond to some existing XA transaction,
an error occurs.

One or more XA transactions can be part of the same global transaction. All XA transactions within
a given global transaction must use the same gtrid value in the xid value. For this reason, gtrid
values must be globally unique so that there is no ambiguity about which global transaction a given
XA transaction is part of. The bqual part of the xid value must be different for each XA transaction
within a global transaction. (The requirement that bqual values be different is a limitation of the current
MySQL XA implementation. It is not part of the XA specification.)

The XA RECOVER statement returns information for those XA transactions on the MySQL server that
are in the PREPARED state. (See Section 13.3.7.2, “XA Transaction States”.) The output includes a row
for each such XA transaction on the server, regardless of which client started it.

XA RECOVER output rows look like this (for an example xid value consisting of the parts 'abc',
'def', and 7):

mysql> XA RECOVER;
+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data   |
+----------+--------------+--------------+--------+
|        7 |            3 |            3 | abcdef |
+----------+--------------+--------------+--------+

The output columns have the following meanings:

• formatID is the formatID part of the transaction xid

• gtrid_length is the length in bytes of the gtrid part of the xid

• bqual_length is the length in bytes of the bqual part of the xid

• data is the concatenation of the gtrid and bqual parts of the xid

13.3.7.2 XA Transaction States

An XA transaction progresses through the following states:

1. Use XA START to start an XA transaction and put it in the ACTIVE state.

2. For an ACTIVE XA transaction, issue the SQL statements that make up the transaction, and then
issue an XA END statement. XA END puts the transaction in the IDLE state.

3. For an IDLE XA transaction, you can issue either an XA PREPARE statement or an XA
COMMIT ... ONE PHASE statement:

• XA PREPARE puts the transaction in the PREPARED state. An XA RECOVER statement at this
point will include the transaction's xid value in its output, because XA RECOVER lists all XA
transactions that are in the PREPARED state.

• XA COMMIT ... ONE PHASE prepares and commits the transaction. The xid value will not be
listed by XA RECOVER because the transaction terminates.

4. For a PREPARED XA transaction, you can issue an XA COMMIT statement to commit and terminate
the transaction, or XA ROLLBACK to roll back and terminate the transaction.

Here is a simple XA transaction that inserts a row into a table as part of a global transaction:

mysql> XA START 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec)



Replication Statements

1461

mysql> XA END 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)

Within the context of a given client connection, XA transactions and local (non-XA) transactions are
mutually exclusive. For example, if XA START has been issued to begin an XA transaction, a local
transaction cannot be started until the XA transaction has been committed or rolled back. Conversely,
if a local transaction has been started with START TRANSACTION, no XA statements can be used until
the transaction has been committed or rolled back.

If an XA transaction is in the ACTIVE state, you cannot issue any statements that cause an implicit
commit. That would violate the XA contract because you could not roll back the XA transaction. You will
receive the following error if you try to execute such a statement:

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed
when global transaction is in the ACTIVE state

Statements to which the preceding remark applies are listed at Section 13.3.3, “Statements That Cause
an Implicit Commit”.

13.4 Replication Statements
Replication can be controlled through the SQL interface using the statements described in this section.
One group of statements controls master servers, the other controls slave servers.

13.4.1 SQL Statements for Controlling Master Servers

This section discusses statements for managing master replication servers. Section 13.4.2, “SQL
Statements for Controlling Slave Servers”, discusses statements for managing slave servers.

In addition to the statements described here, the following SHOW statements are used with master
servers in replication. For information about these statements, see Section 13.7.5, “SHOW Syntax”.

• SHOW BINARY LOGS

• SHOW BINLOG EVENTS

• SHOW MASTER STATUS

• SHOW SLAVE HOSTS

13.4.1.1 PURGE BINARY LOGS Syntax

PURGE { BINARY | MASTER } LOGS
    { TO 'log_name' | BEFORE datetime_expr }

The binary log is a set of files that contain information about data modifications made by the MySQL
server. The log consists of a set of binary log files, plus an index file (see Section 5.4.4, “The Binary
Log”).

The PURGE BINARY LOGS statement deletes all the binary log files listed in the log index file prior
to the specified log file name or date. BINARY and MASTER are synonyms. Deleted log files also are
removed from the list recorded in the index file, so that the given log file becomes the first in the list.

This statement has no effect if the server was not started with the --log-bin option to enable binary
logging.



SQL Statements for Controlling Master Servers

1462

Examples:

PURGE BINARY LOGS TO 'mysql-bin.010';
PURGE BINARY LOGS BEFORE '2008-04-02 22:46:26';

The BEFORE variant's datetime_expr argument should evaluate to a DATETIME value (a value in
'YYYY-MM-DD hh:mm:ss' format).

This statement is safe to run while slaves are replicating. You need not stop them. If you have an active
slave that currently is reading one of the log files you are trying to delete, this statement does nothing
and fails with an error. However, if a slave is not connected and you happen to purge one of the log
files it has yet to read, the slave will be unable to replicate after it reconnects.

To safely purge binary log files, follow this procedure:

1. On each slave server, use SHOW SLAVE STATUS to check which log file it is reading.

2. Obtain a listing of the binary log files on the master server with SHOW BINARY LOGS.

3. Determine the earliest log file among all the slaves. This is the target file. If all the slaves are up to
date, this is the last log file on the list.

4. Make a backup of all the log files you are about to delete. (This step is optional, but always
advisable.)

5. Purge all log files up to but not including the target file.

You can also set the expire_logs_days system variable to expire binary log files automatically after
a given number of days (see Section 5.1.5, “Server System Variables”). If you are using replication, you
should set the variable no lower than the maximum number of days your slaves might lag behind the
master.

PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE both fail with an error when binary log
files listed in the .index file had been removed from the system by some other means (such as using
rm on Linux). (Bug #18199, Bug #18453) To handle such errors, edit the .index file (which is a simple
text file) manually to ensure that it lists only the binary log files that are actually present, then run again
the PURGE BINARY LOGS statement that failed.

13.4.1.2 RESET MASTER Syntax

RESET MASTER

Deletes all binary log files listed in the index file, resets the binary log index file to be empty, and
creates a new binary log file. This statement is intended to be used only when the master is started for
the first time.

Important

The effects of RESET MASTER differ from those of PURGE BINARY LOGS in 2
key ways:

1. RESET MASTER removes all binary log files that are listed in the index file,
leaving only a single, empty binary log file with a numeric suffix of .000001,
whereas the numbering is not reset by PURGE BINARY LOGS.

2. RESET MASTER is not intended to be used while any replication slaves
are running. The behavior of RESET MASTER when used while slaves are
running is undefined (and thus unsupported), whereas PURGE BINARY
LOGS may be safely used while replication slaves are running.

See also Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.



SQL Statements for Controlling Slave Servers

1463

RESET MASTER can prove useful when you first set up the master and the slave, so that you can verify
the setup as follows:

1. Start the master and slave, and start replication (see Section 17.1.1, “How to Set Up Replication”).

2. Execute a few test queries on the master.

3. Check that the queries were replicated to the slave.

4. When replication is running correctly, issue STOP SLAVE followed by RESET SLAVE on the slave,
then verify that any unwanted data no longer exists on the slave.

5. Issue RESET MASTER on the master to clean up the test queries.

After verifying the setup and getting rid of any unwanted and log files generated by testing, you can
start the slave and begin replicating.

13.4.1.3 SET sql_log_bin Syntax

SET sql_log_bin = {0|1}

The sql_log_bin variable controls whether logging to the binary log is done. The default value is
1 (do logging). To change logging for the current session, change the session value of this variable.
The session user must have the SUPER privilege to set this variable. Set this variable to 0 for a session
to temporarily disable binary logging while making changes to the master which you do not want to
replicate to the slave.

As of MySQL 5.5, sql_log_bin can be set as a global or session variable. Setting sql_log_bin
globally is only detected when a new session is started. Any sessions previously running are not
impacted when setting sql_log_bin globally.

Warning

Incorrect use of sql_log_bin with a global scope means any changes made
in an already running session are still being recorded to the binary log and
therefore replicated. Exercise extreme caution using sql_log_bin with a
global scope as the above situation could cause unexpected results including
replication failure.

Beginning with MySQL 5.5.5, it is no longer possible to set @@session.sql_log_bin within a
transaction or subquery. (Bug #53437)

13.4.2 SQL Statements for Controlling Slave Servers

This section discusses statements for managing slave replication servers. Section 13.4.1, “SQL
Statements for Controlling Master Servers”, discusses statements for managing master servers.

In addition to the statements described here, SHOW SLAVE STATUS and SHOW RELAYLOG EVENTS
are also used with replication slaves. For information about these statements, see Section 13.7.5.35,
“SHOW SLAVE STATUS Syntax”, and Section 13.7.5.33, “SHOW RELAYLOG EVENTS Syntax”.

13.4.2.1 CHANGE MASTER TO Syntax

CHANGE MASTER TO option [, option] ...

option:
    MASTER_BIND = 'interface_name'
  | MASTER_HOST = 'host_name'
  | MASTER_USER = 'user_name'
  | MASTER_PASSWORD = 'password'
  | MASTER_PORT = port_num
  | MASTER_CONNECT_RETRY = interval



SQL Statements for Controlling Slave Servers

1464

  | MASTER_HEARTBEAT_PERIOD = interval
  | MASTER_LOG_FILE = 'master_log_name'
  | MASTER_LOG_POS = master_log_pos
  | RELAY_LOG_FILE = 'relay_log_name'
  | RELAY_LOG_POS = relay_log_pos
  | MASTER_SSL = {0|1}
  | MASTER_SSL_CA = 'ca_file_name'
  | MASTER_SSL_CAPATH = 'ca_directory_name'
  | MASTER_SSL_CERT = 'cert_file_name'
  | MASTER_SSL_KEY = 'key_file_name'
  | MASTER_SSL_CIPHER = 'cipher_list'
  | MASTER_SSL_VERIFY_SERVER_CERT = {0|1}
  | IGNORE_SERVER_IDS = (server_id_list)

server_id_list:
    [server_id [, server_id] ... ]

CHANGE MASTER TO changes the parameters that the slave server uses for connecting to the master
server, for reading the master binary log, and reading the slave relay log. It also updates the contents
of the master.info and relay-log.info files. CHANGE MASTER TO requires the SUPER privilege.

To use CHANGE MASTER TO, the slave replication threads must be stopped (use STOP SLAVE if
necessary).

Options not specified retain their value, except as indicated in the following discussion. Thus, in most
cases, there is no need to specify options that do not change. For example, if the password to connect
to your MySQL master has changed, you just need to issue these statements to tell the slave about the
new password:

STOP SLAVE; -- if replication was running
CHANGE MASTER TO MASTER_PASSWORD='new3cret';
START SLAVE; -- if you want to restart replication

MASTER_HOST, MASTER_USER, MASTER_PASSWORD, and MASTER_PORT provide information to the
slave about how to connect to its master:

• MASTER_HOST and MASTER_PORT are the host name (or IP address) of the master host and its TCP/
IP port.

Note

Replication cannot use Unix socket files. You must be able to connect to the
master MySQL server using TCP/IP.

If you specify the MASTER_HOST or MASTER_PORT option, the slave assumes that the master
server is different from before (even if the option value is the same as its current value.) In this
case, the old values for the master binary log file name and position are considered no longer
applicable, so if you do not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement,
MASTER_LOG_FILE='' and MASTER_LOG_POS=4 are silently appended to it.

Setting MASTER_HOST='' (that is, setting its value explicitly to an empty string) is not the same as
not setting MASTER_HOST at all. Beginning with MySQL 5.5, trying to set MASTER_HOST to an empty
string fails with an error. Previously, setting MASTER_HOST to an empty string caused START SLAVE
subsequently to fail. (Bug #28796)

• MASTER_USER and MASTER_PASSWORD are the user name and password of the account to use for
connecting to the master.

In MySQL 5.5.20 and later, MASTER_USER cannot be made empty; setting MASTER_USER = '' or
leaving it unset when setting a value for MASTER_PASSWORD causes an error (Bug #13427949).

The password used for a MySQL Replication slave account in a CHANGE MASTER TO statement is
limited to 32 characters in length; if the password is longer, the statement succeeds, but any excess



SQL Statements for Controlling Slave Servers

1465

characters are silently truncated. This is an issue specific to MySQL Replication, which is fixed in
MySQL 5.7. (Bug #11752299, Bug #43439)

The text of a running CHANGE MASTER TO statement, including values for MASTER_USER and
MASTER_PASSWORD, can be seen in the output of a concurrent SHOW PROCESSLIST statement.

The MASTER_SSL_xxx options provide information about using SSL for the connection. They
correspond to the --ssl-xxx options described in Section 6.4.5, “Command Options for Secure
Connections”, and Section 17.3.7, “Setting Up Replication to Use Secure Connections”. These
options can be changed even on slaves that are compiled without SSL support. They are saved to the
master.info file, but are ignored if the slave does not have SSL support enabled.

MASTER_CONNECT_RETRY specifies how many seconds to wait between connect retries. The default is
60. The number of reconnection attempts is limited by the --master-retry-count server option; for
more information, see Section 17.1.3, “Replication and Binary Logging Options and Variables”.

The MASTER_BIND option is available in MySQL NDB Cluster 7.2 and later, but is not supported in
mainline MySQL 5.5.

MASTER_BIND is for use on replication slaves having multiple network interfaces, and determines
which of the slave's network interfaces is chosen for connecting to the master.

MASTER_HEARTBEAT_PERIOD sets the interval in seconds between replication heartbeats. Whenever
the master's binary log is updated with an event, the waiting period for the next heartbeat is reset.
interval is a decimal value having the range 0 to 4294967 seconds and a resolution in milliseconds;
the smallest nonzero value is 0.001. Heartbeats are sent by the master only if there are no unsent
events in the binary log file for a period longer than interval.

Setting interval to 0 disables heartbeats altogether. The default value for interval is equal to the
value of slave_net_timeout divided by 2.

Setting @@global.slave_net_timeout to a value less than that of the current heartbeat interval
results in a warning being issued. The effect of issuing RESET SLAVE on the heartbeat interval is to
reset it to the default value.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the slave I/O thread
should begin reading from the master the next time the thread starts. RELAY_LOG_FILE and
RELAY_LOG_POS are the coordinates at which the slave SQL thread should begin reading
from the relay log the next time the thread starts. If you specify either of MASTER_LOG_FILE
or MASTER_LOG_POS, you cannot specify RELAY_LOG_FILE or RELAY_LOG_POS. If neither of
MASTER_LOG_FILE or MASTER_LOG_POS is specified, the slave uses the last coordinates of the slave
SQL thread before CHANGE MASTER TO was issued. This ensures that there is no discontinuity in
replication, even if the slave SQL thread was late compared to the slave I/O thread, when you merely
want to change, say, the password to use.

CHANGE MASTER TO deletes all relay log files and starts a new one, unless you specify
RELAY_LOG_FILE or RELAY_LOG_POS. In that case, relay log files are kept; the relay_log_purge
global variable is set silently to 0.

Prior to MySQL 5.5, RELAY_LOG_FILE required an absolute path. In MySQL 5.5, the path can be
relative, in which case the path is assumed to be relative to the slave's data directory. (Bug #12190)

IGNORE_SERVER_IDS was added in MySQL 5.5. This option takes a comma-separated list of 0 or
more server IDs. Events originating from the corresponding servers are ignored, with the exception of
log rotation and deletion events, which are still recorded in the relay log.

In circular replication, the originating server normally acts as the terminator of its own events, so that
they are not applied more than once. Thus, this option is useful in circular replication when one of the
servers in the circle is removed. Suppose that you have a circular replication setup with 4 servers,
having server IDs 1, 2, 3, and 4, and server 3 fails. When bridging the gap by starting replication from



SQL Statements for Controlling Slave Servers

1466

server 2 to server 4, you can include IGNORE_SERVER_IDS = (3) in the CHANGE MASTER TO
statement that you issue on server 4 to tell it to use server 2 as its master instead of server 3. Doing so
causes it to ignore and not to propagate any statements that originated with the server that is no longer
in use.

When a CHANGE MASTER TO statement is issued without any IGNORE_SERVER_IDS option, any
existing list is preserved. To clear the list of ignored servers, it is necessary to use the option with an
empty list:

CHANGE MASTER TO IGNORE_SERVER_IDS = ();

RESET SLAVE ALL has no effect on the server ID list. This issue is fixed in MySQL 5.7. (Bug
#18816897)

If IGNORE_SERVER_IDS contains the server's own ID and the server was started with the --
replicate-same-server-id option enabled, an error results.

Also beginning with MySQL 5.5, the master.info file and the output of SHOW SLAVE STATUS
are extended to provide the list of servers that are currently ignored. For more information, see
Section 17.2.2.2, “Slave Status Logs”, and Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”.

Beginning with MySQL 5.5.5, invoking CHANGE MASTER TO causes the previous values for
MASTER_HOST, MASTER_PORT, MASTER_LOG_FILE, and MASTER_LOG_POS to be written to the error
log, along with other information about the slave's state prior to execution.

CHANGE MASTER TO is useful for setting up a slave when you have the snapshot of the master and
have recorded the master binary log coordinates corresponding to the time of the snapshot. After
loading the snapshot into the slave to synchronize it with the master, you can run CHANGE MASTER
TO MASTER_LOG_FILE='log_name', MASTER_LOG_POS=log_pos on the slave to specify the
coordinates at which the slave should begin reading the master binary log.

The following example changes the master server the slave uses and establishes the master binary
log coordinates from which the slave begins reading. This is used when you want to set up the slave to
replicate the master:

CHANGE MASTER TO
  MASTER_HOST='master2.mycompany.com',
  MASTER_USER='replication',
  MASTER_PASSWORD='bigs3cret',
  MASTER_PORT=3306,
  MASTER_LOG_FILE='master2-bin.001',
  MASTER_LOG_POS=4,
  MASTER_CONNECT_RETRY=10;

The next example shows an operation that is less frequently employed. It is used when the slave
has relay log files that you want it to execute again for some reason. To do this, the master need not
be reachable. You need only use CHANGE MASTER TO and start the SQL thread (START SLAVE
SQL_THREAD):

CHANGE MASTER TO
  RELAY_LOG_FILE='slave-relay-bin.006',
  RELAY_LOG_POS=4025;

You can even use the second operation in a nonreplication setup with a standalone, nonslave server
for recovery following a crash. Suppose that your server has crashed and you have restored it from
a backup. You want to replay the server's own binary log files (not relay log files, but regular binary
log files), named (for example) myhost-bin.*. First, make a backup copy of these binary log files in
some safe place, in case you don't exactly follow the procedure below and accidentally have the server
purge the binary log. Use SET GLOBAL relay_log_purge=0 for additional safety. Then start the
server without the --log-bin option, Instead, use the --replicate-same-server-id, --relay-



SQL Statements for Controlling Slave Servers

1467

log=myhost-bin (to make the server believe that these regular binary log files are relay log files) and
--skip-slave-start options. After the server starts, issue these statements:

CHANGE MASTER TO
  RELAY_LOG_FILE='myhost-bin.153',
  RELAY_LOG_POS=410,
  MASTER_HOST='some_dummy_string';
START SLAVE SQL_THREAD;

The server reads and executes its own binary log files, thus achieving crash recovery. Once the
recovery is finished, run STOP SLAVE, shut down the server, delete the master.info and relay-
log.info files, and restart the server with its original options.

Specifying the MASTER_HOST option (even with a dummy value) is required to make the server think it
is a slave.

The following table shows the maximum permissible length for the string-valued options.

Option Maximum Length

MASTER_HOST 60

MASTER_USER 16

MASTER_PASSWORD 32

MASTER_LOG_FILE 255

RELAY_LOG_FILE 255

MASTER_SSL_CA 255

MASTER_SSL_CAPATH 255

MASTER_SSL_CERT 255

MASTER_SSL_KEY 255

MASTER_SSL_CIPHER 511

13.4.2.2 MASTER_POS_WAIT() Syntax

SELECT MASTER_POS_WAIT('master_log_file', master_log_pos [, timeout])

This is actually a function, not a statement. It is used to ensure that the slave has read and executed
events up to a given position in the master's binary log. See Section 12.17, “Miscellaneous Functions”,
for a full description.

13.4.2.3 RESET SLAVE Syntax

RESET SLAVE [ALL]

RESET SLAVE makes the slave forget its replication position in the master's binary log. This statement
is meant to be used for a clean start: It deletes the master.info and relay-log.info files, all the
relay log files, and starts a new relay log file. To use RESET SLAVE, the slave replication threads must
be stopped (use STOP SLAVE if necessary).

Note

All relay log files are deleted, even if they have not been completely executed
by the slave SQL thread. (This is a condition likely to exist on a replication slave
if you have issued a STOP SLAVE statement or if the slave is highly loaded.)

In MySQL 5.5 (unlike the case in MySQL 5.1 and earlier), RESET SLAVE does not change any
replication connection parameters such as master host, master port, master user, or master password,



SQL Statements for Controlling Slave Servers

1468

which are retained in memory. This means that START SLAVE can be issued without requiring a
CHANGE MASTER TO statement following RESET SLAVE.

Connection parameters are reset if the slave mysqld is shut down following RESET SLAVE. In MySQL
5.5.16 and later, you can instead use RESET SLAVE ALL to reset these connection parameters (Bug
#11809016).

RESET SLAVE ALL does not clear the IGNORE_SERVER_IDS list set by CHANGE MASTER TO. This
issue is fixed in MySQL 5.7. (Bug #18816897)

If the slave SQL thread was in the middle of replicating temporary tables when it was stopped, and
RESET SLAVE is issued, these replicated temporary tables are deleted on the slave.

Note

When used on an NDB Cluster replication slave SQL node, RESET SLAVE
clears the mysql.ndb_apply_status table. You should keep in mind
when using this statement that ndb_apply_status uses the NDB storage
engine and so is shared by all SQL nodes attached to the slave cluster.

13.4.2.4 SET GLOBAL sql_slave_skip_counter Syntax

SET GLOBAL sql_slave_skip_counter = N

This statement skips the next N events from the master. This is useful for recovering from replication
stops caused by a statement.

This statement is valid only when the slave threads are not running. Otherwise, it produces an error.

When using this statement, it is important to understand that the binary log is actually organized as a
sequence of groups known as event groups. Each event group consists of a sequence of events.

• For transactional tables, an event group corresponds to a transaction.

• For nontransactional tables, an event group corresponds to a single SQL statement.

Note

A single transaction can contain changes to both transactional and
nontransactional tables.

When you use SET GLOBAL sql_slave_skip_counter to skip events and the result is in the
middle of a group, the slave continues to skip events until it reaches the end of the group. Execution
then starts with the next event group.

13.4.2.5 START SLAVE Syntax

START SLAVE [thread_types]

START SLAVE [SQL_THREAD] UNTIL
    MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos

START SLAVE [SQL_THREAD] UNTIL
    RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos

thread_types:
    [thread_type [, thread_type] ... ]

thread_type: IO_THREAD | SQL_THREAD

START SLAVE with no thread_type options starts both of the slave threads. The I/O thread reads
events from the master server and stores them in the relay log. The SQL thread reads events from the
relay log and executes them. START SLAVE requires the SUPER privilege.



SQL Statements for Controlling Slave Servers

1469

If START SLAVE succeeds in starting the slave threads, it returns without any error. However, even
in that case, it might be that the slave threads start and then later stop (for example, because they do
not manage to connect to the master or read its binary log, or some other problem). START SLAVE
does not warn you about this. You must check the slave's error log for error messages generated by
the slave threads, or check that they are running satisfactorily with SHOW SLAVE STATUS.

START SLAVE sends an acknowledgment to the user after both the I/O thread and the SQL thread
have started. However, the I/O thread may not yet have connected. For this reason, a successful
START SLAVE causes SHOW SLAVE STATUS to show Slave_SQL_Running=Yes, but this does not
guarantee that Slave_IO_Running=Yes (because Slave_IO_Running=Yes only if the I/O thread
is running and connected). For more information, see Section 13.7.5.35, “SHOW SLAVE STATUS
Syntax”, and Section 17.1.4.1, “Checking Replication Status”.

You can add IO_THREAD and SQL_THREAD options to the statement to name which of the threads to
start.

An UNTIL clause may be added to specify that the slave should start and run until the SQL thread
reaches a given point in the master binary log or in the slave relay log. When the SQL thread reaches
that point, it stops. If the SQL_THREAD option is specified in the statement, it starts only the SQL
thread. Otherwise, it starts both slave threads. If the SQL thread is running, the UNTIL clause is
ignored and a warning is issued.

For an UNTIL clause, you must specify both a log file name and position. Do not mix master and relay
log options.

Any UNTIL condition is reset by a subsequent STOP SLAVE statement, a START SLAVE statement
that includes no UNTIL clause, or a server restart.

The UNTIL clause can be useful for debugging replication, or to cause replication to proceed until just
before the point where you want to avoid having the slave replicate an event. For example, if an unwise
DROP TABLE statement was executed on the master, you can use UNTIL to tell the slave to execute
up to that point but no farther. To find what the event is, use mysqlbinlog with the master binary log
or slave relay log, or by using a SHOW BINLOG EVENTS statement.

If you are using UNTIL to have the slave process replicated queries in sections, it is recommended
that you start the slave with the --skip-slave-start option to prevent the SQL thread from running
when the slave server starts. It is probably best to use this option in an option file rather than on the
command line, so that an unexpected server restart does not cause it to be forgotten.

The SHOW SLAVE STATUS statement includes output fields that display the current values of the
UNTIL condition.

In old versions of MySQL (before 4.0.5), this statement was called SLAVE START. This usage is still
accepted in MySQL 5.5 for backward compatibility, but is deprecated and is removed in MySQL 5.6.

13.4.2.6 STOP SLAVE Syntax

STOP SLAVE [thread_types]

thread_types:
    [thread_type [, thread_type] ... ]

thread_type: IO_THREAD | SQL_THREAD

Stops the slave threads. STOP SLAVE requires the SUPER privilege. Recommended best practice is to
execute STOP SLAVE on the slave before stopping the slave server (see Section 5.1.12, “The Server
Shutdown Process”, for more information).

When using the row-based logging format: You should execute STOP SLAVE on the slave prior to
shutting down the slave server if you are replicating any tables that use a nontransactional storage



Prepared SQL Statement Syntax

1470

engine (see the Note later in this section). In MySQL 5.5.9 and later, you can also use STOP SLAVE
SQL_THREAD for this purpose.

Like START SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options to
name the thread or threads to be stopped.

Note

In MySQL 5.5, STOP SLAVE waits until the current replication event group
affecting one or more nontransactional tables has finished executing (if there
is any such replication group), or until the user issues a KILL QUERY or KILL
CONNECTION statement. (Bug #319, Bug #38205)

In old versions of MySQL (before 4.0.5), this statement was called SLAVE STOP. This usage is still
accepted in MySQL 5.5 for backward compatibility, but is deprecated and is removed in MySQL 5.6.

13.5 Prepared SQL Statement Syntax

MySQL 5.5 provides support for server-side prepared statements. This support takes advantage of
the efficient client/server binary protocol, provided that you use an appropriate client programming
interface. Candidate interfaces include the MySQL C API client library (for C programs), MySQL
Connector/J (for Java programs), and MySQL Connector/Net. For example, the C API provides a
set of function calls that make up its prepared statement API. See Section 23.8.8, “C API Prepared
Statements”. Other language interfaces can provide support for prepared statements that use the
binary protocol by linking in the C client library, one example being the mysqli extension, available in
PHP 5.0 and later.

An alternative SQL interface to prepared statements is available. This interface is not as efficient as
using the binary protocol through a prepared statement API, but requires no programming because it is
available directly at the SQL level:

• You can use it when no programming interface is available to you.

• You can use it from any program that enables you to send SQL statements to the server to be
executed, such as the mysql client program.

• You can use it even if the client is using an old version of the client library. The only requirement is
that you be able to connect to a server that is recent enough to support SQL syntax for prepared
statements.

SQL syntax for prepared statements is intended to be used for situations such as these:

• You want to test how prepared statements work in your application before coding it.

• An application has problems executing prepared statements and you want to determine interactively
what the problem is.

• You want to create a test case that describes a problem you are having with prepared statements, so
that you can file a bug report.

• You need to use prepared statements but do not have access to a programming API that supports
them.

SQL syntax for prepared statements is based on three SQL statements:

• PREPARE prepares a statement for execution (see Section 13.5.1, “PREPARE Syntax”).

• EXECUTE executes a prepared statement (see Section 13.5.2, “EXECUTE Syntax”).

• DEALLOCATE PREPARE releases a prepared statement (see Section 13.5.3, “DEALLOCATE
PREPARE Syntax”).

http://php.net/mysqli


Prepared SQL Statement Syntax

1471

The following examples show two equivalent ways of preparing a statement that computes the
hypotenuse of a triangle given the lengths of the two sides.

The first example shows how to create a prepared statement by using a string literal to supply the text
of the statement:

mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
|          5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;

The second example is similar, but supplies the text of the statement as a user variable:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+
| hypotenuse |
+------------+
|         10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;

Here is an additional example that demonstrates how to choose the table on which to perform a query
at runtime, by storing the name of the table as a user variable:

mysql> USE test;
mysql> CREATE TABLE t1 (a INT NOT NULL);
mysql> INSERT INTO t1 VALUES (4), (8), (11), (32), (80);

mysql> SET @table = 't1';
mysql> SET @s = CONCAT('SELECT * FROM ', @table);

mysql> PREPARE stmt3 FROM @s;
mysql> EXECUTE stmt3;
+----+
| a  |
+----+
|  4 |
|  8 |
| 11 |
| 32 |
| 80 |
+----+

mysql> DEALLOCATE PREPARE stmt3;

A prepared statement is specific to the session in which it was created. If you terminate a session
without deallocating a previously prepared statement, the server deallocates it automatically.

A prepared statement is also global to the session. If you create a prepared statement within a stored
routine, it is not deallocated when the stored routine ends.

To guard against too many prepared statements being created simultaneously, set the
max_prepared_stmt_count system variable. To prevent the use of prepared statements, set the
value to 0.

The following SQL statements can be used as prepared statements:



Prepared SQL Statement Syntax

1472

ALTER TABLE
ANALYZE TABLE
CACHE INDEX
CALL
CHANGE MASTER
CHECKSUM {TABLE | TABLES}
COMMIT
{CREATE | RENAME | DROP} DATABASE
{CREATE | DROP} INDEX
{CREATE | RENAME | DROP} TABLE
{CREATE | RENAME | DROP} USER
{CREATE | DROP} VIEW
DELETE
DO
FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES
  | LOGS | STATUS | MASTER | SLAVE | DES_KEY_FILE | USER_RESOURCES}
GRANT
INSERT
INSTALL PLUGIN
KILL
LOAD INDEX INTO CACHE
OPTIMIZE TABLE
REPAIR TABLE
REPLACE
RESET {MASTER | SLAVE | QUERY CACHE}
REVOKE
SELECT
SET
SHOW {AUTHORS | CONTRIBUTORS | WARNINGS | ERRORS}
SHOW BINLOG EVENTS
SHOW CREATE {PROCEDURE | FUNCTION | EVENT | TABLE | VIEW}
SHOW {MASTER | BINARY} LOGS
SHOW {MASTER | SLAVE} STATUS
SLAVE {START | STOP}
TRUNCATE TABLE
UNINSTALL PLUGIN
UPDATE

Other statements are not supported in MySQL 5.5.

Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. Exceptions are noted in Section C.1, “Restrictions on Stored Programs”.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 13.5.4, “Automatic Prepared Statement Repreparation”.

Placeholders can be used for the arguments of the LIMIT clause when using prepared statements.
See Section 13.2.9, “SELECT Syntax”.

In prepared CALL statements used with PREPARE and EXECUTE, placeholder support for OUT and
INOUT parameters is available beginning with MySQL 5.5. See Section 13.2.1, “CALL Syntax”, for
an example and a workaround for earlier versions. Placeholders can be used for IN parameters
regardless of version.

SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to
PREPARE cannot itself be a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.

SQL syntax for prepared statements is distinct from using prepared statement API calls. For example,
you cannot use the mysql_stmt_prepare() C API function to prepare a PREPARE, EXECUTE, or
DEALLOCATE PREPARE statement.

SQL syntax for prepared statements can be used within stored procedures, but not in stored functions
or triggers. However, a cursor cannot be used for a dynamic statement that is prepared and executed
with PREPARE and EXECUTE. The statement for a cursor is checked at cursor creation time, so the
statement cannot be dynamic.



PREPARE Syntax

1473

SQL syntax for prepared statements does not support multi-statements (that is, multiple statements
within a single string separated by ; characters).

Prepared statements use the query cache under the conditions described in Section 8.10.3.1, “How the
Query Cache Operates”.

To write C programs that use the CALL SQL statement to execute stored procedures that contain
prepared statements, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each
CALL returns a result to indicate the call status, in addition to any result sets that might be returned by
statements executed within the procedure.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). For additional
information, see Section 13.2.1, “CALL Syntax”.

13.5.1 PREPARE Syntax

PREPARE stmt_name FROM preparable_stmt

The PREPARE statement prepares a SQL statement and assigns it a name, stmt_name, by which
to refer to the statement later. The prepared statement is executed with EXECUTE and released with
DEALLOCATE PREPARE. For examples, see Section 13.5, “Prepared SQL Statement Syntax”.

Statement names are not case sensitive. preparable_stmt is either a string literal or a user variable
that contains the text of the SQL statement. The text must represent a single statement, not multiple
statements. Within the statement, ? characters can be used as parameter markers to indicate where
data values are to be bound to the query later when you execute it. The ? characters should not be
enclosed within quotation marks, even if you intend to bind them to string values. Parameter markers
can be used only where data values should appear, not for SQL keywords, identifiers, and so forth.

If a prepared statement with the given name already exists, it is deallocated implicitly before the new
statement is prepared. This means that if the new statement contains an error and cannot be prepared,
an error is returned and no statement with the given name exists.

The scope of a prepared statement is the session within which it is created, which as several
implications:

• A prepared statement created in one session is not available to other sessions.

• When a session ends, whether normally or abnormally, its prepared statements no longer exist.
If auto-reconnect is enabled, the client is not notified that the connection was lost. For this
reason, clients may wish to disable auto-reconnect. See Section 23.8.16, “Controlling Automatic
Reconnection Behavior”.

• A prepared statement created within a stored program continues to exist after the program finishes
executing and can be executed outside the program later.

• A statement prepared in stored program context cannot refer to stored procedure or function
parameters or local variables because they go out of scope when the program ends and would be
unavailable were the statement to be executed later outside the program. As a workaround, refer
instead to user-defined variables, which also have session scope; see Section 9.4, “User-Defined
Variables”.

13.5.2 EXECUTE Syntax

EXECUTE stmt_name
    [USING @var_name [, @var_name] ...]



DEALLOCATE PREPARE Syntax

1474

After preparing a statement with PREPARE, you execute it with an EXECUTE statement that refers to
the prepared statement name. If the prepared statement contains any parameter markers, you must
supply a USING clause that lists user variables containing the values to be bound to the parameters.
Parameter values can be supplied only by user variables, and the USING clause must name exactly as
many variables as the number of parameter markers in the statement.

You can execute a given prepared statement multiple times, passing different variables to it or setting
the variables to different values before each execution.

For examples, see Section 13.5, “Prepared SQL Statement Syntax”.

13.5.3 DEALLOCATE PREPARE Syntax

{DEALLOCATE | DROP} PREPARE stmt_name

To deallocate a prepared statement produced with PREPARE, use a DEALLOCATE PREPARE statement
that refers to the prepared statement name. Attempting to execute a prepared statement after
deallocating it results in an error.

For examples, see Section 13.5, “Prepared SQL Statement Syntax”.

13.5.4 Automatic Prepared Statement Repreparation

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. This applies to prepared statements
processed at the SQL level (using the PREPARE statement) and those processed using the binary
client/server protocol (using the mysql_stmt_prepare() C API function).

The server attempts repreparation up to three times. An error occurs if all attempts fail.

Metadata changes occur for DDL statements such as those that create, drop, alter, rename, or truncate
tables, or that analyze, optimize, or repair tables. Repreparation also occurs after referenced tables or
views are flushed from the table definition cache, either implicitly to make room for new entries in the
cache, or explicitly due to FLUSH TABLES.

Table content changes (for example, with INSERT or UPDATE) do not cause repreparation, nor do
SELECT statements.

Repreparation is automatic, but to the extent that it occurs, diminishes prepared statement
performance.

Repreparation uses the default database and SQL mode that were in effect for the original preparation.

The Com_stmt_reprepare status variable tracks the number of repreparations.

13.6 Compound-Statement Syntax

This section describes the syntax for the BEGIN ... END compound statement and other statements
that can be used in the body of stored programs: Stored procedures and functions, triggers, and
events. These objects are defined in terms of SQL code that is stored on the server for later invocation
(see Chapter 20, Stored Programs and Views).

A compound statement is a block that can contain other blocks; declarations for variables, condition
handlers, and cursors; and flow control constructs such as loops and conditional tests.

13.6.1 BEGIN ... END Compound-Statement Syntax

[begin_label:] BEGIN



Statement Label Syntax

1475

    [statement_list]
END [end_label]

BEGIN ... END syntax is used for writing compound statements, which can appear within stored
programs (stored procedures and functions, triggers, and events). A compound statement can contain
multiple statements, enclosed by the BEGIN and END keywords. statement_list represents
a list of one or more statements, each terminated by a semicolon (;) statement delimiter. The
statement_list itself is optional, so the empty compound statement (BEGIN END) is legal.

BEGIN ... END blocks can be nested.

Use of multiple statements requires that a client is able to send statement strings containing the ;
statement delimiter. In the mysql command-line client, this is handled with the delimiter command.
Changing the ; end-of-statement delimiter (for example, to //) permit ; to be used in a program body.
For an example, see Section 20.1, “Defining Stored Programs”.

A BEGIN ... END block can be labeled. See Section 13.6.2, “Statement Label Syntax”.

The optional [NOT] ATOMIC clause is not supported. This means that no transactional savepoint is
set at the start of the instruction block and the BEGIN clause used in this context has no effect on the
current transaction.

Note

Within all stored programs, the parser treats BEGIN [WORK] as the beginning
of a BEGIN ... END block. To begin a transaction in this context, use START
TRANSACTION instead.

13.6.2 Statement Label Syntax

[begin_label:] BEGIN
    [statement_list]
END [end_label]

[begin_label:] LOOP
    statement_list
END LOOP [end_label]

[begin_label:] REPEAT
    statement_list
UNTIL search_condition
END REPEAT [end_label]

[begin_label:] WHILE search_condition DO
    statement_list
END WHILE [end_label]

Labels are permitted for BEGIN ... END blocks and for the LOOP, REPEAT, and WHILE statements.
Label use for those statements follows these rules:

• begin_label must be followed by a colon.

• begin_label can be given without end_label. If end_label is present, it must be the same as
begin_label.

• end_label cannot be given without begin_label.

• Labels at the same nesting level must be distinct.

• Labels can be up to 16 characters long.

To refer to a label within the labeled construct, use an ITERATE or LEAVE statement. The following
example uses those statements to continue iterating or terminate the loop:



DECLARE Syntax

1476

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
  label1: LOOP
    SET p1 = p1 + 1;
    IF p1 < 10 THEN ITERATE label1; END IF;
    LEAVE label1;
  END LOOP label1;
END;

The scope of a block label does not include the code for handlers declared within the block. For details,
see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.

13.6.3 DECLARE Syntax

The DECLARE statement is used to define various items local to a program:

• Local variables. See Section 13.6.4, “Variables in Stored Programs”.

• Conditions and handlers. See Section 13.6.7, “Condition Handling”.

• Cursors. See Section 13.6.6, “Cursors”.

DECLARE is permitted only inside a BEGIN ... END compound statement and must be at its start,
before any other statements.

Declarations must follow a certain order. Cursor declarations must appear before handler declarations.
Variable and condition declarations must appear before cursor or handler declarations.

13.6.4 Variables in Stored Programs

System variables and user-defined variables can be used in stored programs, just as they can be
used outside stored-program context. In addition, stored programs can use DECLARE to define local
variables, and stored routines (procedures and functions) can be declared to take parameters that
communicate values between the routine and its caller.

• To declare local variables, use the DECLARE statement, as described in Section 13.6.4.1, “Local
Variable DECLARE Syntax”.

• Variables can be set directly with the SET statement. See Section 13.7.4.1, “SET Syntax for Variable
Assignment”.

• Results from queries can be retrieved into local variables using SELECT ... INTO var_list or
by opening a cursor and using FETCH ... INTO var_list. See Section 13.2.9.1, “SELECT ...
INTO Syntax”, and Section 13.6.6, “Cursors”.

For information about the scope of local variables and how MySQL resolves ambiguous names, see
Section 13.6.4.2, “Local Variable Scope and Resolution”.

13.6.4.1 Local Variable DECLARE Syntax

DECLARE var_name [, var_name] ... type [DEFAULT value]

This statement declares local variables within stored programs. To provide a default value for a
variable, include a DEFAULT clause. The value can be specified as an expression; it need not be a
constant. If the DEFAULT clause is missing, the initial value is NULL.

Local variables are treated like stored routine parameters with respect to data type and overflow
checking. See Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.

Variable declarations must appear before cursor or handler declarations.



Variables in Stored Programs

1477

Local variable names are not case sensitive. Permissible characters and quoting rules are the same as
for other identifiers, as described in Section 9.2, “Schema Object Names”.

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can
be referred to in blocks nested within the declaring block, except those blocks that declare a variable
with the same name.

For examples of variable declarations, see Section 13.6.4.2, “Local Variable Scope and Resolution”.

13.6.4.2 Local Variable Scope and Resolution

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can
be referred to in blocks nested within the declaring block, except those blocks that declare a variable
with the same name.

Because local variables are in scope only during stored program execution, references to them are not
permitted in prepared statements created within a stored program. Prepared statement scope is the
current session, not the stored program, so the statement could be executed after the program ends, at
which point the variables would no longer be in scope. For example, SELECT ... INTO local_var
cannot be used as a prepared statement. This restriction also applies to stored procedure and function
parameters. See Section 13.5.1, “PREPARE Syntax”.

A local variable should not have the same name as a table column. If an SQL statement, such as a
SELECT ... INTO statement, contains a reference to a column and a declared local variable with
the same name, MySQL currently interprets the reference as the name of a variable. Consider the
following procedure definition:

CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
  DECLARE xname VARCHAR(5) DEFAULT 'bob';
  DECLARE newname VARCHAR(5);
  DECLARE xid INT;

  SELECT xname, id INTO newname, xid
    FROM table1 WHERE xname = xname;
  SELECT newname;
END;

MySQL interprets xname in the SELECT statement as a reference to the xname variable rather than the
xname column. Consequently, when the procedure sp1()is called, the newname variable returns the
value 'bob' regardless of the value of the table1.xname column.

Similarly, the cursor definition in the following procedure contains a SELECT statement that refers
to xname. MySQL interprets this as a reference to the variable of that name rather than a column
reference.

CREATE PROCEDURE sp2 (x VARCHAR(5))
BEGIN
  DECLARE xname VARCHAR(5) DEFAULT 'bob';
  DECLARE newname VARCHAR(5);
  DECLARE xid INT;
  DECLARE done TINYINT DEFAULT 0;
  DECLARE cur1 CURSOR FOR SELECT xname, id FROM table1;
  DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

  OPEN cur1;
  read_loop: LOOP
    FETCH FROM cur1 INTO newname, xid;
    IF done THEN LEAVE read_loop; END IF;
    SELECT newname;
  END LOOP;
  CLOSE cur1;
END;



Flow Control Statements

1478

See also Section C.1, “Restrictions on Stored Programs”.

13.6.5 Flow Control Statements

MySQL supports the IF, CASE, ITERATE, LEAVE LOOP, WHILE, and REPEAT constructs for flow
control within stored programs. It also supports RETURN within stored functions.

Many of these constructs contain other statements, as indicated by the grammar specifications in the
following sections. Such constructs may be nested. For example, an IF statement might contain a
WHILE loop, which itself contains a CASE statement.

MySQL does not support FOR loops.

13.6.5.1 CASE Syntax

CASE case_value
    WHEN when_value THEN statement_list
    [WHEN when_value THEN statement_list] ...
    [ELSE statement_list]
END CASE

Or:

CASE
    WHEN search_condition THEN statement_list
    [WHEN search_condition THEN statement_list] ...
    [ELSE statement_list]
END CASE

The CASE statement for stored programs implements a complex conditional construct.

Note

There is also a CASE expression, which differs from the CASE statement
described here. See Section 12.4, “Control Flow Functions”. The CASE
statement cannot have an ELSE NULL clause, and it is terminated with END
CASE instead of END.

For the first syntax, case_value is an expression. This value is compared to the when_value
expression in each WHEN clause until one of them is equal. When an equal when_value is found, the
corresponding THEN clause statement_list executes. If no when_value is equal, the ELSE clause
statement_list executes, if there is one.

This syntax cannot be used to test for equality with NULL because NULL = NULL is false. See
Section 3.3.4.6, “Working with NULL Values”.

For the second syntax, each WHEN clause search_condition expression is evaluated until
one is true, at which point its corresponding THEN clause statement_list executes. If no
search_condition is equal, the ELSE clause statement_list executes, if there is one.

If no when_value or search_condition matches the value tested and the CASE statement contains
no ELSE clause, a Case not found for CASE statement error results.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

To handle situations where no value is matched by any WHEN clause, use an ELSE containing an empty
BEGIN ... END block, as shown in this example. (The indentation used here in the ELSE clause is for
purposes of clarity only, and is not otherwise significant.)

DELIMITER |



Flow Control Statements

1479

CREATE PROCEDURE p()
  BEGIN
    DECLARE v INT DEFAULT 1;

    CASE v
      WHEN 2 THEN SELECT v;
      WHEN 3 THEN SELECT 0;
      ELSE
        BEGIN
        END;
    END CASE;
  END;
  |

13.6.5.2 IF Syntax

IF search_condition THEN statement_list
    [ELSEIF search_condition THEN statement_list] ...
    [ELSE statement_list]
END IF

The IF statement for stored programs implements a basic conditional construct.

Note

There is also an IF() function, which differs from the IF statement described
here. See Section 12.4, “Control Flow Functions”. The IF statement can have
THEN, ELSE, and ELSEIF clauses, and it is terminated with END IF.

If the search_condition evaluates to true, the corresponding THEN or ELSEIF clause
statement_list executes. If no search_condition matches, the ELSE clause statement_list
executes.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

An IF ... END IF block, like all other flow-control blocks used within stored programs, must be
terminated with a semicolon, as shown in this example:

DELIMITER //

CREATE FUNCTION SimpleCompare(n INT, m INT)
  RETURNS VARCHAR(20)

  BEGIN
    DECLARE s VARCHAR(20);

    IF n > m THEN SET s = '>';
    ELSEIF n = m THEN SET s = '=';
    ELSE SET s = '<';
    END IF;

    SET s = CONCAT(n, ' ', s, ' ', m);

    RETURN s;
  END //

DELIMITER ;

As with other flow-control constructs, IF ... END IF blocks may be nested within other flow-control
constructs, including other IF statements. Each IF must be terminated by its own END IF followed
by a semicolon. You can use indentation to make nested flow-control blocks more easily readable by
humans (although this is not required by MySQL), as shown here:



Flow Control Statements

1480

DELIMITER //

CREATE FUNCTION VerboseCompare (n INT, m INT)
  RETURNS VARCHAR(50)

  BEGIN
    DECLARE s VARCHAR(50);

    IF n = m THEN SET s = 'equals';
    ELSE
      IF n > m THEN SET s = 'greater';
      ELSE SET s = 'less';
      END IF;

      SET s = CONCAT('is ', s, ' than');
    END IF;

    SET s = CONCAT(n, ' ', s, ' ', m, '.');

    RETURN s;
  END //

DELIMITER ;

In this example, the inner IF is evaluated only if n is not equal to m.

13.6.5.3 ITERATE Syntax

ITERATE label

ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “start the
loop again.”

For an example, see Section 13.6.5.5, “LOOP Syntax”.

13.6.5.4 LEAVE Syntax

LEAVE label

This statement is used to exit the flow control construct that has the given label. If the label is for the
outermost stored program block, LEAVE exits the program.

LEAVE can be used within BEGIN ... END or loop constructs (LOOP, REPEAT, WHILE).

For an example, see Section 13.6.5.5, “LOOP Syntax”.

13.6.5.5 LOOP Syntax

[begin_label:] LOOP
    statement_list
END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of the statement list, which
consists of one or more statements, each terminated by a semicolon (;) statement delimiter. The
statements within the loop are repeated until the loop is terminated. Usually, this is accomplished with a
LEAVE statement. Within a stored function, RETURN can also be used, which exits the function entirely.

Neglecting to include a loop-termination statement results in an infinite loop.

A LOOP statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Label Syntax”.

Example:



Flow Control Statements

1481

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
  label1: LOOP
    SET p1 = p1 + 1;
    IF p1 < 10 THEN
      ITERATE label1;
    END IF;
    LEAVE label1;
  END LOOP label1;
  SET @x = p1;
END;

13.6.5.6 REPEAT Syntax

[begin_label:] REPEAT
    statement_list
UNTIL search_condition
END REPEAT [end_label]

The statement list within a REPEAT statement is repeated until the search_condition expression is
true. Thus, a REPEAT always enters the loop at least once. statement_list consists of one or more
statements, each terminated by a semicolon (;) statement delimiter.

A REPEAT statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Label Syntax”.

Example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
    -> BEGIN
    ->   SET @x = 0;
    ->   REPEAT
    ->     SET @x = @x + 1;
    ->   UNTIL @x > p1 END REPEAT;
    -> END
    -> //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x   |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

13.6.5.7 RETURN Syntax

RETURN expr

The RETURN statement terminates execution of a stored function and returns the value expr to the
function caller. There must be at least one RETURN statement in a stored function. There may be more
than one if the function has multiple exit points.

This statement is not used in stored procedures, triggers, or events. The LEAVE statement can be used
to exit a stored program of those types.

13.6.5.8 WHILE Syntax

[begin_label:] WHILE search_condition DO



Cursors

1482

    statement_list
END WHILE [end_label]

The statement list within a WHILE statement is repeated as long as the search_condition
expression is true. statement_list consists of one or more SQL statements, each terminated by a
semicolon (;) statement delimiter.

A WHILE statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Label Syntax”.

Example:

CREATE PROCEDURE dowhile()
BEGIN
  DECLARE v1 INT DEFAULT 5;

  WHILE v1 > 0 DO
    ...
    SET v1 = v1 - 1;
  END WHILE;
END;

13.6.6 Cursors

MySQL supports cursors inside stored programs. The syntax is as in embedded SQL. Cursors have
these properties:

• Asensitive: The server may or may not make a copy of its result table

• Read only: Not updatable

• Nonscrollable: Can be traversed only in one direction and cannot skip rows

Cursor declarations must appear before handler declarations and after variable and condition
declarations.

Example:

CREATE PROCEDURE curdemo()
BEGIN
  DECLARE done INT DEFAULT FALSE;
  DECLARE a CHAR(16);
  DECLARE b, c INT;
  DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
  DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
  DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

  OPEN cur1;
  OPEN cur2;

  read_loop: LOOP
    FETCH cur1 INTO a, b;
    FETCH cur2 INTO c;
    IF done THEN
      LEAVE read_loop;
    END IF;
    IF b < c THEN
      INSERT INTO test.t3 VALUES (a,b);
    ELSE
      INSERT INTO test.t3 VALUES (a,c);
    END IF;
  END LOOP;

  CLOSE cur1;
  CLOSE cur2;
END;



Condition Handling

1483

13.6.6.1 Cursor CLOSE Syntax

CLOSE cursor_name

This statement closes a previously opened cursor. For an example, see Section 13.6.6, “Cursors”.

An error occurs if the cursor is not open.

If not closed explicitly, a cursor is closed at the end of the BEGIN ... END block in which it was
declared.

13.6.6.2 Cursor DECLARE Syntax

DECLARE cursor_name CURSOR FOR select_statement

This statement declares a cursor and associates it with a SELECT statement that retrieves the rows to
be traversed by the cursor. To fetch the rows later, use a FETCH statement. The number of columns
retrieved by the SELECT statement must match the number of output variables specified in the FETCH
statement.

The SELECT statement cannot have an INTO clause.

Cursor declarations must appear before handler declarations and after variable and condition
declarations.

A stored program may contain multiple cursor declarations, but each cursor declared in a given block
must have a unique name. For an example, see Section 13.6.6, “Cursors”.

For information available through SHOW statements, it is possible in many cases to obtain equivalent
information by using a cursor with an INFORMATION_SCHEMA table.

13.6.6.3 Cursor FETCH Syntax

FETCH [[NEXT] FROM] cursor_name INTO var_name [, var_name] ...

This statement fetches the next row for the SELECT statement associated with the specified cursor
(which must be open), and advances the cursor pointer. If a row exists, the fetched columns are stored
in the named variables. The number of columns retrieved by the SELECT statement must match the
number of output variables specified in the FETCH statement.

If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect
this condition, you can set up a handler for it (or for a NOT FOUND condition). For an example, see
Section 13.6.6, “Cursors”.

Be aware that another operation, such as a SELECT or another FETCH, may also cause the handler
to execute by raising the same condition. If it is necessary to distinguish which operation raised the
condition, place the operation within its own BEGIN ... END block so that it can be associated with its
own handler.

13.6.6.4 Cursor OPEN Syntax

OPEN cursor_name

This statement opens a previously declared cursor. For an example, see Section 13.6.6, “Cursors”.

13.6.7 Condition Handling

Conditions may arise during stored program execution that require special handling, such as exiting the
current program block or continuing execution. Handlers can be defined for general conditions such as



Condition Handling

1484

warnings or exceptions, or for specific conditions such as a particular error code. Specific conditions
can be assigned names and referred to that way in handlers.

To name a condition, use the DECLARE ... CONDITION statement. To declare a handler, use the
DECLARE ... HANDLER statement. See Section 13.6.7.1, “DECLARE ... CONDITION Syntax”, and
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.

To raise a condition, use the SIGNAL statement. To modify condition information within a
condition handler, use RESIGNAL. See Section 13.6.7.1, “DECLARE ... CONDITION Syntax”, and
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.

Another statement related to conditions is GET DIAGNOSTICS. The GET DIAGNOSTICS statement is
not supported until MySQL 5.6.

Before MySQL 5.6.3, if a statement that generates a warning or error causes a condition handler to
be invoked, the handler may not clear the diagnostic area. This might lead to the appearance that the
handler was not invoked. The following discussion demonstrates the issue and provides a workaround.

Suppose that a table t1 is empty. The following procedure selects from it, raising a No Data condition:

CREATE PROCEDURE p1()
BEGIN
  DECLARE a INT;
  DECLARE CONTINUE HANDLER FOR NOT FOUND
    BEGIN
      SET @handler_invoked = 1;
    END;
  SELECT c1 INTO a FROM t1;
END;

As can be seen from the following sequence of statements, the condition is not cleared by handler
invocation (otherwise, the SHOW WARNINGS output would be empty). But as can be seen by the value
of @handler_invoked, the handler was indeed invoked (otherwise its value would be 0).

mysql> SET @handler_invoked = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p1();
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+-----------------------------------------------------+
| Level   | Code | Message                                             |
+---------+------+-----------------------------------------------------+
| Warning | 1329 | No data - zero rows fetched, selected, or processed |
+---------+------+-----------------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @handler_invoked;
+------------------+
| @handler_invoked |
+------------------+
|                1 |
+------------------+
1 row in set (0.00 sec)

To work around this issue, use a condition handler containing a statement that clears warnings:

CREATE PROCEDURE p1()
BEGIN
  DECLARE a INT;
  DECLARE CONTINUE HANDLER FOR NOT FOUND
    BEGIN
      SELECT 1 INTO @handler_invoked FROM (SELECT 1) AS t;
    END;



Condition Handling

1485

  SELECT c1 INTO a FROM t1;
END;

This works for CONTINUE and EXIT handlers.

This issue is resolved as of MySQL 5.6.3 and no workaround is needed.

13.6.7.1 DECLARE ... CONDITION Syntax

DECLARE condition_name CONDITION FOR condition_value

condition_value:
    mysql_error_code
  | SQLSTATE [VALUE] sqlstate_value

The DECLARE ... CONDITION statement declares a named error condition, associating a name with
a condition that needs specific handling. The name can be referred to in a subsequent DECLARE ...
HANDLER statement (see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”).

Condition declarations must appear before cursor or handler declarations.

The condition_value for DECLARE ... CONDITION indicates the specific condition or class of
conditions to associate with the condition name. It can take the following forms:

• mysql_error_code: An integer literal indicating a MySQL error code.

Do not use MySQL error code 0 because that indicates success rather than an error condition. For a
list of MySQL error codes, see Section B.3, “Server Error Codes and Messages”.

• SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value.

Do not use SQLSTATE values that begin with '00' because those indicate success rather than
an error condition. For a list of SQLSTATE values, see Section B.3, “Server Error Codes and
Messages”.

Condition names referred to in SIGNAL or use RESIGNAL statements must be associated with
SQLSTATE values, not MySQL error codes.

Using names for conditions can help make stored program code clearer. For example, this handler
applies to attempts to drop a nonexistent table, but that is apparent only if you know that 1051 is the
MySQL error code for “unknown table”:

DECLARE CONTINUE HANDLER FOR 1051
  BEGIN
    -- body of handler
  END;

By declaring a name for the condition, the purpose of the handler is more readily seen:

DECLARE no_such_table CONDITION FOR 1051;
DECLARE CONTINUE HANDLER FOR no_such_table
  BEGIN
    -- body of handler
  END;

Here is a named condition for the same condition, but based on the corresponding SQLSTATE value
rather than the MySQL error code:

DECLARE no_such_table CONDITION FOR SQLSTATE '42S02';
DECLARE CONTINUE HANDLER FOR no_such_table
  BEGIN
    -- body of handler



Condition Handling

1486

  END;

13.6.7.2 DECLARE ... HANDLER Syntax

DECLARE handler_action HANDLER
    FOR condition_value [, condition_value] ...
    statement

handler_action:
    CONTINUE
  | EXIT
  | UNDO

condition_value:
    mysql_error_code
  | SQLSTATE [VALUE] sqlstate_value
  | condition_name
  | SQLWARNING
  | NOT FOUND
  | SQLEXCEPTION

The DECLARE ... HANDLER statement specifies a handler that deals with one or more conditions.
If one of these conditions occurs, the specified statement executes. statement can be a simple
statement such as SET var_name = value, or a compound statement written using BEGIN and END
(see Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”).

Handler declarations must appear after variable or condition declarations.

The handler_action value indicates what action the handler takes after execution of the handler
statement:

• CONTINUE: Execution of the current program continues.

• EXIT: Execution terminates for the BEGIN ... END compound statement in which the handler is
declared. This is true even if the condition occurs in an inner block.

• UNDO: Not supported.

The condition_value for DECLARE ... HANDLER indicates the specific condition or class of
conditions that activates the handler. It can take the following forms:

• mysql_error_code: An integer literal indicating a MySQL error code, such as 1051 to specify
“unknown table”:

DECLARE CONTINUE HANDLER FOR 1051
  BEGIN
    -- body of handler
  END;

Do not use MySQL error code 0 because that indicates success rather than an error condition. For a
list of MySQL error codes, see Section B.3, “Server Error Codes and Messages”.

• SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value,
such as '42S01' to specify “unknown table”:

DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
  BEGIN
    -- body of handler
  END;

Do not use SQLSTATE values that begin with '00' because those indicate success rather than
an error condition. For a list of SQLSTATE values, see Section B.3, “Server Error Codes and
Messages”.



Condition Handling

1487

• condition_name: A condition name previously specified with DECLARE ... CONDITION.
A condition name can be associated with a MySQL error code or SQLSTATE value. See
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”.

• SQLWARNING: Shorthand for the class of SQLSTATE values that begin with '01'.

DECLARE CONTINUE HANDLER FOR SQLWARNING
  BEGIN
    -- body of handler
  END;

• NOT FOUND: Shorthand for the class of SQLSTATE values that begin with '02'. This is relevant
within the context of cursors and is used to control what happens when a cursor reaches the end of a
data set. If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'.
To detect this condition, you can set up a handler for it or for a NOT FOUND condition.

DECLARE CONTINUE HANDLER FOR NOT FOUND
  BEGIN
    -- body of handler
  END;

For another example, see Section 13.6.6, “Cursors”. The NOT FOUND condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• SQLEXCEPTION: Shorthand for the class of SQLSTATE values that do not begin with '00', '01', or
'02'.

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
  BEGIN
    -- body of handler
  END;

If a condition occurs for which no handler has been declared, the action taken depends on the
condition class:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the
condition, as if there were an EXIT handler. If the program was called by another stored program,
the calling program handles the condition using the handler selection rules applied to its own
handlers.

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE
handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was
raised by SIGNAL or RESIGNAL, the action is EXIT.

The following example uses a handler for SQLSTATE '23000', which occurs for a duplicate-key error:

mysql> CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
    -> BEGIN
    ->   DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
    ->   SET @x = 1;
    ->   INSERT INTO test.t VALUES (1);
    ->   SET @x = 2;
    ->   INSERT INTO test.t VALUES (1);
    ->   SET @x = 3;
    -> END;
    -> //



Condition Handling

1488

Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS//
+-------+------+---------------------------------------+
| Level | Code | Message                               |
+-------+------+---------------------------------------+
| Error | 1062 | Duplicate entry '1' for key 'PRIMARY' |
+-------+------+---------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @x//
    +------+
    | @x   |
    +------+
    | 3    |
    +------+
    1 row in set (0.00 sec)

Notice that @x is 3 after the procedure executes, which shows that execution continued to the end
of the procedure after the error occurred. If the DECLARE ... HANDLER statement had not been
present, MySQL would have taken the default action (EXIT) after the second INSERT failed due to the
PRIMARY KEY constraint, and SELECT @x would have returned 2.

To ignore a condition, declare a CONTINUE handler for it and associate it with an empty block. For
example:

DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;

The scope of a block label does not include the code for handlers declared within the block. Therefore,
the statement associated with a handler cannot use ITERATE or LEAVE to refer to labels for blocks that
enclose the handler declaration. Consider the following example, where the REPEAT block has a label
of retry:

CREATE PROCEDURE p ()
BEGIN
  DECLARE i INT DEFAULT 3;
  retry:
    REPEAT
      BEGIN
        DECLARE CONTINUE HANDLER FOR SQLWARNING
          BEGIN
            ITERATE retry;    # illegal
          END;
        IF i < 0 THEN
          LEAVE retry;        # legal
        END IF;
        SET i = i - 1;
      END;
    UNTIL FALSE END REPEAT;
END;

The retry label is in scope for the IF statement within the block. It is not in scope for the CONTINUE
handler, so the reference there is invalid and results in an error:

ERROR 1308 (42000): LEAVE with no matching label: retry

To avoid references to outer labels in handlers, use one of these strategies:

• To leave the block, use an EXIT handler. If no block cleanup is required, the BEGIN ... END
handler body can be empty:



Condition Handling

1489

DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;

Otherwise, put the cleanup statements in the handler body:

DECLARE EXIT HANDLER FOR SQLWARNING
  BEGIN
    block cleanup statements
  END;

• To continue execution, set a status variable in a CONTINUE handler that can be checked in the
enclosing block to determine whether the handler was invoked. The following example uses the
variable done for this purpose:

CREATE PROCEDURE p ()
BEGIN
  DECLARE i INT DEFAULT 3;
  DECLARE done INT DEFAULT FALSE;
  retry:
    REPEAT
      BEGIN
        DECLARE CONTINUE HANDLER FOR SQLWARNING
          BEGIN
            SET done = TRUE;
          END;
        IF done OR i < 0 THEN
          LEAVE retry;
        END IF;
        SET i = i - 1;
      END;
    UNTIL FALSE END REPEAT;
END;

13.6.7.3 RESIGNAL Syntax

RESIGNAL [condition_value]
    [SET signal_information_item
    [, signal_information_item] ...]

condition_value:
    SQLSTATE [VALUE] sqlstate_value
  | condition_name

signal_information_item:
    condition_information_item_name = simple_value_specification

condition_information_item_name:
    CLASS_ORIGIN
  | SUBCLASS_ORIGIN
  | MESSAGE_TEXT
  | MYSQL_ERRNO
  | CONSTRAINT_CATALOG
  | CONSTRAINT_SCHEMA
  | CONSTRAINT_NAME
  | CATALOG_NAME
  | SCHEMA_NAME
  | TABLE_NAME
  | COLUMN_NAME
  | CURSOR_NAME

condition_name, simple_value_specification:
    (see following discussion)

RESIGNAL passes on the error condition information that is available during execution of a condition
handler within a compound statement inside a stored procedure or function, trigger, or event.
RESIGNAL may change some or all information before passing it on. RESIGNAL is related to SIGNAL,
but instead of originating a condition as SIGNAL does, RESIGNAL relays existing condition information,
possibly after modifying it.



Condition Handling

1490

RESIGNAL makes it possible to both handle an error and return the error information. Otherwise, by
executing an SQL statement within the handler, information that caused the handler's activation is
destroyed. RESIGNAL also can make some procedures shorter if a given handler can handle part of a
situation, then pass the condition “up the line” to another handler.

No special privileges are required to execute the RESIGNAL statement.

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs.

For condition_value and signal_information_item, the definitions and rules are the same
for RESIGNAL as for SIGNAL. For example, the condition_value can be an SQLSTATE value, and
the value can indicate errors, warnings, or “not found.” For additional information, see Section 13.6.7.4,
“SIGNAL Syntax”.

The RESIGNAL statement takes condition_value and SET clauses, both of which are optional. This
leads to several possible uses:

• RESIGNAL alone:

RESIGNAL;

• RESIGNAL with new signal information:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

• RESIGNAL with a condition value and possibly new signal information:

RESIGNAL condition_value
    [SET signal_information_item [, signal_information_item] ...];

These use cases all cause changes to the diagnostics and condition areas:

• A diagnostics area contains one or more condition areas.

• A condition area contains condition information items, such as the SQLSTATE value, MYSQL_ERRNO,
or MESSAGE_TEXT.

The maximum number of condition areas in a diagnostics area is determined by the value of the
max_error_count system variable.

RESIGNAL Alone

A simple RESIGNAL alone means “pass on the error with no change.” It restores the last diagnostics
area and makes it the current diagnostics area. That is, it “pops” the diagnostics area stack.

Within a condition handler that catches a condition, one use for RESIGNAL alone is to perform some
other actions, and then pass on without change the original condition information (the information that
existed before entry into the handler).

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
  DECLARE EXIT HANDLER FOR SQLEXCEPTION
  BEGIN
    SET @error_count = @error_count + 1;
    IF @a = 0 THEN RESIGNAL; END IF;
  END;



Condition Handling

1491

  DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Suppose that the DROP TABLE xx statement fails. The diagnostics area stack looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

Then execution enters the EXIT handler. It starts by pushing a diagnostics area to the top of the stack,
which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

Usually a procedure statement clears the first diagnostics area (also called the “current” diagnostics
area). BEGIN is an exception, it does not clear, it does nothing. SET is not an exception, it clears,
performs the operation, and produces a result of “success.” The diagnostics area stack now looks like
this:

DA 1. ERROR 0000 (00000): Successful operation
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, if @a = 0, RESIGNAL pops the diagnostics area stack, which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

And that is what the caller sees.

If @a is not 0, the handler simply ends, which means that there is no more use for the current
diagnostics area (it has been “handled”), so it can be thrown away, causing the stacked diagnostics
area to become the current diagnostics area again. The diagnostics area stack looks like this:

DA 1. ERROR 0000 (00000): Successful operation

The details make it look complex, but the end result is quite useful: Handlers can execute without
destroying information about the condition that caused activation of the handler.

RESIGNAL with New Signal Information

RESIGNAL with a SET clause provides new signal information, so the statement means “pass on the
error with changes”:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

As with RESIGNAL alone, the idea is to pop the diagnostics area stack so that the original information
will go out. Unlike RESIGNAL alone, anything specified in the SET clause changes.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
  DECLARE EXIT HANDLER FOR SQLEXCEPTION
  BEGIN
    SET @error_count = @error_count + 1;



Condition Handling

1492

    IF @a = 0 THEN RESIGNAL SET MYSQL_ERRNO = 5; END IF;
  END;
  DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Remember from the previous discussion that RESIGNAL alone results in a diagnostics area stack like
this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

The RESIGNAL SET MYSQL_ERRNO = 5 statement results in this stack instead, which is what the
caller sees:

DA 1. ERROR 5 (42S02): Unknown table 'xx'

In other words, it changes the error number, and nothing else.

The RESIGNAL statement can change any or all of the signal information items, making the first
condition area of the diagnostics area look quite different.

RESIGNAL with a Condition Value and Optional New Signal Information

RESIGNAL with a condition value means “push a condition into the current diagnostics area.” If the SET
clause is present, it also changes the error information.

RESIGNAL condition_value
    [SET signal_information_item [, signal_information_item] ...];

This form of RESIGNAL restores the last diagnostics area and makes it the current diagnostics area.
That is, it “pops” the diagnostics area stack, which is the same as what a simple RESIGNAL alone
would do. However, it also changes the diagnostics area depending on the condition value or signal
information.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
  DECLARE EXIT HANDLER FOR SQLEXCEPTION
  BEGIN
    SET @error_count = @error_count + 1;
    IF @a = 0 THEN RESIGNAL SQLSTATE '45000' SET MYSQL_ERRNO=5; END IF;
  END;
  DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
SET @@max_error_count = 2;
CALL p();
SHOW ERRORS;

This is similar to the previous example, and the effects are the same, except that if RESIGNAL
happens, the current condition area looks different at the end. (The reason the condition adds to rather
than replaces the existing condition is the use of a condition value.)

The RESIGNAL statement includes a condition value (SQLSTATE '45000'), so it adds a new
condition area, resulting in a diagnostics area stack that looks like this:



Condition Handling

1493

DA 1. (condition 2) ERROR 1051 (42S02): Unknown table 'xx'
      (condition 1) ERROR 5 (45000) Unknown table 'xx'

The result of CALL p() and SHOW ERRORS for this example is:

mysql> CALL p();
ERROR 5 (45000): Unknown table 'xx'
mysql> SHOW ERRORS;
+-------+------+----------------------------------+
| Level | Code | Message                          |
+-------+------+----------------------------------+
| Error | 1051 | Unknown table 'xx'               |
| Error |    5 | Unknown table 'xx'               |
+-------+------+----------------------------------+

RESIGNAL Requires Condition Handler Context

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs. For example:

mysql> CREATE PROCEDURE p () RESIGNAL;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p();
ERROR 1645 (0K000): RESIGNAL when handler not active

Here is a more difficult example:

delimiter //
CREATE FUNCTION f () RETURNS INT
BEGIN
  RESIGNAL;
  RETURN 5;
END//
CREATE PROCEDURE p ()
BEGIN
  DECLARE EXIT HANDLER FOR SQLEXCEPTION SET @a=f();
  SIGNAL SQLSTATE '55555';
END//
delimiter ;
CALL p();

RESIGNAL occurs within the stored function f(), which is invoked from within the EXIT handler. Thus,
a handler is active at the time RESIGNAL executes, even though RESIGNAL is not defined inside the
handler.

13.6.7.4 SIGNAL Syntax

SIGNAL condition_value
    [SET signal_information_item
    [, signal_information_item] ...]

condition_value:
    SQLSTATE [VALUE] sqlstate_value
  | condition_name

signal_information_item:
    condition_information_item_name = simple_value_specification

condition_information_item_name:
    CLASS_ORIGIN
  | SUBCLASS_ORIGIN
  | MESSAGE_TEXT
  | MYSQL_ERRNO
  | CONSTRAINT_CATALOG



Condition Handling

1494

  | CONSTRAINT_SCHEMA
  | CONSTRAINT_NAME
  | CATALOG_NAME
  | SCHEMA_NAME
  | TABLE_NAME
  | COLUMN_NAME
  | CURSOR_NAME

condition_name, simple_value_specification:
    (see following discussion)

SIGNAL is the way to “return” an error. SIGNAL provides error information to a handler, to an outer
portion of the application, or to the client. Also, it provides control over the error's characteristics (error
number, SQLSTATE value, message). Without SIGNAL, it is necessary to resort to workarounds such
as deliberately referring to a nonexistent table to cause a routine to return an error.

No special privileges are required to execute the SIGNAL statement.

The condition_value in a SIGNAL statement indicates the error value to be returned. It can be an
SQLSTATE value (a 5-character string literal) or a condition_name that refers to a named condition
previously defined with DECLARE ... CONDITION (see Section 13.6.7.1, “DECLARE ... CONDITION
Syntax”).

An SQLSTATE value can indicate errors, warnings, or “not found.” The first two characters of the value
indicate its error class, as discussed in Signal Condition Information Items. Some signal values cause
statement termination; see Effect of Signals on Handlers, Cursors, and Statements.

The SQLSTATE value for a SIGNAL statement should not start with '00' because such values indicate
success and are not valid for signaling an error. This is true whether the SQLSTATE value is specified
directly in the SIGNAL statement or in a named condition referred to in the statement. If the value is
invalid, a Bad SQLSTATE error occurs.

To signal a generic SQLSTATE value, use '45000', which means “unhandled user-defined exception.”

The SIGNAL statement optionally includes a SET clause that contains multiple signal
items, in a comma-separated list of condition_information_item_name =
simple_value_specification assignments.

Each condition_information_item_name may be specified only once in the SET clause.
Otherwise, a Duplicate condition information item error occurs.

Valid simple_value_specification designators can be specified using stored procedure or
function parameters, stored program local variables declared with DECLARE, user-defined variables,
system variables, or literals. A character literal may include a _charset introducer.

For information about permissible condition_information_item_name values, see Signal
Condition Information Items.

The following procedure signals an error or warning depending on the value of pval, its input
parameter:

CREATE PROCEDURE p (pval INT)
BEGIN
  DECLARE specialty CONDITION FOR SQLSTATE '45000';
  IF pval = 0 THEN
    SIGNAL SQLSTATE '01000';
  ELSEIF pval = 1 THEN
    SIGNAL SQLSTATE '45000'
      SET MESSAGE_TEXT = 'An error occurred';
  ELSEIF pval = 2 THEN
    SIGNAL specialty
      SET MESSAGE_TEXT = 'An error occurred';
  ELSE
    SIGNAL SQLSTATE '01000'



Condition Handling

1495

      SET MESSAGE_TEXT = 'A warning occurred', MYSQL_ERRNO = 1000;
    SIGNAL SQLSTATE '45000'
      SET MESSAGE_TEXT = 'An error occurred', MYSQL_ERRNO = 1001;
  END IF;
END;

If pval is 0, p() signals a warning because SQLSTATE values that begin with '01' are signals in the
warning class. The warning does not terminate the procedure, and can be seen with SHOW WARNINGS
after the procedure returns.

If pval is 1, p() signals an error and sets the MESSAGE_TEXT condition information item. The error
terminates the procedure, and the text is returned with the error information.

If pval is 2, the same error is signaled, although the SQLSTATE value is specified using a named
condition in this case.

If pval is anything else, p() first signals a warning and sets the message text and error number
condition information items. This warning does not terminate the procedure, so execution continues
and p() then signals an error. The error does terminate the procedure. The message text and error
number set by the warning are replaced by the values set by the error, which are returned with the
error information.

SIGNAL is typically used within stored programs, but it is a MySQL extension that it is permitted outside
handler context. For example, if you invoke the mysql client program, you can enter any of these
statements at the prompt:

mysql> SIGNAL SQLSTATE '77777';
mysql> CREATE TRIGGER t_bi BEFORE INSERT ON t
    -> FOR EACH ROW SIGNAL SQLSTATE '77777';
mysql> CREATE EVENT e ON SCHEDULE EVERY 1 SECOND
    -> DO SIGNAL SQLSTATE '77777';

SIGNAL executes according to the following rules:

If the SIGNAL statement indicates a particular SQLSTATE value, that value is used to signal the
condition specified. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
  IF divisor = 0 THEN
    SIGNAL SQLSTATE '22012';
  END IF;
END;

If the SIGNAL statement uses a named condition, the condition must be declared in some scope that
applies to the SIGNAL statement, and must be defined using an SQLSTATE value, not a MySQL error
number. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
  DECLARE divide_by_zero CONDITION FOR SQLSTATE '22012';
  IF divisor = 0 THEN
    SIGNAL divide_by_zero;
  END IF;
END;

If the named condition does not exist in the scope of the SIGNAL statement, an Undefined
CONDITION error occurs.

If SIGNAL refers to a named condition that is defined with a MySQL error number rather than
an SQLSTATE value, a SIGNAL/RESIGNAL can only use a CONDITION defined with
SQLSTATE error occurs. The following statements cause that error because the named condition is
associated with a MySQL error number:



Condition Handling

1496

DECLARE no_such_table CONDITION FOR 1051;
SIGNAL no_such_table;

If a condition with a given name is declared multiple times in different scopes, the declaration with the
most local scope applies. Consider the following procedure:

CREATE PROCEDURE p (divisor INT)
BEGIN
  DECLARE my_error CONDITION FOR SQLSTATE '45000';
  IF divisor = 0 THEN
    BEGIN
      DECLARE my_error CONDITION FOR SQLSTATE '22012';
      SIGNAL my_error;
    END;
  END IF;
  SIGNAL my_error;
END;

If divisor is 0, the first SIGNAL statement executes. The innermost my_error condition declaration
applies, raising SQLSTATE '22012'.

If divisor is not 0, the second SIGNAL statement executes. The outermost my_error condition
declaration applies, raising SQLSTATE '45000'.

Signals can be raised within exception handlers:

CREATE PROCEDURE p ()
BEGIN
  DECLARE EXIT HANDLER FOR SQLEXCEPTION
  BEGIN
    SIGNAL SQLSTATE VALUE '99999'
      SET MESSAGE_TEXT = 'An error occurred';
  END;
  DROP TABLE no_such_table;
END;

CALL p() reaches the DROP TABLE statement. There is no table named no_such_table, so the
error handler is activated. The error handler destroys the original error (“no such table”) and makes a
new error with SQLSTATE '99999' and message An error occurred.

Signal Condition Information Items

The following table lists the names of diagnostics area condition information items that can be set in
a SIGNAL (or RESIGNAL) statement. All items are standard SQL except MYSQL_ERRNO, which is a
MySQL extension.

Item Name             Definition
---------             ----------
CLASS_ORIGIN          VARCHAR(64)
SUBCLASS_ORIGIN       VARCHAR(64)
CONSTRAINT_CATALOG    VARCHAR(64)
CONSTRAINT_SCHEMA     VARCHAR(64)
CONSTRAINT_NAME       VARCHAR(64)
CATALOG_NAME          VARCHAR(64)
SCHEMA_NAME           VARCHAR(64)
TABLE_NAME            VARCHAR(64)
COLUMN_NAME           VARCHAR(64)
CURSOR_NAME           VARCHAR(64)
MESSAGE_TEXT          VARCHAR(128)
MYSQL_ERRNO           SMALLINT UNSIGNED

The character set for character items is UTF-8.

It is illegal to assign NULL to a condition information item in a SIGNAL statement.



Condition Handling

1497

A SIGNAL statement always specifies an SQLSTATE value, either directly, or indirectly by referring to a
named condition defined with an SQLSTATE value. The first two characters of an SQLSTATE value are
its class, and the class determines the default value for the condition information items:

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

MESSAGE_TEXT = 'Unhandled user-defined warning condition';
MYSQL_ERRNO = ER_SIGNAL_WARN

• Class = '02' (not found)

MESSAGE_TEXT = 'Unhandled user-defined not found condition';
MYSQL_ERRNO = ER_SIGNAL_NOT_FOUND

• Class > '02' (exception)

MESSAGE_TEXT = 'Unhandled user-defined exception condition';
MYSQL_ERRNO = ER_SIGNAL_EXCEPTION

For legal classes, the other condition information items are set as follows:

CLASS_ORIGIN = SUBCLASS_ORIGIN = '';
CONSTRAINT_CATALOG = CONSTRAINT_SCHEMA = CONSTRAINT_NAME = '';
CATALOG_NAME = SCHEMA_NAME = TABLE_NAME = COLUMN_NAME = '';
CURSOR_NAME = '';

The error values that are accessible after SIGNAL executes are the SQLSTATE value raised by the
SIGNAL statement and the MESSAGE_TEXT and MYSQL_ERRNO items. These values are available from
the C API:

• SQLSTATE value: Call mysql_sqlstate()

• MYSQL_ERRNO value: Call mysql_errno()

• MESSAGE_TEXT value: Call mysql_error()

From SQL, the output from SHOW WARNINGS and SHOW ERRORS indicates the MYSQL_ERRNO and
MESSAGE_TEXT values in the Code and Message columns.

Other condition information items can be set, but currently have no effect, in the sense that they are not
accessible from error returns. For example, you can set CLASS_ORIGIN in a SIGNAL statement, but
cannot see it after SIGNAL executes. In MySQL 5.6, condition information can be inspected with the
GET DIAGNOSTICS statement.

Effect of Signals on Handlers, Cursors, and Statements

Signals have different effects on statement execution depending on the signal class. The class
determines how severe an error is. MySQL ignores the value of the sql_mode system variable; in
particular, strict SQL mode does not matter. MySQL also ignores IGNORE: The intent of SIGNAL is to
raise a user-generated error explicitly, so a signal is never ignored.

In the following descriptions, “unhandled” means that no handler for the signaled SQLSTATE value has
been defined with DECLARE ... HANDLER.

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.



Database Administration Statements

1498

• Class = '01' (warning)

The value of the warning_count system variable goes up. SHOW WARNINGS shows the signal.
SQLWARNING handlers catch the signal. If the signal is unhandled in a function, statements do not
end.

• Class = '02' (not found)

NOT FOUND handlers catch the signal. There is no effect on cursors. If the signal is unhandled in a
function, statements end.

• Class > '02' (exception)

SQLEXCEPTION handlers catch the signal. If the signal is unhandled in a function, statements end.

• Class = '40'

Treated as an ordinary exception.

Example:

mysql> delimiter //
mysql> CREATE FUNCTION f () RETURNS INT
    -> BEGIN
    ->   SIGNAL SQLSTATE '01234';  -- signal a warning
    ->   RETURN 5;
    -> END//
mysql> delimiter ;
mysql> CREATE TABLE t (s1 INT);
mysql> INSERT INTO t VALUES (f());

The result is that a row containing 5 is inserted into table t. The warning that is signaled can be viewed
with SHOW WARNINGS.

13.7 Database Administration Statements

13.7.1 Account Management Statements

MySQL account information is stored in the tables of the mysql database. This database and the
access control system are discussed extensively in Chapter 5, MySQL Server Administration, which
you should consult for additional details.

Important

Some MySQL releases introduce changes to the structure of the grant tables
to add new privileges or features. To make sure that you can take advantage
of any new capabilities, update your grant tables to have the current structure
whenever you upgrade MySQL. See Section 4.4.7, “mysql_upgrade — Check
and Upgrade MySQL Tables”.

When the read_only system variable is enabled, account-management statements require the
SUPER privilege, in addition to any other required privileges. This is because they modify tables in the
mysql database.

13.7.1.1 CREATE USER Syntax

CREATE USER
    user [auth_option] [, user [auth_option]] ...

user:
    (see Section 6.2.3, “Specifying Account Names”)

auth_option: {



Account Management Statements

1499

    IDENTIFIED BY 'auth_string'
  | IDENTIFIED BY PASSWORD 'hash_string'
  | IDENTIFIED WITH auth_plugin
  | IDENTIFIED WITH auth_plugin AS 'hash_string'
}

The CREATE USER statement creates new MySQL accounts. An error occurs if you try to create an
account that already exists.

An account when first created has no privileges.

To use CREATE USER, you must have the global CREATE USER privilege, or the INSERT privilege for
the mysql database. When the read_only system variable is enabled, CREATE USER additionally
requires the SUPER privilege.

For each account, CREATE USER creates a new row in the mysql.user table with no privileges and
(as of MySQL 5.5.7) assigns the account an authentication plugin. Depending on the syntax used,
CREATE USER may also assign the account a password.

Each user value naming an account may be followed by an optional auth_option value that
specifies how authentication occurs for clients that use the account. This part of CREATE USER syntax
is shared with GRANT, so the description here applies to GRANT as well.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';

The host name part of the account name, if omitted, defaults to '%'.

The server assigns an authentication plugin and password to each account as follows, depending on
whether the user specification clause includes IDENTIFIED WITH to specify a plugin or IDENTIFIED
BY to specify a password:

Note

IDENTIFIED WITH is available as of MySQL 5.5.7. Before 5.5.7,
authentication plugins are not used, so only the remarks about IDENTIFIED
BY apply.

• With IDENTIFIED WITH, the server assigns the specified plugin and the account has no
password. If the optional AS 'hash_string' clause is also given, the string is stored as is in the
authentication_string column (it is assumed to be already hashed in the format required by
the plugin).

• With IDENTIFIED BY, the server assigns no plugin and assigns the specified password.

• With neither IDENTIFIED WITH nor IDENTIFIED BY, the server assigns no plugin and the
account has no password.

If the account has no password, the Password column in the account's mysql.user table row
remains empty, which is insecure. To set the password, use SET PASSWORD. See Section 13.7.1.6,
“SET PASSWORD Syntax”.

If the server assigns no plugin to the account, the plugin column in the account's mysql.user table
row remains empty.

For client connections that use a given account, the server invokes the authentication plugin assigned
to the account and the client must provide credentials as required by the authentication method that the
plugin implements. If the server cannot find the plugin, either at account-creation time or connect time,
an error occurs.

If an account's mysql.user table row has a nonempty plugin column:



Account Management Statements

1500

• The server authenticates client connection attempts using the named plugin.

• Changes to the account password using SET PASSWORD with PASSWORD() must be made
with the old_passwords system variable set to the value required by the authentication
plugin, so that PASSWORD() uses the appropriate password hashing method. If the plugin
is mysql_old_password, the password can also be changed using SET PASSWORD
with OLD_PASSWORD(), which uses pre-4.1 password hashing regardless of the value of
old_passwords.

If an account's mysql.user table row has an empty plugin column:

• The server authenticates client connection attempts using the mysql_native_password or
mysql_old_password authentication plugin, depending on the hash format of the password stored
in the Password column.

• Changes to the account password using SET PASSWORD can be made with PASSWORD(),
with old_passwords set to 0 or 1 for 4.1 or pre-4.1 password hashing, respectively, or
with OLD_PASSWORD(), which uses pre-4.1 password hashing regardless of the value of
old_passwords.

CREATE USER examples:

• To specify an authentication plugin for an account, use IDENTIFIED WITH auth_plugin. The
plugin name can be a quoted string literal or an unquoted name. 'auth_string' is an optional
quoted string literal to pass to the plugin. The plugin interprets the meaning of the string, so its format
is plugin specific and it is stored in the authentication_string column as given. (This value is
meaningful only for plugins that use that column.) Consult the documentation for a given plugin for
information about the authentication string values it accepts, if any.

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_native_password;

The server assigns the given authentication plugin to the account but no password. Clients must
provide no password when they connect. However, an account with no password is insecure.
To ensure that an account uses a specific authentication plugin and has a password with the
corresponding hash format, specify the plugin explicitly with IDENTIFIED WITH, then use SET
PASSWORD to set the password:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED WITH mysql_native_password;
SET old_passwords = 0;
SET PASSWORD FOR 'jeffrey'@'localhost' = PASSWORD('mypass');

Changes to the account password using SET PASSWORD with PASSWORD() must be made with
the old_passwords system variable set to the value required by the account's authentication
plugin, so that PASSWORD() uses the appropriate password hashing method. Therefore, to use the
mysql_old_password plugin instead, name that plugin in the CREATE USER statement and set
old_passwords to 1 before using SET PASSWORD.

• To specify a password for an account at account-creation time, use IDENTIFIED BY with the literal
cleartext password value:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';

The server assigns the given password to the account but no authentication plugin. Clients must
provide the password when they connect.

• To avoid specifying the cleartext password if you know its hash value (the value that PASSWORD()
would return for the password), specify the hash value preceded by the keyword PASSWORD:

CREATE USER 'jeffrey'@'localhost'



Account Management Statements

1501

IDENTIFIED BY PASSWORD '*90E462C37378CED12064BB3388827D2BA3A9B689';

The server assigns the given password to the account but no authentication plugin. Clients must
provide the password when they connect.

• To enable the user to connect with no password, include no IDENTIFIED BY clause:

CREATE USER 'jeffrey'@'localhost';

The server assigns no authentication plugin or password to the account. Clients must provide no
password when they connect. However, an account with no password is insecure. To avoid this, use
SET PASSWORD to set the account password.

For additional information about setting passwords and authentication plugins, see Section 6.3.5,
“Assigning Account Passwords”, and Section 6.3.6, “Pluggable Authentication”.

Important

CREATE USER may be recorded in server logs or on the client side in a history
file such as ~/.mysql_history, which means that cleartext passwords may
be read by anyone having read access to that information. For information
about password logging in the server logs, see Section 6.1.2.3, “Passwords and
Logging”. For similar information about client-side logging, see Section 4.5.1.3,
“mysql Logging”.

13.7.1.2 DROP USER Syntax

DROP USER user [, user] ...

The DROP USER statement removes one or more MySQL accounts and their privileges. It removes
privilege rows for the account from all grant tables. An error occurs for accounts that do not exist.

To use DROP USER, you must have the global CREATE USER privilege, or the DELETE privilege for the
mysql database. When the read_only system variable is enabled, DROP USER additionally requires
the SUPER privilege.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

DROP USER 'jeffrey'@'localhost';

The host name part of the account name, if omitted, defaults to '%'.

Important

DROP USER does not automatically close any open user sessions. Rather, in
the event that a user with an open session is dropped, the statement does not
take effect until that user's session is closed. Once the session is closed, the
user is dropped, and that user's next attempt to log in will fail. This is by design.

DROP USER does not automatically drop or invalidate databases or objects within them that the
old user created. This includes stored programs or views for which the DEFINER attribute names
the dropped user. Attempts to access such objects may produce an error if they execute in definer
security context. (For information about security context, see Section 20.6, “Access Control for Stored
Programs and Views”.)

13.7.1.3 GRANT Syntax

GRANT
    priv_type [(column_list)]



Account Management Statements

1502

      [, priv_type [(column_list)]] ...
    ON [object_type] priv_level
    TO user [auth_option] [, user [auth_option]] ...
    [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]
    [WITH {GRANT OPTION | resource_option} ...]

GRANT PROXY ON user
    TO user [, user] ...
    [WITH GRANT OPTION]

object_type: {
    TABLE
  | FUNCTION
  | PROCEDURE
}

priv_level: {
    *
  | *.*
  | db_name.*
  | db_name.tbl_name
  | tbl_name
  | db_name.routine_name
}

user:
    (see Section 6.2.3, “Specifying Account Names”)

auth_option: {
    IDENTIFIED BY 'auth_string'
  | IDENTIFIED BY PASSWORD 'hash_string'
  | IDENTIFIED WITH auth_plugin
  | IDENTIFIED WITH auth_plugin AS 'hash_string'
}

tls_option: {
    SSL
  | X509
  | CIPHER 'cipher'
  | ISSUER 'issuer'
  | SUBJECT 'subject'
}

resource_option: {
  | MAX_QUERIES_PER_HOUR count
  | MAX_UPDATES_PER_HOUR count
  | MAX_CONNECTIONS_PER_HOUR count
  | MAX_USER_CONNECTIONS count
}

The GRANT statement grants privileges to MySQL user accounts. GRANT also serves to specify other
account characteristics such as use of secure connections and limits on access to server resources.

To use GRANT, you must have the GRANT OPTION privilege, and you must have the privileges that you
are granting. When the read_only system variable is enabled, GRANT additionally requires the SUPER
privilege.

The REVOKE statement is related to GRANT and enables administrators to remove account privileges.
See Section 13.7.1.5, “REVOKE Syntax”.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

GRANT ALL ON db1.* TO 'jeffrey'@'localhost';

The host name part of the account, if omitted, defaults to '%'.

Normally, a database administrator first uses CREATE USER to create an account, then GRANT to
define its privileges and characteristics. For example:



Account Management Statements

1503

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
GRANT ALL ON db1.* TO 'jeffrey'@'localhost';
GRANT SELECT ON db2.invoice TO 'jeffrey'@'localhost';
GRANT USAGE ON *.* TO 'jeffrey'@'localhost' WITH MAX_QUERIES_PER_HOUR 90;

Note

Examples shown here include no IDENTIFIED clause. It is assumed that you
establish passwords with CREATE USER at account-creation time to avoid
creating insecure accounts.

If an account named in a GRANT statement does not already exist, GRANT may create it under the
conditions described later in the discussion of the NO_AUTO_CREATE_USER SQL mode.

From the mysql program, GRANT responds with Query OK, 0 rows affected when executed
successfully. To determine what privileges result from the operation, use SHOW GRANTS. See
Section 13.7.5.22, “SHOW GRANTS Syntax”.

There are several aspects to the GRANT statement, described under the following topics in this section:

• Object Quoting Guidelines

• Privileges Supported by MySQL

• Global Privileges

• Database Privileges

• Table Privileges

• Column Privileges

• Stored Routine Privileges

• Proxy User Privileges

• Account Names and Passwords

• Implicit Account Creation

• Other Account Characteristics

• MySQL and Standard SQL Versions of GRANT

GRANT supports host names up to 60 characters long. User names can be up to 16 characters.
Database, table, column, and routine names can be up to 64 characters.

Warning

Do not attemt to change the permissible length for user names by altering the
mysql.user table. Doing so results in unpredictable behavior which may
even make it impossible for users to log in to the MySQL server. Never alter
the structure of tables in the mysql database in any manner except by means
of the procedure described in Section 4.4.7, “mysql_upgrade — Check and
Upgrade MySQL Tables”.

Important

GRANT may be recorded in server logs or on the client side in a history file
such as ~/.mysql_history, which means that cleartext passwords may be
read by anyone having read access to that information. For information about
password logging in the server logs, see Section 6.1.2.3, “Passwords and



Account Management Statements

1504

Logging”. For similar information about client-side logging, see Section 4.5.1.3,
“mysql Logging”.

Object Quoting Guidelines

Several objects within GRANT statements are subject to quoting, although quoting is optional in
many cases: Account, database, table, column, and routine names. For example, if a user_name
or host_name value in an account name is legal as an unquoted identifier, you need not quote it.
However, quotation marks are necessary to specify a user_name string containing special characters
(such as -), or a host_name string containing special characters or wildcard characters (such as %);
for example, 'test-user'@'%.com'. Quote the user name and host name separately.

To specify quoted values, quote database, table, column, and routine names as identifiers. Quote user
names and host names as identifiers or as strings. Quote passwords as strings. For string-quoting
and identifier-quoting guidelines, see Section 9.1.1, “String Literals”, and Section 9.2, “Schema Object
Names”.

The _ and % wildcards are permitted when specifying database names in GRANT statements that grant
privileges at the database level. This means, for example, that if you want to use a _ character as part
of a database name, you should specify it as \_ in the GRANT statement, to prevent the user from
being able to access additional databases matching the wildcard pattern; for example, GRANT ... ON
`foo\_bar`.* TO ....

Privileges Supported by MySQL

The following table summarizes the permissible priv_type privilege types that can be specified
for the GRANT and REVOKE statements, and the levels at which each privilege can be granted. For
additional information about each privilege, see Section 6.2.1, “Privileges Provided by MySQL”.

Table 13.3 Permissible Privileges for GRANT and REVOKE

Privilege Meaning and Grantable Levels

ALL [PRIVILEGES] Grant all privileges at specified access level except GRANT OPTION
and PROXY.

ALTER Enable use of ALTER TABLE. Levels: Global, database, table.

ALTER ROUTINE Enable stored routines to be altered or dropped. Levels: Global,
database, procedure.

CREATE Enable database and table creation. Levels: Global, database, table.

CREATE ROUTINE Enable stored routine creation. Levels: Global, database.

CREATE TABLESPACE Enable tablespaces and log file groups to be created, altered, or
dropped. Level: Global.

CREATE TEMPORARY
TABLES

Enable use of CREATE TEMPORARY TABLE. Levels: Global, database.

CREATE USER Enable use of CREATE USER, DROP USER, RENAME USER, and
REVOKE ALL PRIVILEGES. Level: Global.

CREATE VIEW Enable views to be created or altered. Levels: Global, database, table.

DELETE Enable use of DELETE. Level: Global, database, table.

DROP Enable databases, tables, and views to be dropped. Levels: Global,
database, table.

EVENT Enable use of events for the Event Scheduler. Levels: Global,
database.

EXECUTE Enable the user to execute stored routines. Levels: Global, database,
table.

FILE Enable the user to cause the server to read or write files. Level: Global.



Account Management Statements

1505

Privilege Meaning and Grantable Levels

GRANT OPTION Enable privileges to be granted to or removed from other accounts.
Levels: Global, database, table, procedure, proxy.

INDEX Enable indexes to be created or dropped. Levels: Global, database,
table.

INSERT Enable use of INSERT. Levels: Global, database, table, column.

LOCK TABLES Enable use of LOCK TABLES on tables for which you have the SELECT
privilege. Levels: Global, database.

PROCESS Enable the user to see all processes with SHOW PROCESSLIST. Level:
Global.

PROXY Enable user proxying. Level: From user to user.

REFERENCES Enable foreign key creation. Levels: Global, database, table, column.

RELOAD Enable use of FLUSH operations. Level: Global.

REPLICATION CLIENT Enable the user to ask where master or slave servers are. Level:
Global.

REPLICATION SLAVE Enable replication slaves to read binary log events from the master.
Level: Global.

SELECT Enable use of SELECT. Levels: Global, database, table, column.

SHOW DATABASES Enable SHOW DATABASES to show all databases. Level: Global.

SHOW VIEW Enable use of SHOW CREATE VIEW. Levels: Global, database, table.

SHUTDOWN Enable use of mysqladmin shutdown. Level: Global.

SUPER Enable use of other administrative operations such as CHANGE
MASTER TO, KILL, PURGE BINARY LOGS, SET GLOBAL, and
mysqladmin debug command. Level: Global.

TRIGGER Enable trigger operations. Levels: Global, database, table.

UPDATE Enable use of UPDATE. Levels: Global, database, table, column.

USAGE Synonym for “no privileges”

The PROXY privilege was added in MySQL 5.5.7.

A trigger is associated with a table. To create or drop a trigger, you must have the TRIGGER privilege
for the table, not the trigger.

In GRANT statements, the ALL [PRIVILEGES] or PROXY privilege must be named by itself and cannot
be specified along with other privileges. ALL [PRIVILEGES] stands for all privileges available for the
level at which privileges are to be granted except for the GRANT OPTION and PROXY privileges.

USAGE can be specified to create a user that has no privileges, or to specify the REQUIRE or WITH
clauses for an account without changing its existing privileges.

MySQL account information is stored in the tables of the mysql database. For additional details,
consult Section 6.2, “The MySQL Access Privilege System”, which discusses the mysql database and
the access control system extensively.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to
revoke these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not
create such rows when lower_case_table_names is set, but such rows might have been created
prior to setting that variable.)

Privileges can be granted at several levels, depending on the syntax used for the ON clause. For
REVOKE, the same ON syntax specifies which privileges to remove.



Account Management Statements

1506

For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist at
the level you are granting. For example, GRANT ALL ON db_name.* is a database-level statement,
so it does not grant any global-only privileges such as FILE. Granting ALL does not assign the GRANT
OPTION or PROXY privilege.

The object_type clause, if present, should be specified as TABLE, FUNCTION, or PROCEDURE when
the following object is a table, a stored function, or a stored procedure.

The privileges for a database, table, column, or routine are formed additively as the logical OR of the
privileges at each of the privilege levels. For example, if a user has a global SELECT privilege, the
privilege cannot be denied by an absence of the privilege at the database, table, or column level.
Details of the privilege-checking procedure are presented in Section 6.2.5, “Access Control, Stage 2:
Request Verification”.

If you are using table, column, or routine privileges for even one user, the server examines table,
column, and routine privileges for all users and this slows down MySQL a bit. Similarly, if you limit the
number of queries, updates, or connections for any users, the server must monitor these values.

MySQL enables you to grant privileges on databases or tables that do not exist. For tables, the
privileges to be granted must include the CREATE privilege. This behavior is by design, and is intended
to enable the database administrator to prepare user accounts and privileges for databases or tables
that are to be created at a later time.

Important

MySQL does not automatically revoke any privileges when you drop a database
or table. However, if you drop a routine, any routine-level privileges granted for
that routine are revoked.

Global Privileges

Global privileges are administrative or apply to all databases on a given server. To assign global
privileges, use ON *.* syntax:

GRANT ALL ON *.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON *.* TO 'someuser'@'somehost';

The CREATE TABLESPACE, CREATE USER, FILE, PROCESS, RELOAD, REPLICATION CLIENT,
REPLICATION SLAVE, SHOW DATABASES, SHUTDOWN, and SUPER privileges are administrative and
can only be granted globally.

Other privileges can be granted globally or at more specific levels.

GRANT OPTION granted at the global level for any global privilege applies to all global privileges.

MySQL stores global privileges in the mysql.user table.

Database Privileges

Database privileges apply to all objects in a given database. To assign database-level privileges, use
ON db_name.* syntax:

GRANT ALL ON mydb.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.* TO 'someuser'@'somehost';

If you use ON * syntax (rather than ON *.*) and you have selected a default database, privileges are
assigned at the database level for the default database. An error occurs if there is no default database.

The CREATE, DROP, EVENT, GRANT OPTION, LOCK TABLES, and REFERENCES privileges can be
specified at the database level. Table or routine privileges also can be specified at the database level,
in which case they apply to all tables or routines in the database.



Account Management Statements

1507

MySQL stores database privileges in the mysql.db table.

Table Privileges

Table privileges apply to all columns in a given table. To assign table-level privileges, use ON
db_name.tbl_name syntax:

GRANT ALL ON mydb.mytbl TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.mytbl TO 'someuser'@'somehost';

If you specify tbl_name rather than db_name.tbl_name, the statement applies to tbl_name in the
default database. An error occurs if there is no default database.

The permissible priv_type values at the table level are ALTER, CREATE VIEW, CREATE, DELETE,
DROP, GRANT OPTION, INDEX, INSERT, REFERENCES, SELECT, SHOW VIEW, TRIGGER, and UPDATE.

MySQL stores table privileges in the mysql.tables_priv table.

Column Privileges

Column privileges apply to single columns in a given table. Each privilege to be granted at the column
level must be followed by the column or columns, enclosed within parentheses.

GRANT SELECT (col1), INSERT (col1,col2) ON mydb.mytbl TO 'someuser'@'somehost';

The permissible priv_type values for a column (that is, when you use a column_list clause) are
INSERT, REFERENCES, SELECT, and UPDATE.

MySQL stores column privileges in the mysql.columns_priv table.

Stored Routine Privileges

The ALTER ROUTINE, CREATE ROUTINE, EXECUTE, and GRANT OPTION privileges apply to stored
routines (procedures and functions). They can be granted at the global and database levels. Except for
CREATE ROUTINE, these privileges can be granted at the routine level for individual routines.

GRANT CREATE ROUTINE ON mydb.* TO 'someuser'@'somehost';
GRANT EXECUTE ON PROCEDURE mydb.myproc TO 'someuser'@'somehost';

The permissible priv_type values at the routine level are ALTER ROUTINE, EXECUTE, and GRANT
OPTION. CREATE ROUTINE is not a routine-level privilege because you must have this privilege to
create a routine in the first place.

MySQL stores routine-level privileges in the mysql.procs_priv table.

Proxy User Privileges

The PROXY privilege enables one user to be a proxy for another. The proxy user impersonates or takes
the identity of the proxied user.

GRANT PROXY ON 'localuser'@'localhost' TO 'externaluser'@'somehost';

When PROXY is granted, it must be the only privilege named in the GRANT statement, the REQUIRE
clause cannot be given, and the only permitted WITH option is WITH GRANT OPTION.

Proxying requires that the proxy user authenticate through a plugin that returns the name of the proxied
user to the server when the proxy user connects, and that the proxy user have the PROXY privilege for
the proxied user. For details and examples, see Section 6.3.7, “Proxy Users”.



Account Management Statements

1508

MySQL stores proxy privileges in the mysql.proxies_priv table.

Account Names and Passwords

A user value in a GRANT statement indicates a MySQL account to which the statement applies. To
accommodate granting rights to users from arbitrary hosts, MySQL supports specifying the user value
in the form 'user_name'@'host_name'.

You can specify wildcards in the host name. For example, 'user_name'@'%.example.com' applies
to user_name for any host in the example.com domain, and 'user_name'@'192.168.1.%'
applies to user_name for any host in the 192.168.1 class C subnet.

The simple form 'user_name' is a synonym for 'user_name'@'%'.

MySQL does not support wildcards in user names. To refer to an anonymous user, specify an account
with an empty user name with the GRANT statement:

GRANT ALL ON test.* TO ''@'localhost' ...;

In this case, any user who connects from the local host with the correct password for the anonymous
user will be permitted access, with the privileges associated with the anonymous-user account.

For additional information about user name and host name values in account names, see
Section 6.2.3, “Specifying Account Names”.

Warning

If you permit local anonymous users to connect to the MySQL server, you
should also grant privileges to all local users as 'user_name'@'localhost'.
Otherwise, the anonymous user account for localhost in the mysql.user
table (created during MySQL installation) is used when named users try to log
in to the MySQL server from the local machine. For details, see Section 6.2.4,
“Access Control, Stage 1: Connection Verification”.

To determine whether this issue applies to you, execute the following query,
which lists any anonymous users:

SELECT Host, User FROM mysql.user WHERE User='';

To avoid the problem just described, delete the local anonymous user account
using this statement:

DROP USER ''@'localhost';

For GRANT syntaxes that permit an auth_option value to follow a user value, auth_option
begins with IDENTIFIED and indicates how the account authenticates by specifying an account
authentication plugin, credentials (password), or both. Syntax of the auth_option clause is the same
as for the CREATE USER statement. For details, see Section 13.7.1.1, “CREATE USER Syntax”.

When IDENTIFIED is present and you have the global grant privilege (GRANT OPTION), any
password specified becomes the new password for the account, even if the account exists and already
has a password. Without IDENTIFIED, the account password remains unchanged.

Implicit Account Creation

If an account named in a GRANT statement does not exist, the action taken depends on the
NO_AUTO_CREATE_USER SQL mode:



Account Management Statements

1509

• If NO_AUTO_CREATE_USER is not enabled, GRANT creates the account. This is very insecure unless
you specify a nonempty password using IDENTIFIED BY.

• If NO_AUTO_CREATE_USER is enabled, GRANT fails and does not create the account, unless you
specify a nonempty password using IDENTIFIED BY or name an authentication plugin using
IDENTIFIED WITH.

Other Account Characteristics

MySQL can check X509 certificate attributes in addition to the usual authentication that is based
on the user name and credentials. For background information on the use of SSL with MySQL, see
Section 6.4, “Using Secure Connections”.

The optional REQUIRE clause specifies SSL-related options for a MySQL account, using one or more
tls_option values.

GRANT permits these tls_option values:

• NONE

Indicates that the account has no SSL or X509 requirements. Unencrypted connections are
permitted if the user name and password are valid. However, encrypted connections can also be
used, at the client's option, if the client has the proper certificate and key files. That is, the client need
not specify any SSL command options, in which case the connection will be unencrypted. To use an
encrypted connection, the client must specify either the --ssl-ca option, or all three of the --ssl-
ca, --ssl-key, and --ssl-cert options.

NONE is the default if no SSL-related REQUIRE options are specified.

• SSL

Tells the server to permit only encrypted connections for the account.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
  REQUIRE SSL;

To connect, the client must specify the --ssl-ca option to authenticate the server certificate, and
may additionally specify the --ssl-key and --ssl-cert options. If neither the --ssl-ca option
nor --ssl-capath option is specified, the client does not authenticate the server certificate.

• X509

Requires that the client must have a valid certificate but the exact certificate, issuer, and subject do
not matter. The only requirement is that it should be possible to verify its signature with one of the CA
certificates. Use of X509 certificates always implies encryption, so the SSL option is unnecessary in
this case.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
  REQUIRE X509;

The client must specify the --ssl-key and --ssl-cert options to connect. (It is recommended
but not required that --ssl-ca also be specified so that the public certificate provided by the server
can be verified.) This is true for ISSUER and SUBJECT as well because those REQUIRE options
imply the requirements of X509.

• ISSUER 'issuer'

Places the restriction on connection attempts that the client must present a valid X509 certificate
issued by CA 'issuer'. If the client presents a certificate that is valid but has a different issuer, the
server rejects the connection. Use of X509 certificates always implies encryption, so the SSL option
is unnecessary in this case.



Account Management Statements

1510

Because ISSUER implies the requirements of X509, the client must specify the --ssl-key and --
ssl-cert options to connect. (It is recommended but not required that --ssl-ca also be specified
so that the public certificate provided by the server can be verified.)

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
  REQUIRE ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
    O=MySQL/CN=CA/emailAddress=ca@example.com';

Note

If MySQL is linked against a version of OpenSSL older than 0.9.6h, use
Email rather than emailAddress in the 'issuer' value.

• SUBJECT 'subject'

Places the restriction on connection attempts that the client must present a valid X509 certificate
containing the subject subject. If the client presents a certificate that is valid but has a different
subject, the server rejects the connection. Use of X509 certificates always implies encryption, so the
SSL option is unnecessary in this case.

Because SUBJECT implies the requirements of X509, the client must specify the --ssl-key and --
ssl-cert options to connect. (It is recommended but not required that --ssl-ca also be specified
so that the public certificate provided by the server can be verified.)

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
  REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
    O=MySQL demo client certificate/
    CN=client/emailAddress=client@example.com';

MySQL does a simple string comparison of the 'subject' value to the value in the certificate, so
lettercase and component ordering must be given exactly as present in the certificate.

Note

Regarding emailAddress, see the note in the description of REQUIRE
ISSUER.

• CIPHER 'cipher'

Requests a specific cipher method for encrypting connections. This option is needed to ensure that
ciphers and key lengths of sufficient strength are used. SSL itself can be weak if old algorithms using
short encryption keys are used.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
  REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like this:

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
  REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
    O=MySQL demo client certificate/
    CN=client/emailAddress=client@example.com'
  AND ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
    O=MySQL/CN=CA/emailAddress=ca@example.com'
  AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

The order of the options does not matter, but no option can be specified twice. The AND keyword is
optional between REQUIRE options.

The optional WITH clause is used for these purposes:



Account Management Statements

1511

• To enable a user to grant privileges to other users

• To specify resource limits for a user

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges the
user has at the specified privilege level.

To grant the GRANT OPTION privilege to an account without otherwise changing its privileges, do this:

GRANT USAGE ON *.* TO 'someuser'@'somehost' WITH GRANT OPTION;

Be careful to whom you give the GRANT OPTION privilege because two users with different privileges
may be able to combine privileges!

You cannot grant another user a privilege which you yourself do not have; the GRANT OPTION
privilege enables you to assign only those privileges which you yourself possess.

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level, any
privileges the user possesses (or may be given in the future) at that level can also be granted by that
user to other users. Suppose that you grant a user the INSERT privilege on a database. If you then
grant the SELECT privilege on the database and specify WITH GRANT OPTION, that user can give to
other users not only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to
the user on the database, the user can grant INSERT, SELECT, and UPDATE.

For a nonadministrative user, you should not grant the ALTER privilege globally or for the mysql
database. If you do that, the user can try to subvert the privilege system by renaming tables!

For additional information about security risks associated with particular privileges, see Section 6.2.1,
“Privileges Provided by MySQL”.

It is possible to place limits on use of server resources by an account, as discussed in Section 6.3.4,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values. Limits not specified retain their current values.

GRANT permits these resource_option values:

• MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count,
MAX_CONNECTIONS_PER_HOUR count

These options restrict the number of queries, updates, and connections to the server permitted to
this account during any given one-hour period. (Queries for which results are served from the query
cache do not count against the MAX_QUERIES_PER_HOUR limit.) If count is 0 (the default), this
means that there is no limitation for the account.

• MAX_USER_CONNECTIONS count

Restricts the maximum number of simultaneous connections to the server by the account. A
nonzero count specifies the limit for the account explicitly. If count is 0 (the default), the server
determines the number of simultaneous connections for the account from the global value of the
max_user_connections system variable. If max_user_connections is also zero, there is no
limit for the account.

If a given resource limit is specified multiple times, the last instance takes precedence.

To specify resource limits for an existing user without affecting existing privileges, use GRANT USAGE
at the global level (ON *.*) and name the limits to be changed. For example:

GRANT USAGE ON *.* TO ...
  WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;

MySQL and Standard SQL Versions of GRANT



Account Management Statements

1512

The biggest differences between the MySQL and standard SQL versions of GRANT are:

• MySQL associates privileges with the combination of a host name and user name and not with only a
user name.

• Standard SQL does not have global or database-level privileges, nor does it support all the privilege
types that MySQL supports.

• MySQL does not support the standard SQL UNDER privilege.

• Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all privileges
the user has been granted are revoked. This is also true in MySQL if you use DROP USER. See
Section 13.7.1.2, “DROP USER Syntax”.

• In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL,
when you revoke a privilege, all privileges that were granted based on that privilege are also
revoked. In MySQL, privileges can be dropped only with explicit DROP USER or REVOKE statements
or by manipulating the MySQL grant tables directly.

• In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In this
case, you can still execute INSERT statements on the table, provided that you insert values only for
those columns for which you have the INSERT privilege. The omitted columns are set to their implicit
default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any of the
omitted columns have no default value. (Standard SQL requires you to have the INSERT privilege
on all columns.) For information about strict SQL mode and implicit default values, see Section 5.1.8,
“Server SQL Modes”, and Section 11.6, “Data Type Default Values”.

13.7.1.4 RENAME USER Syntax

RENAME USER old_user TO new_user
    [, old_user TO new_user] ...

The RENAME USER statement renames existing MySQL accounts. An error occurs for old accounts that
do not exist or new accounts that already exist.

To use RENAME USER, you must have the global CREATE USER privilege, or the UPDATE privilege for
the mysql database. When the read_only system variable is enabled, RENAME USER additionally
requires the SUPER privilege.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

RENAME USER 'jeffrey'@'localhost' TO 'jeff'@'127.0.0.1';

The host name part of the account name, if omitted, defaults to '%'.

RENAME USER causes the privileges held by the old user to be those held by the new user. However,
RENAME USER does not automatically drop or invalidate databases or objects within them that the old
user created. This includes stored programs or views for which the DEFINER attribute names the old
user. Attempts to access such objects may produce an error if they execute in definer security context.
(For information about security context, see Section 20.6, “Access Control for Stored Programs and
Views”.)

The privilege changes take effect as indicated in Section 6.2.6, “When Privilege Changes Take Effect”.

13.7.1.5 REVOKE Syntax

REVOKE
    priv_type [(column_list)]
      [, priv_type [(column_list)]] ...



Account Management Statements

1513

    ON [object_type] priv_level
    FROM user [, user] ...

REVOKE ALL [PRIVILEGES], GRANT OPTION
    FROM user [, user] ...

REVOKE PROXY ON user
    FROM user [, user] ...

The REVOKE statement enables system administrators to revoke privileges from MySQL accounts.

When the read_only system variable is enabled, REVOKE requires the SUPER privilege in addition to
any other required privileges described in the following discussion.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For
example:

REVOKE INSERT ON *.* FROM 'jeffrey'@'localhost';

The host name part of the account name, if omitted, defaults to '%'.

For details on the levels at which privileges exist, the permissible priv_type, priv_level, and
object_type values, and the syntax for specifying users and passwords, see Section 13.7.1.3,
“GRANT Syntax”

To use the first REVOKE syntax, you must have the GRANT OPTION privilege, and you must have the
privileges that you are revoking.

To revoke all privileges, use the second syntax, which drops all global, database, table, column, and
routine privileges for the named user or users:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

To use this REVOKE syntax, you must have the global CREATE USER privilege, or the UPDATE privilege
for the mysql database.

User accounts from which privileges are to be revoked must exist.

REVOKE removes privileges, but does not drop mysql.user table entries. To remove a user account
entirely, use DROP USER. See Section 13.7.1.2, “DROP USER Syntax”.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to
revoke these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not
create such rows when lower_case_table_names is set, but such rows might have been created
prior to setting the variable.)

When successfully executed from the mysql program, REVOKE responds with Query OK, 0
rows affected. To determine what privileges remain after the operation, use SHOW GRANTS. See
Section 13.7.5.22, “SHOW GRANTS Syntax”.

13.7.1.6 SET PASSWORD Syntax

SET PASSWORD [FOR user] = password_option

password_option: {
    PASSWORD('auth_string')
  | OLD_PASSWORD('auth_string')
  | 'hash_string'
}

The SET PASSWORD statement assigns a password to a MySQL user account, specified as either a
cleartext (unencrypted) or encrypted value:



Account Management Statements

1514

• 'auth_string' represents a cleartext password.

• 'hash_string' represents an encrypted password.

SET PASSWORD can be used with or without an explicitly named user account:

• With a FOR user clause, the statement sets the password for the named account, which must exist:

SET PASSWORD FOR 'jeffrey'@'localhost' = password_option;

In this case, you must have the UPDATE privilege for the mysql database.

• With no FOR user clause, the statement sets the password for the current user:

SET PASSWORD = password_option;

Any client who connects to the server using a nonanonymous account can change the password for
that account. To see which account the server authenticated you as, invoke the CURRENT_USER()
function:

SELECT CURRENT_USER();

When the read_only system variable is enabled, SET PASSWORD requires the SUPER privilege in
addition to any other required privileges.

If a FOR user clause is given, the account name uses the format described in Section 6.2.3,
“Specifying Account Names”. The user value should be given as 'user_name'@'host_name',
where 'user_name' and 'host_name' are exactly as listed in the User and Host columns of the
account's mysql.user table row. The host name part of the account name, if omitted, defaults to '%'.
For example, to set the password for an account with User and Host column values of 'bob' and
'%.example.org', write the statement like this:

SET PASSWORD FOR 'bob'@'%.example.org' = PASSWORD('auth_string');

The password can be specified in these ways:

• Using the PASSWORD() function

The 'auth_string' function argument is the cleartext (unencrypted) password. PASSWORD()
hashes the password and returns the encrypted password string for storage in the mysql.user
account row.

The PASSWORD() function hashes the password using the hashing method determined by the
value of the old_passwords system variable value. It should be set to a value compatible with
the hash format required by the account authentication plugin. For example, if the account uses the
mysql_native_password authentication plugin, old_passwords should be 0 for PASSWORD()
to produce a hash value in the correct format. For mysql_old_password, old_passwords should
be 1.

• Using the OLD_PASSWORD() function:

The 'auth_string' function argument is the cleartext (unencrypted) password.
OLD_PASSWORD() hashes the password using pre-4.1 hashing and returns the encrypted password
string for storage in the mysql.user account row. This hashing method is appropriate only for
accounts that use the mysql_old_password authentication plugin.

• Using an already encrypted password string

The password is specified as a string literal. It must represent the already encrypted password value,
in the hash format required by the authentication method used for the account.



Table Maintenance Statements

1515

The following table shows the permitted values of old_passwords, the password hashing method for
each value, and which authentication plugins use passwords hashed with each method.

Value Password Hashing Method Associated Authentication Plugin

0 or OFF MySQL 4.1 native hashing mysql_native_password

1 or ON Pre-4.1 (“old”) hashing mysql_old_password

For more information about setting passwords, see Section 6.3.5, “Assigning Account Passwords”.

Important

SET PASSWORD may be recorded in server logs or on the client side in a history
file such as ~/.mysql_history, which means that cleartext passwords may
be read by anyone having read access to that information. For information
about password logging in the server logs, see Section 6.1.2.3, “Passwords and
Logging”. For similar information about client-side logging, see Section 4.5.1.3,
“mysql Logging”.

Caution

If you are connecting to a MySQL 4.1 or later server using a pre-4.1 client
program, do not change your password without first reading Section 6.1.2.4,
“Password Hashing in MySQL”. The default password hashing format changed
in MySQL 4.1, and if you change your password, it might be stored using a
hashing format that pre-4.1 clients cannot generate, thus preventing you from
connecting to the server afterward.

If you are using MySQL Replication, be aware that, currently, a password used by a replication slave
as part of a CHANGE MASTER TO statement is effectively limited to 32 characters in length; if the
password is longer, any excess characters are truncated. This is not due to any limit imposed by the
MySQL Server generally, but rather is an issue specific to MySQL Replication. (For more information,
see Bug #43439.)

13.7.2 Table Maintenance Statements

13.7.2.1 ANALYZE TABLE Syntax

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE
    tbl_name [, tbl_name] ...

ANALYZE TABLE analyzes and stores the key distribution for a table. During the analysis, the table
is locked with a read lock for InnoDB and MyISAM. This statement works with InnoDB, NDB, and
MyISAM tables. For MyISAM tables, this statement is equivalent to using myisamchk --analyze.
This statement does not work with views.

For more information on how the analysis works within InnoDB, see Section 14.9.11, “Configuring
Optimizer Statistics for InnoDB”. Also see Section 14.9.11.1, “Estimating ANALYZE TABLE Complexity
for InnoDB Tables” and Section 14.11.1.7, “Limits on InnoDB Tables”.

MySQL uses the stored key distribution to decide the order in which tables should be joined when you
perform a join on something other than a constant. In addition, key distributions can be used when
deciding which indexes to use for a specific table within a query.

This statement requires SELECT and INSERT privileges for the table.

ANALYZE TABLE is supported for partitioned tables, and you can use ALTER TABLE ... ANALYZE
PARTITION to analyze one or more partitions; for more information, see Section 13.1.7, “ALTER
TABLE Syntax”, and Section 19.3.3, “Maintenance of Partitions”.



Table Maintenance Statements

1516

ANALYZE TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always analyze

Msg_type status, error, info, note, or warning

Msg_text An informational message

You can check the stored key distribution with the SHOW INDEX statement. See Section 13.7.5.23,
“SHOW INDEX Syntax”.

If the table has not changed since the last ANALYZE TABLE statement, the table is not analyzed again.

By default, the server writes ANALYZE TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its
alias LOCAL.

13.7.2.2 CHECK TABLE Syntax

CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option = {
    FOR UPGRADE
  | QUICK
  | FAST
  | MEDIUM
  | EXTENDED
  | CHANGED
}

CHECK TABLE checks a table or tables for errors. CHECK TABLE works for InnoDB, MyISAM,
ARCHIVE, and CSV tables. For MyISAM tables, the key statistics are updated as well.

Before running CHECK TABLE on InnoDB tables, see CHECK TABLE Usage Notes for InnoDB Tables.

To check a table, you must have some privilege for it.

CHECK TABLE can also check views for problems, such as tables that are referenced in the view
definition that no longer exist.

CHECK TABLE is supported for partitioned tables, and you can use ALTER TABLE ... CHECK
PARTITION to check one or more partitions; for more information, see Section 13.1.7, “ALTER TABLE
Syntax”, and Section 19.3.3, “Maintenance of Partitions”.

Output

CHECK TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always check

Msg_type status, error, info, note, or warning

Msg_text An informational message

The statement might produce many rows of information for each checked table. The last row has a
Msg_type value of status and the Msg_text normally should be OK. If you don't get OK, or Table
is already up to date for a MyISAM table, you should normally run a repair of the table. See



Table Maintenance Statements

1517

Section 7.6, “MyISAM Table Maintenance and Crash Recovery”. Table is already up to date
means that the storage engine for the table indicated that there was no need to check the table.

Checking Version Compatibility

The FOR UPGRADE option checks whether the named tables are compatible with the current version
of MySQL. With FOR UPGRADE, the server checks each table to determine whether there have been
any incompatible changes in any of the table's data types or indexes since the table was created. If not,
the check succeeds. Otherwise, if there is a possible incompatibility, the server runs a full check on the
table (which might take some time). If the full check succeeds, the server marks the table's .frm file
with the current MySQL version number. Marking the .frm file ensures that further checks for the table
with the same version of the server will be fast.

Incompatibilities might occur because the storage format for a data type has changed or because its
sort order has changed. Our aim is to avoid these changes, but occasionally they are necessary to
correct problems that would be worse than an incompatibility between releases.

FOR UPGRADE discovers these incompatibilities:

• The indexing order for end-space in TEXT columns for InnoDB and MyISAM tables changed
between MySQL 4.1 and 5.0.

• The storage method of the new DECIMAL data type changed between MySQL 5.0.3 and 5.0.5.

• If your table was created by a different version of the MySQL server than the one you are currently
running, FOR UPGRADE indicates that the table has an .frm file with an incompatible version.
In this case, the result set returned by CHECK TABLE contains a line with a Msg_type value of
error and a Msg_text value of Table upgrade required. Please do "REPAIR TABLE
`tbl_name`" to fix it!

• Changes are sometimes made to character sets or collations that require table indexes to be rebuilt.
For details about such changes, see Section 2.11.1.1, “Changes Affecting Upgrades to MySQL
5.5”. For information about rebuilding tables, see Section 2.11.3, “Rebuilding or Repairing Tables or
Indexes”.

Checking Data Consistency

The following table shows the other check options that can be given. These options are passed to the
storage engine, which may use them or not.

Type Meaning

QUICK Do not scan the rows to check for incorrect links. Applies to InnoDB and MyISAM
tables and views.

FAST Check only tables that have not been closed properly. Applies only to MyISAM tables
and views; ignored for InnoDB.

CHANGED Check only tables that have been changed since the last check or that have not been
closed properly. Applies only to MyISAM tables and views; ignored for InnoDB.

MEDIUM Scan rows to verify that deleted links are valid. This also calculates a key checksum
for the rows and verifies this with a calculated checksum for the keys. Applies only to
MyISAM tables and views; ignored for InnoDB.

EXTENDED Do a full key lookup for all keys for each row. This ensures that the table is 100%
consistent, but takes a long time. Applies only to MyISAM tables and views; ignored for
InnoDB.

If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for dynamic-
format MyISAM tables is MEDIUM. This has the same result as running myisamchk --medium-check
tbl_name on the table. The default check type also is MEDIUM for static-format MyISAM tables, unless



Table Maintenance Statements

1518

CHANGED or FAST is specified. In that case, the default is QUICK. The row scan is skipped for CHANGED
and FAST because the rows are very seldom corrupted.

You can combine check options, as in the following example that does a quick check on the table to
determine whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note

If CHECK TABLE finds no problems with a table that is marked as “corrupted” or
“not closed properly”, CHECK TABLE may remove the mark.

If a table is corrupted, the problem is most likely in the indexes and not in the data part. All of the
preceding check types check the indexes thoroughly and should thus find most errors.

If you just want to check a table that you assume is okay, you should use no check options or the
QUICK option. The latter should be used when you are in a hurry and can take the very small risk that
QUICK does not find an error in the data file. (In most cases, under normal usage, MySQL should find
any error in the data file. If this happens, the table is marked as “corrupted” and cannot be used until it
is repaired.)

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from
cron) if you want to check tables from time to time. In most cases, FAST is to be preferred over
CHANGED. (The only case when it is not preferred is when you suspect that you have found a bug in the
MyISAM code.)

EXTENDED is to be used only after you have run a normal check but still get strange errors from a table
when MySQL tries to update a row or find a row by key. This is very unlikely if a normal check has
succeeded.

Use of CHECK TABLE ... EXTENDED might influence the execution plan generated by the query
optimizer.

Some problems reported by CHECK TABLE cannot be corrected automatically:

• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column contains the
value 0. (It is possible to create a row where the AUTO_INCREMENT column is 0 by explicitly setting
the column to 0 with an UPDATE statement.)

This is not an error in itself, but could cause trouble if you decide to dump the table and restore it
or do an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column changes value
according to the rules of AUTO_INCREMENT columns, which could cause problems such as a
duplicate-key error.

To get rid of the warning, execute an UPDATE statement to set the column to some value other than
0.

CHECK TABLE Usage Notes for InnoDB Tables

The following notes apply to InnoDB tables:

• If CHECK TABLE encounters a corrupt page, the server exits to prevent error propagation (Bug
#10132). If the corruption occurs in a secondary index but table data is readable, running CHECK
TABLE can still cause a server exit.

• If CHECK TABLE encounters a corrupted DB_TRX_ID or DB_ROLL_PTR field in a clustered index,
CHECK TABLE can cause InnoDB to access an invalid undo log record, resulting in an MVCC-
related server exit.



Table Maintenance Statements

1519

• If CHECK TABLE encounters errors in InnoDB tables or indexes, it reports an error, and usually
marks the index and sometimes marks the table as corrupted, preventing further use of the index or
table. Such errors include an incorrect number of entries in a secondary index or incorrect links.

• If CHECK TABLE finds an incorrect number of entries in a secondary index, it reports an error but
does not cause a server exit or prevent access to the file.

• CHECK TABLE surveys the index page structure, then surveys each key entry. It does not validate
the key pointer to a clustered record or follow the path for BLOB pointers.

• When an InnoDB table is stored in its own .ibd file, the first 3 pages of the .ibd file contain
header information rather than table or index data. The CHECK TABLE statement does not detect
inconsistencies that affect only the header data. To verify the entire contents of an InnoDB .ibd file,
use the innochecksum command.

• When running CHECK TABLE on large InnoDB tables, other threads may be blocked during CHECK
TABLE execution. To avoid timeouts, the semaphore wait threshold (600 seconds) is extended by
2 hours (7200 seconds) for CHECK TABLE operations. If InnoDB detects semaphore waits of 240
seconds or more it starts printing InnoDB monitor output to the error log. If a lock request extends
beyond the semaphore wait threshold, InnoDB aborts the process. To avoid the possibility of a
semaphore wait timeout entirely, you can run CHECK TABLE QUICK instead of CHECK TABLE.

13.7.2.3 CHECKSUM TABLE Syntax

CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

CHECKSUM TABLE reports a table checksum. During the checksum operation, the table is locked with a
read lock for InnoDB and MyISAM. This statement requires the SELECT privilege for the table.

This statement is not supported for views. If you run CHECKSUM TABLE against a view, the Checksum
value is always NULL, and a warning is returned.

With QUICK, the live table checksum is reported if it is available, or NULL otherwise. This is very fast.
A live checksum is enabled by specifying the CHECKSUM=1 table option when you create the table;
currently, this is supported only for MyISAM tables. See Section 13.1.17, “CREATE TABLE Syntax”.

With EXTENDED, the entire table is read row by row and the checksum is calculated. This can be very
slow for large tables.

If neither QUICK nor EXTENDED is specified, MySQL returns a live checksum if the table storage engine
supports it and scans the table otherwise.

For a nonexistent table, CHECKSUM TABLE returns NULL and generates a warning.

In MySQL 5.5, CHECKSUM TABLE returns 0 for partitioned tables unless you include the EXTENDED
option. This issue is resolved in MySQL 5.6. (Bug #11933226, Bug #60681)

The checksum value depends on the table row format. If the row format changes, the checksum
also changes. For example, the storage format for temporal types such as TIME, DATETIME, and
TIMESTAMP changes in MySQL 5.6 prior to MySQL 5.6.5, so if a 5.5 table is upgraded to MySQL 5.6,
the checksum value may change.

Important

If the checksums for two tables are different, then it is almost certain that the
tables are different in some way. However, because the hashing function used
by CHECKSUM TABLE is not guaranteed to be collision-free, there is a slight
chance that two tables which are not identical can produce the same checksum.

13.7.2.4 OPTIMIZE TABLE Syntax



Table Maintenance Statements

1520

OPTIMIZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE
    tbl_name [, tbl_name] ...

Reorganizes the physical storage of table data and associated index data, to reduce storage space and
improve I/O efficiency when accessing the table. The exact changes made to each table depend on the
storage engine used by that table. This statement does not work with views.

Use OPTIMIZE TABLE in these cases, depending on the type of table:

• After doing substantial insert, update, or delete operations on an InnoDB table that has its own
.ibd file because it was created with the innodb_file_per_table option enabled. The table and
indexes are reorganized, and disk space can be reclaimed for use by the operating system.

• After deleting a large part of a MyISAM or ARCHIVE table, or making many changes to a MyISAM or
ARCHIVE table with variable-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT
columns). Deleted rows are maintained in a linked list and subsequent INSERT operations reuse
old row positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defragment
the data file. After extensive changes to a table, this statement may also improve performance of
statements that use the table, sometimes significantly.

This statement requires SELECT and INSERT privileges for the table.

OPTIMIZE TABLE is also supported for partitioned tables. For information about using this statement
with partitioned tables and table partitions, see Section 19.3.3, “Maintenance of Partitions”.

OPTIMIZE TABLE works for InnoDB, MyISAM, and ARCHIVE tables. OPTIMIZE TABLE is
also supported for dynamic columns of in-memory NDB tables. It does not work for Disk Data
tables. The performance of OPTIMIZE on Cluster tables can be tuned by adjusting the value of
the ndb_optimization_delay system variable, which controls the number of milliseconds
to wait between processing batches of rows by OPTIMIZE TABLE. For more information, see
Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB
Cluster 7.x”.

For NDB Cluster tables, OPTIMIZE TABLE can be interrupted by (for example) killing the SQL thread
performing the OPTIMIZE operation.

By default, OPTIMIZE TABLE does not work for tables created using any other storage engine and
returns a result indicating this lack of support. You can make OPTIMIZE TABLE work for other storage
engines by starting mysqld with the --skip-new option. In this case, OPTIMIZE TABLE is just
mapped to ALTER TABLE.

InnoDB Details

For InnoDB tables, OPTIMIZE TABLE is mapped to ALTER TABLE, which rebuilds the table to
update index statistics and free unused space in the clustered index. This is displayed in the output of
OPTIMIZE TABLE when you run it on an InnoDB table, as shown here:

mysql> OPTIMIZE TABLE foo;
+----------+----------+----------+-------------------------------------------------------------------+
| Table    | Op       | Msg_type | Msg_text                                                          |
+----------+----------+----------+-------------------------------------------------------------------+
| test.foo | optimize | note     | Table does not support optimize, doing recreate + analyze instead |
| test.foo | optimize | status   | OK                                                                |
+----------+----------+----------+-------------------------------------------------------------------+

This operation does not use fast index creation. Secondary indexes are not created as efficiently
because keys are inserted in the order they appeared in the primary key. See Section 14.16.6,
“Limitations of Fast Index Creation”.

InnoDB stores data using a page-allocation method and does not suffer from fragmentation in the
same way that legacy storage engines (such as MyISAM) will. When considering whether or not to run
optimize, consider the workload of transactions that your server will process:



Table Maintenance Statements

1521

• Some level of fragmentation is expected. InnoDB only fills pages 93% full, to leave room for updates
without having to split pages.

• Delete operations might leave gaps that leave pages less filled than desired, which could make it
worthwhile to optimize the table.

• Updates to rows usually rewrite the data within the same page, depending on the data type and
row format, when sufficient space is available. See Section 14.12.5, “How Compression Works for
InnoDB Tables” and Section 14.14.1, “Overview of InnoDB Row Storage”.

• High-concurrency workloads might leave gaps in indexes over time, as InnoDB retains multiple
versions of the same data due through its MVCC mechanism. See Section 14.6, “InnoDB Multi-
Versioning”.

MyISAM Details

For MyISAM tables, OPTIMIZE TABLE works as follows:

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the table's statistics are not up to date (and the repair could not be accomplished by sorting the
index), update them.

Other Considerations

OPTIMIZE TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always optimize

Msg_type status, error, info, note, or warning

Msg_text An informational message

Note that MySQL locks the table during the time OPTIMIZE TABLE is running.

By default, the server writes OPTIMIZE TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its
alias LOCAL.

OPTIMIZE TABLE does not sort R-tree indexes, such as spatial indexes on POINT columns. (Bug
#23578)

As of MySQL 5.5.6, OPTIMIZE TABLE table catches and throws any errors that occur while copying
table statistics from the old file to the newly created file. For example. if the user ID of the owner of
the .frm, .MYD, or .MYI file is different from the user ID of the mysqld process, OPTIMIZE TABLE
generates a "cannot change ownership of the file" error unless mysqld is started by the root user.

13.7.2.5 REPAIR TABLE Syntax

REPAIR [NO_WRITE_TO_BINLOG | LOCAL] TABLE
    tbl_name [, tbl_name] ...
    [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table. By default, it has the same effect as myisamchk
--recover tbl_name. REPAIR TABLE works for MyISAM, ARCHIVE, and CSV tables. See
Section 15.3, “The MyISAM Storage Engine”, Section 15.6, “The ARCHIVE Storage Engine”, and
Section 15.5, “The CSV Storage Engine”. This statement does not work with views.



Table Maintenance Statements

1522

This statement requires SELECT and INSERT privileges for the table.

REPAIR TABLE is supported for partitioned tables. However, the USE_FRM option cannot be used with
this statement on a partitioned table.

You can use ALTER TABLE ... REPAIR PARTITION to repair one or more partitions; for more
information, see Section 13.1.7, “ALTER TABLE Syntax”, and Section 19.3.3, “Maintenance of
Partitions”.

Normally, you should never have to run REPAIR TABLE. However, if disaster strikes, this statement
is very likely to get back all your data from a MyISAM table. If your tables become corrupted often, you
should try to find the reason for it, to eliminate the need to use REPAIR TABLE. See Section B.5.3.3,
“What to Do If MySQL Keeps Crashing”, and Section 15.3.4, “MyISAM Table Problems”.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible
causes include but are not limited to file system errors. See Chapter 7, Backup
and Recovery.

Warning

If the server crashes during a REPAIR TABLE operation, it is essential after
restarting it that you immediately execute another REPAIR TABLE statement
for the table before performing any other operations on it. In the worst case,
you might have a new clean index file without information about the data file,
and then the next operation you perform could overwrite the data file. This is an
unlikely but possible scenario that underscores the value of making a backup
first.

REPAIR TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always repair

Msg_type status, error, info, note, or warning

Msg_text An informational message

The REPAIR TABLE statement might produce many rows of information for each repaired table. The
last row has a Msg_type value of status and Msg_test normally should be OK. If you do not get OK
for a MyISAM table, you should try repairing it with myisamchk --safe-recover. (REPAIR TABLE
does not implement all the options of myisamchk.) With myisamchk --safe-recover, you can also
use options that REPAIR TABLE does not support, such as --max-record-length.

If you use the QUICK option, REPAIR TABLE tries to repair only the index file, and not the data file.
This type of repair is like that done by myisamchk --recover --quick.

If you use the EXTENDED option, MySQL creates the index row by row instead of creating one index at
a time with sorting. This type of repair is like that done by myisamchk --safe-recover.

The USE_FRM option is available for use if the .MYI index file is missing or if its header is corrupted.
This option tells MySQL not to trust the information in the .MYI file header and to re-create it using
information from the .frm file. This kind of repair cannot be done with myisamchk.

Caution

Use the USE_FRM option only if you cannot use regular REPAIR modes. Telling
the server to ignore the .MYI file makes important table metadata stored



Plugin and User-Defined Function Statements

1523

in the .MYI unavailable to the repair process, which can have deleterious
consequences:

• The current AUTO_INCREMENT value is lost.

• The link to deleted records in the table is lost, which means that free space
for deleted records will remain unoccupied thereafter.

• The .MYI header indicates whether the table is compressed. If the server
ignores this information, it cannot tell that a table is compressed and repair
can cause change or loss of table contents. This means that USE_FRM should
not be used with compressed tables. That should not be necessary, anyway:
Compressed tables are read only, so they should not become corrupt.

Caution

If you use USE_FRM for a table that was created by a different version of the
MySQL server than the one you are currently running, REPAIR TABLE will
not attempt to repair the table. In this case, the result set returned by REPAIR
TABLE contains a line with a Msg_type value of error and a Msg_text value
of Failed repairing incompatible .FRM file.

If USE_FRM is not used, REPAIR TABLE checks the table to see whether an upgrade is required. If
so, it performs the upgrade, following the same rules as CHECK TABLE ... FOR UPGRADE. See
Section 13.7.2.2, “CHECK TABLE Syntax”, for more information. REPAIR TABLE without USE_FRM
upgrades the .frm file to the current version.

By default, the server writes REPAIR TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its
alias LOCAL.

Important

In the event that a table on the master becomes corrupted and you run REPAIR
TABLE on it, any resulting changes to the original table are not propagated to
slaves.

You may be able to increase REPAIR TABLE performance by setting certain system variables. See
Section 8.6.3, “Optimizing REPAIR TABLE Statements”.

As of MySQL 5.5.6, REPAIR TABLE table catches and throws any errors that occur while copying table
statistics from the old corrupted file to the newly created file. For example. if the user ID of the owner
of the .frm, .MYD, or .MYI file is different from the user ID of the mysqld process, REPAIR TABLE
generates a "cannot change ownership of the file" error unless mysqld is started by the root user.

13.7.3 Plugin and User-Defined Function Statements

13.7.3.1 CREATE FUNCTION Syntax for User-Defined Functions

CREATE [AGGREGATE] FUNCTION function_name RETURNS {STRING|INTEGER|REAL|DECIMAL}
    SONAME shared_library_name

A user-defined function (UDF) is a way to extend MySQL with a new function that works like a native
(built-in) MySQL function such as ABS() or CONCAT().

function_name is the name that should be used in SQL statements to invoke the function. The
RETURNS clause indicates the type of the function's return value. DECIMAL is a legal value after
RETURNS, but currently DECIMAL functions return string values and should be written like STRING
functions.



Plugin and User-Defined Function Statements

1524

shared_library_name is the base name of the shared library file that contains the code that
implements the function. The file must be located in the plugin directory. This directory is given by
the value of the plugin_dir system variable. For more information, see Section 24.4.2.5, “UDF
Compiling and Installing”.

To create a function, you must have the INSERT privilege for the mysql database. This is necessary
because CREATE FUNCTION adds a row to the mysql.func system table that records the
function's name, type, and shared library name. If you do not have this table, you should run the
mysql_upgrade command to create it. See Section 4.4.7, “mysql_upgrade — Check and Upgrade
MySQL Tables”.

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP
FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld
with the --skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are
unavailable.

For instructions on writing user-defined functions, see Section 24.4.2, “Adding a New User-Defined
Function”. For the UDF mechanism to work, functions must be written in C or C++ (or another language
that can use C calling conventions), your operating system must support dynamic loading and you
must have compiled mysqld dynamically (not statically).

An AGGREGATE function works exactly like a native MySQL aggregate (summary) function such as SUM
or COUNT(). For AGGREGATE to work, your mysql.func table must contain a type column. If your
mysql.func table does not have this column, you should run the mysql_upgrade program to create
it (see Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”).

Note

To upgrade the shared library associated with a UDF, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION
statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may crash.

13.7.3.2 DROP FUNCTION Syntax

DROP FUNCTION function_name

This statement drops the user-defined function (UDF) named function_name.

To drop a function, you must have the DELETE privilege for the mysql database. This is because DROP
FUNCTION removes a row from the mysql.func system table that records the function's name, type,
and shared library name.

Note

To upgrade the shared library associated with a UDF, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION
statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may crash.

DROP FUNCTION is also used to drop stored functions (see Section 13.1.26, “DROP PROCEDURE
and DROP FUNCTION Syntax”).

13.7.3.3 INSTALL PLUGIN Syntax

INSTALL PLUGIN plugin_name SONAME 'shared_library_name'

This statement installs a server plugin. It requires the INSERT privilege for the mysql.plugin system
table.



Plugin and User-Defined Function Statements

1525

plugin_name is the name of the plugin as defined in the plugin descriptor structure contained in
the library file (see Section 24.2.4.2, “Plugin Data Structures”). Plugin names are not case sensitive.
For maximal compatibility, plugin names should be limited to ASCII letters, digits, and underscore
because they are used in C source files, shell command lines, M4 and Bourne shell scripts, and SQL
environments.

shared_library_name is the name of the shared library that contains the plugin code. The
name includes the file name extension (for example, libmyplugin.so, libmyplugin.dll, or
libmyplugin.dylib).

The shared library must be located in the plugin directory (the directory named by the plugin_dir
system variable). The library must be in the plugin directory itself, not in a subdirectory. By default,
plugin_dir is the plugin directory under the directory named by the pkglibdir configuration
variable, but it can be changed by setting the value of plugin_dir at server startup. For example, set
its value in a my.cnf file:

[mysqld]
plugin_dir=/path/to/plugin/directory

If the value of plugin_dir is a relative path name, it is taken to be relative to the MySQL base
directory (the value of the basedir system variable).

INSTALL PLUGIN loads and initializes the plugin code to make the plugin available for use. A plugin is
initialized by executing its initialization function, which handles any setup that the plugin must perform
before it can be used. When the server shuts down, it executes the deinitialization function for each
plugin that is loaded so that the plugin has a chance to perform any final cleanup.

INSTALL PLUGIN also registers the plugin by adding a line that indicates the plugin name and library
file name to the mysql.plugin table. At server startup, the server loads and initializes any plugin that
is listed in the mysql.plugin table. This means that a plugin is installed with INSTALL PLUGIN only
once, not every time the server starts. Plugin loading at startup does not occur if the server is started
with the --skip-grant-tables option.

A plugin library can contain multiple plugins. For each of them to be installed, use a separate INSTALL
PLUGIN statement. Each statement names a different plugin, but all of them specify the same library
name.

INSTALL PLUGIN causes the server to read option (my.cnf) files just as during server startup. This
enables the plugin to pick up any relevant options from those files. It is possible to add plugin options
to an option file even before loading a plugin (if the loose prefix is used). It is also possible to uninstall
a plugin, edit my.cnf, and install the plugin again. Restarting the plugin this way enables it to the new
option values without a server restart.

For options that control individual plugin loading at server startup, see Section 5.5.2, “Installing and
Uninstalling Plugins”. If you need to load plugins for a single server startup when the --skip-grant-
tables option is given (which tells the server not to read system tables), use the --plugin-load
option. See Section 5.1.4, “Server Command Options”.

To remove a plugin, use the UNINSTALL PLUGIN statement.

For additional information about plugin loading, see Section 5.5.2, “Installing and Uninstalling Plugins”.

To see what plugins are installed, use the SHOW PLUGINS statement or query the
INFORMATION_SCHEMA.PLUGINS table.

If you recompile a plugin library and need to reinstall it, you can use either of the following methods:

• Use UNINSTALL PLUGIN to uninstall all plugins in the library, install the new plugin library file
in the plugin directory, and then use INSTALL PLUGIN to install all plugins in the library. This
procedure has the advantage that it can be used without stopping the server. However, if the plugin



SET Syntax

1526

library contains many plugins, you must issue many INSTALL PLUGIN and UNINSTALL PLUGIN
statements.

• Stop the server, install the new plugin library file in the plugin directory, and restart the server.

13.7.3.4 UNINSTALL PLUGIN Syntax

UNINSTALL PLUGIN plugin_name

This statement removes an installed server plugin. It requires the DELETE privilege for the
mysql.plugin system table. UNINSTALL PLUGIN is the complement of INSTALL PLUGIN.

plugin_name must be the name of some plugin that is listed in the mysql.plugin table. The
server executes the plugin's deinitialization function and removes the row for the plugin from the
mysql.plugin table, so that subsequent server restarts will not load and initialize the plugin.
UNINSTALL PLUGIN does not remove the plugin's shared library file.

You cannot uninstall a plugin if any table that uses it is open.

Plugin removal has implications for the use of associated tables. For example, if a full-text parser plugin
is associated with a FULLTEXT index on the table, uninstalling the plugin makes the table unusable.
Any attempt to access the table results in an error. The table cannot even be opened, so you cannot
drop an index for which the plugin is used. This means that uninstalling a plugin is something to do with
care unless you do not care about the table contents. If you are uninstalling a plugin with no intention of
reinstalling it later and you care about the table contents, you should dump the table with mysqldump
and remove the WITH PARSER clause from the dumped CREATE TABLE statement so that you can
reload the table later. If you do not care about the table, DROP TABLE can be used even if any plugins
associated with the table are missing.

For additional information about plugin loading, see Section 5.5.2, “Installing and Uninstalling Plugins”.

13.7.4 SET Syntax

The SET statement has several forms:

• SET var_name = value enables you to assign values to variables that affect the operation of the
server or clients. See Section 13.7.4.1, “SET Syntax for Variable Assignment”.

• SET CHARACTER SET and SET NAMES assign values to character set and collation variables
associated with the current connection to the server. See Section 13.7.4.2, “SET CHARACTER SET
Syntax”, and Section 13.7.4.3, “SET NAMES Syntax”.

• SET PASSWORD assigns account passwords. See Section 13.7.1.6, “SET PASSWORD Syntax”.

• SET TRANSACTION ISOLATION LEVEL sets the isolation level for transaction processing. See
Section 13.3.6, “SET TRANSACTION Syntax”.

13.7.4.1 SET Syntax for Variable Assignment

SET variable_assignment [, variable_assignment] ...

variable_assignment:
      user_var_name = expr
    | param_name = expr
    | local_var_name = expr
    | [GLOBAL | SESSION]
        system_var_name = expr
    | [@@global. | @@session. | @@]
        system_var_name = expr

SET ONE_SHOT system_var_name = expr



SET Syntax

1527

SET syntax for variable assignment enables you to assign values to different types of variables that
affect the operation of the server or clients:

• System variables. See Section 5.1.5, “Server System Variables”. System variables also can be
set at server startup, as described in Section 5.1.6, “Using System Variables”. (To display system
variable names and values, use the SHOW VARIABLES statement; see Section 13.7.5.40, “SHOW
VARIABLES Syntax”.)

• User-defined variables. See Section 9.4, “User-Defined Variables”.

• Stored procedure and function parameters, and stored program local variables. See Section 13.6.4,
“Variables in Stored Programs”.

Older versions of MySQL employed SET OPTION, but this syntax is deprecated in favor of SET without
OPTION.

A SET statement that assigns variable values is not written to the binary log, so in replication scenarios
it affects only the host on which you execute it. To affect all replication hosts, execute the statement on
each one.

The following examples illustrate SET syntax for setting variables. They use the = assignment operator,
but the := assignment operator is also permitted for this purpose.

A user variable is written as @var_name and is assigned an expression value as follows:

SET @var_name = expr;

Examples:

SET @name = 43;
SET @total_tax = (SELECT SUM(tax) FROM taxable_transactions);

The expr can range from simple (a literal value) to more complex (the value returned by a scalar
subquery).

SET applies to parameters and local variables in the context of the stored object within which they are
defined. The following procedure uses the counter local variable as a loop counter:

CREATE PROCEDURE p()
BEGIN
  DECLARE counter INT DEFAULT 0;
  WHILE counter < 10 DO
    -- ... do work ...
    SET counter = counter + 1;
  END WHILE;
END;

Many system variables are dynamic and can be changed at runtime by using the SET statement. For a
list, see Section 5.1.6.2, “Dynamic System Variables”. To change a system variable with SET, refer to it
by name, optionally preceded by a modifier:

• To indicate that a variable is a global variable, precede its name by the GLOBAL keyword or the
@@global. qualifier:

SET GLOBAL max_connections = 1000;
SET @@global.max_connections = 1000;

The SUPER privilege is required to set global variables.

• To indicate that a variable is a session variable, precede its name by the SESSION keyword or either
the @@session. or @@ qualifier:



SET Syntax

1528

SET SESSION sql_mode = 'TRADITIONAL';
SET @@session.sql_mode = 'TRADITIONAL';
SET @@sql_mode = 'TRADITIONAL';

Setting a session variable normally requires no special privilege, although there are exceptions that
require the SUPER privilege (such as sql_log_bin). A client can change its own session variables,
but not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

• An error occurs under these circumstances:

• Use of SET GLOBAL (or @@global.) when setting a variable that has only a session value:

mysql> SET GLOBAL sql_log_bin = ON;
ERROR 1231 (42000): Variable 'sql_log_bin' can't be
set to the value of 'ON'

• Omission of GLOBAL (or @@global.) when setting a variable that has only a global value:

mysql> SET max_connections = 1000;
ERROR 1229 (HY000): Variable 'max_connections' is a
GLOBAL variable and should be set with SET GLOBAL

• Use of SET SESSION (or @@SESSION.) when setting a variable that has only a global value:

mysql> SET SESSION max_connections = 1000;
ERROR 1229 (HY000): Variable 'max_connections' is a
GLOBAL variable and should be set with SET GLOBAL

The preceding modifiers apply only to system variables. An error occurs for attempts to apply them to
user-defined variables, stored procedure or function parameters, or stored program local variables.

A SET statement can contain multiple variable assignments, separated by commas. This statement
assigns values to a user-defined variable and a system variable:

SET @x = 1, SESSION sql_mode = '';

If you set multiple system variables, the most recent GLOBAL or SESSION modifier in the statement is
used for following assignments that have no modifier specified.

Examples of multiple-variable assignment:

SET GLOBAL sort_buffer_size = 1000000, SESSION sort_buffer_size = 1000000;
SET @@global.sort_buffer_size = 1000000, @@local.sort_buffer_size = 1000000;
SET GLOBAL max_connections = 1000, sort_buffer_size = 1000000;

If any variable assignment in a SET statement fails, the entire statement fails and no variables are
changed.

If you change a session system variable, the value remains in effect within your session until you
change the variable to a different value or the session ends. The change has no effect on other
sessions.

If you change a global system variable, the value is remembered and used for new sessions until
you change the variable to a different value or the server exits. The change is visible to any client
that accesses the global variable. However, the change affects the corresponding session variable



SET Syntax

1529

only for clients that connect after the change. The global variable change does not affect the session
variable for any current client sessions (not even the session within which the SET GLOBAL statement
occurred).

To make a global system variable setting permanent so that it applies across server restarts, you
should also set it in an option file.

To set a GLOBAL value to the compiled-in MySQL default value or a SESSION variable to the current
corresponding GLOBAL value, set the variable to the value DEFAULT. For example, the following two
statements are identical in setting the session value of max_join_size to the current global value:

SET @@session.max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, assigning DEFAULT results in an error.

It is not permitted to assign DEFAULT to user-defined variables, and not supported for stored procedure
or function parameters or stored program local variables. This results in an error for user-defined
variables, and the results are undefined for parameters or local variables.

To refer to the value of a system variable in expressions, use one of the @@-modifiers. For example,
you can retrieve values in a SELECT statement like this:

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

For a reference to a system variable in an expression as @@var_name (rather than with @@global. or
@@session.), MySQL returns the session value if it exists and the global value otherwise. This differs
from SET @@var_name = expr, which always refers to the session value.

The SET ONE_SHOT syntax is only for internal use for replication: mysqlbinlog uses SET ONE_SHOT
to modify temporarily the values of character set, collation, and time zone variables to reflect at
rollforward what they were originally. ONE_SHOT is for internal use only and is deprecated for MySQL
5.0 and up.

ONE_SHOT is intended for use only with the permitted set of variables. It changes the variables as
requested, but only for the next non-SET statement. After that, the server resets all character set,
collation, and time zone-related system variables to their previous values. Example:

mysql> SET ONE_SHOT character_set_connection = latin5;

mysql> SET ONE_SHOT collation_connection = latin5_turkish_ci;

mysql> SHOW VARIABLES LIKE '%_connection';
+--------------------------+-------------------+
| Variable_name            | Value             |
+--------------------------+-------------------+
| character_set_connection | latin5            |
| collation_connection     | latin5_turkish_ci |
+--------------------------+-------------------+

mysql> SHOW VARIABLES LIKE '%_connection';
+--------------------------+-------------------+
| Variable_name            | Value             |
+--------------------------+-------------------+
| character_set_connection | latin1            |
| collation_connection     | latin1_swedish_ci |
+--------------------------+-------------------+

13.7.4.2 SET CHARACTER SET Syntax

SET {CHARACTER SET | CHARSET}



SHOW Syntax

1530

    {'charset_name' | DEFAULT}

This statement maps all strings sent between the server and the current client with the given mapping.
SET CHARACTER SET sets three session system variables: character_set_client and
character_set_results are set to the given character set, and character_set_connection
to the value of character_set_database. See Section 10.1.4, “Connection Character Sets and
Collations”.

charset_name may be quoted or unquoted.

The default character set mapping can be restored by using the value DEFAULT. The default depends
on the server configuration.

ucs2, utf16, and utf32 cannot be used as a client character set, which means that they do not work
for SET CHARACTER SET.

13.7.4.3 SET NAMES Syntax

SET NAMES {'charset_name'
    [COLLATE 'collation_name'] | DEFAULT}

This statement sets the three session system variables character_set_client,
character_set_connection, and character_set_results to the given character set. Setting
character_set_connection to charset_name also sets collation_connection to the default
collation for charset_name. See Section 10.1.4, “Connection Character Sets and Collations”.

The optional COLLATE clause may be used to specify a collation explicitly. If given, the collation must
one of the permitted collations for charset_name.

charset_name and collation_name may be quoted or unquoted.

The default mapping can be restored by using a value of DEFAULT. The default depends on the server
configuration.

ucs2, utf16, and utf32 cannot be used as a client character set, which means that they do not work
for SET NAMES.

13.7.5 SHOW Syntax

SHOW has many forms that provide information about databases, tables, columns, or status information
about the server. This section describes those following:

SHOW AUTHORS
SHOW {BINARY | MASTER} LOGS
SHOW BINLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW CHARACTER SET [like_or_where]
SHOW COLLATION [like_or_where]
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [like_or_where]
SHOW CONTRIBUTORS
SHOW CREATE DATABASE db_name
SHOW CREATE EVENT event_name
SHOW CREATE FUNCTION func_name
SHOW CREATE PROCEDURE proc_name
SHOW CREATE TABLE tbl_name
SHOW CREATE TRIGGER trigger_name
SHOW CREATE VIEW view_name
SHOW DATABASES [like_or_where]
SHOW ENGINE engine_name {STATUS | MUTEX}
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW EVENTS
SHOW FUNCTION CODE func_name



SHOW Syntax

1531

SHOW FUNCTION STATUS [like_or_where]
SHOW GRANTS FOR user
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW MASTER STATUS
SHOW OPEN TABLES [FROM db_name] [like_or_where]
SHOW PLUGINS
SHOW PROCEDURE CODE proc_name
SHOW PROCEDURE STATUS [like_or_where]
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
SHOW PROFILES
SHOW RELAYLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW SLAVE HOSTS
SHOW SLAVE STATUS
SHOW [GLOBAL | SESSION] STATUS [like_or_where]
SHOW TABLE STATUS [FROM db_name] [like_or_where]
SHOW [FULL] TABLES [FROM db_name] [like_or_where]
SHOW TRIGGERS [FROM db_name] [like_or_where]
SHOW [GLOBAL | SESSION] VARIABLES [like_or_where]
SHOW WARNINGS [LIMIT [offset,] row_count]

like_or_where:
    LIKE 'pattern'
  | WHERE expr

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string that
can contain the SQL % and _ wildcard characters. The pattern is useful for restricting statement output
to matching values.

Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which
rows to display. See Section 21.31, “Extensions to SHOW Statements”.

Many MySQL APIs (such as PHP) enable you to treat the result returned from a SHOW statement
as you would a result set from a SELECT; see Chapter 23, Connectors and APIs, or your API
documentation for more information. In addition, you can work in SQL with results from queries on
tables in the INFORMATION_SCHEMA database, which you cannot easily do with results from SHOW
statements. See Chapter 21, INFORMATION_SCHEMA Tables.

13.7.5.1 SHOW AUTHORS Syntax

SHOW AUTHORS

The SHOW AUTHORS statement displays information about the people who work on MySQL. For each
author, it displays Name, Location, and Comment values.

This statement is deprecated as of MySQL 5.5.29 and is removed in MySQL 5.6.

13.7.5.2 SHOW BINARY LOGS Syntax

SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as part of the procedure described in
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”, that shows how to determine which logs can be
purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name      | File_size |
+---------------+-----------+
| binlog.000015 |    724935 |
| binlog.000016 |    733481 |



SHOW Syntax

1532

+---------------+-----------+

SHOW MASTER LOGS is equivalent to SHOW BINARY LOGS.

In MySQL 5.5.24 and earlier, the SUPER privilege was required to use this statement. Starting with
MySQL 5.5.25, a user with the REPLICATION CLIENT privilege may also execute this statement.

13.7.5.3 SHOW BINLOG EVENTS Syntax

SHOW BINLOG EVENTS
   [IN 'log_name']
   [FROM pos]
   [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify 'log_name', the first binary log is displayed.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

Note

Issuing a SHOW BINLOG EVENTS with no LIMIT clause could start a very time-
and resource-consuming process because the server returns to the client the
complete contents of the binary log (which includes all statements executed by
the server that modify data). As an alternative to SHOW BINLOG EVENTS, use
the mysqlbinlog utility to save the binary log to a text file for later examination
and analysis. See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary
Log Files”.

Note

Some events relating to the setting of user and system variables are not
included in the output from SHOW BINLOG EVENTS. To get complete coverage
of events within a binary log, use mysqlbinlog.

Note

SHOW BINLOG EVENTS does not work with relay log files. You can use SHOW
RELAYLOG EVENTS for this purpose.

13.7.5.4 SHOW CHARACTER SET Syntax

SHOW CHARACTER SET
    [LIKE 'pattern' | WHERE expr]

The SHOW CHARACTER SET statement shows all available character sets. The LIKE clause, if present,
indicates which character set names to match. The WHERE clause can be given to select rows using
more general conditions, as discussed in Section 21.31, “Extensions to SHOW Statements”. For
example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description                 | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
| latin1  | cp1252 West European        | latin1_swedish_ci |      1 |
| latin2  | ISO 8859-2 Central European | latin2_general_ci |      1 |
| latin5  | ISO 8859-9 Turkish          | latin5_turkish_ci |      1 |
| latin7  | ISO 8859-13 Baltic          | latin7_general_ci |      1 |
+---------+-----------------------------+-------------------+--------+

The Maxlen column shows the maximum number of bytes required to store one character.



SHOW Syntax

1533

The filename character set is for internal use only; consequently, SHOW CHARACTER SET does not
display it.

You can also obtain information about character sets from INFORMATION_SCHEMA, which contains
a CHARACTER_SETS table. See Section 21.1, “The INFORMATION_SCHEMA CHARACTER_SETS
Table”.

13.7.5.5 SHOW COLLATION Syntax

SHOW COLLATION
    [LIKE 'pattern' | WHERE expr]

This statement lists collations supported by the server. By default, the output from SHOW COLLATION
includes all available collations. The LIKE clause, if present, indicates which collation names to
match. The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 21.31, “Extensions to SHOW Statements”. For example:

mysql> SHOW COLLATION WHERE Charset = 'latin1';
+-------------------+---------+----+---------+----------+---------+
| Collation         | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1  |  5 |         | Yes      |       1 |
| latin1_swedish_ci | latin1  |  8 | Yes     | Yes      |       1 |
| latin1_danish_ci  | latin1  | 15 |         | Yes      |       1 |
| latin1_german2_ci | latin1  | 31 |         | Yes      |       2 |
| latin1_bin        | latin1  | 47 |         | Yes      |       1 |
| latin1_general_ci | latin1  | 48 |         | Yes      |       1 |
| latin1_general_cs | latin1  | 49 |         | Yes      |       1 |
| latin1_spanish_ci | latin1  | 94 |         | Yes      |       1 |
+-------------------+---------+----+---------+----------+---------+

The Collation and Charset columns indicate the names of the collation and the character set with
which it is associated. Id is the collation ID. Default indicates whether the collation is the default for
its character set. Compiled indicates whether the character set is compiled into the server. Sortlen
is related to the amount of memory required to sort strings expressed in the character set.

To see the default collation for each character set, use the following statement. Default is a reserved
word, so to use it as an identifier, it must be quoted as such:

mysql> SHOW COLLATION WHERE `Default` = 'Yes';
+---------------------+----------+----+---------+----------+---------+
| Collation           | Charset  | Id | Default | Compiled | Sortlen |
+---------------------+----------+----+---------+----------+---------+
| big5_chinese_ci     | big5     |  1 | Yes     | Yes      |       1 |
| dec8_swedish_ci     | dec8     |  3 | Yes     | Yes      |       1 |
| cp850_general_ci    | cp850    |  4 | Yes     | Yes      |       1 |
| hp8_english_ci      | hp8      |  6 | Yes     | Yes      |       1 |
| koi8r_general_ci    | koi8r    |  7 | Yes     | Yes      |       1 |
| latin1_swedish_ci   | latin1   |  8 | Yes     | Yes      |       1 |
...

You can also obtain information about collations from INFORMATION_SCHEMA, which contains a
COLLATIONS table. See Section 21.2, “The INFORMATION_SCHEMA COLLATIONS Table”.

13.7.5.6 SHOW COLUMNS Syntax

SHOW [FULL] {COLUMNS | FIELDS}
    {FROM | IN} tbl_name
    [{FROM | IN} db_name]
    [LIKE 'pattern' | WHERE expr]

SHOW COLUMNS displays information about the columns in a given table. It also works for views. SHOW
COLUMNS displays information only for those columns for which you have some privilege.



SHOW Syntax

1534

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. In
other words, these two statements are equivalent:

SHOW COLUMNS FROM mytable FROM mydb;
SHOW COLUMNS FROM mydb.mytable;

The optional FULL keyword causes the output to include the column collation and comments, as well
as the privileges you have for each column.

The LIKE clause, if present, indicates which column names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 21.31, “Extensions to SHOW
Statements”.

mysql> SHOW COLUMNS FROM City;
+-------------+----------+------+-----+---------+----------------+
| Field       | Type     | Null | Key | Default | Extra          |
+-------------+----------+------+-----+---------+----------------+
| ID          | int(11)  | NO   | PRI | NULL    | auto_increment |
| Name        | char(35) | NO   |     |         |                |
| CountryCode | char(3)  | NO   | MUL |         |                |
| District    | char(20) | NO   |     |         |                |
| Population  | int(11)  | NO   |     | 0       |                |
+-------------+----------+------+-----+---------+----------------+

The data types may differ from what you expect them to be based on a CREATE TABLE statement
because MySQL sometimes changes data types when you create or alter a table. The conditions under
which this occurs are described in Section 13.1.17.7, “Silent Column Specification Changes”.

SHOW COLUMNS displays the following values for each table column:

• Field

The column name.

• Type

The column data type.

• Collation

The collation for nonbinary string columns, or NULL for other columns. This value is displayed only if
you use the FULL keyword.

• Null

Column nullability. The value is YES if NULL values can be stored in the column, NO if not.

• Key

Whether the column is indexed:

• If Key is empty, the column either is not indexed or is indexed only as a secondary column in a
multiple-column, nonunique index.

• If Key is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column
PRIMARY KEY.

• If Key is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits multiple
NULL values, but you can tell whether the column permits NULL by checking the Null field.)

• If Key is MUL, the column is the first column of a nonunique index in which multiple occurrences of
a given value are permitted within the column.



SHOW Syntax

1535

If more than one of the Key values applies to a given column of a table, Key displays the one with
the highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY
KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE
index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value.

• Default

The default value for the column. This is NULL if the column has an explicit default of NULL, or if the
column definition includes no DEFAULT clause.

• Extra

Any additional information that is available about a given column. The value is nonempty in these
cases: auto_increment for columns that have the AUTO_INCREMENT attribute; on update
CURRENT_TIMESTAMP for TIMESTAMP columns that have the ON UPDATE CURRENT_TIMESTAMP
attribute.

• Privileges

The privileges you have for the column. This value is displayed only if you use the FULL keyword.

• Comment

Any comment included in the column definition. This value is displayed only if you use the FULL
keyword.

You can also obtain information about table columns from INFORMATION_SCHEMA, which contains a
COLUMNS table. See Section 21.4, “The INFORMATION_SCHEMA COLUMNS Table”.

You can list a table's columns with the mysqlshow db_name tbl_name command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 13.8.1,
“DESCRIBE Syntax”.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Syntax”.

13.7.5.7 SHOW CONTRIBUTORS Syntax

SHOW CONTRIBUTORS

The SHOW CONTRIBUTORS statement displays information about the people who contribute to MySQL
source or to causes that we support. For each contributor, it displays Name, Location, and Comment
values.

This statement is deprecated as of MySQL 5.5.29 and is removed in MySQL 5.6.

13.7.5.8 SHOW CREATE DATABASE Syntax

SHOW CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

Shows the CREATE DATABASE statement that creates the named database. If the SHOW statement
includes an IF NOT EXISTS clause, the output too includes such a clause. SHOW CREATE SCHEMA is
a synonym for SHOW CREATE DATABASE.



SHOW Syntax

1536

mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************
       Database: test
Create Database: CREATE DATABASE `test`
                 /*!40100 DEFAULT CHARACTER SET latin1 */

mysql> SHOW CREATE SCHEMA test\G
*************************** 1. row ***************************
       Database: test
Create Database: CREATE DATABASE `test`
                 /*!40100 DEFAULT CHARACTER SET latin1 */

SHOW CREATE DATABASE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.5, “Server System Variables”.

13.7.5.9 SHOW CREATE EVENT Syntax

SHOW CREATE EVENT event_name

This statement displays the CREATE EVENT statement needed to re-create a given event. It requires
the EVENT privilege for the database from which the event is to be shown. For example (using the
same event e_daily defined and then altered in Section 13.7.5.19, “SHOW EVENTS Syntax”):

mysql> SHOW CREATE EVENT test.e_daily\G
*************************** 1. row ***************************
               Event: e_daily
            sql_mode:
           time_zone: SYSTEM
        Create Event: CREATE EVENT `e_daily`
                        ON SCHEDULE EVERY 1 DAY
                        STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR
                        ON COMPLETION NOT PRESERVE
                        ENABLE
                        COMMENT 'Saves total number of sessions then
                                clears the table each day'
                        DO BEGIN
                          INSERT INTO site_activity.totals (time, total)
                            SELECT CURRENT_TIMESTAMP, COUNT(*)
                            FROM site_activity.sessions;
                          DELETE FROM site_activity.sessions;
                        END
character_set_client: latin1
collation_connection: latin1_swedish_ci
  Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the event was created. collation_connection is the session value of the
collation_connection system variable when the event was created. Database Collation is
the collation of the database with which the event is associated.

Note that the output reflects the current status of the event (ENABLE) rather than the status with which
it was created.

13.7.5.10 SHOW CREATE FUNCTION Syntax

SHOW CREATE FUNCTION func_name

This statement is similar to SHOW CREATE PROCEDURE but for stored functions. See
Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”.

13.7.5.11 SHOW CREATE PROCEDURE Syntax

SHOW CREATE PROCEDURE proc_name



SHOW Syntax

1537

This statement is a MySQL extension. It returns the exact string that can be used to re-create the
named stored procedure. A similar statement, SHOW CREATE FUNCTION, displays information about
stored functions (see Section 13.7.5.10, “SHOW CREATE FUNCTION Syntax”).

To use either statement, you must be the user named in the routine DEFINER clause or have SELECT
access to the mysql.proc table. If you do not have privileges for the routine itself, the value displayed
for the Create Procedure or Create Function field will be NULL.

mysql> SHOW CREATE PROCEDURE test.simpleproc\G
*************************** 1. row ***************************
           Procedure: simpleproc
            sql_mode:
    Create Procedure: CREATE PROCEDURE `simpleproc`(OUT param1 INT)
                      BEGIN
                      SELECT COUNT(*) INTO param1 FROM t;
                      END
character_set_client: latin1
collation_connection: latin1_swedish_ci
  Database Collation: latin1_swedish_ci

mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************
            Function: hello
            sql_mode:
     Create Function: CREATE FUNCTION `hello`(s CHAR(20))
                      RETURNS CHAR(50)
                      RETURN CONCAT('Hello, ',s,'!')
character_set_client: latin1
collation_connection: latin1_swedish_ci
  Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation is
the collation of the database with which the routine is associated.

13.7.5.12 SHOW CREATE TABLE Syntax

SHOW CREATE TABLE tbl_name

Shows the CREATE TABLE statement that creates the named table. To use this statement, you must
have some privilege for the table. This statement also works with views.

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
       Table: t
Create Table: CREATE TABLE `t` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `s` char(60) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

SHOW CREATE TABLE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.5, “Server System Variables”.

13.7.5.13 SHOW CREATE TRIGGER Syntax

SHOW CREATE TRIGGER trigger_name

This statement shows the CREATE TRIGGER statement that creates the named trigger. This statement
requires the TRIGGER privilege for the table associated with the trigger.



SHOW Syntax

1538

mysql> SHOW CREATE TRIGGER ins_sum\G
*************************** 1. row ***************************
               Trigger: ins_sum
              sql_mode:
SQL Original Statement: CREATE DEFINER=`bob`@`localhost` TRIGGER ins_sum
                        BEFORE INSERT ON account
                        FOR EACH ROW SET @sum = @sum + NEW.amount
  character_set_client: latin1
  collation_connection: latin1_swedish_ci
    Database Collation: latin1_swedish_ci

SHOW CREATE TRIGGER output has the following columns:

• Trigger: The trigger name.

• sql_mode: The SQL mode in effect when the trigger executes.

• SQL Original Statement: The CREATE TRIGGER statement that defines the trigger.

• character_set_client: The session value of the character_set_client system variable
when the trigger was created.

• collation_connection: The session value of the collation_connection system variable
when the trigger was created.

• Database Collation: The collation of the database with which the trigger is associated.

You can also obtain information about trigger objects from INFORMATION_SCHEMA, which contains a
TRIGGERS table. See Section 21.25, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.14 SHOW CREATE VIEW Syntax

SHOW CREATE VIEW view_name

This statement shows the CREATE VIEW statement that creates the named view.

mysql> SHOW CREATE VIEW v\G
*************************** 1. row ***************************
                View: v
         Create View: CREATE ALGORITHM=UNDEFINED
                      DEFINER=`bob`@`localhost`
                      SQL SECURITY DEFINER VIEW
                      `v` AS select 1 AS `a`,2 AS `b`
character_set_client: latin1
collation_connection: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the view was created. collation_connection is the session value of the
collation_connection system variable when the view was created.

Use of SHOW CREATE VIEW requires the SHOW VIEW privilege, and the SELECT privilege for the view
in question.

You can also obtain information about view objects from INFORMATION_SCHEMA, which contains a
VIEWS table. See Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support.
For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard
SQL concatenation operator, the double bar (||), in your queries. If you then create a view that
concatenates items, you might worry that changing the sql_mode setting to a value different from
ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a
view definition, MySQL always stores it the same way, in a canonical form. Here is an example that
shows how the server changes a double bar concatenation operator to a CONCAT() function:



SHOW Syntax

1539

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW CREATE VIEW test.v\G
*************************** 1. row ***************************
                View: v
         Create View: CREATE VIEW "v" AS select concat('a','b') AS "col1"
...
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value
of sql_mode will not affect the results from the view. However an additional consequence is that
comments prior to SELECT are stripped from the definition by the server.

13.7.5.15 SHOW DATABASES Syntax

SHOW {DATABASES | SCHEMAS}
    [LIKE 'pattern' | WHERE expr]

SHOW DATABASES lists the databases on the MySQL server host. SHOW SCHEMAS is a synonym
for SHOW DATABASES. The LIKE clause, if present, indicates which database names to match.
The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 21.31, “Extensions to SHOW Statements”.

You see only those databases for which you have some kind of privilege, unless you have the global
SHOW DATABASES privilege. You can also get this list using the mysqlshow command.

If the server was started with the --skip-show-database option, you cannot use this statement at
all unless you have the SHOW DATABASES privilege.

MySQL implements databases as directories in the data directory, so this statement simply lists
directories in that location. However, the output may include names of directories that do not
correspond to actual databases.

13.7.5.16 SHOW ENGINE Syntax

SHOW ENGINE engine_name {STATUS | MUTEX}

SHOW ENGINE displays operational information about a storage engine. It requires the PROCESS
privilege. The statement has these variants:

SHOW ENGINE INNODB STATUS
SHOW ENGINE INNODB MUTEX
SHOW ENGINE {NDB | NDBCLUSTER} STATUS
SHOW ENGINE PERFORMANCE_SCHEMA STATUS

SHOW ENGINE INNODB STATUS displays extensive information from the standard InnoDB Monitor
about the state of the InnoDB storage engine. For information about the standard monitor and other
InnoDB Monitors that provide information about InnoDB processing, see Section 14.20, “InnoDB
Monitors”.

SHOW ENGINE INNODB MUTEX displays InnoDB mutex and rw-lock statistics. Statement output has
the following columns:

• Type

Always InnoDB.



SHOW Syntax

1540

• Name

The source file where the mutex is implemented, and the line number in the file where the mutex is
created. The line number is specific to your version of MySQL.

• Status

The mutex status. This field displays several values if UNIV_DEBUG was defined at MySQL
compilation time (for example, in include/univ.i in the InnoDB part of the MySQL source tree).
If UNIV_DEBUG was not defined, the statement displays only the os_waits value. In the latter case
(without UNIV_DEBUG), the information on which the output is based is insufficient to distinguish
regular mutexes and mutexes that protect rw-locks (which permit multiple readers or a single writer).
Consequently, the output may appear to contain multiple rows for the same mutex.

• count indicates how many times the mutex was requested.

• spin_waits indicates how many times the spinlock had to run.

• spin_rounds indicates the number of spinlock rounds. (spin_rounds divided by spin_waits
provides the average round count.)

• os_waits indicates the number of operating system waits. This occurs when the spinlock did not
work (the mutex was not locked during the spinlock and it was necessary to yield to the operating
system and wait).

• os_yields indicates the number of times a thread trying to lock a mutex gave up its timeslice and
yielded to the operating system (on the presumption that permitting other threads to run will free
the mutex so that it can be locked).

• os_wait_times indicates the amount of time (in ms) spent in operating system waits. In MySQL
5.5 timing is disabled and this value is always 0.

As of MySQL 5.5, SHOW ENGINE INNODB MUTEX skips the mutexes and rw-locks of buffer pool
blocks, as the amount of output can be overwhelming on systems with a large buffer pool. (There is
one mutex and one rw-lock in each 16K buffer pool block, and there are 65,536 blocks per gigabyte.)
SHOW ENGINE INNODB MUTEX also does not list any mutexes or rw-locks that have never been
waited on (os_waits=0). Thus, SHOW ENGINE INNODB MUTEX only displays information about
mutexes and rw-locks outside of the buffer pool that have caused at least one OS-level wait.

SHOW ENGINE INNODB MUTEX information can be used to diagnose system problems. For example,
large values of spin_waits and spin_rounds may indicate scalability problems.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the
Performance Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
  Type: performance_schema
  Name: events_waits_history.row_size
Status: 76
*************************** 4. row ***************************
  Type: performance_schema
  Name: events_waits_history.row_count
Status: 10000
*************************** 5. row ***************************
  Type: performance_schema
  Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
  Type: performance_schema
  Name: performance_schema.memory



SHOW Syntax

1541

Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements.

Name values consist of two parts, which name an internal buffer and a buffer attribute, respectively.
Interpret buffer names as follows:

• An internal buffer that is not exposed as a table is named within parentheses. Examples:
(pfs_cond_class).row_size, (pfs_mutex_class).memory.

• An internal buffer that is exposed as a table in the performance_schema database is named
after the table, without parentheses. Examples: events_waits_history.row_size,
mutex_instances.row_count.

• A value that applies to the Performance Schema as a whole begins with performance_schema.
Example: performance_schema.memory.

Buffer attributes have these meanings:

• row_size is the size of the internal record used by the implementation, such as the size of a row in
a table. row_size values cannot be changed.

• row_count is the number of internal records, such as the number of rows in a table. row_count
values can be changed using Performance Schema configuration options.

• For a table, tbl_name.memory is the product of row_size and row_count. For the Performance
Schema as a whole, performance_schema.memory is the sum of all the memory used (the sum
of all other memory values).

In some cases, there is a direct relationship between a Performance Schema configuration
parameter and a SHOW ENGINE value. For example, events_waits_history_long.row_count
corresponds to performance_schema_events_waits_history_long_size. In other cases, the
relationship is more complex. For example, events_waits_history.row_count corresponds to
performance_schema_events_waits_history_size (the number of rows per thread) multiplied
by performance_schema_max_thread_instances ( the number of threads).

If the server has the NDBCLUSTER storage engine enabled, SHOW ENGINE NDB STATUS displays
cluster status information such as the number of connected data nodes, the cluster connectstring,
and cluster binary log epochs, as well as counts of various Cluster API objects created by the MySQL
Server when connected to the cluster. Sample output from this statement is shown here:

mysql> SHOW ENGINE NDB STATUS;
+------------+-----------------------+--------------------------------------------------+
| Type       | Name                  | Status                                           |
+------------+-----------------------+--------------------------------------------------+
| ndbcluster | connection            | cluster_node_id=7,
  connected_host=192.168.0.103, connected_port=1186, number_of_data_nodes=4,
  number_of_ready_data_nodes=3, connect_count=0                                         |
| ndbcluster | NdbTransaction        | created=6, free=0, sizeof=212                    |
| ndbcluster | NdbOperation          | created=8, free=8, sizeof=660                    |
| ndbcluster | NdbIndexScanOperation | created=1, free=1, sizeof=744                    |
| ndbcluster | NdbIndexOperation     | created=0, free=0, sizeof=664                    |
| ndbcluster | NdbRecAttr            | created=1285, free=1285, sizeof=60               |
| ndbcluster | NdbApiSignal          | created=16, free=16, sizeof=136                  |
| ndbcluster | NdbLabel              | created=0, free=0, sizeof=196                    |
| ndbcluster | NdbBranch             | created=0, free=0, sizeof=24                     |
| ndbcluster | NdbSubroutine         | created=0, free=0, sizeof=68                     |
| ndbcluster | NdbCall               | created=0, free=0, sizeof=16                     |
| ndbcluster | NdbBlob               | created=1, free=1, sizeof=264                    |
| ndbcluster | NdbReceiver           | created=4, free=0, sizeof=68                     |
| ndbcluster | binlog                | latest_epoch=155467, latest_trans_epoch=148126,
  latest_received_binlog_epoch=0, latest_handled_binlog_epoch=0,



SHOW Syntax

1542

  latest_applied_binlog_epoch=0                                                         |
+------------+-----------------------+--------------------------------------------------+

The rows with connection and binlog in the Name column were added to the output of this
statement in MySQL 5.1. The Status column in each of these rows provides information about the
MySQL server's connection to the cluster and about the cluster binary log's status, respectively. The
Status information is in the form of comma-delimited set of name/value pairs.

The connection row's Status column contains the name/value pairs described in the following
table.

Name Value

cluster_node_id The node ID of the MySQL server in the cluster

connected_host The host name or IP address of the cluster management
server to which the MySQL server is connected

connected_port The port used by the MySQL server to connect to the
management server (connected_host)

number_of_data_nodes The number of data nodes configured for the cluster (that is,
the number of [ndbd] sections in the cluster config.ini
file)

number_of_ready_data_nodes The number of data nodes in the cluster that are actually
running

connect_count The number of times this mysqld has connected or
reconnected to cluster data nodes

The binlog row's Status column contains information relating to NDB Cluster Replication. The
name/value pairs it contains are described in the following table.

Name Value

latest_epoch The most recent epoch most recently run on this MySQL
server (that is, the sequence number of the most recent
transaction run on the server)

latest_trans_epoch The most recent epoch processed by the cluster's data
nodes

latest_received_binlog_epoch The most recent epoch received by the binary log thread

latest_handled_binlog_epoch The most recent epoch processed by the binary log thread
(for writing to the binary log)

latest_applied_binlog_epoch The most recent epoch actually written to the binlog

See Section 18.6, “NDB Cluster Replication”, for more information.

The remaining rows from the output of SHOW ENGINE NDB STATUS which are most likely to prove
useful in monitoring the cluster are listed here by Name:

• NdbTransaction: The number and size of NdbTransaction objects that have been created.
An NdbTransaction is created each time a table schema operation (such as CREATE TABLE or
ALTER TABLE) is performed on an NDB table.

• NdbOperation: The number and size of NdbOperation objects that have been created.

• NdbIndexScanOperation: The number and size of NdbIndexScanOperation objects that have
been created.

• NdbIndexOperation: The number and size of NdbIndexOperation objects that have been
created.



SHOW Syntax

1543

• NdbRecAttr: The number and size of NdbRecAttr objects that have been created. In general, one
of these is created each time a data manipulation statement is performed by an SQL node.

• NdbBlob: The number and size of NdbBlob objects that have been created. An NdbBlob is created
for each new operation involving a BLOB column in an NDB table.

• NdbReceiver: The number and size of any NdbReceiver object that have been created. The
number in the created column is the same as the number of data nodes in the cluster to which the
MySQL server has connected.

Note

SHOW ENGINE NDB STATUS returns an empty result if no operations involving
NDB tables have been performed during the current session by the MySQL
client accessing the SQL node on which this statement is run.

13.7.5.17 SHOW ENGINES Syntax

SHOW [STORAGE] ENGINES

SHOW ENGINES displays status information about the server's storage engines. This is particularly
useful for checking whether a storage engine is supported, or to see what the default engine is. This
information can also be obtained from the INFORMATION_SCHEMA ENGINES table. See Section 21.6,
“The INFORMATION_SCHEMA ENGINES Table”.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
      Engine: FEDERATED
     Support: NO
     Comment: Federated MySQL storage engine
Transactions: NULL
          XA: NULL
  Savepoints: NULL
*************************** 2. row ***************************
      Engine: MRG_MYISAM
     Support: YES
     Comment: Collection of identical MyISAM tables
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 3. row ***************************
      Engine: MyISAM
     Support: YES
     Comment: MyISAM storage engine
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 4. row ***************************
      Engine: BLACKHOLE
     Support: YES
     Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 5. row ***************************
      Engine: CSV
     Support: YES
     Comment: CSV storage engine
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 6. row ***************************
      Engine: MEMORY
     Support: YES
     Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO



SHOW Syntax

1544

          XA: NO
  Savepoints: NO
*************************** 7. row ***************************
      Engine: ARCHIVE
     Support: YES
     Comment: Archive storage engine
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 8. row ***************************
      Engine: InnoDB
     Support: DEFAULT
     Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
          XA: YES
  Savepoints: YES
*************************** 9. row ***************************
      Engine: PERFORMANCE_SCHEMA
     Support: YES
     Comment: Performance Schema
Transactions: NO
          XA: NO
  Savepoints: NO

The output from SHOW ENGINES may vary according to the MySQL version used and other factors.
The values shown in the Support column indicate the server's level of support for the storage engine,
as shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

DISABLED The engine is supported but has been disabled

A value of NO means that the server was compiled without support for the engine, so it cannot be
enabled at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the
engine, or because not all options required to enable it were given. In the latter case, the error log file
should contain a reason indicating why the option is disabled. See Section 5.4.2, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option. For the NDBCLUSTER storage engine, DISABLED means
the server was compiled with support for NDB Cluster, but was not started with the --ndbcluster
option.

All MySQL servers support MyISAM tables. It is not possible to disable MyISAM.

The Transactions, XA, and Savepoints columns indicate whether the storage engine supports
transactions, XA transactions, and savepoints, respectively.

13.7.5.18 SHOW ERRORS Syntax

SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS

SHOW ERRORS is a diagnostic statement that is similar to SHOW WARNINGS, except that it displays
information only for errors, rather than for errors, warnings, and notes.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.



SHOW Syntax

1545

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this
number from the error_count variable:

SHOW COUNT(*) ERRORS;
SELECT @@error_count;

SHOW ERRORS and error_count apply only to errors, not warnings or notes. In other respects, they
are similar to SHOW WARNINGS and warning_count. In particular, SHOW ERRORS cannot display
information for more than max_error_count messages, and error_count can exceed the value of
max_error_count if the number of errors exceeds max_error_count.

For more information, see Section 13.7.5.41, “SHOW WARNINGS Syntax”.

13.7.5.19 SHOW EVENTS Syntax

SHOW EVENTS
    [{FROM | IN} schema_name]
    [LIKE 'pattern' | WHERE expr]

This statement displays information about Event Manager events. It requires the EVENT privilege for
the database from which the events are to be shown.

In its simplest form, SHOW EVENTS lists all of the events in the current schema:

mysql> SELECT CURRENT_USER(), SCHEMA();
+----------------+----------+
| CURRENT_USER() | SCHEMA() |
+----------------+----------+
| jon@ghidora    | myschema |
+----------------+----------+
1 row in set (0.00 sec)

mysql> SHOW EVENTS\G
*************************** 1. row ***************************
                  Db: myschema
                Name: e_daily
             Definer: jon@ghidora
           Time zone: SYSTEM
                Type: RECURRING
          Execute at: NULL
      Interval value: 10
      Interval field: SECOND
              Starts: 2006-02-09 10:41:23
                Ends: NULL
              Status: ENABLED
          Originator: 0
character_set_client: latin1
collation_connection: latin1_swedish_ci
  Database Collation: latin1_swedish_ci

To see events for a specific schema, use the FROM clause. For example, to see events for the test
schema, use the following statement:

SHOW EVENTS FROM test;

The LIKE clause, if present, indicates which event names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 21.31, “Extensions to SHOW
Statements”.

SHOW EVENTS output has the following columns:

• Db: The schema (database) on which the event is defined.



SHOW Syntax

1546

• Name: The name of the event.

• Time zone: The event time zone, which is the time zone used for scheduling the event and that is in
effect within the event as it executes. The default value is SYSTEM.

• Definer: The account of the user who created the event, in 'user_name'@'host_name' format.

• Type: The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• Execute At: The date and time when a transient event is set to execute. Shown as a DATETIME
value.

For a recurring event, the value of this column is always NULL.

• Interval Value: For a recurring event, the number of intervals to wait between event executions.

For a transient event, the value of this column is always NULL.

• Interval Field: The time units used for the interval which a recurring event waits before
repeating.

For a transient event, the value of this column is always NULL.

• Starts: The start date and time for a recurring event. This is displayed as a DATETIME value, and
is NULL if no start date and time are defined for the event.

For a transient event, this column is always NULL.

• Ends: The end date and time for a recurring event. This is displayed as a DATETIME value, and
defaults to NULL if no end date and time is defined for the event.

For a transient event, this column is always NULL.

• Status: The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED.

SLAVESIDE_DISABLED indicates that the creation of the event occurred on another MySQL server
acting as a replication master and replicated to the current MySQL server which is acting as a slave,
but the event is not presently being executed on the slave.

• Originator: The server ID of the MySQL server on which the event was created. Defaults to 0.

• character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation
is the collation of the database with which the routine is associated.

For more information about SLAVE_DISABLED and the Originator column, see Section 17.4.1.12,
“Replication of Invoked Features”.

The event action statement is not shown in the output of SHOW EVENTS. Use SHOW CREATE EVENT or
the INFORMATION_SCHEMA.EVENTS table.

Times displayed by SHOW EVENTS are given in the event time zone, as discussed in Section 20.4.4,
“Event Metadata”.

The columns in the output of SHOW EVENTS are similar to, but not identical to the columns in the
INFORMATION_SCHEMA.EVENTS table. See Section 21.7, “The INFORMATION_SCHEMA EVENTS
Table”.

13.7.5.20 SHOW FUNCTION CODE Syntax

SHOW FUNCTION CODE func_name



SHOW Syntax

1547

This statement is similar to SHOW PROCEDURE CODE but for stored functions. See Section 13.7.5.28,
“SHOW PROCEDURE CODE Syntax”.

13.7.5.21 SHOW FUNCTION STATUS Syntax

SHOW FUNCTION STATUS
    [LIKE 'pattern' | WHERE expr]

This statement is similar to SHOW PROCEDURE STATUS but for stored functions. See
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”.

13.7.5.22 SHOW GRANTS Syntax

SHOW GRANTS [FOR user]

This statement displays the privileges that are assigned to a MySQL user account, in the form of
GRANT statements that must be executed to duplicate the privilege assignments. SHOW GRANTS
requires the SELECT privilege for the mysql database, except to see the privileges for the current user.

For output that includes an IDENTIFIED BY PASSWORD clause displaying an account password hash
value, the SUPER privilege is required to see the actual hash value. Otherwise, the value displays as
<secret>.

To name the account, use the same format as for the GRANT statement; for example,
'jeffrey'@'localhost'. If you specify only the user name part of the account name, a host name
part of '%' is used. For additional information about specifying account names, see Section 13.7.1.3,
“GRANT Syntax”.

mysql> SHOW GRANTS FOR 'root'@'localhost';
+---------------------------------------------------------------------+
| Grants for root@localhost                                           |
+---------------------------------------------------------------------+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---------------------------------------------------------------------+

To display the privileges granted to the account that you are using to connect to the server, you can
use any of the following statements:

SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();

If SHOW GRANTS FOR CURRENT_USER (or any of the equivalent syntaxes) is used in DEFINER
context, such as within a stored procedure that is defined with SQL SECURITY DEFINER), the grants
displayed are those of the definer and not the invoker.

SHOW GRANTS displays only the privileges granted explicitly to the named account. Other privileges
that might be available to the account are not displayed. For example, if an anonymous account exists,
the named account might be able to use its privileges, but SHOW GRANTS will not display them.

13.7.5.23 SHOW INDEX Syntax

SHOW {INDEX | INDEXES | KEYS}
    {FROM | IN} tbl_name
    [{FROM | IN} db_name]
    [WHERE expr]

SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call in
ODBC. This statement requires some privilege for any column in the table.



SHOW Syntax

1548

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. These
two statements are equivalent:

SHOW INDEX FROM mytable FROM mydb;
SHOW INDEX FROM mydb.mytable;

The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 21.31, “Extensions to SHOW Statements”.

mysql> SHOW INDEX FROM City\G
*************************** 1. row ***************************
        Table: city
   Non_unique: 0
     Key_name: PRIMARY
 Seq_in_index: 1
  Column_name: ID
    Collation: A
  Cardinality: 4321
     Sub_part: NULL
       Packed: NULL
         Null: 
   Index_type: BTREE
      Comment: 
Index_comment: 
*************************** 2. row ***************************
        Table: city
   Non_unique: 1
     Key_name: CountryCode
 Seq_in_index: 1
  Column_name: CountryCode
    Collation: A
  Cardinality: 4321
     Sub_part: NULL
       Packed: NULL
         Null: 
   Index_type: BTREE
      Comment: 
Index_comment: 

SHOW INDEX returns the following fields:

• Table

The name of the table.

• Non_unique

0 if the index cannot contain duplicates, 1 if it can.

• Key_name

The name of the index. If the index is the primary key, the name is always PRIMARY.

• Seq_in_index

The column sequence number in the index, starting with 1.

• Column_name

The column name.

• Collation

How the column is sorted in the index. This can have values A (ascending) or NULL (not sorted).

• Cardinality



SHOW Syntax

1549

An estimate of the number of unique values in the index. To update this number, run ANALYZE
TABLE or (for MyISAM tables) myisamchk -a.

Cardinality is counted based on statistics stored as integers, so the value is not necessarily
exact even for small tables. The higher the cardinality, the greater the chance that MySQL uses the
index when doing joins.

• Sub_part

The index prefix. That is, the number of indexed characters if the column is only partly indexed, NULL
if the entire column is indexed.

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE
TABLE, ALTER TABLE, and CREATE INDEX statements is interpreted as
number of characters for nonbinary string types (CHAR, VARCHAR, TEXT) and
number of bytes for binary string types (BINARY, VARBINARY, BLOB). Take
this into account when specifying a prefix length for a nonbinary string column
that uses a multibyte character set.

For additional information about index prefixes, see Section 8.3.4, “Column Indexes”, and
Section 13.1.13, “CREATE INDEX Syntax”.

• Packed

Indicates how the key is packed. NULL if it is not.

• Null

Contains YES if the column may contain NULL values and '' if not.

• Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• Comment

Information about the index not described in its own column, such as disabled if the index is
disabled.

• Index_comment

Any comment provided for the index with a COMMENT attribute when the index was created.

You can also obtain information about table indexes from INFORMATION_SCHEMA, which contains a
STATISTICS table. See Section 21.20, “The INFORMATION_SCHEMA STATISTICS Table”.

You can list a table's indexes with the mysqlshow -k db_name tbl_name command.

13.7.5.24 SHOW MASTER STATUS Syntax

SHOW MASTER STATUS

This statement provides status information about the binary log files of the master. It requires either the
SUPER or REPLICATION CLIENT privilege.

Example:

mysql> SHOW MASTER STATUS;



SHOW Syntax

1550

+---------------+----------+--------------+------------------+
| File          | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+---------------+----------+--------------+------------------+
| mysql-bin.003 | 73       | test         | manual,mysql     |
+---------------+----------+--------------+------------------+

13.7.5.25 SHOW OPEN TABLES Syntax

SHOW OPEN TABLES
    [{FROM | IN} db_name]
    [LIKE 'pattern' | WHERE expr]

SHOW OPEN TABLES lists the non-TEMPORARY tables that are currently open in the table cache. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”. The FROM clause, if present, restricts the
tables shown to those present in the db_name database. The LIKE clause, if present, indicates which
table names to match. The WHERE clause can be given to select rows using more general conditions,
as discussed in Section 21.31, “Extensions to SHOW Statements”.

SHOW OPEN TABLES output has the following columns:

• Database

The database containing the table.

• Table

The table name.

• In_use

The number of table locks or lock requests there are for the table. For example, if one client acquires
a lock for a table using LOCK TABLE t1 WRITE, In_use will be 1. If another client issues LOCK
TABLE t1 WRITE while the table remains locked, the client will block waiting for the lock, but
the lock request causes In_use to be 2. If the count is zero, the table is open but not currently
being used. In_use is also increased by the HANDLER ... OPEN statement and decreased by
HANDLER ... CLOSE.

• Name_locked

Whether the table name is locked. Name locking is used for operations such as dropping or
renaming tables.

If you have no privileges for a table, it does not show up in the output from SHOW OPEN TABLES.

13.7.5.26 SHOW PLUGINS Syntax

SHOW PLUGINS

SHOW PLUGINS displays information about server plugins. Plugin information is also available in
the INFORMATION_SCHEMA.PLUGINS table. See Section 21.13, “The INFORMATION_SCHEMA
PLUGINS Table”.

Example of SHOW PLUGINS output:

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
   Name: binlog
 Status: ACTIVE
   Type: STORAGE ENGINE
Library: NULL
License: GPL



SHOW Syntax

1551

*************************** 2. row ***************************
   Name: CSV
 Status: ACTIVE
   Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 3. row ***************************
   Name: MEMORY
 Status: ACTIVE
   Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 4. row ***************************
   Name: MyISAM
 Status: ACTIVE
   Type: STORAGE ENGINE
Library: NULL
License: GPL
...

SHOW PLUGINS output has the following columns:

• Name: The name used to refer to the plugin in statements such as INSTALL PLUGIN and
UNINSTALL PLUGIN.

• Status: The plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.

• Type: The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or
AUTHENTICATION.

• Library: The name of the plugin shared library file. This is the name used to refer to the plugin
file in statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the
directory named by the plugin_dir system variable. If the library name is NULL, the plugin is
compiled in and cannot be uninstalled with UNINSTALL PLUGIN.

• License: How the plugin is licensed; for example, GPL.

For plugins installed with INSTALL PLUGIN, the Name and Library values are also registered in the
mysql.plugin table.

For information about plugin data structures that form the basis of the information displayed by SHOW
PLUGINS, see Section 24.2, “The MySQL Plugin API”.

13.7.5.27 SHOW PRIVILEGES Syntax

SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the MySQL server supports. The exact list
of privileges depends on the version of your server.

mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
  Context: Tables
  Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
  Context: Functions,Procedures
  Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
  Context: Databases,Tables,Indexes
  Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine



SHOW Syntax

1552

  Context: Databases
  Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
  Context: Databases
  Comment: To use CREATE TEMPORARY TABLE
...

Privileges belonging to a specific user are displayed by the SHOW GRANTS statement. See
Section 13.7.5.22, “SHOW GRANTS Syntax”, for more information.

13.7.5.28 SHOW PROCEDURE CODE Syntax

SHOW PROCEDURE CODE proc_name

This statement is a MySQL extension that is available only for servers that have been built with
debugging support. It displays a representation of the internal implementation of the named stored
procedure. A similar statement, SHOW FUNCTION CODE, displays information about stored functions
(see Section 13.7.5.20, “SHOW FUNCTION CODE Syntax”).

To use either statement, you must be the owner of the routine or have SELECT access to the
mysql.proc table.

If the named routine is available, each statement produces a result set. Each row in the result set
corresponds to one “instruction” in the routine. The first column is Pos, which is an ordinal number
beginning with 0. The second column is Instruction, which contains an SQL statement (usually
changed from the original source), or a directive which has meaning only to the stored-routine handler.

mysql> DELIMITER //
mysql> CREATE PROCEDURE p1 ()
    -> BEGIN
    ->   DECLARE fanta INT DEFAULT 55;
    ->   DROP TABLE t2;
    ->   LOOP
    ->     INSERT INTO t3 VALUES (fanta);
    ->     END LOOP;
    ->   END//
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW PROCEDURE CODE p1//
+-----+----------------------------------------+
| Pos | Instruction                            |
+-----+----------------------------------------+
|   0 | set fanta@0 55                         |
|   1 | stmt 9 "DROP TABLE t2"                 |
|   2 | stmt 5 "INSERT INTO t3 VALUES (fanta)" |
|   3 | jump 2                                 |
+-----+----------------------------------------+
4 rows in set (0.00 sec)

In this example, the nonexecutable BEGIN and END statements have disappeared, and for the
DECLARE variable_name statement, only the executable part appears (the part where the default is
assigned). For each statement that is taken from source, there is a code word stmt followed by a type
(9 means DROP, 5 means INSERT, and so on). The final row contains an instruction jump 2, meaning
GOTO instruction #2.

13.7.5.29 SHOW PROCEDURE STATUS Syntax

SHOW PROCEDURE STATUS
    [LIKE 'pattern' | WHERE expr]

This statement is a MySQL extension. It returns characteristics of a stored procedure, such as the
database, name, type, creator, creation and modification dates, and character set information. A



SHOW Syntax

1553

similar statement, SHOW FUNCTION STATUS, displays information about stored functions (see
Section 13.7.5.21, “SHOW FUNCTION STATUS Syntax”).

The LIKE clause, if present, indicates which procedure or function names to match. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 21.31, “Extensions
to SHOW Statements”.

mysql> SHOW PROCEDURE STATUS LIKE 'sp1'\G
*************************** 1. row ***************************
                  Db: test
                Name: sp1
                Type: PROCEDURE
             Definer: testuser@localhost
            Modified: 2004-08-03 15:29:37
             Created: 2004-08-03 15:29:37
       Security_type: DEFINER
             Comment:
character_set_client: latin1
collation_connection: latin1_swedish_ci
  Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation is
the collation of the database with which the routine is associated.

You can also get information about stored routines from the ROUTINES table in
INFORMATION_SCHEMA. See Section 21.17, “The INFORMATION_SCHEMA ROUTINES Table”.

13.7.5.30 SHOW PROCESSLIST Syntax

SHOW [FULL] PROCESSLIST

SHOW PROCESSLIST shows you which threads are running. You can also get this information from the
INFORMATION_SCHEMA PROCESSLIST table or the mysqladmin processlist command. If you
have the PROCESS privilege, you can see all threads. Otherwise, you can see only your own threads
(that is, threads associated with the MySQL account that you are using). If you do not use the FULL
keyword, only the first 100 characters of each statement are shown in the Info field.

This statement is very useful if you get the “too many connections” error message and want to find
out what is going on. MySQL reserves one extra connection to be used by accounts that have the
SUPER privilege, to ensure that administrators should always be able to connect and check the system
(assuming that you are not giving this privilege to all your users).

Threads can be killed with the KILL statement. See Section 13.7.6.4, “KILL Syntax”.

Here is an example of SHOW PROCESSLIST output:

mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
Id: 1
User: system user
Host:
db: NULL
Command: Connect
Time: 1030455
State: Waiting for master to send event
Info: NULL
*************************** 2. row ***************************
Id: 2
User: system user
Host:
db: NULL



SHOW Syntax

1554

Command: Connect
Time: 1004
State: Has read all relay log; waiting for the slave
       I/O thread to update it
Info: NULL
*************************** 3. row ***************************
Id: 3112
User: replikator
Host: artemis:2204
db: NULL
Command: Binlog Dump
Time: 2144
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 4. row ***************************
Id: 3113
User: replikator
Host: iconnect2:45781
db: NULL
Command: Binlog Dump
Time: 2086
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 5. row ***************************
Id: 3123
User: stefan
Host: localhost
db: apollon
Command: Query
Time: 0
State: NULL
Info: SHOW FULL PROCESSLIST
5 rows in set (0.00 sec)

The columns produced by SHOW PROCESSLIST have the following meanings:

• Id

The connection identifier. This is the same type of value displayed in the ID column of the
INFORMATION_SCHEMA.PROCESSLIST table, the PROCESSLIST_ID column of the Performance
Schema threads table, and returned by the CONNECTION_ID() function.

• User

The MySQL user who issued the statement. If this is system user, it refers to a nonclient thread
spawned by the server to handle tasks internally. This could be the I/O or SQL thread used on
replication slaves or a delayed-row handler. unauthenticated user refers to a thread that has
become associated with a client connection but for which authentication of the client user has not yet
been done. event_scheduler refers to the thread that monitors scheduled events. For system
user, there is no host specified in the Host column.

• Host

The host name of the client issuing the statement (except for system user where there is no host).
SHOW PROCESSLIST reports the host name for TCP/IP connections in host_name:client_port
format to make it easier to determine which client is doing what.

• db

The default database, if one is selected, otherwise NULL.

• Command

The type of command the thread is executing. For descriptions for thread commands, see
Section 8.14, “Examining Thread Information”. The value of this column corresponds to the COM_xxx
commands of the client/server protocol and Com_xxx status variables. See Section 5.1.7, “Server
Status Variables”



SHOW Syntax

1555

• Time

The time in seconds that the thread has been in its current state. For a slave SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
slave machine. See Section 17.2.1, “Replication Implementation Details”.

• State

An action, event, or state that indicates what the thread is doing. Descriptions for State values can
be found at Section 8.14, “Examining Thread Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

For the SHOW PROCESSLIST statement, the value of State is NULL.

• Info

The statement the thread is executing, or NULL if it is not executing any statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the Info value shows the SELECT statement.

13.7.5.31 SHOW PROFILE Syntax

SHOW PROFILE [type [, type] ... ]
    [FOR QUERY n]
    [LIMIT row_count [OFFSET offset]]

type:
    ALL
  | BLOCK IO
  | CONTEXT SWITCHES
  | CPU
  | IPC
  | MEMORY
  | PAGE FAULTS
  | SOURCE
  | SWAPS

The SHOW PROFILE and SHOW PROFILES statements display profiling information that indicates
resource usage for statements executed during the course of the current session.

Profiling is controlled by the profiling session variable, which has a default value of 0 (OFF).
Profiling is enabled by setting profiling to 1 or ON:

mysql> SET profiling = 1;

SHOW PROFILES displays a list of the most recent statements sent to the server. The size of the list is
controlled by the profiling_history_size session variable, which has a default value of 15. The
maximum value is 100. Setting the value to 0 has the practical effect of disabling profiling.

All statements are profiled except SHOW PROFILE and SHOW PROFILES, so you will find neither of
those statements in the profile list. Malformed statements are profiled. For example, SHOW PROFILING
is an illegal statement, and a syntax error occurs if you try to execute it, but it will show up in the
profiling list.

SHOW PROFILE displays detailed information about a single statement. Without the FOR QUERY n
clause, the output pertains to the most recently executed statement. If FOR QUERY n is included, SHOW
PROFILE displays information for statement n. The values of n correspond to the Query_ID values
displayed by SHOW PROFILES.



SHOW Syntax

1556

The LIMIT row_count clause may be given to limit the output to row_count rows. If LIMIT is
given, OFFSET offset may be added to begin the output offset rows into the full set of rows.

By default, SHOW PROFILE displays Status and Duration columns. The Status values are like
the State values displayed by SHOW PROCESSLIST, although there might be some minor differences
in interpretion for the two statements for some status values (see Section 8.14, “Examining Thread
Information”).

Optional type values may be specified to display specific additional types of information:

• ALL displays all information

• BLOCK IO displays counts for block input and output operations

• CONTEXT SWITCHES displays counts for voluntary and involuntary context switches

• CPU displays user and system CPU usage times

• IPC displays counts for messages sent and received

• MEMORY is not currently implemented

• PAGE FAULTS displays counts for major and minor page faults

• SOURCE displays the names of functions from the source code, together with the name and line
number of the file in which the function occurs

• SWAPS displays swap counts

Profiling is enabled per session. When a session ends, its profiling information is lost.

mysql> SELECT @@profiling;
+-------------+
| @@profiling |
+-------------+
|           0 |
+-------------+
1 row in set (0.00 sec)

mysql> SET profiling = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> CREATE TABLE T1 (id INT);
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW PROFILES;
+----------+----------+--------------------------+
| Query_ID | Duration | Query                    |
+----------+----------+--------------------------+
|        0 | 0.000088 | SET PROFILING = 1        |
|        1 | 0.000136 | DROP TABLE IF EXISTS t1  |
|        2 | 0.011947 | CREATE TABLE t1 (id INT) |
+----------+----------+--------------------------+
3 rows in set (0.00 sec)

mysql> SHOW PROFILE;
+----------------------+----------+
| Status               | Duration |
+----------------------+----------+
| checking permissions | 0.000040 |
| creating table       | 0.000056 |
| After create         | 0.011363 |
| query end            | 0.000375 |
| freeing items        | 0.000089 |



SHOW Syntax

1557

| logging slow query   | 0.000019 |
| cleaning up          | 0.000005 |
+----------------------+----------+
7 rows in set (0.00 sec)

mysql> SHOW PROFILE FOR QUERY 1;
+--------------------+----------+
| Status             | Duration |
+--------------------+----------+
| query end          | 0.000107 |
| freeing items      | 0.000008 |
| logging slow query | 0.000015 |
| cleaning up        | 0.000006 |
+--------------------+----------+
4 rows in set (0.00 sec)

mysql> SHOW PROFILE CPU FOR QUERY 2;
+----------------------+----------+----------+------------+
| Status               | Duration | CPU_user | CPU_system |
+----------------------+----------+----------+------------+
| checking permissions | 0.000040 | 0.000038 |   0.000002 |
| creating table       | 0.000056 | 0.000028 |   0.000028 |
| After create         | 0.011363 | 0.000217 |   0.001571 |
| query end            | 0.000375 | 0.000013 |   0.000028 |
| freeing items        | 0.000089 | 0.000010 |   0.000014 |
| logging slow query   | 0.000019 | 0.000009 |   0.000010 |
| cleaning up          | 0.000005 | 0.000003 |   0.000002 |
+----------------------+----------+----------+------------+
7 rows in set (0.00 sec)

Note

Profiling is only partially functional on some architectures. For values that
depend on the getrusage() system call, NULL is returned on systems such
as Windows that do not support the call. In addition, profiling is per process and
not per thread. This means that activity on threads within the server other than
your own may affect the timing information that you see.

You can also get profiling information from the PROFILING table in INFORMATION_SCHEMA. See
Section 21.15, “The INFORMATION_SCHEMA PROFILING Table”. For example, the following queries
produce the same result:

SHOW PROFILE FOR QUERY 2;

SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

13.7.5.32 SHOW PROFILES Syntax

SHOW PROFILES

The SHOW PROFILES statement, together with SHOW PROFILE, displays profiling information that
indicates resource usage for statements executed during the course of the current session. For more
information, see Section 13.7.5.31, “SHOW PROFILE Syntax”.

13.7.5.33 SHOW RELAYLOG EVENTS Syntax

SHOW RELAYLOG EVENTS
    [IN 'log_name']
    [FROM pos]
    [LIMIT [offset,] row_count]

Shows the events in the relay log of a replication slave. If you do not specify 'log_name', the first
relay log is displayed. This statement has no effect on the master.



SHOW Syntax

1558

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

Note

Issuing a SHOW RELAYLOG EVENTS with no LIMIT clause could start a very
time- and resource-consuming process because the server returns to the client
the complete contents of the relay log (including all statements modifying data
that have been received by the slave).

Note

Some events relating to the setting of user and system variables are not
included in the output from SHOW RELAYLOG EVENTS. To get complete
coverage of events within a relay log, use mysqlbinlog.

13.7.5.34 SHOW SLAVE HOSTS Syntax

SHOW SLAVE HOSTS

Displays a list of replication slaves currently registered with the master. (Before MySQL 5.5.3, only
slaves started with the --report-host=host_name option are visible in this list.)

SHOW SLAVE HOSTS should be executed on a server that acts as a replication master. The statement
displays information about servers that are or have been connected as replication slaves, with each
row of the result corresponding to one slave server, as shown here:

mysql> SHOW SLAVE HOSTS;
+------------+-----------+------+-----------+
| Server_id  | Host      | Port | Master_id |
+------------+-----------+------+-----------+
|  192168010 | iconnect2 | 3306 | 192168011 |
| 1921680101 | athena    | 3306 | 192168011 |
+------------+-----------+------+-----------+

• Server_id: The unique server ID of the slave server, as configured in the slave server's option file,
or on the command line with --server-id=value.

• Host: The host name of the slave server as specified on the slave with the --report-host option.
This can differ from the machine name as configured in the operating system.

• User: The slave server user name as, specified on the slave with the --report-user option.
Statement output includes this column only if the master server is started with the --show-slave-
auth-info option.

• Password: The slave server password as, specified on the slave with the --report-password
option. Statement output includes this column only if the master server is started with the --show-
slave-auth-info option.

• Port: The port on the master to which the slave server is listening, as specified on the slave with the
--report-port option.

In MySQL 5.5.23 and later, a zero in this column means that the slave port (--report-port) was
not set. Prior to MySQL 5.5.23, 3306 was used as the default in such cases (Bug #13333431).

• Master_id: The unique server ID of the master server that the slave server is replicating from. This
is the server ID of the server on which SHOW SLAVE HOSTS is executed, so this same value is listed
for each row in the result.

Some MySQL versions report another variable, Rpl_recovery_rank. This variable was never used,
and was removed in MySQL 5.5.3. (Bug #13963)



SHOW Syntax

1559

13.7.5.35 SHOW SLAVE STATUS Syntax

SHOW SLAVE STATUS

This statement provides status information on essential parameters of the slave threads. It requires
either the SUPER or REPLICATION CLIENT privilege.

If you issue this statement using the mysql client, you can use a \G statement terminator rather than a
semicolon to obtain a more readable vertical layout:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
               Slave_IO_State: Waiting for master to send event
                  Master_Host: localhost
                  Master_User: root
                  Master_Port: 3306
                Connect_Retry: 3
              Master_Log_File: gbichot-bin.005
          Read_Master_Log_Pos: 79
               Relay_Log_File: gbichot-relay-bin.005
                Relay_Log_Pos: 548
        Relay_Master_Log_File: gbichot-bin.005
             Slave_IO_Running: Yes
            Slave_SQL_Running: Yes
              Replicate_Do_DB:
          Replicate_Ignore_DB:
           Replicate_Do_Table:
       Replicate_Ignore_Table:
      Replicate_Wild_Do_Table:
  Replicate_Wild_Ignore_Table:
                   Last_Errno: 0
                   Last_Error:
                 Skip_Counter: 0
          Exec_Master_Log_Pos: 79
              Relay_Log_Space: 552
              Until_Condition: None
               Until_Log_File:
                Until_Log_Pos: 0
           Master_SSL_Allowed: No
           Master_SSL_CA_File:
           Master_SSL_CA_Path:
              Master_SSL_Cert:
            Master_SSL_Cipher:
               Master_SSL_Key:
        Seconds_Behind_Master: 8
Master_SSL_Verify_Server_Cert: No
                Last_IO_Errno: 0
                Last_IO_Error:
               Last_SQL_Errno: 0
               Last_SQL_Error:
  Replicate_Ignore_Server_Ids: 0
             Master_Server_Id: 1

The following list describes the fields returned by SHOW SLAVE STATUS. For additional information
about interpreting their meanings, see Section 8.14.6, “Replication Slave I/O Thread States”.

• Slave_IO_State

A copy of the State field of the SHOW PROCESSLIST output for the slave I/O thread. This
tells you what the thread is doing: trying to connect to the master, waiting for events from the
master, reconnecting to the master, and so on. For a listing of possible states, see Section 8.14.6,
“Replication Slave I/O Thread States”.

• Master_Host

The master host that the slave is connected to.



SHOW Syntax

1560

• Master_User

The user name of the account used to connect to the master.

• Master_Port

The port used to connect to the master.

• Connect_Retry

The number of seconds between connect retries (default 60). This can be set with the CHANGE
MASTER TO statement.

• Master_Log_File

The name of the master binary log file from which the I/O thread is currently reading.

• Read_Master_Log_Pos

The position in the current master binary log file up to which the I/O thread has read.

• Relay_Log_File

The name of the relay log file from which the SQL thread is currently reading and executing.

• Relay_Log_Pos

The position in the current relay log file up to which the SQL thread has read and executed.

• Relay_Master_Log_File

The name of the master binary log file containing the most recent event executed by the SQL thread.

• Slave_IO_Running

Whether the I/O thread is started and has connected successfully to the master. Internally, the state
of this thread is represented by one of the following three values:

• MYSQL_SLAVE_NOT_RUN.  The slave I/O thread is not running. For this state,
Slave_IO_Running is No.

• MYSQL_SLAVE_RUN_NOT_CONNECT.  The slave I/O thread is running, but is not connected
to a replication master. For this state, Slave_IO_Running depends on the server version as
shown in the following table.

MySQL Version Slave_IO_Running

4.1 (4.1.13 and earlier); 5.0 (5.0.11 and earlier) Yes

4.1 (4.1.14 and later); 5.0 (5.0.12 and later) No

5.1 (5.1.45 and earlier) No

5.1 (5.1.46 and later); 5.5 Connecting

• MYSQL_SLAVE_RUN_CONNECT.  The slave I/O thread is running, and is connected to a
replication master. For this state, Slave_IO_Running is Yes.

The value of the Slave_running system status variable corresponds with this value.

• Slave_SQL_Running

Whether the SQL thread is started.

• Replicate_Do_DB, Replicate_Ignore_DB



SHOW Syntax

1561

The lists of databases that were specified with the --replicate-do-db and --replicate-
ignore-db options, if any.

• Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table,
Replicate_Wild_Ignore_Table

The lists of tables that were specified with the --replicate-do-table, --replicate-ignore-
table, --replicate-wild-do-table, and --replicate-wild-ignore-table options, if
any.

• Last_Errno, Last_Error

These columns are aliases for Last_SQL_Errno and Last_SQL_Error.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

Note

When the slave SQL thread receives an error, it reports the error first, then
stops the SQL thread. This means that there is a small window of time during
which SHOW SLAVE STATUS shows a nonzero value for Last_SQL_Errno
even though Slave_SQL_Running still displays Yes.

• Skip_Counter

The current value of the sql_slave_skip_counter system variable. See Section 13.4.2.4, “SET
GLOBAL sql_slave_skip_counter Syntax”.

• Exec_Master_Log_Pos

The position in the current master binary log file to which the SQL thread has read and executed,
marking the start of the next transaction or event to be processed. You can use this value with
the CHANGE MASTER TO statement's MASTER_LOG_POS option when starting a new slave
from an existing slave, so that the new slave reads from this point. The coordinates given by
(Relay_Master_Log_File, Exec_Master_Log_Pos) in the master's binary log correspond to the
coordinates given by (Relay_Log_File, Relay_Log_Pos) in the relay log.

• Relay_Log_Space

The total combined size of all existing relay log files.

• Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START SLAVE statement.

Until_Condition has these values:

• None if no UNTIL clause was specified

• Master if the slave is reading until a given position in the master's binary log

• Relay if the slave is reading until a given position in its relay log

Until_Log_File and Until_Log_Pos indicate the log file name and position that define the
coordinates at which the SQL thread stops executing.

• Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Master_SSL_Cert,
Master_SSL_Cipher, Master_SSL_Key, Master_SSL_Verify_Server_Cert

These fields show the SSL parameters used by the slave to connect to the master, if any.

Master_SSL_Allowed has these values:



SHOW Syntax

1562

• Yes if an SSL connection to the master is permitted

• No if an SSL connection to the master is not permitted

• Ignored if an SSL connection is permitted but the slave server does not have SSL support
enabled

The values of the other SSL-related fields correspond to the values of the MASTER_SSL_CA,
MASTER_SSL_CAPATH, MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_KEY, and
MASTER_SSL_VERIFY_SERVER_CERT options to the CHANGE MASTER TO statement. See
Section 13.4.2.1, “CHANGE MASTER TO Syntax”.

• Seconds_Behind_Master

This field is an indication of how “late” the slave is:

• When the slave is actively processing updates, this field shows the difference between the current
timestamp on the slave and the original timestamp logged on the master for the event currently
being processed on the slave.

• When no event is currently being processed on the slave, this value is 0.

In essence, this field measures the time difference in seconds between the slave SQL thread
and the slave I/O thread. If the network connection between master and slave is fast, the slave
I/O thread is very close to the master, so this field is a good approximation of how late the slave
SQL thread is compared to the master. If the network is slow, this is not a good approximation;
the slave SQL thread may quite often be caught up with the slow-reading slave I/O thread, so
Seconds_Behind_Master often shows a value of 0, even if the I/O thread is late compared to the
master. In other words, this column is useful only for fast networks.

This time difference computation works even if the master and slave do not have identical clock
times, provided that the difference, computed when the slave I/O thread starts, remains constant
from then on. Any changes—including NTP updates—can lead to clock skews that can make
calculation of Seconds_Behind_Master less reliable.

This field is NULL (undefined or unknown) if the slave SQL thread is not running, or if the slave I/
O thread is not running or is not connected to the master. For example, if the slave I/O thread is
running but is not connected to the master and is sleeping for the number of seconds given by
the CHANGE MASTER TO statement or --master-connect-retry option (default 60) before
reconnecting, the value is NULL. This is because the slave cannot know what the master is doing,
and so cannot say reliably how late it is.

The value of Seconds_Behind_Master is based on the timestamps stored in events, which are
preserved through replication. This means that if a master M1 is itself a slave of M0, any event from
M1's binary log that originates from M0's binary log has M0's timestamp for that event. This enables
MySQL to replicate TIMESTAMP successfully. However, the problem for Seconds_Behind_Master
is that if M1 also receives direct updates from clients, the Seconds_Behind_Master value
randomly fluctuates because sometimes the last event from M1 originates from M0 and sometimes is
the result of a direct update on M1.

• Last_IO_Errno, Last_IO_Error

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the Last_IO_Error value is
not empty, the error values also appear in the slave's error log.

Prior to MySQL 5.5, Last_IO_Error and Last_IO_Errno were not set in the event that
replication failed due to exceeding max_allowed_packet (Bug #42914).

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.



SHOW Syntax

1563

• Last_SQL_Errno, Last_SQL_Error

The error number and error message of the most recent error that caused the SQL thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the Last_SQL_Error value
is not empty, the error values also appear in the slave's error log.

Example:

Last_SQL_Errno: 1051
Last_SQL_Error: error 'Unknown table 'z'' on query 'drop table z'

The message indicates that the table z existed on the master and was dropped there, but it did not
exist on the slave, so DROP TABLE failed on the slave. (This might occur, for example, if you forget
to copy the table to the slave when setting up replication.)

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

• Replicate_Ignore_Server_Ids

Beginning with MySQL 5.5, you can tell a slave to ignore events from 0 or more masters using the
IGNORE_SERVER_IDS option of the CHANGE MASTER TO statement. This is normally of interest
only when using a circular or other multi-master replication setup.

The message shown for Replicate_Ignore_Server_Ids consists of a space-delimited list of
one or more numbers, the first value indicating the number of servers to be ignored; if not 0 (the
default), this server-count value is followed by the actual server IDs. For example, if a CHANGE
MASTER TO statement containing the IGNORE_SERVER_IDS = (2,6,9) option has been issued to
tell a slave to ignore masters having the server ID 2, 6, or 9, that information appears as shown here:

  Replicate_Ignore_Server_Ids: 3 2 6 9

Replicate_Ignore_Server_Ids filtering is performed by the I/O thread, rather than by the SQL
thread, which means that events which are filtered out are not written to the relay log. This differs
from the filtering actions taken by server options such --replicate-do-table, which apply to the
SQL thread.

• Master_Server_Id

The server_id value from the master.

13.7.5.36 SHOW STATUS Syntax

SHOW [GLOBAL | SESSION] STATUS
    [LIKE 'pattern' | WHERE expr]

SHOW STATUS provides server status information (see Section 5.1.7, “Server Status Variables”). This
statement does not require any privilege. It requires only the ability to connect to the server.

Status variable information is also available from these sources:

• The GLOBAL_STATUS and SESSION_STATUS tables. See Section 21.8, “The
INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”.

• The mysqladmin extended-status command. See Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”.

For SHOW STATUS, a LIKE clause, if present, indicates which variable names to match. A WHERE
clause can be given to select rows using more general conditions, as discussed in Section 21.31,
“Extensions to SHOW Statements”.



SHOW Syntax

1564

SHOW STATUS accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays the global status values. A global status variable
may represent status for some aspect of the server itself (for example, Aborted_connects),
or the aggregated status over all connections to MySQL (for example, Bytes_received and
Bytes_sent). If a variable has no global value, the session value is displayed.

• With a SESSION modifier, the statement displays the status variable values for the current
connection. If a variable has no session value, the global value is displayed. LOCAL is a synonym for
SESSION.

• If no modifier is present, the default is SESSION.

The scope for each status variable is listed at Section 5.1.7, “Server Status Variables”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments the
global Created_tmp_tables value.

Partial output is shown here. The list of names and values may differ for your server. The meaning of
each variable is given in Section 5.1.7, “Server Status Variables”.

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name            | Value      |
+--------------------------+------------+
| Aborted_clients          | 0          |
| Aborted_connects         | 0          |
| Bytes_received           | 155372598  |
| Bytes_sent               | 1176560426 |
| Connections              | 30023      |
| Created_tmp_disk_tables  | 0          |
| Created_tmp_tables       | 8340       |
| Created_tmp_files        | 60         |
...
| Open_tables              | 1          |
| Open_files               | 2          |
| Open_streams             | 0          |
| Opened_tables            | 44600      |
| Questions                | 2026873    |
...
| Table_locks_immediate    | 1920382    |
| Table_locks_waited       | 0          |
| Threads_cached           | 0          |
| Threads_created          | 30022      |
| Threads_connected        | 1          |
| Threads_running          | 1          |
| Uptime                   | 80380      |
+--------------------------+------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern:

mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name      | Value    |
+--------------------+----------+
| Key_blocks_used    | 14955    |
| Key_read_requests  | 96854827 |
| Key_reads          | 162040   |
| Key_write_requests | 7589728  |
| Key_writes         | 3813196  |
+--------------------+----------+

13.7.5.37 SHOW TABLE STATUS Syntax

SHOW TABLE STATUS



SHOW Syntax

1565

    [{FROM | IN} db_name]
    [LIKE 'pattern' | WHERE expr]

SHOW TABLE STATUS works likes SHOW TABLES, but provides a lot of information about each
non-TEMPORARY table. You can also get this list using the mysqlshow --status db_name
command. The LIKE clause, if present, indicates which table names to match. The WHERE clause can
be given to select rows using more general conditions, as discussed in Section 21.31, “Extensions to
SHOW Statements”.

This statement also displays information about views.

SHOW TABLE STATUS output has the following columns:

• Name

The name of the table.

• Engine

The storage engine for the table. See Chapter 15, Alternative Storage Engines.

• Version

The version number of the table's .frm file.

• Row_format

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM
tables, (Dynamic corresponds to what myisamchk -dvv reports as Packed. The format of InnoDB
tables is reported as Redundant or Compact. For the Barracuda file format of the InnoDB
Plugin, the format may be Compressed or Dynamic.

• Rows

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other
storage engines, such as InnoDB, this value is an approximation, and may vary from the actual
value by as much as 40 to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.

The Rows value is NULL for tables in the INFORMATION_SCHEMA database.

• Avg_row_length

The average row length.

Refer to the notes at the end of this section for related information.

• Data_length

For MyISAM, Data_length is the length of the data file, in bytes.

For InnoDB, Data_length is the approximate amount of memory allocated for the clustered index,
in bytes. Specifically, it is the clustered index size, in pages, multiplied by the InnoDB page size.

Refer to the notes at the end of this section for information regarding other storage engines.

• Max_data_length

For MyISAM, Max_data_length is maximum length of the data file. This is the total number of
bytes of data that can be stored in the table, given the data pointer size used.

Unused for InnoDB.

Refer to the notes at the end of this section for information regarding other storage engines.



SHOW Syntax

1566

• Index_length

For MyISAM, Index_length is the length of the index file, in bytes.

For InnoDB, Index_length is the approximate amount of memory allocated for non-clustered
indexes, in bytes. Specifically, it is the sum of non-clustered index sizes, in pages, multiplied by the
InnoDB page size.

Refer to the notes at the end of this section for information regarding other storage engines.

• Data_free

The number of allocated but unused bytes.

This information is also shown for InnoDB tables (previously, it was in the Comment value). InnoDB
tables report the free space of the tablespace to which the table belongs. For a table located in
the shared tablespace, this is the free space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free space is for only that table. Free space
means the number of bytes in completely free extents minus a safety margin. Even if free space
displays as 0, it may be possible to insert rows as long as new extents need not be allocated.

For partitioned tables, this value is only an estimate and may not be absolutely correct.
A more accurate method of obtaining this information in such cases is to query the
INFORMATION_SCHEMA.PARTITIONS table, as shown in this example:

SELECT    SUM(DATA_FREE)
    FROM  INFORMATION_SCHEMA.PARTITIONS
    WHERE TABLE_SCHEMA = 'mydb'
    AND   TABLE_NAME   = 'mytable';

For more information, see Section 21.12, “The INFORMATION_SCHEMA PARTITIONS Table”.

• Auto_increment

The next AUTO_INCREMENT value.

• Create_time

When the table was created.

• Update_time

When the data file was last updated. For some storage engines, this value is NULL. For example,
InnoDB stores multiple tables in its system tablespace and the data file timestamp does not apply.
Even with file-per-table mode with each InnoDB table in a separate .ibd file, change buffering can
delay the write to the data file, so the file modification time is different from the time of the last insert,
update, or delete. For MyISAM, the data file timestamp is used; however, on Windows the timestamp
is not updated by updates so the value is inaccurate.

• Check_time

When the table was last checked. Not all storage engines update this time, in which case the value is
always NULL.

• Collation

The table's character set and collation.

• Checksum

The live checksum value (if any).

• Create_options



SHOW Syntax

1567

Extra options used with CREATE TABLE. The original options supplied when CREATE TABLE
is called are retained and the options reported here may differ from the active table settings and
options.

• Comment

The comment used when creating the table (or information as to why MySQL could not access the
table information).

Notes:

• For MEMORY tables, the Data_length, Max_data_length, and Index_length values
approximate the actual amount of allocated memory. The allocation algorithm reserves memory in
large amounts to reduce the number of allocation operations.

• For NDBCLUSTER tables, the output of this statement shows appropriate values for the
Avg_row_length and Data_length columns, with the exception that BLOB columns are not taken
into account

• For views, all the fields displayed by SHOW TABLE STATUS are NULL except that Name indicates the
view name and Comment says view.

13.7.5.38 SHOW TABLES Syntax

SHOW [FULL] TABLES
    [{FROM | IN} db_name]
    [LIKE 'pattern' | WHERE expr]

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list using
the mysqlshow db_name command. The LIKE clause, if present, indicates which table names to
match. The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 21.31, “Extensions to SHOW Statements”.

Matching performed by the LIKE clause is dependent on the setting of the
lower_case_table_names system variable.

This statement also lists any views in the database. The FULL modifier is supported such that SHOW
FULL TABLES displays a second output column. Values for the second column are BASE TABLE for a
table and VIEW for a view.

If you have no privileges for a base table or view, it does not show up in the output from SHOW TABLES
or mysqlshow db_name.

13.7.5.39 SHOW TRIGGERS Syntax

SHOW TRIGGERS
    [{FROM | IN} db_name]
    [LIKE 'pattern' | WHERE expr]

SHOW TRIGGERS lists the triggers currently defined for tables in a database (the default database
unless a FROM clause is given). This statement returns results only for databases and tables for which
you have the TRIGGER privilege. The LIKE clause, if present, indicates which table names to match
(not trigger names) and causes the statement to display triggers for those tables. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 21.31, “Extensions
to SHOW Statements”.

For the trigger ins_sum as defined in Section 20.3, “Using Triggers”, the output of this statement is as
shown here:

mysql> SHOW TRIGGERS LIKE 'acc%'\G



SHOW Syntax

1568

*************************** 1. row ***************************
             Trigger: ins_sum
               Event: INSERT
               Table: account
           Statement: SET @sum = @sum + NEW.amount
              Timing: BEFORE
             Created: NULL
            sql_mode:
             Definer: myname@localhost
character_set_client: latin1
collation_connection: latin1_swedish_ci
  Database Collation: latin1_swedish_ci

SHOW TRIGGERS output has the following columns:

• Trigger: The trigger name.

• Event: The type of operation that causes trigger activation. The value is 'INSERT', 'UPDATE', or
'DELETE'.

• Table: The table for which the trigger is defined.

• Statement: The trigger body; that is, the statement executed when the trigger activates.

• Timing: Whether the trigger activates before or after the triggering event. The value is 'BEFORE' or
'AFTER'.

• Created: The value of this column is always NULL.

• sql_mode: The SQL mode in effect when the trigger executes.

• Definer: The account of the user who created the trigger, in 'user_name'@'host_name' format.

• character_set_client: The session value of the character_set_client system variable
when the trigger was created.

• collation_connection: The session value of the collation_connection system variable
when the trigger was created.

• Database Collation: The collation of the database with which the trigger is associated.

You can also obtain information about trigger objects from INFORMATION_SCHEMA, which contains a
TRIGGERS table. See Section 21.25, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.40 SHOW VARIABLES Syntax

SHOW [GLOBAL | SESSION] VARIABLES
    [LIKE 'pattern' | WHERE expr]

SHOW VARIABLES shows the values of MySQL system variables (see Section 5.1.5, “Server System
Variables”). This statement does not require any privilege. It requires only the ability to connect to the
server.

System variable information is also available from these sources:

• The GLOBAL_VARIABLES and SESSION_VARIABLES tables. See Section 21.9, “The
INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”.

• The mysqladmin variables command. See Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”.

For SHOW VARIABLES, a LIKE clause, if present, indicates which variable names to match. A WHERE
clause can be given to select rows using more general conditions, as discussed in Section 21.31,
“Extensions to SHOW Statements”.



SHOW Syntax

1569

SHOW VARIABLES accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays global system variable values. These are the values
used to initialize the corresponding session variables for new connections to MySQL. As of MySQL
5.5.3, if a variable has no global value, no value is displayed. Before 5.5.3, the session value is
displayed.

• With a SESSION modifier, the statement displays the system varaible values that are in effect for
the current connection. If a variable has no session value, the global value is displayed. LOCAL is a
synonym for SESSION.

• If no modifier is present, the default is SESSION.

The scope for each system variable is listed at Section 5.1.5, “Server System Variables”.

SHOW VARIABLES is subject to a version-dependent display-width limit. For variables with very long
values that are not completely displayed, use SELECT as a workaround. For example:

SELECT @@GLOBAL.innodb_data_file_path;

Most system variables can be set at server startup (read-only variables such as version_comment
are exceptions). Many can be changed at runtime with the SET statement. See Section 5.1.6, “Using
System Variables”, and Section 13.7.4.1, “SET Syntax for Variable Assignment”.

Partial output is shown here. The list of names and values may differ for your server. Section 5.1.5,
“Server System Variables”, describes the meaning of each variable, and Section 5.1.1, “Configuring the
Server”, provides information about tuning them.

mysql> SHOW VARIABLES;
+-----------------------------------------+---------------------------+
| Variable_name                           | Value                     |
+-----------------------------------------+---------------------------+
| auto_increment_increment                | 1                         |
| auto_increment_offset                   | 1                         |
| autocommit                              | ON                        |
| automatic_sp_privileges                 | ON                        |
| back_log                                | 50                        |
| basedir                                 | /home/jon/bin/mysql-5.5   |
| big_tables                              | OFF                       |
| binlog_cache_size                       | 32768                     |
| binlog_direct_non_transactional_updates | OFF                       |
| binlog_format                           | STATEMENT                 |
| binlog_stmt_cache_size                  | 32768                     |
| bulk_insert_buffer_size                 | 8388608                   |
...
| max_allowed_packet                      | 1048576                   |
| max_binlog_cache_size                   | 18446744073709547520      |
| max_binlog_size                         | 1073741824                |
| max_binlog_stmt_cache_size              | 18446744073709547520      |
| max_connect_errors                      | 10                        |
| max_connections                         | 151                       |
| max_delayed_threads                     | 20                        |
| max_error_count                         | 64                        |
| max_heap_table_size                     | 16777216                  |
| max_insert_delayed_threads              | 20                        |
| max_join_size                           | 18446744073709551615      |
...

| thread_handling                         | one-thread-per-connection |
| thread_stack                            | 262144                    |
| time_format                             | %H:%i:%s                  |
| time_zone                               | SYSTEM                    |
| timed_mutexes                           | OFF                       |
| timestamp                               | 1316689732                |
| tmp_table_size                          | 16777216                  |
| tmpdir                                  | /tmp                      |
| transaction_alloc_block_size            | 8192                      |



SHOW Syntax

1570

| transaction_prealloc_size               | 4096                      |
| tx_isolation                            | REPEATABLE-READ           |
| unique_checks                           | ON                        |
| updatable_views_with_limit              | YES                       |
| version                                 | 5.5.17-log                |
| version_comment                         | Source distribution       |
| version_compile_machine                 | x86_64                    |
| version_compile_os                      | Linux                     |
| wait_timeout                            | 28800                     |
| warning_count                           | 0                         |
+-----------------------------------------+---------------------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern. To obtain the row for a specific variable, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the % wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because _ is a wildcard that matches any single character, you should escape it as \_ to match it
literally. In practice, this is rarely necessary.

13.7.5.41 SHOW WARNINGS Syntax

SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS

SHOW WARNINGS is a diagnostic statement that displays information about the conditions (errors,
warnings, and notes) resulting from executing a statement in the current session. Warnings are
generated for DML statements such as INSERT, UPDATE, and LOAD DATA INFILE as well as DDL
statements such as CREATE TABLE and ALTER TABLE.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT
Syntax”.

SHOW WARNINGS is also used following EXPLAIN EXTENDED, to display the extra information
generated by EXPLAIN when the EXTENDED keyword is used. See Section 8.8.3, “Extended EXPLAIN
Output Format”.

SHOW WARNINGS displays information about the conditions resulting from the most recent statement
in the current session that generated messages. It shows nothing if the most recent statement used
a table and generated no messages. (That is, statements that use a table but generate no messages
clear the message list.) Statements that do not use tables and do not generate messages have no
effect on the message list.

The SHOW COUNT(*) WARNINGS diagnostic statement displays the total number of errors, warnings,
and notes. You can also retrieve this number from the warning_count system variable:

SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;

A related diagnostic statement, SHOW ERRORS, shows only error conditions (it excludes warnings
and notes), and SHOW COUNT(*) ERRORS statement displays the total number of errors. See
Section 13.7.5.18, “SHOW ERRORS Syntax”.

Here is a simple example that shows data-conversion warnings for INSERT:



SHOW Syntax

1571

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4));
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t1 VALUES(10,'mysql'), (NULL,'test'), (300,'xyz');
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 3

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Warning
   Code: 1265
Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************
  Level: Warning
   Code: 1048
Message: Column 'a' cannot be null
*************************** 3. row ***************************
  Level: Warning
   Code: 1264
Message: Out of range value for column 'a' at row 3
3 rows in set (0.00 sec)

The max_error_count system variable controls the maximum number of error, warning, and note
messages for which the server stores information, and thus the number of messages that SHOW
WARNINGS displays. To change the number of messages the server can store, change the value of
max_error_count. The default is 64.

max_error_count controls only how many messages are stored, not how many are counted. The
value of warning_count is not limited by max_error_count, even if the number of messages
generated exceeds max_error_count. The following example demonstrates this. The ALTER TABLE
statement produces three warning messages (strict SQL mode is disabled for the example to prevent
an error from occuring after a single conversion issue). Only one message is stored and displayed
because max_error_count has been set to 1, but all three are counted (as shown by the value of
warning_count):

mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name   | Value |
+-----------------+-------+
| max_error_count | 64    |
+-----------------+-------+
1 row in set (0.00 sec)

mysql> SET max_error_count=1, sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 3

mysql> SHOW WARNINGS;
+---------+------+----------------------------------------+
| Level   | Code | Message                                |
+---------+------+----------------------------------------+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+----------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
|               3 |
+-----------------+
1 row in set (0.01 sec)

To disable message storage, set max_error_count to 0. In this case, warning_count still indicates
how many warnings occurred, but messages are not stored and cannot be displayed.



Other Administrative Statements

1572

The sql_notes system variable controls whether note messages increment warning_count and
whether the server stores them. By default, sql_notes is 1, but if set to 0, notes do not increment
warning_count and the server does not store them:

mysql> SET sql_notes = 1;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+-------------------------------+
| Level | Code | Message                       |
+-------+------+-------------------------------+
| Note  | 1051 | Unknown table 'no_such_table' |
+-------+------+-------------------------------+
1 row in set (0.00 sec)

mysql> SET sql_notes = 0;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW WARNINGS;
Empty set (0.00 sec)

The MySQL server sends to each client a count indicating the total number of errors, warnings, and
notes resulting from the most recent statement executed by that client. From the C API, this value can
be obtained by calling mysql_warning_count(). See Section 23.8.7.72, “mysql_warning_count()”.

In the mysql client, you can enable and disable automatic warnings display using the warnings
and nowarning commands, respectively, or their shortcuts, \W and \w (see Section 4.5.1.2, “mysql
Commands”). For example:

mysql> \W
Show warnings enabled.
mysql> SELECT 1/0;
+------+
| 1/0  |
+------+
| NULL |
+------+
1 row in set, 1 warning (0.03 sec)

Warning (Code 1365): Division by 0
mysql> \w
Show warnings disabled.

13.7.6 Other Administrative Statements

13.7.6.1 BINLOG Syntax

BINLOG 'str'

BINLOG is an internal-use statement. It is generated by the mysqlbinlog program as the printable
representation of certain events in binary log files. (See Section 4.6.7, “mysqlbinlog — Utility for
Processing Binary Log Files”.) The 'str' value is a base 64-encoded string the that server decodes
to determine the data change indicated by the corresponding event. This statement requires the SUPER
privilege.

13.7.6.2 CACHE INDEX Syntax

CACHE INDEX
  tbl_index_list [, tbl_index_list] ...
  [PARTITION (partition_list | ALL)]
  IN key_cache_name

tbl_index_list:
  tbl_name [[INDEX|KEY] (index_name[, index_name] ...)]



Other Administrative Statements

1573

partition_list:
  partition_name[, partition_name][, ...]

The CACHE INDEX statement assigns table indexes to a specific key cache. It is used only for MyISAM
tables. After the indexes have been assigned, they can be preloaded into the cache if desired with
LOAD INDEX INTO CACHE.

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named
hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table   | Op                 | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
| test.t1 | assign_to_keycache | status   | OK       |
| test.t2 | assign_to_keycache | status   | OK       |
| test.t3 | assign_to_keycache | status   | OK       |
+---------+--------------------+----------+----------+

The syntax of CACHE INDEX enables you to specify that only particular indexes from a table should
be assigned to the cache. The current implementation assigns all the table's indexes to the cache, so
there is no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a
parameter setting statement or in the server parameter settings. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters can be accessed as members of a structured system variable. See
Section 5.1.6.1, “Structured System Variables”.

A key cache must exist before you can assign indexes to it:

mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'

By default, table indexes are assigned to the main (default) key cache created at the server startup.
When a key cache is destroyed, all indexes assigned to it become assigned to the default key cache
again.

Index assignment affects the server globally: If one client assigns an index to a given cache, this cache
is used for all queries involving the index, no matter which client issues the queries.

In MySQL 5.5, this statement is also supported for partitioned MyISAM tables. You can assign one
or more indexes for one, several, or all partitions to a given key cache. For example, you can do the
following:

CREATE TABLE pt (c1 INT, c2 VARCHAR(50), INDEX i(c1))
    ENGINE=MyISAM
    PARTITION BY HASH(c1)
    PARTITIONS 4;

SET GLOBAL kc_fast.key_buffer_size = 128 * 1024;
SET GLOBAL kc_slow.key_buffer_size = 128 * 1024;

CACHE INDEX pt PARTITION (p0) IN kc_fast;
CACHE INDEX pt PARTITION (p1, p3) IN kc_slow;

The previous set of statements performs the following actions:

• Creates a partitioned table with 4 partitions; these partitions are automatically named p0, ..., p3; this
table has an index named i on column c1.



Other Administrative Statements

1574

• Creates 2 key caches named kc_fast and kc_slow

• Assigns the index for partition p0 to the kc_fast key cache and the index for partitions p1 and p3
to the kc_slow key cache; the index for the remaining partition (p2) uses the server's default key
cache.

If you wish instead to assign the indexes for all partitions in table pt to a single key cache named
kc_all, you can use either one of the following 2 statements:

CACHE INDEX pt PARTITION (ALL) IN kc_all;

CACHE INDEX pt IN kc_all;

The two statements just shown are equivalent, and issuing either one of them has exactly the same
effect. In other words, if you wish to assign indexes for all partitions of a partitioned table to the same
key cache, then the PARTITION (ALL) clause is optional.

When assigning indexes for multiple partitions to a key cache, the partitions do not have to be
contiguous, and you are not required to list their names in any particular order. Indexes for any
partitions that are not explicitly assigned to a key cache automatically use the server's default key
cache.

As of MySQL 5.5, index preloading is also supported for partitioned MyISAM tables. For more
information, see Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”.

13.7.6.3 FLUSH Syntax

FLUSH [NO_WRITE_TO_BINLOG | LOCAL]
    flush_option [, flush_option] ...

The FLUSH statement has several variant forms that clear or reload various internal caches, flush
tables, or acquire locks. To execute FLUSH, you must have the RELOAD privilege. Specific flush options
might require additional privileges, as described later.

By default, the server writes FLUSH statements to the binary log so that they replicate to replication
slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

Note

FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH
READ LOCK (with or without a table list) are not written to the binary log in any
case because they would cause problems if replicated to a slave.

Sending a SIGHUP signal to the server causes several flush operations to occur that are similar to
various forms of the FLUSH statement. See Section 5.1.11, “Server Response to Signals”.

The FLUSH statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an
Implicit Commit”.

The RESET statement is similar to FLUSH. See Section 13.7.6.6, “RESET Syntax”, for information about
using the RESET statement with replication.

flush_option can be any of the following items.

• DES_KEY_FILE

Reloads the DES keys from the file that was specified with the --des-key-file option at server
startup time.

• HOSTS

Empties the host cache. You should flush the host cache if some of your hosts change IP address
or if the error message Host 'host_name' is blocked occurs. (See Section B.5.2.6, “Host



Other Administrative Statements

1575

'host_name' is blocked”.) When more than max_connect_errors errors occur successively for
a given host while connecting to the MySQL server, MySQL assumes that something is wrong and
blocks the host from further connection requests. Flushing the host cache enables further connection
attempts from the host. The default value of max_connect_errors is 10. To avoid this error
message, start the server with max_connect_errors set to a large value.

• [log_type] LOGS

With no log_type option, FLUSH LOGS closes and reopens all log files. If binary logging is enabled,
the sequence number of the binary log file is incremented by one relative to the previous file.

Prior to MySQL 5.5.7, if you flush the logs using FLUSH LOGS and mysqld is writing the error log to
a file (for example, if it was started with the --log-error option), log file renaming may occur, as
described in Section 5.4.2, “The Error Log”.

FLUSH LOGS has no effect on tables used for the general query log or for the slow query log (see
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”).

With a log_type option, only the specified log type is flushed. These log_type options are
permitted:

• BINARY closes and reopens the binary log files.

• ENGINE closes and reopens any flushable logs for installed storage engines. This causes InnoDB
to flush its logs to disk.

• ERROR closes and reopens the error log file.

• GENERAL closes and reopens the general query log file.

• RELAY closes and reopens the relay log files.

• SLOW closes and reopens the slow query log file.

The log_type options were added in MySQL 5.5.3.

• MASTER

Deletes all binary logs, resets the binary log index file and creates a new binary log. FLUSH MASTER
is deprecated in favor of RESET MASTER. FLUSH MASTER is still accepted in MySQL 5.5 for
backward compatibility, but is removed in MySQL 5.6. See Section 13.4.1.2, “RESET MASTER
Syntax”.

• PRIVILEGES

Reloads the privileges from the grant tables in the mysql database.

The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER,
and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE,
DROP USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes
many instances of the statements that cause caching, there will be an increase in memory use. This
cached memory can be freed with FLUSH PRIVILEGES.

• QUERY CACHE

Defragment the query cache to better utilize its memory. FLUSH QUERY CACHE does not remove
any queries from the cache, unlike FLUSH TABLES or RESET QUERY CACHE.

• SLAVE

Resets all replication slave parameters, including relay log files and replication position in the
master's binary logs. FLUSH SLAVE is deprecated in favor of RESET SLAVE. FLUSH SLAVE



Other Administrative Statements

1576

is still accepted in MySQL 5.5 for backward compatibility, but is removed in MySQL 5.6. See
Section 13.4.2.3, “RESET SLAVE Syntax”.

• STATUS

This option adds the current thread's session status variable values to the global values and resets
the session values to zero. Some global variables may be reset to zero as well. It also resets the
counters for key caches (default and named) to zero and sets Max_used_connections to the
current number of open connections. This is something that may be of use when debugging a query.
See Section 1.6, “How to Report Bugs or Problems”.

• TABLES

FLUSH TABLES flushes tables, and, depending on the variant used, acquires locks. The permitted
syntax is discussed later in this section.

• USER_RESOURCES

Resets all per-hour user resources to zero. This enables clients that have reached their hourly
connection, query, or update limits to resume activity immediately. FLUSH USER_RESOURCES does
not apply to the limit on maximum simultaneous connections. See Section 6.3.4, “Setting Account
Resource Limits”.

The mysqladmin utility provides a command-line interface to some flush operations, using commands
such as flush-hosts, flush-logs, flush-privileges, flush-status, and flush-tables.
See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.

Note

It is not possible to issue FLUSH statements within stored functions or triggers.
However, you may use FLUSH in stored procedures, so long as these are
not called from stored functions or triggers. See Section C.1, “Restrictions on
Stored Programs”.

FLUSH TABLES Syntax

FLUSH TABLES has several forms, described following. As of MySQL 5.5.3, if any variant of the
TABLES option is used in a FLUSH statement, it must be the only option used. FLUSH TABLE is a
synonym for FLUSH TABLES, except that TABLE does not work with the WITH READ LOCK variants
prior to MySQL 5.5.3.

• FLUSH TABLES

Closes all open tables, forces all tables in use to be closed, and flushes the query cache. FLUSH
TABLES also removes all query results from the query cache, like the RESET QUERY CACHE
statement.

As of MySQL 5.5.3, FLUSH TABLES is not permitted when there is an active LOCK TABLES ...
READ. To flush and lock tables, use FLUSH TABLES tbl_name ... WITH READ LOCK instead.

• FLUSH TABLES tbl_name [, tbl_name] ...

With a list of one or more comma-separated table names, this statement is like FLUSH TABLES with
no names except that the server flushes only the named tables. No error occurs if a named table
does not exist.

• FLUSH TABLES WITH READ LOCK

Closes all open tables and locks all tables for all databases with a global read lock. This is a very
convenient way to get backups if you have a file system such as Veritas or ZFS that can take
snapshots in time. Use UNLOCK TABLES to release the lock.



Other Administrative Statements

1577

FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits:

• UNLOCK TABLES implicitly commits any active transaction only if any tables currently have been
locked with LOCK TABLES. The commit does not occur for UNLOCK TABLES following FLUSH
TABLES WITH READ LOCK because the latter statement does not acquire table locks.

• Beginning a transaction causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock
acquired with FLUSH TABLES WITH READ LOCK.

FLUSH TABLES WITH READ LOCK does not prevent the server from inserting rows into the log
tables (see Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”).

FLUSH TABLES WITH READ LOCK is not compatible with XA transactions.

• FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK

This statement flushes and acquires read locks for the named tables. The statement first acquires
exclusive metadata locks for the tables, so it waits for transactions that have those tables open to
complete. Then the statement flushes the tables from the table cache, reopens the tables, acquires
table locks (like LOCK TABLES ... READ), and downgrades the metadata locks from exclusive to
shared. After the statement acquires locks and downgrades the metadata locks, other sessions can
read but not modify the tables.

Because this statement acquires table locks, you must have the LOCK TABLES privilege for each
table, in addition to the RELOAD privilege that is required to use any FLUSH statement.

This statement applies only to existing base tables. If a name refers to a base table, that
table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an
ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

Use UNLOCK TABLES to release the locks, LOCK TABLES to release the locks and acquire other
locks, or START TRANSACTION to release the locks and begin a new transaction.

This variant of FLUSH enables tables to be flushed and locked in a single operation. It provides a
workaround for the restriction as of MySQL 5.5.3 that FLUSH TABLES is not permitted when there is
an active LOCK TABLES ... READ.

This statement does not perform an implicit UNLOCK TABLES, so an error results if you use the
statement while there is any active LOCK TABLES or use it a second time without first releasing the
locks acquired.

If a flushed table was opened with HANDLER, the handler is implicitly flushed and loses its position.

This variant of FLUSH is available as of MySQL 5.5.3.

13.7.6.4 KILL Syntax

KILL [CONNECTION | QUERY] processlist_id

Each connection to mysqld runs in a separate thread. You can kill a thread with the KILL
processlist_id statement.

Thread processlist identifiers can be determined from the ID column of the
INFORMATION_SCHEMA.PROCESSLIST table, the Id column of SHOW PROCESSLIST output, and
the PROCESSLIST_ID column of the Performance Schema threads table. The value for the current
thread is returned by the CONNECTION_ID() function.



Other Administrative Statements

1578

KILL permits an optional CONNECTION or QUERY modifier:

• KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated
with the given processlist_id, after terminating any statement the connection is executing.

• KILL QUERY terminates the statement the connection is currently executing, but leaves the
connection itself intact.

If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege, you can
kill all threads and statements. Otherwise, you can see and kill only your own threads and statements.

You can also use the mysqladmin processlist and mysqladmin kill commands to examine
and kill threads.

Note

You cannot use KILL with the Embedded MySQL Server library because the
embedded server merely runs inside the threads of the host application. It does
not create any connection threads of its own.

When you use KILL, a thread-specific kill flag is set for the thread. In most cases, it might take some
time for the thread to die because the kill flag is checked only at specific intervals:

• During SELECT operations, for ORDER BY and GROUP BY loops, the flag is checked after reading a
block of rows. If the kill flag is set, the statement is aborted.

• ALTER TABLE operations that make a table copy check the kill flag periodically for each few copied
rows read from the original table. If the kill flag was set, the statement is aborted and the temporary
table is deleted.

The KILL statement returns without waiting for confirmation, but the kill flag check aborts the
operation within a reasonably small amount of time. Aborting the operation to perform any necessary
cleanup also takes some time.

• During UPDATE or DELETE operations, the kill flag is checked after each block read and after
each updated or deleted row. If the kill flag is set, the statement is aborted. If you are not using
transactions, the changes are not rolled back.

• GET_LOCK() aborts and returns NULL.

• An INSERT DELAYED thread quickly flushes (inserts) all rows it has in memory and then terminates.

• If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.

• If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error
message.

Warning

Killing a REPAIR TABLE or OPTIMIZE TABLE operation on a MyISAM table
results in a table that is corrupted and unusable. Any reads or writes to such a
table fail until you optimize or repair it again (without interruption).

13.7.6.5 LOAD INDEX INTO CACHE Syntax

LOAD INDEX INTO CACHE
  tbl_index_list [, tbl_index_list] ...

tbl_index_list:
  tbl_name
    [PARTITION (partition_list | ALL)]
    [[INDEX|KEY] (index_name[, index_name] ...)]



Other Administrative Statements

1579

    [IGNORE LEAVES]

partition_list:
    partition_name[, partition_name][, ...]

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has
been assigned by an explicit CACHE INDEX statement, or into the default key cache otherwise.

LOAD INDEX INTO CACHE is used only for MyISAM tables. In MySQL 5.5, it is also supported for
partitioned MyISAM tables; in addition, indexes on partitioned tables can be preloaded for one, several,
or all partitions.

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.

IGNORE LEAVES is also supported for partitioned MyISAM tables.

The following statement preloads nodes (index blocks) of indexes for the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table   | Op           | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status   | OK       |
| test.t2 | preload_keys | status   | OK       |
+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the nonleaf nodes from t2.

The syntax of LOAD INDEX INTO CACHE enables you to specify that only particular indexes from a
table should be preloaded. The current implementation preloads all the table's indexes into the cache,
so there is no reason to specify anything other than the table name.

In MySQL 5.5, it is possible to preload indexes on specific partitions of partitioned MyISAM tables. For
example, of the following 2 statements, the first preloads indexes for partition p0 of a partitioned table
pt, while the second preloads the indexes for partitions p1 and p3 of the same table:

LOAD INDEX INTO CACHE pt PARTITION (p0);
LOAD INDEX INTO CACHE pt PARTITION (p1, p3);

To preload the indexes for all partitions in table pt, you can use either one of the following 2
statements:

LOAD INDEX INTO CACHE pt PARTITION (ALL);

LOAD INDEX INTO CACHE pt;

The two statements just shown are equivalent, and issuing either one of them has exactly the same
effect. In other words, if you wish to preload indexes for all partitions of a partitioned table, then the
PARTITION (ALL) clause is optional.

When preloading indexes for multiple partitions, the partitions do not have to be contiguous, and you
are not required to list their names in any particular order.

LOAD INDEX INTO CACHE ... IGNORE LEAVES fails unless all indexes in a table have the same
block size. You can determine index block sizes for a table by using myisamchk -dv and checking
the Blocksize column.

13.7.6.6 RESET Syntax

RESET reset_option [, reset_option] ...



Utility Statements

1580

The RESET statement is used to clear the state of various server operations. You must have the
RELOAD privilege to execute RESET.

RESET acts as a stronger version of the FLUSH statement. See Section 13.7.6.3, “FLUSH Syntax”.

The RESET statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an
Implicit Commit”.

reset_option can be any of the following:

• MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates
a new binary log file.

• QUERY CACHE

Removes all query results from the query cache.

• SLAVE

Makes the slave forget its replication position in the master binary logs. Also resets the relay log by
deleting any existing relay log files and beginning a new one.

13.8 Utility Statements

13.8.1 DESCRIBE Syntax

The DESCRIBE and EXPLAIN statements are synonyms, used either to obtain information about table
structure or query execution plans. For more information, see Section 13.7.5.6, “SHOW COLUMNS
Syntax”, and Section 13.8.2, “EXPLAIN Syntax”.

13.8.2 EXPLAIN Syntax

{EXPLAIN | DESCRIBE | DESC}
    tbl_name [col_name | wild]

{EXPLAIN | DESCRIBE | DESC}
    [explain_type] SELECT select_options

explain_type: {EXTENDED | PARTITIONS}

The DESCRIBE and EXPLAIN statements are synonyms. In practice, the DESCRIBE keyword is more
often used to obtain information about table structure, whereas EXPLAIN is used to obtain a query
execution plan (that is, an explanation of how MySQL would execute a query).

The following discussion uses the DESCRIBE and EXPLAIN keywords in accordance with those uses,
but the MySQL parser treats them as completely synonymous.

• Obtaining Table Structure Information

• Obtaining Execution Plan Information

Obtaining Table Structure Information

DESCRIBE provides information about the columns in a table:

mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field      | Type     | Null | Key | Default | Extra          |



HELP Syntax

1581

+------------+----------+------+-----+---------+----------------+
| Id         | int(11)  | NO   | PRI | NULL    | auto_increment |
| Name       | char(35) | NO   |     |         |                |
| Country    | char(3)  | NO   | UNI |         |                |
| District   | char(20) | YES  | MUL |         |                |
| Population | int(11)  | NO   |     | 0       |                |
+------------+----------+------+-----+---------+----------------+

DESCRIBE is a shortcut for SHOW COLUMNS. These statements also display information for views.
The description for SHOW COLUMNS provides more information about the output columns. See
Section 13.7.5.6, “SHOW COLUMNS Syntax”.

By default, DESCRIBE displays information about all columns in the table. col_name, if given, is the
name of a column in the table. In this case, the statement displays information only for the named
column. wild, if given, is a pattern string. It can contain the SQL % and _ wildcard characters. In this
case, the statement displays output only for the columns with names matching the string. There is no
need to enclose the string within quotation marks unless it contains spaces or other special characters.

The DESCRIBE statement is provided for compatibility with Oracle.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Syntax”.

Obtaining Execution Plan Information

The EXPLAIN statement provides information about how MySQL executes statements:

• When you precede a SELECT statement with the keyword EXPLAIN, MySQL displays information
from the optimizer about the statement execution plan. That is, MySQL explains how it would
process the statement, including information about how tables are joined and in which order. For
information about using EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN
Output Format”.

• EXPLAIN EXTENDED can be used to obtain additional execution plan information. See Section 8.8.3,
“Extended EXPLAIN Output Format”.

• EXPLAIN PARTITIONS is useful for examining queries involving partitioned tables. See
Section 19.3.4, “Obtaining Information About Partitions”.

EXPLAIN requires the SELECT privilege for any tables or views accessed, including any underlying
tables of views. For views, EXPLAIN also requires the SHOW VIEW privilege.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the
optimizer joins the tables in an optimal order. To give a hint to the optimizer to use a join order
corresponding to the order in which the tables are named in a SELECT statement, begin the statement
with SELECT STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Syntax”.)

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.

Note

MySQL Workbench has a Visual Explain capability that provides a visual
representation of EXPLAIN output. See Tutorial: Using Visual Explain to
Improve Query Performance.

13.8.3 HELP Syntax

HELP 'search_string'

http://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html
http://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html


HELP Syntax

1582

The HELP statement returns online information from the MySQL Reference manual. Its proper
operation requires that the help tables in the mysql database be initialized with help topic information
(see Section 5.1.10, “Server-Side Help”).

The HELP statement searches the help tables for the given search string and displays the result of the
search. The search string is not case sensitive.

The search string can contain the wildcard characters % and _. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. For example, HELP 'rep%' returns a
list of topics that begin with rep.

The HELP statement understands several types of search strings:

• At the most general level, use contents to retrieve a list of the top-level help categories:

HELP 'contents'

• For a list of topics in a given help category, such as Data Types, use the category name:

HELP 'data types'

• For help on a specific help topic, such as the ASCII() function or the CREATE TABLE statement,
use the associated keyword or keywords:

HELP 'ascii'
HELP 'create table'

In other words, the search string matches a category, many topics, or a single topic. You cannot
necessarily tell in advance whether a given search string will return a list of items or the help
information for a single help topic. However, you can tell what kind of response HELP returned by
examining the number of rows and columns in the result set.

The following descriptions indicate the forms that the result set can take. Output for the example
statements is shown using the familiar “tabular” or “vertical” format that you see when using the mysql
client, but note that mysql itself reformats HELP result sets in a different way.

• Empty result set

No match could be found for the search string.

• Result set containing a single row with three columns

This means that the search string yielded a hit for the help topic. The result has three columns:

• name: The topic name.

• description: Descriptive help text for the topic.

• example: Usage example or examples. This column might be blank.

Example: HELP 'replace'

Yields:

name: REPLACE
description: Syntax:
REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str
replaced by the string to_str. REPLACE() performs a case-sensitive
match when searching for from_str.
example: mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');



USE Syntax

1583

        -> 'WwWwWw.mysql.com'

• Result set containing multiple rows with two columns

This means that the search string matched many help topics. The result set indicates the help topic
names:

• name: The help topic name.

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the
name value when specified as the argument to the HELP statement should yield a single-row result
set containing a description for the named item.

Example: HELP 'status'

Yields:

+-----------------------+----------------+
| name                  | is_it_category |
+-----------------------+----------------+
| SHOW                  | N              |
| SHOW ENGINE           | N              |
| SHOW MASTER STATUS    | N              |
| SHOW PROCEDURE STATUS | N              |
| SHOW SLAVE STATUS     | N              |
| SHOW STATUS           | N              |
| SHOW TABLE STATUS     | N              |
+-----------------------+----------------+

• Result set containing multiple rows with three columns

This means the search string matches a category. The result set contains category entries:

• source_category_name: The help category name.

• name: The category or topic name

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the
name value when specified as the argument to the HELP statement should yield a single-row result
set containing a description for the named item.

Example: HELP 'functions'

Yields:

+----------------------+-------------------------+----------------+
| source_category_name | name                    | is_it_category |
+----------------------+-------------------------+----------------+
| Functions            | CREATE FUNCTION         | N              |
| Functions            | DROP FUNCTION           | N              |
| Functions            | Bit Functions           | Y              |
| Functions            | Comparison operators    | Y              |
| Functions            | Control flow functions  | Y              |
| Functions            | Date and Time Functions | Y              |
| Functions            | Encryption Functions    | Y              |
| Functions            | Information Functions   | Y              |
| Functions            | Logical operators       | Y              |
| Functions            | Miscellaneous Functions | Y              |
| Functions            | Numeric Functions       | Y              |
| Functions            | String Functions        | Y              |
+----------------------+-------------------------+----------------+

13.8.4 USE Syntax



USE Syntax

1584

USE db_name

The USE db_name statement tells MySQL to use the db_name database as the default (current)
database for subsequent statements. The database remains the default until the end of the session or
another USE statement is issued:

USE db1;
SELECT COUNT(*) FROM mytable;   # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable;   # selects from db2.mytable

Making a particular database the default by means of the USE statement does not preclude you from
accessing tables in other databases. The following example accesses the author table from the db1
database and the editor table from the db2 database:

USE db1;
SELECT author_name,editor_name FROM author,db2.editor
  WHERE author.editor_id = db2.editor.editor_id;



1585

Chapter 14 The InnoDB Storage Engine

Table of Contents
14.1 Introduction to InnoDB ..................................................................................................... 1586

14.1.1 Benefits of Using InnoDB Tables ........................................................................... 1588
14.1.2 Best Practices for InnoDB Tables .......................................................................... 1589
14.1.3 Checking InnoDB Availability ................................................................................. 1589
14.1.4 Upward and Downward Compatibility ..................................................................... 1590
14.1.5 Testing and Benchmarking with InnoDB ................................................................. 1590
14.1.6 Turning Off InnoDB ............................................................................................... 1591
14.1.7 Third-Party Software Contributions ........................................................................ 1591

14.2 Installing the InnoDB Storage Engine ............................................................................... 1593
14.3 Upgrading the InnoDB Storage Engine ............................................................................. 1594
14.4 Downgrading the InnoDB Storage Engine ......................................................................... 1594
14.5 InnoDB and the ACID Model ............................................................................................ 1594
14.6 InnoDB Multi-Versioning ................................................................................................... 1595
14.7 InnoDB Architecture ......................................................................................................... 1596

14.7.1 Buffer Pool ........................................................................................................... 1596
14.7.2 Change Buffer ...................................................................................................... 1597
14.7.3 Adaptive Hash Index ............................................................................................. 1598
14.7.4 Redo Log Buffer ................................................................................................... 1599
14.7.5 System Tablespace .............................................................................................. 1599
14.7.6 InnoDB Data Dictionary ......................................................................................... 1599
14.7.7 Doublewrite Buffer ................................................................................................ 1600
14.7.8 Undo Logs ........................................................................................................... 1600
14.7.9 File-Per-Table Tablespaces ................................................................................... 1600
14.7.10 Redo Log ........................................................................................................... 1600

14.8 InnoDB Locking and Transaction Model ............................................................................ 1601
14.8.1 InnoDB Locking .................................................................................................... 1601
14.8.2 InnoDB Transaction Model .................................................................................... 1605
14.8.3 Locks Set by Different SQL Statements in InnoDB ................................................. 1613
14.8.4 Phantom Rows ..................................................................................................... 1616
14.8.5 Deadlocks in InnoDB ............................................................................................ 1616

14.9 InnoDB Configuration ....................................................................................................... 1619
14.9.1 InnoDB Startup Configuration ................................................................................ 1620
14.9.2 InnoDB Buffer Pool Configuration .......................................................................... 1624
14.9.3 Configuring the Memory Allocator for InnoDB ......................................................... 1632
14.9.4 Configuring InnoDB Change Buffering ................................................................... 1633
14.9.5 Configuring Thread Concurrency for InnoDB .......................................................... 1634
14.9.6 Configuring the Number of Background InnoDB I/O Threads ................................... 1635
14.9.7 Using Asynchronous I/O on Linux .......................................................................... 1636
14.9.8 Configuring the InnoDB Master Thread I/O Rate .................................................... 1636
14.9.9 Configuring Spin Lock Polling ................................................................................ 1637
14.9.10 Configuring InnoDB Purge Scheduling ................................................................. 1637
14.9.11 Configuring Optimizer Statistics for InnoDB .......................................................... 1638

14.10 InnoDB Tablespaces ...................................................................................................... 1639
14.10.1 Resizing the InnoDB System Tablespace ............................................................. 1639
14.10.2 Changing the Number or Size of InnoDB Redo Log Files ...................................... 1640
14.10.3 Using Raw Disk Partitions for the System Tablespace .......................................... 1640
14.10.4 InnoDB File-Per-Table Tablespaces ..................................................................... 1642

14.11 InnoDB Tables and Indexes ........................................................................................... 1645
14.11.1 InnoDB Tables .................................................................................................... 1645
14.11.2 InnoDB Indexes .................................................................................................. 1666

14.12 InnoDB Table Compression ........................................................................................... 1667
14.12.1 Overview of Table Compression .......................................................................... 1667



Introduction to InnoDB

1586

14.12.2 Enabling Compression for a Table ....................................................................... 1667
14.12.3 Tuning Compression for InnoDB Tables ............................................................... 1668
14.12.4 Monitoring InnoDB Table Compression at Runtime ............................................... 1672
14.12.5 How Compression Works for InnoDB Tables ........................................................ 1672
14.12.6 SQL Compression Syntax Warnings and Errors .................................................... 1675

14.13 InnoDB File-Format Management ................................................................................... 1677
14.13.1 Enabling File Formats ......................................................................................... 1678
14.13.2 Verifying File Format Compatibility ....................................................................... 1678
14.13.3 Identifying the File Format in Use ........................................................................ 1681
14.13.4 Downgrading the File Format .............................................................................. 1681

14.14 InnoDB Row Storage and Row Formats ......................................................................... 1682
14.14.1 Overview of InnoDB Row Storage ....................................................................... 1682
14.14.2 Specifying the Row Format for a Table ................................................................ 1682
14.14.3 DYNAMIC and COMPRESSED Row Formats ...................................................... 1682
14.14.4 COMPACT and REDUNDANT Row Formats ........................................................ 1683

14.15 InnoDB Disk I/O and File Space Management ................................................................ 1683
14.15.1 InnoDB Disk I/O .................................................................................................. 1684
14.15.2 File Space Management ..................................................................................... 1684
14.15.3 InnoDB Checkpoints ........................................................................................... 1686
14.15.4 Defragmenting a Table ........................................................................................ 1686
14.15.5 Reclaiming Disk Space with TRUNCATE TABLE .................................................. 1687

14.16 InnoDB Fast Index Creation ........................................................................................... 1687
14.16.1 Overview of Fast Index Creation .......................................................................... 1687
14.16.2 Examples of Fast Index Creation ......................................................................... 1687
14.16.3 Implementation Details of Fast Index Creation ...................................................... 1688
14.16.4 Concurrency Considerations for Fast Index Creation ............................................. 1688
14.16.5 How Crash Recovery Works with Fast Index Creation ........................................... 1689
14.16.6 Limitations of Fast Index Creation ........................................................................ 1689

14.17 InnoDB Startup Options and System Variables ............................................................... 1690
14.18 InnoDB INFORMATION_SCHEMA Tables ...................................................................... 1730

14.18.1 InnoDB INFORMATION_SCHEMA Tables about Compression .............................. 1730
14.18.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information ................ 1732
14.18.3 InnoDB INFORMATION_SCHEMA Buffer Pool Tables .......................................... 1738

14.19 InnoDB Integration with MySQL Performance Schema .................................................... 1742
14.19.1 Monitoring InnoDB Mutex Waits Using Performance Schema ................................ 1743

14.20 InnoDB Monitors ............................................................................................................ 1746
14.20.1 InnoDB Monitor Types ........................................................................................ 1746
14.20.2 Enabling InnoDB Monitors ................................................................................... 1746
14.20.3 InnoDB Standard Monitor and Lock Monitor Output .............................................. 1748
14.20.4 InnoDB Tablespace Monitor Output ..................................................................... 1753
14.20.5 InnoDB Table Monitor Output .............................................................................. 1755

14.21 InnoDB Backup and Recovery ....................................................................................... 1758
14.21.1 InnoDB Backup ................................................................................................... 1759
14.21.2 InnoDB Recovery ................................................................................................ 1759

14.22 InnoDB and MySQL Replication ..................................................................................... 1761
14.23 InnoDB Troubleshooting ................................................................................................. 1763

14.23.1 Troubleshooting InnoDB I/O Problems ................................................................. 1764
14.23.2 Forcing InnoDB Recovery ................................................................................... 1764
14.23.3 Troubleshooting InnoDB Data Dictionary Operations ............................................. 1766
14.23.4 InnoDB Error Handling ........................................................................................ 1767

14.1 Introduction to InnoDB

InnoDB is a general-purpose storage engine that balances high reliability and high performance.
Starting from MySQL 5.5.5, the default storage engine for new tables is InnoDB rather than MyISAM.
Unless you have configured a different default storage engine, issuing a CREATE TABLE statement
without an ENGINE= clause creates an InnoDB table. Given this change of default behavior, MySQL



Key Advantages of InnoDB

1587

5.5 might be a logical point to evaluate whether tables that use MyISAM could benefit from switching to
InnoDB.

InnoDB includes all the features that were part of the InnoDB Plugin for MySQL 5.1, plus new features
specific to MySQL 5.5 and higher.

Note

The mysql and INFORMATION_SCHEMA databases that implement some of
the MySQL internals still use MyISAM. In particular, you cannot switch the grant
tables to use InnoDB.

Key Advantages of InnoDB

Key advantages of InnoDB include:

• Its DML operations follow the ACID model, with transactions featuring commit, rollback, and crash-
recovery capabilities to protect user data. See Section 14.5, “InnoDB and the ACID Model” for more
information.

• Row-level locking and Oracle-style consistent reads increase multi-user concurrency and
performance. See Section 14.8, “InnoDB Locking and Transaction Model” for more information.

• InnoDB tables arrange your data on disk to optimize queries based on primary keys. Each InnoDB
table has a primary key index called the clustered index that organizes the data to minimize I/
O for primary key lookups. See Section 14.11.2.1, “Clustered and Secondary Indexes” for more
information.

• To maintain data integrity, InnoDB supports FOREIGN KEY constraints. With foreign keys, inserts,
updates, and deletes are checked to ensure they do not result in inconsistencies across different
tables. See Section 14.11.1.6, “InnoDB and FOREIGN KEY Constraints” for more information.

Table 14.1 InnoDB Storage Engine Features

Storage limits 64TB Transactions Yes Locking granularity Row

MVCC Yes Geospatial data
type support

Yes Geospatial indexing
support

Yesa

B-tree indexes Yes T-tree indexes No Hash indexes Nob

Full-text search
indexes

Yesc Clustered indexes Yes Data caches Yes

Index caches Yes Compressed data Yesd Encrypted datae Yes

Cluster database
support

No Replication supportf Yes Foreign key support Yes

Backup / point-in-
time recoveryg

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aInnoDB support for geospatial indexing is available in MySQL 5.7.5 and later.
bInnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.
cInnoDB support for FULLTEXT indexes is available in MySQL 5.6.4 and later.
dCompressed InnoDB tables require the InnoDB Barracuda file format.
eImplemented in the server (via encryption functions). Data-at-rest tablespace encryption is available in MySQL 5.7 and later.
fImplemented in the server, rather than in the storage engine.
gImplemented in the server, rather than in the storage engine.

To compare the features of InnoDB with other storage engines provided with MySQL, see the Storage
Engine Features table in Chapter 15, Alternative Storage Engines.



InnoDB Enhancements and New Features

1588

InnoDB Enhancements and New Features

The InnoDB storage engine in MySQL 5.5 releases includes a number performance improvements
that in MySQL 5.1 were only available by installing the InnoDB Plugin. This latest InnoDB offers new
features, improved performance and scalability, enhanced reliability and new capabilities for flexibility
and ease of use.

For information about InnoDB enhancements and new features in MySQL 5.5, refer to:

• The InnoDB enhancements list in Section 1.4, “What Is New in MySQL 5.5”.

• The Release Notes.

Additional InnoDB Information and Resources

• For InnoDB-related terms and definitions, see MySQL Glossary.

• For a forum dedicated to the InnoDB storage engine, see MySQL Forums::InnoDB.

• InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For
more information on MySQL licensing, see http://www.mysql.com/company/legal/licensing/.

14.1.1 Benefits of Using InnoDB Tables

If you use MyISAM tables but are not committed to them for technical reasons, you may find InnoDB
tables beneficial for the following reasons:

• If your server crashes because of a hardware or software issue, regardless of what was happening in
the database at the time, you don't need to do anything special after restarting the database. InnoDB
crash recovery automatically finalizes any changes that were committed before the time of the crash,
and undoes any changes that were in process but not committed. Just restart and continue where
you left off. This process is now much faster than in MySQL 5.1 and earlier.

• The InnoDB storage engine maintains its own buffer pool that caches table and index data in main
memory as data is accessed. Frequently used data is processed directly from memory. This cache
applies to many types of information and speeds up processing. On dedicated database servers, up
to 80% of physical memory is often assigned to the InnoDB buffer pool.

• If you split up related data into different tables, you can set up foreign keys that enforce referential
integrity. Update or delete data, and the related data in other tables is updated or deleted
automatically. Try to insert data into a secondary table without corresponding data in the primary
table, and the bad data gets kicked out automatically.

• If data becomes corrupted on disk or in memory, a checksum mechanism alerts you to the bogus
data before you use it.

• When you design your database with appropriate primary key columns for each table, operations
involving those columns are automatically optimized. It is very fast to reference the primary key
columns in WHERE clauses, ORDER BY clauses, GROUP BY clauses, and join operations.

• Inserts, updates, deletes are optimized by an automatic mechanism called change buffering. InnoDB
not only allows concurrent read and write access to the same table, it caches changed data to
streamline disk I/O.

• Performance benefits are not limited to giant tables with long-running queries. When the same rows
are accessed over and over from a table, a feature called the Adaptive Hash Index takes over to
make these lookups even faster, as if they came out of a hash table.

• You can freely mix InnoDB tables with tables from other MySQL storage engines, even within the
same statement. For example, you can use a join operation to combine data from InnoDB and
MEMORY tables in a single query.

http://dev.mysql.com/doc/relnotes/mysql/5.5/en/
http://forums.mysql.com/list.php?22
http://www.mysql.com/company/legal/licensing/


Best Practices for InnoDB Tables

1589

• InnoDB has been designed for CPU efficiency and maximum performance when processing large
data volumes.

• InnoDB tables can handle large quantities of data, even on operating systems where file size is
limited to 2GB.

For InnoDB-specific tuning techniques you can apply in your application code, see Section 8.5,
“Optimizing for InnoDB Tables”.

14.1.2 Best Practices for InnoDB Tables

This section describes best practices when using InnoDB tables.

• Specify a primary key for every table using the most frequently queried column or columns, or an
auto-increment value if there is no obvious primary key.

• Using joins wherever data is pulled from multiple tables based on identical ID values from those
tables. For fast join performance, define foreign keys on the join columns, and declare those columns
with the same data type in each table. Adding foreign keys ensures that referenced columns are
indexed, which can improve performance. Foreign keys also propagate deletes or updates to all
affected tables, and prevent insertion of data in a child table if the corresponding IDs are not present
in the parent table.

• Turning off autocommit. Committing hundreds of times a second puts a cap on performance (limited
by the write speed of your storage device).

• Grouping sets of related DML operations into transactions, by bracketing them with START
TRANSACTION and COMMIT statements. While you don't want to commit too often, you also don't
want to issue huge batches of INSERT, UPDATE, or DELETE statements that run for hours without
committing.

• Not using LOCK TABLES statements. InnoDB can handle multiple sessions all reading and writing
to the same table at once, without sacrificing reliability or high performance. To get exclusive write
access to a set of rows, use the SELECT ... FOR UPDATE syntax to lock just the rows you intend
to update.

• Enabling the innodb_file_per_table option to put the data and indexes for individual tables into
separate files, instead of in a single giant system tablespace. This setting is required to use some of
the other features, such as table compression and fast truncation.

• Evaluating whether your data and access patterns benefit from the InnoDB table compression
feature (ROW_FORMAT=COMPRESSED) on the CREATE TABLE statement. You can compress InnoDB
tables without sacrificing read/write capability.

• Running your server with the option --sql_mode=NO_ENGINE_SUBSTITUTION to prevent tables
being created with a different storage engine if there is an issue with the one specified in the
ENGINE= clause of CREATE TABLE.

14.1.3 Checking InnoDB Availability

To determine whether your server supports InnoDB:

• Issue the command SHOW ENGINES; to see all the different MySQL storage engines. Look for
DEFAULT in the InnoDB line. Alternatively, query the INFORMATION_SCHEMA ENGINES table. (Now
that InnoDB is the default MySQL storage engine, only very specialized environments might not
support it.)

• Issue the command SHOW VARIABLES LIKE 'have_innodb'; to confirm that InnoDB is
available.

• If InnoDB is not present, you have a mysqld binary that was compiled without InnoDB support and
you need to get a different one.



Upward and Downward Compatibility

1590

• If InnoDB is present but disabled, go back through your startup options and configuration file and get
rid of any skip-innodb option.

14.1.4 Upward and Downward Compatibility

The ability to use the InnoDB table compression feature introduced in MySQL 5.5 and the new row
format require the use of a new InnoDB file format called Barracuda. The previous file format, used
by the built-in InnoDB in MySQL 5.1 and earlier, is now called Antelope and does not support these
features, but does support the other features introduced with the InnoDB storage engine.

The InnoDB storage engine is upward compatible from standard InnoDB as built in to, and distributed
with, MySQL. Existing databases can be used with the InnoDB Storage Engine for MySQL. The new
parameter innodb_file_format can help protect upward and downward compatibility between
InnoDB versions and database files, allowing users to enable or disable use of new features that can
only be used with certain versions of InnoDB.

InnoDB since version 5.0.21 has a safety feature that prevents it from opening tables that are in
an unknown format. However, the system tablespace may contain references to new-format tables
that confuse the built-in InnoDB in MySQL 5.1 and earlier. These references are cleared in a slow
shutdown.

With previous versions of InnoDB, no error would be returned until you try to access a table that is
in a format “too new” for the software. To provide early feedback, InnoDB now checks the system
tablespace before startup to ensure that the file format used in the database is supported by the
storage engine. See Section 14.13.2.1, “Compatibility Check When InnoDB Is Started” for the details.

14.1.5 Testing and Benchmarking with InnoDB

Even before completing your upgrade to MySQL 5.5, you can preview whether your database server or
application works correctly with InnoDB as the default storage engine. To set up InnoDB as the default
storage engine with an earlier MySQL release, either specify on the command line --default-
storage-engine=InnoDB, or add to your my.cnf file default-storage-engine=innodb in the
[mysqld] section, then restart the server.

Since changing the default storage engine only affects new tables as they are created, run all your
application installation and setup steps to confirm that everything installs properly. Then exercise all
the application features to make sure all the data loading, editing, and querying features work. If a table
relies on some MyISAM-specific feature, you'll receive an error; add the ENGINE=MyISAM clause to the
CREATE TABLE statement to avoid the error (for example, tables that rely on full-text search must be
MyISAM tables rather than InnoDB ones).

If you did not make a deliberate decision about the storage engine, and you just want to preview
how certain tables work when they're created under InnoDB, issue the command ALTER TABLE
table_name ENGINE=InnoDB; for each table. Or, to run test queries and other statements without
disturbing the original table, make a copy like so:

CREATE TABLE InnoDB_Table (...) ENGINE=InnoDB AS SELECT * FROM MyISAM_Table;
        

Since there are so many performance enhancements in the InnoDB that is part of MySQL 5.5, to get a
true idea of the performance with a full application under a realistic workload, install the real MySQL 5.5
and run benchmarks.

Test the full application lifecycle, from installation, through heavy usage, and server restart. Kill the
server process while the database is busy to simulate a power failure, and verify that the data is
recovered successfully when you restart the server.

Test any replication configurations, especially if you use different MySQL versions and options on the
master and the slaves.



Turning Off InnoDB

1591

14.1.6 Turning Off InnoDB

Oracle recommends InnoDB as the preferred storage engine for typical database applications, from
single-user wikis and blogs running on a local system, to high-end applications pushing the limits of
performance. As of MySQL 5.5, InnoDB is the default storage engine for new tables.

If you do not want to use InnoDB tables:

• Start the server with the --innodb=OFF or --skip-innodb option to disable the InnoDB storage
engine.

• Because the default storage engine is InnoDB, the server will not start unless you also use --
default-storage-engine to set the default to some other engine.

• To prevent the server from crashing when the InnoDB-related information_schema tables are
queried, also disable the plugins associated with those tables. Specify in the [mysqld] section of
the MySQL configuration file:

loose-innodb-trx=0
loose-innodb-locks=0
loose-innodb-lock-waits=0
loose-innodb-cmp=0
loose-innodb-cmp-per-index=0
loose-innodb-cmp-per-index-reset=0
loose-innodb-cmp-reset=0
loose-innodb-cmpmem=0
loose-innodb-cmpmem-reset=0
loose-innodb-buffer-page=0
loose-innodb-buffer-page-lru=0
loose-innodb-buffer-pool-stats=0

14.1.7 Third-Party Software Contributions

Oracle acknowledges that certain Third Party and Open Source software has been used to develop
or is incorporated in the InnoDB storage engine. This appendix includes required third-party license
information.

14.1.7.1 Performance Patches from Google

Oracle gratefully acknowledges the following contributions from Google, Inc. to improve InnoDB
performance:

• Replacing InnoDB's use of Pthreads mutexes with calls to GCC atomic builtins. This change means
that InnoDB mutex and rw-lock operations take less CPU time, and improves throughput on those
platforms where the atomic operations are available.

• Controlling master thread I/O rate, as discussed in Section 14.9.8, “Configuring the InnoDB Master
Thread I/O Rate”. The master thread in InnoDB is a thread that performs various tasks in the
background. Historically, InnoDB has used a hard coded value as the total I/O capacity of the
server. With this change, user can control the number of I/O operations that can be performed per
second based on their own workload.

Changes from the Google contributions were incorporated in the following source code files:
btr0cur.c, btr0sea.c, buf0buf.c, buf0buf.ic, ha_innodb.cc, log0log.c, log0log.h,
os0sync.h, row0sel.c, srv0srv.c, srv0srv.h, srv0start.c, sync0arr.c, sync0rw.c,
sync0rw.h, sync0rw.ic, sync0sync.c, sync0sync.h, sync0sync.ic, and univ.i.

These contributions are incorporated subject to the conditions contained in the file COPYING.Google,
which are reproduced here.

Copyright (c) 2008, 2009, Google Inc.
All rights reserved.



Third-Party Software Contributions

1592

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above
      copyright notice, this list of conditions and the following
      disclaimer in the documentation and/or other materials
      provided with the distribution.
    * Neither the name of the Google Inc. nor the names of its
      contributors may be used to endorse or promote products
      derived from this software without specific prior written
      permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

14.1.7.2 Multiple Background I/O Threads Patch from Percona

Oracle gratefully acknowledges the contribution of Percona, Inc. to improve InnoDB performance
by implementing configurable background threads, as discussed in Section 14.9.6, “Configuring the
Number of Background InnoDB I/O Threads”. InnoDB uses background threads to service various
types of I/O requests. The change provides another way to make InnoDB more scalable on high end
systems.

Changes from the Percona, Inc. contribution were incorporated in the following source code files:
ha_innodb.cc, os0file.c, os0file.h, srv0srv.c, srv0srv.h, and srv0start.c.

This contribution is incorporated subject to the conditions contained in the file COPYING.Percona,
which are reproduced here.

Copyright (c) 2008, 2009, Percona Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above
      copyright notice, this list of conditions and the following
      disclaimer in the documentation and/or other materials
      provided with the distribution.
    * Neither the name of the Percona Inc. nor the names of its
      contributors may be used to endorse or promote products
      derived from this software without specific prior written
      permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.



Installing the InnoDB Storage Engine

1593

14.1.7.3 Performance Patches from Sun Microsystems

Oracle gratefully acknowledges the following contributions from Sun Microsystems, Inc. to improve
InnoDB performance:

• Introducing the PAUSE instruction inside spin loops. This change increases performance in high
concurrency, CPU-bound workloads.

• Enabling inlining of functions and prefetch with Sun Studio.

Changes from the Sun Microsystems, Inc. contribution were incorporated in the following source code
files: univ.i, ut0ut.c, and ut0ut.h.

This contribution is incorporated subject to the conditions contained in the file
COPYING.Sun_Microsystems, which are reproduced here.

Copyright (c) 2009, Sun Microsystems, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above
      copyright notice, this list of conditions and the following
      disclaimer in the documentation and/or other materials
      provided with the distribution.
    * Neither the name of Sun Microsystems, Inc. nor the names of its
      contributors may be used to endorse or promote products
      derived from this software without specific prior written
      permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

14.2 Installing the InnoDB Storage Engine

When you use the InnoDB storage engine 1.1 and above, with MySQL 5.5 and above, you do not need
to do anything special to install: everything comes configured as part of the MySQL source and binary
distributions. This is a change from earlier releases of the InnoDB Plugin, where you were required to
match up MySQL and InnoDB version numbers and update your build and configuration processes.

The InnoDB storage engine is included in the MySQL distribution, starting from MySQL 5.1.38. From
MySQL 5.1.46 and up, this is the only download location for the InnoDB storage engine; it is not
available from the InnoDB web site.

If you used any scripts or configuration files with the earlier InnoDB storage engine from the
InnoDB web site, be aware that the filename of the shared library as supplied by MySQL is
ha_innodb_plugin.so or ha_innodb_plugin.dll, as opposed to ha_innodb.so or
ha_innodb.dll in the older Plugin downloaded from the InnoDB web site. You might need to change
the applicable file names in your startup or configuration scripts.

Because the InnoDB storage engine has now replaced the built-in InnoDB, you no longer need to
specify options like --ignore-builtin-innodb and --plugin-load during startup.



Upgrading the InnoDB Storage Engine

1594

To take best advantage of current InnoDB features, we recommend specifying the following options in
your configuration file:

innodb_file_per_table=1
innodb_file_format=barracuda
innodb_strict_mode=1

For information about these features, see Section 14.17, “InnoDB Startup Options and System
Variables”, Section 14.13, “InnoDB File-Format Management”, and innodb_strict_mode. You
might need to continue to use the previous values for these parameters in some replication and similar
configurations involving both new and older versions of MySQL.

14.3 Upgrading the InnoDB Storage Engine
Prior to MySQL 5.5, some upgrade scenarios involved upgrading the separate instance of InnoDB
known as the InnoDB Plugin. In MySQL 5.5 and higher, the features of the InnoDB Plugin have been
folded back into built-in InnoDB, so the upgrade procedure for InnoDB is the same as the one for the
MySQL server. For details, see Section 2.11.1, “Upgrading MySQL”.

14.4 Downgrading the InnoDB Storage Engine
Prior to MySQL 5.5, some downgrade scenarios involved switching the separate instance of InnoDB
known as the InnoDB Plugin back to the built-in InnoDB storage engine. In MySQL 5.5 and higher,
the features of the InnoDB Plugin have been folded back into built-in InnoDB, so the downgrade
procedure for InnoDB is the same as the one for the MySQL server. For details, see Section 2.11.2,
“Downgrading MySQL”.

14.5 InnoDB and the ACID Model
The ACID model is a set of database design principles that emphasize aspects of reliability that are
important for business data and mission-critical applications. MySQL includes components such
as the InnoDB storage engine that adhere closely to the ACID model, so that data is not corrupted
and results are not distorted by exceptional conditions such as software crashes and hardware
malfunctions. When you rely on ACID-compliant features, you do not need to reinvent the wheel of
consistency checking and crash recovery mechanisms. In cases where you have additional software
safeguards, ultra-reliable hardware, or an application that can tolerate a small amount of data loss
or inconsistency, you can adjust MySQL settings to trade some of the ACID reliability for greater
performance or throughput.

The following sections discuss how MySQL features, in particular the InnoDB storage engine, interact
with the categories of the ACID model:

• A: atomicity.

• C: consistency.

• I:: isolation.

• D: durability.

Atomicity

The atomicity aspect of the ACID model mainly involves InnoDB transactions. Related MySQL
features include:

• Autocommit setting.

• COMMIT statement.

• ROLLBACK statement.

• Operational data from the INFORMATION_SCHEMA tables.



Consistency

1595

Consistency

The consistency aspect of the ACID model mainly involves internal InnoDB processing to protect
data from crashes. Related MySQL features include:

• InnoDB doublewrite buffer.

• InnoDB crash recovery.

Isolation

The isolation aspect of the ACID model mainly involves InnoDB transactions, in particular the isolation
level that applies to each transaction. Related MySQL features include:

• Autocommit setting.

• SET ISOLATION LEVEL statement.

• The low-level details of InnoDB locking. During performance tuning, you see these details through
INFORMATION_SCHEMA tables.

Durability

The durability aspect of the ACID model involves MySQL software features interacting with your
particular hardware configuration. Because of the many possibilities depending on the capabilities
of your CPU, network, and storage devices, this aspect is the most complicated to provide concrete
guidelines for. (And those guidelines might take the form of buy “new hardware”.) Related MySQL
features include:

• InnoDB doublewrite buffer, turned on and off by the innodb_doublewrite configuration option.

• Configuration option innodb_flush_log_at_trx_commit.

• Configuration option sync_binlog.

• Configuration option innodb_file_per_table.

• Write buffer in a storage device, such as a disk drive, SSD, or RAID array.

• Battery-backed cache in a storage device.

• The operating system used to run MySQL, in particular its support for the fsync() system call.

• Uninterruptible power supply (UPS) protecting the electrical power to all computer servers and
storage devices that run MySQL servers and store MySQL data.

• Your backup strategy, such as frequency and types of backups, and backup retention periods.

• For distributed or hosted data applications, the particular characteristics of the data centers where
the hardware for the MySQL servers is located, and network connections between the data centers.

14.6 InnoDB Multi-Versioning
InnoDB is a multi-versioned storage engine: it keeps information about old versions of changed rows,
to support transactional features such as concurrency and rollback. This information is stored in the
tablespace in a data structure called a rollback segment (after an analogous data structure in Oracle).
InnoDB uses the information in the rollback segment to perform the undo operations needed in a
transaction rollback. It also uses the information to build earlier versions of a row for a consistent read.

Internally, InnoDB adds three fields to each row stored in the database. A 6-byte DB_TRX_ID field
indicates the transaction identifier for the last transaction that inserted or updated the row. Also, a
deletion is treated internally as an update where a special bit in the row is set to mark it as deleted.
Each row also contains a 7-byte DB_ROLL_PTR field called the roll pointer. The roll pointer points to an



Multi-Versioning and Secondary Indexes

1596

undo log record written to the rollback segment. If the row was updated, the undo log record contains
the information necessary to rebuild the content of the row before it was updated. A 6-byte DB_ROW_ID
field contains a row ID that increases monotonically as new rows are inserted. If InnoDB generates a
clustered index automatically, the index contains row ID values. Otherwise, the DB_ROW_ID column
does not appear in any index.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs
are needed only in transaction rollback and can be discarded as soon as the transaction commits.
Update undo logs are used also in consistent reads, but they can be discarded only after there is no
transaction present for which InnoDB has assigned a snapshot that in a consistent read could need
the information in the update undo log to build an earlier version of a database row.

Commit your transactions regularly, including those transactions that issue only consistent reads.
Otherwise, InnoDB cannot discard data from the update undo logs, and the rollback segment may
grow too big, filling up your tablespace.

The physical size of an undo log record in the rollback segment is typically smaller than the
corresponding inserted or updated row. You can use this information to calculate the space needed for
your rollback segment.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database
immediately when you delete it with an SQL statement. InnoDB only physically removes the
corresponding row and its index records when it discards the update undo log record written for the
deletion. This removal operation is called a purge, and it is quite fast, usually taking the same order of
time as the SQL statement that did the deletion.

If you insert and delete rows in smallish batches at about the same rate in the table, the purge thread
can start to lag behind and the table can grow bigger and bigger because of all the “dead” rows,
making everything disk-bound and very slow. In such a case, throttle new row operations, and allocate
more resources to the purge thread by tuning the innodb_max_purge_lag system variable. See
Section 14.17, “InnoDB Startup Options and System Variables” for more information.

Multi-Versioning and Secondary Indexes

InnoDB multiversion concurrency control (MVCC) treats secondary indexes differently than clustered
indexes. Records in a clustered index are updated in-place, and their hidden system columns point
undo log entries from which earlier versions of records can be reconstructed. Unlike clustered index
records, secondary index records do not contain hidden system columns nor are they updated in-place.

When a secondary index column is updated, old secondary index records are delete-marked, new
records are inserted, and delete-marked records are eventually purged. When a secondary index
record is delete-marked or the secondary index page is updated by a newer transaction, InnoDB
looks up the database record in the clustered index. In the clustered index, the record's DB_TRX_ID is
checked, and the correct version of the record is retrieved from the undo log if the record was modified
after the reading transaction was initiated.

If a secondary index record is marked for deletion or the secondary index page is updated by a newer
transaction, the covering index technique is not used. Instead of returning values from the index
structure, InnoDB looks up the record in the clustered index.

14.7 InnoDB Architecture
This section provides an introduction to major components of the InnoDB storage engine architecture.

14.7.1 Buffer Pool

The buffer pool is an area in main memory where InnoDB caches table and index data as data
is accessed. The buffer pool allows frequently used data to be processed directly from memory,
which speeds up processing. On dedicated database servers, up to 80% of physical memory is often
assigned to the InnoDB buffer pool.



Change Buffer

1597

For efficiency of high-volume read operations, the buffer pool is divided into pages that can potentially
hold multiple rows. For efficiency of cache management, the buffer pool is implemented as a linked list
of pages; data that is rarely used is aged out of the cache, using a variation of the LRU algorithm.

For more information, see Section 14.9.2.1, “The InnoDB Buffer Pool”, and Section 14.9.2, “InnoDB
Buffer Pool Configuration”.

14.7.2 Change Buffer

The change buffer is a special data structure that caches changes to secondary index pages when
affected pages are not in the buffer pool. The buffered changes, which may result from INSERT,
UPDATE, or DELETE operations (DML), are merged later when the pages are loaded into the buffer pool
by other read operations.

Unlike clustered indexes, secondary indexes are usually non-unique, and inserts into secondary
indexes happen in a relatively random order. Similarly, deletes and updates may affect secondary
index pages that are not adjacently located in an index tree. Merging cached changes at a later time,
when affected pages are read into the buffer pool by other operations, avoids substantial random
access I/O that would be required to read-in secondary index pages from disk.

Periodically, the purge operation that runs when the system is mostly idle, or during a slow shutdown,
writes the updated index pages to disk. The purge operation can write disk blocks for a series of index
values more efficiently than if each value were written to disk immediately.

Change buffer merging may take several hours when there are numerous secondary indexes
to update and many affected rows. During this time, disk I/O is increased, which can cause a
significant slowdown for disk-bound queries. Change buffer merging may also continue to occur after a
transaction is committed. In fact, change buffer merging may continue to occur after a server shutdown
and restart (see Section 14.23.2, “Forcing InnoDB Recovery” for more information).

In memory, the change buffer occupies part of the InnoDB buffer pool. On disk, the change buffer is
part of the system tablespace, so that index changes remain buffered across database restarts.

The type of data cached in the change buffer is governed by the innodb_change_buffering
configuration option. For more information, see Section 14.9.4, “Configuring InnoDB Change Buffering”.

Monitoring the Change Buffer

The following options are available for change buffer monitoring:

• InnoDB Standard Monitor output includes status information for the change buffer. To view monitor
data, issue the SHOW ENGINE INNODB STATUS command.

mysql> SHOW ENGINE INNODB STATUS\G

Change buffer status information is located under the INSERT BUFFER AND ADAPTIVE HASH
INDEX heading and appears similar to the following:

-------------------------------------
INSERT BUFFER AND ADAPTIVE HASH INDEX
-------------------------------------
Ibuf: size 1, free list len 0, seg size 2, 0 merges
merged operations:
 insert 0, delete mark 0, delete 0
discarded operations:
 insert 0, delete mark 0, delete 0
Hash table size 276707, node heap has 1 buffer(s)
15.81 hash searches/s, 46.33 non-hash searches/s

For more information, see Section 14.20.3, “InnoDB Standard Monitor and Lock Monitor Output”.

• The INFORMATION_SCHEMA.INNODB_BUFFER_PAGE table provides metadata about each page
in the buffer pool, including change buffer index and change buffer bitmap pages. Change buffer



Adaptive Hash Index

1598

pages are identified by PAGE_TYPE. IBUF_INDEX is the page type for change buffer index pages,
and IBUF_BITMAP is the page type for change buffer bitmap pages.

Warning

Querying the INNODB_BUFFER_PAGE table can introduce significant
performance overhead. To avoid impacting performance, reproduce the issue
you want to investigate on a test instance and run your queries on the test
instance.

For example, you can query the INNODB_BUFFER_PAGE table to determine the approximate number
of IBUF_INDEX and IBUF_BITMAP pages as a percentage of total buffer pool pages.

SELECT
(SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE PAGE_TYPE LIKE 'IBUF%'
) AS change_buffer_pages,
(
SELECT COUNT(*)
FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
) AS total_pages,
(
SELECT ((change_buffer_pages/total_pages)*100)
) AS change_buffer_page_percentage;
+---------------------+-------------+-------------------------------+
| change_buffer_pages | total_pages | change_buffer_page_percentage |
+---------------------+-------------+-------------------------------+
|                  25 |        8192 |                        0.3052 |
+---------------------+-------------+-------------------------------+

For information about other data provided by the INNODB_BUFFER_PAGE table, see Section 21.28.1,
“The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”. For related usage information,
see Section 14.18.3, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”.

• Performance Schema provides change buffer mutex wait instrumentation for advanced performance
monitoring. To view change buffer instrumentation, issue the following query (Performance Schema
must be enabled):

mysql> SELECT * FROM performance_schema.setup_instruments
WHERE NAME LIKE '%wait/synch/mutex/innodb/ibuf%';
+-------------------------------------------------------+---------+-------+
| NAME                                                  | ENABLED | TIMED |
+-------------------------------------------------------+---------+-------+
| wait/synch/mutex/innodb/ibuf_bitmap_mutex             | YES     | YES   |
| wait/synch/mutex/innodb/ibuf_mutex                    | YES     | YES   |
| wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex | YES     | YES   |
+-------------------------------------------------------+---------+-------+

For information about monitoring InnoDB mutex waits, see Section 14.19.1, “Monitoring InnoDB
Mutex Waits Using Performance Schema”.

14.7.3 Adaptive Hash Index

The adaptive hash index (AHI) lets InnoDB perform more like an in-memory database on systems with
appropriate combinations of workload and ample memory for the buffer pool, without sacrificing any
transactional features or reliability. This feature is enabled by the innodb_adaptive_hash_index
option, or turned off by --skip-innodb_adaptive_hash_index at server startup.

Based on the observed pattern of searches, MySQL builds a hash index using a prefix of the index
key. The prefix of the key can be any length, and it may be that only some of the values in the B-tree
appear in the hash index. Hash indexes are built on demand for those pages of the index that are often
accessed.

If a table fits almost entirely in main memory, a hash index can speed up queries by enabling direct
lookup of any element, turning the index value into a sort of pointer. InnoDB has a mechanism that



Redo Log Buffer

1599

monitors index searches. If InnoDB notices that queries could benefit from building a hash index, it
does so automatically.

With some workloads, the speedup from hash index lookups greatly outweighs the extra work to
monitor index lookups and maintain the hash index structure. Sometimes, the read/write lock that
guards access to the adaptive hash index can become a source of contention under heavy workloads,
such as multiple concurrent joins. Queries with LIKE operators and % wildcards also tend not to benefit
from the AHI. For workloads where the adaptive hash index is not needed, turning it off reduces
unnecessary performance overhead. Because it is difficult to predict in advance whether this feature
is appropriate for a particular system, consider running benchmarks with it both enabled and disabled,
using a realistic workload.

The hash index is always built based on an existing B-tree index on the table. InnoDB can build a hash
index on a prefix of any length of the key defined for the B-tree, depending on the pattern of searches
that InnoDB observes for the B-tree index. A hash index can be partial, covering only those pages of
the index that are often accessed.

You can monitor the use of the adaptive hash index and the contention for its use in the SEMAPHORES
section of the output of the SHOW ENGINE INNODB STATUS command. If you see many threads
waiting on an RW-latch created in btr0sea.c, then it might be useful to disable adaptive hash
indexing.

For more information about the performance characteristics of hash indexes, see Section 8.3.8,
“Comparison of B-Tree and Hash Indexes”.

14.7.4 Redo Log Buffer

The redo log buffer is the memory area that holds data to be written to the redo log. Redo log buffer
size is defined by the innodb_log_buffer_size configuration option. The redo log buffer is
periodically flushed to the log file on disk. A large redo log buffer enables large transactions to run
without the need to write redo log to disk before the transactions commit. Thus, if you have transactions
that update, insert, or delete many rows, making the log buffer larger saves disk I/O.

The innodb_flush_log_at_trx_commit option controls how the contents of the redo log buffer
are written to the log file. The innodb_flush_log_at_timeout option controls redo log flushing
frequency.

14.7.5 System Tablespace

The InnoDB system tablespace contains the InnoDB data dictionary (metadata for InnoDB-related
objects) and is the storage area for the doublewrite buffer, the change buffer, and undo logs. The
system tablespace also contains table and index data for any user-created tables that are created in
the system tablespace. The system tablespace is considered a shared tablespace since it is shared by
multiple tables.

The system tablespace is represented by one or more data files. By default, one system data file,
named ibdata1, is created in the MySQL data directory. The size and number of system data files is
controlled by the innodb_data_file_path startup option.

For related information, see Section 14.9.1, “InnoDB Startup Configuration”, and Section 14.10.1,
“Resizing the InnoDB System Tablespace”.

14.7.6 InnoDB Data Dictionary

The InnoDB data dictionary is comprised of internal system tables that contain metadata used to keep
track of objects such as tables, indexes, and table columns. The metadata is physically located in the
InnoDB system tablespace. For historical reasons, data dictionary metadata overlaps to some degree
with information stored in InnoDB table metadata files (.frm files).

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_flush_log_at_timeout


Doublewrite Buffer

1600

14.7.7 Doublewrite Buffer

The doublewrite buffer is a storage area located in the system tablespace where InnoDB writes pages
that are flushed from the InnoDB buffer pool, before the pages are written to their proper positions in
the data file. Only after flushing and writing pages to the doublewrite buffer, does InnoDB write pages
to their proper positions. If there is an operating system, storage subsystem, or mysqld process crash
in the middle of a page write, InnoDB can later find a good copy of the page from the doublewrite
buffer during crash recovery.

Although data is always written twice, the doublewrite buffer does not require twice as much I/O
overhead or twice as many I/O operations. Data is written to the doublewrite buffer itself as a large
sequential chunk, with a single fsync() call to the operating system.

The doublewrite buffer is enabled by default. To disable the doublewrite buffer, set
innodb_doublewrite to 0.

14.7.8 Undo Logs

An undo log is a collection of undo log records associated with a single transaction. An undo log
record contains information about how to undo the latest change by a transaction to a clustered index
record. If another transaction needs to see the original data (as part of a consistent read operation),
the unmodified data is retrieved from the undo log records. Undo logs exist within undo log segments,
which are contained within rollback segments. Rollback segments are physically part of the system
tablespace. For related information, see Section 14.6, “InnoDB Multi-Versioning”.

Prior to MySQL 5.5.4, InnoDB supported a single rollback segment which supported a maximum
of 1023 concurrent data-modifying transactions (read-only transactions do not count against
the maximum limit). In MySQL 5.5.4, the single rollback segment was divided into 128 rollback
segments, each supporting up to 1023 concurrent data-modifying transactions, creating a new limit
of approximately 128K concurrent data-modifying transactions. The innodb_rollback_segments
option defines how many of the rollback segments in the system tablespace are used for InnoDB
transactions.

Each transaction is assigned to one of the rollback segments, and remains tied to that rollback
segment for the duration. The increased limit for concurrent data-modifying transactions improves both
scalability (higher number of concurrent transactions) and performance (less contention when different
transactions access the rollback segments).

14.7.9 File-Per-Table Tablespaces

A file-per-table tablespace is a single-table tablespace that is created in its own data file rather
than in the system tablespace. Tables are created in file-per-table tablespaces when the
innodb_file_per_table option is enabled. Otherwise, InnoDB tables are created in the system
tablespace. Each file-per-table tablespace is represented by a single .ibd data file, which is created in
the database directory by default.

File per-table tablespaces support DYNAMIC and COMPRESSED row formats which support features
such as off-page storage for variable length data and table compression. For information about these
features, and about other advantages of file-per-table tablespaces, see Section 14.10.4, “InnoDB File-
Per-Table Tablespaces”.

14.7.10 Redo Log

The redo log is a disk-based data structure used during crash recovery to correct data written by
incomplete transactions. During normal operations, the redo log encodes requests to change InnoDB
table data that result from SQL statements or low-level API calls. Modifications that did not finish
updating the data files before an unexpected shutdown are replayed automatically during initialization,
and before the connections are accepted. For information about the role of the redo log in crash
recovery, see Section 14.21.2, “InnoDB Recovery”.



InnoDB Locking and Transaction Model

1601

By default, the redo log is physically represented on disk as a set of files, named ib_logfile0 and
ib_logfile1. MySQL writes to the redo log files in a circular fashion. Data in the redo log is encoded
in terms of records affected; this data is collectively referred to as redo. The passage of data through
the redo log is represented by an ever-increasing LSN value.

For related information, see:

• Section 14.9.1, “InnoDB Startup Configuration”

• Section 8.5.3, “Optimizing InnoDB Redo Logging”

• Section 14.10.2, “Changing the Number or Size of InnoDB Redo Log Files”

• InnoDB Crash Recovery

14.7.10.1 Group Commit for Redo Log Flushing

InnoDB, like any other ACID-compliant database engine, flushes the redo log of a transaction before
it is committed. InnoDB uses group commit functionality to group multiple such flush requests together
to avoid one flush for each commit. With group commit, InnoDB issues a single write to the redo log
file to perform the commit action for multiple user transactions that commit at about the same time,
significantly improving throughput.

Group commit in InnoDB worked in earlier releases of MySQL and works once again with MySQL 5.1
with the InnoDB Plugin, and MySQL 5.5 and higher. The introduction of support for the distributed
transactions and Two Phase Commit (2PC) in MySQL 5.0 interfered with the InnoDB group commit
functionality. This issue is now resolved.

The group commit functionality inside InnoDB works with the Two Phase Commit protocol in MySQL.
Re-enabling of the group commit functionality fully ensures that the ordering of commit in the MySQL
binary log and the InnoDB logfile is the same as it was before. It means it is safe to use the MySQL
Enterprise Backup product with InnoDB 1.0.4 (that is, the InnoDB Plugin with MySQL 5.1) and above.

For more information about performance of COMMIT and other transactional operations, see
Section 8.5.2, “Optimizing InnoDB Transaction Management”.

14.8 InnoDB Locking and Transaction Model
To implement a large-scale, busy, or highly reliable database application, to port substantial code from
a different database system, or to tune MySQL performance, it is important to understand InnoDB
locking and the InnoDB transaction model.

This section discusses several topics related to InnoDB locking and the InnoDB transaction model
with which you should be familiar.

• Section 14.8.1, “InnoDB Locking” describes lock types used by InnoDB.

• Section 14.8.2, “InnoDB Transaction Model” describes transaction isolation levels and the locking
strategies used by each. It also discusses the use of autocommit, consistent non-locking reads,
and locking reads.

• Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB” discusses specific types of locks
set in InnoDB for various statements.

• Section 14.8.4, “Phantom Rows” describes how InnoDB uses next-key locking to avoid phantom
rows.

• Section 14.8.5, “Deadlocks in InnoDB” provides a deadlock example, discusses deadlock detection
and rollback, and provides tips for minimizing and handling deadlocks in InnoDB.

14.8.1 InnoDB Locking

This section describes lock types used by InnoDB.



InnoDB Locking

1602

• Shared and Exclusive Locks

• Intention Locks

• Record Locks

• Gap Locks

• Next-Key Locks

• Insert Intention Locks

• AUTO-INC Locks

Shared and Exclusive Locks

InnoDB implements standard row-level locking where there are two types of locks, shared (S) locks
and exclusive (X) locks.

• A shared (S) lock permits the transaction that holds the lock to read a row.

• An exclusive (X) lock permits the transaction that holds the lock to update or delete a row.

If transaction T1 holds a shared (S) lock on row r, then requests from some distinct transaction T2 for
a lock on row r are handled as follows:

• A request by T2 for an S lock can be granted immediately. As a result, both T1 and T2 hold an S lock
on r.

• A request by T2 for an X lock cannot be granted immediately.

If a transaction T1 holds an exclusive (X) lock on row r, a request from some distinct transaction T2
for a lock of either type on r cannot be granted immediately. Instead, transaction T2 has to wait for
transaction T1 to release its lock on row r.

Intention Locks

InnoDB supports multiple granularity locking which permits coexistence of row-level locks and locks
on entire tables. To make locking at multiple granularity levels practical, additional types of locks called
intention locks are used. Intention locks are table-level locks in InnoDB that indicate which type of lock
(shared or exclusive) a transaction requires later for a row in that table. There are two types of intention
locks used in InnoDB (assume that transaction T has requested a lock of the indicated type on table
t):

• Intention shared (IS): Transaction T intends to set S locks on individual rows in table t.

• Intention exclusive (IX): Transaction T intends to set X locks on those rows.

For example, SELECT ... LOCK IN SHARE MODE sets an IS lock and SELECT ... FOR UPDATE
sets an IX lock.

The intention locking protocol is as follows:

• Before a transaction can acquire an S lock on a row in table t, it must first acquire an IS or stronger
lock on t.

• Before a transaction can acquire an X lock on a row, it must first acquire an IX lock on t.

These rules can be conveniently summarized by means of the following lock type compatibility matrix.

 X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible

S Conflict Conflict Compatible Compatible



InnoDB Locking

1603

 X IX S IS

IS Conflict Compatible Compatible Compatible

A lock is granted to a requesting transaction if it is compatible with existing locks, but not if it conflicts
with existing locks. A transaction waits until the conflicting existing lock is released. If a lock request
conflicts with an existing lock and cannot be granted because it would cause deadlock, an error occurs.

Thus, intention locks do not block anything except full table requests (for example, LOCK TABLES ...
WRITE). The main purpose of IX and IS locks is to show that someone is locking a row, or going to
lock a row in the table.

Transaction data for an intention lock appears similar to the following in SHOW ENGINE INNODB
STATUS and InnoDB monitor output:

TABLE LOCK table `test`.`t` trx id 10080 lock mode IX

Record Locks

A record lock is a lock on an index record. For example, SELECT c1 FROM t WHERE c1 = 10 FOR
UPDATE; prevents any other transaction from inserting, updating, or deleting rows where the value of
t.c1 is 10.

Record locks always lock index records, even if a table is defined with no indexes. For such
cases, InnoDB creates a hidden clustered index and uses this index for record locking. See
Section 14.11.2.1, “Clustered and Secondary Indexes”.

Transaction data for a record lock appears similar to the following in SHOW ENGINE INNODB STATUS
and InnoDB monitor output:

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t` 
trx id 10078 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 8000000a; asc     ;;
 1: len 6; hex 00000000274f; asc     'O;;
 2: len 7; hex b60000019d0110; asc        ;;

Gap Locks

A gap lock is a lock on a gap between index records, or a lock on the gap before the first or after
the last index record. For example, SELECT c1 FROM t WHERE c1 BETWEEN 10 and 20 FOR
UPDATE; prevents other transactions from inserting a value of 15 into column t.c1, whether or not
there was already any such value in the column, because the gaps between all existing values in the
range are locked.

A gap might span a single index value, multiple index values, or even be empty.

Gap locks are part of the tradeoff between performance and concurrency, and are used in some
transaction isolation levels and not others.

Gap locking is not needed for statements that lock rows using a unique index to search for a unique
row. (This does not include the case that the search condition includes only some columns of a
multiple-column unique index; in that case, gap locking does occur.) For example, if the id column has
a unique index, the following statement uses only an index-record lock for the row having id value 100
and it does not matter whether other sessions insert rows in the preceding gap:

SELECT * FROM child WHERE id = 100;

If id is not indexed or has a nonunique index, the statement does lock the preceding gap.

It is also worth noting here that conflicting locks can be held on a gap by different transactions. For
example, transaction A can hold a shared gap lock (gap S-lock) on a gap while transaction B holds an



InnoDB Locking

1604

exclusive gap lock (gap X-lock) on the same gap. The reason conflicting gap locks are allowed is that
if a record is purged from an index, the gap locks held on the record by different transactions must be
merged.

Gap locks in InnoDB are “purely inhibitive”, which means they only stop other transactions from
inserting to the gap. They do not prevent different transactions from taking gap locks on the same gap.
Thus, a gap X-lock has the same effect as a gap S-lock.

Gap locking can be disabled explicitly. This occurs if you change the transaction isolation level to READ
COMMITTED or enable the innodb_locks_unsafe_for_binlog system variable. Under these
circumstances, gap locking is disabled for searches and index scans and is used only for foreign-key
constraint checking and duplicate-key checking.

There are also other effects of using the READ COMMITTED isolation level or enabling
innodb_locks_unsafe_for_binlog. Record locks for nonmatching rows are released after
MySQL has evaluated the WHERE condition. For UPDATE statements, InnoDB does a “semi-consistent”
read, such that it returns the latest committed version to MySQL so that MySQL can determine whether
the row matches the WHERE condition of the UPDATE.

Next-Key Locks

A next-key lock is a combination of a record lock on the index record and a gap lock on the gap before
the index record.

InnoDB performs row-level locking in such a way that when it searches or scans a table index, it sets
shared or exclusive locks on the index records it encounters. Thus, the row-level locks are actually
index-record locks. A next-key lock on an index record also affects the “gap” before that index record.
That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding the index record.
If one session has a shared or exclusive lock on record R in an index, another session cannot insert a
new index record in the gap immediately before R in the index order.

Suppose that an index contains the values 10, 11, 13, and 20. The possible next-key locks for this
index cover the following intervals, where a round bracket denotes exclusion of the interval endpoint
and a square bracket denotes inclusion of the endpoint:

(negative infinity, 10]
(10, 11]
(11, 13]
(13, 20]
(20, positive infinity)

For the last interval, the next-key lock locks the gap above the largest value in the index and the
“supremum” pseudo-record having a value higher than any value actually in the index. The supremum
is not a real index record, so, in effect, this next-key lock locks only the gap following the largest index
value.

By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the
innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-
key locks for searches and index scans, which prevents phantom rows (see Section 14.8.4, “Phantom
Rows”).

Transaction data for a next-key lock appears similar to the following in SHOW ENGINE INNODB
STATUS and InnoDB monitor output:

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t` 
trx id 10080 lock_mode X
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 8000000a; asc     ;;
 1: len 6; hex 00000000274f; asc     'O;;
 2: len 7; hex b60000019d0110; asc        ;;



InnoDB Transaction Model

1605

Insert Intention Locks

An insert intention lock is a type of gap lock set by INSERT operations prior to row insertion. This lock
signals the intent to insert in such a way that multiple transactions inserting into the same index gap
need not wait for each other if they are not inserting at the same position within the gap. Suppose that
there are index records with values of 4 and 7. Separate transactions that attempt to insert values of 5
and 6, respectively, each lock the gap between 4 and 7 with insert intention locks prior to obtaining the
exclusive lock on the inserted row, but do not block each other because the rows are nonconflicting.

The following example demonstrates a transaction taking an insert intention lock prior to obtaining an
exclusive lock on the inserted record. The example involves two clients, A and B.

Client A creates a table containing two index records (90 and 102) and then starts a transaction that
places an exclusive lock on index records with an ID greater than 100. The exclusive lock includes a
gap lock before record 102:

mysql> CREATE TABLE child (id int(11) NOT NULL, PRIMARY KEY(id)) ENGINE=InnoDB;
mysql> INSERT INTO child (id) values (90),(102);

mysql> START TRANSACTION;
mysql> SELECT * FROM child WHERE id > 100 FOR UPDATE;
+-----+
| id  |
+-----+
| 102 |
+-----+

Client B begins a transaction to insert a record into the gap. The transaction takes an insert intention
lock while it waits to obtain an exclusive lock.

mysql> START TRANSACTION;
mysql> INSERT INTO child (id) VALUES (101);

Transaction data for an insert intention lock appears similar to the following in SHOW ENGINE INNODB
STATUS and InnoDB monitor output:

RECORD LOCKS space id 31 page no 3 n bits 72 index `PRIMARY` of table `test`.`child`
trx id 8731 lock_mode X locks gap before rec insert intention waiting
Record lock, heap no 3 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000066; asc    f;;
 1: len 6; hex 000000002215; asc     " ;;
 2: len 7; hex 9000000172011c; asc     r  ;;...

AUTO-INC Locks

An AUTO-INC lock is a special table-level lock taken by transactions inserting into tables with
AUTO_INCREMENT columns. In the simplest case, if one transaction is inserting values into the table,
any other transactions must wait to do their own inserts into that table, so that rows inserted by the first
transaction receive consecutive primary key values.

The innodb_autoinc_lock_mode configuration option controls the algorithm used for auto-
increment locking. It allows you to choose how to trade off between predictable sequences of auto-
increment values and maximum concurrency for insert operations.

For more information, see Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”.

14.8.2 InnoDB Transaction Model

In the InnoDB transaction model, the goal is to combine the best properties of a multi-versioning
database with traditional two-phase locking. InnoDB performs locking at the row level and runs queries
as nonlocking consistent reads by default, in the style of Oracle. The lock information in InnoDB is
stored space-efficiently so that lock escalation is not needed. Typically, several users are permitted to
lock every row in InnoDB tables, or any random subset of the rows, without causing InnoDB memory
exhaustion.



InnoDB Transaction Model

1606

14.8.2.1 Transaction Isolation Levels

Transaction isolation is one of the foundations of database processing. Isolation is the I in the acronym
ACID; the isolation level is the setting that fine-tunes the balance between performance and reliability,
consistency, and reproducibility of results when multiple transactions are making changes and
performing queries at the same time.

InnoDB offers all four transaction isolation levels described by the SQL:1992 standard: READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE. The default isolation
level for InnoDB is REPEATABLE READ.

A user can change the isolation level for a single session or for all subsequent connections with the
SET TRANSACTION statement. To set the server's default isolation level for all connections, use the --
transaction-isolation option on the command line or in an option file. For detailed information
about isolation levels and level-setting syntax, see Section 13.3.6, “SET TRANSACTION Syntax”.

InnoDB supports each of the transaction isolation levels described here using different locking
strategies. You can enforce a high degree of consistency with the default REPEATABLE READ level,
for operations on crucial data where ACID compliance is important. Or you can relax the consistency
rules with READ COMMITTED or even READ UNCOMMITTED, in situations such as bulk reporting where
precise consistency and repeatable results are less important than minimizing the amount of overhead
for locking. SERIALIZABLE enforces even stricter rules than REPEATABLE READ, and is used mainly
in specialized situations, such as with XA transactions and for troubleshooting issues with concurrency
and deadlocks.

The following list describes how MySQL supports the different transaction levels. The list goes from the
most commonly used level to the least used.

•   REPEATABLE READ

This is the default isolation level for InnoDB. Consistent reads within the same transaction read
the snapshot established by the first read. This means that if you issue several plain (nonlocking)
SELECT statements within the same transaction, these SELECT statements are consistent also with
respect to each other. See Section 14.8.2.3, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE
statements, locking depends on whether the statement uses a unique index with a unique search
condition, or a range-type search condition.

• For a unique index with a unique search condition, InnoDB locks only the index record found, not
the gap before it.

• For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key
locks to block insertions by other sessions into the gaps covered by the range. For information
about gap locks and next-key locks, see Section 14.8.1, “InnoDB Locking”.

•   READ COMMITTED

Each consistent read, even within the same transaction, sets and reads its own fresh snapshot. For
information about consistent reads, see Section 14.8.2.3, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE statements, and
DELETE statements, InnoDB locks only index records, not the gaps before them, and thus permits
the free insertion of new records next to locked records. Gap locking is only used for foreign-key
constraint checking and duplicate-key checking.

Because gap locking is disabled, phantom problems may occur, as other sessions can insert new
rows into the gaps. For information about phantoms, see Section 14.8.4, “Phantom Rows”.

If you use READ COMMITTED, you must use row-based binary logging.



InnoDB Transaction Model

1607

Using READ COMMITTED has additional effects:

• For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes.
Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition.
This greatly reduces the probability of deadlocks, but they can still happen.

• For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read,
returning the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads
the row again and this time InnoDB either locks it or waits for a lock on it.

Consider the following example, beginning with this table:

CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

In this case, table has no indexes, so searches and index scans use the hidden clustered index for
record locking (see Section 14.11.2.1, “Clustered and Secondary Indexes”).

Suppose that one client performs an UPDATE using these statements:

SET autocommit = 0;
UPDATE t SET b = 5 WHERE b = 3;

Suppose also that a second client performs an UPDATE by executing these statements following
those of the first client:

SET autocommit = 0;
UPDATE t SET b = 4 WHERE b = 2;

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row, and then
determines whether to modify it. If InnoDB does not modify the row, it releases the lock. Otherwise,
InnoDB retains the lock until the end of the transaction. This affects transaction processing as
follows.

When using the default REPEATABLE READ isolation level, the first UPDATE acquires x-locks and
does not release any of them:

x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because first update has
retained locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If READ COMMITTED is used instead, the first UPDATE acquires x-locks and releases those for rows
that it does not modify:

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)



InnoDB Transaction Model

1608

For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed
version of each row to MySQL so that MySQL can determine whether the row matches the WHERE
condition of the UPDATE:

x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock

The effects of using the READ COMMITTED isolation level are the same as enabling the
innodb_locks_unsafe_for_binlog configuration option, with these exceptions:

• Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions,
whereas the isolation level can be set globally for all sessions, or individually per session.

• innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation
level can be set at startup or changed at runtime.

READ COMMITTED therefore offers finer and more flexible control than
innodb_locks_unsafe_for_binlog.

•   READ UNCOMMITTED

SELECT statements are performed in a nonlocking fashion, but a possible earlier version of a row
might be used. Thus, using this isolation level, such reads are not consistent. This is also called a
“dirty read.” Otherwise, this isolation level works like READ COMMITTED.

•   SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements
to SELECT ... LOCK IN SHARE MODE if autocommit is disabled. If autocommit is enabled,
the SELECT is its own transaction. It therefore is known to be read only and can be serialized if
performed as a consistent (nonlocking) read and need not block for other transactions. (To force a
plain SELECT to block if other transactions have modified the selected rows, disable autocommit.)

14.8.2.2 autocommit, Commit, and Rollback

In InnoDB, all user activity occurs inside a transaction. If autocommit mode is enabled, each SQL
statement forms a single transaction on its own. By default, MySQL starts the session for each new
connection with autocommit enabled, so MySQL does a commit after each SQL statement if that
statement did not return an error. If a statement returns an error, the commit or rollback behavior
depends on the error. See Section 14.23.4, “InnoDB Error Handling”.

A session that has autocommit enabled can perform a multiple-statement transaction by starting it
with an explicit START TRANSACTION or BEGIN statement and ending it with a COMMIT or ROLLBACK
statement. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

If autocommit mode is disabled within a session with SET autocommit = 0, the session always
has a transaction open. A COMMIT or ROLLBACK statement ends the current transaction and a new one
starts.

If a session that has autocommit disabled ends without explicitly committing the final transaction,
MySQL rolls back that transaction.

Some statements implicitly end a transaction, as if you had done a COMMIT before executing the
statement. For details, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

A COMMIT means that the changes made in the current transaction are made permanent and become
visible to other sessions. A ROLLBACK statement, on the other hand, cancels all modifications made by



InnoDB Transaction Model

1609

the current transaction. Both COMMIT and ROLLBACK release all InnoDB locks that were set during the
current transaction.

Grouping DML Operations with Transactions

By default, connection to the MySQL server begins with autocommit mode enabled, which
automatically commits every SQL statement as you execute it. This mode of operation might be
unfamiliar if you have experience with other database systems, where it is standard practice to issue a
sequence of DML statements and commit them or roll them back all together.

To use multiple-statement transactions, switch autocommit off with the SQL statement SET
autocommit = 0 and end each transaction with COMMIT or ROLLBACK as appropriate. To leave
autocommit on, begin each transaction with START TRANSACTION and end it with COMMIT or
ROLLBACK. The following example shows two transactions. The first is committed; the second is rolled
back.

shell> mysql test

mysql> CREATE TABLE customer (a INT, b CHAR (20), INDEX (a))
    -> ENGINE=InnoDB;
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do a transaction with autocommit turned on.
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do another transaction with autocommit turned off.
mysql> SET autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO customer VALUES (20, 'Paul');
Query OK, 1 row affected (0.00 sec)
mysql> DELETE FROM customer WHERE b = 'Heikki';
Query OK, 1 row affected (0.00 sec)
mysql> -- Now we undo those last 2 inserts and the delete.
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM customer;
+------+--------+
| a    | b      |
+------+--------+
|   10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>

Transactions in Client-Side Languages

In APIs such as PHP, Perl DBI, JDBC, ODBC, or the standard C call interface of MySQL, you can send
transaction control statements such as COMMIT to the MySQL server as strings just like any other SQL
statements such as SELECT or INSERT. Some APIs also offer separate special transaction commit and
rollback functions or methods.

14.8.2.3 Consistent Nonlocking Reads

A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the
database at a point in time. The query sees the changes made by transactions that committed before
that point of time, and no changes made by later or uncommitted transactions. The exception to this
rule is that the query sees the changes made by earlier statements within the same transaction. This
exception causes the following anomaly: If you update some rows in a table, a SELECT sees the
latest version of the updated rows, but it might also see older versions of any rows. If other sessions



InnoDB Transaction Model

1610

simultaneously update the same table, the anomaly means that you might see the table in a state that
never existed in the database.

If the transaction isolation level is REPEATABLE READ (the default level), all consistent reads within the
same transaction read the snapshot established by the first such read in that transaction. You can get
a fresher snapshot for your queries by committing the current transaction and after that issuing new
queries.

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its
own fresh snapshot.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ
COMMITTED and REPEATABLE READ isolation levels. A consistent read does not set any locks on the
tables it accesses, and therefore other sessions are free to modify those tables at the same time a
consistent read is being performed on the table.

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a
consistent read (that is, an ordinary SELECT statement), InnoDB gives your transaction a timepoint
according to which your query sees the database. If another transaction deletes a row and commits
after your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates
are treated similarly.

Note

The snapshot of the database state applies to SELECT statements within a
transaction, not necessarily to DML statements. If you insert or modify some
rows and then commit that transaction, a DELETE or UPDATE statement issued
from another concurrent REPEATABLE READ transaction could affect those just-
committed rows, even though the session could not query them. If a transaction
does update or delete rows committed by a different transaction, those changes
do become visible to the current transaction. For example, you might encounter
a situation like the following:

SELECT COUNT(c1) FROM t1 WHERE c1 = 'xyz';
-- Returns 0: no rows match.
DELETE FROM t1 WHERE c1 = 'xyz';
-- Deletes several rows recently committed by other transaction.

SELECT COUNT(c2) FROM t1 WHERE c2 = 'abc';
-- Returns 0: no rows match.
UPDATE t1 SET c2 = 'cba' WHERE c2 = 'abc';
-- Affects 10 rows: another txn just committed 10 rows with 'abc' values.
SELECT COUNT(c2) FROM t1 WHERE c2 = 'cba';
-- Returns 10: this txn can now see the rows it just updated.

You can advance your timepoint by committing your transaction and then doing another SELECT or
START TRANSACTION WITH CONSISTENT SNAPSHOT.

This is called multi-versioned concurrency control.

In the following example, session A sees the row inserted by B only when B has committed the insert
and A has committed as well, so that the timepoint is advanced past the commit of B.

             Session A              Session B

           SET autocommit=0;      SET autocommit=0;
time
|          SELECT * FROM t;
|          empty set
|                                 INSERT INTO t VALUES (1, 2);
|
v          SELECT * FROM t;
           empty set
                                  COMMIT;



InnoDB Transaction Model

1611

           SELECT * FROM t;
           empty set

           COMMIT;

           SELECT * FROM t;
           ---------------------
           |    1    |    2    |
           ---------------------

If you want to see the “freshest” state of the database, use either the READ COMMITTED isolation level
or a locking read:

SELECT * FROM t LOCK IN SHARE MODE;

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its
own fresh snapshot. With LOCK IN SHARE MODE, a locking read occurs instead: A SELECT blocks
until the transaction containing the freshest rows ends (see Section 14.8.2.4, “Locking Reads”).

Consistent read does not work over certain DDL statements:

• Consistent read does not work over DROP TABLE, because MySQL cannot use a table that has
been dropped and InnoDB destroys the table.

• Consistent read does not work over ALTER TABLE, because that statement makes a temporary
copy of the original table and deletes the original table when the temporary copy is built. When you
reissue a consistent read within a transaction, rows in the new table are not visible because those
rows did not exist when the transaction's snapshot was taken.

The type of read varies for selects in clauses like INSERT INTO ... SELECT, UPDATE ...
(SELECT), and CREATE TABLE ... SELECT that do not specify FOR UPDATE or LOCK IN SHARE
MODE:

• By default, InnoDB uses stronger locks and the SELECT part acts like READ COMMITTED, where
each consistent read, even within the same transaction, sets and reads its own fresh snapshot.

• To use a consistent read in such cases, enable the innodb_locks_unsafe_for_binlog
option and set the isolation level of the transaction to READ UNCOMMITTED, READ COMMITTED, or
REPEATABLE READ (that is, anything other than SERIALIZABLE). In this case, no locks are set on
rows read from the selected table.

14.8.2.4 Locking Reads

If you query data and then insert or update related data within the same transaction, the regular
SELECT statement does not give enough protection. Other transactions can update or delete the same
rows you just queried. InnoDB supports two types of locking reads that offer extra safety:

• SELECT ... LOCK IN SHARE MODE

Sets a shared mode lock on any rows that are read. Other sessions can read the rows, but
cannot modify them until your transaction commits. If any of these rows were changed by another
transaction that has not yet committed, your query waits until that transaction ends and then uses the
latest values.

• SELECT ... FOR UPDATE

For index records the search encounters, locks the rows and any associated index entries, the same
as if you issued an UPDATE statement for those rows. Other transactions are blocked from updating
those rows, from doing SELECT ... LOCK IN SHARE MODE, or from reading the data in certain
transaction isolation levels. Consistent reads ignore any locks set on the records that exist in the
read view. (Old versions of a record cannot be locked; they are reconstructed by applying undo logs
on an in-memory copy of the record.)



InnoDB Transaction Model

1612

These clauses are primarily useful when dealing with tree-structured or graph-structured data, either
in a single table or split across multiple tables. You traverse edges or tree branches from one place to
another, while reserving the right to come back and change any of these “pointer” values.

All locks set by LOCK IN SHARE MODE and FOR UPDATE queries are released when the transaction
is committed or rolled back.

Note

Locking of rows for update using SELECT FOR UPDATE only applies
when autocommit is disabled (either by beginning transaction with START
TRANSACTION or by setting autocommit to 0. If autocommit is enabled, the
rows matching the specification are not locked.

Locking Read Examples

Suppose that you want to insert a new row into a table child, and make sure that the child row has
a parent row in table parent. Your application code can ensure referential integrity throughout this
sequence of operations.

First, use a consistent read to query the table PARENT and verify that the parent row exists. Can you
safely insert the child row to table CHILD? No, because some other session could delete the parent
row in the moment between your SELECT and your INSERT, without you being aware of it.

To avoid this potential issue, perform the SELECT using LOCK IN SHARE MODE:

SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;

After the LOCK IN SHARE MODE query returns the parent 'Jones', you can safely add the child
record to the CHILD table and commit the transaction. Any transaction that tries to acquire an exclusive
lock in the applicable row in the PARENT table waits until you are finished, that is, until the data in all
tables is in a consistent state.

For another example, consider an integer counter field in a table CHILD_CODES, used to assign a
unique identifier to each child added to table CHILD. Do not use either consistent read or a shared
mode read to read the present value of the counter, because two users of the database could see the
same value for the counter, and a duplicate-key error occurs if two transactions attempt to add rows
with the same identifier to the CHILD table.

Here, LOCK IN SHARE MODE is not a good solution because if two users read the counter at the same
time, at least one of them ends up in deadlock when it attempts to update the counter.

To implement reading and incrementing the counter, first perform a locking read of the counter using
FOR UPDATE, and then increment the counter. For example:

SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;

A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it
reads. Thus, it sets the same locks a searched SQL UPDATE would set on the rows.

The preceding description is merely an example of how SELECT ... FOR UPDATE works. In MySQL,
the specific task of generating a unique identifier actually can be accomplished using only a single
access to the table:

UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();

The SELECT statement merely retrieves the identifier information (specific to the current connection). It
does not access any table.



Locks Set by Different SQL Statements in InnoDB

1613

14.8.3 Locks Set by Different SQL Statements in InnoDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that
is scanned in the processing of the SQL statement. It does not matter whether there are WHERE
conditions in the statement that would exclude the row. InnoDB does not remember the exact
WHERE condition, but only knows which index ranges were scanned. The locks are normally next-
key locks that also block inserts into the “gap” immediately before the record. However, gap locking
can be disabled explicitly, which causes next-key locking not to be used. For more information, see
Section 14.8.1, “InnoDB Locking”. The transaction isolation level also can affect which locks are set;
see Section 14.8.2.1, “Transaction Isolation Levels”.

If a secondary index is used in a search and index record locks to be set are exclusive, InnoDB also
retrieves the corresponding clustered index records and sets locks on them.

Differences between shared and exclusive locks are described in Section 14.8.1, “InnoDB Locking”.

If you have no indexes suitable for your statement and MySQL must scan the entire table to process
the statement, every row of the table becomes locked, which in turn blocks all inserts by other users to
the table. It is important to create good indexes so that your queries do not unnecessarily scan many
rows.

For SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE, locks are acquired for
scanned rows, and expected to be released for rows that do not qualify for inclusion in the result set
(for example, if they do not meet the criteria given in the WHERE clause). However, in some cases,
rows might not be unlocked immediately because the relationship between a result row and its original
source is lost during query execution. For example, in a UNION, scanned (and locked) rows from a
table might be inserted into a temporary table before evaluation whether they qualify for the result set.
In this circumstance, the relationship of the rows in the temporary table to the rows in the original table
is lost and the latter rows are not unlocked until the end of query execution.

InnoDB sets specific types of locks as follows.

• SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks
unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE level, the search
sets shared next-key locks on the index records it encounters. However, only an index record lock is
required for statements that lock rows using a unique index to search for a unique row.

• SELECT ... FROM ... LOCK IN SHARE MODE sets shared next-key locks on all index records
the search encounters. However, only an index record lock is required for statements that lock rows
using a unique index to search for a unique row.

• SELECT ... FROM ... FOR UPDATE sets an exclusive next-key lock on every record the search
encounters. However, only an index record lock is required for statements that lock rows using a
unique index to search for a unique row.

For index records the search encounters, SELECT ... FROM ... FOR UPDATE blocks other
sessions from doing SELECT ... FROM ... LOCK IN SHARE MODE or from reading in certain
transaction isolation levels. Consistent reads ignore any locks set on the records that exist in the
read view.

• UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.
However, only an index record lock is required for statements that lock rows using a unique index to
search for a unique row.

• When UPDATE modifies a clustered index record, implicit locks are taken on affected secondary
index records. The UPDATE operation also takes shared locks on affected secondary index records
when performing duplicate check scans prior to inserting new secondary index records, and when
inserting new secondary index records.



Locks Set by Different SQL Statements in InnoDB

1614

• DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search
encounters. However, only an index record lock is required for statements that lock rows using a
unique index to search for a unique row.

• INSERT sets an exclusive lock on the inserted row. This lock is an index-record lock, not a next-key
lock (that is, there is no gap lock) and does not prevent other sessions from inserting into the gap
before the inserted row.

Prior to inserting the row, a type of gap lock called an insert intention gap lock is set. This lock
signals the intent to insert in such a way that multiple transactions inserting into the same index gap
need not wait for each other if they are not inserting at the same position within the gap. Suppose
that there are index records with values of 4 and 7. Separate transactions that attempt to insert
values of 5 and 6 each lock the gap between 4 and 7 with insert intention locks prior to obtaining the
exclusive lock on the inserted row, but do not block each other because the rows are nonconflicting.

If a duplicate-key error occurs, a shared lock on the duplicate index record is set. This use of a
shared lock can result in deadlock should there be multiple sessions trying to insert the same row
if another session already has an exclusive lock. This can occur if another session deletes the row.
Suppose that an InnoDB table t1 has the following structure:

CREATE TABLE t1 (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;

Now suppose that three sessions perform the following operations in order:

Session 1:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

ROLLBACK;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions
2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When
session 1 rolls back, it releases its exclusive lock on the row and the queued shared lock requests
for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an
exclusive lock for the row because of the shared lock held by the other.

A similar situation occurs if the table already contains a row with key value 1 and three sessions
perform the following operations in order:

Session 1:

START TRANSACTION;
DELETE FROM t1 WHERE i = 1;

Session 2:



Locks Set by Different SQL Statements in InnoDB

1615

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

COMMIT;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions
2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When
session 1 commits, it releases its exclusive lock on the row and the queued shared lock requests
for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an
exclusive lock for the row because of the shared lock held by the other.

• INSERT ... ON DUPLICATE KEY UPDATE differs from a simple INSERT in that an exclusive lock
rather than a shared lock is placed on the row to be updated when a duplicate-key error occurs. An
exclusive index-record lock is taken for a duplicate primary key value. An exclusive next-key lock is
taken for a duplicate unique key value.

• REPLACE is done like an INSERT if there is no collision on a unique key. Otherwise, an exclusive
next-key lock is placed on the row to be replaced.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive index record lock (without
a gap lock) on each row inserted into T. If the transaction isolation level is READ COMMITTED,
or innodb_locks_unsafe_for_binlog is enabled and the transaction isolation level is not
SERIALIZABLE, InnoDB does the search on S as a consistent read (no locks). Otherwise, InnoDB
sets shared next-key locks on rows from S. InnoDB has to set locks in the latter case: In roll-forward
recovery from a backup, every SQL statement must be executed in exactly the same way it was
done originally.

CREATE TABLE ... SELECT ... performs the SELECT with shared next-key locks or as a
consistent read, as for INSERT ... SELECT.

When a SELECT is used in the constructs REPLACE INTO t SELECT ... FROM s WHERE ...
or UPDATE t ... WHERE col IN (SELECT ... FROM s ...), InnoDB sets shared next-key
locks on rows from table s.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an
exclusive lock on the end of the index associated with the AUTO_INCREMENT column. In accessing
the auto-increment counter, InnoDB uses a specific AUTO-INC table lock mode where the lock lasts
only to the end of the current SQL statement, not to the end of the entire transaction. Other sessions
cannot insert into the table while the AUTO-INC table lock is held; see Section 14.8.2, “InnoDB
Transaction Model”.

InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting any
locks.

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the
constraint condition to be checked sets shared record-level locks on the records that it looks at to
check the constraint. InnoDB also sets these locks in the case where the constraint fails.

• LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that
sets these locks. InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and
autocommit = 0, and the MySQL layer above InnoDB knows about row-level locks.



Phantom Rows

1616

Otherwise, InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks
are involved. Also, because in this case the higher MySQL layer does not know about row-level
locks, it is possible to get a table lock on a table where another session currently has row-level locks.
However, this does not endanger transaction integrity, as discussed in Section 14.8.5.2, “Deadlock
Detection and Rollback”. See also Section 14.11.1.7, “Limits on InnoDB Tables”.

14.8.4 Phantom Rows

The so-called phantom problem occurs within a transaction when the same query produces different
sets of rows at different times. For example, if a SELECT is executed twice, but returns a row the
second time that was not returned the first time, the row is a “phantom” row.

Suppose that there is an index on the id column of the child table and that you want to read and lock
all rows from the table having an identifier value larger than 100, with the intention of updating some
column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where id is bigger than 100. Let the table
contain rows having id values of 90 and 102. If the locks set on the index records in the scanned
range do not lock out inserts made in the gaps (in this case, the gap between 90 and 102), another
session can insert a new row into the table with an id of 101. If you were to execute the same SELECT
within the same transaction, you would see a new row with an id of 101 (a “phantom”) in the result set
returned by the query. If we regard a set of rows as a data item, the new phantom child would violate
the isolation principle of transactions that a transaction should be able to run so that the data it has
read does not change during the transaction.

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row
locking with gap locking. InnoDB performs row-level locking in such a way that when it searches or
scans a table index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-
level locks are actually index-record locks. In addition, a next-key lock on an index record also affects
the “gap” before that index record. That is, a next-key lock is an index-record lock plus a gap lock on
the gap preceding the index record. If one session has a shared or exclusive lock on record R in an
index, another session cannot insert a new index record in the gap immediately before R in the index
order.

When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that
happens in the preceding example: To prevent any insert into the table where id would be bigger than
100, the locks set by InnoDB include a lock on the gap following id value 102.

You can use next-key locking to implement a uniqueness check in your application: If you read your
data in share mode and do not see a duplicate for a row you are going to insert, then you can safely
insert your row and know that the next-key lock set on the successor of your row during the read
prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you
to “lock” the nonexistence of something in your table.

Gap locking can be disabled as discussed in Section 14.8.1, “InnoDB Locking”. This may cause
phantom problems because other sessions can insert new rows into the gaps when gap locking is
disabled.

14.8.5 Deadlocks in InnoDB

A deadlock is a situation where different transactions are unable to proceed because each holds a lock
that the other needs. Because both transactions are waiting for a resource to become available, neither
ever release the locks it holds.

A deadlock can occur when transactions lock rows in multiple tables (through statements such as
UPDATE or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when



Deadlocks in InnoDB

1617

such statements lock ranges of index records and gaps, with each transaction acquiring some locks but
not others due to a timing issue. For a deadlock example, see Section 14.8.5.1, “An InnoDB Deadlock
Example”.

To reduce the possibility of deadlocks, use transactions rather than LOCK TABLES statements; keep
transactions that insert or update data small enough that they do not stay open for long periods
of time; when different transactions update multiple tables or large ranges of rows, use the same
order of operations (such as SELECT ... FOR UPDATE) in each transaction; create indexes on the
columns used in SELECT ... FOR UPDATE and UPDATE ... WHERE statements. The possibility
of deadlocks is not affected by the isolation level, because the isolation level changes the behavior
of read operations, while deadlocks occur because of write operations. For more information about
avoiding and recovering from deadlock conditions, see Section 14.8.5.3, “How to Minimize and Handle
Deadlocks”.

If a deadlock does occur, InnoDB detects the condition and rolls back one of the transactions
(the victim). Thus, even if your application logic is correct, you must still handle the case where a
transaction must be retried. To see the last deadlock in an InnoDB user transaction, use the SHOW
ENGINE INNODB STATUS command. If frequent deadlocks highlight a problem with transaction
structure or application error handling, run with the innodb_print_all_deadlocks setting enabled
to print information about all deadlocks to the mysqld error log. For more information about how
deadlocks are automatically detected and handled, see Section 14.8.5.2, “Deadlock Detection and
Rollback”.

14.8.5.1 An InnoDB Deadlock Example

The following example illustrates how an error can occur when a lock request would cause a deadlock.
The example involves two clients, A and B.

First, client A creates a table containing one row, and then begins a transaction. Within the transaction,
A obtains an S lock on the row by selecting it in share mode:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
Query OK, 0 rows affected (1.07 sec)

mysql> INSERT INTO t (i) VALUES(1);
Query OK, 1 row affected (0.09 sec)

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t WHERE i = 1 LOCK IN SHARE MODE;
+------+
| i    |
+------+
|    1 |
+------+

Next, client B begins a transaction and attempts to delete the row from the table:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> DELETE FROM t WHERE i = 1;

The delete operation requires an X lock. The lock cannot be granted because it is incompatible with the
S lock that client A holds, so the request goes on the queue of lock requests for the row and client B
blocks.

Finally, client A also attempts to delete the row from the table:

mysql> DELETE FROM t WHERE i = 1;
ERROR 1213 (40001): Deadlock found when trying to get lock;



Deadlocks in InnoDB

1618

try restarting transaction

Deadlock occurs here because client A needs an X lock to delete the row. However, that lock request
cannot be granted because client B already has a request for an X lock and is waiting for client A to
release its S lock. Nor can the S lock held by A be upgraded to an X lock because of the prior request
by B for an X lock. As a result, InnoDB generates an error for one of the clients and releases its locks.
The client returns this error:

ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

At that point, the lock request for the other client can be granted and it deletes the row from the table.

14.8.5.2 Deadlock Detection and Rollback

InnoDB automatically detects transaction deadlocks and rolls back a transaction or transactions to
break the deadlock. InnoDB tries to pick small transactions to roll back, where the size of a transaction
is determined by the number of rows inserted, updated, or deleted.

InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit
= 0, and the MySQL layer above it knows about row-level locks. Otherwise, InnoDB cannot
detect deadlocks where a table lock set by a MySQL LOCK TABLES statement or a lock set by a
storage engine other than InnoDB is involved. Resolve these situations by setting the value of the
innodb_lock_wait_timeout system variable.

When InnoDB performs a complete rollback of a transaction, all locks set by the transaction are
released. However, if just a single SQL statement is rolled back as a result of an error, some of the
locks set by the statement may be preserved. This happens because InnoDB stores row locks in a
format such that it cannot know afterward which lock was set by which statement.

If a SELECT calls a stored function in a transaction, and a statement within the function fails, that
statement rolls back. Furthermore, if ROLLBACK is executed after that, the entire transaction rolls back.

If the LATEST DETECTED DEADLOCK section of InnoDB Monitor output includes a message stating,
“TOO DEEP OR LONG SEARCH IN THE LOCK TABLE WAITS-FOR GRAPH, WE WILL ROLL
BACK FOLLOWING TRANSACTION,” this indicates that the number of transactions on the wait-for list
has reached a limit of 200. A wait-for list that exceeds 200 transactions is treated as a deadlock and
the transaction attempting to check the wait-for list is rolled back. The same error may also occur if the
locking thread must look at more than 1,000,000 locks owned by transactions on the wait-for list.

For techniques to organize database operations to avoid deadlocks, see Section 14.8.5, “Deadlocks in
InnoDB”.

14.8.5.3 How to Minimize and Handle Deadlocks

This section builds on the conceptual information about deadlocks in Section 14.8.5.2, “Deadlock
Detection and Rollback”. It explains how to organize database operations to minimize deadlocks and
the subsequent error handling required in applications.

Deadlocks are a classic problem in transactional databases, but they are not dangerous unless
they are so frequent that you cannot run certain transactions at all. Normally, you must write your
applications so that they are always prepared to re-issue a transaction if it gets rolled back because of
a deadlock.

InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions
that just insert or delete a single row. That is because these operations are not really “atomic”; they
automatically set locks on the (possibly several) index records of the row inserted or deleted.

You can cope with deadlocks and reduce the likelihood of their occurrence with the following
techniques:



InnoDB Configuration

1619

• At any time, issue the SHOW ENGINE INNODB STATUS command to determine the cause of the
most recent deadlock. That can help you to tune your application to avoid deadlocks.

• If frequent deadlock warnings cause concern, collect more extensive debugging information by
enabling the innodb_print_all_deadlocks configuration option. Information about each
deadlock, not just the latest one, is recorded in the MySQL error log. Disable this option when you
are finished debugging.

• Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dangerous.
Just try again.

• Keep transactions small and short in duration to make them less prone to collision.

• Commit transactions immediately after making a set of related changes to make them less prone
to collision. In particular, do not leave an interactive mysql session open for a long time with an
uncommitted transaction.

• If you use locking reads (SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE), try
using a lower isolation level such as READ COMMITTED.

• When modifying multiple tables within a transaction, or different sets of rows in the same table, do
those operations in a consistent order each time. Then transactions form well-defined queues and do
not deadlock. For example, organize database operations into functions within your application, or
call stored routines, rather than coding multiple similar sequences of INSERT, UPDATE, and DELETE
statements in different places.

• Add well-chosen indexes to your tables. Then your queries need to scan fewer index records and
consequently set fewer locks. Use EXPLAIN SELECT to determine which indexes the MySQL server
regards as the most appropriate for your queries.

• Use less locking. If you can afford to permit a SELECT to return data from an old snapshot, do not
add the clause FOR UPDATE or LOCK IN SHARE MODE to it. Using the READ COMMITTED isolation
level is good here, because each consistent read within the same transaction reads from its own
fresh snapshot.

• If nothing else helps, serialize your transactions with table-level locks. The correct way to use
LOCK TABLES with transactional tables, such as InnoDB tables, is to begin a transaction with SET
autocommit = 0 (not START TRANSACTION) followed by LOCK TABLES, and to not call UNLOCK
TABLES until you commit the transaction explicitly. For example, if you need to write to table t1 and
read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

Table-level locks prevent concurrent updates to the table, avoiding deadlocks at the expense of less
responsiveness for a busy system.

• Another way to serialize transactions is to create an auxiliary “semaphore” table that contains just
a single row. Have each transaction update that row before accessing other tables. In that way, all
transactions happen in a serial fashion. Note that the InnoDB instant deadlock detection algorithm
also works in this case, because the serializing lock is a row-level lock. With MySQL table-level
locks, the timeout method must be used to resolve deadlocks.

14.9 InnoDB Configuration
This section provides configuration information and procedures for InnoDB initialization, startup, and
various components and features of the InnoDB storage engine. For information about optimizing
database operations for InnoDB tables, see Section 8.5, “Optimizing for InnoDB Tables”.



InnoDB Startup Configuration

1620

14.9.1 InnoDB Startup Configuration

The first decisions to make about InnoDB configuration involve the configuration of data files, log files,
and memory buffers. It is recommended that you define data file, log file, and page size configuration
before creating the InnoDB instance. Modifying data file or log file configuration after the InnoDB
instance is created may involve a non-trivial procedure.

In addition to these topics, this section provides information about specifying InnoDB options in a
configuration file, viewing InnoDB initialization information, and important storage considerations.

• Specifying Options in a MySQL Configuration File

• Viewing InnoDB Initialization Information

• Important Storage Considerations

• System Tablespace Data File Configuration

• InnoDB Log File Configuration

• InnoDB Memory Configuration

Specifying Options in a MySQL Configuration File

Because MySQL uses data file and log file configuration settings to initialize the InnoDB instance, it is
recommended that you define these settings in a configuration file that MySQL reads at startup, prior
to initializing InnoDB for the first time. InnoDB is initialized when the MySQL server is started, and the
first initialization of InnoDB normally occurs the first time you start the MySQL server.

You can place InnoDB options in the [mysqld] group of any option file that your server reads when it
starts. The locations of MySQL option files are described in Section 4.2.6, “Using Option Files”.

To make sure that mysqld reads options only from a specific file, use the --defaults-file option
as the first option on the command line when starting the server:

mysqld --defaults-file=path_to_configuration_file

Viewing InnoDB Initialization Information

To view InnoDB initialization information during startup, start mysqld from a command prompt. When
mysqld is started from a command prompt, initialization information is printed to the console.

For example, on Windows, if mysqld is located in C:\Program Files\MySQL\MySQL Server
5.5\bin, start the MySQL server like this:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqld" --console

On Unix-like systems, mysqld is located in the bin directory of your MySQL installation:

sell> bin/mysqld --user=mysql &

If you do not send server output to the console, check the error log after startup to see the initialization
information InnoDB printed during the startup process.

For information about starting MySQL using other methods, see Section 2.10.5, “Starting and Stopping
MySQL Automatically”.

Important Storage Considerations



InnoDB Startup Configuration

1621

Review the following storage-related considerations before proceeding with your startup configuration.

• In some cases, database performance improves if the data is not all placed on the same physical
disk. Putting log files on a different disk from data is very often beneficial for performance. For
example, you can place system tablespace data files and log files on different disks. You can
also use raw disk partitions (raw devices) for InnoDB data files, which may speed up I/O. See
Section 14.10.3, “Using Raw Disk Partitions for the System Tablespace”.

• InnoDB is a transaction-safe (ACID compliant) storage engine for MySQL that has commit, rollback,
and crash-recovery capabilities to protect user data. However, it cannot do so if the underlying
operating system or hardware does not work as advertised. Many operating systems or disk
subsystems may delay or reorder write operations to improve performance. On some operating
systems, the very fsync() system call that should wait until all unwritten data for a file has been
flushed might actually return before the data has been flushed to stable storage. Because of this,
an operating system crash or a power outage may destroy recently committed data, or in the worst
case, even corrupt the database because of write operations having been reordered. If data integrity
is important to you, perform some “pull-the-plug” tests before using anything in production. On OS X
10.3 and higher, InnoDB uses a special fcntl() file flush method. Under Linux, it is advisable to
disable the write-back cache.

On ATA/SATA disk drives, a command such hdparm -W0 /dev/hda may work to disable the
write-back cache. Beware that some drives or disk controllers may be unable to disable the
write-back cache.

• With regard to InnoDB recovery capabilities that protect user data, InnoDB uses a file flush
technique involving a structure called the doublewrite buffer, which is enabled by default
(innodb_doublewrite=ON). The doublewrite buffer adds safety to recovery following a crash
or power outage, and improves performance on most varieties of Unix by reducing the need for
fsync() operations. It is recommended that the innodb_doublewrite option remains enabled
if you are concerned with data integrity or possible failures. For additional information about the
doublewrite buffer, see Section 14.15.1, “InnoDB Disk I/O”.

• Before using NFS with InnoDB, review potential issues outlined in Using NFS with MySQL.

System Tablespace Data File Configuration

System tablespace data files are configured using the innodb_data_file_path and
innodb_data_home_dir configuration options.

The innodb_data_file_path configuration option is used to configure the InnoDB system
tablespace data files. The value of innodb_data_file_path should be a list of one or more data file
specifications. If you name more than one data file, separate them by semicolon (;) characters:

innodb_data_file_path=datafile_spec1[;datafile_spec2]...

For example, the following setting explicitly creates a minimally sized system tablespace:

[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend

This setting configures a single 12MB data file named ibdata1 that is auto-extending. No location for
the file is given, so by default, InnoDB creates it in the MySQL data directory.

Sizes are specified using K, M, or G suffix letters to indicate units of KB, MB, or GB.

A tablespace containing a fixed-size 50MB data file named ibdata1 and a 50MB auto-extending file
named ibdata2 in the data directory can be configured like this:



InnoDB Startup Configuration

1622

[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The full syntax for a data file specification includes the file name, its size, and several optional
attributes:

file_name:file_size[:autoextend[:max:max_file_size]]

The autoextend and max attributes can be used only for the last data file in the
innodb_data_file_path line.

If you specify the autoextend option for the last data file, InnoDB extends the data file if it runs out
of free space in the tablespace. The increment is 64MB at a time by default. To modify the increment,
change the innodb_autoextend_increment system variable.

If the disk becomes full, you might want to add another data file on another disk. For tablespace
reconfiguration instructions, see Section 14.10.1, “Resizing the InnoDB System Tablespace”.

InnoDB is not aware of the file system maximum file size, so be cautious on file systems where the
maximum file size is a small value such as 2GB. To specify a maximum size for an auto-extending
data file, use the max attribute following the autoextend attribute. Use the max attribute only in cases
where constraining disk usage is of critical importance, because exceeding the maximum size causes a
fatal error, possibly including a crash. The following configuration permits ibdata1 to grow up to a limit
of 500MB:

[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend:max:500M

InnoDB creates tablespace files in the MySQL data directory by default (datadir). To specify a
location explicitly, use the innodb_data_home_dir option. For example, to create two files named
ibdata1 and ibdata2 in a directory named myibdata, configure InnoDB like this:

[mysqld]
innodb_data_home_dir = /path/to/myibdata/
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

Note

A trailing slash is required when specifying a value for
innodb_data_home_dir.

InnoDB does not create directories, so make sure that the myibdata directory
exists before you start the server. Use the Unix or DOS mkdir command to
create any necessary directories.

Make sure that the MySQL server has the proper access rights to create files
in the data directory. More generally, the server must have access rights in any
directory where it needs to create data files.

InnoDB forms the directory path for each data file by textually concatenating the value of
innodb_data_home_dir to the data file name. If the innodb_data_home_dir option is not
specified in my.cnf at all, the default value is the “dot” directory ./, which means the MySQL data
directory. (The MySQL server changes its current working directory to its data directory when it begins
executing.)

If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for the
data files listed in the innodb_data_file_path value. The following example is equivalent to the
preceding one:



InnoDB Startup Configuration

1623

[mysqld]
innodb_data_home_dir =
innodb_data_file_path=/path/to/myibdata/ibdata1:50M;/path/to/myibdata/ibdata2:50M:autoextend

InnoDB Log File Configuration

By default, InnoDB creates two 5MB log files in the MySQL data directory (datadir) named
ib_logfile0 and ib_logfile1.

The following options can be used to modify the default configuration:

• innodb_log_group_home_dir defines directory path to the InnoDB log files (the redo logs). If
this option is not configured, InnoDB log files are created in the MySQL data directory (datadir).

You might use this option to place InnoDB log files in a different physical storage location than
InnoDB data files to avoid potential I/O resource conflicts. For example:

[mysqld]
innodb_log_group_home_dir = /dr3/iblogs

Note

InnoDB does not create directories, so make sure that the log directory exists
before you start the server. Use the Unix or DOS mkdir command to create
any necessary directories.

Make sure that the MySQL server has the proper access rights to create files
in the log directory. More generally, the server must have access rights in any
directory where it needs to create log files.

• innodb_log_files_in_group defines the number of log files in the log group. The default and
recommended value is 2.

• innodb_log_file_size defines the size in bytes of each log file in the log group. The combined
size of log files (innodb_log_file_size * innodb_log_files_in_group) cannot exceed a
maximum value that is slightly less than 4GB. A pair of 2047 MB log files, for example, approaches
the limit but does not exceed it. The default log file size is 5MB. Generally, the combined size of
the log files should be large enough that the server can smooth out peaks and troughs in workload
activity, which often means that there is enough redo log space to handle more than an hour of write
activity. The larger the value, the less checkpoint flush activity is needed in the buffer pool, saving
disk I/O. For additional information, see Section 8.5.3, “Optimizing InnoDB Redo Logging”.

InnoDB Memory Configuration

MySQL allocates memory to various caches and buffers to improve performance of database
operations. When allocating memory for InnoDB, always consider memory required by the operating
system, memory allocated to other applications, and memory allocated for other MySQL buffers and
caches. For example, if you use MyISAM tables, consider the amount of memory allocated for the key
buffer (key_buffer_size). For an overview of MySQL buffers and caches, see Section 8.12.4.1,
“How MySQL Uses Memory”.

Buffers specific to InnoDB are configured using the following parameters:

• innodb_buffer_pool_size defines size of the buffer pool, which is the memory area
that holds cached data for InnoDB tables, indexes, and other auxiliary buffers. The size of
the buffer pool is important for system performance, and it is typically recommended that
innodb_buffer_pool_size is configured to 50 to 75 percent of system memory. The default
buffer pool size is 128MB. For additional guidance, see Section 8.12.4.1, “How MySQL Uses
Memory”. For information about how to configure InnoDB buffer pool size, see Configuring InnoDB
Buffer Pool Size. Buffer pool size can be configured at startup.

http://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool-resize.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool-resize.html


InnoDB Buffer Pool Configuration

1624

On systems with a large amount of memory, you can improve concurrency by dividing the buffer
pool into multiple buffer pool instances. The number of buffer pool instances is controlled by the
by innodb_buffer_pool_instances option. By default, InnoDB creates one buffer pool
instance. The number of buffer pool instances can be configured at startup. For more information,
see Section 14.9.2.2, “Configuring Multiple Buffer Pool Instances”.

• innodb_additional_mem_pool_size defines size in bytes of a memory pool InnoDB uses to
store data dictionary information and other internal data structures. The more tables you have in your
application, the more memory you allocate here. If InnoDB runs out of memory in this pool, it starts
to allocate memory from the operating system and writes warning messages to the MySQL error log.
The default value is 8MB.

• innodb_log_buffer_size defines the size in bytes of the buffer that InnoDB uses to write to
the log files on disk. The default size is 8MB. A large log buffer enables large transactions to run
without a need to write the log to disk before the transactions commit. If you have transactions that
update, insert, or delete many rows, you might consider increasing the size of the log buffer to save
disk I/O. innodb_log_buffer_size can be configured at startup. For related information, see
Section 8.5.3, “Optimizing InnoDB Redo Logging”.

Warning

On 32-bit GNU/Linux x86, be careful not to set memory usage too high. glibc
may permit the process heap to grow over thread stacks, which crashes your
server. It is a risk if the memory allocated to the mysqld process for global and
per-thread buffers and caches is close to or exceeds 2GB.

A formula similar to the following that calculates global and per-thread memory
allocation for MySQL can be used to estimate MySQL memory usage. You may
need to modify the formula to account for buffers and caches in your MySQL
version and configuration. For an overview of MySQL buffers and caches, see
Section 8.12.4.1, “How MySQL Uses Memory”.

innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)
+ max_connections*2MB

Each thread uses a stack (often 2MB, but only 256KB in MySQL binaries
provided by Oracle Corporation.) and in the worst case also uses
sort_buffer_size + read_buffer_size additional memory.

On Linux, if the kernel is enabled for large page support, InnoDB can use large pages to allocate
memory for its buffer pool and additional memory pool. See Section 8.12.4.2, “Enabling Large Page
Support”.

14.9.2 InnoDB Buffer Pool Configuration

This section provides configuration and tuning information for the InnoDB buffer pool.

14.9.2.1 The InnoDB Buffer Pool

InnoDB maintains a storage area called the buffer pool for caching data and indexes in memory.
Knowing how the InnoDB buffer pool works, and taking advantage of it to keep frequently accessed
data in memory, is an important aspect of MySQL tuning. For information about how the InnoDB buffer
pool works, see InnoDB Buffer Pool LRU Algorithm.

You can configure the various aspects of the InnoDB buffer pool to improve performance.

• Ideally, you set the size of the buffer pool to as large a value as practical, leaving enough memory
for other processes on the server to run without excessive paging. The larger the buffer pool,



InnoDB Buffer Pool Configuration

1625

the more InnoDB acts like an in-memory database, reading data from disk once and then
accessing the data from memory during subsequent reads. Buffer pool size is configured using the
innodb_buffer_pool_size configuration option.

• With 64-bit systems with large memory sizes, you can split the buffer pool into multiple parts, to
minimize contention for the memory structures among concurrent operations. For details, see
Section 14.9.2.2, “Configuring Multiple Buffer Pool Instances”.

• You can keep frequently accessed data in memory despite sudden spikes of activity for operations
such as backups or reporting. For details, see Section 14.9.2.3, “Making the Buffer Pool Scan
Resistant”.

• You can control when and how InnoDB performs read-ahead requests to prefetch pages into the
buffer pool asynchronously, in anticipation that the pages will be needed soon. For details, see
Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

• You can control when background flushing of dirty pages occurs and whether or not InnoDB
dynamically adjusts the rate of flushing based on workload. For details, see Section 14.9.2.5,
“Configuring InnoDB Buffer Pool Flushing”.

InnoDB Buffer Pool LRU Algorithm

InnoDB manages the buffer pool as a list, using a variation of the least recently used (LRU) algorithm.
When room is needed to add a new page to the pool, InnoDB evicts the least recently used page
and adds the new page to the middle of the list. This “midpoint insertion strategy” treats the list as two
sublists:

• At the head, a sublist of “new” (or “young”) pages that were accessed recently.

• At the tail, a sublist of “old” pages that were accessed less recently.

This algorithm keeps pages that are heavily used by queries in the new sublist. The old sublist contains
less-used pages; these pages are candidates for eviction.

The LRU algorithm operates as follows by default:

• 3/8 of the buffer pool is devoted to the old sublist.

• The midpoint of the list is the boundary where the tail of the new sublist meets the head of the old
sublist.

• When InnoDB reads a page into the buffer pool, it initially inserts it at the midpoint (the head of the
old sublist). A page can be read in because it is required for a user-specified operation such as an
SQL query, or as part of a read-ahead operation performed automatically by InnoDB.

• Accessing a page in the old sublist makes it “young”, moving it to the head of the buffer pool (the
head of the new sublist). If the page was read in because it was required, the first access occurs
immediately and the page is made young. If the page was read in due to read-ahead, the first access
does not occur immediately (and might not occur at all before the page is evicted).

• As the database operates, pages in the buffer pool that are not accessed “age” by moving toward
the tail of the list. Pages in both the new and old sublists age as other pages are made new. Pages
in the old sublist also age as pages are inserted at the midpoint. Eventually, a page that remains
unused for long enough reaches the tail of the old sublist and is evicted.

By default, pages read by queries immediately move into the new sublist, meaning they stay in
the buffer pool longer. A table scan (such as performed for a mysqldump operation, or a SELECT
statement with no WHERE clause) can bring a large amount of data into the buffer pool and evict an
equivalent amount of older data, even if the new data is never used again. Similarly, pages that are
loaded by the read-ahead background thread and then accessed only once move to the head of the
new list. These situations can push frequently used pages to the old sublist, where they become
subject to eviction. For information about optimizing this behavior, see Section 14.9.2.3, “Making the



InnoDB Buffer Pool Configuration

1626

Buffer Pool Scan Resistant”, and Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-
Ahead)”.

InnoDB Standard Monitor output contains several fields in the BUFFER POOL AND MEMORY section
that pertain to operation of the buffer pool LRU algorithm. For details, see Section 14.9.2.6, “Monitoring
the Buffer Pool Using the InnoDB Standard Monitor”.

InnoDB Buffer Pool Configuration Options

Several configuration options affect different aspects of the InnoDB buffer pool.

• innodb_buffer_pool_size

Specifies the size of the buffer pool. If the buffer pool is small and you have sufficient memory,
making the buffer pool larger can improve performance by reducing the amount of disk I/O needed
as queries access InnoDB tables.

• innodb_buffer_pool_instances

Divides the buffer pool into a user-specified number of separate regions, each with its own LRU
list and related data structures, to reduce contention during concurrent memory read and write
operations. This option only takes effect when you set innodb_buffer_pool_size to a value of
1GB or more. The total size you specify is divided among all the buffer pools. For best efficiency,
specify a combination of innodb_buffer_pool_instances and innodb_buffer_pool_size
so that each buffer pool instance is at least 1 gigabyte. See Section 14.9.2.2, “Configuring Multiple
Buffer Pool Instances” for more information.

• innodb_old_blocks_pct

Specifies the approximate percentage of the buffer pool that InnoDB uses for the old block sublist.
The range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool). See Section 14.9.2.3,
“Making the Buffer Pool Scan Resistant” for more information.

• innodb_old_blocks_time

Specifies how long in milliseconds (ms) a page inserted into the old sublist must stay there after its
first access before it can be moved to the new sublist. If the value is 0, a page inserted into the old
sublist moves immediately to the new sublist the first time it is accessed, no matter how soon after
insertion the access occurs. If the value is greater than 0, pages remain in the old sublist until an
access occurs at least that many milliseconds after the first access. For example, a value of 1000
causes pages to stay in the old sublist for 1 second after the first access before they become eligible
to move to the new sublist.

Setting innodb_old_blocks_time greater than 0 prevents one-time table scans from flooding the
new sublist with pages used only for the scan. Rows in a page read in for a scan are accessed many
times in rapid succession, but the page is unused after that. If innodb_old_blocks_time is set to
a value greater than time to process the page, the page remains in the “old” sublist and ages to the
tail of the list to be evicted quickly. This way, pages used only for a one-time scan do not act to the
detriment of heavily used pages in the new sublist.

innodb_old_blocks_time can be set at runtime, so you can change it temporarily while
performing operations such as table scans and dumps:

SET GLOBAL innodb_old_blocks_time = 1000;
... perform queries that scan tables ...
SET GLOBAL innodb_old_blocks_time = 0;

This strategy does not apply if your intent is to “warm up” the buffer pool by filling it with a table's
content. For example, benchmark tests often perform a table or index scan at server startup,
because that data would normally be in the buffer pool after a period of normal use. In this case,
leave innodb_old_blocks_time set to 0, at least until the warmup phase is complete.



InnoDB Buffer Pool Configuration

1627

See Section 14.9.2.3, “Making the Buffer Pool Scan Resistant” for more information.

• innodb_read_ahead_threshold

Controls the sensitivity of linear read-ahead that InnoDB uses to prefetch pages into the buffer pool.

See Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)” for more
information.

• innodb_random_read_ahead

Enables random read-ahead technique for prefetching pages into the buffer pool. Random read-
ahead is a technique that predicts when pages might be needed soon based on pages already in the
buffer pool, regardless of the order in which those pages were read. innodb_random_read_ahead
is disabled by default.

See Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)” for more
information.

• innodb_adaptive_flushing

Specifies whether to dynamically adjust the rate of flushing dirty pages in the buffer pool based on
workload. Adjusting the flush rate dynamically is intended to avoid bursts of I/O activity. This setting
is enabled by default.

See Section 14.9.2.5, “Configuring InnoDB Buffer Pool Flushing” for more information.

• innodb_max_dirty_pages_pct

InnoDB tries to flush data from the buffer pool so that the percentage of dirty pages does not exceed
this value. Specify an integer in the range from 0 to 99. The default value is 75.

See Section 14.9.2.5, “Configuring InnoDB Buffer Pool Flushing” for more information.

14.9.2.2 Configuring Multiple Buffer Pool Instances

For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate
instances can improve concurrency, by reducing contention as different threads read and write to
cached pages. This feature is typically intended for systems with a buffer pool size in the multi-gigabyte
range. Multiple buffer pool instances are configured using the innodb_buffer_pool_instances
configuration option, and you might also adjust the innodb_buffer_pool_size value.

When the InnoDB buffer pool is large, many data requests can be satisfied by retrieving from memory.
You might encounter bottlenecks from multiple threads trying to access the buffer pool at once. You
can enable multiple buffer pools to minimize this contention. Each page that is stored in or read from
the buffer pool is assigned to one of the buffer pools randomly, using a hashing function. Each buffer
pool manages its own free lists, flush lists, LRUs, and all other data structures connected to a buffer
pool, and is protected by its own buffer pool mutex.

To enable multiple buffer pool instances, set the innodb_buffer_pool_instances configuration
option to a value greater than 1 (the default) up to 64 (the maximum). This option takes effect
only when you set innodb_buffer_pool_size to a size of 1GB or more. The total size
you specify is divided among all the buffer pools. For best efficiency, specify a combination of
innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool
instance is at least 1GB.

14.9.2.3 Making the Buffer Pool Scan Resistant

Rather than using a strict LRU algorithm, InnoDB uses a technique to minimize the amount of data
that is brought into the buffer pool and never accessed again. The goal is to make sure that frequently



InnoDB Buffer Pool Configuration

1628

accessed (“hot”) pages remain in the buffer pool, even as read-ahead and full table scans bring in new
blocks that might or might not be accessed afterward.

Newly read blocks are inserted into the middle of the LRU list. All newly read pages are inserted at a
location that by default is 3/8 from the tail of the LRU list. The pages are moved to the front of the list
(the most-recently used end) when they are accessed in the buffer pool for the first time. Thus, pages
that are never accessed never make it to the front portion of the LRU list, and “age out” sooner than
with a strict LRU approach. This arrangement divides the LRU list into two segments, where the pages
downstream of the insertion point are considered “old” and are desirable victims for LRU eviction.

For an explanation of the inner workings of the InnoDB buffer pool and specifics about the LRU
algorithm, see Section 14.9.2.1, “The InnoDB Buffer Pool”.

You can control the insertion point in the LRU list and choose whether InnoDB applies the same
optimization to blocks brought into the buffer pool by table or index scans. The configuration parameter
innodb_old_blocks_pct controls the percentage of “old” blocks in the LRU list. The default value of
innodb_old_blocks_pct is 37, corresponding to the original fixed ratio of 3/8. The value range is 5
(new pages in the buffer pool age out very quickly) to 95 (only 5% of the buffer pool is reserved for hot
pages, making the algorithm close to the familiar LRU strategy).

The optimization that keeps the buffer pool from being churned by read-ahead can avoid
similar problems due to table or index scans. In these scans, a data page is typically accessed
a few times in quick succession and is never touched again. The configuration parameter
innodb_old_blocks_time specifies the time window (in milliseconds) after the first access to a
page during which it can be accessed without being moved to the front (most-recently used end) of the
LRU list. The default value of innodb_old_blocks_time is 0, corresponding to the original behavior
of moving a page to the most-recently used end of the buffer pool list when it is first accessed in the
buffer pool. Increasing this value makes more and more blocks likely to age out faster from the buffer
pool.

Both innodb_old_blocks_pct and innodb_old_blocks_time are dynamic, global and can be
specified in the MySQL option file (my.cnf or my.ini) or changed at runtime with the SET GLOBAL
command. Changing the setting requires the SUPER privilege.

To help you gauge the effect of setting these parameters, the SHOW ENGINE INNODB STATUS
command reports buffer pool statistics. For details, see Section 14.9.2.6, “Monitoring the Buffer Pool
Using the InnoDB Standard Monitor”.

Because the effects of these parameters can vary widely based on your hardware configuration, your
data, and the details of your workload, always benchmark to verify the effectiveness before changing
these settings in any performance-critical or production environment.

In mixed workloads where most of the activity is OLTP type with periodic batch reporting queries which
result in large scans, setting the value of innodb_old_blocks_time during the batch runs can help
keep the working set of the normal workload in the buffer pool.

When scanning large tables that cannot fit entirely in the buffer pool, setting
innodb_old_blocks_pct to a small value keeps the data that is only read once from consuming a
significant portion of the buffer pool. For example, setting innodb_old_blocks_pct=5 restricts this
data that is only read once to 5% of the buffer pool.

When scanning small tables that do fit into memory, there is less overhead for moving pages around
within the buffer pool, so you can leave innodb_old_blocks_pct at its default value, or even
higher, such as innodb_old_blocks_pct=50.

The effect of the innodb_old_blocks_time parameter is harder to predict than the
innodb_old_blocks_pct parameter, is relatively small, and varies more with the workload. To
arrive at an optimal value, conduct your own benchmarks if the performance improvement from
adjusting innodb_old_blocks_pct is not sufficient.



InnoDB Buffer Pool Configuration

1629

14.9.2.4 Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)

A read-ahead request is an I/O request to prefetch multiple pages in the buffer pool asynchronously,
in anticipation that these pages will be needed soon. The requests bring in all the pages in one extent.
InnoDB uses two read-ahead algorithms to improve I/O performance:

Linear read-ahead is a technique that predicts what pages might be needed soon based on pages
in the buffer pool being accessed sequentially. You control when InnoDB performs a read-ahead
operation by adjusting the number of sequential page accesses required to trigger an asynchronous
read request, using the configuration parameter innodb_read_ahead_threshold. Before this
parameter was added, InnoDB would only calculate whether to issue an asynchronous prefetch
request for the entire next extent when it read in the last page of the current extent.

The configuration parameter innodb_read_ahead_threshold controls how sensitive InnoDB is in
detecting patterns of sequential page access. If the number of pages read sequentially from an extent
is greater than or equal to innodb_read_ahead_threshold, InnoDB initiates an asynchronous
read-ahead operation of the entire following extent. innodb_read_ahead_threshold can be set to
any value from 0-64. The default value is 56. The higher the value, the more strict the access pattern
check. For example, if you set the value to 48, InnoDB triggers a linear read-ahead request only when
48 pages in the current extent have been accessed sequentially. If the value is 8, InnoDB triggers an
asynchronous read-ahead even if as few as 8 pages in the extent are accessed sequentially. You can
set the value of this parameter in the MySQL configuration file, or change it dynamically with the SET
GLOBAL command, which requires the SUPER privilege.

Random read-ahead is a technique that predicts when pages might be needed soon based on pages
already in the buffer pool, regardless of the order in which those pages were read. If 13 consecutive
pages from the same extent are found in the buffer pool, InnoDB asynchronously issues a request
to prefetch the remaining pages of the extent. To enable this feature, set the configuration variable
innodb_random_read_ahead to ON.

Random read-ahead functionality was removed from the InnoDB Plugin (version 1.0.4) and was
therefore not included in MySQL 5.5.0 when InnoDB Plugin became the “built-in” version of
InnoDB. Random read-ahead was reintroduced in MySQL 5.1.59 and 5.5.16 and higher along with
the innodb_random_read_ahead configuration option, which is disabled by default. To enable this
feature, set the configuration variable innodb_random_read_ahead to ON.

The SHOW ENGINE INNODB STATUS command displays statistics to help you evaluate the
effectiveness of the read-ahead algorithm. Statistics include counter information for the following global
status variables:

• Innodb_buffer_pool_read_ahead

• Innodb_buffer_pool_read_ahead_evicted

• Innodb_buffer_pool_read_ahead_rnd

This information can be useful when fine-tuning the innodb_random_read_ahead setting.

For more information about I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O” and
Section 8.12.2, “Optimizing Disk I/O”.

14.9.2.5 Configuring InnoDB Buffer Pool Flushing

InnoDB performs certain tasks in the background, including flushing of dirty pages (those pages that
have been changed but are not yet written to the database files) from the buffer pool, a task performed
by the master thread. InnoDB aggressively flushes buffer pool pages if the percentage of dirty pages in
the buffer pool exceeds innodb_max_dirty_pages_pct.

InnoDB uses an algorithm to estimate the required rate of flushing, based on the speed of redo log
generation and the current rate of flushing. The intent is to smooth overall performance by ensuring



InnoDB Buffer Pool Configuration

1630

that buffer flush activity keeps up with the need to keep the buffer pool “clean”. Automatically adjusting
the rate of flushing can help to avoid sudden dips in throughput, when excessive buffer pool flushing
limits the I/O capacity available for ordinary read and write activity.

InnoDB uses its log files in a circular fashion. Before reusing a portion of a log file, InnoDB flushes
to disk all dirty buffer pool pages whose redo entries are contained in that portion of the log file,
a process known as a sharp checkpoint. If a workload is write-intensive, it generates a lot of
redo information, all written to the log file. If all available space in the log files is used up, a sharp
checkpoint occurs, causing a temporary reduction in throughput. This situation can happen even if
innodb_max_dirty_pages_pct is not reached.

InnoDB uses a heuristic-based algorithm to avoid such a scenario, by measuring the number of dirty
pages in the buffer pool and the rate at which redo is being generated. Based on these numbers,
InnoDB decides how many dirty pages to flush from the buffer pool each second. This self-adapting
algorithm is able to deal with sudden changes in workload.

Internal benchmarking has shown that this algorithm not only maintains throughput over time, but can
also improve overall throughput significantly.

Because adaptive flushing can significantly affect the I/O pattern of a workload, the
innodb_adaptive_flushing configuration parameter lets you turn off this feature. The default
value for innodb_adaptive_flushing is ON, enabling the adaptive flushing algorithm. You can set
the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it dynamically with
the SET GLOBAL command, which requires the SUPER privilege.

For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

14.9.2.6 Monitoring the Buffer Pool Using the InnoDB Standard Monitor

InnoDB Standard Monitor output, which can be accessed using SHOW ENGINE INNODB STATUS,
provides metrics that pertain to operation of the InnoDB buffer pool. Buffer pool metrics are located in
the BUFFER POOL AND MEMORY section of InnoDB Standard Monitor output and appear similar to the
following:

----------------------
BUFFER POOL AND MEMORY
----------------------
Total memory allocated 2217738240; in additional pool allocated 0
Dictionary memory allocated 121719
Buffer pool size   131072
Free buffers       129937
Database pages     1134
Old database pages 211
Modified db pages  187
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 0, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 426, created 708, written 768
0.00 reads/s, 40.99 creates/s, 50.49 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 1134, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

The following table describes InnoDB buffer pool metrics reported by the InnoDB Standard Monitor.

Note

Per second averages provided in InnoDB Standard Monitor output are based
on the elapsed time since InnoDB Standard Monitor output was last printed.



InnoDB Buffer Pool Configuration

1631

Table 14.2 InnoDB Buffer Pool Metrics

Name Description

Total memory allocated The total memory allocated for the buffer pool in bytes.

additional pool allocated The total memory allocated for the additional pool in bytes.

Dictionary memory allocated The total memory allocated for the InnoDB data dictionary in
bytes.

Buffer pool size The total size in pages allocated to the buffer pool.

Free buffers The total size in pages of the buffer pool free list.

Database pages The total size in pages of the buffer pool LRU list.

Old database pages The total size in pages of the buffer pool old LRU sublist.

Modified db pages The current number of pages modified in the buffer pool.

Pending reads The number of buffer pool pages waiting to be read in to the
buffer pool.

Pending writes LRU The number of old dirty pages within the buffer pool to be written
from the bottom of the LRU list.

Pending writes flush list The number of buffer pool pages to be flushed during
checkpointing.

Pending writes single page The number of pending independent page writes within the buffer
pool.

Pages made young The total number of pages made young in the buffer pool LRU list
(moved to the head of sublist of “new” pages).

Pages made not young The total number of pages not made young in the buffer pool LRU
list (pages that have remained in the “old” sublist without being
made young).

youngs/s The per second average of accesses to old pages in the buffer
pool LRU list that have resulted in making pages young. See the
notes that follow this table for more information.

non-youngs/s The per second average of accesses to old pages in the buffer
pool LRU list that have resulted in not making pages young. See
the notes that follow this table for more information.

Pages read The total number of pages read from the buffer pool.

Pages created The total number of pages created within the buffer pool.

Pages written The total number of pages written from the buffer pool.

reads/s The per second average number of buffer pool page reads per
second.

creates/s The per second average number of buffer pool pages created per
second.

writes/s The per second average number of buffer pool page writes per
second.

Buffer pool hit rate The buffer pool page hit rate for pages read from the buffer pool
memory vs from disk storage.

young-making rate The average hit rate at which page accesses have resulted in
making pages young. See the notes that follow this table for more
information.

not (young-making rate) The average hit rate at which page accesses have not resulted in
making pages young. See the notes that follow this table for more
information.



Configuring the Memory Allocator for InnoDB

1632

Name Description

Pages read ahead The per second average of read ahead operations.

Pages evicted without access The per second average of the pages evicted without being
accessed from the buffer pool.

Random read ahead The per second average of random read ahead operations.

LRU len The total size in pages of the buffer pool LRU list.

unzip_LRU len The total size in pages of the buffer pool unzip_LRU list.

I/O sum The total number of buffer pool LRU list pages accessed, for the
last 50 seconds.

I/O cur The total number of buffer pool LRU list pages accessed.

I/O unzip sum The total number of buffer pool unzip_LRU list pages accessed.

I/O unzip cur The total number of buffer pool unzip_LRU list pages accessed.

Notes:

• The youngs/s metric only relates to old pages. It is based on the number of accesses to pages
and not the number of pages. There can be multiple accesses to a given page, all of which are
counted. If you see very low youngs/s values when there are no large scans occurring, you might
need to reduce the delay time or increase the percentage of the buffer pool used for the old sublist.
Increasing the percentage makes the old sublist larger, so pages in that sublist take longer to move
to the tail and to be evicted. This increases the likelihood that the pages will be accessed again and
be made young.

• The non-youngs/s metric only relates to old pages. It is based on the number of accesses to
pages and not the number of pages. There can be multiple accesses to a given page, all of which
are counted. If you do not see a lot of non-youngs/s when you are doing large table scans (and
lots of youngs/s), increase the delay value.

• The young-making rate accounts for accesses to all buffer pool pages, not just accesses to pages
in the old sublist. The young-making rate and not rate do not normally add up to the overall buffer
pool hit rate. Page hits in the old sublist cause pages to move to the new sublist, but page hits in the
new sublist cause pages to move to the head of the list only if they are a certain distance from the
head.

• not (young-making rate) is the average hit rate at which page accesses have not resulted in
making pages young due to the delay defined by innodb_old_blocks_time not being met, or
due to page hits in the new sublist that did not result in pages being moved to the head. This rate
accounts for accesses to all buffer pool pages, not just accesses to pages in the old sublist.

InnoDB buffer pool server status variables and the INNODB_BUFFER_POOL_STATS table provide
many of the same buffer pool metrics found in InnoDB Standard Monitor output. For more
information about the INNODB_BUFFER_POOL_STATS table, see Example 14.6, “Querying the
INNODB_BUFFER_POOL_STATS Table”.

14.9.3 Configuring the Memory Allocator for InnoDB

When InnoDB was developed, the memory allocators supplied with operating systems and run-time
libraries were often lacking in performance and scalability. At that time, there were no memory allocator
libraries tuned for multi-core CPUs. Therefore, InnoDB implemented its own memory allocator in the
mem subsystem. This allocator is guarded by a single mutex, which may become a bottleneck. InnoDB
also implements a wrapper interface around the system allocator (malloc and free) that is likewise
guarded by a single mutex.

Today, as multi-core systems have become more widely available, and as operating systems have
matured, significant improvements have been made in the memory allocators provided with operating



Configuring InnoDB Change Buffering

1633

systems. These new memory allocators perform better and are more scalable than they were in the
past. Most workloads, especially those where memory is frequently allocated and released (such as
multi-table joins), benefit from using a more highly tuned memory allocator as opposed to the internal,
InnoDB-specific memory allocator.

You can control whether InnoDB uses its own memory allocator or an allocator of the operating
system, by setting the value of the system configuration parameter innodb_use_sys_malloc in the
MySQL option file (my.cnf or my.ini). If set to ON or 1 (the default), InnoDB uses the malloc and
free functions of the underlying system rather than manage memory pools itself. This parameter is
not dynamic, and takes effect only when the system is started. To continue to use the InnoDB memory
allocator, set innodb_use_sys_malloc to 0.

Note

When the InnoDB memory allocator is disabled, InnoDB ignores the value of
the parameter innodb_additional_mem_pool_size. The InnoDB memory
allocator uses an additional memory pool for satisfying allocation requests
without having to fall back to the system memory allocator. When the InnoDB
memory allocator is disabled, all such allocation requests are fulfilled by the
system memory allocator.

On Unix-like systems that use dynamic linking, replacing the memory allocator
may be as easy as making the environment variable LD_PRELOAD or
LD_LIBRARY_PATH point to the dynamic library that implements the allocator.
On other systems, some relinking may be necessary. Please refer to the
documentation of the memory allocator library of your choice.

Since InnoDB cannot track all memory use when the system memory allocator
is used (innodb_use_sys_malloc is ON), the section “BUFFER POOL AND
MEMORY” in the output of the SHOW ENGINE INNODB STATUS command only
includes the buffer pool statistics in the “Total memory allocated”. Any memory
allocated using the mem subsystem or using ut_malloc is excluded.

For more information about the performance implications of InnoDB memory usage, see Section 8.10,
“Buffering and Caching”.

14.9.4 Configuring InnoDB Change Buffering

When INSERT, UPDATE, and DELETE operations are performed on a table, the values of indexed
columns (particularly the values of secondary keys) are often in an unsorted order, requiring substantial
I/O to bring secondary indexes up to date. InnoDB has a change buffer that caches changes to
secondary index entries when the relevant page is not in the buffer pool, thus avoiding expensive I/O
operations by not immediately reading in the page from disk. The buffered changes are merged when
the page is loaded to the buffer pool, and the updated page is later flushed to disk. The InnoDB main
thread merges buffered changes when the server is nearly idle, and during a slow shutdown.

Because it can result in fewer disk reads and writes, the change buffer feature is most valuable for
workloads that are I/O-bound, for example applications with a high volume of DML operations such as
bulk inserts.

However, the change buffer occupies a part of the buffer pool, reducing the memory available to
cache data pages. If the working set almost fits in the buffer pool, or if your tables have relatively few
secondary indexes, it may be useful to disable change buffering. If the working set fits entirely within
the buffer, change buffering does not impose extra overhead, because it only applies to pages that are
not in the buffer pool.

You can control the extent to which InnoDB performs change buffering using the
innodb_change_buffering configuration parameter. You can enable or disable buffering for
inserts, delete operations (when index records are initially marked for deletion) and purge operations



Configuring Thread Concurrency for InnoDB

1634

(when index records are physically deleted). An update operation is a combination of an insert and a
delete. In MySQL 5.5 and higher, the default innodb_change_buffering value is changed from
inserts to all.

Permitted innodb_change_buffering values include:

• all

The default value: buffer inserts, delete-marking operations, and purges.

• none

Do not buffer any operations.

• inserts

Buffer insert operations.

• deletes

Buffer delete-marking operations.

• changes

Buffer both inserts and delete-marking operations.

• purges

Buffer the physical deletion operations that happen in the background.

You can set the innodb_change_buffering parameter in the MySQL option file (my.cnf or
my.ini) or change it dynamically with the SET GLOBAL command, which requires the SUPER
privilege. Changing the setting affects the buffering of new operations; the merging of existing buffered
entries is not affected.

For related information, see Section 14.7.2, “Change Buffer”.

14.9.5 Configuring Thread Concurrency for InnoDB

InnoDB uses operating system threads to process requests from user transactions. (Transactions
may issue many requests to InnoDB before they commit or roll back.) On modern operating systems
and servers with multi-core processors, where context switching is efficient, most workloads run well
without any limit on the number of concurrent threads. Scalability improvements in MySQL 5.5 and up
reduce the need to limit the number of concurrently executing threads inside InnoDB.

In situations where it is helpful to minimize context switching between threads, InnoDB can use a
number of techniques to limit the number of concurrently executing operating system threads (and thus
the number of requests that are processed at any one time). When InnoDB receives a new request
from a user session, if the number of threads concurrently executing is at a pre-defined limit, the new
request sleeps for a short time before it tries again. A request that cannot be rescheduled after the
sleep is put in a first-in/first-out queue and eventually is processed. Threads waiting for locks are not
counted in the number of concurrently executing threads.

You can limit the number of concurrent threads by setting the configuration parameter
innodb_thread_concurrency. Once the number of executing threads reaches this limit,
additional threads sleep for a number of microseconds, set by the configuration parameter
innodb_thread_sleep_delay, before being placed into the queue.

The default value for innodb_thread_concurrency and the implied default limit on the number of
concurrent threads has been changed in various releases of MySQL and InnoDB. The default value of



Configuring the Number of Background InnoDB I/O Threads

1635

innodb_thread_concurrency is 0, so that by default there is no limit on the number of concurrently
executing threads, as shown in Table 14.3, “Changes to innodb_thread_concurrency”.

Table 14.3 Changes to innodb_thread_concurrency

InnoDB Version MySQL Version Default
value

Default limit
of concurrent
threads

Value to allow
unlimited
threads

Built-in Earlier than 5.1.11 20 No limit 20 or higher

Built-in 5.1.11 and newer 8 8 0

InnoDB before 1.0.3 (corresponding to
Plugin)

8 8 0

InnoDB 1.0.3 and newer (corresponding to
Plugin)

0 No limit 0

InnoDB causes threads to sleep only when the number of concurrent threads is limited. When
there is no limit on the number of threads, all contend equally to be scheduled. That is, if
innodb_thread_concurrency is 0, the value of innodb_thread_sleep_delay is ignored.

When there is a limit on the number of threads (when innodb_thread_concurrency is >
0), InnoDB reduces context switching overhead by permitting multiple requests made during
the execution of a single SQL statement to enter InnoDB without observing the limit set by
innodb_thread_concurrency. Since an SQL statement (such as a join) may comprise multiple row
operations within InnoDB, InnoDB assigns a specified number of “tickets” that allow a thread to be
scheduled repeatedly with minimal overhead.

When a new SQL statement starts, a thread has no tickets, and it must observe
innodb_thread_concurrency. Once the thread is entitled to enter InnoDB, it is assigned a number
of tickets that it can use for subsequently entering InnoDB to perform row operations. If the tickets
run out, the thread is evicted, and innodb_thread_concurrency is observed again which may
place the thread back into the first-in/first-out queue of waiting threads. When the thread is once again
entitled to enter InnoDB, tickets are assigned again. The number of tickets assigned is specified by the
global option innodb_concurrency_tickets, which is 500 by default. A thread that is waiting for a
lock is given one ticket once the lock becomes available.

The correct values of these variables depend on your environment and workload. Try a range of
different values to determine what value works for your applications. Before limiting the number of
concurrently executing threads, review configuration options that may improve the performance of
InnoDB on multi-core and multi-processor computers, such as innodb_use_sys_malloc and
innodb_adaptive_hash_index.

For general performance information about MySQL thread handling, see Section 8.12.5.1, “How
MySQL Uses Threads for Client Connections”.

14.9.6 Configuring the Number of Background InnoDB I/O Threads

InnoDB uses background threads to service various types of I/O requests. You can configure
the number of background threads that service read and write I/O on data pages using the
innodb_read_io_threads and innodb_write_io_threads configuration parameters. These
parameters signify the number of background threads used for read and write requests, respectively.
They are effective on all supported platforms. You can set values for these parameters in the MySQL
option file (my.cnf or my.ini); you cannot change values dynamically. The default value for these
parameters is 4 and permissible values range from 1-64.

These parameters replace innodb_file_io_threads from earlier versions of MySQL. If you try to
set a value for this obsolete parameter, a warning is written to the log file and the value is ignored. This
parameter only applied to Windows platforms. (On non-Windows platforms, there was only one thread
each for read and write.)



Using Asynchronous I/O on Linux

1636

The purpose of these configuration options to make InnoDB more scalable on high end systems. Each
background thread can handle up to 256 pending I/O requests. A major source of background I/O is
read-ahead requests. InnoDB tries to balance the load of incoming requests in such way that most
background threads share work equally. InnoDB also attempts to allocate read requests from the
same extent to the same thread, to increase the chances of coalescing the requests. If you have a high
end I/O subsystem and you see more than 64 × innodb_read_io_threads pending read requests
in SHOW ENGINE INNODB STATUS output, you might improve performance by increasing the value of
innodb_read_io_threads.

On Linux systems, InnoDB uses the asynchronous I/O subsystem by default to perform read-ahead
and write requests for data file pages, which changes the way that InnoDB background threads service
these types of I/O requests. For more information, see Section 14.9.7, “Using Asynchronous I/O on
Linux”.

For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

14.9.7 Using Asynchronous I/O on Linux

InnoDB uses the asynchronous I/O subsystem (native AIO) on Linux to perform readahead and
write requests for data file pages. This behavior is controlled by the innodb_use_native_aio
configuration option, which applies to Linux systems only and is enabled by default. On other Unix-
like systems, InnoDB uses synchronous I/O only. Historically, InnoDB only used asynchronous I/O on
Windows systems. Using the asynchronous I/O subsystem on Linux requires the libaio library.

With synchronous I/O, query threads queue I/O requests, and InnoDB background threads retrieve
the queued requests one at a time, issuing a synchronous I/O call for each. When an I/O request
is completed and the I/O call returns, the InnoDB background thread that is handling the request
calls an I/O completion routine and returns to process the next request. The number of requests
that can be processed in parallel is n, where n is the number of InnoDB background threads.
The number of InnoDB background threads is controlled by innodb_read_io_threads and
innodb_write_io_threads. See Section 14.9.6, “Configuring the Number of Background InnoDB I/
O Threads”.

With native AIO, query threads dispatch I/O requests directly to the operating system, thereby
removing the limit imposed by the number of background threads. InnoDB background threads wait for
I/O events to signal completed requests. When a request is completed, a background thread calls an I/
O completion routine and resumes waiting for I/O events.

The advantage of native AIO is scalability for heavily I/O-bound systems that typically show many
pending reads/writes in SHOW ENGINE INNODB STATUS\G output. The increase in parallel
processing when using native AIO means that the type of I/O scheduler or properties of the disk array
controller have a greater influence on I/O performance.

A potential disadvantage of native AIO for heavily I/O-bound systems is lack of control over the
number of I/O write requests dispatched to the operating system at once. Too many I/O write requests
dispatched to the operating system for parallel processing could, in some cases, result in I/O read
starvation, depending on the amount of I/O activity and system capabilities.

If a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from starting, you can
start the server with innodb_use_native_aio=0. This option may also be disabled automatically
during startup if InnoDB detects a potential problem such as a combination of tmpdir location, tmpfs
file system, and Linux kernel that does not support asynchronous I/O on tmpfs.

14.9.8 Configuring the InnoDB Master Thread I/O Rate

The master thread in InnoDB is a thread that performs various tasks in the background. Most of these
tasks are I/O related, such as flushing dirty pages from the buffer pool or writing changes from the
insert buffer to the appropriate secondary indexes. The master thread attempts to perform these tasks



Configuring Spin Lock Polling

1637

in a way that does not adversely affect the normal working of the server. It tries to estimate the free I/O
bandwidth available and tune its activities to take advantage of this free capacity. Historically, InnoDB
has used a hard coded value of 100 IOPs (input/output operations per second) as the total I/O capacity
of the server.

The parameter innodb_io_capacity indicates the overall I/O capacity available to InnoDB. This
parameter should be set to approximately the number of I/O operations that the system can perform
per second. The value depends on your system configuration. When innodb_io_capacity is set,
the master threads estimates the I/O bandwidth available for background tasks based on the set value.
Setting the value to 100 reverts to the old behavior.

You can set the value of innodb_io_capacity to any number 100 or greater. The default value
is 200, reflecting that the performance of typical modern I/O devices is higher than in the early days
of MySQL. Typically, values around the previous default of 100 are appropriate for consumer-level
storage devices, such as hard drives up to 7200 RPMs. Faster hard drives, RAID configurations, and
SSDs benefit from higher values.

The innodb_io_capacity setting is a total limit for all buffer pool instances. When dirty pages are
flushed, the innodb_io_capacity limit is divided equally among buffer pool instances. For more
information, see the innodb_io_capacity system variable description.

You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it
dynamically with the SET GLOBAL command, which requires the SUPER privilege.

For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

14.9.9 Configuring Spin Lock Polling

Many InnoDB mutexes and rw-locks are reserved for a short time. On a multi-core system, it can
be more efficient for a thread to continuously check if it can acquire a mutex or rw-lock for a while
before sleeping. If the mutex or rw-lock becomes available during this polling period, the thread can
continue immediately, in the same time slice. However, too-frequent polling by multiple threads of a
shared object can cause “cache ping pong”, different processors invalidating portions of each others'
cache. InnoDB minimizes this issue by waiting a random time between subsequent polls. The delay is
implemented as a busy loop.

You can control the maximum delay between testing a mutex or rw-lock using the parameter
innodb_spin_wait_delay. The duration of the delay loop depends on the C compiler and the target
processor. (In the 100MHz Pentium era, the unit of delay was one microsecond.) On a system where
all processor cores share a fast cache memory, you might reduce the maximum delay or disable the
busy loop altogether by setting innodb_spin_wait_delay=0. On a system with multiple processor
chips, the effect of cache invalidation can be more significant and you might increase the maximum
delay.

The default value of innodb_spin_wait_delay is 6. The spin wait delay is a dynamic, global
parameter that you can specify in the MySQL option file (my.cnf or my.ini) or change at runtime
with the command SET GLOBAL innodb_spin_wait_delay=delay, where delay is the desired
maximum delay. Changing the setting requires the SUPER privilege.

For performance considerations for InnoDB locking operations, see Section 8.11, “Optimizing Locking
Operations”.

14.9.10 Configuring InnoDB Purge Scheduling

Starting in MySQL 5.5, the purge operations (a type of garbage collection) that InnoDB performs
automatically can be done in a separate thread rather than as part of the master thread. This change
improves scalability by allowing the main database operations to run independently from maintenance
work happening in the background.



Configuring Optimizer Statistics for InnoDB

1638

To enable this feature, set the configuration option innodb_purge_threads to 1, as opposed to the
default of 0, which combines the purge operation into the master thread. innodb_purge_threads is
a non-dynamic configuration option, which means it cannot be configured at runtime.

You might not notice a significant speedup, because the purge thread might encounter new types of
contention; the single purge thread really lays the groundwork for further tuning and possibly multiple
purge threads in the future. There is another new configuration option, innodb_purge_batch_size
with a default value of 20 and maximum value of 5000. This option is mainly intended for
experimentation and tuning of purge operations, and should not be interesting to typical users.

For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

14.9.11 Configuring Optimizer Statistics for InnoDB

The MySQL query optimizer uses estimated statistics about key distributions to choose the indexes
for an execution plan, based on the relative selectivity of the index. Certain operations cause InnoDB
to sample random pages from each index on a table to estimate the cardinality of the index. (This
technique is known as random dives.) These operations include the ANALYZE TABLE statement, the
SHOW TABLE STATUS statement, and accessing the table for the first time after a restart.

To give you control over the quality of the statistics estimate (and thus better information for
the query optimizer), you can now change the number of sampled pages using the parameter
innodb_stats_sample_pages. Previously, the number of sampled pages was always 8, which
could be insufficient to produce an accurate estimate, leading to poor index choices by the query
optimizer. This technique is especially important for large tables and tables used in joins. Unnecessary
full table scans for such tables can be a substantial performance issue.

You can set the global parameter innodb_stats_sample_pages, at runtime. The default value for
this parameter is 8, preserving the same behavior as in past releases.

Note

The value of innodb_stats_sample_pages affects the index sampling for all
tables and indexes. There are the following potentially significant impacts when
you change the index sample size:

• Small values like 1 or 2 can result in very inaccurate estimates of cardinality.

• Increasing the innodb_stats_sample_pages value might require more
disk reads. Values much larger than 8 (say, 100), can cause a big slowdown
in the time it takes to open a table or execute SHOW TABLE STATUS.

• The optimizer might choose very different query plans based on different
estimates of index selectivity.

To disable the cardinality estimation for metadata statements such as SHOW TABLE
STATUS or SHOW INDEX, or when accessing the INFORMATION_SCHEMA.TABLES or
INFORMATION_SCHEMA.STATISTICS tables, execute the statement SET GLOBAL
innodb_stats_on_metadata=OFF. The ability to set this option dynamically is also relatively new.

All InnoDB tables are opened, and the statistics are re-estimated for all associated indexes, when the
mysql client starts with the --auto-rehash setting on (the default). To improve the start up time
of the mysql client, you can turn auto-rehash off using the --disable-auto-rehash option. The
auto-rehash feature enables automatic name completion of database, table, and column names for
interactive users.

Whatever value of innodb_stats_sample_pages works best for a system, set the option and
leave it at that value. Choose a value that results in reasonably accurate estimates for all tables in
your database without requiring excessive I/O. Because the statistics are automatically recalculated
at various times other than on execution of ANALYZE TABLE, it does not make sense to increase



InnoDB Tablespaces

1639

the index sample size, run ANALYZE TABLE, then decrease sample size again. The more accurate
statistics calculated by ANALYZE running with a high value of innodb_stats_sample_pages can be
wiped away later.

Although it is not possible to specify the sample size on a per-table basis, smaller tables generally
require fewer index samples than larger tables do. If your database has many large tables, consider
using a higher value for innodb_stats_sample_pages than if you have mostly smaller tables.

14.9.11.1 Estimating ANALYZE TABLE Complexity for InnoDB Tables

ANALYZE TABLE complexity for InnoDB tables is dependent on:

• The number of pages sampled, as defined by innodb_stats_sample_pages.

• The number of indexed columns in a table

• The number of partitions. If a table has no partitions, the number of partitions is considered to be 1.

Using these parameters, an approximate formula for estimating ANALYZE TABLE complexity would be:

innodb_stats_sample_pages * number of indexed columns in a table * number of partitions

Typically, the greater the resulting value, the greater the execution time for ANALYZE TABLE.

For more information about the innodb_stats_sample_pages configuration parameter, see
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”.

14.10 InnoDB Tablespaces

This section covers topics related to InnoDB tablespaces.

14.10.1 Resizing the InnoDB System Tablespace

This section describes how to increase or decrease the size of the InnoDB system tablespace.

Increasing the Size of the InnoDB System Tablespace

The easiest way to increase the size of the InnoDB system tablespace is to configure it from
the beginning to be auto-extending. Specify the autoextend attribute for the last data file in
the tablespace definition. Then InnoDB increases the size of that file automatically in 8MB
increments when it runs out of space. The increment size can be changed by setting the value of the
innodb_autoextend_increment system variable, which is measured in megabytes.

You can expand the system tablespace by a defined amount by adding another data file:

1. Shut down the MySQL server.

2. If the previous last data file is defined with the keyword autoextend, change its definition to use a
fixed size, based on how large it has actually grown. Check the size of the data file, round it down
to the closest multiple of 1024 × 1024 bytes (= 1MB), and specify this rounded size explicitly in
innodb_data_file_path.

3. Add a new data file to the end of innodb_data_file_path, optionally making that file auto-
extending. Only the last data file in the innodb_data_file_path can be specified as auto-
extending.

4. Start the MySQL server again.

For example, this tablespace has just one auto-extending data file ibdata1:



Changing the Number or Size of InnoDB Redo Log Files

1640

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend

Suppose that this data file, over time, has grown to 988MB. Here is the configuration line after
modifying the original data file to use a fixed size and adding a new auto-extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When you add a new data file to the system tablespace configuration, make sure that the filename
does not refer to an existing file. InnoDB creates and initializes the file when you restart the server.

Decreasing the Size of the InnoDB System Tablespace

You cannot remove a data file from the system tablespace. To decrease the system tablespace size,
use this procedure:

1. Use mysqldump to dump all your InnoDB tables.

2. Stop the server.

3. Remove all the existing tablespace files, including the ibdata and ib_log files. If you want to
keep a backup copy of the information, then copy all the ib* files to another location before the
removing the files in your MySQL installation.

4. Remove any .frm files for InnoDB tables.

5. Configure a new tablespace.

6. Restart the server.

7. Import the dump files.

14.10.2 Changing the Number or Size of InnoDB Redo Log Files

To change the number or the size of your InnoDB redo log files, perform the following steps:

1. If innodb_fast_shutdown is set to 2, set innodb_fast_shutdown to 1:

mysql> SET GLOBAL innodb_fast_shutdown = 1;

2. After ensuring that innodb_fast_shutdown is not set to 2, stop the MySQL server and make
sure that it shuts down without errors (to ensure that there is no information for outstanding
transactions in the log).

3. Copy the old log files into a safe place in case something went wrong during the shutdown and you
need them to recover the tablespace.

4. Delete the old log files from the log file directory.

5. Edit my.cnf to change the log file configuration.

6. Start the MySQL server again. mysqld sees that no InnoDB log files exist at startup and creates
new ones.

14.10.3 Using Raw Disk Partitions for the System Tablespace

You can use raw disk partitions as data files in the InnoDB system tablespace. This technique
enables nonbuffered I/O on Windows and on some Linux and Unix systems without file system



Using Raw Disk Partitions for the System Tablespace

1641

overhead. Perform tests with and without raw partitions to verify whether this change actually improves
performance on your system.

When you use a raw disk partition, ensure that the user ID that runs the MySQL server has read and
write privileges for that partition. For example, if you run the server as the mysql user, the partition
must be readable and writeable by mysql. If you run the server with the --memlock option, the server
must be run as root, so the partition must be readable and writeable by root.

The procedures described below involve option file modification. For additional information, see
Section 4.2.6, “Using Option Files”.

Allocating a Raw Disk Partition on Linux and Unix Systems

1. When you create a new data file, specify the keyword newraw immediately after the data file size
for the innodb_data_file_path option. The partition must be at least as large as the size that
you specify. Note that 1MB in InnoDB is 1024 × 1024 bytes, whereas 1MB in disk specifications
usually means 1,000,000 bytes.

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw

2. Restart the server. InnoDB notices the newraw keyword and initializes the new partition. However,
do not create or change any InnoDB tables yet. Otherwise, when you next restart the server,
InnoDB reinitializes the partition and your changes are lost. (As a safety measure InnoDB prevents
users from modifying data when any partition with newraw is specified.)

3. After InnoDB has initialized the new partition, stop the server, change newraw in the data file
specification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Graw;/dev/hdd2:2Graw

4. Restart the server. InnoDB now permits changes to be made.

Allocating a Raw Disk Partition on Windows

On Windows systems, the same steps and accompanying guidelines described for Linux and Unix
systems apply except that the innodb_data_file_path setting differs slightly on Windows.

1. When you create a new data file, specify the keyword newraw immediately after the data file size
for the innodb_data_file_path option:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Gnewraw

The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives. In the
example above, D: is the drive letter of the partition.

2. Restart the server. InnoDB notices the newraw keyword and initializes the new partition.

3. After InnoDB has initialized the new partition, stop the server, change newraw in the data file
specification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Graw

4. Restart the server. InnoDB now permits changes to be made.



InnoDB File-Per-Table Tablespaces

1642

14.10.4 InnoDB File-Per-Table Tablespaces

By default, all InnoDB tables and indexes are stored in the system tablespace. As an alternative, you
can store each InnoDB table and associated indexes in its own data file. This feature is called “file-per-
table tablespaces” because each table has its own tablespace, and each tablespace has its own .ibd
data file. This feature is controlled by the innodb_file_per_table configuration option.

Advantages of File-Per-Table Tablespaces

• You can reclaim disk space when truncating or dropping a table stored in a file-per-table tablepace.
Truncating or dropping tables stored in the shared system tablespace creates free space internally in
the system tablespace data files (ibdata files) which can only be used for new InnoDB data.

Similarly, a table-copying ALTER TABLE operation on table that resides in a shared tablespace
can increase the amount of space used by the tablespace. Such operations may require as much
additional space as the data in the table plus indexes. The additional space required for the table-
copying ALTER TABLE operation is not released back to the operating system as it is for file-per-
table tablespaces.

• The TRUNCATE TABLE operation is faster when run on tables stored in file-per-table tablepaces.

• You can store specific tables on separate storage devices, for I/O optimization, space management,
or backup purposes.

• You can run OPTIMIZE TABLE to compact or recreate a file-per-table tablespace. When you run an
OPTIMIZE TABLE, InnoDB creates a new .ibd file with a temporary name, using only the space
required to store actual data. When the optimization is complete, InnoDB removes the old .ibd file
and replaces it with the new one. If the previous .ibd file grew significantly but the actual data only
accounted for a portion of its size, running OPTIMIZE TABLE can reclaim the unused space.

• You can move individual InnoDB tables rather than entire databases.

• Tables created in file-per-table tablespaces use the Barracuda file format. The Barracuda file format
enables features such as compressed and dynamic row formats. Tables created in the system
tablespace cannot use these features. To take advantage of these features for an existing table,
enable the innodb_file_per_table setting and run ALTER TABLE t ENGINE=INNODB to
place the table in a file-per-table tablespace. Before converting tables, refer to Section 14.11.1.4,
“Converting Tables from MyISAM to InnoDB”.

• You can enable more efficient storage for tables with large BLOB or TEXT columns using the dynamic
row format.

• File-per-table tablespaces may improve chances for a successful recovery and save time when
a corruption occurs, when a server cannot be restarted, or when backup and binary logs are
unavailable.

• You can back up or restore individual tables quickly using the MySQL Enterprise Backup product,
without interrupting the use of other InnoDB tables. This is beneficial if you have tables that require
backup less frequently or on a different backup schedule. See Partial Backup and Restore Options
for details.

• File-per-table tablespaces are convenient for per-table status reporting when copying or backing up
tables.

• You can monitor table size at a file system level, without accessing MySQL.

• Common Linux file systems do not permit concurrent writes to a single file when
innodb_flush_method is set to O_DIRECT. As a result, there are possible
performance improvements when using innodb_file_per_table in conjunction with
innodb_flush_method.

http://dev.mysql.com/doc/mysql-enterprise-backup/3.12/en/backup-partial-options.html


InnoDB File-Per-Table Tablespaces

1643

• The system tablespace stores the InnoDB data dictionary and undo logs, and has a 64TB size limit.
By comparison, each file-per-table tablespace has a 64TB size limit, which provides room for growth.
See Section 14.11.1.7, “Limits on InnoDB Tables” for related information.

Potential Disadvantages of File-Per-Table Tablespaces

• With file-per-table tablespaces, each table may have unused space, which can only be utilized by
rows of the same table. This could lead to wasted space if not properly managed.

• fsync operations must run on each open table rather than on a single file. Because there is a
separate fsync operation for each file, write operations on multiple tables cannot be combined
into a single I/O operation. This may require InnoDB to perform a higher total number of fsync
operations.

• mysqld must keep one open file handle per table, which may impact performance if you have
numerous tables in file-per-table tablespaces.

• More file descriptors are used.

• If backward compatibility with MySQL 5.1 is a concern, be aware that enabling
innodb_file_per_table means that an ALTER TABLE operation can move an InnoDB table
from the system tablespace to an individual .ibd file in cases where ALTER TABLE recreates the
table (ALTER OFFLINE).

For example, when restructuring the clustered index for an InnoDB table, the table is re-created
using the current setting for innodb_file_per_table. This behavior does not apply when
adding or dropping InnoDB secondary indexes. When a secondary index is created without
rebuilding the table, the index is stored in the same file as the table data, regardless of the current
innodb_file_per_table setting.

• If many tables are growing there is potential for more fragmentation which can impede DROP TABLE
and table scan performance. However, when fragmentation is managed, having files in their own
tablespace can improve performance.

• The buffer pool is scanned when dropping a file-per-table tablespace, which can take several
seconds for buffer pools that are tens of gigabytes in size. The scan is performed with a broad
internal lock, which may delay other operations. Tables in the system tablespace are not affected.

• The innodb_autoextend_increment variable, which defines increment size (in MB)
for extending the size of an auto-extending shared tablespace file when it becomes full,
does not apply to file-per-table tablespace files, which are auto-extending regardless of the
innodb_autoextend_increment setting. The initial extensions are by small amounts, after which
extensions occur in increments of 4MB.

Enabling and Disabling File-Per-Table Tablespaces

To enable file-per-table tablespaces, start the server with the --innodb_file_per_table option.
For example, add a line to the [mysqld] section of my.cnf:

[mysqld]
innodb_file_per_table=1

With innodb_file_per_table enabled, InnoDB stores each newly created table into its own
tbl_name.ibd file in the database directory where the table belongs. This is similar to what the
MyISAM storage engine does, but MyISAM divides the table into a tbl_name.MYD data file and an
tbl_name.MYI index file. For InnoDB, the data and the indexes are stored together in the .ibd file.
The tbl_name.frm file is still created as usual.

If you remove the innodb_file_per_table line from my.cnf and restart the server, newly created
InnoDB tables are created inside the shared tablespace files again.



InnoDB File-Per-Table Tablespaces

1644

To move a table from the system tablespace to its own tablespace, change the
innodb_file_per_table setting and rebuild the table:

SET GLOBAL innodb_file_per_table=1;
ALTER TABLE table_name ENGINE=InnoDB;

Note

InnoDB requires the shared tablespace to store its internal data dictionary and
undo logs. The .ibd files alone are not sufficient for InnoDB to operate.

When a table is moved out of the system tablespace into its own .ibd file, the
data files that make up the system tablespace remain the same size. The space
formerly occupied by the table can be reused for new InnoDB data, but is not
reclaimed for use by the operating system. When moving large InnoDB tables
out of the system tablespace, where disk space is limited, you might prefer to
turn on innodb_file_per_table and then recreate the entire instance using
the mysqldump command.

Portability Considerations for .ibd Files

You cannot freely move .ibd files between database directories as you can with MyISAM table
files. The table definition stored in the InnoDB shared tablespace includes the database name.
The transaction IDs and log sequence numbers stored in the tablespace files also differ between
databases.

To move an .ibd file and the associated table from one database to another, use a RENAME TABLE
statement:

RENAME TABLE db1.tbl_name TO db2.tbl_name;

If you have a “clean” backup of an .ibd file, you can restore it to the MySQL installation from which it
originated as follows:

1. The table must not have been dropped or truncated since you copied the .ibd file, because doing
so changes the table ID stored inside the tablespace.

2. Issue this ALTER TABLE statement to delete the current .ibd file:

ALTER TABLE tbl_name DISCARD TABLESPACE;

3. Copy the backup .ibd file to the proper database directory.

4. Issue this ALTER TABLE statement to tell InnoDB to use the new .ibd file for the table:

ALTER TABLE tbl_name IMPORT TABLESPACE;

In this context, a “clean” .ibd file backup is one for which the following requirements are satisfied:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged change buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

You can make a clean backup .ibd file using the following method:

1. Stop all activity from the mysqld server and commit all transactions.



InnoDB Tables and Indexes

1645

2. Wait until SHOW ENGINE INNODB STATUS shows that there are no active transactions in the
database, and the main thread status of InnoDB is Waiting for server activity. Then you
can make a copy of the .ibd file.

Another method for making a clean copy of an .ibd file is to use the MySQL Enterprise Backup
product:

1. Use MySQL Enterprise Backup to back up the InnoDB installation.

2. Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.

14.10.4.1 Enabling and Disabling File-Per-Table Tablespaces

To make file-per-table tablespaces the default for a MySQL server, start the server with the --
innodb_file_per_table command-line option, or add this line to the [mysqld] section of
my.cnf:

[mysqld]
innodb_file_per_table

You can also issue the command while the server is running:

SET GLOBAL innodb_file_per_table=1;

With innodb-file-per-table enabled, InnoDB stores each newly created table in its own
tbl_name.ibd file in the appropriate database directory. Unlike the MyISAM storage engine, with its
separate tbl_name.MYD and tbl_name.MYI files for indexes and data, InnoDB stores the data and
the indexes together in a single .ibd file. The tbl_name.frm file is still created as usual.

If you remove innodb_file_per_table from your startup options and restart the server, or turn it off
with the SET GLOBAL command, InnoDB creates any new tables inside the system tablespace.

You can always read and write any InnoDB tables, regardless of the file-per-table setting.

To move a table from the system tablespace to its own tablespace, change the
innodb_file_per_table setting and rebuild the table:

SET GLOBAL innodb_file_per_table=1;
ALTER TABLE table_name ENGINE=InnoDB;

Note

InnoDB always needs the system tablespace because it puts its internal data
dictionary and undo logs there. The .ibd files are not sufficient for InnoDB to
operate.

When a table is moved out of the system tablespace into its own .ibd file, the
data files that make up the system tablespace remain the same size. The space
formerly occupied by the table can be reused for new InnoDB data, but is not
reclaimed for use by the operating system. When moving large InnoDB tables
out of the system tablespace, where disk space is limited, you might prefer to
turn on innodb_file_per_table and then recreate the entire instance using
the mysqldump command.

14.11 InnoDB Tables and Indexes

This section covers topics related to InnoDB tables and indexes.

14.11.1 InnoDB Tables



InnoDB Tables

1646

This section covers topics related to InnoDB tables.

14.11.1.1 Creating InnoDB Tables

To create an InnoDB table, use the CREATE TABLE statement.

CREATE TABLE t1 (a INT, b CHAR (20), PRIMARY KEY (a)) ENGINE=InnoDB;

You do not need to specify the ENGINE=InnoDB clause if InnoDB is defined as the default storage
engine, which it is by default. To check the default storage engine, issue the following statement:

mysql> SELECT @@default_storage_engine;
+--------------------------+
| @@default_storage_engine |
+--------------------------+
| InnoDB                   |
+--------------------------+

You might still use ENGINE=InnoDB clause if you plan to use mysqldump or replication to replay the
CREATE TABLE statement on a server where the default storage engine is not InnoDB.

An InnoDB table and its indexes can be created in the system tablespace or in a file-per-table
tablespace. When innodb_file_per_table is enabled, an InnoDB table is implicitly created in
an individual file-per-table tablespace. Conversely, when innodb_file_per_table is disabled, an
InnoDB table is implicitly created in the InnoDB system tablespace.

When you create an InnoDB table, MySQL creates a .frm file in the database directory under the
MySQL data directory. For more information about .frm files, see InnoDB Tables and .frm Files. For a
table created in a file-per-table tablespace, MySQL also creates an .ibd tablespace file in the database
directory. A table created in the InnoDBsystem tablespace is created in an existing ibdata file, which
resides in the MySQL data directory.

Internally, InnoDB adds an entry for each table to the InnoDB data dictionary. The entry includes the
database name. For example, if table t1 is created in the test database, the data dictionary entry
for the database name is 'test/t1'. This means you can create a table of the same name (t1) in a
different database, and the table names do not collide inside InnoDB.

InnoDB Tables and .frm Files

MySQL stores data dictionary information for tables in .frm files in database directories. Unlike other
MySQL storage engines, InnoDB also encodes information about the table in its own internal data
dictionary inside the system tablespace. When MySQL drops a table or a database, it deletes one or
more .frm files as well as the corresponding entries inside the InnoDB data dictionary. You cannot
move InnoDB tables between databases simply by moving the .frm files. For information about
moving InnoDB tables, see Section 14.11.1.3, “Moving or Copying InnoDB Tables”.

InnoDB Tables and Row Formats

The default row format of an InnoDB table is Compact. Although this row format is fine for basic
experimentation, consider using the Dynamic or Compressed row format to take advantage
of InnoDB features such as table compression and efficient off-page storage of long column
values. Using these row formats requires that innodb_file_per_table is enabled and that
innodb_file_format is set to Barracuda:

SET GLOBAL innodb_file_per_table=1;
SET GLOBAL innodb_file_format=barracuda;
CREATE TABLE t3 (a INT, b CHAR (20), PRIMARY KEY (a)) ROW_FORMAT=DYNAMIC;
CREATE TABLE t4 (a INT, b CHAR (20), PRIMARY KEY (a)) ROW_FORMAT=COMPRESSED;



InnoDB Tables

1647

For more information about InnoDB row formats, see Section 14.14, “InnoDB Row Storage and Row
Formats”. For how to determine the row format of an InnoDB table and the physical characteristics of
InnoDB row formats, see Section 14.11.1.2, “The Physical Row Structure of an InnoDB Table”.

InnoDB Tables and Primary Keys

Always define a primary key for an InnoDB table, specifying the column or columns that:

• Are referenced by the most important queries.

• Are never left blank.

• Never have duplicate values.

• Rarely if ever change value once inserted.

For example, in a table containing information about people, you would not create a primary key on
(firstname, lastname) because more than one person can have the same name, some people
have blank last names, and sometimes people change their names. With so many constraints, often
there is not an obvious set of columns to use as a primary key, so you create a new column with a
numeric ID to serve as all or part of the primary key. You can declare an auto-increment column so that
ascending values are filled in automatically as rows are inserted:

-- The value of ID can act like a pointer between related items in different tables.
CREATE TABLE t5 (id INT AUTO_INCREMENT, b CHAR (20), PRIMARY KEY (id));

-- The primary key can consist of more than one column. Any autoinc column must come first.
CREATE TABLE t6 (id INT AUTO_INCREMENT, a INT, b CHAR (20), PRIMARY KEY (id,a));

Although the table works correctly without defining a primary key, the primary key is involved with
many aspects of performance and is a crucial design aspect for any large or frequently used table. It
is recommended that you always specify a primary key in the CREATE TABLE statement. If you create
the table, load data, and then run ALTER TABLE to add a primary key later, that operation is much
slower than defining the primary key when creating the table.

Viewing InnoDB Table Properties

To view the properties of an InnoDB table, issue a SHOW TABLE STATUS statement:

mysql> SHOW TABLE STATUS FROM test LIKE 't%' \G;
*************************** 1. row ***************************
           Name: t1
         Engine: InnoDB
        Version: 10
     Row_format: Compact
           Rows: 0
 Avg_row_length: 0
    Data_length: 16384
Max_data_length: 0
   Index_length: 0
      Data_free: 41943040
 Auto_increment: NULL
    Create_time: 2015-03-16 16:42:17
    Update_time: NULL
     Check_time: NULL
      Collation: latin1_swedish_ci
       Checksum: NULL
 Create_options:
        Comment:
1 row in set (0.00 sec)

For information about SHOW TABLE STATUS output, see Section 13.7.5.37, “SHOW TABLE STATUS
Syntax”.

14.11.1.2 The Physical Row Structure of an InnoDB Table



InnoDB Tables

1648

The physical row structure of an InnoDB table depends on the row format specified when the table
is created. If a row format is not specified, the default row format is used. The default InnoDB row
format is COMPACT. When innodb_file_per_table is enabled and innodb_file_format is
set to Barracuda, you can use DYNAMIC and COMPRESSED row formats. For more information, see
Section 14.14, “InnoDB Row Storage and Row Formats”.

The following sections describe the characteristics of InnoDB row formats.

• Determining the Row Format of an InnoDB Table

• Redundant Row Format Characteristics

• COMPACT Row Format Characteristics

• DYNAMIC and COMPRESSED Row Format Characteristics

For more information about InnoDB row formats, see Section 14.14, “InnoDB Row Storage and Row
Formats”.

Determining the Row Format of an InnoDB Table

To check the row format of an InnoDB table, use SHOW TABLE STATUS. For example:

mysql> SHOW TABLE STATUS IN test1\G
*************************** 1. row ***************************
           Name: t1
         Engine: InnoDB
        Version: 10
     Row_format: Compact
           Rows: 0
 Avg_row_length: 0
    Data_length: 16384
Max_data_length: 0
   Index_length: 16384
      Data_free: 0
 Auto_increment: 1
    Create_time: 2014-10-31 16:02:01
    Update_time: NULL
     Check_time: NULL
      Collation: latin1_swedish_ci
       Checksum: NULL
 Create_options:
        Comment:

Redundant Row Format Characteristics

The REDUNDANT format is available to retain compatibility with older versions of MySQL.

Rows in InnoDB tables that use REDUNDANT row format have the following characteristics:

• Each index record contains a 6-byte header. The header is used to link together consecutive
records, and also in row-level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-
byte transaction ID field and a 7-byte roll pointer field.

• If no primary key was defined for a table, each clustered index record also contains a 6-byte row ID
field.

• Each secondary index record also contains all the primary key fields defined for the clustered index
key that are not in the secondary index.

• A record contains a pointer to each field of the record. If the total length of the fields in a record is
less than 128 bytes, the pointer is one byte; otherwise, two bytes. The array of these pointers is
called the record directory. The area where these pointers point is called the data part of the record.



InnoDB Tables

1649

• Internally, InnoDB stores fixed-length character columns such as CHAR(10) in a fixed-length format.
InnoDB does not truncate trailing spaces from VARCHAR columns.

• InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length
fields, which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the
maximum byte length of the character set is greater than 3, as it is with utf8mb4.

• An SQL NULL value reserves one or two bytes in the record directory. Besides that, an SQL NULL
value reserves zero bytes in the data part of the record if stored in a variable length column. In
a fixed-length column, it reserves the fixed length of the column in the data part of the record.
Reserving the fixed space for NULL values enables an update of the column from NULL to a
non-NULL value to be done in place without causing fragmentation of the index page.

COMPACT Row Format Characteristics

The COMPACT row format decreases row storage space by about 20% compared to the REDUNDANT
format at the cost of increasing CPU use for some operations. If your workload is a typical one that is
limited by cache hit rates and disk speed, COMPACT format is likely to be faster. If the workload is a rare
case that is limited by CPU speed, compact format might be slower.

Rows in InnoDB tables that use COMPACT row format have the following characteristics:

• Each index record contains a 5-byte header that may be preceded by a variable-length header. The
header is used to link together consecutive records, and also in row-level locking.

• The variable-length part of the record header contains a bit vector for indicating NULL columns. If the
number of columns in the index that can be NULL is N, the bit vector occupies CEILING(N/8) bytes.
(For example, if there are anywhere from 9 to 15 columns that can be NULL, the bit vector uses two
bytes.) Columns that are NULL do not occupy space other than the bit in this vector. The variable-
length part of the header also contains the lengths of variable-length columns. Each length takes one
or two bytes, depending on the maximum length of the column. If all columns in the index are NOT
NULL and have a fixed length, the record header has no variable-length part.

• For each non-NULL variable-length field, the record header contains the length of the column in
one or two bytes. Two bytes are only needed if part of the column is stored externally in overflow
pages or the maximum length exceeds 255 bytes and the actual length exceeds 127 bytes. For an
externally stored column, the 2-byte length indicates the length of the internally stored part plus the
20-byte pointer to the externally stored part. The internal part is 768 bytes, so the length is 768+20.
The 20-byte pointer stores the true length of the column.

• The record header is followed by the data contents of the non-NULL columns.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-
byte transaction ID field and a 7-byte roll pointer field.

• If no primary key was defined for a table, each clustered index record also contains a 6-byte row ID
field.

• Each secondary index record also contains all the primary key fields defined for the clustered index
key that are not in the secondary index. If any of these primary key fields are variable length, the
record header for each secondary index has a variable-length part to record their lengths, even if the
secondary index is defined on fixed-length columns.

• Internally, for nonvariable-length character sets, InnoDB stores fixed-length character columns such
as CHAR(10) in a fixed-length format.

InnoDB does not truncate trailing spaces from VARCHAR columns.

• Internally, for variable-length character sets such as utf8mb3 and utf8mb4, InnoDB attempts to
store CHAR(N) in N bytes by trimming trailing spaces. If the byte length of a CHAR(N) column value
exceeds N bytes, InnoDB trims trailing spaces to a minimum of the column value byte length. The
maximum length of a CHAR(N) column is the maximum character byte length × N.



InnoDB Tables

1650

InnoDB reserves a minimum of N bytes for CHAR(N). Reserving the minimum space N in many
cases enables column updates to be done in place without causing fragmentation of the index page.
By comparison, for ROW_FORMAT=REDUNDANT, CHAR(N) columns occupy the maximum character
byte length × N.

InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length
fields, which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the
maximum byte length of the character set is greater than 3, as it is with utf8mb4.

ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPRESSED handle CHAR storage in the same way as
ROW_FORMAT=COMPACT.

DYNAMIC and COMPRESSED Row Format Characteristics

DYNAMIC and COMPRESSED row formats are variations of the COMPACT row format. For information
about these row formats, see Section 14.14.3, “DYNAMIC and COMPRESSED Row Formats”.

14.11.1.3 Moving or Copying InnoDB Tables

This section describes techniques for moving or copying some or all InnoDB tables to a different
server or instance. For example, you might move an entire MySQL instance to a larger, faster server;
you might clone an entire MySQL instance to a new replication slave server; you might copy individual
tables to another instance to develop and test an application, or to a data warehouse server to produce
reports.

On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and
tables using lowercase names. A convenient way to accomplish this is to add the following line to the
[mysqld] section of your my.cnf or my.ini file before creating any databases or tables:

[mysqld]
lower_case_table_names=1

Techniques for moving or copying InnoDB tables include:

• Copying Data Files (Cold Backup Method)

• Export and Import (mysqldump)

Copying Data Files (Cold Backup Method)

You can move an InnoDB database simply by copying all the relevant files listed under "Cold Backups"
in Section 14.21.1, “InnoDB Backup”.

Like MyISAM data files, InnoDB data and log files are binary-compatible on all platforms having the
same floating-point number format. If the floating-point formats differ but you have not used FLOAT or
DOUBLE data types in your tables, then the procedure is the same: simply copy the relevant files.

Export and Import (mysqldump)

You can use mysqldump to dump your tables on one machine and then import the dump files on the
other machine. Using this method, it does not matter whether the formats differ or if your tables contain
floating-point data.

One way to increase the performance of this method is to switch off autocommit mode when importing
data, assuming that the tablespace has enough space for the big rollback segment that the import
transactions generate. Do the commit only after importing a whole table or a segment of a table.

14.11.1.4 Converting Tables from MyISAM to InnoDB



InnoDB Tables

1651

If you have MyISAM tables that you want to convert to InnoDB for better reliability and scalability,
review the following guidelines and tips before converting.

• Adjusting Memory Usage for MyISAM and InnoDB

• Handling Too-Long Or Too-Short Transactions

• Handling Deadlocks

• Planning the Storage Layout

• Converting an Existing Table

• Cloning the Structure of a Table

• Transferring Existing Data

• Storage Requirements

• Defining a PRIMARY KEY for Each Table

• Application Performance Considerations

• Understanding Files Associated with InnoDB Tables

Adjusting Memory Usage for MyISAM and InnoDB

As you transition away from MyISAM tables, lower the value of the key_buffer_size
configuration option to free memory no longer needed for caching results. Increase the value of the
innodb_buffer_pool_size configuration option, which performs a similar role of allocating cache
memory for InnoDB tables. The InnoDB buffer pool caches both table data and index data, speeding
up lookups for queries and keeping query results in memory for reuse. For guidance regarding buffer
pool size configuration, see Section 8.12.4.1, “How MySQL Uses Memory”.

On a busy server, run benchmarks with the query cache turned off. The InnoDB buffer pool provides
similar benefits, so the query cache might be tying up memory unnecessarily. For information about the
query cache, see Section 8.10.3, “The MySQL Query Cache”.

Handling Too-Long Or Too-Short Transactions

Because MyISAM tables do not support transactions, you might not have paid much attention to the
autocommit configuration option and the COMMIT and ROLLBACK statements. These keywords are
important to allow multiple sessions to read and write InnoDB tables concurrently, providing substantial
scalability benefits in write-heavy workloads.

While a transaction is open, the system keeps a snapshot of the data as seen at the beginning of the
transaction, which can cause substantial overhead if the system inserts, updates, and deletes millions
of rows while a stray transaction keeps running. Thus, take care to avoid transactions that run for too
long:

• If you are using a mysql session for interactive experiments, always COMMIT (to finalize the
changes) or ROLLBACK (to undo the changes) when finished. Close down interactive sessions
rather than leave them open for long periods, to avoid keeping transactions open for long periods by
accident.

• Make sure that any error handlers in your application also ROLLBACK incomplete changes or
COMMIT completed changes.

• ROLLBACK is a relatively expensive operation, because INSERT, UPDATE, and DELETE operations
are written to InnoDB tables prior to the COMMIT, with the expectation that most changes are



InnoDB Tables

1652

committed successfully and rollbacks are rare. When experimenting with large volumes of data,
avoid making changes to large numbers of rows and then rolling back those changes.

• When loading large volumes of data with a sequence of INSERT statements, periodically COMMIT
the results to avoid having transactions that last for hours. In typical load operations for data
warehousing, if something goes wrong, you truncate the table (using TRUNCATE TABLE) and start
over from the beginning rather than doing a ROLLBACK.

The preceding tips save memory and disk space that can be wasted during too-long transactions.
When transactions are shorter than they should be, the problem is excessive I/O. With each COMMIT,
MySQL makes sure each change is safely recorded to disk, which involves some I/O.

• For most operations on InnoDB tables, you should use the setting autocommit=0. From an
efficiency perspective, this avoids unnecessary I/O when you issue large numbers of consecutive
INSERT, UPDATE, or DELETE statements. From a safety perspective, this allows you to issue a
ROLLBACK statement to recover lost or garbled data if you make a mistake on the mysql command
line, or in an exception handler in your application.

• The time when autocommit=1 is suitable for InnoDB tables is when running a sequence of queries
for generating reports or analyzing statistics. In this situation, there is no I/O penalty related to
COMMIT or ROLLBACK, and InnoDB can automatically optimize the read-only workload.

• If you make a series of related changes, finalize all the changes at once with a single COMMIT at
the end. For example, if you insert related pieces of information into several tables, do a single
COMMIT after making all the changes. Or if you run many consecutive INSERT statements, do a
single COMMIT after all the data is loaded; if you are doing millions of INSERT statements, perhaps
split up the huge transaction by issuing a COMMIT every ten thousand or hundred thousand records,
so the transaction does not grow too large.

• Remember that even a SELECT statement opens a transaction, so after running some report or
debugging queries in an interactive mysql session, either issue a COMMIT or close the mysql
session.

Handling Deadlocks

You might see warning messages referring to “deadlocks” in the MySQL error log, or the output of
SHOW ENGINE INNODB STATUS. Despite the scary-sounding name, a deadlock is not a serious
issue for InnoDB tables, and often does not require any corrective action. When two transactions start
modifying multiple tables, accessing the tables in a different order, they can reach a state where each
transaction is waiting for the other and neither can proceed. MySQL immediately detects this condition
and cancels (rolls back) the “smaller” transaction, allowing the other to proceed.

Your applications do need error-handling logic to restart a transaction that is forcibly cancelled like this.
When you re-issue the same SQL statements as before, the original timing issue no longer applies.
Either the other transaction has already finished and yours can proceed, or the other transaction is still
in progress and your transaction waits until it finishes.

If deadlock warnings occur constantly, you might review the application code to reorder the SQL
operations in a consistent way, or to shorten the transactions.

For more information, see Section 14.8.5, “Deadlocks in InnoDB”.

Planning the Storage Layout

To get the best performance from InnoDB tables, you can adjust a number of parameters related to
storage layout.

When you convert MyISAM tables that are large, frequently accessed, and hold vital data, investigate
and consider the innodb_file_per_table and innodb_file_format configuration options, and
the ROW_FORMAT and KEY_BLOCK_SIZE clauses of the CREATE TABLE statement.

http://dev.mysql.com/doc/refman/5.6/en/innodb-performance-ro-txn.html


InnoDB Tables

1653

During your initial experiments, the most important setting is innodb_file_per_table. When this
setting is enabled, new InnoDB tables are implicitly created in file-per-table tablespaces. In contrast
with the InnoDB system tablespace, file-per-table tablespaces allow disk space to be reclaimed by
the operating system when a table is truncated or dropped. File-per-table tablespaces also support the
Barracuda file format and associated features such as table compression and efficient off-page storage
for long variable-length columns. For more information, see Section 14.10.4, “InnoDB File-Per-Table
Tablespaces”.

Converting an Existing Table

To convert a non-InnoDB table to use InnoDB use ALTER TABLE:

ALTER TABLE table_name ENGINE=InnoDB;

Important

Do not convert MySQL system tables in the mysql database (such as user or
host) to the InnoDB type. This is an unsupported operation. The system tables
must always be of the MyISAM type.

Cloning the Structure of a Table

You might make an InnoDB table that is a clone of a MyISAM table, rather than using ALTER TABLE
to perform conversion, to test the old and new table side-by-side before switching.

Create an empty InnoDB table with identical column and index definitions. Use SHOW CREATE TABLE
table_name\G to see the full CREATE TABLE statement to use. Change the ENGINE clause to
ENGINE=INNODB.

Transferring Existing Data

To transfer a large volume of data into an empty InnoDB table created as shown in the previous
section, insert the rows with INSERT INTO innodb_table SELECT * FROM myisam_table
ORDER BY primary_key_columns.

You can also create the indexes for the InnoDB table after inserting the data. Historically, creating new
secondary indexes was a slow operation for InnoDB, but now you can create the indexes after the data
is loaded with relatively little overhead from the index creation step.

If you have UNIQUE constraints on secondary keys, you can speed up a table import by turning off the
uniqueness checks temporarily during the import operation:

SET unique_checks=0;
... import operation ...
SET unique_checks=1;

For big tables, this saves disk I/O because InnoDB can use its change buffer to write secondary index
records as a batch. Be certain that the data contains no duplicate keys. unique_checks permits but
does not require storage engines to ignore duplicate keys.

For better control over the insertion process, you can insert big tables in pieces:

INSERT INTO newtable SELECT * FROM oldtable
   WHERE yourkey > something AND yourkey <= somethingelse;

After all records are inserted, you can rename the tables.

During the conversion of big tables, increase the size of the InnoDB buffer pool to reduce disk I/O, to a
maximum of 80% of physical memory. You can also increase the size of InnoDB log files.



InnoDB Tables

1654

Storage Requirements

If you intend to make several temporary copies of your data in InnoDB tables during the conversion
process, it is recommended that you create the tables in file-per-table tablespaces so that you can
reclaim the disk space when you drop the tables. When the innodb_file_per_table configuration
option is enabled (the default), newly created InnoDB tables are implicitly created in file-per-table
tablespaces.

Whether you convert the MyISAM table directly or create a cloned InnoDB table, make sure that you
have sufficient disk space to hold both the old and new tables during the process. InnoDB tables
require more disk space than MyISAM tables. If an ALTER TABLE operation runs out of space, it
starts a rollback, and that can take hours if it is disk-bound. For inserts, InnoDB uses the insert buffer
to merge secondary index records to indexes in batches. That saves a lot of disk I/O. For rollback, no
such mechanism is used, and the rollback can take 30 times longer than the insertion.

In the case of a runaway rollback, if you do not have valuable data in your database, it may be
advisable to kill the database process rather than wait for millions of disk I/O operations to complete.
For the complete procedure, see Section 14.23.2, “Forcing InnoDB Recovery”.

Defining a PRIMARY KEY for Each Table

The PRIMARY KEY clause is a critical factor affecting the performance of MySQL queries and the
space usage for tables and indexes. The primary key uniquely identifies a row in a table. Every row in
the table must have a primary key value, and no two rows can have the same primary key value.

These are guidelines for the primary key, followed by more detailed explanations.

• Declare a PRIMARY KEY for each table. Typically, it is the most important column that you refer to in
WHERE clauses when looking up a single row.

• Declare the PRIMARY KEY clause in the original CREATE TABLE statement, rather than adding it
later through an ALTER TABLE statement.

• Choose the column and its data type carefully. Prefer numeric columns over character or string ones.

• Consider using an auto-increment column if there is not another stable, unique, non-null, numeric
column to use.

• An auto-increment column is also a good choice if there is any doubt whether the value of the
primary key column could ever change. Changing the value of a primary key column is an expensive
operation, possibly involving rearranging data within the table and within each secondary index.

Consider adding a primary key to any table that does not already have one. Use the smallest practical
numeric type based on the maximum projected size of the table. This can make each row slightly more
compact, which can yield substantial space savings for large tables. The space savings are multiplied
if the table has any secondary indexes, because the primary key value is repeated in each secondary
index entry. In addition to reducing data size on disk, a small primary key also lets more data fit into the
buffer pool, speeding up all kinds of operations and improving concurrency.

If the table already has a primary key on some longer column, such as a VARCHAR, consider adding a
new unsigned AUTO_INCREMENT column and switching the primary key to that, even if that column is
not referenced in queries. This design change can produce substantial space savings in the secondary
indexes. You can designate the former primary key columns as UNIQUE NOT NULL to enforce the
same constraints as the PRIMARY KEY clause, that is, to prevent duplicate or null values across all
those columns.

If you spread related information across multiple tables, typically each table uses the same column for
its primary key. For example, a personnel database might have several tables, each with a primary
key of employee number. A sales database might have some tables with a primary key of customer
number, and other tables with a primary key of order number. Because lookups using the primary key
are very fast, you can construct efficient join queries for such tables.



InnoDB Tables

1655

If you leave the PRIMARY KEY clause out entirely, MySQL creates an invisible one for you. It is a 6-
byte value that might be longer than you need, thus wasting space. Because it is hidden, you cannot
refer to it in queries.

Application Performance Considerations

The reliability and scalability features of InnoDB require more disk storage than equivalent MyISAM
tables. You might change the column and index definitions slightly, for better space utilization, reduced
I/O and memory consumption when processing result sets, and better query optimization plans making
efficient use of index lookups.

If you do set up a numeric ID column for the primary key, use that value to cross-reference with related
values in any other tables, particularly for join queries. For example, rather than accepting a country
name as input and doing queries searching for the same name, do one lookup to determine the country
ID, then do other queries (or a single join query) to look up relevant information across several tables.
Rather than storing a customer or catalog item number as a string of digits, potentially using up several
bytes, convert it to a numeric ID for storing and querying. A 4-byte unsigned INT column can index
over 4 billion items (with the US meaning of billion: 1000 million). For the ranges of the different integer
types, see Section 11.2.1, “Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT”.

Understanding Files Associated with InnoDB Tables

InnoDB files require more care and planning than MyISAM files do.

• You must not delete the ibdata files that represent the InnoDB system tablespace.

• Methods of moving or copying InnoDB tables to a different server are described in
Section 14.11.1.3, “Moving or Copying InnoDB Tables”.

14.11.1.5 AUTO_INCREMENT Handling in InnoDB

InnoDB provides a configurable locking mechanism that can significantly improve scalability and
performance of SQL statements that add rows to tables with AUTO_INCREMENT columns. To use
the AUTO_INCREMENT mechanism with an InnoDB table, an AUTO_INCREMENT column must be
defined as part of an index such that it is possible to perform the equivalent of an indexed SELECT
MAX(ai_col) lookup on the table to obtain the maximum column value. Typically, this is achieved by
making the column the first column of some table index.

This section describes the behavior of AUTO_INCREMENT lock modes, usage implications for different
AUTO_INCREMENT lock mode settings, and how InnoDB initializes the AUTO_INCREMENT counter.

• InnoDB AUTO_INCREMENT Lock Modes

• InnoDB AUTO_INCREMENT Lock Mode Usage Implications

• InnoDB AUTO_INCREMENT Counter Initialization

InnoDB AUTO_INCREMENT Lock Modes

This section describes the behavior of AUTO_INCREMENT lock modes used to generate auto-increment
values, and how each lock mode affects replication. Auto-increment lock modes are configured at
startup using the innodb_autoinc_lock_mode configuration parameter.

The following terms are used in describing innodb_autoinc_lock_mode settings:

• “INSERT-like” statements

All statements that generate new rows in a table, including INSERT, INSERT ... SELECT,
REPLACE, REPLACE ... SELECT, and LOAD DATA. Includes “simple-inserts”, “bulk-inserts”, and
“mixed-mode” inserts.

• “Simple inserts”



InnoDB Tables

1656

Statements for which the number of rows to be inserted can be determined in advance (when the
statement is initially processed). This includes single-row and multiple-row INSERT and REPLACE
statements that do not have a nested subquery, but not INSERT ... ON DUPLICATE KEY
UPDATE.

• “Bulk inserts”

Statements for which the number of rows to be inserted (and the number of required auto-
increment values) is not known in advance. This includes INSERT ... SELECT, REPLACE ...
SELECT, and LOAD DATA statements, but not plain INSERT. InnoDB assigns new values for the
AUTO_INCREMENT column one at a time as each row is processed.

• “Mixed-mode inserts”

These are “simple insert” statements that specify the auto-increment value for some (but not all) of
the new rows. An example follows, where c1 is an AUTO_INCREMENT column of table t1:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

Another type of “mixed-mode insert” is INSERT ... ON DUPLICATE KEY UPDATE, which in
the worst case is in effect an INSERT followed by a UPDATE, where the allocated value for the
AUTO_INCREMENT column may or may not be used during the update phase.

There are three possible settings for the innodb_autoinc_lock_mode configuration parameter. The
settings are 0, 1, or 2, for “traditional”, “consecutive”, or “interleaved” lock mode, respectively.

• innodb_autoinc_lock_mode = 0 (“traditional” lock mode)

The traditional lock mode provides the same behavior that existed before the
innodb_autoinc_lock_mode configuration parameter was introduced in MySQL 5.1. The
traditional lock mode option is provided for backward compatibility, performance testing, and working
around issues with “mixed-mode inserts”, due to possible differences in semantics.

In this lock mode, all “INSERT-like” statements obtain a special table-level AUTO-INC lock for inserts
into tables with AUTO_INCREMENT columns. This lock is normally held to the end of the statement
(not to the end of the transaction) to ensure that auto-increment values are assigned in a predictable
and repeatable order for a given sequence of INSERT statements, and to ensure that auto-increment
values assigned by any given statement are consecutive.

In the case of statement-based replication, this means that when an SQL statement is replicated on
a slave server, the same values are used for the auto-increment column as on the master server.
The result of execution of multiple INSERT statements is deterministic, and the slave reproduces
the same data as on the master. If auto-increment values generated by multiple INSERT statements
were interleaved, the result of two concurrent INSERT statements would be nondeterministic, and
could not reliably be propagated to a slave server using statement-based replication.

To make this clear, consider an example that uses this table:

CREATE TABLE t1 (
  c1 INT(11) NOT NULL AUTO_INCREMENT,
  c2 VARCHAR(10) DEFAULT NULL,
  PRIMARY KEY (c1)
) ENGINE=InnoDB;

Suppose that there are two transactions running, each inserting rows into a table with an
AUTO_INCREMENT column. One transaction is using an INSERT ... SELECT statement that
inserts 1000 rows, and another is using a simple INSERT statement that inserts one row:

Tx1: INSERT INTO t1 (c2) SELECT 1000 rows from another table ...



InnoDB Tables

1657

Tx2: INSERT INTO t1 (c2) VALUES ('xxx');

InnoDB cannot tell in advance how many rows are retrieved from the SELECT in the INSERT
statement in Tx1, and it assigns the auto-increment values one at a time as the statement proceeds.
With a table-level lock, held to the end of the statement, only one INSERT statement referring
to table t1 can execute at a time, and the generation of auto-increment numbers by different
statements is not interleaved. The auto-increment value generated by the Tx1 INSERT ...
SELECT statement is consecutive, and the (single) auto-increment value used by the INSERT
statement in Tx2 is either be smaller or larger than all those used for Tx1, depending on which
statement executes first.

As long as the SQL statements execute in the same order when replayed from the binary log (when
using statement-based replication, or in recovery scenarios), the results are the same as they were
when Tx1 and Tx2 first ran. Thus, table-level locks held until the end of a statement make INSERT
statements using auto-increment safe for use with statement-based replication. However, those
table-level locks limit concurrency and scalability when multiple transactions are executing insert
statements at the same time.

In the preceding example, if there were no table-level lock, the value of the auto-increment column
used for the INSERT in Tx2 depends on precisely when the statement executes. If the INSERT of
Tx2 executes while the INSERT of Tx1 is running (rather than before it starts or after it completes),
the specific auto-increment values assigned by the two INSERT statements are nondeterministic,
and may vary from run to run.

Under the consecutive lock mode, InnoDB can avoid using table-level AUTO-INC locks for “simple
insert” statements where the number of rows is known in advance, and still preserve deterministic
execution and safety for statement-based replication.

If you are not using the binary log to replay SQL statements as part of recovery or replication, the
interleaved lock mode can be used to eliminate all use of table-level AUTO-INC locks for even
greater concurrency and performance, at the cost of permitting gaps in auto-increment numbers
assigned by a statement and potentially having the numbers assigned by concurrently executing
statements interleaved.

• innodb_autoinc_lock_mode = 1 (“consecutive” lock mode)

This is the default lock mode. In this mode, “bulk inserts” use the special AUTO-INC table-level lock
and hold it until the end of the statement. This applies to all INSERT ... SELECT, REPLACE ...
SELECT, and LOAD DATA statements. Only one statement holding the AUTO-INC lock can execute
at a time. If the source table of the bulk insert operation is different from the target table, the AUTO-
INC lock on the target table is taken after a shared lock is taken on the first row selected from the
source table. If the source and target of the bulk insert operation are the same table, the AUTO-INC
lock is taken after shared locks are taken on all selected rows.

“Simple inserts” (for which the number of rows to be inserted is known in advance) avoid table-level
AUTO-INC locks by obtaining the required number of auto-increment values under the control of a
mutex (a light-weight lock) that is only held for the duration of the allocation process, not until the
statement completes. No table-level AUTO-INC lock is used unless an AUTO-INC lock is held by
another transaction. If another transaction holds an AUTO-INC lock, a “simple insert” waits for the
AUTO-INC lock, as if it were a “bulk insert”.

This lock mode ensures that, in the presence of INSERT statements where the number of rows is not
known in advance (and where auto-increment numbers are assigned as the statement progresses),
all auto-increment values assigned by any “INSERT-like” statement are consecutive, and operations
are safe for statement-based replication.

Simply put, this lock mode significantly improves scalability while being safe for use with statement-
based replication. Further, as with “traditional” lock mode, auto-increment numbers assigned by any
given statement are consecutive. There is no change in semantics compared to “traditional” mode for
any statement that uses auto-increment, with one important exception.



InnoDB Tables

1658

The exception is for “mixed-mode inserts”, where the user provides explicit values for an
AUTO_INCREMENT column for some, but not all, rows in a multiple-row “simple insert”. For such
inserts, InnoDB allocates more auto-increment values than the number of rows to be inserted.
However, all values automatically assigned are consecutively generated (and thus higher than)
the auto-increment value generated by the most recently executed previous statement. “Excess”
numbers are lost.

• innodb_autoinc_lock_mode = 2 (“interleaved” lock mode)

In this lock mode, no “INSERT-like” statements use the table-level AUTO-INC lock, and multiple
statements can execute at the same time. This is the fastest and most scalable lock mode, but it is
not safe when using statement-based replication or recovery scenarios when SQL statements are
replayed from the binary log.

In this lock mode, auto-increment values are guaranteed to be unique and monotonically increasing
across all concurrently executing “INSERT-like” statements. However, because multiple statements
can be generating numbers at the same time (that is, allocation of numbers is interleaved across
statements), the values generated for the rows inserted by any given statement may not be
consecutive.

If the only statements executing are “simple inserts” where the number of rows to be inserted is
known ahead of time, there are no gaps in the numbers generated for a single statement, except for
“mixed-mode inserts”. However, when “bulk inserts” are executed, there may be gaps in the auto-
increment values assigned by any given statement.

InnoDB AUTO_INCREMENT Lock Mode Usage Implications

• Using auto-increment with replication

If you are using statement-based replication, set innodb_autoinc_lock_mode to 0 or 1 and use
the same value on the master and its slaves. Auto-increment values are not ensured to be the same
on the slaves as on the master if you use innodb_autoinc_lock_mode = 2 (“interleaved”) or
configurations where the master and slaves do not use the same lock mode.

If you are using row-based or mixed-format replication, all of the auto-increment lock modes are safe,
since row-based replication is not sensitive to the order of execution of the SQL statements (and the
mixed format uses row-based replication for any statements that are unsafe for statement-based
replication).

• “Lost” auto-increment values and sequence gaps

In all lock modes (0, 1, and 2), if a transaction that generated auto-increment values rolls back, those
auto-increment values are “lost”. Once a value is generated for an auto-increment column, it cannot
be rolled back, whether or not the “INSERT-like” statement is completed, and whether or not the
containing transaction is rolled back. Such lost values are not reused. Thus, there may be gaps in
the values stored in an AUTO_INCREMENT column of a table.

• Specifying NULL or 0 for the AUTO_INCREMENT column

In all lock modes (0, 1, and 2), if a user specifies NULL or 0 for the AUTO_INCREMENT column in an
INSERT, InnoDB treats the row as if the value was not specified and generates a new value for it.

• Assigning a negative value to the AUTO_INCREMENT column

In all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is not defined if you
assign a negative value to the AUTO_INCREMENT column.

• If the AUTO_INCREMENT value becomes larger than the maximum integer for the specified integer
type



InnoDB Tables

1659

In all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is not defined if the
value becomes larger than the maximum integer that can be stored in the specified integer type.

• Gaps in auto-increment values for “bulk inserts”

With innodb_autoinc_lock_mode set to 0 (“traditional”) or 1 (“consecutive”), the auto-increment
values generated by any given statement are consecutive, without gaps, because the table-level
AUTO-INC lock is held until the end of the statement, and only one such statement can execute at a
time.

With innodb_autoinc_lock_mode set to 2 (“interleaved”), there may be gaps in the auto-
increment values generated by “bulk inserts,” but only if there are concurrently executing “INSERT-
like” statements.

For lock modes 1 or 2, gaps may occur between successive statements because for bulk inserts
the exact number of auto-increment values required by each statement may not be known and
overestimation is possible.

• Auto-increment values assigned by “mixed-mode inserts”

Consider a “mixed-mode insert,” where a “simple insert” specifies the auto-increment value for
some (but not all) resulting rows. Such a statement behaves differently in lock modes 0, 1, and 2.
For example, assume c1 is an AUTO_INCREMENT column of table t1, and that the most recent
automatically generated sequence number is 100.

mysql> CREATE TABLE t1 (
    -> c1 INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, 
    -> c2 CHAR(1)
    -> ) ENGINE = INNODB;

mysql> INSERT INTO t1 VALUES(1,'a'),(101,'b'),(5,'c'),(102,'d');

Now, consider the following “mixed-mode insert” statement:

mysql> INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With innodb_autoinc_lock_mode set to 0 (“traditional”), the four new rows are:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1  | c2   |
+-----+------+
|   1 | a    |
| 101 | b    |
|   5 | c    |
| 102 | d    |
+-----+------+

The next available auto-increment value is 103 because the auto-increment values are allocated one
at a time, not all at once at the beginning of statement execution. This result is true whether or not
there are concurrently executing “INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to 1 (“consecutive”), the four new rows are also:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1  | c2   |
+-----+------+
|   1 | a    |
| 101 | b    |
|   5 | c    |
| 102 | d    |



InnoDB Tables

1660

+-----+------+

However, in this case, the next available auto-increment value is 105, not 103 because four auto-
increment values are allocated at the time the statement is processed, but only two are used. This
result is true whether or not there are concurrently executing “INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to mode 2 (“interleaved”), the four new rows are:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1  | c2   |
+-----+------+
|   1 | a    |
|   x | b    |
|   5 | c    |
|   y | d    |
+-----+------+

The values of x and y are unique and larger than any previously generated rows. However, the
specific values of x and y depend on the number of auto-increment values generated by concurrently
executing statements.

Finally, consider the following statement, issued when the most-recently generated sequence
number was the value 4:

mysql> INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With any innodb_autoinc_lock_mode setting, this statement generates a duplicate-key error
23000 (Can't write; duplicate key in table) because 5 is allocated for the row (NULL,
'b') and insertion of the row (5, 'c') fails.

• Modifying AUTO_INCREMENT column values in the middle of a sequence of INSERT statements

In all lock modes (0, 1, and 2), modifying an AUTO_INCREMENT column value in the middle of
a sequence of INSERT statements could lead to “Duplicate entry” errors. For example, if you
perform an UPDATE operation that changes an AUTO_INCREMENT column value to a value larger
than the current maximum auto-increment value, subsequent INSERT operations that do not
specify an unused auto-increment value could encounter “Duplicate entry” errors. This behavior is
demonstrated in the following example.

mysql> CREATE TABLE t1 (
    -> c1 INT NOT NULL AUTO_INCREMENT,
    -> PRIMARY KEY (c1)
    ->  ) ENGINE = InnoDB;

mysql> INSERT INTO t1 VALUES(0), (0), (3);

mysql> SELECT c1 FROM t1;
+----+
| c1 |
+----+
|  1 |
|  2 |
|  3 |
+----+

mysql> UPDATE t1 SET c1 = 4 WHERE c1 = 1;

mysql> SELECT c1 FROM t1;
+----+
| c1 |
+----+
|  2 |
|  3 |
|  4 |



InnoDB Tables

1661

+----+

mysql> INSERT INTO t1 VALUES(0);
ERROR 1062 (23000): Duplicate entry '4' for key 'PRIMARY'

InnoDB AUTO_INCREMENT Counter Initialization

This section describes how InnoDB initializes AUTO_INCREMENT counters.

If you specify an AUTO_INCREMENT column for an InnoDB table, the table handle in the InnoDB data
dictionary contains a special counter called the auto-increment counter that is used in assigning new
values for the column. This counter is stored only in main memory, not on disk.

To initialize an auto-increment counter after a server restart, InnoDB executes the equivalent of the
following statement on the first insert into a table containing an AUTO_INCREMENT column.

SELECT MAX(ai_col) FROM table_name FOR UPDATE;

InnoDB increments the value retrieved by the statement and assigns it to the column and to the
auto-increment counter for the table. By default, the value is incremented by 1. This default can be
overridden by the auto_increment_increment configuration setting.

If the table is empty, InnoDB uses the value 1. This default can be overridden by the
auto_increment_offset configuration setting.

If a SHOW TABLE STATUS statement examines the table before the auto-increment counter is
initialized, InnoDB initializes but does not increment the value. The value is stored for use by later
inserts. This initialization uses a normal exclusive-locking read on the table and the lock lasts to the
end of the transaction. InnoDB follows the same procedure for initializing the auto-increment counter
for a newly created table.

After the auto-increment counter has been initialized, if you do not explicitly specify a value for an
AUTO_INCREMENT column, InnoDB increments the counter and assigns the new value to the column.
If you insert a row that explicitly specifies the column value, and the value is greater than the current
counter value, the counter is set to the specified column value.

InnoDB uses the in-memory auto-increment counter as long as the server runs. When the server is
stopped and restarted, InnoDB reinitializes the counter for each table for the first INSERT to the table,
as described earlier.

A server restart also cancels the effect of the AUTO_INCREMENT = N table option in CREATE TABLE
and ALTER TABLE statements, which you can use with InnoDB tables to set the initial counter value
or alter the current counter value.

14.11.1.6 InnoDB and FOREIGN KEY Constraints

How the InnoDB storage engine handles foreign key constraints is described under the following topics
in this section:

• Foreign Key Definitions

• Referential Actions

• Foreign Key Usage and Error Information

For foreign key usage information and examples, see Section 13.1.17.6, “Using FOREIGN KEY
Constraints”.

Foreign Key Definitions

Foreign key definitions for InnoDB tables are subject to the following conditions:



InnoDB Tables

1662

• InnoDB permits a foreign key to reference any index column or group of columns. However, in
the referenced table, there must be an index where the referenced columns are listed as the first
columns in the same order.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This means
that no user-partitioned InnoDB table may contain foreign key references or columns referenced by
foreign keys.

• InnoDB allows a foreign key constraint to reference a non-unique key. This is an InnoDB extension
to standard SQL.

Referential Actions

Referential actions for foreign keys of InnoDB tables are subject to the following conditions:

• While SET DEFAULT is allowed by the MySQL Server, it is rejected as invalid by InnoDB. CREATE
TABLE and ALTER TABLE statements using this clause are not allowed for InnoDB tables.

• If there are several rows in the parent table that have the same referenced key value, InnoDB acts
in foreign key checks as if the other parent rows with the same key value do not exist. For example,
if you have defined a RESTRICT type constraint, and there is a child row with several parent rows,
InnoDB does not permit the deletion of any of those parent rows.

• InnoDB performs cascading operations through a depth-first algorithm, based on records in the
indexes corresponding to the foreign key constraints.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has
previously updated during the cascade, it acts like RESTRICT. This means that you cannot use self-
referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent infinite
loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the other hand,
is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not be nested
more than 15 levels deep.

• Like MySQL in general, in an SQL statement that inserts, deletes, or updates many rows, InnoDB
checks UNIQUE and FOREIGN KEY constraints row-by-row. When performing foreign key checks,
InnoDB sets shared row-level locks on child or parent records it has to look at. InnoDB checks
foreign key constraints immediately; the check is not deferred to transaction commit. According to
the SQL standard, the default behavior should be deferred checking. That is, constraints are only
checked after the entire SQL statement has been processed. Until InnoDB implements deferred
constraint checking, some things are impossible, such as deleting a record that refers to itself using a
foreign key.

Foreign Key Usage and Error Information

You can obtain general information about foreign keys and their usage from querying the
INFORMATION_SCHEMA.KEY_COLUMN_USAGE table.

In addition to SHOW ERRORS, in the event of a foreign key error involving InnoDB tables (usually Error
150 in the MySQL Server), you can obtain a detailed explanation of the most recent InnoDB foreign
key error by checking the output of SHOW ENGINE INNODB STATUS.

14.11.1.7 Limits on InnoDB Tables

Limits on InnoDB tables are described under the following topics in this section:

• Maximums and Minimums

• Restrictions on InnoDB Tables

• Locking and Transactions



InnoDB Tables

1663

Warning

Do not convert MySQL system tables in the mysql database from MyISAM to
InnoDB tables. This is an unsupported operation. If you do this, MySQL does
not restart until you restore the old system tables from a backup or regenerate
them by reinitializing the data directory (see Section 2.10.1, “Initializing the Data
Directory”).

Warning

Before using NFS with InnoDB, review potential issues outlined in Using NFS
with MySQL.

Maximums and Minimums

• A table can contain a maximum of 1000 columns.

• A table can contain a maximum of 64 secondary indexes.

• By default, the index key prefix length limit is 767 bytes. See Section 13.1.13, “CREATE INDEX
Syntax”. For example, you might hit this limit with a column prefix index of more than 255 characters
on a TEXT or VARCHAR column, assuming a utf8mb3 character set and the maximum of 3 bytes for
each character. When the innodb_large_prefix configuration option is enabled, the index key
prefix length limit is raised to 3072 bytes for InnoDB tables that use DYNAMIC or COMPRESSED row
format.

If you specify an index key prefix length that exceeds the limit, the length is silently reduced to the
maximum length.

When innodb_large_prefix is enabled, attempting to create an index key prefix
with a length greater than 3072 bytes for a DYNAMIC or COMPRESSED table causes an
ER_INDEX_COLUMN_TOO_LONG error.

The limits that apply to index key prefixes also apply to full-column index keys.

• A maximum of 16 columns is permitted for multicolumn indexes. Exceeding the limit returns an error.

ERROR 1070 (42000): Too many key parts specified; max 16 parts allowed

• The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB and
TEXT), is slightly less than half of a page. That is, the maximum row length is about 8000 bytes.
LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB
and TEXT columns, must be less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a
page, variable-length columns are chosen for external off-page storage until the row fits within half a
page, as described in Section 14.15.2, “File Space Management”.

The row size for BLOB columns that are chosen for external off-page storage should not exceed
10% of the combined redo log file size. If the row size exceeds 10% of the combined redo log file
size, InnoDB could overwrite the most recent checkpoint which may result in lost data during crash
recovery. (Bug#69477).

• Although InnoDB supports row sizes larger than 65,535 bytes internally, MySQL itself imposes a
row-size limit of 65,535 for the combined size of all columns:

mysql> CREATE TABLE t (a VARCHAR(8000), b VARCHAR(10000),
    -> c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
    -> f VARCHAR(10000), g VARCHAR(10000)) ENGINE=InnoDB;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs



InnoDB Tables

1664

See Section C.10.4, “Limits on Table Column Count and Row Size”.

• On some older operating systems, files must be less than 2GB. This is not a limitation of InnoDB
itself, but if you require a large tablespace, configure it using several smaller data files rather than
one large data file.

• The combined size of the InnoDB log files must be less than 4GB.

• The minimum tablespace size is slightly larger than 10MB. The maximum tablespace size is four
billion pages (64TB). This is also the maximum size for a table.

•   The default page size in InnoDB is 16KB.

Changing the page size is not a supported operation and there is no guarantee that InnoDB
functions normally with a page size other than 16KB. Problems compiling or running InnoDB may
occur. In particular, ROW_FORMAT=COMPRESSED in the Barracuda file format assumes that the page
size is at most 16KB and uses 14-bit pointers.

A version of InnoDB built for one page size cannot use data files or log files from a version built for
a different page size. This limitation could affect restore or downgrade operations using data from
MySQL 5.6, which does support page sizes other than 16KB.

• InnoDB tables do not support FULLTEXT indexes.

• InnoDB tables support spatial data types, but not indexes on them.

Restrictions on InnoDB Tables

• ANALYZE TABLE determines index cardinality (as displayed in the Cardinality column of SHOW
INDEX output) by performing random dives on each of the index trees and updating index cardinality
estimates accordingly. Because these are only estimates, repeated runs of ANALYZE TABLE could
produce different numbers. This makes ANALYZE TABLE fast on InnoDB tables but not 100%
accurate because it does not take all rows into account.

You can change the number of random dives by modifying the innodb_stats_sample_pages
system variable.

MySQL uses index cardinality estimates in join optimization. If a join is not optimized in the right way,
try using ANALYZE TABLE. In the few cases that ANALYZE TABLE does not produce values good
enough for your particular tables, you can use FORCE INDEX with your queries to force the use of
a particular index, or set the max_seeks_for_key system variable to ensure that MySQL prefers
index lookups over table scans. See Section B.5.5, “Optimizer-Related Issues”.

• If statements or transactions are running on a table, and ANALYZE TABLE is run on the same table
followed by a second ANALYZE TABLE operation, the second ANALYZE TABLE operation is blocked
until the statements or transactions are completed. This behavior occurs because ANALYZE TABLE
marks the currently loaded table definition as obsolete when ANALYZE TABLE is finished running.
New statements or transactions (including a second ANALYZE TABLE statement) must load the
new table definition into the table cache, which cannot occur until currently running statements or
transactions are completed and the old table definition is purged. Loading multiple concurrent table
definitions is not supported.

• SHOW TABLE STATUS does not give accurate statistics on InnoDB tables except for the physical
size reserved by the table. The row count is only a rough estimate used in SQL optimization.

• InnoDB does not keep an internal count of rows in a table because concurrent transactions might
“see” different numbers of rows at the same time. Consequently, SELECT COUNT(*) statements
only count rows visible to the current transaction.

To process a SELECT COUNT(*) statement, InnoDB scans an index of the table, which takes some
time if the index is not entirely in the buffer pool. For a faster count, you can create a counter table



InnoDB Tables

1665

and let your application update it according to the inserts and deletes it does. However, this method
may not scale well in situations where thousands of concurrent transactions are initiating updates
to the same counter table. If an approximate row count is sufficient, SHOW TABLE STATUS can be
used.

InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) operations in the same way. There is
no performance difference.

• On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases
and tables using lowercase names.

• An AUTO_INCREMENT column ai_col must be defined as part of an index such that it is possible
to perform the equivalent of an indexed SELECT MAX(ai_col) lookup on the table to obtain the
maximum column value. Typically, this is achieved by making the column the first column of some
table index.

• InnoDB sets an exclusive lock on the end of the index associated with the AUTO_INCREMENT
column while initializing a previously specified AUTO_INCREMENT column on a table.

With innodb_autoinc_lock_mode=0, InnoDB uses a special AUTO-INC table lock mode where
the lock is obtained and held to the end of the current SQL statement while accessing the auto-
increment counter. Other clients cannot insert into the table while the AUTO-INC table lock is held.
The same behavior occurs for “bulk inserts” with innodb_autoinc_lock_mode=1. Table-level
AUTO-INC locks are not used with innodb_autoinc_lock_mode=2. For more information, See
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”.

• When you restart the MySQL server, InnoDB may reuse an old value that was generated for an
AUTO_INCREMENT column but never stored (that is, a value that was generated during an old
transaction that was rolled back).

• When an AUTO_INCREMENT integer column runs out of values, a subsequent INSERT operation
returns a duplicate-key error. This is general MySQL behavior, similar to how MyISAM works.

• DELETE FROM tbl_name does not regenerate the table but instead deletes all rows, one by one.

• Under some conditions, TRUNCATE tbl_name for an InnoDB table is mapped to DELETE FROM
tbl_name. See Section 13.1.33, “TRUNCATE TABLE Syntax”.

• Cascaded foreign key actions do not activate triggers.

• You cannot create a table with a column name that matches the name of an internal InnoDB column
(including DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR, and DB_MIX_ID). This restriction applies to
use of the names in any letter case.

mysql> CREATE TABLE t1 (c1 INT, db_row_id INT) ENGINE=INNODB;
ERROR 1166 (42000): Incorrect column name 'db_row_id'

Locking and Transactions

• LOCK TABLES acquires two locks on each table if innodb_table_locks=1 (the default). In
addition to a table lock on the MySQL layer, it also acquires an InnoDB table lock. Versions of
MySQL before 4.1.2 did not acquire InnoDB table locks; the old behavior can be selected by setting
innodb_table_locks=0. If no InnoDB table lock is acquired, LOCK TABLES completes even if
some records of the tables are being locked by other transactions.

As of MySQL 5.5.3, innodb_table_locks=0 has no effect for tables locked explicitly with LOCK
TABLES ... WRITE. It still has an effect for tables locked for read or write by LOCK TABLES ...
WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.



InnoDB Indexes

1666

• All InnoDB locks held by a transaction are released when the transaction is committed or aborted.
Thus, it does not make much sense to invoke LOCK TABLES on InnoDB tables in autocommit=1
mode because the acquired InnoDB table locks would be released immediately.

• You cannot lock additional tables in the middle of a transaction because LOCK TABLES performs an
implicit COMMIT and UNLOCK TABLES.

• The limit of 1023 concurrent data-modifying transactions has been raised in MySQL 5.5 and above.
The limit is now 128 * 1023 concurrent transactions that generate undo records. You can remove
any workarounds that require changing the proper structure of your transactions, such as committing
more frequently.

14.11.2 InnoDB Indexes

This section covers topics related to InnoDB indexes.

14.11.2.1 Clustered and Secondary Indexes

Every InnoDB table has a special index called the clustered index where the data for the rows is
stored. Typically, the clustered index is synonymous with the primary key. To get the best performance
from queries, inserts, and other database operations, you must understand how InnoDB uses the
clustered index to optimize the most common lookup and DML operations for each table.

• When you define a PRIMARY KEY on your table, InnoDB uses it as the clustered index. Define a
primary key for each table that you create. If there is no logical unique and non-null column or set of
columns, add a new auto-increment column, whose values are filled in automatically.

• If you do not define a PRIMARY KEY for your table, MySQL locates the first UNIQUE index where all
the key columns are NOT NULL and InnoDB uses it as the clustered index.

• If the table has no PRIMARY KEY or suitable UNIQUE index, InnoDB internally generates a hidden
clustered index on a synthetic column containing row ID values. The rows are ordered by the ID that
InnoDB assigns to the rows in such a table. The row ID is a 6-byte field that increases monotonically
as new rows are inserted. Thus, the rows ordered by the row ID are physically in insertion order.

How the Clustered Index Speeds Up Queries

Accessing a row through the clustered index is fast because the index search leads directly to the page
with all the row data. If a table is large, the clustered index architecture often saves a disk I/O operation
when compared to storage organizations that store row data using a different page from the index
record. (For example, MyISAM uses one file for data rows and another for index records.)

How Secondary Indexes Relate to the Clustered Index

All indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in
a secondary index contains the primary key columns for the row, as well as the columns specified for
the secondary index. InnoDB uses this primary key value to search for the row in the clustered index.

If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short
primary key.

For guidelines to take advantage of InnoDB clustered and secondary indexes, see Section 8.3,
“Optimization and Indexes”.

14.11.2.2 The Physical Structure of an InnoDB Index

All InnoDB indexes are B-trees where the index records are stored in the leaf pages of the tree. The
default size of an index page is 16KB.

When new records are inserted into an InnoDB clustered index, InnoDB tries to leave 1/16 of the page
free for future insertions and updates of the index records. If index records are inserted in a sequential



InnoDB Table Compression

1667

order (ascending or descending), the resulting index pages are about 15/16 full. If records are inserted
in a random order, the pages are from 1/2 to 15/16 full. If the fill factor of an index page drops below
1/2, InnoDB tries to contract the index tree to free the page.

Changing the InnoDB page size is not a supported operation and there is no guarantee that InnoDB
functions normally with a page size other than 16KB. Problems compiling or running InnoDB may
occur. In particular, ROW_FORMAT=COMPRESSED in the Barracuda file format assumes that the page
size is at most 16KB and uses 14-bit pointers.

An instance using a particular InnoDB page size cannot use data files or log files from an instance that
uses a different page size.

14.12 InnoDB Table Compression

By using the SQL syntax and InnoDB configuration options for compression, you can create tables
where the data is stored in compressed form. Compression can help to improve both raw performance
and scalability. The compression means less data is transferred between disk and memory, and takes
up less space on disk and in memory. The benefits are amplified for tables with secondary indexes,
because index data is compressed also. Compression can be especially important for SSD storage
devices, because they tend to have lower capacity than HDD devices.

14.12.1 Overview of Table Compression

Because processors and cache memories have increased in speed more than disk storage devices,
many workloads are disk-bound. Data compression enables smaller database size, reduced I/O, and
improved throughput, at the small cost of increased CPU utilization. Compression is especially valuable
for read-intensive applications, on systems with enough RAM to keep frequently used data in memory.

An InnoDB table created with ROW_FORMAT=COMPRESSED can use a smaller page size on disk
than the usual 16KB default. Smaller pages require less I/O to read from and write to disk, which is
especially valuable for SSD devices.

The page size is specified through the KEY_BLOCK_SIZE parameter. The different page size means
the table must be in its own .ibd file rather than in the system tablespace, which requires enabling
the innodb_file_per_table option. The level of compression is the same regardless of the
KEY_BLOCK_SIZE value. As you specify smaller values for KEY_BLOCK_SIZE, you get the I/O
benefits of increasingly smaller pages. But if you specify a value that is too small, there is additional
overhead to reorganize the pages when data values cannot be compressed enough to fit multiple rows
in each page. There is a hard limit on how small KEY_BLOCK_SIZE can be for a table, based on the
lengths of the key columns for each of its indexes. Specify a value that is too small, and the CREATE
TABLE or ALTER TABLE statement fails.

In the buffer pool, the compressed data is held in small pages, with a page size based on the
KEY_BLOCK_SIZE value. For extracting or updating the column values, MySQL also creates a
16KB page in the buffer pool with the uncompressed data. Within the buffer pool, any updates to the
uncompressed page are also re-written back to the equivalent compressed page. You might need
to size your buffer pool to accommodate the additional data of both compressed and uncompressed
pages, although the uncompressed pages are evicted from the buffer pool when space is needed, and
then uncompressed again on the next access.

14.12.2 Enabling Compression for a Table

Before creating a compressed table, make sure the innodb_file_per_table configuration option
is enabled, and innodb_file_format is set to Barracuda. You can set these parameters in the
MySQL configuration file my.cnf or my.ini, or with the SET statement without shutting down the
MySQL server.

To enable compression for a table, you use the clauses ROW_FORMAT=COMPRESSED,
KEY_BLOCK_SIZE, or both in a CREATE TABLE or ALTER TABLE statement.



Tuning Compression for InnoDB Tables

1668

To create a compressed table, you might use statements like these:

SET GLOBAL innodb_file_per_table=1;
SET GLOBAL innodb_file_format=Barracuda;
CREATE TABLE t1
 (c1 INT PRIMARY KEY)
 ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=8;

• If you specify ROW_FORMAT=COMPRESSED, you can omit KEY_BLOCK_SIZE; the default compressed
page size of 8KB is used.

• If you specify KEY_BLOCK_SIZE, you can omit ROW_FORMAT=COMPRESSED; compression is enabled
automatically.

• To determine the best value for KEY_BLOCK_SIZE, typically you create several copies of the same
table with different values for this clause, then measure the size of the resulting .ibd files and see
how well each performs with a realistic workload.

• For additional performance-related configuration options, see Section 14.12.3, “Tuning Compression
for InnoDB Tables”.

The default uncompressed size of InnoDB data pages is 16KB. Depending on the combination of
option values, MySQL uses a page size of 1KB, 2KB, 4KB, 8KB, or 16KB for the .ibd file of the table.
The actual compression algorithm is not affected by the KEY_BLOCK_SIZE value; the value determines
how large each compressed chunk is, which in turn affects how many rows can be packed into each
compressed page.

Setting KEY_BLOCK_SIZE=16 typically does not result in much compression, since the normal InnoDB
page size is 16KB. This setting may still be useful for tables with many long BLOB, VARCHAR or TEXT
columns, because such values often do compress well, and might therefore require fewer overflow
pages as described in Section 14.12.5, “How Compression Works for InnoDB Tables”.

All indexes of a table (including the clustered index) are compressed using the same page size, as
specified in the CREATE TABLE or ALTER TABLE statement. Table attributes such as ROW_FORMAT
and KEY_BLOCK_SIZE are not part of the CREATE INDEX syntax, and are ignored if they are specified
(although you see them in the output of the SHOW CREATE TABLE statement).

Restrictions on Compressed Tables

Because MySQL versions prior to 5.1 cannot process compressed tables, using compression requires
specifying the configuration parameter innodb_file_format=Barracuda, to avoid accidentally
introducing compatibility issues.

Table compression is also not available for the InnoDB system tablespace. The system tablespace
(space 0, the ibdata* files) can contain user data, but it also contains internal system information,
and therefore is never compressed. Thus, compression applies only to tables (and indexes) stored in
their own tablespaces, that is, created with the innodb_file_per_table option enabled.

Compression applies to an entire table and all its associated indexes, not to individual rows, despite the
clause name ROW_FORMAT.

14.12.3 Tuning Compression for InnoDB Tables

Most often, the internal optimizations described in InnoDB Data Storage and Compression ensure that
the system runs well with compressed data. However, because the efficiency of compression depends
on the nature of your data, you can make decisions that affect the performance of compressed tables:

• Which tables to compress.

• What compressed page size to use.



Tuning Compression for InnoDB Tables

1669

• Whether to adjust the size of the buffer pool based on run-time performance characteristics, such as
the amount of time the system spends compressing and uncompressing data. Whether the workload
is more like a data warehouse (primarily queries) or an OLTP system (mix of queries and DML).

• If the system performs DML operations on compressed tables, and the way the data is distributed
leads to expensive compression failures at runtime, you might adjust additional advanced
configuration options.

Use the guidelines in this section to help make those architectural and configuration choices. When you
are ready to conduct long-term testing and put compressed tables into production, see Section 14.12.4,
“Monitoring InnoDB Table Compression at Runtime” for ways to verify the effectiveness of those
choices under real-world conditions.

When to Use Compression

In general, compression works best on tables that include a reasonable number of character string
columns and where the data is read far more often than it is written. Because there are no guaranteed
ways to predict whether or not compression benefits a particular situation, always test with a specific
workload and data set running on a representative configuration. Consider the following factors when
deciding which tables to compress.

Data Characteristics and Compression

A key determinant of the efficiency of compression in reducing the size of data files is the nature of
the data itself. Recall that compression works by identifying repeated strings of bytes in a block of
data. Completely randomized data is the worst case. Typical data often has repeated values, and so
compresses effectively. Character strings often compress well, whether defined in CHAR, VARCHAR,
TEXT or BLOB columns. On the other hand, tables containing mostly binary data (integers or floating
point numbers) or data that is previously compressed (for example JPEG or PNG images) may not
generally compress well, significantly or at all.

You choose whether to turn on compression for each InnoDB table. A table and all of its indexes use
the same (compressed) page size. It might be that the primary key (clustered) index, which contains
the data for all columns of a table, compresses more effectively than the secondary indexes. For those
cases where there are long rows, the use of compression might result in long column values being
stored “off-page”, as discussed in Section 14.14.3, “DYNAMIC and COMPRESSED Row Formats”.
Those overflow pages may compress well. Given these considerations, for many applications, some
tables compress more effectively than others, and you might find that your workload performs best only
with a subset of tables compressed.

To determine whether or not to compress a particular table, conduct experiments. You can get a
rough estimate of how efficiently your data can be compressed by using a utility that implements LZ77
compression (such as gzip or WinZip) on a copy of the .ibd file for an uncompressed table. You can
expect less compression from a MySQL compressed table than from file-based compression tools,
because MySQL compresses data in chunks based on the page size, 16KB by default. In addition
to user data, the page format includes some internal system data that is not compressed. File-based
compression utilities can examine much larger chunks of data, and so might find more repeated strings
in a huge file than MySQL can find in an individual page.

Another way to test compression on a specific table is to copy some data from your uncompressed
table to a similar, compressed table (having all the same indexes) and look at the size of the resulting
.ibd file. For example:

use test;
set global innodb_file_per_table=1;
set global innodb_file_format=Barracuda;
set global autocommit=0;

-- Create an uncompressed table with a million or two rows.
create table big_table as select * from information_schema.columns;
insert into big_table select * from big_table;



Tuning Compression for InnoDB Tables

1670

insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
commit;
alter table big_table add id int unsigned not null primary key auto_increment;

show create table big_table\G

select count(id) from big_table;

-- Check how much space is needed for the uncompressed table.
\! ls -l data/test/big_table.ibd

create table key_block_size_4 like big_table;
alter table key_block_size_4 key_block_size=4 row_format=compressed;

insert into key_block_size_4 select * from big_table;
commit;

-- Check how much space is needed for a compressed table
-- with particular compression settings.
\! ls -l data/test/key_block_size_4.ibd

This experiment produced the following numbers, which of course could vary considerably depending
on your table structure and data:

-rw-rw----  1 cirrus  staff  310378496 Jan  9 13:44 data/test/big_table.ibd
-rw-rw----  1 cirrus  staff  83886080 Jan  9 15:10 data/test/key_block_size_4.ibd

To see whether compression is efficient for your particular workload, use a MySQL instance with no
other compressed tables and run queries against the INFORMATION_SCHEMA.INNODB_CMP table.
For exmaple, you examine the ratio of successful compression operations to overall compression
operations. (In the INNODB_CMP table, compare COMPRESS_OPS to COMPRESS_OPS_OK. See
INNODB_CMP for more information.) If a high percentage of compression operations complete
successfully, the table might be a good candidate for compression.

Compression and Application and Schema Design

Decide whether to compress data in your application or in the table; do not use both types of
compression for the same data. When you compress the data in the application and store the results
in a compressed table, extra space savings are extremely unlikely, and the double compression just
wastes CPU cycles.

Compressing in the Database

The InnoDB table compression is automatic and applies to all columns and index values. The columns
can still be tested with operators such as LIKE, and sort operations can still use indexes even when
the index values are compressed. Because indexes are often a significant fraction of the total size
of a database, compression could result in significant savings in storage, I/O or processor time. The
compression and decompression operations happen on the database server, which likely is a powerful
system that is sized to handle the expected load.

Compressing in the Application

If you compress data such as text in your application, before it is inserted into the database, You might
save overhead for data that does not compress well by compressing some columns and not others.
This approach uses CPU cycles for compression and uncompression on the client machine rather
than the database server, which might be appropriate for a distributed application with many clients, or
where the client machine has spare CPU cycles.



Tuning Compression for InnoDB Tables

1671

Hybrid Approach

Of course, it is possible to combine these approaches. For some applications, it may be appropriate to
use some compressed tables and some uncompressed tables. It may be best to externally compress
some data (and store it in uncompressed InnoDB tables) and allow InnoDB to compress (some of) the
other tables in the application. As always, up-front design and real-life testing are valuable in reaching
the right decision.

Workload Characteristics and Compression

In addition to choosing which tables to compress (and the page size), the workload is another key
determinant of performance. If the application is dominated by reads, rather than updates, fewer
pages need to be reorganized and recompressed after the index page runs out of room for the per-
page “modification log” that InnoDB maintains for compressed data. If the updates predominantly
change non-indexed columns or those containing BLOBs or large strings that happen to be stored “off-
page”, the overhead of compression may be acceptable. If the only changes to a table are INSERTs
that use a monotonically increasing primary key, and there are few secondary indexes, there is little
need to reorganize and recompress index pages. Since InnoDB can “delete-mark” and delete rows
on compressed pages “in place” by modifying uncompressed data, DELETE operations on a table are
relatively efficient.

For some environments, the time it takes to load data can be as important as run-time retrieval.
Especially in data warehouse environments, many tables may be read-only or read-mostly. In those
cases, it might or might not be acceptable to pay the price of compression in terms of increased load
time, unless the resulting savings in fewer disk reads or in storage cost is significant.

Fundamentally, compression works best when the CPU time is available for compressing and
uncompressing data. Thus, if your workload is I/O bound, rather than CPU-bound, you might find
that compression can improve overall performance. When you test your application performance with
different compression configurations, test on a platform similar to the planned configuration of the
production system.

Configuration Characteristics and Compression

Reading and writing database pages from and to disk is the slowest aspect of system performance.
Compression attempts to reduce I/O by using CPU time to compress and uncompress data, and is
most effective when I/O is a relatively scarce resource compared to processor cycles.

This is often especially the case when running in a multi-user environment with fast, multi-core CPUs.
When a page of a compressed table is in memory, InnoDB often uses an additional 16K in the buffer
pool for an uncompressed copy of the page. The adaptive LRU algorithm in the InnoDB storage engine
attempts to balance the use of memory between compressed and uncompressed pages to take into
account whether the workload is running in an I/O-bound or CPU-bound manner. Still, a configuration
with more memory dedicated to the InnoDB buffer pool tends to run better when using compressed
tables than a configuration where memory is highly constrained.

Choosing the Compressed Page Size

The optimal setting of the compressed page size depends on the type and distribution of data that the
table and its indexes contain. The compressed page size should always be bigger than the maximum
record size, or operations may fail as noted in Compression of B-Tree Pages.

Setting the compressed page size too large wastes some space, but the pages do not have to be
compressed as often. If the compressed page size is set too small, inserts or updates may require
time-consuming recompression, and the B-tree nodes may have to be split more frequently, leading to
bigger data files and less efficient indexing.

Typically, you set the compressed page size to 8K or 4K bytes. Given that the maximum row size for
an InnoDB table is around 8K, KEY_BLOCK_SIZE=8 is usually a safe choice.



Monitoring InnoDB Table Compression at Runtime

1672

14.12.4 Monitoring InnoDB Table Compression at Runtime

Overall application performance, CPU and I/O utilization and the size of disk files are good indicators of
how effective compression is for your application. This section builds on the performance tuning advice
from Section 14.12.3, “Tuning Compression for InnoDB Tables”, and shows how to find problems that
might not turn up during initial testing.

To dig deeper into performance considerations for compressed tables, you can monitor compression
performance at runtime using the Information Schema tables described in Example 14.1, “Using the
Compression Information Schema Tables”. These tables reflect the internal use of memory and the
rates of compression used overall.

The INNODB_CMP table reports information about compression activity for each compressed page
size (KEY_BLOCK_SIZE) in use. The information in these tables is system-wide: it summarizes the
compression statistics across all compressed tables in your database. You can use this data to help
decide whether or not to compress a table by examining these tables when no other compressed
tables are being accessed. It involves relatively low overhead on the server, so you might query it
periodically on a production server to check the overall efficiency of the compression feature.

The key statistics to consider are the number of, and amount of time spent performing, compression
and uncompression operations. Since InnoDB must split B-tree nodes when they are too full to contain
the compressed data following a modification, compare the number of “successful” compression
operations with the number of such operations overall. Based on the information in the INNODB_CMP
tables and overall application performance and hardware resource utilization, you might make changes
in your hardware configuration, adjust the size of the InnoDB buffer pool, choose a different page size,
or select a different set of tables to compress.

If the amount of CPU time required for compressing and uncompressing is high, changing to faster
CPUs, or those with more cores, can help improve performance with the same data, application
workload and set of compressed tables. Increasing the size of the InnoDB buffer pool might also
help performance, so that more uncompressed pages can stay in memory, reducing the need to
uncompress pages that exist in memory only in compressed form.

A large number of compression operations overall (compared to the number of INSERT, UPDATE and
DELETE operations in your application and the size of the database) could indicate that some of your
compressed tables are being updated too heavily for effective compression. If so, choose a larger page
size, or be more selective about which tables you compress.

If the number of “successful” compression operations (COMPRESS_OPS_OK) is a high percentage of
the total number of compression operations (COMPRESS_OPS), then the system is likely performing
well. If the ratio is low, then InnoDB is reorganizing, recompressing, and splitting B-tree nodes more
often than is desirable. In this case, avoid compressing some tables, or increase KEY_BLOCK_SIZE
for some of the compressed tables. You might turn off compression for tables that cause the number
of “compression failures” in your application to be more than 1% or 2% of the total. (Such a failure ratio
might be acceptable during a temporary operation such as a data load).

14.12.5 How Compression Works for InnoDB Tables

This section describes some internal implementation details about compression for InnoDB tables. The
information presented here may be helpful in tuning for performance, but is not necessary to know for
basic use of compression.

Compression Algorithms

Some operating systems implement compression at the file system level. Files are typically divided into
fixed-size blocks that are compressed into variable-size blocks, which easily leads into fragmentation.
Every time something inside a block is modified, the whole block is recompressed before it is written
to disk. These properties make this compression technique unsuitable for use in an update-intensive
database system.



How Compression Works for InnoDB Tables

1673

InnoDB implements compression with the help of the well-known zlib library, which implements the
LZ77 compression algorithm. This compression algorithm is mature, robust, and efficient in both CPU
utilization and in reduction of data size. The algorithm is “lossless”, so that the original uncompressed
data can always be reconstructed from the compressed form. LZ77 compression works by finding
sequences of data that are repeated within the data to be compressed. The patterns of values in your
data determine how well it compresses, but typical user data often compresses by 50% or more.

Unlike compression performed by an application, or compression features of some other database
management systems, InnoDB compression applies both to user data and to indexes. In many cases,
indexes can constitute 40-50% or more of the total database size, so this difference is significant.
When compression is working well for a data set, the size of the InnoDB data files (the .idb files) is
25% to 50% of the uncompressed size or possibly smaller. Depending on the workload, this smaller
database can in turn lead to a reduction in I/O, and an increase in throughput, at a modest cost in
terms of increased CPU utilization.

InnoDB Data Storage and Compression

All user data in InnoDB tables is stored in pages comprising a B-tree index (the clustered index). In
some other database systems, this type of index is called an “index-organized table”. Each row in the
index node contains the values of the (user-specified or system-generated) primary key and all the
other columns of the table.

Secondary indexes in InnoDB tables are also B-trees, containing pairs of values: the index key and a
pointer to a row in the clustered index. The pointer is in fact the value of the primary key of the table,
which is used to access the clustered index if columns other than the index key and primary key are
required. Secondary index records must always fit on a single B-tree page.

The compression of B-tree nodes (of both clustered and secondary indexes) is handled differently from
compression of overflow pages used to store long VARCHAR, BLOB, or TEXT columns, as explained in
the following sections.

Compression of B-Tree Pages

Because they are frequently updated, B-tree pages require special treatment. It is important to
minimize the number of times B-tree nodes are split, as well as to minimize the need to uncompress
and recompress their content.

One technique InnoDB uses is to maintain some system information in the B-tree node in
uncompressed form, thus facilitating certain in-place updates. For example, this allows rows to be
delete-marked and deleted without any compression operation.

In addition, InnoDB attempts to avoid unnecessary uncompression and recompression of index pages
when they are changed. Within each B-tree page, the system keeps an uncompressed “modification
log” to record changes made to the page. Updates and inserts of small records may be written to this
modification log without requiring the entire page to be completely reconstructed.

When the space for the modification log runs out, InnoDB uncompresses the page, applies the
changes and recompresses the page. If recompression fails (a situation known as a compression
failure), the B-tree nodes are split and the process is repeated until the update or insert succeeds.

Generally, InnoDB requires that each B-tree page can accommodate at least two records. For
compressed tables, this requirement has been relaxed. Leaf pages of B-tree nodes (whether of the
primary key or secondary indexes) only need to accommodate one record, but that record must fit in
uncompressed form, in the per-page modification log. Starting with InnoDB storage engine version
1.0.2, and if innodb_strict_mode is ON, the InnoDB storage engine checks the maximum row
size during CREATE TABLE or CREATE INDEX. If the row does not fit, the following error message is
issued: ERROR HY000: Too big row.

If you create a table when innodb_strict_mode is OFF, and a subsequent INSERT or UPDATE
statement attempts to create an index entry that does not fit in the size of the compressed page, the
operation fails with ERROR 42000: Row size too large. (This error message does not name

http://www.zlib.net/


How Compression Works for InnoDB Tables

1674

the index for which the record is too large, or mention the length of the index record or the maximum
record size on that particular index page.) To solve this problem, rebuild the table with ALTER TABLE
and select a larger compressed page size (KEY_BLOCK_SIZE), shorten any column prefix indexes, or
disable compression entirely with ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPACT.

Compressing BLOB, VARCHAR, and TEXT Columns

In an InnoDB table, BLOB, VARCHAR, and TEXT columns that are not part of the primary key may be
stored on separately allocated overflow pages. We refer to these columns as off-page columns. Their
values are stored on singly-linked lists of overflow pages.

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, the values of BLOB,
TEXT, or VARCHAR columns may be stored fully off-page, depending on their length and the length of
the entire row. For columns that are stored off-page, the clustered index record only contains 20-byte
pointers to the overflow pages, one per column. Whether any columns are stored off-page depends
on the page size and the total size of the row. When the row is too long to fit entirely within the page
of the clustered index, MySQL chooses the longest columns for off-page storage until the row fits on
the clustered index page. As noted above, if a row does not fit by itself on a compressed page, an error
occurs.

Note

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED,
TEXT and BLOB columns that are less than or equal to 40 bytes are always
stored in-line.

Tables created in older versions of InnoDB use the Antelope file format, which supports only
ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. In these formats, MySQL stores the first 768
bytes of BLOB, VARCHAR, and TEXT columns in the clustered index record along with the primary key.
The 768-byte prefix is followed by a 20-byte pointer to the overflow pages that contain the rest of the
column value.

When a table is in COMPRESSED format, all data written to overflow pages is compressed “as is”; that is,
InnoDB applies the zlib compression algorithm to the entire data item. Other than the data, compressed
overflow pages contain an uncompressed header and trailer comprising a page checksum and a link
to the next overflow page, among other things. Therefore, very significant storage savings can be
obtained for longer BLOB, TEXT, or VARCHAR columns if the data is highly compressible, as is often the
case with text data. Image data, such as JPEG, is typically already compressed and so does not benefit
much from being stored in a compressed table; the double compression can waste CPU cycles for little
or no space savings.

The overflow pages are of the same size as other pages. A row containing ten columns stored off-
page occupies ten overflow pages, even if the total length of the columns is only 8K bytes. In an
uncompressed table, ten uncompressed overflow pages occupy 160K bytes. In a compressed table
with an 8K page size, they occupy only 80K bytes. Thus, it is often more efficient to use compressed
table format for tables with long column values.

Using a 16K compressed page size can reduce storage and I/O costs for BLOB, VARCHAR, or TEXT
columns, because such data often compress well, and might therefore require fewer overflow pages,
even though the B-tree nodes themselves take as many pages as in the uncompressed form.

Compression and the InnoDB Buffer Pool

In a compressed InnoDB table, every compressed page (whether 1K, 2K, 4K or 8K) corresponds to an
uncompressed page of 16K bytes. To access the data in a page, InnoDB reads the compressed page
from disk if it is not already in the buffer pool, then uncompresses the page to its original form. This
section describes how InnoDB manages the buffer pool with respect to pages of compressed tables.

To minimize I/O and to reduce the need to uncompress a page, at times the buffer pool contains
both the compressed and uncompressed form of a database page. To make room for other required



SQL Compression Syntax Warnings and Errors

1675

database pages, InnoDB may evict from the buffer pool an uncompressed page, while leaving the
compressed page in memory. Or, if a page has not been accessed in a while, the compressed form of
the page might be written to disk, to free space for other data. Thus, at any given time, the buffer pool
might contain both the compressed and uncompressed forms of the page, or only the compressed form
of the page, or neither.

InnoDB keeps track of which pages to keep in memory and which to evict using a least-recently-
used (LRU) list, so that hot (frequently accessed) data tends to stay in memory. When compressed
tables are accessed, MySQL uses an adaptive LRU algorithm to achieve an appropriate balance of
compressed and uncompressed pages in memory. This adaptive algorithm is sensitive to whether the
system is running in an I/O-bound or CPU-bound manner. The goal is to avoid spending too much
processing time uncompressing pages when the CPU is busy, and to avoid doing excess I/O when the
CPU has spare cycles that can be used for uncompressing compressed pages (that may already be
in memory). When the system is I/O-bound, the algorithm prefers to evict the uncompressed copy of
a page rather than both copies, to make more room for other disk pages to become memory resident.
When the system is CPU-bound, MySQL prefers to evict both the compressed and uncompressed
page, so that more memory can be used for “hot” pages and reducing the need to uncompress data in
memory only in compressed form.

Compression and the InnoDB Redo Log Files

Before a compressed page is written to a data file, MySQL writes a copy of the page to the redo
log (if it has been recompressed since the last time it was written to the database). This is done to
ensure that redo logs are usable for crash recovery, even in the unlikely case that the zlib library is
upgraded and that change introduces a compatibility problem with the compressed data. Therefore,
some increase in the size of log files, or a need for more frequent checkpoints, can be expected when
using compression. The amount of increase in the log file size or checkpoint frequency depends
on the number of times compressed pages are modified in a way that requires reorganization and
recompression.

Note that compressed tables use a different file format for the redo log and the per-table tablespaces
than in MySQL 5.1 and earlier. The MySQL Enterprise Backup product supports this latest Barracuda
file format for compressed InnoDB tables.

14.12.6 SQL Compression Syntax Warnings and Errors

Specifying ROW_FORMAT=COMPRESSED or KEY_BLOCK_SIZE in CREATE TABLE or ALTER TABLE
statements produces the following warnings if the Barracuda file format is not enabled. You can view
them with the SHOW WARNINGS statement.

Level Code Message

Warning 1478 InnoDB: KEY_BLOCK_SIZE requires innodb_file_per_table.

Warning 1478 InnoDB: KEY_BLOCK_SIZE requires innodb_file_format=1

Warning 1478 InnoDB: ignoring KEY_BLOCK_SIZE=4.

Warning 1478 InnoDB: ROW_FORMAT=COMPRESSED requires innodb_file_per_table.

Warning 1478 InnoDB: assuming ROW_FORMAT=COMPACT.

Notes:

• By default, these messages are only warnings, not errors, and the table is created without
compression, as if the options were not specified.

• When innodb_strict_mode is enabled, MySQL generates an error, not a warning, for these
cases. The table is not created if the current configuration does not permit using compressed tables.

The “non-strict” behavior lets you import a mysqldump file into a database that does not support
compressed tables, even if the source database contained compressed tables. In that case, MySQL
creates the table in ROW_FORMAT=COMPACT instead of preventing the operation.



SQL Compression Syntax Warnings and Errors

1676

To import the dump file into a new database, and have the tables re-created as they exist in the
original database, ensure the server has the proper settings for the configuration parameters
innodb_file_format and innodb_file_per_table.

The attribute KEY_BLOCK_SIZE is permitted only when ROW_FORMAT is specified as COMPRESSED
or is omitted. Specifying a KEY_BLOCK_SIZE with any other ROW_FORMAT generates a warning
that you can view with SHOW WARNINGS. However, the table is non-compressed; the specified
KEY_BLOCK_SIZE is ignored).

Level Code Message

Warning 1478 InnoDB: ignoring KEY_BLOCK_SIZE=n unless
ROW_FORMAT=COMPRESSED.

If you are running with innodb_strict_mode enabled, the combination of a KEY_BLOCK_SIZE with
any ROW_FORMAT other than COMPRESSED generates an error, not a warning, and the table is not
created.

Table 14.4, “ROW_FORMAT and KEY_BLOCK_SIZE Options” provides an overview the ROW_FORMAT
and KEY_BLOCK_SIZE options that are used with CREATE TABLE or ALTER TABLE.

Table 14.4 ROW_FORMAT and KEY_BLOCK_SIZE Options

Option Usage Notes Description

ROW_FORMAT=
REDUNDANT

Storage format used prior to
MySQL 5.0.3

Less efficient than ROW_FORMAT=COMPACT; for
backward compatibility

ROW_FORMAT=
COMPACT

Default storage format since
MySQL 5.0.3

Stores a prefix of 768 bytes of long column values in
the clustered index page, with the remaining bytes
stored in an overflow page

ROW_FORMAT=
DYNAMIC

Available only with
innodb_file
_format=Barracuda

Store values within the clustered index page if they
fit; if not, stores only a 20-byte pointer to an overflow
page (no prefix)

ROW_FORMAT=
COMPRESSED

Available only with
innodb_file
_format=Barracuda

Compresses the table and indexes using zlib to
default compressed page size of 8K bytes

KEY_BLOCK_
SIZE=n

Available only with
innodb_file
_format=Barracuda

Specifies compressed page size of 1, 2, 4, 8 or 16
kilobytes; implies ROW_FORMAT=COMPRESSED

Table 14.5, “CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF”
summarizes error conditions that occur with certain combinations of configuration parameters and
options on the CREATE TABLE or ALTER TABLE statements, and how the options appear in the output
of SHOW TABLE STATUS.

When innodb_strict_mode is OFF, InnoDB creates or alters the table, but ignores certain
settings as shown below. You can see the warning messages in the MySQL error log. When
innodb_strict_mode is ON, these specified combinations of options generate errors, and the table
is not created or altered. To see the full description of the error condition, issue the SHOW ERRORS
statement: example:

mysql> CREATE TABLE x (id INT PRIMARY KEY, c INT)

-> ENGINE=INNODB KEY_BLOCK_SIZE=33333;

ERROR 1005 (HY000): Can't create table 'test.x' (errno: 1478)

mysql> SHOW ERRORS;
+-------+------+-------------------------------------------+
| Level | Code | Message                                   |
+-------+------+-------------------------------------------+



InnoDB File-Format Management

1677

| Error | 1478 | InnoDB: invalid KEY_BLOCK_SIZE=33333.     |
| Error | 1005 | Can't create table 'test.x' (errno: 1478) |
+-------+------+-------------------------------------------+

Table 14.5 CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF

Syntax Warning or Error Condition Resulting ROW_FORMAT,
as shown in SHOW TABLE
STATUS

ROW_FORMAT=REDUNDANT None REDUNDANT

ROW_FORMAT=COMPACT None COMPACT

ROW_FORMAT=COMPRESSED
or
ROW_FORMAT=DYNAMIC
or KEY_BLOCK_SIZE is
specified

Ignored unless both
innodb_file_format=Barracuda and
innodb_file_per_table are enabled

COMPACT

Invalid KEY_BLOCK_SIZE
is specified (not 1, 2, 4, 8
or 16)

KEY_BLOCK_SIZE is ignored the specified row format, or
COMPACT by default

ROW_FORMAT=COMPRESSED
and valid
KEY_BLOCK_SIZE are
specified

None; KEY_BLOCK_SIZE specified is used,
not the 8K default

COMPRESSED

KEY_BLOCK_SIZE
is specified with
REDUNDANT, COMPACT or
DYNAMIC row format

KEY_BLOCK_SIZE is ignored REDUNDANT, COMPACT or
DYNAMIC

ROW_FORMAT is not one
of REDUNDANT, COMPACT,
DYNAMIC or COMPRESSED

Ignored if recognized by the MySQL
parser. Otherwise, an error is issued.

COMPACT or N/A

When innodb_strict_mode is ON, the InnoDB storage engine rejects invalid ROW_FORMAT or
KEY_BLOCK_SIZE parameters. For compatibility with earlier versions of MySQL, strict mode is not
enabled by default; instead, MySQL issues warnings (not errors) for ignored invalid parameters.

Note that it is not possible to see the chosen KEY_BLOCK_SIZE using SHOW TABLE STATUS. The
statement SHOW CREATE TABLE displays the KEY_BLOCK_SIZE (even if it was ignored when creating
the table). The real compressed page size of the table cannot be displayed by MySQL.

14.13 InnoDB File-Format Management
As InnoDB evolves, data file formats that are not compatible with prior versions of InnoDB are
sometimes required to support new features. To help manage compatibility in upgrade and downgrade
situations, and systems that run different versions of MySQL, InnoDB uses named file formats.
InnoDB currently supports two named file formats, Antelope and Barracuda.

• Antelope is the original InnoDB file format, which previously did not have a name. It supports
COMPACT and REDUNDANT row formats for InnoDB tables and is the default file format in MySQL
5.5 to ensure maximum compatibility with earlier MySQL versions that do not support the Barracuda
file format.

• Barracuda is the newest file format. It supports all InnoDB row formats including the newer
COMPRESSED and DYNAMIC row formats. The features associated with COMPRESSED and
DYNAMIC row formats include compressed tables and efficient storage of off-page columns. See
Section 14.14, “InnoDB Row Storage and Row Formats”.

This section discusses enabling InnoDB file formats, verifying compatibility of different file formats
between MySQL releases, identifying the file format in use, and downgrading the file format.



Enabling File Formats

1678

14.13.1 Enabling File Formats

The innodb_file_format configuration option enables an InnoDB file format for file-per-table
tablespaces.

Antelope is the default innodb_file_format.

To preclude the use of features supported by the Barracuda file that make your database inaccessible
to the built-in InnoDB in MySQL 5.1 and prior releases, set innodb_file_format to Antelope.
Alternatively, you can disable innodb_file_per_table to have new tables created in the system
tablespace. The system tablespace is stored in the original Antelope file format.

You can set the value of innodb_file_format on the command line when you start mysqld, or in
the option file (my.cnf on Unix, my.ini on Windows). You can also change it dynamically with a SET
GLOBAL statement.

SET GLOBAL innodb_file_format=Barracuda;

Although Oracle recommends using the Barracuda format for new tables where practical, in MySQL 5.5
the default file format is Antelope, for maximum compatibility with replication configurations containing
earlier MySQL releases.

14.13.2 Verifying File Format Compatibility

InnoDB incorporates several checks to guard against the possible crashes and data corruptions that
might occur if you run an old release of the MySQL server on InnoDB data files that use a newer file
format. These checks take place when the server is started, and when you first access a table. This
section describes these checks, how you can control them, and error and warning conditions that might
arise.

Backward Compatibility

You only need to consider backward file format compatibility when using a recent version of InnoDB
(the InnoDB Plugin, or MySQL 5.5 and higher with InnoDB) alongside an older version (MySQL 5.1 or
earlier, with the built-in InnoDB rather than the InnoDB Plugin). To minimize the chance of compatibility
issues, you can standardize on the InnoDB Plugin for all your MySQL 5.1 and earlier database servers.

In general, a newer version of InnoDB may create a table or index that cannot safely be read or written
with an older version of InnoDB without risk of crashes, hangs, wrong results or corruptions. MySQL
5.5 and higher with InnoDB includes a mechanism to guard against these conditions, and to help
preserve compatibility among database files and versions of InnoDB. This mechanism lets you take
advantage of some new features of an InnoDB release (such as performance improvements and bug
fixes), and still preserve the option of using your database with a prior version of InnoDB, by preventing
accidental use of new features that create downward-incompatible disk files.

If a version of InnoDB supports a particular file format (whether or not that format is the default), you
can query and update any table that requires that format or an earlier format. Only the creation of
new tables using new features is limited based on the particular file format enabled. Conversely, if a
tablespace contains a table or index that uses a file format that is not supported, it cannot be accessed
at all, even for read access.

The only way to “downgrade” an InnoDB tablespace to the earlier Antelope file format is to copy the
data to a new table, in a tablespace that uses the earlier format. This can be done with the ALTER
TABLE statement, as described in Section 14.13.4, “Downgrading the File Format”.

The easiest way to determine the file format of an existing InnoDB tablespace is to examine the
properties of the table it contains, using the SHOW TABLE STATUS command or querying the table
INFORMATION_SCHEMA.TABLES. If the Row_format of the table is reported as 'Compressed' or
'Dynamic', the tablespace containing the table uses the Barracuda format. Otherwise, it uses the
prior InnoDB file format, Antelope.



Verifying File Format Compatibility

1679

Internal Details

Every InnoDB file-per-table tablespace (represented by a *.ibd file) file is labeled with a file format
identifier. The system tablespace (represented by the ibdata files) is tagged with the “highest” file
format in use in a group of InnoDB database files, and this tag is checked when the files are opened.

Creating a compressed table, or a table with ROW_FORMAT=DYNAMIC, updates the file header of
the corresponding file-per-table .ibd file and the table type in the InnoDB data dictionary with the
identifier for the Barracuda file format. From that point forward, the table cannot be used with a version
of InnoDB that does not support the Barracuda file format. To protect against anomalous behavior,
InnoDB version 5.0.21 and later performs a compatibility check when the table is opened. (In many
cases, the ALTER TABLE statement recreates a table and thus changes its properties. The special
case of adding or dropping indexes without rebuilding the table is described in Section 14.16, “InnoDB
Fast Index Creation”.)

Definition of ib-file set

To avoid confusion, for the purposes of this discussion we define the term “ib-file set” to mean the set
of operating system files that InnoDB manages as a unit. The ib-file set includes the following files:

• The system tablespace (one or more ibdata files) that contain internal system information
(including internal catalogs and undo information) and may include user data and indexes.

• Zero or more single-table tablespaces (also called “file per table” files, named *.ibd files).

• InnoDB log files; usually two, ib_logfile0 and ib_logfile1. Used for crash recovery and in
backups.

An “ib-file set” does not include the corresponding .frm files that contain metadata about InnoDB
tables. The .frm files are created and managed by MySQL, and can sometimes get out of sync with
the internal metadata in InnoDB.

Multiple tables, even from more than one database, can be stored in a single “ib-file set”. (In MySQL, a
“database” is a logical collection of tables, what other systems refer to as a “schema” or “catalog”.)

14.13.2.1 Compatibility Check When InnoDB Is Started

To prevent possible crashes or data corruptions when InnoDB opens an ib-file set, it checks that it can
fully support the file formats in use within the ib-file set. If the system is restarted following a crash, or
a “fast shutdown” (i.e., innodb_fast_shutdown is greater than zero), there may be on-disk data
structures (such as redo or undo entries, or doublewrite pages) that are in a “too-new” format for the
current software. During the recovery process, serious damage can be done to your data files if these
data structures are accessed. The startup check of the file format occurs before any recovery process
begins, thereby preventing consistency issues with the new tables or startup problems for the MySQL
server.

Beginning with version InnoDB 1.0.1, the system tablespace records an identifier or tag for
the “highest” file format used by any table in any of the tablespaces that is part of the ib-
file set. Checks against this file format tag are controlled by the configuration parameter
innodb_file_format_check, which is ON by default.

If the file format tag in the system tablespace is newer or higher than the highest version supported by
the particular currently executing software and if innodb_file_format_check is ON, the following
error is issued when the server is started:

InnoDB: Error: the system tablespace is in a
file format that this version doesn't support

You can also set innodb_file_format to a file format name. Doing so prevents InnoDB from
starting if the current software does not support the file format specified. It also sets the “high water
mark” to the value you specify. The ability to set innodb_file_format_check is useful (with future



Verifying File Format Compatibility

1680

releases) if you manually “downgrade” all of the tables in an ib-file set (as described in Section 14.4,
“Downgrading the InnoDB Storage Engine”). You can then rely on the file format check at startup if you
subsequently use an older version of InnoDB to access the ib-file set.

In some limited circumstances, you might want to start the server and use an ib-file set that is in a new
file format that is not supported by the software you are using. If you set the configuration parameter
innodb_file_format_check to OFF, InnoDB opens the database, but issues this warning message
in the error log:

InnoDB: Warning: the system tablespace is in a
file format that this version doesn't support

Note

This is a dangerous setting, as it permits the recovery process to run,
possibly corrupting your database if the previous shutdown was a crash
or “fast shutdown”. You should only set innodb_file_format_check
to OFF if you are sure that the previous shutdown was done with
innodb_fast_shutdown=0, so that essentially no recovery process occurs.

The parameter innodb_file_format_check affects only what happens when a database is
opened, not subsequently. Conversely, the parameter innodb_file_format (which enables a
specific format) only determines whether or not a new table can be created in the enabled format and
has no effect on whether or not a database can be opened.

The file format tag is a “high water mark”, and as such it is increased after the server is started, if a
table in a “higher” format is created or an existing table is accessed for read or write (assuming its
format is supported). If you access an existing table in a format higher than the format the running
software supports, the system tablespace tag is not updated, but table-level compatibility checking
applies (and an error is issued), as described in Section 14.13.2.2, “Compatibility Check When a Table
Is Opened”. Any time the high water mark is updated, the value of innodb_file_format_check is
updated as well, so the command SELECT @@innodb_file_format_check; displays the name of
the latest file format known to be used by tables in the currently open ib-file set and supported by the
currently executing software.

14.13.2.2 Compatibility Check When a Table Is Opened

When a table is first accessed, InnoDB (including some releases prior to InnoDB 1.0) checks that
the file format of the tablespace in which the table is stored is fully supported. This check prevents
crashes or corruptions that would otherwise occur when tables using a “too new” data structure are
encountered.

All tables using any file format supported by a release can be read or written (assuming the user has
sufficient privileges). The setting of the system configuration parameter innodb_file_format can
prevent creating a new table that uses a specific file format, even if the file format is supported by a
given release. Such a setting might be used to preserve backward compatibility, but it does not prevent
accessing any table that uses a supported format.

Versions of MySQL older than 5.0.21 cannot reliably use database files created by newer versions if a
new file format was used when a table was created. To prevent various error conditions or corruptions,
InnoDB checks file format compatibility when it opens a file (for example, upon first access to a table).
If the currently running version of InnoDB does not support the file format identified by the table type in
the InnoDB data dictionary, MySQL reports the following error:

ERROR 1146 (42S02): Table 'test.t1' doesn't exist

InnoDB also writes a message to the error log:

InnoDB: table test/t1: unknown table type 33



Identifying the File Format in Use

1681

The table type should be equal to the tablespace flags, which contains the file format version as
discussed in Section 14.13.3, “Identifying the File Format in Use”.

Versions of InnoDB prior to MySQL 4.1 did not include table format identifiers in the database files, and
versions prior to MySQL 5.0.21 did not include a table format compatibility check. Therefore, there is no
way to ensure proper operations if a table in a newer file format is used with versions of InnoDB prior to
5.0.21.

The file format management capability in InnoDB 1.0 and higher (tablespace tagging and run-time
checks) allows InnoDB to verify as soon as possible that the running version of software can properly
process the tables existing in the database.

If you permit InnoDB to open a database containing files in a format it does not support (by setting the
parameter innodb_file_format_check to OFF), the table-level checking described in this section
still applies.

Users are strongly urged not to use database files that contain Barracuda file format tables with
releases of InnoDB older than the MySQL 5.1 with the InnoDB Plugin. It is possible to “downgrade”
such tables to the Antelope format with the procedure described in Section 14.13.4, “Downgrading the
File Format”.

14.13.3 Identifying the File Format in Use

If you enable a different file format using the innodb_file_format configuration option, the change
only applies to newly created tables. Also, when you create a new table, the tablespace containing the
table is tagged with the “earliest” or “simplest” file format that is required to support the table's features.
For example, if you enable the Barracuda file format, and create a new table that does not use the
Dynamic or Compressed row format, the new tablespace that contains the table is tagged as using the
Antelope file format .

It is easy to identify the file format used by a given table. The table uses the Antelope file format if the
row format reported by SHOW TABLE STATUS is either Compact or Redundant. The table uses the
Barracuda file format if the row format reported by SHOW TABLE STATUS is either Compressed or
Dynamic.

mysql> SHOW TABLE STATUS\G
*************************** 1. row ***************************
           Name: t1
         Engine: InnoDB
        Version: 10
     Row_format: Compact
           Rows: 0
 Avg_row_length: 0
    Data_length: 16384
Max_data_length: 0
   Index_length: 16384
      Data_free: 0
 Auto_increment: 1
    Create_time: 2014-11-03 13:32:10
    Update_time: NULL
     Check_time: NULL
      Collation: latin1_swedish_ci
       Checksum: NULL
 Create_options:
        Comment:

14.13.4 Downgrading the File Format

Each InnoDB tablespace file (with a name matching *.ibd) is tagged with the file format used to
create its table and indexes. The way to downgrade the tablespace is to re-create the table and its
indexes. The easiest way to recreate a table and its indexes is to use the command:



InnoDB Row Storage and Row Formats

1682

ALTER TABLE t ROW_FORMAT=COMPACT;

on each table that you want to downgrade. The COMPACT row format uses the file format Antelope. It
was introduced in MySQL 5.0.3.

14.14 InnoDB Row Storage and Row Formats
This section discusses how InnoDB features such as table compression and off-page storage of
long variable-length column values are controlled by the ROW_FORMAT clause of the CREATE TABLE
statement. It also discusses considerations for choosing the right row format, and compatibility of row
formats between MySQL releases.

14.14.1 Overview of InnoDB Row Storage

The storage for rows and associated columns affects performance for queries and DML operations. As
more rows fit into a single disk page, queries and index lookups can work faster, less cache memory is
required in the InnoDB buffer pool, and less I/O is required to write out updated values for the numeric
and short string columns.

The data in each InnoDB table is divided into pages. The pages that make up each table are arranged
in a tree data structure called a B-tree index. Table data and secondary indexes both use this type of
structure. The B-tree index that represents an entire table is known as the clustered index, which is
organized according to the primary key columns. The nodes of the index data structure contain the
values of all the columns in that row (for the clustered index) or the index columns and the primary key
columns (for secondary indexes).

Variable-length columns are an exception to this rule. Columns such as BLOB and VARCHAR that are
too long to fit on a B-tree page are stored on separately allocated disk pages called overflow pages.
We call such columns off-page columns. The values of these columns are stored in singly-linked lists of
overflow pages, and each such column has its own list of one or more overflow pages. In some cases,
all or a prefix of the long column value is stored in the B-tree, to avoid wasting storage and eliminating
the need to read a separate page.

The Barracuda file format provides a new option (KEY_BLOCK_SIZE) to control how much column data
is stored in the clustered index, and how much is placed on overflow pages.

The following sections describe how to configure the row format of InnoDB tables to control how
variable-length columns values are stored. Row format configuration also determines the availability of
the table compression feature.

14.14.2 Specifying the Row Format for a Table

You specify the row format for a table with the ROW_FORMAT clause of the CREATE TABLE and ALTER
TABLE statements. For example:

CREATE TABLE t1 (f1 int unsigned) ROW_FORMAT=DYNAMIC ENGINE=INNODB;

InnoDB ROW_FORMAT options include COMPACT, REDUNDANT, DYNAMIC, and COMPRESSED.
For InnoDB tables, rows are stored in COMPACT format (ROW_FORMAT=COMPACT) by default. Refer to
the CREATE TABLE documentation for additional information about the ROW_FORMAT table option.

The physical row structure of an InnoDB table is dependant on the row format. See Section 14.11.1.2,
“The Physical Row Structure of an InnoDB Table” for more information.

14.14.3 DYNAMIC and COMPRESSED Row Formats

This section discusses the DYNAMIC and COMPRESSED row formats for InnoDB tables. To create
tables that use these row formats, innodb_file_format must be set to Barracuda, and
innodb_file_per_table must be enabled. (The Barracuda file format also allows the COMPACT and
REDUNDANT row formats.)



COMPACT and REDUNDANT Row Formats

1683

When a table is created with ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, InnoDB can
store long variable-length column values (for VARCHAR, VARBINARY, and BLOB and TEXT types)
fully off-page, with the clustered index record containing only a 20-byte pointer to the overflow page.
InnoDB also encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length
fields. For example, a CHAR(255) column can exceed 768 bytes if the maximum byte length of the
character set is greater than 3, as it is with utf8mb4.

Whether any columns are stored off-page depends on the page size and the total size of the row.
When the row is too long, InnoDB chooses the longest columns for off-page storage until the clustered
index record fits on the B-tree page. TEXT and BLOB columns that are less than or equal to 40 bytes
are always stored in-line.

The DYNAMIC row format maintains the efficiency of storing the entire row in the index node if it fits
(as do the COMPACT and REDUNDANT formats), but this new format avoids the problem of filling B-tree
nodes with a large number of data bytes of long columns. The DYNAMIC format is based on the idea
that if a portion of a long data value is stored off-page, it is usually most efficient to store all of the value
off-page. With DYNAMIC format, shorter columns are likely to remain in the B-tree node, minimizing the
number of overflow pages needed for any given row.

The COMPRESSED row format uses similar internal details for off-page storage as the DYNAMIC
row format, with additional storage and performance considerations from the table and index data
being compressed and using smaller page sizes. With the COMPRESSED row format, the option
KEY_BLOCK_SIZE controls how much column data is stored in the clustered index, and how much
is placed on overflow pages. For full details about the COMPRESSED row format, see Section 14.12,
“InnoDB Table Compression”.

ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPRESSED are variations of ROW_FORMAT=COMPACT
and therefore handle CHAR storage in the same way as ROW_FORMAT=COMPACT. For more information,
see Section 14.11.1.2, “The Physical Row Structure of an InnoDB Table”.

14.14.4 COMPACT and REDUNDANT Row Formats

Early versions of InnoDB used an unnamed file format (now called Antelope) for database files. With
that file format, tables are defined with ROW_FORMAT=COMPACT or ROW_FORMAT=REDUNDANT. With
these row formats, InnoDB stores up to the first 768 bytes of variable-length columns (VARCHAR,
VARBINARY, and BLOB and TEXT types) in the index record within the B-tree node, with the remainder
stored on the overflow pages. InnoDB also encodes fixed-length fields greater than or equal to 768
bytes in length as variable-length fields, which can be stored off-page. For example, a CHAR(255)
column can exceed 768 bytes if the maximum byte length of the character set is greater than 3, as it is
with utf8mb4.

With the Antelope file format, if the value of a column is 768 bytes or less, no overflow page is needed,
and some savings in I/O may result, since the value is in the B-tree node. This works well for relatively
short BLOBs, but may cause B-tree nodes to fill with data rather than key values, reducing their
efficiency. Tables with many BLOB columns could cause B-tree nodes to become too full of data,
and contain too few rows, making the entire index less efficient than if the rows were shorter or if the
column values were stored off-page.

To preserve compatibility with prior versions of InnoDB, InnoDB tables created in MySQL 5.5
default to the COMPACT row format rather than the newer DYNAMIC row format. See Section 14.14.3,
“DYNAMIC and COMPRESSED Row Formats” for more information.

For information about the physical row structure of tables that use the REDUNDANT or COMPACT row
format, see Section 14.11.1.2, “The Physical Row Structure of an InnoDB Table”.

14.15 InnoDB Disk I/O and File Space Management
As a DBA, you must manage disk I/O to keep the I/O subsystem from becoming saturated, and
manage disk space to avoid filling up storage devices. The ACID design model requires a certain
amount of I/O that might seem redundant, but helps to ensure data reliability. Within these constraints,



InnoDB Disk I/O

1684

InnoDB tries to optimize the database work and the organization of disk files to minimize the amount
of disk I/O. Sometimes, I/O is postponed until the database is not busy, or until everything needs to be
brought to a consistent state, such as during a database restart after a fast shutdown.

This section discusses the main considerations for I/O and disk space with the default kind of MySQL
tables (also known as InnoDB tables):

• Controlling the amount of background I/O used to improve query performance.

• Enabling or disabling features that provide extra durability at the expense of additional I/O.

• Organizing tables into many small files, a few larger files, or a combination of both.

• Balancing the size of redo log files against the I/O activity that occurs when the log files become full.

• How to reorganize a table for optimal query performance.

14.15.1 InnoDB Disk I/O

InnoDB uses asynchronous disk I/O where possible, by creating a number of threads to handle I/O
operations, while permitting other database operations to proceed while the I/O is still in progress. On
Linux and Windows platforms, InnoDB uses the available OS and library functions to perform “native”
asynchronous I/O. On other platforms, InnoDB still uses I/O threads, but the threads may actually wait
for I/O requests to complete; this technique is known as “simulated” asynchronous I/O.

Read-Ahead

If InnoDB can determine there is a high probability that data might be needed soon, it performs read-
ahead operations to bring that data into the buffer pool so that it is available in memory. Making a few
large read requests for contiguous data can be more efficient than making several small, spread-out
requests. There are two read-ahead heuristics in InnoDB:

• In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the tablespace
is sequential, it posts in advance a batch of reads of database pages to the I/O system.

• In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the process
of being fully read into the buffer pool, it posts the remaining reads to the I/O system.

For information about configuring read-ahead heuristics, see Section 14.9.2.4, “Configuring InnoDB
Buffer Pool Prefetching (Read-Ahead)”.

Doublewrite Buffer

InnoDB uses a novel file flush technique involving a structure called the doublewrite buffer, which
is enabled by default (innodb_doublewrite=ON). It adds safety to recovery following a crash or
power outage, and improves performance on most varieties of Unix by reducing the need for fsync()
operations.

Before writing pages to a data file, InnoDB first writes them to a contiguous tablespace area called
the doublewrite buffer. Only after the write and the flush to the doublewrite buffer has completed
does InnoDB write the pages to their proper positions in the data file. If there is an operating system,
storage subsystem, or mysqld process crash in the middle of a page write (causing a torn page
condition), InnoDB can later find a good copy of the page from the doublewrite buffer during recovery.

14.15.2 File Space Management

The data files that you define in the configuration file using the innodb_data_file_path
configuration option form the InnoDB system tablespace. The files are logically concatenated to
form the system tablespace. There is no striping in use. You cannot define where within the system
tablespace your tables are allocated. In a newly created system tablespace, InnoDB allocates space
starting from the first data file.



File Space Management

1685

To avoid the issues that come with storing all tables and indexes inside the system tablespace, you can
enable the innodb_file_per_table configuration option, which stores each newly created table in
a separate tablespace file (with extension .ibd). For tables stored this way, there is less fragmentation
within the disk file, and when the table is truncated, the space is returned to the operating system
rather than still being reserved by InnoDB within the system tablespace.

Pages, Extents, Segments, and Tablespaces

Each tablespace consists of database pages with a default size of 16KB. The pages are grouped
into extents of size 1MB (64 consecutive pages). The “files” inside a tablespace are called segments
in InnoDB. (These segments are different from the rollback segment, which actually contains many
tablespace segments.)

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it one at a time.
After that, InnoDB starts to allocate whole extents to the segment. InnoDB can add up to 4 extents at
a time to a large segment to ensure good sequentiality of data.

Two segments are allocated for each index in InnoDB. One is for nonleaf nodes of the B-tree, the
other is for the leaf nodes. Keeping the leaf nodes contiguous on disk enables better sequential I/O
operations, because these leaf nodes contain the actual table data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an
InnoDB tablespace cannot be allocated to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS
statement, InnoDB reports the extents that are definitely free in the tablespace. InnoDB always
reserves some extents for cleanup and other internal purposes; these reserved extents are not
included in the free space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether
the freed space becomes available for other users depends on whether the pattern of deletes frees
individual pages or extents to the tablespace. Dropping a table or deleting all rows from it is guaranteed
to release the space to other users, but remember that deleted rows are physically removed only
by the purge operation, which happens automatically some time after they are no longer needed for
transaction rollbacks or consistent reads. (See Section 14.6, “InnoDB Multi-Versioning”.)

To see information about the tablespace, use the Tablespace Monitor. See Section 14.20, “InnoDB
Monitors”.

How Pages Relate to Table Rows

The maximum row length is slightly less than half a database page. For example, the maximum row
length is slightly less than 8KB for the 16KB InnoDB page size.

If a row does not exceed the half page limit, all of it is stored locally within the page. If a row exceeds
the half page limit, variable-length columns are chosen for external off-page storage until the row fits
within half a page. External off-page storage for variable-length columns differs by row format:

• COMPACT and REDUNDANT Row Formats

When a variable-length column is chosen for external off-page storage, InnoDB stores the first
768 bytes locally in the row, and the rest externally into overflow pages. Each such column has its
own list of overflow pages. The 768-byte prefix is accompanied by a 20-byte value that stores the
true length of the column and points into the overflow list where the rest of the value is stored. See
Section 14.14.4, “COMPACT and REDUNDANT Row Formats”.

• DYNAMIC and COMPRESSED Row Formats

When a variable-length column is chosen for external off-page storage, InnoDB stores a 20-
byte pointer locally in the row, and the rest externally into overflow pages. See Section 14.14.3,
“DYNAMIC and COMPRESSED Row Formats”.



InnoDB Checkpoints

1686

LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB
and TEXT columns, must be less than 4GB.

14.15.3 InnoDB Checkpoints

Making your log files very large may reduce disk I/O during checkpointing. It often makes sense to
set the total size of the log files as large as the buffer pool or even larger. Although in the past large
log files could make crash recovery take excessive time, starting with MySQL 5.5, performance
enhancements to crash recovery make it possible to use large log files with fast startup after a crash.
(Strictly speaking, this performance improvement is available for MySQL 5.1 with the InnoDB Plugin
1.0.7 and higher. It is with MySQL 5.5 that this improvement is available in the default InnoDB storage
engine.)

How Checkpoint Processing Works

InnoDB implements a checkpoint mechanism known as fuzzy checkpointing. InnoDB flushes modified
database pages from the buffer pool in small batches. There is no need to flush the buffer pool in one
single batch, which would disrupt processing of user SQL statements during the checkpointing process.

During crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all
modifications to the database before the label are present in the disk image of the database. Then
InnoDB scans the log files forward from the checkpoint, applying the logged modifications to the
database.

InnoDB writes to its log files on a rotating basis. It also writes checkpoint information to the first
log file at each checkpoint. All committed modifications that make the database pages in the buffer
pool different from the images on disk must be available in the log files in case InnoDB has to do a
recovery. This means that when InnoDB starts to reuse a log file, it has to make sure that the database
page images on disk contain the modifications logged in the log file that InnoDB is going to reuse. In
other words, InnoDB must create a checkpoint and this often involves flushing of modified database
pages to disk.

14.15.4 Defragmenting a Table

Random insertions into or deletions from a secondary index can cause the index to become
fragmented. Fragmentation means that the physical ordering of the index pages on the disk is not close
to the index ordering of the records on the pages, or that there are many unused pages in the 64-page
blocks that were allocated to the index.

One symptom of fragmentation is that a table takes more space than it “should” take. How much that is
exactly, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill factor
may vary from 50% to 100%. Another symptom of fragmentation is that a table scan such as this takes
more time than it “should” take:

SELECT COUNT(*) FROM t WHERE non_indexed_column <> 12345;

The preceding query requires MySQL to perform a full table scan, the slowest type of query for a large
table.

To speed up index scans, you can periodically perform a “null” ALTER TABLE operation, which causes
MySQL to rebuild the table:

ALTER TABLE tbl_name ENGINE=INNODB

Another way to perform a defragmentation operation is to use mysqldump to dump the table to a text
file, drop the table, and reload it from the dump file.

If the insertions into an index are always ascending and records are deleted only from the end, the
InnoDB filespace management algorithm guarantees that fragmentation in the index does not occur.



Reclaiming Disk Space with TRUNCATE TABLE

1687

14.15.5 Reclaiming Disk Space with TRUNCATE TABLE

To reclaim operating system disk space when truncating an InnoDB table, the table must be stored in
its own .ibd file. For a table to be stored in its own .ibd file, innodb_file_per_table must enabled
when the table is created. Additionally, there cannot be a foreign key constraint between the table
being truncated and other tables, otherwise the TRUNCATE TABLE operation fails. This is a change
from previous behavior, which would transform the TRUNCATE operation to a DELETE operation that
removes all rows and triggers ON DELETE operations on child tables. A foreign key constraint between
two columns in the same table, however, is permitted.

When a table is truncated, it is dropped and re-created in a new .ibd file (previous versions of
InnoDB would keep the existing .idb file), and the freed space is returned to the operating system.
This is in contrast to truncating InnoDB tables that are stored within the InnoDB system tablespace
(tables created when innodb_file_per_table=OFF), where only InnoDB can use the freed space
after the table is truncated.

The ability to truncate tables and return disk space to the operating system also means that physical
backups can be smaller. Truncating tables that are stored in the system tablespace (tables created
when innodb_file_per_table=OFF) leaves blocks of unused space in the system tablespace.

14.16 InnoDB Fast Index Creation
In MySQL 5.5 and higher, or in MySQL 5.1 with the InnoDB Plugin, creating and dropping secondary
indexes does not copy the contents of the entire table, making this operation much more efficient than
with prior releases.

14.16.1 Overview of Fast Index Creation

With MySQL 5.5 and higher, or MySQL 5.1 with the InnoDB Plugin, creating and dropping secondary
indexes for InnoDB tables is much faster than before. Historically, adding or dropping an index on a
table with existing data could be very slow. The CREATE INDEX and DROP INDEX statements worked
by creating a new, empty table defined with the requested set of indexes, then copying the existing
rows to the new table one-by-one, updating the indexes as the rows are inserted. After all rows from
the original table were copied, the old table was dropped and the copy was renamed with the name of
the original table.

The performance speedup for fast index creation applies to secondary indexes, not to the primary key
index. The rows of an InnoDB table are stored in a clustered index organized based on the primary
key, forming what some database systems call an “index-organized table”. Because the table structure
is so closely tied to the primary key, redefining the primary key still requires copying the data.

This new mechanism also means that you can generally speed the overall process of creating and
loading an indexed table by creating the table with only the clustered index, and adding the secondary
indexes after the data is loaded.

Although no syntax changes are required in the CREATE INDEX or DROP INDEX commands, some
factors affect the performance, space usage, and semantics of this operation (see Section 14.16.6,
“Limitations of Fast Index Creation”).

14.16.2 Examples of Fast Index Creation

It is possible to create multiple indexes on a table with one ALTER TABLE statement. This is relatively
efficient, because the clustered index of the table needs to be scanned only once (although the data is
sorted separately for each new index). For example:

CREATE TABLE T1(A INT PRIMARY KEY, B INT, C CHAR(1)) ENGINE=InnoDB;
INSERT INTO T1 VALUES (1,2,'a'), (2,3,'b'), (3,2,'c'), (4,3,'d'), (5,2,'e');
COMMIT;
ALTER TABLE T1 ADD INDEX (B), ADD UNIQUE INDEX (C);



Implementation Details of Fast Index Creation

1688

The above statements create table T1 with the clustered index (primary key) on column A, insert
several rows, and then build two new indexes on columns B and C. If there were many rows inserted
into T1 before the ALTER TABLE statement, this approach is much more efficient than creating all the
secondary indexes before loading the data.

You can also create the indexes one at a time, but then the clustered index of the table is scanned (as
well as sorted) once for each CREATE INDEX statement. Thus, the following statements are not as
efficient as the ALTER TABLE statement above, even though neither requires recreating the clustered
index for table T1.

CREATE INDEX B ON T1 (B);
CREATE UNIQUE INDEX C ON T1 (C);

Dropping InnoDB secondary indexes also does not require any copying of table data. You can
equally quickly drop multiple indexes with a single ALTER TABLE statement or multiple DROP INDEX
statements:

ALTER TABLE T1 DROP INDEX B, DROP INDEX C;

or:

DROP INDEX B ON T1;
DROP INDEX C ON T1;

Restructuring the clustered index in InnoDB always requires copying the data in the table. For example,
if you create a table without a primary key, InnoDB chooses one for you, which may be the first
UNIQUE key defined on NOT NULL columns, or a system-generated key. Defining a PRIMARY KEY
later causes the data to be copied, as in the following example:

CREATE TABLE T2 (A INT, B INT) ENGINE=InnoDB;
INSERT INTO T2 VALUES (NULL, 1);
ALTER TABLE T2 ADD PRIMARY KEY (B);

When you create a UNIQUE or PRIMARY KEY index, InnoDB must do some extra work. For UNIQUE
indexes, InnoDB checks that the table contains no duplicate values for the key. For a PRIMARY KEY
index, InnoDB also checks that none of the PRIMARY KEY columns contains a NULL. It is best to
define the primary key when you create a table, so you need not rebuild the table later.

14.16.3 Implementation Details of Fast Index Creation

InnoDB has two types of indexes: the clustered index and secondary indexes. Since the clustered
index contains the data values in its B-tree nodes, adding or dropping a clustered index does involve
copying the data, and creating a new copy of the table. A secondary index, however, contains only
the index key and the value of the primary key. This type of index can be created or dropped without
copying the data in the clustered index. Because each secondary index contains copies of the primary
key values (used to access the clustered index when needed), when you change the definition of the
primary key, all secondary indexes are recreated as well.

Dropping a secondary index is simple. Only the internal InnoDB system tables and the MySQL data
dictionary tables are updated to reflect the fact that the index no longer exists. InnoDB returns the
storage used for the index to the tablespace that contained it, so that new indexes or additional table
rows can use the space.

To add a secondary index to an existing table, InnoDB scans the table, and sorts the rows using
memory buffers and temporary files in order by the values of the secondary index key columns. The B-
tree is then built in key-value order, which is more efficient than inserting rows into an index in random
order. Because the B-tree nodes are split when they fill, building the index in this way results in a
higher fill-factor for the index, making it more efficient for subsequent access.

14.16.4 Concurrency Considerations for Fast Index Creation



How Crash Recovery Works with Fast Index Creation

1689

While an InnoDB secondary index is being created or dropped, the table is locked in shared mode.
Any writes to the table are blocked, but the data in the table can be read. When you alter the clustered
index of a table, the table is locked in exclusive mode, because the data must be copied. Thus, during
the creation of a new clustered index, all operations on the table are blocked.

A CREATE INDEX or ALTER TABLE statement for an InnoDB table always waits for currently
executing transactions that are accessing the table to commit or roll back. ALTER TABLE statements
that redefine an InnoDB primary key wait for all SELECT statements that access the table to complete,
or their containing transactions to commit. No transactions whose execution spans the creation of the
index can be accessing the table, because the original table is dropped when the clustered index is
restructured.

Once a CREATE INDEX or ALTER TABLE statement that creates an InnoDB secondary index begins
executing, queries can access the table for read access, but cannot update the table. If an ALTER
TABLE statement is changing the clustered index for an InnoDB table, all queries wait until the
operation completes.

A newly-created InnoDB secondary index contains only the committed data in the table at the time the
CREATE INDEX or ALTER TABLE statement begins to execute. It does not contain any uncommitted
values, old versions of values, or values marked for deletion but not yet removed from the old index.

Because a newly-created index contains only information about data current at the time the index
was created, queries that need to see data that was deleted or changed before the index was created
cannot use the index. The only queries that could be affected by this limitation are those executing in
transactions that began before the creation of the index was begun. For such queries, unpredictable
results could occur. Newer queries can use the index.

14.16.5 How Crash Recovery Works with Fast Index Creation

Although no data is lost if the server crashes while an ALTER TABLE statement is executing, the crash
recovery process is different for clustered indexes and secondary indexes.

If the server crashes while creating an InnoDB secondary index, upon recovery, MySQL drops any
partially created indexes. You must re-run the ALTER TABLE or CREATE INDEX statement.

When a crash occurs during the creation of an InnoDB clustered index, recovery is more complicated,
because the data in the table must be copied to an entirely new clustered index. Remember that all
InnoDB tables are stored as clustered indexes. In the following discussion, we use the word table and
clustered index interchangeably.

MySQL creates the new clustered index by copying the existing data from the original InnoDB table
to a temporary table that has the desired index structure. Once the data is completely copied to this
temporary table, the original table is renamed with a different temporary table name. The temporary
table comprising the new clustered index is renamed with the name of the original table, and the
original table is dropped from the database.

If a system crash occurs while creating a new clustered index, no data is lost, but you must complete
the recovery process using the temporary tables that exist during the process. Since it is rare to re-
create a clustered index or re-define primary keys on large tables, or to encounter a system crash
during this operation, this manual does not provide information on recovering from this scenario.
Contact MySQL support.

14.16.6 Limitations of Fast Index Creation

Take the following considerations into account when creating or dropping InnoDB indexes:

• During index creation, files are written to the temporary directory ($TMPDIR on Unix, %TEMP% on
Windows, or the value of the --tmpdir configuration variable). Each temporary file is large enough
to hold one column that makes up the new index, and each one is removed as soon as it is merged
into the final index.



InnoDB Startup Options and System Variables

1690

• An ALTER TABLE statement that contains DROP INDEX and ADD INDEX clauses that both name
the same index uses a table copy, not Fast Index Creation.

• The table is copied, rather than using Fast Index Creation when you create an index on a
TEMPORARY TABLE. This has been reported as MySQL Bug #39833.

• To avoid consistency issues between the InnoDB data dictionary and the MySQL data dictionary,
the table is copied, rather than using Fast Index Creation when you use the ALTER TABLE ...
RENAME COLUMN syntax.

• The statement ALTER IGNORE TABLE t ADD UNIQUE INDEX does not delete duplicate rows.
This has been reported as MySQL Bug #40344. The IGNORE keyword is ignored. If any duplicate
rows exist, the operation fails with the following error message:

ERROR 23000: Duplicate entry '347' for key 'pl'

• As noted above, a newly-created index contains only information about data current at the time the
index was created. Therefore, you should not run queries in a transaction that might use a secondary
index that did not exist at the beginning of the transaction. There is no way for InnoDB to access
“old” data that is consistent with the rest of the data read by the transaction. See the discussion of
locking in Section 14.16.4, “Concurrency Considerations for Fast Index Creation”.

Prior to InnoDB storage engine 1.0.4, unexpected results could occur if a query attempts to use an
index created after the start of the transaction containing the query. If an old transaction attempts to
access a “too new” index, InnoDB storage engine 1.0.4 and later reports an error:

ERROR HY000: Table definition has changed, please retry transaction

As the error message suggests, committing (or rolling back) the transaction, and restarting it, cures
the problem.

• InnoDB storage engine 1.0.2 introduces some improvements in error handling when users attempt to
drop indexes. See Section B.3, “Server Error Codes and Messages” for information related to errors
1025, 1553, and 1173.

• MySQL 5.5 does not support efficient creation or dropping of FOREIGN KEY constraints. Therefore, if
you use ALTER TABLE to add or remove a REFERENCES constraint, the child table is copied, rather
than using Fast Index Creation.

• OPTIMIZE TABLE for an InnoDB table is mapped to an ALTER TABLE operation to rebuild the
table and update index statistics and free unused space in the clustered index. This operation does
not use fast index creation. Secondary indexes are not created as efficiently because keys are
inserted in the order they appeared in the primary key.

14.17 InnoDB Startup Options and System Variables
This section describes the InnoDB-related command options and system variables.

• System variables that are true or false can be enabled at server startup by naming them, or
disabled by using a --skip- prefix. For example, to enable or disable InnoDB checksums, you
can use --innodb_checksums or --skip-innodb_checksums on the command line, or
innodb_checksums or skip-innodb_checksums in an option file.

• System variables that take a numeric value can be specified as --var_name=value on the
command line or as var_name=value in option files.

• Many system variables can be changed at runtime (see Section 5.1.6.2, “Dynamic System
Variables”).

• For information about GLOBAL and SESSION variable scope modifiers, refer to the SET statement
documentation.



InnoDB Startup Options and System Variables

1691

• Certain options control the locations and layout of the InnoDB data files. Section 14.9.1, “InnoDB
Startup Configuration” explains how to use these options.

• Some options, which you might not use initially, help tune InnoDB performance characteristics
based on machine capacity and your database workload.

• For more information on specifying options and system variables, see Section 4.2.3, “Specifying
Program Options”.

Table 14.6 InnoDB Option/Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

foreign_key_checks  Yes  Varies Yes

have_innodb   Yes  Global No

ignore-builtin-
innodb

Yes Yes   Global No

- Variable:
ignore_builtin_innodb

  Yes  Global No

innodb Yes Yes     

innodb_adaptive_flushingYes Yes Yes  Global Yes

innodb_adaptive_hash_indexYes Yes Yes  Global Yes

innodb_additional_mem_pool_sizeYes Yes Yes  Global No

innodb_autoextend_incrementYes Yes Yes  Global Yes

innodb_autoinc_lock_modeYes Yes Yes  Global No

Innodb_buffer_pool_bytes_data   Yes Global No

Innodb_buffer_pool_bytes_dirty   Yes Global No

innodb_buffer_pool_instancesYes Yes Yes  Global No

Innodb_buffer_pool_pages_data   Yes Global No

Innodb_buffer_pool_pages_dirty   Yes Global No

Innodb_buffer_pool_pages_flushed   Yes Global No

Innodb_buffer_pool_pages_free   Yes Global No

Innodb_buffer_pool_pages_latched   Yes Global No

Innodb_buffer_pool_pages_misc   Yes Global No

Innodb_buffer_pool_pages_total   Yes Global No

Innodb_buffer_pool_read_ahead   Yes Global No

Innodb_buffer_pool_read_ahead_evicted   Yes Global No

Innodb_buffer_pool_read_ahead_rnd   Yes Global No

Innodb_buffer_pool_read_requests   Yes Global No

Innodb_buffer_pool_reads   Yes Global No

innodb_buffer_pool_sizeYes Yes Yes  Global No

Innodb_buffer_pool_wait_free   Yes Global No

Innodb_buffer_pool_write_requests   Yes Global No

innodb_change_bufferingYes Yes Yes  Global Yes

innodb_change_buffering_debugYes Yes Yes  Global Yes

innodb_checksumsYes Yes Yes  Global No

innodb_commit_concurrencyYes Yes Yes  Global Yes

innodb_concurrency_ticketsYes Yes Yes  Global Yes



InnoDB Startup Options and System Variables

1692

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_data_file_pathYes Yes Yes  Global No

Innodb_data_fsyncs   Yes Global No

innodb_data_home_dirYes Yes Yes  Global No

Innodb_data_pending_fsyncs   Yes Global No

Innodb_data_pending_reads   Yes Global No

Innodb_data_pending_writes   Yes Global No

Innodb_data_read    Yes Global No

Innodb_data_reads   Yes Global No

Innodb_data_writes   Yes Global No

Innodb_data_written   Yes Global No

Innodb_dblwr_pages_written   Yes Global No

Innodb_dblwr_writes   Yes Global No

innodb_doublewriteYes Yes Yes  Global No

innodb_fast_shutdownYes Yes Yes  Global Yes

innodb_file_formatYes Yes Yes  Global Yes

innodb_file_format_checkYes Yes Yes  Global Varies

innodb_file_format_maxYes Yes Yes  Global Yes

innodb_file_per_tableYes Yes Yes  Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes  Global Yes

innodb_flush_methodYes Yes Yes  Global No

innodb_force_load_corruptedYes Yes Yes  Global No

innodb_force_recoveryYes Yes Yes  Global No

Innodb_have_atomic_builtins   Yes Global No

innodb_io_capacityYes Yes Yes  Global Yes

innodb_large_prefixYes Yes Yes  Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes  Global Yes

innodb_lock_wait_timeoutYes Yes Yes  Both Yes

innodb_locks_unsafe_for_binlogYes Yes Yes  Global No

innodb_log_buffer_sizeYes Yes Yes  Global No

innodb_log_file_sizeYes Yes Yes  Global No

innodb_log_files_in_groupYes Yes Yes  Global No

innodb_log_group_home_dirYes Yes Yes  Global No

Innodb_log_waits    Yes Global No

Innodb_log_write_requests   Yes Global No

Innodb_log_writes    Yes Global No

innodb_max_dirty_pages_pctYes Yes Yes  Global Yes

innodb_max_purge_lagYes Yes Yes  Global Yes

innodb_mirrored_log_groupsYes Yes Yes  Global No

innodb_old_blocks_pctYes Yes Yes  Global Yes

innodb_old_blocks_timeYes Yes Yes  Global Yes

innodb_open_files Yes Yes Yes  Global No



InnoDB Startup Options and System Variables

1693

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_os_log_fsyncs   Yes Global No

Innodb_os_log_pending_fsyncs   Yes Global No

Innodb_os_log_pending_writes   Yes Global No

Innodb_os_log_written   Yes Global No

Innodb_page_size    Yes Global No

Innodb_pages_created   Yes Global No

Innodb_pages_read   Yes Global No

Innodb_pages_written   Yes Global No

innodb_print_all_deadlocksYes Yes Yes  Global Yes

innodb_purge_batch_sizeYes Yes Yes  Global Yes

innodb_purge_threadsYes Yes Yes  Global No

innodb_random_read_aheadYes Yes Yes  Global Yes

innodb_read_ahead_thresholdYes Yes Yes  Global Yes

innodb_read_io_threadsYes Yes Yes  Global No

innodb_replication_delayYes Yes Yes  Global Yes

innodb_rollback_on_timeoutYes Yes Yes  Global No

innodb_rollback_segmentsYes Yes Yes  Global Yes

Innodb_row_lock_current_waits   Yes Global No

Innodb_row_lock_time   Yes Global No

Innodb_row_lock_time_avg   Yes Global No

Innodb_row_lock_time_max   Yes Global No

Innodb_row_lock_waits   Yes Global No

Innodb_rows_deleted   Yes Global No

Innodb_rows_inserted   Yes Global No

Innodb_rows_read   Yes Global No

Innodb_rows_updated   Yes Global No

innodb_spin_wait_delayYes Yes Yes  Global Yes

innodb_stats_methodYes Yes Yes  Global Yes

innodb_stats_on_metadataYes Yes Yes  Global Yes

innodb_stats_sample_pagesYes Yes Yes  Global Yes

innodb-status-file Yes Yes     

innodb_strict_modeYes Yes Yes  Both Yes

innodb_support_xaYes Yes Yes  Both Yes

innodb_sync_spin_loopsYes Yes Yes  Global Yes

innodb_table_locksYes Yes Yes  Both Yes

innodb_thread_concurrencyYes Yes Yes  Global Yes

innodb_thread_sleep_delayYes Yes Yes  Global Yes

Innodb_truncated_status_writes   Yes Global No

innodb_trx_purge_view_update_only_debugYes Yes Yes  Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes  Global Yes

innodb_use_native_aioYes Yes Yes  Global No



InnoDB Command Options

1694

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_use_sys_mallocYes Yes Yes  Global No

innodb_version   Yes  Global No

innodb_write_io_threadsYes Yes Yes  Global No

timed_mutexes Yes Yes Yes  Global Yes

unique_checks   Yes  Varies Yes

InnoDB Command Options

•   --ignore-builtin-innodb

Deprecated 5.5.22

Command-Line Format --ignore-builtin-innodb

Name ignore_builtin_innodb

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type boolean

In MySQL 5.1, this option caused the server to behave as if the built-in InnoDB were not present,
which enabled the InnoDB Plugin to be used instead. In MySQL 5.5, InnoDB is the default
storage engine and InnoDB Plugin is not used, so this option has no effect. As of MySQL 5.5.22,
it is deprecated and its use results in a warning.

•   --innodb[=value]

Command-Line Format --innodb[=value]

Type enumeration

Default ON

OFF

ON

Permitted Values

Valid
Values

FORCE

Controls loading of the InnoDB storage engine, if the server was compiled with InnoDB support.
This option has a tristate format, with possible values of OFF, ON, or FORCE. See Section 5.5.2,
“Installing and Uninstalling Plugins”.

To disable InnoDB, use --innodb=OFF or --skip-innodb. In this case, because the default
storage engine is InnoDB, the server does not start unless you also use --default-storage-
engine to set the default to some other engine.

•   --innodb-status-file

Command-Line Format --innodb-status-file

Type booleanPermitted Values

Default OFF

Controls whether InnoDB creates a file named innodb_status.pid in the MySQL data directory.
If enabled, InnoDB periodically writes the output of SHOW ENGINE INNODB STATUS to this file.



InnoDB System Variables

1695

By default, the file is not created. To create it, start mysqld with the --innodb-status-file=1
option. The file is deleted during normal shutdown.

•   --skip-innodb

Disable the InnoDB storage engine. See the description of --innodb.

InnoDB System Variables

•   ignore_builtin_innodb

Deprecated 5.5.22

Command-Line Format --ignore-builtin-innodb

Name ignore_builtin_innodb

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type boolean

See the description of --ignore-builtin-innodb under “InnoDB Command Options” earlier in
this section.

•   innodb_adaptive_flushing

Command-Line Format --innodb-adaptive-flushing=#

Name innodb_adaptive_flushing

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Specifies whether to dynamically adjust the rate of flushing dirty pages in the InnoDB buffer pool
based on the workload. Adjusting the flush rate dynamically is intended to avoid bursts of I/O activity.
This setting is enabled by default. See Section 14.9.2.5, “Configuring InnoDB Buffer Pool Flushing”
for more information. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

•   innodb_adaptive_hash_index

Command-Line Format --innodb-adaptive-hash-index=#

Name innodb_adaptive_hash_index

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

Whether the InnoDB adaptive hash index is enabled or disabled. It may be desirable, depending
on your workload, to dynamically enable or disable adaptive hash indexing to improve query



InnoDB System Variables

1696

performance. Because the adaptive hash index may not be useful for all workloads, conduct
benchmarks with it both enabled and disabled, using realistic workloads. See Section 14.7.3,
“Adaptive Hash Index” for details.

This variable is enabled by default. As of MySQL 5.5, You can modify this parameter using the SET
GLOBAL statement, without restarting the server. Changing the setting requires the SUPER privilege.
You can also use --skip-innodb_adaptive_hash_index at server startup to disable it.

Disabling the adaptive hash index empties the hash table immediately. Normal operations can
continue while the hash table is emptied, and executing queries that were using the hash table
access the index B-trees directly instead. When the adaptive hash index is re-enabled, the hash
table is populated again during normal operation.

•   innodb_additional_mem_pool_size

Command-Line Format --innodb-additional-mem-pool-size=#

Name innodb_additional_mem_pool_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 8388608

Min
Value

2097152

Permitted Values

Max
Value

4294967295

The size in bytes of a memory pool InnoDB uses to store data dictionary information and other
internal data structures. The more tables you have in your application, the more memory you need
to allocate here. If InnoDB runs out of memory in this pool, it starts to allocate memory from the
operating system and writes warning messages to the MySQL error log. The default value is 8MB.

This variable relates to the InnoDB internal memory allocator, which is unused if
innodb_use_sys_malloc is enabled. For more information, see Section 14.9.3, “Configuring the
Memory Allocator for InnoDB”.

•   innodb_autoextend_increment

Command-Line Format --innodb-autoextend-increment=#

Name innodb_autoextend_increment

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 8

Min
Value

1

Permitted Values

Max
Value

1000



InnoDB System Variables

1697

The increment size (in megabytes) for extending the size of an auto-extending system tablespace file
when it becomes full. The default value is 8. For related information, see System Tablespace Data
File Configuration, and Section 14.10.1, “Resizing the InnoDB System Tablespace”.

The innodb_autoextend_increment setting does not affect file-per-table tablespace files. These
files are auto-extending regardless of the innodb_autoextend_increment setting. The initial
extensions are by small amounts, after which extensions occur in increments of 4MB.

•   innodb_autoinc_lock_mode

Command-Line Format --innodb-autoinc-lock-mode=#

Name innodb_autoinc_lock_mode

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1

0

1

Permitted Values

Valid
Values

2

The lock mode to use for generating auto-increment values. Permissible values are 0, 1, or 2, for
“traditional”, “consecutive”, or “interleaved”, respectively. The default setting is 1 (“consecutive”). For
the characteristics of each lock mode, see InnoDB AUTO_INCREMENT Lock Modes.

•   innodb_buffer_pool_instances

Introduced 5.5.4

Command-Line Format --innodb-buffer-pool-instances=#

Name innodb_buffer_pool_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1

Min
Value

1

Permitted Values

Max
Value

64

The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in
the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency,
by reducing contention as different threads read and write to cached pages. Each page that is stored
in or read from the buffer pool is assigned to one of the buffer pool instances randomly, using a
hashing function. Each buffer pool manages its own free lists, flush lists, LRUs, and all other data
structures connected to a buffer pool, and is protected by its own buffer pool mutex.

This option only takes effect when setting innodb_buffer_pool_size to a size of 1GB or
more. The total size you specify is divided among all the buffer pools. For best efficiency, specify a



InnoDB System Variables

1698

combination of innodb_buffer_pool_instances and innodb_buffer_pool_size so that
each buffer pool instance is at least 1GB.

•   innodb_buffer_pool_size

Command-Line Format --innodb-buffer-pool-size=#

Name innodb_buffer_pool_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 134217728

Min
Value

5242880

Permitted Values (32-bit
platforms)

Max
Value

2**32-1

Type integer

Default 134217728

Min
Value

5242880

Permitted Values (64-bit
platforms)

Max
Value

2**64-1

The size in bytes of the buffer pool, the memory area where InnoDB caches table and index data.
The default value is 128MB. The maximum value depends on the CPU architecture; the maximum
is 4294967295 (232-1) on 32-bit systems and 18446744073709551615 (264-1) on 64-bit systems.
On 32-bit systems, the CPU architecture and operating system may impose a lower practical
maximum size than the stated maximum. When the size of the buffer pool is greater than 1GB,
setting innodb_buffer_pool_instances to a value greater than 1 can improve the scalability on
a busy server.

A larger buffer pool requires less disk I/O to access the same table data more than once. On a
dedicated database server, you might set the buffer pool size to 80% of the machine's physical
memory size. Be aware of the following potential issues when configuring buffer pool size, and be
prepared to scale back the size of the buffer pool if necessary.

• Competition for physical memory can cause paging in the operating system.

• InnoDB reserves additional memory for buffers and control structures, so that the total allocated
space is approximately 10% greater than the specified buffer pool size.

• Address space for the buffer pool must be contiguous, which can be an issue on Windows
systems with DLLs that load at specific addresses.

• The time to initialize the buffer pool is roughly proportional to its size. On instances with large
buffer pools, initialization time might be significant.

•   innodb_change_buffering

Command-Line Format --innodb-change-buffering=#

Name innodb_change_bufferingSystem Variable

Variable
Scope

Global



InnoDB System Variables

1699

Dynamic
Variable

Yes

Type enumeration

Default inserts

inserts

Permitted Values (<=
5.5.3)

Valid
Values none

Type enumeration

Default all

none

inserts

deletes

changes

purges

Permitted Values (>=
5.5.4)

Valid
Values

all

Whether InnoDB performs change buffering, an optimization that delays write operations to
secondary indexes so that the I/O operations can be performed sequentially. Permitted values are
described in the following table.

Table 14.7 Permitted Values for innodb_change_buffering

Value Description

none Do not buffer any operations.

inserts Buffer insert operations.

deletes Buffer delete marking operations; strictly speaking, the writes that mark
index records for later deletion during a purge operation.

changes Buffer inserts and delete-marking operations.

purges Buffer the physical deletion operations that happen in the background.

all The default. Buffer inserts, delete-marking operations, and purges.

For more information, see Section 14.7.2, “Change Buffer”, and Section 14.9.4, “Configuring InnoDB
Change Buffering”. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

•   innodb_change_buffering_debug

Command-Line Format --innodb-change-buffering-debug=#

Name innodb_change_buffering_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Max
Value

2

Sets a debug flag for InnoDB change buffering. A value of 1 forces all changes to the change
buffer. A value of 2 causes a crash at merge. A default value of 0 indicates that the change buffering



InnoDB System Variables

1700

debug flag is not set. This option is only available when debugging support is compiled in using the
WITH_DEBUG CMake option.

•   innodb_checksums

Command-Line Format --innodb-checksums

Name innodb_checksums

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

InnoDB can use checksum validation on all pages read from disk to ensure extra fault tolerance
against broken hardware or data files. This validation is enabled by default. Under specialized
circumstances (such as when running benchmarks) this safety feature can be disabled with --
skip-innodb-checksums.

•    innodb_commit_concurrency

Command-Line Format --innodb-commit-concurrency=#

Name innodb_commit_concurrency

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1000

The number of threads that can commit at the same time. A value of 0 (the default) permits any
number of transactions to commit simultaneously.

The value of innodb_commit_concurrency cannot be changed at runtime from zero to nonzero
or vice versa. The value can be changed from one nonzero value to another.

•    innodb_concurrency_tickets

Command-Line Format --innodb-concurrency-tickets=#

Name innodb_concurrency_tickets

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 500

Permitted Values

Min
Value

1



InnoDB System Variables

1701

Max
Value

4294967295

Determines the number of threads that can enter InnoDB concurrently. A thread is placed in a queue
when it tries to enter InnoDB if the number of threads has already reached the concurrency limit.
When a thread is permitted to enter InnoDB, it is given a number of “ tickets” equal to the value of
innodb_concurrency_tickets, and the thread can enter and leave InnoDB freely until it has
used up its tickets. After that point, the thread again becomes subject to the concurrency check (and
possible queuing) the next time it tries to enter InnoDB. The default value is 500.

With a small innodb_concurrency_tickets value, small transactions that only need to process
a few rows compete fairly with larger transactions that process many rows. The disadvantage of
a small innodb_concurrency_tickets value is that large transactions must loop through the
queue many times before they can complete, which extends the amount of time required to complete
their task.

With a large innodb_concurrency_tickets value, large transactions spend less time waiting
for a position at the end of the queue (controlled by innodb_thread_concurrency) and more
time retrieving rows. Large transactions also require fewer trips through the queue to complete their
task. The disadvantage of a large innodb_concurrency_tickets value is that too many large
transactions running at the same time can starve smaller transactions by making them wait a longer
time before executing.

With a non-zero innodb_thread_concurrency value, you may need to adjust the
innodb_concurrency_tickets value up or down to find the optimal balance between
larger and smaller transactions. The SHOW ENGINE INNODB STATUS report shows the
number of tickets remaining for an executing transaction in its current pass through the
queue. This data may also be obtained from the TRX_CONCURRENCY_TICKETS column of the
INFORMATION_SCHEMA.INNODB_TRX table.

For more information, see Section 14.9.5, “Configuring Thread Concurrency for InnoDB”.

•   innodb_data_file_path

Command-Line Format --innodb-data-file-path=name

Name innodb_data_file_path

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default ibdata1:10M:autoextend

Defines the path and file size for individual InnoDB system tablespace data files. The full
directory path for system tablespace data files is formed by concatenating path defined by
innodb_data_home_dir and innodb_data_file_path. File sizes are specified KB, MB or GB
(1024MB) by appending K, M or G to the size value. If specifying the data file size in kilobytes (KB),
do so in multiples of 1024. Otherwise, KB values are rounded to nearest megabyte (MB) boundary.
The sum of the sizes of the files must be at least slightly larger than 10MB. If you do not specify
innodb_data_file_path, the default behavior is to create a single auto-extending data file,
slightly larger than 10MB, named ibdata1. The size limit of individual files is determined by your
operating system. You can set the file size to more than 4GB on operating systems that support
large files. You can also use raw disk partitions as data files. For more information about configuring
system tablespace data files, see Section 14.9.1, “InnoDB Startup Configuration”.

•   innodb_data_home_dir



InnoDB System Variables

1702

Command-Line Format --innodb-data-home-dir=dir_name

Name innodb_data_home_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The common part of the directory path for InnoDB system tablespace data files. This setting does
not affect the location of file-per-table tablespaces when innodb_file_per_table is enabled.
The default value is the MySQL data directory. If you specify the value as an empty string, you can
specify an absolute file paths for innodb_data_file_path.

A trailing slash is required when specifying a value for innodb_data_home_dir. For example:

[mysqld]
innodb_data_home_dir = /path/to/myibdata/

For related information, see Section 14.9.1, “InnoDB Startup Configuration”.

•   innodb_doublewrite

Command-Line Format --innodb-doublewrite

Name innodb_doublewrite

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

When enabled (the default), InnoDB stores all data twice, first to the doublewrite buffer, and then
to the actual data files. This variable can be turned off with --skip-innodb_doublewrite for
benchmarks or cases when top performance is needed rather than concern for data integrity or
possible failures.

For related information, see Section 14.7.7, “Doublewrite Buffer”.

•   innodb_fast_shutdown

Command-Line Format --innodb-fast-shutdown[=#]

Name innodb_fast_shutdown

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

0

1

Permitted Values

Valid
Values

2



InnoDB System Variables

1703

The InnoDB shutdown mode. If the value is 0, InnoDB does a slow shutdown, a full purge and
a change buffer merge before shutting down. If the value is 1 (the default), InnoDB skips these
operations at shutdown, a process known as a fast shutdown. If the value is 2, InnoDB flushes its
logs and shuts down cold, as if MySQL had crashed; no committed transactions are lost, but the
crash recovery operation makes the next startup take longer.

The slow shutdown can take minutes, or even hours in extreme cases where substantial amounts of
data are still buffered. Use the slow shutdown technique before upgrading or downgrading between
MySQL major releases, so that all data files are fully prepared in case the upgrade process updates
the file format.

Use innodb_fast_shutdown=2 in emergency or troubleshooting situations, to get the absolute
fastest shutdown if data is at risk of corruption.

•     innodb_file_format

Command-Line Format --innodb-file-format=#

Name innodb_file_format

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type string

Default Barracuda

Antelope

Permitted Values (<=
5.5.6)

Valid
Values Barracuda

Type string

Default Antelope

Antelope

Permitted Values (>=
5.5.7)

Valid
Values Barracuda

Enables an InnoDB file format for file-per-table tablespaces. Supported file formats are Antelope
and Barracuda. Antelope is the original InnoDB file format, which supports REDUNDANT and
COMPACT row formats for InnoDB tables. Barracuda is the newer file format, which supports
COMPRESSED and DYNAMIC row formats.

COMPRESSED and DYNAMIC row formats enable important storage features for InnoDB tables. See
Section 14.14, “InnoDB Row Storage and Row Formats”.

To create tables that use COMPRESSED or DYNAMIC row format, the Barracuda file format and
innodb_file_per_table must be enabled.

Changing the innodb_file_format setting does not affect the file format of existing InnoDB
tablespace files.

For more information, see Section 14.13, “InnoDB File-Format Management”.

•   innodb_file_format_check

Command-Line Format --innodb-file-format-check=#

Name innodb_file_format_checkSystem Variable (<=
5.5.4) Variable

Scope
Global



InnoDB System Variables

1704

Dynamic
Variable

Yes

Name innodb_file_format_check

Variable
Scope

Global

System Variable (>=
5.5.5)

Dynamic
Variable

No

Type stringPermitted Values (5.5.0)

Default Antelope

Type stringPermitted Values (>=
5.5.1, <= 5.5.4) Default Barracuda

Type booleanPermitted Values (>=
5.5.5) Default ON

As of MySQL 5.5.5, this variable can be set to 1 or 0 at server startup to enable or disable
whether InnoDB checks the file format tag in the system tablespace (for example, Antelope
or Barracuda). If the tag is checked and is higher than that supported by the current version of
InnoDB, an error occurs and InnoDB does not start. If the tag is not higher, InnoDB sets the value
of innodb_file_format_max to the file format tag.

Before MySQL 5.5.5, this variable can be set to 1 or 0 at server startup to enable or disable whether
InnoDB checks the file format tag in the shared tablespace. If the tag is checked and is higher than
that supported by the current version of InnoDB, an error occurs and InnoDB does not start. If the
tag is not higher, InnoDB sets the value of innodb_file_format_check to the file format tag,
which is the value seen at runtime.

Note

Despite the default value sometimes being displayed as ON or OFF, always
use the numeric values 1 or 0 to turn this option on or off in your configuration
file or command line string.

For more information, see Section 14.13.2.1, “Compatibility Check When InnoDB Is Started”.

•   innodb_file_format_max

Introduced 5.5.5

Command-Line Format --innodb-file-format-max=#

Name innodb_file_format_max

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type string

Default Antelope

Antelope

Permitted Values

Valid
Values Barracuda

At server startup, InnoDB sets the value of this variable to the file format tag in the system
tablespace (for example, Antelope or Barracuda). If the server creates or opens a table with a
“higher” file format, it sets the value of innodb_file_format_max to that format.



InnoDB System Variables

1705

For related information, see Section 14.13, “InnoDB File-Format Management”.

•   innodb_file_per_table

Command-Line Format --innodb-file-per-table

Name innodb_file_per_table

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values (<=
5.5.6) Default ON

Type booleanPermitted Values (>=
5.5.7) Default OFF

When innodb_file_per_table is disabled, InnoDB stores the data for tables and indexes
in the ibdata files that make up the system tablespace. This setting reduces the performance
overhead of file system operations for operations such as DROP TABLE or TRUNCATE TABLE. It
is most appropriate for a server environment where entire storage devices are devoted to MySQL
data. Because the system tablespace never shrinks, and is shared across all databases in an
instance, avoid loading huge amounts of temporary data on a space-constrained system when
innodb_file_per_table is disabled. Set up a separate instance in such cases, so that you can
drop the entire instance to reclaim the space.

When innodb_file_per_table is enabled, InnoDB stores data and indexes for each newly
created table in a separate .ibd file instead of the system tablespace. The storage for these tables
is reclaimed when the tables are dropped or truncated. This setting enables InnoDBfeatures such as
table compression. See Section 14.10.4, “InnoDB File-Per-Table Tablespaces” for more information.

Enabling innodb_file_per_table also means that an ALTER TABLE operation moves an
InnoDB table from the system tablespace to an individual .ibd file in cases where ALTER TABLE
rebuilds the table (ALTER OFFLINE).

innodb_file_per_table is dynamic and can be set ON or OFF using SET GLOBAL.

Dynamically changing the value requires the SUPER privilege and immediately affects the operation
of all connections.

•   innodb_flush_log_at_trx_commit

Command-Line Format --innodb-flush-log-at-trx-commit[=#]

Name innodb_flush_log_at_trx_commit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default 1

0

1

Permitted Values

Valid
Values

2



InnoDB System Variables

1706

Controls the balance between strict ACID compliance for commit operations and higher performance
that is possible when commit-related I/O operations are rearranged and done in batches. You can
achieve better performance by changing the default value but then you can lose up to a second of
transactions in a crash.

• The default value of 1 is required for full ACID compliance. With this value, the contents of the
InnoDB log buffer are written out to the log file at each transaction commit and the log file is
flushed to disk.

• With a value of 0, the contents of the InnoDB log buffer are written to the log file approximately
once per second and the log file is flushed to disk. No writes from the log buffer to the log file
are performed at transaction commit. Once-per-second flushing is not guaranteed to happen
every second due to process scheduling issues. Because the flush to disk operation only occurs
approximately once per second, you can lose up to a second of transactions with any mysqld
process crash.

• With a value of 2, the contents of the InnoDB log buffer are written to the log file after each
transaction commit and the log file is flushed to disk approximately once per second. Once-per-
second flushing is not 100% guaranteed to happen every second, due to process scheduling
issues. Because the flush to disk operation only occurs approximately once per second, you can
lose up to a second of transactions in an operating system crash or a power outage.

• InnoDB crash recovery works regardless of the value. Transactions are either applied entirely or
erased entirely.

For the greatest possible durability and consistency in a replication setup using InnoDB with
transactions, use innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in your master
server my.cnf file.

Caution

Many operating systems and some disk hardware fool the flush-to-disk
operation. They may tell mysqld that the flush has taken place, even though
it has not. In this case, the durability of transactions is not guaranteed even
with the setting 1, and in the worst case, a power outage can corrupt InnoDB
data. Using a battery-backed disk cache in the SCSI disk controller or in the
disk itself speeds up file flushes, and makes the operation safer. You can also
try to disable the caching of disk writes in hardware caches.

•   innodb_flush_method

Command-Line Format --innodb-flush-method=name

Name innodb_flush_method

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default NULL

fsync

littlesync

nosync

O_DSYNC

Permitted Values (Unix)

Valid
Values

O_DIRECT



InnoDB System Variables

1707

Type string

Default NULL

async_unbuffered

normal

Permitted Values
(Windows)

Valid
Values

unbuffered

Defines the method used to flush data to InnoDB data files and log files, which can affect I/O
throughput.

If innodb_flush_method is set to NULL on a Unix-like system, the fsync option is used by
default. If innodb_flush_method is set to NULL on Windows, the async_unbuffered option is
used by default.

The innodb_flush_method options for Unix-like systems include:

• fsync: InnoDB uses the fsync() system call to flush both the data and log files. fsync is the
default setting.

• O_DSYNC: InnoDB uses O_SYNC to open and flush the log files, and fsync() to flush the data
files. InnoDB does not use O_DSYNC directly because there have been problems with it on many
varieties of Unix.

• littlesync: This option is used for internal performance testing and is currently unsupported.
Use at your own risk.

• nosync: This option is used for internal performance testing and is currently unsupported. Use at
your own risk.

• O_DIRECT: InnoDB uses O_DIRECT (or directio() on Solaris) to open the data files, and uses
fsync() to flush both the data and log files. This option is available on some GNU/Linux versions,
FreeBSD, and Solaris.

The innodb_flush_method options for Windows systems include:

• async_unbuffered: InnoDB uses Windows asynchronous I/O and non-buffered I/O.
async_unbuffered is the default setting on Windows systems.

• normal: InnoDB uses simulated asynchronous I/O and buffered I/O. This option is used for
internal performance testing and is currently unsupported. Use at your own risk.

• unbuffered: InnoDB uses simulated asynchronous I/O and non-buffered I/O. This option is used
for internal performance testing and is currently unsupported. Use at your own risk.

How each setting affects performance depends on hardware configuration and workload. Benchmark
your particular configuration to decide which setting to use, or whether to keep the default setting.
Examine the Innodb_data_fsyncs status variable to see the overall number of fsync() calls
for each setting. The mix of read and write operations in your workload can affect how a setting
performs. For example, on a system with a hardware RAID controller and battery-backed write
cache, O_DIRECT can help to avoid double buffering between the InnoDB buffer pool and the
operating system file system cache. On some systems where InnoDB data and log files are located
on a SAN, the default value or O_DSYNC might be faster for a read-heavy workload with mostly
SELECT statements. Always test this parameter with hardware and workload that reflect your
production environment. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/
O”.

Prior to MySQL 5.1.24, the default innodb_flush_method option was named fdatasync. When
fdatasync was specified, InnoDB used the fsync() system call to flush both the data and log



InnoDB System Variables

1708

files. To avoid confusing the fdatasync option name with the fdatasync() system call, the option
name was changed to fsync in MySQL 5.1.24.

•  innodb_force_load_corrupted

Introduced 5.5.18

Command-Line Format --innodb-force-load-corrupted

Name innodb_force_load_corrupted

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

Permits InnoDB to load tables at startup that are marked as corrupted. Use only during
troubleshooting, to recover data that is otherwise inaccessible. When troubleshooting is complete,
disable this setting and restart the server.

•   innodb_force_recovery

Command-Line Format --innodb-force-recovery=#

Name innodb_force_recovery

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

6

The crash recovery mode, typically only changed in serious troubleshooting situations. Possible
values are from 0 to 6. For the meanings of these values and important information about
innodb_force_recovery, see Section 14.23.2, “Forcing InnoDB Recovery”.

Warning

Only set this variable to a value greater than 0 in an emergency situation
so that you can start InnoDB and dump your tables. As a safety measure,
InnoDB prevents INSERT, UPDATE, or DELETE operations when
innodb_force_recovery is greater than 0.

•   innodb_io_capacity

Command-Line Format --innodb-io-capacity=#

Name innodb_io_capacity

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes



InnoDB System Variables

1709

Type integer

Default 200

Min
Value

100

Permitted Values (32-bit
platforms)

Max
Value

2**32-1

Type integer

Default 200

Min
Value

100

Permitted Values (64-bit
platforms)

Max
Value

2**64-1

The innodb_io_capacity parameter sets an upper limit on I/O activity performed by InnoDB
background tasks, such as flushing pages from the buffer pool and merging data from the change
buffer.

The innodb_io_capacity limit is a total limit for all buffer pool instances. When dirty pages are
flushed, the limit is divided equally among buffer pool instances.

innodb_io_capacity should be set to approximately the number of I/O operations that the system
can perform per second. Ideally, keep the setting as low as practical, but not so low that background
activities fall behind. If the value is too high, data is removed from the buffer pool and insert buffer
too quickly for caching to provide a significant benefit.

The default value is 200. For busy systems capable of higher I/O rates, you can set a higher value
to help the server handle the background maintenance work associated with a high rate of row
changes.

In general, you can increase the value as a function of the number of drives used for InnoDB I/O.
For example, you can increase the value on systems that use multiple disks or solid-state disks
(SSD).

The default setting of 200 is generally sufficient for a lower-end SSD. For a higher-end, bus-attached
SSD, consider a higher setting such as 1000, for example. For systems with individual 5400 RPM
or 7200 RPM drives, you might lower the value to the former default of 100, which represents an
estimated proportion of the I/O operations per second (IOPS) available to older-generation disk
drives that can perform about 100 IOPS.

Although you can specify a very high value such as one million, in practice such large values have
little if any benefit. Generally, a value of 20000 or higher is not recommended unless you have
proven that lower values are insufficient for your workload.

Consider write workload when tuning innodb_io_capacity. Systems with large write workloads
are likely to benefit from a higher setting. A lower setting may be sufficient for systems with a small
write workload.

You can set innodb_io_capacity in the MySQL option file (my.cnf or my.ini) or change it
dynamically using a SET GLOBAL statement, which requires the SUPER privilege.

See Section 14.9.8, “Configuring the InnoDB Master Thread I/O Rate” for more information. For
general information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

•   innodb_large_prefix

Introduced 5.5.14



InnoDB System Variables

1710

Command-Line Format --innodb-large-prefix

Name innodb_large_prefix

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Enable this option to allow index key prefixes longer than 767 bytes (up to 3072 bytes), for InnoDB
tables that use DYNAMIC or COMPRESSED row format. (Creating such tables also requires the
option values innodb_file_format=barracuda and innodb_file_per_table=true.) See
Section 14.11.1.7, “Limits on InnoDB Tables” for maximums associated with index key prefixes under
various settings.

For tables that use REDUNDANT or COMPACT row format, this option does not affect the
permitted index key prefix length. When this setting is enabled, attempting to create an index
prefix with a key length greater than 3072 for a REDUNDANT or COMPACT table causes an
ER_INDEX_COLUMN_TOO_LONG error.

•   innodb_limit_optimistic_insert_debug

Command-Line Format --innodb-limit-optimistic-insert-debug=#

Name innodb_limit_optimistic_insert_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

2**32-1

Limits the number of records per B-tree page. A default value of 0 means that no limit is imposed.
This option is only available if debugging support is compiled in using the WITH_DEBUG CMake
option.

•   innodb_lock_wait_timeout

Command-Line Format --innodb-lock-wait-timeout=#

Name innodb_lock_wait_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 50

Permitted Values

Min
Value

1



InnoDB System Variables

1711

Max
Value

1073741824

The length of time in seconds an InnoDB transaction waits for a row lock before giving up. The
default value is 50 seconds. A transaction that tries to access a row that is locked by another
InnoDB transaction waits at most this many seconds for write access to the row before issuing the
following error:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

When a lock wait timeout occurs, the current statement is rolled back (not the entire transaction). To
have the entire transaction roll back, start the server with the --innodb_rollback_on_timeout
option. See also Section 14.23.4, “InnoDB Error Handling”.

You might decrease this value for highly interactive applications or OLTP systems, to display user
feedback quickly or put the update into a queue for processing later. You might increase this value
for long-running back-end operations, such as a transform step in a data warehouse that waits for
other large insert or update operations to finish.

innodb_lock_wait_timeout applies to InnoDB row locks only. A MySQL table lock does not
happen inside InnoDB and this timeout does not apply to waits for table locks.

The lock wait timeout value does not apply to deadlocks, because InnoDB detects them immediately
and rolls back one of the deadlocked transactions. See Section 14.8.5.2, “Deadlock Detection and
Rollback”.

innodb_lock_wait_timeout can be set at runtime with the SET GLOBAL or SET SESSION
statement. Changing the GLOBAL setting requires the SUPER privilege and affects the operation
of all clients that subsequently connect. Any client can change the SESSION setting for
innodb_lock_wait_timeout, which affects only that client.

•   innodb_locks_unsafe_for_binlog

Command-Line Format --innodb-locks-unsafe-for-binlog

Name innodb_locks_unsafe_for_binlog

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

This variable affects how InnoDB uses gap locking for searches and index scans. Normally, InnoDB
uses an algorithm called next-key locking that combines index-row locking with gap locking. InnoDB
performs row-level locking in such a way that when it searches or scans a table index, it sets shared
or exclusive locks on the index records it encounters. Thus, row-level locks are actually index-record
locks. In addition, a next-key lock on an index record also affects the gap before the index record.
That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding the index
record. If one session has a shared or exclusive lock on record R in an index, another session cannot
insert a new index record in the gap immediately before R in the index order. See Section 14.8.1,
“InnoDB Locking”.

By default, the value of innodb_locks_unsafe_for_binlog is 0 (disabled), which means that
gap locking is enabled: InnoDB uses next-key locks for searches and index scans. To enable the
variable, set it to 1. This causes gap locking to be disabled: InnoDB uses only index-record locks for
searches and index scans.



InnoDB System Variables

1712

Enabling innodb_locks_unsafe_for_binlog does not disable the use of gap locking for
foreign-key constraint checking or duplicate-key checking.

The effects of enabling innodb_locks_unsafe_for_binlog are the same as setting the
transaction isolation level to READ COMMITTED, with these exceptions:

• Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions,
whereas the isolation level can be set globally for all sessions, or individually per session.

• innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation
level can be set at startup or changed at runtime.

READ COMMITTED therefore offers finer and more flexible control than
innodb_locks_unsafe_for_binlog. For more information about the effect of isolation level on
gap locking, see Section 14.8.2.1, “Transaction Isolation Levels”.

Enabling innodb_locks_unsafe_for_binlog may cause phantom problems because other
sessions can insert new rows into the gaps when gap locking is disabled. Suppose that there is an
index on the id column of the child table and that you want to read and lock all rows from the table
having an identifier value larger than 100, with the intention of updating some column in the selected
rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where the id is greater than 100. If the locks
set on the index records in that range do not lock out inserts made in the gaps, another session
can insert a new row into the table. Consequently, if you were to execute the same SELECT again
within the same transaction, you would see a new row in the result set returned by the query. This
also means that if new items are added to the database, InnoDB does not guarantee serializability.
Therefore, if innodb_locks_unsafe_for_binlog is enabled, InnoDB guarantees at most an
isolation level of READ COMMITTED. (Conflict serializability is still guaranteed.) For more information
about phantoms, see Section 14.8.4, “Phantom Rows”.

Enabling innodb_locks_unsafe_for_binlog has additional effects:

• For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes.
Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition.
This greatly reduces the probability of deadlocks, but they can still happen.

• For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read,
returning the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads
the row again and this time InnoDB either locks it or waits for a lock on it.

Consider the following example, beginning with this table:

CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

In this case, table has no indexes, so searches and index scans use the hidden clustered index for
record locking (see Section 14.11.2.1, “Clustered and Secondary Indexes”).

Suppose that one client performs an UPDATE using these statements:

SET autocommit = 0;
UPDATE t SET b = 5 WHERE b = 3;



InnoDB System Variables

1713

Suppose also that a second client performs an UPDATE by executing these statements following
those of the first client:

SET autocommit = 0;
UPDATE t SET b = 4 WHERE b = 2;

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row,
and then determines whether to modify it. If InnoDB does not modify the row and
innodb_locks_unsafe_for_binlog is enabled, it releases the lock. Otherwise, InnoDB retains
the lock until the end of the transaction. This affects transaction processing as follows.

If innodb_locks_unsafe_for_binlog is disabled, the first UPDATE acquires x-locks and does
not release any of them:

x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because the first update has
retained locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If innodb_locks_unsafe_for_binlog is enabled, the first UPDATE acquires x-locks and
releases those for rows that it does not modify:

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)

For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed
version of each row to MySQL so that MySQL can determine whether the row matches the WHERE
condition of the UPDATE:

x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock

•   innodb_log_buffer_size

Command-Line Format --innodb-log-buffer-size=#

Name innodb_log_buffer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 8388608

Permitted Values

Min
Value

262144



InnoDB System Variables

1714

Max
Value

4294967295

The size in bytes of the buffer that InnoDB uses to write to the log files on disk. The default value
is 8MB. A large log buffer enables large transactions to run without the need to write the log to disk
before the transactions commit. Thus, if you have transactions that update, insert, or delete many
rows, making the log buffer larger saves disk I/O. For related information, see InnoDB Memory
Configuration, and Section 8.5.3, “Optimizing InnoDB Redo Logging”. For general I/O tuning advice,
see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

•   innodb_log_file_size

Command-Line Format --innodb-log-file-size=#

Name innodb_log_file_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 5242880

Min
Value

1048576

Permitted Values

Max
Value

4GB / innodb_log_files_in_group

The size in bytes of each log file in a log group. The combined size of log files
(innodb_log_file_size * innodb_log_files_in_group) cannot exceed a maximum value
that is slightly less than 4GB. A pair of 2047 MB log files, for example, approaches the limit but does
not exceed it. The default value is 5MB.

Generally, the combined size of the log files should be large enough that the server can smooth out
peaks and troughs in workload activity, which often means that there is enough redo log space to
handle more than an hour of write activity. The larger the value, the less checkpoint flush activity
is required in the buffer pool, saving disk I/O. Larger log files also make crash recovery slower,
although improvements to recovery performance in MySQL 5.5 and higher make the log file size less
of a consideration.

For related information, see InnoDB Log File Configuration. For general I/O tuning advice, see
Section 8.5.7, “Optimizing InnoDB Disk I/O”.

•   innodb_log_files_in_group

Command-Line Format --innodb-log-files-in-group=#

Name innodb_log_files_in_group

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 2

Permitted Values

Min
Value

2



InnoDB System Variables

1715

Max
Value

100

The number of log files in the log group. InnoDB writes to the files in a circular fashion.
The default (and recommended) value is 2. The location of the files is specified by
innodb_log_group_home_dir.

For related information, see InnoDB Log File Configuration.

•   innodb_log_group_home_dir

Command-Line Format --innodb-log-group-home-dir=dir_name

Name innodb_log_group_home_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory path to the InnoDB redo log files, whose number is specified by
innodb_log_files_in_group. If you do not specify any InnoDB log variables, the default is to
create two files named ib_logfile0 and ib_logfile1 in the MySQL data directory. Log file size
is given by the innodb_log_file_size system variable.

For related information, see InnoDB Log File Configuration.

•   innodb_max_dirty_pages_pct

Command-Line Format --innodb-max-dirty-pages-pct=#

Name innodb_max_dirty_pages_pct

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type numeric

Default 75

Min
Value

0

Permitted Values

Max
Value

99

InnoDB tries to flush data from the buffer pool so that the percentage of dirty pages does not exceed
this value. Specify an integer in the range from 0 to 99. The default value is 75.

For additional information about this variable, see Section 14.9.2.5, “Configuring InnoDB Buffer Pool
Flushing”. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

•   innodb_max_purge_lag

Command-Line Format --innodb-max-purge-lag=#

Name innodb_max_purge_lagSystem Variable

Variable
Scope

Global



InnoDB System Variables

1716

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

Controls how to delay INSERT, UPDATE, and DELETE operations when purge operations are lagging
(see Section 14.6, “InnoDB Multi-Versioning”). The default value is 0 (no delays).

The InnoDB transaction system maintains a list of transactions that have index records delete-
marked by UPDATE or DELETE operations. The length of the list represents the purge_lag
value. When purge_lag exceeds innodb_max_purge_lag, INSERT, UPDATE, and DELETE
operations are delayed by ((purge_lag/innodb_max_purge_lag)×10)−5 milliseconds. The delay
is computed in the beginning of a purge batch, every ten seconds. The operations are not delayed if
purge cannot run because of an old consistent read view that could see the rows to be purged.

A typical setting for a problematic workload might be 1 million, assuming that transactions are small,
only 100 bytes in size, and it is permissible to have 100MB of unpurged InnoDB table rows.

The lag value is displayed as the history list length in the TRANSACTIONS section of InnoDB Monitor
output . For example, if the output includes the following lines, the lag value is 20:

------------
TRANSACTIONS
------------
Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
History list length 20

For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

•   innodb_mirrored_log_groups

Has no effect.

•   innodb_old_blocks_pct

Command-Line Format --innodb-old-blocks-pct=#

Name innodb_old_blocks_pct

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 37

Min
Value

5

Permitted Values

Max
Value

95

Specifies the approximate percentage of the InnoDB buffer pool used for the old block sublist. The
range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool).



InnoDB System Variables

1717

For more information, see Section 14.9.2.3, “Making the Buffer Pool Scan Resistant”. For information
about buffer pool management, the LRU algorithm, and eviction policies, see Section 14.9.2.1, “The
InnoDB Buffer Pool”.

•   innodb_old_blocks_time

Command-Line Format --innodb-old-blocks-time=#

Name innodb_old_blocks_time

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

2**32-1

Non-zero values protect against the buffer pool being filled by data that is referenced only for a brief
period, such as during a full table scan. Increasing this value offers more protection against full table
scans interfering with data cached in the buffer pool.

Specifies how long in milliseconds a block inserted into the old sublist must stay there after its first
access before it can be moved to the new sublist. If the value is 0, a block inserted into the old sublist
moves immediately to the new sublist the first time it is accessed, no matter how soon after insertion
the access occurs. If the value is greater than 0, blocks remain in the old sublist until an access
occurs at least that many milliseconds after the first access. For example, a value of 1000 causes
blocks to stay in the old sublist for 1 second after the first access before they become eligible to
move to the new sublist.

This configuration option is often used in combination with innodb_old_blocks_pct. For more
information, see Section 14.9.2.3, “Making the Buffer Pool Scan Resistant”. For information about
buffer pool management, the LRU algorithm, and eviction policies, see Section 14.9.2.1, “The
InnoDB Buffer Pool”.

•   innodb_open_files

Command-Line Format --innodb-open-files=#

Name innodb_open_files

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 300

Min
Value

10

Permitted Values

Max
Value

4294967295



InnoDB System Variables

1718

This configuration option is only relevant if you use multiple InnoDB tablespaces. It specifies the
maximum number of .ibd files that MySQL can keep open at one time. The minimum value is 10.
The default value is 300.

The file descriptors used for .ibd files are for InnoDB tables only. They are independent of those
specified by the --open-files-limit server option, and do not affect the operation of the table
cache.

•   innodb_print_all_deadlocks

Introduced 5.5.30

Command-Line Format --innodb-print-all-deadlocks=#

Name innodb_print_all_deadlocks

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When this option is enabled, information about all deadlocks in InnoDB user transactions is recorded
in the mysqld error log. Otherwise, you see information about only the last deadlock, using the
SHOW ENGINE INNODB STATUS command. An occasional InnoDB deadlock is not necessarily
an issue, because InnoDB detects the condition immediately and rolls back one of the transactions
automatically. You might use this option to troubleshoot why deadlocks are occurring if an application
does not have appropriate error-handling logic to detect the rollback and retry its operation. A
large number of deadlocks might indicate the need to restructure transactions that issue DML or
SELECT ... FOR UPDATE statements for multiple tables, so that each transaction accesses the
tables in the same order, thus avoiding the deadlock condition.

For related information, see Section 14.8.5, “Deadlocks in InnoDB”.

•   innodb_purge_batch_size

Introduced 5.5.4

Command-Line Format --innodb-purge-batch-size=#

Name innodb_purge_batch_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 20

Min
Value

1

Permitted Values (>=
5.5.4)

Max
Value

5000

Defines the number of undo log pages that purge parses and processes in one batch from the history
list. The innodb_purge_batch_size option also defines the number of undo log pages that purge
frees after every 128 iterations through the undo logs.



InnoDB System Variables

1719

The innodb_purge_batch_size option is intended for advanced performance tuning in
combination with the innodb_purge_threads setting. Most MySQL users need not change
innodb_purge_batch_size from its default value.

For related information, see Section 14.9.10, “Configuring InnoDB Purge Scheduling”.

•   innodb_purge_threads

Introduced 5.5.4

Command-Line Format --innodb-purge-threads=#

Name innodb_purge_threads

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values (>=
5.5.4)

Max
Value

1

The number of background threads devoted to the InnoDB purge operation. Currently, can only be
0 (the default) or 1. The default value of 0 signifies that the purge operation is performed as part
of the master thread. Running the purge operation in its own thread can reduce internal contention
within InnoDB, improving scalability. Currently, the performance gain might be minimal because the
background thread might encounter different kinds of contention than before. This feature primarily
lays the groundwork for future performance work.

For related information, see Section 14.9.10, “Configuring InnoDB Purge Scheduling”.

•  innodb_random_read_ahead

Introduced 5.5.16

Command-Line Format --innodb-random-read-ahead=#

Name innodb_random_read_ahead

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Enables the random read-ahead technique for optimizing InnoDB I/O. Random read-ahead
functionality was removed from the InnoDB Plugin (version 1.0.4) and was therefore not
included in MySQL 5.5.0 when InnoDB Plugin became the “built-in” version of InnoDB.
Random read-ahead was reintroduced in MySQL 5.1.59 and 5.5.16 and higher along with the
innodb_random_read_ahead configuration option, which is disabled by default.

For details about performance considerations for different types of read-ahead requests, see
Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”. For general I/O tuning
advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.



InnoDB System Variables

1720

•   innodb_read_ahead_threshold

Command-Line Format --innodb-read-ahead-threshold=#

Name innodb_read_ahead_threshold

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 56

Min
Value

0

Permitted Values

Max
Value

64

Controls the sensitivity of linear read-ahead that InnoDB uses to prefetch pages into the buffer pool.
If InnoDB reads at least innodb_read_ahead_threshold pages sequentially from an extent (64
pages), it initiates an asynchronous read for the entire following extent. The permissible range of
values is 0 to 64. The default is 56: InnoDB must read at least 56 pages sequentially from an extent
to initiate an asynchronous read for the following extent.

Knowing how many pages are read through the read-ahead mechanism, and how many of these
pages are evicted from the buffer pool without ever being accessed, can be useful when fine-
tuning the innodb_read_ahead_threshold setting. As of MySQL 5.5, SHOW ENGINE INNODB
STATUS output displays counter information from the Innodb_buffer_pool_read_ahead and
Innodb_buffer_pool_read_ahead_evicted global status variables, which report the number
of pages brought into the buffer pool by read-ahead requests, and the number of such pages evicted
from the buffer pool without ever being accessed, respectively. The status variables report global
values since the last server restart.

SHOW ENGINE INNODB STATUS also shows the rate at which the read-ahead pages are read in
and the rate at which such pages are evicted without being accessed. The per-second averages are
based on the statistics collected since the last invocation of SHOW ENGINE INNODB STATUS and
are displayed in the BUFFER POOL AND MEMORY section of the SHOW ENGINE INNODB STATUS
output.

For more information, see Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-
Ahead)”. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

•   innodb_read_io_threads

Command-Line Format --innodb-read-io-threads=#

Name innodb_read_io_threads

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4

Min
Value

1

Permitted Values

Max
Value

64



InnoDB System Variables

1721

The number of I/O threads for read operations in InnoDB. Its counterpart for write threads is
innodb_write_io_threads. For more information, see Section 14.9.6, “Configuring the Number
of Background InnoDB I/O Threads”. For general I/O tuning advice, see Section 8.5.7, “Optimizing
InnoDB Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can
exceed system limits. Ideally, increase the aio-max-nr setting; as a
workaround, you might reduce the settings for one or both of the MySQL
configuration options.

•   innodb_replication_delay

Command-Line Format --innodb-replication-delay=#

Name innodb_replication_delay

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

The replication thread delay (in ms) on a slave server if innodb_thread_concurrency is
reached.

•   innodb_rollback_on_timeout

Command-Line Format --innodb-rollback-on-timeout

Name innodb_rollback_on_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

InnoDB rolls back only the last statement on a transaction timeout by default. If --
innodb_rollback_on_timeout is specified, a transaction timeout causes InnoDB to abort and
roll back the entire transaction (the same behavior as in MySQL 4.1).

Note

If the start-transaction statement was START TRANSACTION or BEGIN
statement, rollback does not cancel that statement. Further SQL statements
become part of the transaction until the occurrence of COMMIT, ROLLBACK, or
some SQL statement that causes an implicit commit.



InnoDB System Variables

1722

For more information, see Section 14.23.4, “InnoDB Error Handling”.

•   innodb_rollback_segments

Introduced 5.5.11

Command-Line Format --innodb-rollback-segments=#

Name innodb_rollback_segments

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 128

Min
Value

1

Permitted Values

Max
Value

128

Defines how many of the rollback segments in the system tablespace are used for InnoDB
transactions. You might reduce this value from its default of 128 if a smaller number of rollback
segments performs better for your workload.

•   innodb_spin_wait_delay

Command-Line Format --innodb-spin-wait-delay=#

Name innodb_spin_wait_delay

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 6

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

2**32-1

Type integer

Default 6

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

2**64-1

The maximum delay between polls for a spin lock. The low-level implementation of this mechanism
varies depending on the combination of hardware and operating system, so the delay does not
correspond to a fixed time interval. For more information, see Section 14.9.9, “Configuring Spin Lock
Polling”.

•   innodb_stats_method



InnoDB System Variables

1723

Introduced 5.5.10

Command-Line Format --innodb-stats-method=name

Name innodb_stats_method

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default nulls_equal

nulls_equal

nulls_unequal

Permitted Values

Valid
Values

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for InnoDB tables. Permitted values are nulls_equal, nulls_unequal, and nulls_ignored.
For nulls_equal, all NULL index values are considered equal and form a single value group with
a size equal to the number of NULL values. For nulls_unequal, NULL values are considered
unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored, NULL values
are ignored.

The method used to generate table statistics influences how the optimizer chooses indexes for query
execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.

•   innodb_stats_on_metadata

Introduced 5.5.4

Command-Line Format --innodb-stats-on-metadata

Name innodb_stats_on_metadata

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

When this option is enabled (the default), InnoDB updates statistics when metadata
statements such as SHOW TABLE STATUS or SHOW INDEX are run, or when accessing the
INFORMATION_SCHEMA.TABLES or INFORMATION_SCHEMA.STATISTICS tables. (These updates
are similar to what happens for ANALYZE TABLE.) When disabled, InnoDB does not update
statistics during these operations. Disabling this variable can improve access speed for schemas
that have a large number of tables or indexes. It can also improve the stability of execution plans for
queries that involve InnoDB tables.

To change the setting, issue the statement SET GLOBAL innodb_stats_on_metadata=mode,
where mode is either ON or OFF (or 1 or 0). Changing the setting requires the SUPER privilege and
immediately affects the operation of all connections.

•   innodb_stats_sample_pages

Command-Line Format --innodb-stats-sample-pages=#

System Variable Name innodb_stats_sample_pages



InnoDB System Variables

1724

Variable
Scope

Global

Dynamic
Variable

Yes

Type integer

Default 8

Min
Value

1

Permitted Values

Max
Value

2**64-1

The number of index pages to sample for index distribution statistics such as are calculated by
ANALYZE TABLE. The default value is 8. For more information, see Section 14.9.11, “Configuring
Optimizer Statistics for InnoDB”.

Setting a high value for innodb_stats_sample_pages could result in lengthy ANALYZE TABLE
execution time. To estimate the number of database pages accessed by ANALYZE TABLE, see
Section 14.9.11.1, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”.

•   innodb_strict_mode

Command-Line Format --innodb-strict-mode=#

Name innodb_strict_mode

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When innodb_strict_mode is enabled, InnoDB returns errors rather than warnings for certain
conditions.

Strict mode helps guard against ignored typos and syntax errors in SQL, or other unintended
consequences of various combinations of operational modes and SQL statements. When
innodb_strict_mode is enabled, InnoDB raises error conditions in certain cases, rather than
issuing a warning and processing the specified statement (perhaps with unintended behavior).
This is analogous to sql_mode in MySQL, which controls what SQL syntax MySQL accepts, and
determines whether it silently ignores errors, or validates input syntax and data values.

The innodb_strict_mode setting affects the handling of syntax errors for CREATE TABLE, ALTER
TABLE and CREATE INDEX statements. innodb_strict_mode also enables a record size check,
so that an INSERT or UPDATE never fails due to the record being too large for the selected page
size.

Oracle recommends enabling innodb_strict_mode when using ROW_FORMAT and
KEY_BLOCK_SIZE clauses in CREATE TABLE, ALTER TABLE, and CREATE INDEX statements.
When innodb_strict_mode is disabled, InnoDB ignores conflicting clauses and creates the
table or index with only a warning in the message log. The resulting table might have different
characteristics than intended, such as lack of compression support when attempting to create a
compressed table. When innodb_strict_mode is enabled, such problems generate an immediate
error and the table or index is not created.

You can enable or disable innodb_strict_mode on the command line when starting mysqld, or
in a MySQL configuration file. You can also enable or disable innodb_strict_mode at runtime



InnoDB System Variables

1725

with the statement SET [GLOBAL|SESSION] innodb_strict_mode=mode, where mode
is either ON or OFF. Changing the GLOBAL setting requires the SUPER privilege and affects the
operation of all clients that subsequently connect. Any client can change the SESSION setting for
innodb_strict_mode, and the setting affects only that client.

•    innodb_support_xa

Command-Line Format --innodb-support-xa

Name innodb_support_xa

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

Enables InnoDB support for two-phase commit in XA transactions, causing an extra disk flush for
transaction preparation. The XA mechanism is used internally and is essential for any server that
has its binary log turned on and is accepting changes to its data from more than one thread. If you
disable innodb_support_xa, transactions can be written to the binary log in a different order
than the live database is committing them, which can produce different data when the binary log is
replayed in disaster recovery or on a replication slave. Do not disable innodb_support_xa on a
replication master server unless you have an unusual setup where only one thread is able to change
data.

For a server that is accepting data changes from only one thread, it is safe and recommended to
disable this option to improve performance for InnoDB tables. For example, you can turn it off on
replication slaves where only the replication SQL thread is changing data.

You can also disable this option if you do not need it for safe binary logging or replication, and you
also do not use an external XA transaction manager.

•   innodb_sync_spin_loops

Command-Line Format --innodb-sync-spin-loops=#

Name innodb_sync_spin_loops

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 30

Min
Value

0

Permitted Values

Max
Value

4294967295

The number of times a thread waits for an InnoDB mutex to be freed before the thread is
suspended.

•   innodb_table_locks

Command-Line Format --innodb-table-locks

System Variable Name innodb_table_locks



InnoDB System Variables

1726

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

If autocommit = 0, InnoDB honors LOCK TABLES; MySQL does not return from LOCK
TABLES ... WRITE until all other threads have released all their locks to the table. The default
value of innodb_table_locks is 1, which means that LOCK TABLES causes InnoDB to lock a
table internally if autocommit = 0.

As of MySQL 5.5.3, innodb_table_locks = 0 has no effect for tables locked explicitly with LOCK
TABLES ... WRITE. It still has an effect for tables locked for read or write by LOCK TABLES ...
WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.

For related information, see Section 14.8, “InnoDB Locking and Transaction Model”.

•    innodb_thread_concurrency

Command-Line Format --innodb-thread-concurrency=#

Name innodb_thread_concurrency

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1000

InnoDB tries to keep the number of operating system threads concurrently inside InnoDB less than
or equal to the limit given by this variable (InnoDB uses operating system threads to process user
transactions). Once the number of threads reaches this limit, additional threads are placed into a
wait state within a “First In, First Out” (FIFO) queue for execution. Threads waiting for locks are not
counted in the number of concurrently executing threads.

The range of this variable is 0 to 1000. A value of 0 (the default) is interpreted as infinite concurrency
(no concurrency checking). Disabling thread concurrency checking enables InnoDB to create as
many threads as it needs. A value of 0 also disables the queries inside InnoDB and queries
in queue counters in the ROW OPERATIONS section of SHOW ENGINE INNODB STATUS
output.

Consider setting this variable if your MySQL instance shares CPU resources with other applications,
or if your workload or number of concurrent users is growing. The correct setting depends on
workload, computing environment, and the version of MySQL that you are running. You will
need to test a range of values to determine the setting that provides the best performance.
innodb_thread_concurrency is a dynamic variable, which allows you to experiment with
different settings on a live test system. If a particular setting performs poorly, you can quickly set
innodb_thread_concurrency back to 0.

Use the following guidelines to help find and maintain an appropriate setting:



InnoDB System Variables

1727

• If the number of concurrent user threads for a workload is less than 64, set
innodb_thread_concurrency=0.

• If your workload is consistently heavy or occasionally spikes, start by setting
innodb_thread_concurrency=128 and then lowering the value to 96, 80, 64, and so on, until
you find the number of threads that provides the best performance. For example, suppose your
system typically has 40 to 50 users, but periodically the number increases to 60, 70, or even 200.
You find that performance is stable at 80 concurrent users but starts to show a regression above
this number. In this case, you would set innodb_thread_concurrency=80 to avoid impacting
performance.

• If you do not want InnoDB to use more than a certain number of vCPUs for user threads (20
vCPUs, for example), set innodb_thread_concurrency to this number (or possibly lower,
depending on performance results). If your goal is to isolate MySQL from other applications,
you may consider binding the mysqld process exclusively to the vCPUs. Be aware, however,
that exclusive binding could result in non-optimal hardware usage if the mysqld process is not
consistently busy. In this case, you might bind the mysqld process to the vCPUs but also allow
other applications to use some or all of the vCPUs.

Note

From an operating system perspective, using a resource management
solution to manage how CPU time is shared among applications may be
preferable to binding the mysqld process. For example, you could assign
90% of vCPU time to a given application while other critical process are not
running, and scale that value back to 40% when other critical processes are
running.

• innodb_thread_concurrency values that are too high can cause performance regression due
to increased contention on system internals and resources.

• In some cases, the optimal innodb_thread_concurrency setting can be smaller than the
number of vCPUs.

• Monitor and analyze your system regularly. Changes to workload, number of users, or computing
environment may require that you adjust the innodb_thread_concurrency setting.

For related information, see Section 14.9.5, “Configuring Thread Concurrency for InnoDB”.

•   innodb_thread_sleep_delay

Command-Line Format --innodb-thread-sleep-delay=#

Name innodb_thread_sleep_delay

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10000

Min
Value

0

Permitted Values (>=
5.5.37)

Max
Value

1000000

Type integerPermitted Values (32-bit
platforms, <= 5.5.36) Default 10000



InnoDB System Variables

1728

Min
Value

0

Max
Value

4294967295

Type integer

Default 10000

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.36)

Max
Value

18446744073709551615

Defines how long InnoDB threads sleep before joining the InnoDB queue, in microseconds. The
default value is 10000. A value of 0 disables sleep.

For more information, see Section 14.9.5, “Configuring Thread Concurrency for InnoDB”.

•   innodb_use_native_aio

Introduced 5.5.4

Command-Line Format --innodb-use-native-aio=#

Name innodb_use_native_aio

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

Specifies whether to use the Linux asynchronous I/O subsystem. This variable applies to Linux
systems only, and cannot be changed while the server is running. Normally, you do not need to
configure this option, because it is enabled by default.

As of MySQL 5.5, the asynchronous I/O capability that InnoDB has on Windows systems is available
on Linux systems. (Other Unix-like systems continue to use synchronous I/O calls.) This feature
improves the scalability of heavily I/O-bound systems, which typically show many pending reads/
writes in SHOW ENGINE INNODB STATUS\G output.

Running with a large number of InnoDB I/O threads, and especially running multiple such instances
on the same server machine, can exceed capacity limits on Linux systems. In this case, you may
receive the following error:

EAGAIN: The specified maxevents exceeds the user's limit of available events.

You can typically address this error by writing a higher limit to /proc/sys/fs/aio-max-nr.

However, if a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from
starting, you can start the server with innodb_use_native_aio=0. This option may also be
disabled automatically during startup if InnoDB detects a potential problem such as a combination of
tmpdir location, tmpfs file system, and Linux kernel that does not support AIO on tmpfs.

For more information, see Section 14.9.7, “Using Asynchronous I/O on Linux”.

•   innodb_trx_purge_view_update_only_debug



InnoDB System Variables

1729

Command-Line Format --innodb-trx-purge-view-update-only-debug=#

Name innodb_trx_purge_view_update_only_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Pauses purging of delete-marked records while allowing the purge view to be updated. This option
artificially creates a situation in which the purge view is updated but purges have not yet been
performed. This option is only available if debugging support is compiled in using the WITH_DEBUG
CMake option.

•   innodb_trx_rseg_n_slots_debug

Command-Line Format --innodb-trx-rseg-n-slots-debug=#

Name innodb_trx_rseg_n_slots_debug

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Max
Value

1024

Sets a debug flag that limits TRX_RSEG_N_SLOTS to a given value for the
trx_rsegf_undo_find_free function that looks for free slots for undo log segments. This option
is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

•   innodb_use_sys_malloc

Command-Line Format --innodb-use-sys-malloc=#

Name innodb_use_sys_malloc

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

Enables the operating system memory allocator. If disabled, InnoDB uses its own allocator. The
default value is ON. For more information, see Section 14.9.3, “Configuring the Memory Allocator for
InnoDB”.

•   innodb_version

The InnoDB version number. Starting in MySQL 5.5.30, separate version numbering for InnoDB is
discontinued and this value is the same the version number of the server.

•   innodb_write_io_threads



InnoDB INFORMATION_SCHEMA Tables

1730

Command-Line Format --innodb-write-io-threads=#

Name innodb_write_io_threads

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4

Min
Value

1

Permitted Values

Max
Value

64

The number of I/O threads for write operations in InnoDB. The default value is 4. Its counterpart
for read threads is innodb_read_io_threads. For more information, see Section 14.9.6,
“Configuring the Number of Background InnoDB I/O Threads”. For general I/O tuning advice, see
Section 8.5.7, “Optimizing InnoDB Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can
exceed system limits. Ideally, increase the aio-max-nr setting; as a
workaround, you might reduce the settings for one or both of the MySQL
configuration options.

Also take into consideration the value of sync_binlog, which controls synchronization of the binary
log to disk.

For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.

14.18 InnoDB INFORMATION_SCHEMA Tables
This section provides information and usage examples for InnoDB INFORMATION_SCHEMA tables.

InnoDB INFORMATION_SCHEMA tables provide metadata, status information, and statistics about
various aspects of the InnoDB storage engine. You can view a list of InnoDB INFORMATION_SCHEMA
tables by issuing a SHOW TABLES statement on the INFORMATION_SCHEMA database:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB%';

For table definitions, see Section 21.28, “InnoDB INFORMATION_SCHEMA Tables”. For
general information regarding the MySQL INFORMATION_SCHEMA database, see Chapter 21,
INFORMATION_SCHEMA Tables.

The InnoDB INFORMATION_SCHEMA tables are themselves plugins to the MySQL
server. To see what plugins are installed, use the SHOW PLUGINS statement or query
the INFORMATION_SCHEMA.PLUGINS table. Use INSTALL PLUGIN syntax to install an
INFORMATION_SCHEMA table plugin. If INFORMATION_SCHEMA table plugins are installed, but the
InnoDB storage engine plugin is not installed, the tables appear empty.

14.18.1 InnoDB INFORMATION_SCHEMA Tables about Compression

There are two pairs of InnoDB INFORMATION_SCHEMA tables about compression that can provide
insight into how well compression is working overall:



InnoDB INFORMATION_SCHEMA Tables about Compression

1731

• INNODB_CMP and INNODB_CMP_RESET contain information about the number of compression
operations and the amount of time spent performing compression.

• INNODB_CMPMEM and INNODB_CMP_RESET contain information about the way memory is allocated
for compression.

14.18.1.1 INNODB_CMP and INNODB_CMP_RESET

The INNODB_CMP and INNODB_CMP_RESET tables contain status information about operations related
to compressed tables, which are described in Section 14.12, “InnoDB Table Compression”. The
PAGE_SIZE column reports the compressed page size.

These two tables have identical contents, but reading from INNODB_CMP_RESET resets the
statistics on compression and uncompression operations. For example, if you archive the output of
INNODB_CMP_RESET every 60 minutes, you see the statistics for each hourly period. If you monitor
the output of INNODB_CMP (making sure never to read INNODB_CMP_RESET), you see the cumulated
statistics since InnoDB was started.

For the table definition, see Section 21.28.4, “The INFORMATION_SCHEMA INNODB_CMP and
INNODB_CMP_RESET Tables”.

14.18.1.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables contain status information about
compressed pages that reside in the buffer pool. Please consult Section 14.12, “InnoDB Table
Compression” for further information on compressed tables and the use of the buffer pool. The
INNODB_CMP and INNODB_CMP_RESET tables should provide more useful statistics on compression.

Internal Details

InnoDB uses a buddy allocator system to manage memory allocated to pages of various sizes, from
1KB to 16KB. Each row of the two tables described here corresponds to a single page size.

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables have identical contents, but reading from
INNODB_CMPMEM_RESET resets the statistics on relocation operations. For example, if every 60
minutes you archived the output of INNODB_CMPMEM_RESET, it would show the hourly statistics. If you
never read INNODB_CMPMEM_RESET and monitored the output of INNODB_CMPMEM instead, it would
show the cumulated statistics since InnoDB was started.

For the table definition, see Section 21.28.5, “The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables”.

14.18.1.3 Using the Compression Information Schema Tables

Example 14.1 Using the Compression Information Schema Tables

The following is sample output from a database that contains compressed tables (see Section 14.12,
“InnoDB Table Compression”, INNODB_CMP, and INNODB_CMPMEM).

The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMP under a light
workload. The only compressed page size that the buffer pool contains is 8K. Compressing or
uncompressing pages has consumed less than a second since the time the statistics were reset,
because the columns COMPRESS_TIME and UNCOMPRESS_TIME are zero.

page size compress
ops

compress ops ok compress time uncompress
ops

uncompress time

1024 0 0 0 0 0

2048 0 0 0 0 0

4096 0 0 0 0 0



InnoDB INFORMATION_SCHEMA Transaction and Locking Information

1732

page size compress
ops

compress ops ok compress time uncompress
ops

uncompress time

8192 1048 921 0 61 0

16384 0 0 0 0 0

According to INNODB_CMPMEM, there are 6169 compressed 8KB pages in the buffer pool.

The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMPMEM under a
light workload. Some memory is unusable due to fragmentation of the InnoDB memory allocator
for compressed pages: SUM(PAGE_SIZE*PAGES_FREE)=6784. This is because small memory
allocation requests are fulfilled by splitting bigger blocks, starting from the 16K blocks that are
allocated from the main buffer pool, using the buddy allocation system. The fragmentation is this low
because some allocated blocks have been relocated (copied) to form bigger adjacent free blocks.
This copying of SUM(PAGE_SIZE*RELOCATION_OPS) bytes has consumed less than a second
(SUM(RELOCATION_TIME)=0).

page size pages used pages free relocation ops relocation time

1024 0 0 0 0

2048 0 1 0 0

4096 0 1 0 0

8192 6169 0 5 0

16384 0 0 0 0

14.18.2 InnoDB INFORMATION_SCHEMA Transaction and Locking
Information

Three InnoDB INFORMATION_SCHEMA tables enable you to monitor transactions and diagnose
potential locking problems:

• INNODB_TRX: Contains information about every transaction currently executing inside InnoDB,
including the transaction state (for example, whether it is running or waiting for a lock), when the
transaction started, and the particular SQL statement the transaction is executing.

• INNODB_LOCKS: Each transaction in InnoDB that is waiting for another transaction to release a
lock (INNODB_TRX.TRX_STATE is LOCK WAIT) is blocked by exactly one blocking lock request.
That blocking lock request is for a row or table lock held by another transaction in an incompatible
mode. A lock that blocks a transaction is always held in a mode incompatible with the mode of
requested lock (read vs. write, shared vs. exclusive). The blocked transaction cannot proceed
until the other transaction commits or rolls back, thereby releasing the requested lock. For every
blocked transaction, INNODB_LOCKS contains one row that describes each lock the transaction
has requested, and for which it is waiting. INNODB_LOCKS also contains one row for each lock
that is blocking another transaction, whatever the state of the transaction that holds the lock
(INNODB_TRX.TRX_STATE is RUNNING, LOCK WAIT, ROLLING BACK or COMMITTING).

• INNODB_LOCK_WAITS: This table indicates which transactions are waiting for a given lock,
or for which lock a given transaction is waiting. This table contains one or more rows for each
blocked transaction, indicating the lock it has requested and any locks that are blocking that
request. The REQUESTED_LOCK_ID value refers to the lock requested by a transaction, and the
BLOCKING_LOCK_ID value refers to the lock (held by another transaction) that prevents the first
transaction from proceeding. For any given blocked transaction, all rows in INNODB_LOCK_WAITS
have the same value for REQUESTED_LOCK_ID and different values for BLOCKING_LOCK_ID.

For more information about the preceding tables, see Section 21.28.8, “The INFORMATION_SCHEMA
INNODB_TRX Table”, Section 21.28.6, “The INFORMATION_SCHEMA INNODB_LOCKS Table”, and
Section 21.28.7, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”.



InnoDB INFORMATION_SCHEMA Transaction and Locking Information

1733

14.18.2.1 Using InnoDB Transaction and Locking Information

Identifying Blocking Transactions

It is sometimes helpful to identify which transaction blocks another. The tables that contain information
about InnoDB transactions and data locks enable you to determine which transaction is waiting for
another, and which resource is being requested. (For descriptions of these tables, see Section 14.18.2,
“InnoDB INFORMATION_SCHEMA Transaction and Locking Information”.)

Suppose that three sessions are running concurrently. Each session corresponds to a MySQL thread,
and executes one transaction after another. Consider the state of the system when these sessions
have issued the following statements, but none has yet committed its transaction:

• Session A:

BEGIN;
SELECT a FROM t FOR UPDATE;
SELECT SLEEP(100);

• Session B:

SELECT b FROM t FOR UPDATE;

• Session C:

SELECT c FROM t FOR UPDATE;

In this scenario, use the following query to see which transactions are waiting and which transactions
are blocking them:

SELECT
  r.trx_id waiting_trx_id,
  r.trx_mysql_thread_id waiting_thread,
  r.trx_query waiting_query,
  b.trx_id blocking_trx_id,
  b.trx_mysql_thread_id blocking_thread,
  b.trx_query blocking_query
FROM       information_schema.innodb_lock_waits w
INNER JOIN information_schema.innodb_trx b
  ON b.trx_id = w.blocking_trx_id
INNER JOIN information_schema.innodb_trx r
  ON r.trx_id = w.requesting_trx_id;

waiting
trx id

waiting
thread

waiting query blocking
trx id

blocking
thread

blocking query

A4 6 SELECT b FROM t FOR
UPDATE

A3 5 SELECT SLEEP(100)

A5 7 SELECT c FROM t FOR
UPDATE

A3 5 SELECT SLEEP(100)

A5 7 SELECT c FROM t FOR
UPDATE

A4 6 SELECT b FROM t FOR
UPDATE

In the preceding table, you can identify sessions by the “waiting query” or “blocking query” columns. As
you can see:

• Session B (trx id A4, thread 6) and Session C (trx id A5, thread 7) are both waiting for Session A (trx
id A3, thread 5).

• Session C is waiting for Session B as well as Session A.



InnoDB INFORMATION_SCHEMA Transaction and Locking Information

1734

You can see the underlying data in the tables INNODB_TRX, INNODB_LOCKS, and
INNODB_LOCK_WAITS.

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_TRX.

trx
id

trx
state

trx started trx
requested
lock id

trx wait started trx
weight

trx mysql
thread id

trx query

A3 RUN-
NING

2008-01-15
16:44:54

NULL NULL 2 5 SELECT
SLEEP(100)

A4 LOCK
WAIT

2008-01-15
16:45:09

A4:1:3:2 2008-01-15
16:45:09

2 6 SELECT b FROM t
FOR UPDATE

A5 LOCK
WAIT

2008-01-15
16:45:14

A5:1:3:2 2008-01-15
16:45:14

2 7 SELECT c FROM t
FOR UPDATE

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_LOCKS.

lock id lock
trx id

lock
mode

lock type lock table lock index lock data

A3:1:3:2 A3 X RECORD test.t PRIMARY 0x0200

A4:1:3:2 A4 X RECORD test.t PRIMARY 0x0200

A5:1:3:2 A5 X RECORD test.t PRIMARY 0x0200

The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_LOCK_WAITS.

requesting trx id requested lock id blocking trx id blocking lock id

A4 A4:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A4 A4:1:3:2

Correlating InnoDB Transactions with MySQL Sessions

Sometimes it is useful to correlate internal InnoDB locking information with the session-level
information maintained by MySQL. For example, you might like to know, for a given InnoDB
transaction ID, the corresponding MySQL session ID and name of the session that may be holding a
lock, and thus blocking other transactions.

The following output from the INFORMATION_SCHEMA tables is taken from a somewhat loaded system.
As can be seen, there are several transactions running.

The following INNODB_LOCKS and INNODB_LOCK_WAITS tables show that:

• Transaction 77F (executing an INSERT) is waiting for transactions 77E, 77D, and 77B to commit.

• Transaction 77E (executing an INSERT) is waiting for transactions 77D and 77B to commit.

• Transaction 77D (executing an INSERT) is waiting for transaction 77B to commit.

• Transaction 77B (executing an INSERT) is waiting for transaction 77A to commit.

• Transaction 77A is running, currently executing SELECT.

• Transaction E56 (executing an INSERT) is waiting for transaction E55 to commit.

• Transaction E55 (executing an INSERT) is waiting for transaction 19C to commit.



InnoDB INFORMATION_SCHEMA Transaction and Locking Information

1735

• Transaction 19C is running, currently executing an INSERT.

Note

There may be inconsistencies between queries shown in the
INFORMATION_SCHEMA PROCESSLIST and INNODB_TRX tables. For an
explanation, see Section 14.18.2.3, “Persistence and Consistency of InnoDB
Transaction and Locking Information”.

The following table shows the contents of INFORMATION_SCHEMA.PROCESSLIST for a system
running a heavy workload.

ID USER HOST DB COMMAND TIME STATE INFO

384 root localhost test Query 10 update INSERT INTO t2
VALUES …

257 root localhost test Query 3 update INSERT INTO t2
VALUES …

130 root localhost test Query 0 update INSERT INTO t2
VALUES …

61 root localhost test Query 1 update INSERT INTO t2
VALUES …

8 root localhost test Query 1 update INSERT INTO t2
VALUES …

4 root localhost test Query 0 preparing SELECT * FROM
PROCESSLIST

2 root localhost test Sleep 566 NULL

The following table shows the contents of INFORMATION_SCHEMA.INNODB_TRX for a system running
a heavy workload.

trx
id

trx
state

trx started trx requested
lock id

trx wait
started

trx
weight

trx
mysql
thread
id

trx query

77F LOCK
WAIT

2008-01-15
13:10:16

77F 2008-01-15
13:10:16

1 876 INSERT INTO t09
(D, B, C) VALUES
…

77E LOCK
WAIT

2008-01-15
13:10:16

77E 2008-01-15
13:10:16

1 875 INSERT INTO t09
(D, B, C) VALUES
…

77D LOCK
WAIT

2008-01-15
13:10:16

77D 2008-01-15
13:10:16

1 874 INSERT INTO t09
(D, B, C) VALUES
…

77B LOCK
WAIT

2008-01-15
13:10:16

77B:733:12:1 2008-01-15
13:10:16

4 873 INSERT INTO t09
(D, B, C) VALUES
…

77A RUN-
NING

2008-01-15
13:10:16

NULL NULL 4 872 SELECT b, c FROM
t09 WHERE …

E56 LOCK
WAIT

2008-01-15
13:10:06

E56:743:6:2 2008-01-15
13:10:06

5 384 INSERT INTO t2
VALUES …

E55 LOCK
WAIT

2008-01-15
13:10:06

E55:743:38:2 2008-01-15
13:10:13

965 257 INSERT INTO t2
VALUES …



InnoDB INFORMATION_SCHEMA Transaction and Locking Information

1736

trx
id

trx
state

trx started trx requested
lock id

trx wait
started

trx
weight

trx
mysql
thread
id

trx query

19C RUN-
NING

2008-01-15
13:09:10

NULL NULL 2900 130 INSERT INTO t2
VALUES …

E15 RUN-
NING

2008-01-15
13:08:59

NULL NULL 5395 61 INSERT INTO t2
VALUES …

51D RUN-
NING

2008-01-15
13:08:47

NULL NULL 9807 8 INSERT INTO t2
VALUES …

The following table shows the contents of INFORMATION_SCHEMA.INNODB_LOCK_WAITS for a
system running a heavy workload.

requesting trx
id

requested lock id blocking trx id blocking lock id

77F 77F:806 77E 77E:806

77F 77F:806 77D 77D:806

77F 77F:806 77B 77B:806

77E 77E:806 77D 77D:806

77E 77E:806 77B 77B:806

77D 77D:806 77B 77B:806

77B 77B:733:12:1 77A 77A:733:12:1

E56 E56:743:6:2 E55 E55:743:6:2

E55 E55:743:38:2 19C 19C:743:38:2

The following table shows the contents of INFORMATION_SCHEMA.INNODB_LOCKS for a system
running a heavy workload.

lock id lock trx
id

lock mode lock type lock table lock index lock data

77F:806 77F AUTO_INC TABLE test.t09 NULL NULL

77E:806 77E AUTO_INC TABLE test.t09 NULL NULL

77D:806 77D AUTO_INC TABLE test.t09 NULL NULL

77B:806 77B AUTO_INC TABLE test.t09 NULL NULL

77B:733:12:1 77B X RECORD test.t09 PRIMARY supremum
pseudo-
record

77A:733:12:1 77A X RECORD test.t09 PRIMARY supremum
pseudo-
record

E56:743:6:2 E56 S RECORD test.t2 PRIMARY 0, 0

E55:743:6:2 E55 X RECORD test.t2 PRIMARY 0, 0

E55:743:38:2 E55 S RECORD test.t2 PRIMARY 1922, 1922

19C:743:38:2 19C X RECORD test.t2 PRIMARY 1922, 1922

14.18.2.2 InnoDB Lock and Lock-Wait Information

When a transaction updates a row in a table, or locks it with SELECT FOR UPDATE, InnoDB
establishes a list or queue of locks on that row. Similarly, InnoDB maintains a list of locks on a table for



InnoDB INFORMATION_SCHEMA Transaction and Locking Information

1737

table-level locks. If a second transaction wants to update a row or lock a table already locked by a prior
transaction in an incompatible mode, InnoDB adds a lock request for the row to the corresponding
queue. For a lock to be acquired by a transaction, all incompatible lock requests previously entered into
the lock queue for that row or table must be removed (which occurs when the transactions holding or
requesting those locks either commit or roll back).

A transaction may have any number of lock requests for different rows or tables. At any given time, a
transaction may request a lock that is held by another transaction, in which case it is blocked by that
other transaction. The requesting transaction must wait for the transaction that holds the blocking lock
to commit or roll back. If a transaction is not waiting for a lock, it is in a RUNNING state. If a transaction
is waiting for a lock, it is in a LOCK WAIT state. (The INFORMATION_SCHEMA INNODB_TRX table
indicates transaction state values.)

The INNODB_LOCKS table holds one or more rows for each LOCK WAIT transaction, indicating any
lock requests that prevent its progress. This table also contains one row describing each lock in a
queue of locks pending for a given row or table. The INNODB_LOCK_WAITS table shows which locks
already held by a transaction are blocking locks requested by other transactions.

14.18.2.3 Persistence and Consistency of InnoDB Transaction and Locking Information

The data exposed by the transaction and locking tables (INNODB_TRX, INNODB_LOCKS, and
INNODB_LOCK_WAITS) represents a glimpse into fast-changing data. This is not like user tables,
where the data changes only when application-initiated updates occur. The underlying data is internal
system-managed data, and can change very quickly.

For performance reasons, and to minimize the chance of misleading joins between the transaction and
locking tables, InnoDB collects the required transaction and locking information into an intermediate
buffer whenever a SELECT on any of the tables is issued. This buffer is refreshed only if more than 0.1
seconds has elapsed since the last time the buffer was read. The data needed to fill the three tables
is fetched atomically and consistently and is saved in this global internal buffer, forming a point-in-
time “snapshot”. If multiple table accesses occur within 0.1 seconds (as they almost certainly do when
MySQL processes a join among these tables), then the same snapshot is used to satisfy the query.

A correct result is returned when you join any of these tables together in a single query, because the
data for the three tables comes from the same snapshot. Because the buffer is not refreshed with
every query of any of these tables, if you issue separate queries against these tables within a tenth of
a second, the results are the same from query to query. On the other hand, two separate queries of the
same or different tables issued more than a tenth of a second apart may see different results, since the
data come from different snapshots.

Because InnoDB must temporarily stall while the transaction and locking data is collected, too frequent
queries of these tables can negatively impact performance as seen by other users.

As these tables contain sensitive information (at least INNODB_LOCKS.LOCK_DATA and
INNODB_TRX.TRX_QUERY), for security reasons, only the users with the PROCESS privilege are
allowed to SELECT from them.

As described previously, the data that fills the transaction and locking tables (INNODB_TRX,
INNODB_LOCKS and INNODB_LOCK_WAITS) is fetched automatically and saved to an intermediate
buffer that provides a “point-in-time” snapshot. The data across all three tables is consistent when
queried from the same snapshot. However, the underlying data changes so fast that similar glimpses
at other, similarly fast-changing data, may not be in synchrony. Thus, you should be careful when
comparing data in the InnoDB transaction and locking tables with data in the PROCESSLIST table. The
data from the PROCESSLIST table does not come from the same snapshot as the data about locking
and transactions. Even if you issue a single SELECT (joining INNODB_TRX and PROCESSLIST, for
example), the content of those tables is generally not consistent. INNODB_TRX may reference rows
that are not present in PROCESSLIST or the currently executing SQL query of a transaction shown in
INNODB_TRX.TRX_QUERY may differ from the one in PROCESSLIST.INFO.



InnoDB INFORMATION_SCHEMA Buffer Pool Tables

1738

14.18.3 InnoDB INFORMATION_SCHEMA Buffer Pool Tables

The InnoDB INFORMATION_SCHEMA buffer pool tables provide buffer pool status information and
metadata about the pages within the InnoDB buffer pool. The tables were introduced in MySQL 5.6.2
and later backported to MySQL 5.5 (in MySQL 5.5.28) and MySQL 5.1 (in MySQL 5.1.66).

The InnoDB INFORMATION_SCHEMA buffer pool tables include those listed below:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_BUFFER%';
+-----------------------------------------------+
| Tables_in_INFORMATION_SCHEMA (INNODB_BUFFER%) |
+-----------------------------------------------+
| INNODB_BUFFER_PAGE_LRU                        |
| INNODB_BUFFER_PAGE                            |
| INNODB_BUFFER_POOL_STATS                      |
+-----------------------------------------------+

Table Overview

• INNODB_BUFFER_PAGE: Holds information about each page in the InnoDB buffer pool.

• INNODB_BUFFER_PAGE_LRU: Holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered in the LRU list that determines which pages to evict from the
buffer pool when it becomes full. The INNODB_BUFFER_PAGE_LRU table has the same columns
as the INNODB_BUFFER_PAGE table, except that the INNODB_BUFFER_PAGE_LRU table has an
LRU_POSITION column instead of a BLOCK_ID column.

• INNODB_BUFFER_POOL_STATS: Provides buffer pool status information. Much of the same
information is provided by SHOW ENGINE INNODB STATUS output, or may be obtained using
InnoDB buffer pool server status variables.

Warning

Querying the INNODB_BUFFER_PAGE table or INNODB_BUFFER_PAGE_LRU
table can introduce significant performance overhead. Do not query these
tables on a production system unless you are aware of the performance impact
that your query may have, and have determined it to be acceptable. To avoid
impacting performance, reproduce the issue you want to investigate on a test
instance and run your queries on the test instance.

Example 14.2 Querying System Data in the INNODB_BUFFER_PAGE Table

This query provides an approximate count of pages that contain system data by excluding pages
where the TABLE_NAME value is either NULL or includes a slash / or period . in the table name, which
indicates a user-defined table.

SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0);
+----------+
| COUNT(*) |
+----------+
|      381 |
+----------+

This query returns the approximate number of pages that contain system data, the total number of
buffer pool pages, and an approximate percentage of pages that contain system data.

SELECT
(SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0)
) AS system_pages,
(
SELECT COUNT(*)



InnoDB INFORMATION_SCHEMA Buffer Pool Tables

1739

FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
) AS total_pages,
(
SELECT ROUND((system_pages/total_pages) * 100)
) AS system_page_percentage;
+--------------+-------------+------------------------+
| system_pages | total_pages | system_page_percentage |
+--------------+-------------+------------------------+
|          381 |        8192 |                      5 |
+--------------+-------------+------------------------+

The type of system data in the buffer pool can be determined by querying the PAGE_TYPE value. For
example, the following query returns eight distinct PAGE_TYPE values among the pages that contain
system data:

mysql> SELECT DISTINCT PAGE_TYPE FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0);
+-------------------+
| PAGE_TYPE         |
+-------------------+
| IBUF_BITMAP       |
| SYSTEM            |
| INDEX             |
| UNDO_LOG          |
| FILE_SPACE_HEADER |
| UNKNOWN           |
| INODE             |
| EXTENT_DESCRIPTOR |
+-------------------+

Example 14.3 Querying User Data in the INNODB_BUFFER_PAGE Table

This query provides an approximate count of pages containing user data by counting pages where the
TABLE_NAME value is NOT NULL.

mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NOT NULL;
+----------+
| COUNT(*) |
+----------+
|     7811 |
+----------+

This query returns the approximate number of pages that contain user data, the total number of buffer
pool pages, and an approximate percentage of pages that contain user data.

mysql> SELECT
(SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NOT NULL AND (INSTR(TABLE_NAME, '/') > 0 OR INSTR(TABLE_NAME, '.') > 0)
) AS user_pages,
(
SELECT COUNT(*)
FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
) AS total_pages,
(
SELECT ROUND((user_pages/total_pages) * 100)
) AS user_page_percentage;
+------------+-------------+----------------------+
| user_pages | total_pages | user_page_percentage |
+------------+-------------+----------------------+
|       7811 |        8192 |                   95 |
+------------+-------------+----------------------+

This query identifies user-defined tables with pages in the buffer pool:

mysql> SELECT DISTINCT TABLE_NAME
FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME IS NOT NULL



InnoDB INFORMATION_SCHEMA Buffer Pool Tables

1740

AND (INSTR(TABLE_NAME, '/') > 0 OR INSTR(TABLE_NAME, '.') > 0);
+---------------------+
| TABLE_NAME          |
+---------------------+
| employees/salaries  |
| employees/employees |
+---------------------+

Example 14.4 Querying Index Data in the INNODB_BUFFER_PAGE Table

For information about index pages, query the INDEX_NAME column using the name of the index. For
example, the following query returns the number of pages and total data size of pages for the emp_no
index that is defined on the employees.salaries table:

mysql> SELECT INDEX_NAME, COUNT(*) AS Pages,
ROUND(SUM(IF(COMPRESSED_SIZE = 0, 16384, COMPRESSED_SIZE))/1024/1024)
AS 'Total Data (MB)'  FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE INDEX_NAME='emp_no' AND TABLE_NAME = 'employees/salaries';
+------------+-------+-----------------+
| INDEX_NAME | Pages | Total Data (MB) |
+------------+-------+-----------------+
| emp_no     |  1244 |              19 |
+------------+-------+-----------------+

This query returns the number of pages and total data size of pages for all indexes defined on the
employees.salaries table:

mysql> SELECT INDEX_NAME, COUNT(*) AS Pages,
ROUND(SUM(IF(COMPRESSED_SIZE = 0, 16384, COMPRESSED_SIZE))/1024/1024)
AS 'Total Data (MB)'
FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE TABLE_NAME = 'employees/salaries'
GROUP BY INDEX_NAME;
+------------+-------+-----------------+
| INDEX_NAME | Pages | Total Data (MB) |
+------------+-------+-----------------+
| emp_no     |  1244 |              19 |
| PRIMARY    |  6086 |              95 |
+------------+-------+-----------------+

Example 14.5 Querying LRU_POSITION Data in the INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered that determines which pages to evict from the buffer pool when it
becomes full. The definition for this page is the same as for INNODB_BUFFER_PAGE, except this table
has an LRU_POSITION column instead of a BLOCK_ID column.

This query counts the number of positions at a specific location in the LRU list occupied by pages of
the employees.employees table.

mysql> SELECT COUNT(LRU_POSITION) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU
WHERE TABLE_NAME='employees/employees' AND LRU_POSITION < 3072;
+---------------------+
| COUNT(LRU_POSITION) |
+---------------------+
|                 481 |
+---------------------+

Example 14.6 Querying the INNODB_BUFFER_POOL_STATS Table

The INNODB_BUFFER_POOL_STATS table provides information similar to SHOW ENGINE INNODB
STATUS and InnoDB buffer pool status variables.

mysql> SELECT * FROM information_schema.INNODB_BUFFER_POOL_STATS \G



InnoDB INFORMATION_SCHEMA Buffer Pool Tables

1741

*************************** 1. row ***************************
                         POOL_ID: 0
                       POOL_SIZE: 8192
                    FREE_BUFFERS: 1
                  DATABASE_PAGES: 7942
              OLD_DATABASE_PAGES: 2911
         MODIFIED_DATABASE_PAGES: 0
              PENDING_DECOMPRESS: 0
                   PENDING_READS: 0
               PENDING_FLUSH_LRU: 0
              PENDING_FLUSH_LIST: 0
                PAGES_MADE_YOUNG: 8358
            PAGES_NOT_MADE_YOUNG: 0
           PAGES_MADE_YOUNG_RATE: 0
       PAGES_MADE_NOT_YOUNG_RATE: 0
               NUMBER_PAGES_READ: 7045
            NUMBER_PAGES_CREATED: 12382
            NUMBER_PAGES_WRITTEN: 15790
                 PAGES_READ_RATE: 0
               PAGES_CREATE_RATE: 0
              PAGES_WRITTEN_RATE: 0
                NUMBER_PAGES_GET: 28731589
                        HIT_RATE: 0
    YOUNG_MAKE_PER_THOUSAND_GETS: 0
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
         NUMBER_PAGES_READ_AHEAD: 2934
       NUMBER_READ_AHEAD_EVICTED: 23
                 READ_AHEAD_RATE: 0
         READ_AHEAD_EVICTED_RATE: 0
                    LRU_IO_TOTAL: 0
                  LRU_IO_CURRENT: 0
                UNCOMPRESS_TOTAL: 0
              UNCOMPRESS_CURRENT: 0

For comparison, SHOW ENGINE INNODB STATUS output and InnoDB buffer pool status variable
output is shown below, based on the same data set.

For more information about SHOW ENGINE INNODB STATUS output, see Section 14.20.3, “InnoDB
Standard Monitor and Lock Monitor Output”.

mysql> SHOW ENGINE INNODB STATUS \G
...
----------------------
BUFFER POOL AND MEMORY
----------------------
Total memory allocated 137363456; in additional pool allocated 0
Dictionary memory allocated 71426
Buffer pool size   8192
Free buffers       1
Database pages     7942
Old database pages 2911
Modified db pages  0
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 8358, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 7045, created 12382, written 15790
0.00 reads/s, 0.00 creates/s, 0.00 writes/s
No buffer pool page gets since the last printout
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s
LRU len: 7942, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
...

For status variable descriptions, see Section 5.1.7, “Server Status Variables”.

mysql> SHOW STATUS LIKE 'Innodb_buffer%';
+---------------------------------------+-----------+
| Variable_name                         | Value     |
+---------------------------------------+-----------+
| Innodb_buffer_pool_pages_data         | 7942      |



InnoDB Integration with MySQL Performance Schema

1742

| Innodb_buffer_pool_bytes_data         | 130121728 |
| Innodb_buffer_pool_pages_dirty        | 0         |
| Innodb_buffer_pool_bytes_dirty        | 0         |
| Innodb_buffer_pool_pages_flushed      | 15790     |
| Innodb_buffer_pool_pages_free         | 1         |
| Innodb_buffer_pool_pages_misc         | 249       |
| Innodb_buffer_pool_pages_total        | 8192      |
| Innodb_buffer_pool_read_ahead_rnd     | 0         |
| Innodb_buffer_pool_read_ahead         | 2934      |
| Innodb_buffer_pool_read_ahead_evicted | 23        |
| Innodb_buffer_pool_read_requests      | 28731589  |
| Innodb_buffer_pool_reads              | 4112      |
| Innodb_buffer_pool_wait_free          | 0         |
| Innodb_buffer_pool_write_requests     | 11965146  |
+---------------------------------------+-----------+

14.19 InnoDB Integration with MySQL Performance Schema

This section provides a brief introduction to InnoDB integration with Performance Schema. For
comprehensive Performance Schema documentation, see Chapter 22, MySQL Performance Schema.

Starting with InnoDB 1.1 with MySQL 5.5, you can profile certain internal InnoDB operations using the
MySQL Performance Schema feature. This type of tuning is primarily for expert users who evaluate
optimization strategies to overcome performance bottlenecks. DBAs can also use this feature for
capacity planning, to see whether their typical workload encounters any performance bottlenecks with a
particular combination of CPU, RAM, and disk storage; and if so, to judge whether performance can be
improved by increasing the capacity of some part of the system.

To use this feature to examine InnoDB performance:

• You must be running MySQL 5.5 or higher with the Performance Schema feature available and
enabled, as described in Section 22.2, “Performance Schema Build Configuration”, and Section 22.3,
“Performance Schema Startup Configuration”. Since the Performance Schema feature introduces
some performance overhead, you should use it on a test or development system rather than on a
production system.

• You must be running InnoDB 1.1 or higher.

• You must be generally familiar with how to use the Performance Schema feature. For example, you
should know how enable instruments and consumers, and how to query performance_schema
tables to retrieve data. For an introductory overview, see Section 22.1, “Performance Schema Quick
Start”.

• You should be familiar with Performance Schema instruments that are available for InnoDB. To view
InnoDB-related instruments, you can query the setup_instruments table for instrument names
that contain 'innodb'.

mysql> SELECT * FROM setup_instruments WHERE NAME LIKE '%innodb%';
+-------------------------------------------------------+---------+-------+
| NAME                                                  | ENABLED | TIMED |
+-------------------------------------------------------+---------+-------+
| wait/synch/mutex/innodb/commit_cond_mutex             | YES     | YES   |
| wait/synch/mutex/innodb/innobase_share_mutex          | YES     | YES   |
| wait/synch/mutex/innodb/prepare_commit_mutex          | YES     | YES   |
| wait/synch/mutex/innodb/autoinc_mutex                 | YES     | YES   |
| wait/synch/mutex/innodb/btr_search_enabled_mutex      | YES     | YES   |
| wait/synch/mutex/innodb/buf_pool_mutex                | YES     | YES   |
| wait/synch/mutex/innodb/buf_pool_zip_mutex            | YES     | YES   |
| wait/synch/mutex/innodb/cache_last_read_mutex         | YES     | YES   |
| wait/synch/mutex/innodb/dict_foreign_err_mutex        | YES     | YES   |
| wait/synch/mutex/innodb/dict_sys_mutex                | YES     | YES   |
| wait/synch/mutex/innodb/file_format_max_mutex         | YES     | YES   |
...
| wait/synch/rwlock/innodb/btr_search_latch             | YES     | YES   |
| wait/synch/rwlock/innodb/dict_operation_lock          | YES     | YES   |
| wait/synch/rwlock/innodb/fil_space_latch              | YES     | YES   |



Monitoring InnoDB Mutex Waits Using Performance Schema

1743

| wait/synch/rwlock/innodb/checkpoint_lock              | YES     | YES   |
| wait/synch/rwlock/innodb/trx_i_s_cache_lock           | YES     | YES   |
| wait/synch/rwlock/innodb/trx_purge_latch              | YES     | YES   |
| wait/synch/rwlock/innodb/index_tree_rw_lock           | YES     | YES   |
| wait/synch/rwlock/innodb/dict_table_stats             | YES     | YES   |
| wait/synch/cond/innodb/commit_cond                    | YES     | YES   |
| wait/io/file/innodb/innodb_data_file                  | YES     | YES   |
| wait/io/file/innodb/innodb_log_file                   | YES     | YES   |
| wait/io/file/innodb/innodb_temp_file                  | YES     | YES   |
+-------------------------------------------------------+---------+-------+
46 rows in set (0.00 sec)

For additional information about the instrumented InnoDB objects, you can query Performance
Schema instances tables, which provide additional information about instrumented objects. Instance
tables relevant to InnoDB include:

• The mutex_instances table

• The rwlock_instances table

• The cond_instances table

• The file_instances table

Note

Mutexes and RW-locks related to the InnoDB buffer pool are not included in
this coverage; the same applies to the output of the SHOW ENGINE INNODB
MUTEX command.

For example, to view information about instrumented InnoDB file objects seen by the Performance
Schema when executing file I/O instrumentation, you might issue the following query:

mysql> SELECT * FROM file_instances WHERE EVENT_NAME LIKE '%innodb%'\G
*************************** 1. row ***************************
 FILE_NAME: /path/to/mysql-5.5/data/ibdata1
EVENT_NAME: wait/io/file/innodb/innodb_data_file
OPEN_COUNT: 1
*************************** 2. row ***************************
 FILE_NAME: /path/to/mysql-5.5/data/ib_logfile0
EVENT_NAME: wait/io/file/innodb/innodb_log_file
OPEN_COUNT: 1
*************************** 3. row ***************************
 FILE_NAME: /path/to/mysql-5.5/data/ib_logfile1
EVENT_NAME: wait/io/file/innodb/innodb_log_file
OPEN_COUNT: 1

• You should be familiar with performance_schema tables that store InnoDB event data. Tables
relevant to InnoDB-related events include:

• The Wait Event tables, which store wait events.

• The Summary tables, which provide aggregated information for terminated events over time.
Summary tables include file I/O summary tables, which aggregate information about I/O
operations.

If you are only interested in InnoDB-related objects, use the clause WHERE EVENT_NAME LIKE
'%innodb%' or WHERE NAME LIKE '%innodb%' (as required) when querying these tables.

14.19.1 Monitoring InnoDB Mutex Waits Using Performance Schema

A mutex is a synchronization mechanism used in the code to enforce that only one thread at a given
time can have access to a common resource. When two or more threads executing in the server need
to access the same resource, the threads compete against each other. The first thread to obtain a lock
on the mutex causes the other threads to wait until the lock is released.



Monitoring InnoDB Mutex Waits Using Performance Schema

1744

For InnoDB mutexes that are instrumented, mutex waits can be monitored using Performance
Schema. Wait event data collected in Performance Schema tables can help identify mutexes with the
most waits or the greatest total wait time, for example.

The following example demonstrates how to view InnoDB mutex wait instruments, how to verify that
associated consumers are enabled, and how to query wait event data. It is assumed that Performance
Schema was enabled at server startup. For information about enabling Performance Schema, see
Section 22.1, “Performance Schema Quick Start”.

1. To view available InnoDB mutex wait instruments, query the Performance Schema
setup_instruments table, as shown below. Instruments are enabled by default.

mysql> SELECT * FROM performance_schema.setup_instruments
    -> WHERE NAME LIKE '%wait/synch/mutex/innodb%';
+-------------------------------------------------------+---------+-------+
| NAME                                                  | ENABLED | TIMED |
+-------------------------------------------------------+---------+-------+
| wait/synch/mutex/innodb/commit_cond_mutex             | YES     | YES   |
| wait/synch/mutex/innodb/innobase_share_mutex          | YES     | YES   |
| wait/synch/mutex/innodb/prepare_commit_mutex          | YES     | YES   |
| wait/synch/mutex/innodb/autoinc_mutex                 | YES     | YES   |
| wait/synch/mutex/innodb/btr_search_enabled_mutex      | YES     | YES   |
| wait/synch/mutex/innodb/buf_pool_mutex                | YES     | YES   |
| wait/synch/mutex/innodb/buf_pool_zip_mutex            | YES     | YES   |
| wait/synch/mutex/innodb/cache_last_read_mutex         | YES     | YES   |
| wait/synch/mutex/innodb/dict_foreign_err_mutex        | YES     | YES   |
| wait/synch/mutex/innodb/dict_sys_mutex                | YES     | YES   |
| wait/synch/mutex/innodb/file_format_max_mutex         | YES     | YES   |
| wait/synch/mutex/innodb/fil_system_mutex              | YES     | YES   |
| wait/synch/mutex/innodb/flush_list_mutex              | YES     | YES   |
| wait/synch/mutex/innodb/log_flush_order_mutex         | YES     | YES   |
| wait/synch/mutex/innodb/hash_table_mutex              | YES     | YES   |
| wait/synch/mutex/innodb/ibuf_bitmap_mutex             | YES     | YES   |
| wait/synch/mutex/innodb/ibuf_mutex                    | YES     | YES   |
| wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex | YES     | YES   |
| wait/synch/mutex/innodb/kernel_mutex                  | YES     | YES   |
| wait/synch/mutex/innodb/log_sys_mutex                 | YES     | YES   |
| wait/synch/mutex/innodb/mem_pool_mutex                | YES     | YES   |
| wait/synch/mutex/innodb/mutex_list_mutex              | YES     | YES   |
| wait/synch/mutex/innodb/purge_sys_bh_mutex            | YES     | YES   |
| wait/synch/mutex/innodb/recv_sys_mutex                | YES     | YES   |
| wait/synch/mutex/innodb/rseg_mutex                    | YES     | YES   |
| wait/synch/mutex/innodb/rw_lock_list_mutex            | YES     | YES   |
| wait/synch/mutex/innodb/rw_lock_mutex                 | YES     | YES   |
| wait/synch/mutex/innodb/srv_dict_tmpfile_mutex        | YES     | YES   |
| wait/synch/mutex/innodb/srv_innodb_monitor_mutex      | YES     | YES   |
| wait/synch/mutex/innodb/srv_misc_tmpfile_mutex        | YES     | YES   |
| wait/synch/mutex/innodb/srv_monitor_file_mutex        | YES     | YES   |
| wait/synch/mutex/innodb/syn_arr_mutex                 | YES     | YES   |
| wait/synch/mutex/innodb/trx_doublewrite_mutex         | YES     | YES   |
| wait/synch/mutex/innodb/trx_undo_mutex                | YES     | YES   |
+-------------------------------------------------------+---------+-------+
34 rows in set (0.00 sec)

2. Verify that wait event consumers are enabled by querying the setup_consumers table. The
events_waits_current, events_waits_history, and events_waits_history_long
consumers should be enabled by default.

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------------------+---------+
| NAME                                         | ENABLED |
+----------------------------------------------+---------+
| events_waits_current                         | YES     |
| events_waits_history                         | YES     |
| events_waits_history_long                    | YES     |
| events_waits_summary_by_thread_by_event_name | YES     |
| events_waits_summary_by_event_name           | YES     |
| events_waits_summary_by_instance             | YES     |
| file_summary_by_event_name                   | YES     |
| file_summary_by_instance                     | YES     |



Monitoring InnoDB Mutex Waits Using Performance Schema

1745

+----------------------------------------------+---------+
8 rows in set (0.00 sec)

3. Run the workload that you want to monitor. In this example, the mysqlslap load emulation client is
used to simulate a workload.

shell> ./mysqlslap --auto-generate-sql --concurrency=100 --iterations=10
    -> --number-of-queries=1000 --number-char-cols=6 --number-int-cols=6;

4. Query the wait event data. In this example, wait event data is queried from the
events_waits_summary_global_by_event_name table which aggregates data found in the
events_waits_current, events_waits_history, and events_waits_history_long
tables. Data is summarized by event name (EVENT_NAME), which is the name of the instrument that
produced the event. Summarized data includes:

• COUNT_STAR

The number of summarized wait events.

• SUM_TIMER_WAIT

The total wait time of the summarized timed wait events.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed wait events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed wait events.

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed wait events.

The following query returns the instrument name (EVENT_NAME), the number of wait events
(COUNT_STAR), and the total wait time for the events for that instrument (SUM_TIMER_WAIT).
Because waits are timed in picoseconds (trillionths of a second) by default, wait times are divided
by 1000000000 to show wait times in milliseconds. Data is presented in descending order, by the
number of summarized wait events (COUNT_STAR). You can adjust the ORDER BY clause to order
the data by total wait time.

mysql> SELECT EVENT_NAME, COUNT_STAR, SUM_TIMER_WAIT/1000000000 SUM_TIMER_WAIT_MS
    -> FROM performance_schema.events_waits_summary_global_by_event_name
    -> WHERE SUM_TIMER_WAIT > 0 AND EVENT_NAME LIKE 'wait/synch/mutex/innodb/%'
    -> ORDER BY COUNT_STAR DESC;
+-------------------------------------------------------+------------+-------------------+
| EVENT_NAME                                            | COUNT_STAR | SUM_TIMER_WAIT_MS |
+-------------------------------------------------------+------------+-------------------+
| wait/synch/mutex/innodb/buf_pool_mutex                |     154477 |         6258.6407 |
| wait/synch/mutex/innodb/kernel_mutex                  |      54294 |         1747.1980 |
| wait/synch/mutex/innodb/log_sys_mutex                 |      40578 |         3167.6126 |
| wait/synch/mutex/innodb/dict_sys_mutex                |      34261 |           26.4183 |
| wait/synch/mutex/innodb/log_flush_order_mutex         |      24463 |            0.5867 |
| wait/synch/mutex/innodb/rseg_mutex                    |      18204 |            0.4750 |
| wait/synch/mutex/innodb/flush_list_mutex              |      15949 |            0.7182 |
| wait/synch/mutex/innodb/mutex_list_mutex              |      10439 |            0.2299 |
| wait/synch/mutex/innodb/fil_system_mutex              |       9815 |            0.5027 |
| wait/synch/mutex/innodb/rw_lock_list_mutex            |       8292 |            0.1763 |
| wait/synch/mutex/innodb/trx_undo_mutex                |       6070 |            0.2339 |
| wait/synch/mutex/innodb/innobase_share_mutex          |       1994 |            0.0761 |
| wait/synch/mutex/innodb/file_format_max_mutex         |       1007 |            0.0245 |
| wait/synch/mutex/innodb/trx_doublewrite_mutex         |        387 |            0.0214 |
| wait/synch/mutex/innodb/recv_sys_mutex                |        186 |            0.0047 |



InnoDB Monitors

1746

| wait/synch/mutex/innodb/ibuf_mutex                    |        121 |            0.0030 |
| wait/synch/mutex/innodb/purge_sys_bh_mutex            |         99 |            0.0033 |
| wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex |         40 |            0.0011 |
| wait/synch/mutex/innodb/srv_innodb_monitor_mutex      |          3 |            0.0003 |
+-------------------------------------------------------+------------+-------------------+
19 rows in set (0.00 sec)

Note

The preceding result set includes wait event data produced during
the startup process. To exclude this data, you can truncate the
events_waits_summary_global_by_event_name table immediately
after startup and before running your workload. However, the truncate
operation itself may produce a negligible amount wait event data.

mysql> TRUNCATE performance_schema.events_waits_summary_global_by_event_name;

14.20 InnoDB Monitors
InnoDB monitors provide information about the InnoDB internal state. This information is useful for
performance tuning.

14.20.1 InnoDB Monitor Types

There are four types of InnoDB monitors:

• The standard InnoDB Monitor displays the following types of information:

• Work done by the main background thread

• Semaphore waits

• Data about the most recent foreign key and deadlock errors

• Lock waits for transactions

• Table and record locks held by active transactions

• Pending I/O operations and related statistics

• Insert buffer and adaptive hash index statistics

• Redo log data

• Buffer pool statistics

• Row operation data

• The InnoDB Lock Monitor prints additional lock information as part of the standard InnoDB Monitor
output.

• The InnoDB Tablespace Monitor prints a list of file segments in the shared tablespace and validates
the tablespace allocation data structures.

• The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary.

For additional information about InnoDB table and tablespace monitors, see Mark Leith: InnoDB Table
and Tablespace Monitors.

14.20.2 Enabling InnoDB Monitors

When you enable InnoDB monitors for periodic output, InnoDB writes the output to the mysqld server
standard error output (stderr). In this case, no output is sent to clients. When switched on, InnoDB

http://www.markleith.co.uk/?p=25
http://www.markleith.co.uk/?p=25


Enabling InnoDB Monitors

1747

monitors print data about every 15 seconds. Server output usually is directed to the error log (see
Section 5.4.2, “The Error Log”). This data is useful in performance tuning. On Windows, start the server
from a command prompt in a console window with the --console option if you want to direct the
output to the window rather than to the error log.

InnoDB sends diagnostic output to stderr or to files rather than to stdout or fixed-size memory
buffers, to avoid potential buffer overflows. As a side effect, the output of SHOW ENGINE INNODB
STATUS is written to a status file in the MySQL data directory every fifteen seconds. The name of the
file is innodb_status.pid, where pid is the server process ID. InnoDB removes the file when the
server is shut down normally. If abnormal shutdowns have occurred, instances of these status files
may be present and must be removed manually. Before removing them, examine them to see if they
contain useful information about the cause of abnormal shutdowns. The innodb_status.pid file is
only created if the innodb-status-file configuration option is enabled. It is disabled by default.

InnoDB monitors should only be enabled when you actually want to see monitor information because
output generation causes some performance decrement. Also, if you enable monitor output by creating
the associated table, your error log may become quite large if you forget to remove the table later.

Note

To assist with troubleshooting, InnoDB temporarily enables standard
InnoDB Monitor output under certain conditions. For more information, see
Section 14.23, “InnoDB Troubleshooting”.

Each monitor begins with a header containing a timestamp and the monitor name. For example:

=====================================
141016 15:41:44 INNODB MONITOR OUTPUT
=====================================

The header for the standard InnoDB Monitor (INNODB MONITOR OUTPUT) is also used for the Lock
Monitor because the latter produces the same output with the addition of extra lock information.

Enabling an InnoDB monitor for periodic output involves using a CREATE TABLE statement to create a
specially named InnoDB table that is associated with the monitor. For example, to enable the standard
InnoDB Monitor, you would create an InnoDB table named innodb_monitor.

Using CREATE TABLE syntax is just a way to pass a command to the InnoDB engine through
MySQL's SQL parser. The only things that matter are the table name and that it be an InnoDB table.
The structure of the table is not relevant. If you shut down the server, the monitor does not restart
automatically when you restart the server. Drop the monitor table and issue a new CREATE TABLE
statement to start the monitor.

The PROCESS privilege is required to start or stop the InnoDB monitors.

Enabling the Standard InnoDB Monitor

To enable the standard InnoDB Monitor for periodic output, create the innodb_monitor table:

CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;

To disable the standard InnoDB Monitor, drop the table:

DROP TABLE innodb_monitor;

Obtaining Standard InnoDB Monitor Output On Demand

As an alternative to enabling the standard InnoDB Monitor for periodic output, you can obtain standard
InnoDB Monitor output on demand using the SHOW ENGINE INNODB STATUS SQL statement, which
fetches the output to your client program. If you are using the mysql interactive client, the output is
more readable if you replace the usual semicolon statement terminator with \G:



InnoDB Standard Monitor and Lock Monitor Output

1748

mysql> SHOW ENGINE INNODB STATUS\G

SHOW ENGINE INNODB STATUS output also includes InnoDB Lock Monitor data if the InnoDB Lock
Monitor is enabled.

Enabling the InnoDB Lock Monitor

To enable the InnoDB Lock Monitor for periodic output, create the innodb_lock_monitor table:

CREATE TABLE innodb_lock_monitor (a INT) ENGINE=INNODB;

To disable the InnoDB Lock Monitor, drop the table:

DROP TABLE innodb_lock_monitor;

Enabling the InnoDB Tablespace Monitor

To enable the InnoDB Tablespace Monitor for periodic output, create the
innodb_tablespace_monitor table:

CREATE TABLE innodb_tablespace_monitor (a INT) ENGINE=INNODB;

To disable the standard InnoDB Tablespace Monitor, drop the table:

DROP TABLE innodb_tablespace_monitor;

Enabling the InnoDB Table Monitor

To enable the InnoDB Table Monitor for periodic output, create the innodb_table_monitor table:

CREATE TABLE innodb_table_monitor (a INT) ENGINE=INNODB;

To disable the InnoDB Table Monitor, drop the table:

DROP TABLE innodb_table_monitor;

14.20.3 InnoDB Standard Monitor and Lock Monitor Output

The Lock Monitor is the same as the Standard Monitor except that it includes additional lock
information. Enabling either monitor for periodic output turns on the same output stream, but the
stream includes extra information if the Lock Monitor is enabled. For example, if you enable the
Standard Monitor and Lock Monitor, that turns on a single output stream. The stream includes extra
lock information until you disable the Lock Monitor.

Standard Monitor output is limited to 1MB when produced using the SHOW ENGINE INNODB STATUS
statement. This limit does not apply to output written to server standard error output (stderr).

Example Standard Monitor output:

mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
  Type: InnoDB
  Name:
Status:
=====================================
141016 15:41:44 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 6 seconds
-----------------
BACKGROUND THREAD
-----------------



InnoDB Standard Monitor and Lock Monitor Output

1749

srv_master_thread loops: 49 1_second, 48 sleeps, 3 10_second, 18 background,
18 flush
srv_master_thread log flush and writes: 48
----------
SEMAPHORES
----------
OS WAIT ARRAY INFO: reservation count 46, signal count 45
Mutex spin waits 30, rounds 900, OS waits 27
RW-shared spins 14, rounds 420, OS waits 14
RW-excl spins 0, rounds 150, OS waits 5
Spin rounds per wait: 30.00 mutex, 30.00 RW-shared, 150.00 RW-excl
------------------------
LATEST FOREIGN KEY ERROR
------------------------
141016 15:37:30 Transaction:
TRANSACTION 3D005, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1248, 3 row lock(s), undo log entries 3
MySQL thread id 1, OS thread handle 0x7f0ee440e700, query id 70 localhost root
update
INSERT INTO child VALUES
    (NULL, 1)
    , (NULL, 2)
    , (NULL, 3)
    , (NULL, 4)
    , (NULL, 5)
    , (NULL, 6)
Foreign key constraint fails for table `mysql`.`child`:
,
  CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent` (`id`)
  ON DELETE CASCADE ON UPDATE CASCADE
Trying to add in child table, in index `par_ind` tuple:
DATA TUPLE: 2 fields;
 0: len 4; hex 80000003; asc     ;;
 1: len 4; hex 80000003; asc     ;;

But in parent table `mysql`.`parent`, in index `PRIMARY`,
the closest match we can find is record:
PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000004; asc     ;;
 1: len 6; hex 00000003d002; asc       ;;
 2: len 7; hex 8300001d480137; asc     H 7;;

------------------------
LATEST DETECTED DEADLOCK
------------------------
141016 15:39:58
*** (1) TRANSACTION:
TRANSACTION 3D009, ACTIVE 19 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 376, 1 row lock(s)
MySQL thread id 2, OS thread handle 0x7f0ee43cd700, query id 78 localhost root
updating
DELETE FROM t WHERE i = 1
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 2428 n bits 72 index `GEN_CLUST_INDEX` of table
`mysql`.`t` trx id 3D009 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 6; hex 000000000700; asc       ;;
 1: len 6; hex 00000003d007; asc       ;;
 2: len 7; hex 87000009560110; asc     V  ;;
 3: len 4; hex 80000001; asc     ;;

*** (2) TRANSACTION:
TRANSACTION 3D008, ACTIVE 69 sec starting index read
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1248, 3 row lock(s)
MySQL thread id 1, OS thread handle 0x7f0ee440e700, query id 79 localhost root
updating
DELETE FROM t WHERE i = 1
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 0 page no 2428 n bits 72 index `GEN_CLUST_INDEX` of table



InnoDB Standard Monitor and Lock Monitor Output

1750

`mysql`.`t` trx id 3D008 lock mode S
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 6; hex 000000000700; asc       ;;
 1: len 6; hex 00000003d007; asc       ;;
 2: len 7; hex 87000009560110; asc     V  ;;
 3: len 4; hex 80000001; asc     ;;

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 2428 n bits 72 index `GEN_CLUST_INDEX` of table
`mysql`.`t` trx id 3D008 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 6; hex 000000000700; asc       ;;
 1: len 6; hex 00000003d007; asc       ;;
 2: len 7; hex 87000009560110; asc     V  ;;
 3: len 4; hex 80000001; asc     ;;

*** WE ROLL BACK TRANSACTION (1)
------------
TRANSACTIONS
------------
Trx id counter 3D038
Purge done for trx's n:o < 3D02A undo n:o < 0
History list length 1047
Total number of lock structs in row lock hash table 0
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 3D009, not started
MySQL thread id 2, OS thread handle 0x7f0ee43cd700, query id 78 localhost root
---TRANSACTION 3D008, not started
MySQL thread id 1, OS thread handle 0x7f0ee440e700, query id 113 localhost root
SHOW ENGINE INNODB STATUS
---TRANSACTION 3D037, ACTIVE 1 sec inserting
mysql tables in use 1, locked 1
1 lock struct(s), heap size 376, 0 row lock(s), undo log entries 11940
MySQL thread id 3, OS thread handle 0x7f0ee438c700, query id 112 localhost root
update
INSERT INTO `employees` VALUES (413215,'1962-07-08','Ronghao','Molberg','F',
'1985-06-20'),(413216,'1954-05-25','Masaru','Lieberherr','M','1992-04-08'),
(413217,'1953-03-17','Phule','Waschkowski','F','1988-07-28'),(413218,'1964-10-07',
'Vitaly','Negoita','M','1986-01-13'),(413219,'1957-03-31','Danil','Kalafatis','F',
'1985-04-12'),(413220,'1958-07-25','Jianwen','Radwan','M','1986-09-03'),(413221,
'1964-04-08','Paloma','Bach','M','1986-05-03'),(413222,'1955-06-10','Stafford',
'Muhlberg','M','1989-03-22'),(413223,'1963-10-27','Aiichiro','Benzmuller','M',
'1987-12-02'),(413224,'1955-10-02','Giordano','N
TABLE LOCK table `employees`.`employees` trx id 3D037 lock mode IX
--------
FILE I/O
--------
I/O thread 0 state: waiting for completed aio requests (insert buffer thread)
I/O thread 1 state: waiting for completed aio requests (log thread)
I/O thread 2 state: waiting for completed aio requests (read thread)
I/O thread 3 state: waiting for completed aio requests (read thread)
I/O thread 4 state: waiting for completed aio requests (read thread)
I/O thread 5 state: waiting for completed aio requests (read thread)
I/O thread 6 state: waiting for completed aio requests (write thread)
I/O thread 7 state: waiting for completed aio requests (write thread)
I/O thread 8 state: waiting for completed aio requests (write thread)
I/O thread 9 state: waiting for completed aio requests (write thread)
Pending normal aio reads: 0 [0, 0, 0, 0] , aio writes: 0 [0, 0, 0, 0] ,
 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
439 OS file reads, 917 OS file writes, 199 OS fsyncs
0.00 reads/s, 0 avg bytes/read, 56.32 writes/s, 7.67 fsyncs/s
-------------------------------------
INSERT BUFFER AND ADAPTIVE HASH INDEX
-------------------------------------
Ibuf: size 1, free list len 0, seg size 2, 0 merges
merged operations:
 insert 0, delete mark 0, delete 0
discarded operations:



InnoDB Standard Monitor and Lock Monitor Output

1751

 insert 0, delete mark 0, delete 0
Hash table size 4425293, used cells 32, node heap has 1 buffer(s)
13577.57 hash searches/s, 202.47 non-hash searches/s
---
LOG
---
Log sequence number 794838329
Log flushed up to   793815740
Last checkpoint at  788417971
0 pending log writes, 0 pending chkp writes
96 log i/o's done, 3.50 log i/o's/second
----------------------
BUFFER POOL AND MEMORY
----------------------
Total memory allocated 2217738240; in additional pool allocated 0
Dictionary memory allocated 121719
Buffer pool size   131072
Free buffers       129937
Database pages     1134
Old database pages 211
Modified db pages  187
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 0, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 426, created 708, written 768
0.00 reads/s, 40.99 creates/s, 50.49 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 1134, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
----------------------
INDIVIDUAL BUFFER POOL INFO
----------------------
---BUFFER POOL 0
Buffer pool size   65536
Free buffers       65029
Database pages     506
Old database pages 0
Modified db pages  95
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 0, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 137, created 369, written 412
0.00 reads/s, 20.16 creates/s, 18.00 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 506, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
---BUFFER POOL 1
Buffer pool size   65536
Free buffers       64908
Database pages     628
Old database pages 211
Modified db pages  92
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 0, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 289, created 339, written 356
0.00 reads/s, 20.83 creates/s, 32.49 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead
0.00/s
LRU len: 628, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
--------------
ROW OPERATIONS
--------------



InnoDB Standard Monitor and Lock Monitor Output

1752

0 queries inside InnoDB, 0 queries in queue
1 read views open inside InnoDB
Main thread process no. 30091, id 139699544078080, state: sleeping
Number of rows inserted 225354, updated 0, deleted 3, read 4
13690.55 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s
----------------------------
END OF INNODB MONITOR OUTPUT
============================

Standard Monitor Output Sections

For a description of each metric reported by the Standard Monitor, refer to the Metrics chapter in the
Oracle Enterprise Manager for MySQL Database User's Guide.

• Status

This section shows the timestamp, the monitor name, and the number of seconds that per-second
averages are based on. The number of seconds is the elapsed time between the current time and
the last time InnoDB Monitor output was printed.

• BACKGROUND THREAD

The srv_master_thread lines shows work done by the main background thread.

• SEMAPHORES

This section reports threads waiting for a semaphore and statistics on how many times threads have
needed a spin or a wait on a mutex or a rw-lock semaphore. A large number of threads waiting for
semaphores may be a result of disk I/O, or contention problems inside InnoDB. Contention can be
due to heavy parallelism of queries or problems in operating system thread scheduling. Setting the
innodb_thread_concurrency system variable smaller than the default value might help in such
situations. The Spin rounds per wait line shows the number of spinlock rounds per OS wait for
a mutex.

• LATEST FOREIGN KEY ERROR

This section provides information about the most recent foreign key constraint error. It is not present
if no such error has occurred. The contents include the statement that failed as well as information
about the constraint that failed and the referenced and referencing tables.

• LATEST DETECTED DEADLOCK

This section provides information about the most recent deadlock. It is not present if no deadlock has
occurred. The contents show which transactions are involved, the statement each was attempting
to execute, the locks they have and need, and which transaction InnoDB decided to roll back to
break the deadlock. The lock modes reported in this section are explained in Section 14.8.1, “InnoDB
Locking”.

• TRANSACTIONS

If this section reports lock waits, your applications might have lock contention. The output can also
help to trace the reasons for transaction deadlocks.

• FILE I/O

This section provides information about threads that InnoDB uses to perform various types of I/
O. The first few of these are dedicated to general InnoDB processing. The contents also display
information for pending I/O operations and statistics for I/O performance.

The number of these threads are controlled by the innodb_read_io_threads and
innodb_write_io_threads parameters. See Section 14.17, “InnoDB Startup Options and
System Variables”.

• INSERT BUFFER AND ADAPTIVE HASH INDEX

http://dev.mysql.com/doc/mysql-em-plugin/en/myoem-metrics.html
http://dev.mysql.com/doc/mysql-em-plugin/en/


InnoDB Tablespace Monitor Output

1753

This section shows the status of the InnoDB insert buffer (also referred to as the change buffer) and
the adaptive hash index.

For related information, see Section 14.7.2, “Change Buffer”, and Section 14.7.3, “Adaptive Hash
Index”.

• LOG

This section displays information about the InnoDB log. The contents include the current log
sequence number, how far the log has been flushed to disk, and the position at which InnoDB
last took a checkpoint. (See Section 14.15.3, “InnoDB Checkpoints”.) The section also displays
information about pending writes and write performance statistics.

• BUFFER POOL AND MEMORY

This section gives you statistics on pages read and written. You can calculate from these numbers
how many data file I/O operations your queries currently are doing.

For buffer pool statistics descriptions, see Section 14.9.2.6, “Monitoring the Buffer Pool Using the
InnoDB Standard Monitor”. For additional information about the operation of the buffer pool, see
Section 14.9.2.1, “The InnoDB Buffer Pool”.

• ROW OPERATIONS

This section shows what the main thread is doing, including the number and performance rate for
each type of row operation.

In MySQL 5.5, output from the standard InnoDB Monitor includes additional sections compared to
the output for previous versions. For details, see Diagnostic and Monitoring Capabilities.

14.20.4 InnoDB Tablespace Monitor Output

The InnoDB Tablespace Monitor prints information about the file segments in the shared tablespace
and validates the tablespace allocation data structures. The Tablespace Monitor does not describe file-
per-table tablespaces created with the innodb_file_per_table option.

Example InnoDB Tablespace Monitor output:

================================================
090408 21:28:09 INNODB TABLESPACE MONITOR OUTPUT
================================================
FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845
SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14
SEGMENT id 0 2 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 3 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0
SEGMENT id 0 488 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 17 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 171 space 0; page 2; res 592 used 481; full ext 7
fragm pages 16; free extents 0; not full extents 2: pages 17
SEGMENT id 0 172 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 173 space 0; page 2; res 96 used 44; full ext 0



InnoDB Tablespace Monitor Output

1754

fragm pages 32; free extents 0; not full extents 1: pages 12
...
SEGMENT id 0 601 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
NUMBER of file segments: 73
Validating tablespace
Validation ok
---------------------------------------
END OF INNODB TABLESPACE MONITOR OUTPUT
=======================================

The Tablespace Monitor output includes information about the shared tablespace as a whole, followed
by a list containing a breakdown for each segment within the tablespace.

In this example using the default page size, the tablespace consists of database pages that are 16KB
each. The pages are grouped into extents of size 1MB (64 consecutive pages).

The initial part of the output that displays overall tablespace information has this format:

FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845

Overall tablespace information includes these values:

• id

The tablespace ID. A value of 0 refers to the shared tablespace.

• size

The current tablespace size in pages.

• free limit

The minimum page number for which the free list has not been initialized. Pages at or above this limit
are free.

• free extents

The number of free extents.

• not full frag extents, used pages

The number of fragment extents that are not completely filled, and the number of pages in those
extents that have been allocated.

• full frag extents

The number of completely full fragment extents.

• first seg id not used

The first unused segment ID.

Individual segment information has this format:

SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0

Segment information includes these values:

• id



InnoDB Table Monitor Output

1755

The segment ID.

• space, page

The tablespace number and page within the tablespace where the segment “inode” is located. A
tablespace number of 0 indicates the shared tablespace. InnoDB uses inodes to keep track of
segments in the tablespace. The other fields displayed for a segment (id, res, and so forth) are
derived from information in the inode.

• res

The number of pages allocated (reserved) for the segment.

• used

The number of allocated pages in use by the segment.

• full ext

The number of extents allocated for the segment that are completely used.

• fragm pages

The number of initial pages that have been allocated to the segment.

• free extents

The number of extents allocated for the segment that are completely unused.

• not full extents

The number of extents allocated for the segment that are partially used.

• pages

The number of pages used within the not-full extents.

When a segment grows, it starts as a single page, and InnoDB allocates the first pages for it one at a
time, up to 32 pages (this is the fragm pages value). After that, InnoDB allocates complete extents.
InnoDB can add up to 4 extents at a time to a large segment to ensure good sequentiality of data.

For the example segment shown earlier, it has 32 fragment pages, plus 2 full extents (64 pages each),
for a total of 160 pages used out of 160 pages allocated. The following segment has 32 fragment
pages and one partially full extent using 14 pages for a total of 46 pages used out of 96 pages
allocated:

SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14

It is possible for a segment that has extents allocated to it to have a fragm pages value less than 32
if some of the individual pages have been deallocated subsequent to extent allocation.

14.20.5 InnoDB Table Monitor Output

The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary.

The output contains one section per table. The SYS_FOREIGN and SYS_FOREIGN_COLS sections are
for internal data dictionary tables that maintain information about foreign keys. There are also sections
for the Table Monitor table and each user-created InnoDB table. Suppose that the following two tables
have been created in the test database:



InnoDB Table Monitor Output

1756

CREATE TABLE parent
(
  par_id    INT NOT NULL,
  fname      CHAR(20),
  lname      CHAR(20),
  PRIMARY KEY (par_id),
  UNIQUE INDEX (lname, fname)
) ENGINE = INNODB;

CREATE TABLE child
(
  par_id      INT NOT NULL,
  child_id    INT NOT NULL,
  name        VARCHAR(40),
  birth       DATE,
  weight      DECIMAL(10,2),
  misc_info   VARCHAR(255),
  last_update TIMESTAMP,
  PRIMARY KEY (par_id, child_id),
  INDEX (name),
  FOREIGN KEY (par_id) REFERENCES parent (par_id)
    ON DELETE CASCADE
    ON UPDATE CASCADE
) ENGINE = INNODB;

Then the Table Monitor output will look something like this (reformatted slightly):

===========================================
090420 12:09:32 INNODB TABLE MONITOR OUTPUT
===========================================
--------------------------------------
TABLE: name SYS_FOREIGN, id 0 11, columns 7, indexes 3, appr.rows 1
  COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0;
           FOR_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
           REF_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
           N_COLS: DATA_INT len 4;
           DB_ROW_ID: DATA_SYS prtype 256 len 6;
           DB_TRX_ID: DATA_SYS prtype 257 len 6;
  INDEX: name ID_IND, id 0 11, fields 1/6, uniq 1, type 3
   root page 46, appr.key vals 1, leaf pages 1, size pages 1
   FIELDS:  ID DB_TRX_ID DB_ROLL_PTR FOR_NAME REF_NAME N_COLS
  INDEX: name FOR_IND, id 0 12, fields 1/2, uniq 2, type 0
   root page 47, appr.key vals 1, leaf pages 1, size pages 1
   FIELDS:  FOR_NAME ID
  INDEX: name REF_IND, id 0 13, fields 1/2, uniq 2, type 0
   root page 48, appr.key vals 1, leaf pages 1, size pages 1
   FIELDS:  REF_NAME ID
--------------------------------------
TABLE: name SYS_FOREIGN_COLS, id 0 12, columns 7, indexes 1, appr.rows 1
  COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0;
           POS: DATA_INT len 4;
           FOR_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
           REF_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
           DB_ROW_ID: DATA_SYS prtype 256 len 6;
           DB_TRX_ID: DATA_SYS prtype 257 len 6;
  INDEX: name ID_IND, id 0 14, fields 2/6, uniq 2, type 3
   root page 49, appr.key vals 1, leaf pages 1, size pages 1
   FIELDS:  ID POS DB_TRX_ID DB_ROLL_PTR FOR_COL_NAME REF_COL_NAME
--------------------------------------
TABLE: name test/child, id 0 14, columns 10, indexes 2, appr.rows 201
  COLUMNS: par_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
           child_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
           name: DATA_VARCHAR prtype 524303 len 40;
           birth: DATA_INT DATA_BINARY_TYPE len 3;
           weight: DATA_FIXBINARY DATA_BINARY_TYPE len 5;
           misc_info: DATA_VARCHAR prtype 524303 len 255;
           last_update: DATA_INT DATA_UNSIGNED DATA_BINARY_TYPE DATA_NOT_NULL len 4;
           DB_ROW_ID: DATA_SYS prtype 256 len 6;
           DB_TRX_ID: DATA_SYS prtype 257 len 6;
  INDEX: name PRIMARY, id 0 17, fields 2/9, uniq 2, type 3



InnoDB Table Monitor Output

1757

   root page 52, appr.key vals 201, leaf pages 5, size pages 6
   FIELDS:  par_id child_id DB_TRX_ID DB_ROLL_PTR name birth weight misc_info last_update
  INDEX: name name, id 0 18, fields 1/3, uniq 3, type 0
   root page 53, appr.key vals 210, leaf pages 1, size pages 1
   FIELDS:  name par_id child_id
  FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child ( par_id )
             REFERENCES test/parent ( par_id )
--------------------------------------
TABLE: name test/innodb_table_monitor, id 0 15, columns 4, indexes 1, appr.rows 0
  COLUMNS: i: DATA_INT DATA_BINARY_TYPE len 4;
           DB_ROW_ID: DATA_SYS prtype 256 len 6;
           DB_TRX_ID: DATA_SYS prtype 257 len 6;
  INDEX: name GEN_CLUST_INDEX, id 0 19, fields 0/4, uniq 1, type 1
   root page 193, appr.key vals 0, leaf pages 1, size pages 1
   FIELDS:  DB_ROW_ID DB_TRX_ID DB_ROLL_PTR i
--------------------------------------
TABLE: name test/parent, id 0 13, columns 6, indexes 2, appr.rows 299
  COLUMNS: par_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
           fname: DATA_CHAR prtype 524542 len 20;
           lname: DATA_CHAR prtype 524542 len 20;
           DB_ROW_ID: DATA_SYS prtype 256 len 6;
           DB_TRX_ID: DATA_SYS prtype 257 len 6;
  INDEX: name PRIMARY, id 0 15, fields 1/5, uniq 1, type 3
   root page 50, appr.key vals 299, leaf pages 2, size pages 3
   FIELDS:  par_id DB_TRX_ID DB_ROLL_PTR fname lname
  INDEX: name lname, id 0 16, fields 2/3, uniq 2, type 2
   root page 51, appr.key vals 300, leaf pages 1, size pages 1
   FIELDS:  lname fname par_id
  FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child ( par_id )
             REFERENCES test/parent ( par_id )
-----------------------------------
END OF INNODB TABLE MONITOR OUTPUT
==================================

For each table, Table Monitor output contains a section that displays general information about the
table and specific information about its columns, indexes, and foreign keys.

The general information for each table includes the table name (in db_name/tbl_name format except
for internal tables), its ID, the number of columns and indexes, and an approximate row count.

The COLUMNS part of a table section lists each column in the table. Information for each column
indicates its name and data type characteristics. Some internal columns are added by InnoDB, such
as DB_ROW_ID (row ID), DB_TRX_ID (transaction ID), and DB_ROLL_PTR (a pointer to the rollback/
undo data).

• DATA_xxx

These symbols indicate the data type. There may be multiple DATA_xxx symbols for a given column.

• prtype

The column's “precise” type. This field includes information such as the column data type, character
set code, nullability, signedness, and whether it is a binary string. This field is described in the
innobase/include/data0type.h source file.

• len

The column length in bytes.

Each INDEX part of the table section provides the name and characteristics of one table index:

• name

The index name. If the name is PRIMARY, the index is a primary key. If the name is
GEN_CLUST_INDEX, the index is the clustered index that is created automatically if the table
definition doesn't include a primary key or non-NULL unique index. See Section 14.11.2.1, “Clustered
and Secondary Indexes”.



InnoDB Backup and Recovery

1758

• id

The index ID.

• fields

The number of fields in the index, as a value in m/n format:

• m is the number of user-defined columns; that is, the number of columns you would see in the
index definition in a CREATE TABLE statement.

• n is the total number of index columns, including those added internally. For the clustered index,
the total includes the other columns in the table definition, plus any columns added internally. For
a secondary index, the total includes the columns from the primary key that are not part of the
secondary index.

• uniq

The number of leading fields that are enough to determine index values uniquely.

• type

The index type. This is a bit field. For example, 1 indicates a clustered index and 2 indicates a unique
index, so a clustered index (which always contains unique values), will have a type value of 3.
An index with a type value of 0 is neither clustered nor unique. The flag values are defined in the
innobase/include/dict0mem.h source file.

• root page

The index root page number.

• appr. key vals

The approximate index cardinality.

• leaf pages

The approximate number of leaf pages in the index.

• size pages

The approximate total number of pages in the index.

• FIELDS

The names of the fields in the index. For a clustered index that was generated automatically, the
field list begins with the internal DB_ROW_ID (row ID) field. DB_TRX_ID and DB_ROLL_PTR are
always added internally to the clustered index, following the fields that comprise the primary key. For
a secondary index, the final fields are those from the primary key that are not part of the secondary
index.

The end of the table section lists the FOREIGN KEY definitions that apply to the table. This information
appears whether the table is a referencing or referenced table.

14.21 InnoDB Backup and Recovery
This section covers topics related to InnoDB backup and recovery.

• For information about backup techniques applicable to InnoDB, see Section 14.21.1, “InnoDB
Backup”.

• For information about point-in-time recovery, recovery from disk failure or corruption, and how
InnoDB performs crash recovery, see Section 14.21.2, “InnoDB Recovery”.



InnoDB Backup

1759

14.21.1 InnoDB Backup

The key to safe database management is making regular backups. Depending on your data volume,
number of MySQL servers, and database workload, you can use these backup techniques, alone or
in combination: hot backup with MySQL Enterprise Backup; cold backup by copying files while the
MySQL server is shut down; logical backup with mysqldump for smaller data volumes or to record the
structure of schema objects. Hot and cold backups are physical backups that copy actual data files,
which can be used directly by the mysqld server for faster restore.

Hot Backups

The mysqlbackup command, part of the MySQL Enterprise Backup component, lets you back up
a running MySQL instance, including InnoDB tables, with minimal disruption to operations while
producing a consistent snapshot of the database. When mysqlbackup is copying InnoDB tables,
reads and writes to InnoDB can continue. MySQL Enterprise Backup can also create compressed
backup files, and back up subsets of tables and databases. In conjunction with the MySQL binary log,
users can perform point-in-time recovery. MySQL Enterprise Backup is part of the MySQL Enterprise
subscription. For more details, see Section 25.2, “MySQL Enterprise Backup Overview”.

Cold Backups

If you can shut down the MySQL server, you can make a physical backup that consists of all files used
by InnoDB to manage its tables. Use the following procedure:

1. Perform a slow shutdown of the MySQL server and make sure that it stops without errors.

2. Copy all InnoDB data files (ibdata files and .ibd files) into a safe place.

3. Copy all the .frm files for InnoDB tables to a safe place.

4. Copy all InnoDB log files (ib_logfile files) to a safe place.

5. Copy your my.cnf configuration file or files to a safe place.

Logical Backups Using mysqldump

In addition to physical backups, it is recommended that you regularly create logical backups by
dumping your tables using mysqldump. A binary file might be corrupted without you noticing it.
Dumped tables are stored into text files that are human-readable, so spotting table corruption
becomes easier. Also, because the format is simpler, the chance for serious data corruption is smaller.
mysqldump also has a --single-transaction option for making a consistent snapshot without
locking out other clients. See Section 7.3.1, “Establishing a Backup Policy”.

Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy
of your database at database sites requiring high availability. See Section 14.22, “InnoDB and MySQL
Replication”.

14.21.2 InnoDB Recovery

This section describes InnoDB recovery. Topics include:

• Point-in-Time Recovery

• Recovery from Data Corruption or Disk Failure

• InnoDB Crash Recovery

Point-in-Time Recovery

To recover an InnoDB database to the present from the time at which the physical backup was
made, you must run MySQL server with binary logging enabled, even before taking the backup. To



InnoDB Recovery

1760

achieve point-in-time recovery after restoring a backup, you can apply changes from the binary log that
occurred after the backup was made. See Section 7.5, “Point-in-Time (Incremental) Recovery Using
the Binary Log”.

Recovery from Data Corruption or Disk Failure

If your database becomes corrupted or disk failure occurs, you must perform the recovery using a
backup. In the case of corruption, first find a backup that is not corrupted. After restoring the base
backup, do a point-in-time recovery from the binary log files using mysqlbinlog and mysql to restore
the changes that occurred after the backup was made.

In some cases of database corruption, it is enough to dump, drop, and re-create one or a few corrupt
tables. You can use the CHECK TABLE statement to check whether a table is corrupt, although CHECK
TABLE naturally cannot detect every possible kind of corruption. You can use the Tablespace Monitor
to check the integrity of the file space management inside the tablespace files.

In some cases, apparent database page corruption is actually due to the operating system corrupting
its own file cache, and the data on disk may be okay. It is best to try restarting the computer first.
Doing so may eliminate errors that appeared to be database page corruption. If MySQL still has trouble
starting because of InnoDB consistency problems, see Section 14.23.2, “Forcing InnoDB Recovery”
for steps to start the instance in recovery mode, which permits you to dump the data.

InnoDB Crash Recovery

To recover from a MySQL server crash, the only requirement is to restart the MySQL server. InnoDB
automatically checks the logs and performs a roll-forward of the database to the present. InnoDB
automatically rolls back uncommitted transactions that were present at the time of the crash. During
recovery, mysqld displays output similar to this:

InnoDB: Log scan progressed past the checkpoint lsn 452854464
InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...
InnoDB: Doing recovery: scanned up to log sequence number 457028695
InnoDB: 1 transaction(s) which must be rolled back or cleaned up
InnoDB: in total 990682 row operations to undo
InnoDB: Trx id counter is 500
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percents: 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 
94 95 96 97 98 99 
InnoDB: Apply batch completed
InnoDB: Waiting for the background threads to start
InnoDB: Starting in background the rollback of uncommitted transactions
InnoDB: Rolling back trx with id 3B1, 990682 rows to undo
...
InnoDB: 5.5.55 started; log sequence number 457028695
...
./mysqld: ready for connections.

The InnoDB crash recovery process consists of several steps:

• Redo log application

Redo log application is the first step and is performed during initialization, before accepting any
connections. If all changes are flushed from the buffer pool to the tablespaces (ibdata* and *.ibd
files) at the time of the shutdown or crash, redo log application is skipped. InnoDB also skips redo
log application if redo log files are missing at startup.



InnoDB and MySQL Replication

1761

Removing redo logs to speed up recovery is not recommended, even if some data loss is
acceptable. Removing redo logs should only be considered after a clean shutdown, with
innodb_fast_shutdown set to 0 or 1.

• Roll back of incomplete transactions

Incomplete transactions are any transactions that were active at the time of crash or fast shutdown.
The time it takes to roll back an incomplete transaction can be three or four times the amount of time
a transaction is active before it is interrupted, depending on server load.

You cannot cancel transactions that are being rolled back. In extreme cases, when rolling back
transactions is expected to take an exceptionally long time, it may be faster to start InnoDB with
an innodb_force_recovery setting of 3 or greater. See Section 14.23.2, “Forcing InnoDB
Recovery”.

• Change buffer merge

Applying changes from the change buffer (part of the system tablespace) to leaf pages of secondary
indexes, as the index pages are read to the buffer pool.

• Purge

Deleting delete-marked records that are no longer visible to active transactions.

The steps that follow redo log application do not depend on the redo log (other than for logging the
writes) and are performed in parallel with normal processing. Of these, only rollback of incomplete
transactions is special to crash recovery. The insert buffer merge and the purge are performed during
normal processing.

After redo log application, InnoDB attempts to accept connections as early as possible, to reduce
downtime. As part of crash recovery, InnoDB rolls back transactions that were not committed or in XA
PREPARE state when the server crashed. The rollback is performed by a background thread, executed
in parallel with transactions from new connections. Until the rollback operation is completed, new
connections may encounter locking conflicts with recovered transactions.

In most situations, even if the MySQL server was killed unexpectedly in the middle of heavy activity,
the recovery process happens automatically and no action is required of the DBA. If a hardware
failure or severe system error corrupted InnoDB data, MySQL might refuse to start. In this case, see
Section 14.23.2, “Forcing InnoDB Recovery”.

For information about the binary log and InnoDB crash recovery, see Section 5.4.4, “The Binary Log”.

14.22 InnoDB and MySQL Replication
MySQL replication works for InnoDB tables as it does for MyISAM tables. It is also possible to use
replication in a way where the storage engine on the slave is not the same as the original storage
engine on the master. For example, you can replicate modifications to an InnoDB table on the master
to a MyISAM table on the slave. For more information see, Section 17.3.2, “Using Replication with
Different Master and Slave Storage Engines”.

For information about setting up a new slave for a master, see Section 17.1.1.8, “Setting Up
Replication with Existing Data”. To make a new slave without taking down the master or an existing
slave, use the MySQL Enterprise Backup product.

Transactions that fail on the master do not affect replication at all. MySQL replication is based on the
binary log where MySQL writes SQL statements that modify data. A transaction that fails (for example,
because of a foreign key violation, or because it is rolled back) is not written to the binary log, so it is
not sent to slaves. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

Replication and CASCADE.  Cascading actions for InnoDB tables on the master are replicated
on the slave only if the tables sharing the foreign key relation use InnoDB on both the master and



InnoDB and MySQL Replication

1762

slave. This is true whether you are using statement-based or row-based replication. Suppose that you
have started replication, and then create two tables on the master using the following CREATE TABLE
statements:

CREATE TABLE fc1 (
    i INT PRIMARY KEY,
    j INT
) ENGINE = InnoDB;

CREATE TABLE fc2 (
    m INT PRIMARY KEY,
    n INT,
    FOREIGN KEY ni (n) REFERENCES fc1 (i)
        ON DELETE CASCADE
) ENGINE = InnoDB;

Suppose that the slave does not have InnoDB support enabled. If this is the case, then the tables
on the slave are created, but they use the MyISAM storage engine, and the FOREIGN KEY option is
ignored. Now we insert some rows into the tables on the master:

master> INSERT INTO fc1 VALUES (1, 1), (2, 2);
Query OK, 2 rows affected (0.09 sec)
Records: 2  Duplicates: 0  Warnings: 0

master> INSERT INTO fc2 VALUES (1, 1), (2, 2), (3, 1);
Query OK, 3 rows affected (0.19 sec)
Records: 3  Duplicates: 0  Warnings: 0

At this point, on both the master and the slave, table fc1 contains 2 rows, and table fc2 contains 3
rows, as shown here:

master> SELECT * FROM fc1;
+---+------+
| i | j    |
+---+------+
| 1 |    1 |
| 2 |    2 |
+---+------+
2 rows in set (0.00 sec)

master> SELECT * FROM fc2;
+---+------+
| m | n    |
+---+------+
| 1 |    1 |
| 2 |    2 |
| 3 |    1 |
+---+------+
3 rows in set (0.00 sec)

slave> SELECT * FROM fc1;
+---+------+
| i | j    |
+---+------+
| 1 |    1 |
| 2 |    2 |
+---+------+
2 rows in set (0.00 sec)

slave> SELECT * FROM fc2;
+---+------+
| m | n    |
+---+------+
| 1 |    1 |
| 2 |    2 |
| 3 |    1 |
+---+------+
3 rows in set (0.00 sec)



InnoDB Troubleshooting

1763

Now suppose that you perform the following DELETE statement on the master:

master> DELETE FROM fc1 WHERE i=1;
Query OK, 1 row affected (0.09 sec)

Due to the cascade, table fc2 on the master now contains only 1 row:

master> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 2 | 2 |
+---+---+
1 row in set (0.00 sec)

However, the cascade does not propagate on the slave because on the slave the DELETE for fc1
deletes no rows from fc2. The slave's copy of fc2 still contains all of the rows that were originally
inserted:

slave> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 1 | 1 |
| 3 | 1 |
| 2 | 2 |
+---+---+
3 rows in set (0.00 sec)

This difference is due to the fact that the cascading deletes are handled internally by the InnoDB
storage engine, which means that none of the changes are logged.

14.23 InnoDB Troubleshooting
The following general guidelines apply to troubleshooting InnoDB problems:

• When an operation fails or you suspect a bug, look at the MySQL server error log (see Section 5.4.2,
“The Error Log”). Section B.3, “Server Error Codes and Messages” provides troubleshooting
information for some of the common InnoDB-specific errors that you may encounter.

• If the failure is related to a deadlock, run with the innodb_print_all_deadlocks option enabled
so that details about each deadlock are printed to the MySQL server error log. For information about
deadlocks, see Section 14.8.5, “Deadlocks in InnoDB”.

• Issues relating to the InnoDB data dictionary include failed CREATE TABLE statements
(orphan table files), inability to open InnoDB files, and system cannot find the path
specified errors. For information about these sorts of problems and errors, see Section 14.23.3,
“Troubleshooting InnoDB Data Dictionary Operations”.

• When troubleshooting, it is usually best to run the MySQL server from the command prompt, rather
than through mysqld_safe or as a Windows service. You can then see what mysqld prints to the
console, and so have a better grasp of what is going on. On Windows, start mysqld with the --
console option to direct the output to the console window.

•   Enable the InnoDB Monitors to obtain information about a problem (see Section 14.20, “InnoDB
Monitors”). If the problem is performance-related, or your server appears to be hung, you should
enable the standard Monitor to print information about the internal state of InnoDB. If the problem
is with locks, enable the Lock Monitor. If the problem is in creation of tables or other data dictionary
operations, enable the Table Monitor to print the contents of the InnoDB internal data dictionary. To
see tablespace information enable the Tablespace Monitor.

InnoDB temporarily enables standard InnoDB Monitor output under the following conditions:



Troubleshooting InnoDB I/O Problems

1764

• A long semaphore wait

• InnoDB cannot find free blocks in the buffer pool

• Over 67% of the buffer pool is occupied by lock heaps or the adaptive hash index

• If you suspect that a table is corrupt, run CHECK TABLE on that table.

14.23.1 Troubleshooting InnoDB I/O Problems

The troubleshooting steps for InnoDB I/O problems depend on when the problem occurs: during
startup of the MySQL server, or during normal operations when a DML or DDL statement fails due to
problems at the file system level.

Initialization Problems

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, delete all files
created by InnoDB: all ibdata files and all ib_logfile files. If you already created some InnoDB
tables, also delete the corresponding .frm files for these tables, and any .ibd files if you are using
multiple tablespaces, from the MySQL database directories. Then try the InnoDB database creation
again. For easiest troubleshooting, start the MySQL server from a command prompt so that you see
what is happening.

Runtime Problems

If InnoDB prints an operating system error during a file operation, usually the problem has one of the
following solutions:

• Make sure the InnoDB data file directory and the InnoDB log directory exist.

• Make sure mysqld has access rights to create files in those directories.

• Make sure mysqld can read the proper my.cnf or my.ini option file, so that it starts with the
options that you specified.

• Make sure the disk is not full and you are not exceeding any disk quota.

• Make sure that the names you specify for subdirectories and data files do not clash.

• Doublecheck the syntax of the innodb_data_home_dir and innodb_data_file_path values.
In particular, any MAX value in the innodb_data_file_path option is a hard limit, and exceeding
that limit causes a fatal error.

14.23.2 Forcing InnoDB Recovery

To investigate database page corruption, you might dump your tables from the database with
SELECT ... INTO OUTFILE. Usually, most of the data obtained in this way is intact. Serious
corruption might cause SELECT * FROM tbl_name statements or InnoDB background operations
to crash or assert, or even cause InnoDB roll-forward recovery to crash. In such cases, you can use
the innodb_force_recovery option to force the InnoDB storage engine to start up while preventing
background operations from running, so that you can dump your tables. For example, you can add the
following line to the [mysqld] section of your option file before restarting the server:

[mysqld]
innodb_force_recovery = 1

Warning

Only set innodb_force_recovery to a value greater than 0 in an emergency
situation, so that you can start InnoDB and dump your tables. Before doing



Forcing InnoDB Recovery

1765

so, ensure that you have a backup copy of your database in case you need to
recreate it. Values of 4 or greater can permanently corrupt data files. Only use
an innodb_force_recovery setting of 4 or greater on a production server
instance after you have successfully tested the setting on separate physical
copy of your database. When forcing InnoDB recovery, you should always start
with innodb_force_recovery=1 and only increase the value incrementally,
as necessary.

innodb_force_recovery is 0 by default (normal startup without forced recovery). The permissible
nonzero values for innodb_force_recovery are 1 to 6. A larger value includes the functionality of
lesser values. For example, a value of 3 includes all of the functionality of values 1 and 2.

If you are able to dump your tables with an innodb_force_recovery value of 3 or less, then you
are relatively safe that only some data on corrupt individual pages is lost. A value of 4 or greater is
considered dangerous because data files can be permanently corrupted. A value of 6 is considered
drastic because database pages are left in an obsolete state, which in turn may introduce more
corruption into B-trees and other database structures.

As a safety measure, InnoDB prevents INSERT, UPDATE, or DELETE operations when
innodb_force_recovery is greater than 0.

• 1 (SRV_FORCE_IGNORE_CORRUPT)

Lets the server run even if it detects a corrupt page. Tries to make SELECT * FROM tbl_name
jump over corrupt index records and pages, which helps in dumping tables.

• 2 (SRV_FORCE_NO_BACKGROUND)

Prevents the master thread and any purge threads from running. If a crash would occur during the
purge operation, this recovery value prevents it.

• 3 (SRV_FORCE_NO_TRX_UNDO)

Does not run transaction rollbacks after crash recovery.

• 4 (SRV_FORCE_NO_IBUF_MERGE)

Prevents insert buffer merge operations. If they would cause a crash, does not do them. Does not
calculate table statistics. This value can permanently corrupt data files. After using this value, be
prepared to drop and recreate all secondary indexes.

• 5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Does not look at undo logs when starting the database: InnoDB treats even incomplete transactions
as committed. This value can permanently corrupt data files.

• 6 (SRV_FORCE_NO_LOG_REDO)

Does not do the redo log roll-forward in connection with recovery. This value can permanently
corrupt data files. Leaves database pages in an obsolete state, which in turn may introduce more
corruption into B-trees and other database structures.

You can SELECT from tables to dump them, or DROP or CREATE tables even if forced recovery is used.
If you know that a given table is causing a crash on rollback, you can drop it. You can also use this to
stop a runaway rollback caused by a failing mass import or ALTER TABLE: kill the mysqld process
and set innodb_force_recovery to 3 to bring the database up without the rollback, then DROP the
table that is causing the runaway rollback.

If corruption within the table data prevents you from dumping the entire table contents, a query with
an ORDER BY primary_key DESC clause might be able to dump the portion of the table after the
corrupted part.



Troubleshooting InnoDB Data Dictionary Operations

1766

If a high innodb_force_recovery value is required to start InnoDB, there may be corrupted data
structures that could cause complex queries (queries containing WHERE, ORDER BY, or other clauses)
to fail. In this case, you may only be able to run basic SELECT * FROM t queries.

14.23.3 Troubleshooting InnoDB Data Dictionary Operations

Information about table definitions is stored both in the .frm files, and in the InnoDB data dictionary. If
you move .frm files around, or if the server crashes in the middle of a data dictionary operation, these
sources of information can become inconsistent.

If a data dictionary corruption or consistency issue prevents you from starting InnoDB, see
Section 14.23.2, “Forcing InnoDB Recovery” for information about manual recovery.

CREATE TABLE Failure Due to Orphan Table

A symptom of an out-of-sync data dictionary is that a CREATE TABLE statement fails. If this occurs,
look in the server's error log. If the log says that the table already exists inside the InnoDB internal data
dictionary, you have an orphan table inside the InnoDB tablespace files that has no corresponding
.frm file. The error message looks like this:

InnoDB: Error: table test/parent already exists in InnoDB internal
InnoDB: data dictionary. Have you deleted the .frm file
InnoDB: and not used DROP TABLE? Have you used DROP DATABASE
InnoDB: for InnoDB tables in MySQL version <= 3.23.43?
InnoDB: See the Restrictions section of the InnoDB manual.
InnoDB: You can drop the orphaned table inside InnoDB by
InnoDB: creating an InnoDB table with the same name in another
InnoDB: database and moving the .frm file to the current database.
InnoDB: Then MySQL thinks the table exists, and DROP TABLE will
InnoDB: succeed.

You can drop the orphan table by following the instructions given in the error message. If you are still
unable to use DROP TABLE successfully, the problem may be due to name completion in the mysql
client. To work around this problem, start the mysql client with the --skip-auto-rehash option
and try DROP TABLE again. (With name completion on, mysql tries to construct a list of table names,
which fails when a problem such as just described exists.)

Cannot Open File Error

Another symptom of an out-of-sync data dictionary is that MySQL prints an error that it cannot open an
InnoDB file:

ERROR 1016: Can't open file: 'child2.ibd'. (errno: 1)

In the error log you can find a message like this:

InnoDB: Cannot find table test/child2 from the internal data dictionary
InnoDB: of InnoDB though the .frm file for the table exists. Maybe you
InnoDB: have deleted and recreated InnoDB data files but have forgotten
InnoDB: to delete the corresponding .frm files of InnoDB tables?

This means that there is an orphan .frm file without a corresponding table inside InnoDB. You can
drop the orphan .frm file by deleting it manually.

Orphan Temporary Tables

If MySQL exits in the middle of an ALTER TABLE operation, you may be left with an orphan temporary
table that takes up space on your system. This section describes how to identify and remove orphan
temporary tables.



InnoDB Error Handling

1767

Orphan temporary table names begin with an #sql- prefix (e.g., #sql-540_3). The accompanying
.frm file has the same base name as the orphan temporary table.

Note

If there is no .frm file, you can recreate it. The .frm file must have the same
table schema as the orphan temporary table (it must have the same columns
and indexes) and must be placed in the database directory of the orphan
temporary table.

To identify orphan temporary tables on your system, you can view Table Monitor output. Look for table
names that begin with #sql. If the original table resides in a file-per-table tablespace, the tablespace
file (the #sql-*.ibd file) for the orphan temporary table should be visible in the database directory.

To remove an orphan temporary table, drop the table by issuing a DROP TABLE statement, prefixing
the name of the table with #mysql50# and enclosing the table name in backticks. For example:

mysql> DROP TABLE `#mysql50##sql-540_3`;

The #mysql50# prefix tells MySQL to ignore file name safe encoding introduced in MySQL
5.1. Enclosing the table name in backticks is required to perform SQL statements on table names with
special characters such as “#”.

Tablespace Does Not Exist

With innodb_file_per_table enabled, the following message might occur if the .frm or .ibd files
(or both) are missing:

InnoDB: in InnoDB data dictionary has tablespace id N,
InnoDB: but tablespace with that id or name does not exist. Have
InnoDB: you deleted or moved .ibd files?
InnoDB: This may also be a table created with CREATE TEMPORARY TABLE
InnoDB: whose .ibd and .frm files MySQL automatically removed, but the
InnoDB: table still exists in the InnoDB internal data dictionary.

If this occurs, try the following procedure to resolve the problem:

1. Create a matching .frm file in some other database directory and copy it to the database directory
where the orphan table is located.

2. Issue DROP TABLE for the original table. That should successfully drop the table and InnoDB
should print a warning to the error log that the .ibd file was missing.

14.23.4 InnoDB Error Handling

The following items describe how InnoDB performs error handling. InnoDB sometimes rolls back only
the statement that failed, other times it rolls back the entire transaction.

• If you run out of file space in a tablespace, a MySQL Table is full error occurs and InnoDB
rolls back the SQL statement.

• A transaction deadlock causes InnoDB to roll back the entire transaction. Retry the whole
transaction when this happens.

A lock wait timeout causes InnoDB to roll back only the single statement that was waiting for the lock
and encountered the timeout. (To have the entire transaction roll back, start the server with the --
innodb_rollback_on_timeout option.) Retry the statement if using the current behavior, or the
entire transaction if using --innodb_rollback_on_timeout.

Both deadlocks and lock wait timeouts are normal on busy servers and it is necessary for
applications to be aware that they may happen and handle them by retrying. You can make them



InnoDB Error Handling

1768

less likely by doing as little work as possible between the first change to data during a transaction
and the commit, so the locks are held for the shortest possible time and for the smallest possible
number of rows. Sometimes splitting work between different transactions may be practical and
helpful.

When a transaction rollback occurs due to a deadlock or lock wait timeout, it cancels the effect of the
statements within the transaction. But if the start-transaction statement was START TRANSACTION
or BEGIN statement, rollback does not cancel that statement. Further SQL statements become part
of the transaction until the occurrence of COMMIT, ROLLBACK, or some SQL statement that causes
an implicit commit.

• A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in
your statement.

• A row too long error rolls back the SQL statement.

• Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage engine
level), and they roll back the corresponding SQL statement. Locks are not released in a rollback of a
single SQL statement.

During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL statement, SHOW
PROCESSLIST displays Rolling back in the State column for the relevant connection.



1769

Chapter 15 Alternative Storage Engines

Table of Contents
15.1 Setting the Storage Engine .............................................................................................. 1772
15.2 Overview of MySQL Storage Engine Architecture .............................................................. 1773

15.2.1 Pluggable Storage Engine Architecture .................................................................. 1774
15.2.2 The Common Database Server Layer .................................................................... 1774

15.3 The MyISAM Storage Engine ........................................................................................... 1775
15.3.1 MyISAM Startup Options ....................................................................................... 1777
15.3.2 Space Needed for Keys ........................................................................................ 1779
15.3.3 MyISAM Table Storage Formats ............................................................................ 1779
15.3.4 MyISAM Table Problems ....................................................................................... 1782

15.4 The MEMORY Storage Engine ........................................................................................ 1783
15.5 The CSV Storage Engine ................................................................................................ 1787

15.5.1 Repairing and Checking CSV Tables ..................................................................... 1788
15.5.2 CSV Limitations .................................................................................................... 1789

15.6 The ARCHIVE Storage Engine ......................................................................................... 1789
15.7 The BLACKHOLE Storage Engine ................................................................................... 1790
15.8 The MERGE Storage Engine ........................................................................................... 1792

15.8.1 MERGE Table Advantages and Disadvantages ...................................................... 1795
15.8.2 MERGE Table Problems ....................................................................................... 1796

15.9 The FEDERATED Storage Engine ................................................................................... 1797
15.9.1 FEDERATED Storage Engine Overview ................................................................. 1798
15.9.2 How to Create FEDERATED Tables ...................................................................... 1799
15.9.3 FEDERATED Storage Engine Notes and Tips ........................................................ 1801
15.9.4 FEDERATED Storage Engine Resources ............................................................... 1803

15.10 The EXAMPLE Storage Engine ...................................................................................... 1803
15.11 Other Storage Engines .................................................................................................. 1803

Storage engines are MySQL components that handle the SQL operations for different table types.
MySQL storage engines include both those that handle transaction-safe tables and those that handle
nontransaction-safe tables. InnoDB is the default storage engine as of MySQL 5.5.5 (The CREATE
TABLE statement in MySQL 5.5 creates InnoDB tables by default.)

MySQL uses a pluggable storage engine architecture that enables storage engines to be loaded into
and unloaded from a running MySQL server.

To determine which storage engines your server supports, use the SHOW ENGINES statement. The
value in the Support column indicates whether an engine can be used. A value of YES, NO, or
DEFAULT indicates that an engine is available, not available, or available and currently set as the
default storage engine.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
      Engine: PERFORMANCE_SCHEMA
     Support: YES
     Comment: Performance Schema
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 2. row ***************************
      Engine: InnoDB
     Support: DEFAULT
     Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
          XA: YES
  Savepoints: YES



MySQL 5.5 Supported Storage Engines

1770

*************************** 3. row ***************************
      Engine: MRG_MYISAM
     Support: YES
     Comment: Collection of identical MyISAM tables
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 4. row ***************************
      Engine: BLACKHOLE
     Support: YES
     Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 5. row ***************************
      Engine: MyISAM
     Support: YES
     Comment: MyISAM storage engine
Transactions: NO
          XA: NO
  Savepoints: NO
...

This chapter covers use cases for special-purpose MySQL storage engines. It does not cover the
default InnoDB storage engine or the NDB storage engine which are covered in Chapter 14, The
InnoDB Storage Engine and Chapter 18, MySQL NDB Cluster 7.2. For advanced users, this chapter
also contains a description of the pluggable storage engine architecture (see Section 15.2, “Overview
of MySQL Storage Engine Architecture”).

For information about storage engine support offered in commercial MySQL Server binaries, see
MySQL Enterprise Server 5.5, on the MySQL Web site. The storage engines available might depend
on which edition of Enterprise Server you are using.

For answers to some commonly asked questions about MySQL storage engines, see Section A.2,
“MySQL 5.5 FAQ: Storage Engines”.

MySQL 5.5 Supported Storage Engines

• InnoDB: The default storage engine as of MySQL 5.5.5. InnoDB is a transaction-safe (ACID
compliant) storage engine for MySQL that has commit, rollback, and crash-recovery capabilities to
protect user data. InnoDB row-level locking (without escalation to coarser granularity locks) and
Oracle-style consistent nonlocking reads increase multi-user concurrency and performance. InnoDB
stores user data in clustered indexes to reduce I/O for common queries based on primary keys. To
maintain data integrity, InnoDB also supports FOREIGN KEY referential-integrity constraints. For
more information about InnoDB, see Chapter 14, The InnoDB Storage Engine.

• MyISAM: The MySQL storage engine that is used the most in Web, data warehousing, and other
application environments. MyISAM is supported in all MySQL configurations, and is the default
storage engine prior to MySQL 5.5.5.

• Memory: Stores all data in RAM for extremely fast access in environments that require quick lookups
of reference and other like data. This engine was formerly known as the HEAP engine.

• Merge: Enables a MySQL DBA or developer to logically group a series of identical MyISAM tables
and reference them as one object. Good for VLDB environments such as data warehousing.

• Archive: Provides the perfect solution for storing and retrieving large amounts of seldom-
referenced historical, archived, or security audit information.

• Federated: Offers the ability to link separate MySQL servers to create one logical database from
many physical servers. Very good for distributed or data mart environments.

• NDB (also known as NDBCLUSTER)—This clustered database engine is particularly suited for
applications that require the highest possible degree of uptime and availability.

http://www.mysql.com/products/enterprise/server.html


MySQL 5.5 Supported Storage Engines

1771

Note

The NDB storage engine is not supported in standard MySQL 5.5 releases.
Currently supported NDB Cluster releases include MySQL NDB Cluster 7.0
and MySQL NDB Cluster 7.1, which are based on MySQL 5.1, and MySQL
NDB Cluster 7.2, which is based on MySQL 5.5. While based on MySQL
Server, these releases also contain support for NDB.

• CSV: The CSV storage engine stores data in text files using comma-separated values format. You
can use the CSV engine to easily exchange data between other software and applications that can
import and export in CSV format.

• Blackhole: The Blackhole storage engine accepts but does not store data and retrievals always
return an empty set. The functionality can be used in distributed database design where data is
automatically replicated, but not stored locally.

• Example: The Example storage engine is “stub” engine that does nothing. You can create tables
with this engine, but no data can be stored in them or retrieved from them. The purpose of this
engine is to serve as an example in the MySQL source code that illustrates how to begin writing new
storage engines. As such, it is primarily of interest to developers.

It is important to remember that you are not restricted to using the same storage engine for an entire
server or schema: you can use a different storage engine for each table in your schema.

Choosing a Storage Engine

The various storage engines provided with MySQL are designed with different use cases in mind.
To use the pluggable storage architecture effectively, it is good to have an idea of the advantages
and disadvantages of the various storage engines. The following table provides an overview of some
storage engines provided with MySQL:

Table 15.1 Storage Engines Feature Summary

Feature MyISAM Memory InnoDB Archive NDB

Storage
limits

256TB RAM 64TB None 384EB

TransactionsNo No Yes No Yes

Locking
granularity

Table Table Row Row Row

MVCC No No Yes No No

Geospatial
data type
support

Yes No Yes Yes Yes

Geospatial
indexing
support

Yes No Yesa No No

B-tree
indexes

Yes Yes Yes No No

T-tree
indexes

No No No No Yes

Hash
indexes

No Yes Nob No Yes

Full-text
search
indexes

Yes No Yesc No No



Setting the Storage Engine

1772

Feature MyISAM Memory InnoDB Archive NDB

Clustered
indexes

No No Yes No No

Data
caches

No N/A Yes No Yes

Index
caches

Yes N/A Yes No Yes

Compressed
data

Yesd No Yese Yes No

Encrypted
dataf

Yes Yes Yes Yes Yes

Cluster
database
support

No No No No Yes

Replication
supportg

Yes Yes Yes Yes Yes

Foreign
key
support

No No Yes No Yesh

Backup /
point-
in-time
recoveryi

Yes Yes Yes Yes Yes

Query
cache
support

Yes Yes Yes Yes Yes

Update
statistics
for data
dictionary

Yes Yes Yes Yes Yes

aInnoDB support for geospatial indexing is available in MySQL 5.7.5 and later.
bInnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.
cInnoDB support for FULLTEXT indexes is available in MySQL 5.6.4 and later.
dCompressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format
with MyISAM are read only.
eCompressed InnoDB tables require the InnoDB Barracuda file format.
fImplemented in the server (via encryption functions). Data-at-rest tablespace encryption is available in MySQL 5.7 and later.
gImplemented in the server, rather than in the storage engine.
hSupport for foreign keys is available in MySQL Cluster NDB 7.3 and later.
iImplemented in the server, rather than in the storage engine.

15.1 Setting the Storage Engine
When you create a new table, you can specify which storage engine to use by adding an ENGINE table
option to the CREATE TABLE statement:

-- ENGINE=INNODB not needed as of 5.5.5 unless you have set a
-- different default storage engine.
CREATE TABLE t1 (i INT) ENGINE = INNODB;
-- Simple table definitions can be switched from one to another.
CREATE TABLE t2 (i INT) ENGINE = CSV;
CREATE TABLE t3 (i INT) ENGINE = MEMORY;

If you omit the ENGINE option, the default storage engine is used. The default engine is InnoDB as of
MySQL 5.5.5 (MyISAM before 5.5.5). You can specify the default engine by using the --default-



Overview of MySQL Storage Engine Architecture

1773

storage-engine server startup option, or by setting the default-storage-engine option in the
my.cnf configuration file.

You can set the default storage engine to be used during the current session by setting the
default_storage_engine variable:

SET default_storage_engine=MYISAM;

When MySQL is installed on Windows using the MySQL Configuration Wizard, the InnoDB or MyISAM
storage engine can be selected as the default. See Section 2.3.6.5, “The Database Usage Dialog”.

To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates
the new engine:

ALTER TABLE t ENGINE = MYISAM;

See Section 13.1.17, “CREATE TABLE Syntax”, and Section 13.1.7, “ALTER TABLE Syntax”.

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL
instead creates a table using the default storage engine. This behavior is convenient when you want
to copy tables between MySQL servers that support different storage engines. (For example, in a
replication setup, perhaps your master server supports transactional storage engines for increased
safety, but the slave servers use only nontransactional storage engines for greater speed.)

This automatic substitution of the default storage engine for unavailable engines can be confusing
for new MySQL users. A warning is generated whenever a storage engine is automatically
changed. To prevent this from happening if the desired engine is unavailable, enable the
NO_ENGINE_SUBSTITUTION SQL mode. In this case, an error occurs instead of a warning and the
table is not created or altered if the desired engine is unavailable. See Section 5.1.8, “Server SQL
Modes”.

For new tables, MySQL always creates an .frm file to hold the table and column definitions. The
table's index and data may be stored in one or more other files, depending on the storage engine.
The server creates the .frm file above the storage engine level. Individual storage engines create
any additional files required for the tables that they manage. If a table name contains special
characters, the names for the table files contain encoded versions of those characters as described in
Section 9.2.3, “Mapping of Identifiers to File Names”.

A database may contain tables of different types. That is, tables need not all be created with the same
storage engine.

15.2 Overview of MySQL Storage Engine Architecture

The MySQL pluggable storage engine architecture enables a database professional to select a
specialized storage engine for a particular application need while being completely shielded from the
need to manage any specific application coding requirements. The MySQL server architecture isolates
the application programmer and DBA from all of the low-level implementation details at the storage
level, providing a consistent and easy application model and API. Thus, although there are different
capabilities across different storage engines, the application is shielded from these differences.

The pluggable storage engine architecture provides a standard set of management and support
services that are common among all underlying storage engines. The storage engines themselves
are the components of the database server that actually perform actions on the underlying data that is
maintained at the physical server level.

This efficient and modular architecture provides huge benefits for those wishing to specifically
target a particular application need—such as data warehousing, transaction processing, or high



Pluggable Storage Engine Architecture

1774

availability situations—while enjoying the advantage of utilizing a set of interfaces and services that are
independent of any one storage engine.

The application programmer and DBA interact with the MySQL database through Connector APIs and
service layers that are above the storage engines. If application changes bring about requirements
that demand the underlying storage engine change, or that one or more storage engines be added to
support new needs, no significant coding or process changes are required to make things work. The
MySQL server architecture shields the application from the underlying complexity of the storage engine
by presenting a consistent and easy-to-use API that applies across storage engines.

15.2.1 Pluggable Storage Engine Architecture

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

Plugging in a Storage Engine

Before a storage engine can be used, the storage engine plugin shared library must be loaded into
MySQL using the INSTALL PLUGIN statement. For example, if the EXAMPLE engine plugin is named
example and the shared library is named ha_example.so, you load it with the following statement:

mysql> INSTALL PLUGIN example SONAME 'ha_example.so';

To install a pluggable storage engine, the plugin file must be located in the MySQL plugin directory,
and the user issuing the INSTALL PLUGIN statement must have INSERT privilege for the
mysql.plugin table.

The shared library must be located in the MySQL server plugin directory, the location of which is given
by the plugin_dir system variable.

Unplugging a Storage Engine

To unplug a storage engine, use the UNINSTALL PLUGIN statement:

mysql> UNINSTALL PLUGIN example;

If you unplug a storage engine that is needed by existing tables, those tables become inaccessible, but
will still be present on disk (where applicable). Ensure that there are no tables using a storage engine
before you unplug the storage engine.

15.2.2 The Common Database Server Layer

A MySQL pluggable storage engine is the component in the MySQL database server that is
responsible for performing the actual data I/O operations for a database as well as enabling and
enforcing certain feature sets that target a specific application need. A major benefit of using specific
storage engines is that you are only delivered the features needed for a particular application, and
therefore you have less system overhead in the database, with the end result being more efficient and
higher database performance. This is one of the reasons that MySQL has always been known to have
such high performance, matching or beating proprietary monolithic databases in industry standard
benchmarks.

From a technical perspective, what are some of the unique supporting infrastructure components that
are in a storage engine? Some of the key feature differentiations include:

• Concurrency: Some applications have more granular lock requirements (such as row-level locks)
than others. Choosing the right locking strategy can reduce overhead and therefore improve overall
performance. This area also includes support for capabilities such as multi-version concurrency
control or “snapshot” read.



The MyISAM Storage Engine

1775

• Transaction Support: Not every application needs transactions, but for those that do, there are very
well defined requirements such as ACID compliance and more.

• Referential Integrity: The need to have the server enforce relational database referential integrity
through DDL defined foreign keys.

• Physical Storage: This involves everything from the overall page size for tables and indexes as well
as the format used for storing data to physical disk.

• Index Support: Different application scenarios tend to benefit from different index strategies. Each
storage engine generally has its own indexing methods, although some (such as B-tree indexes) are
common to nearly all engines.

• Memory Caches: Different applications respond better to some memory caching strategies than
others, so although some memory caches are common to all storage engines (such as those used
for user connections or MySQL's high-speed Query Cache), others are uniquely defined only when a
particular storage engine is put in play.

• Performance Aids: This includes multiple I/O threads for parallel operations, thread concurrency,
database checkpointing, bulk insert handling, and more.

• Miscellaneous Target Features: This may include support for geospatial operations, security
restrictions for certain data manipulation operations, and other similar features.

Each set of the pluggable storage engine infrastructure components are designed to offer a selective
set of benefits for a particular application. Conversely, avoiding a set of component features helps
reduce unnecessary overhead. It stands to reason that understanding a particular application's set of
requirements and selecting the proper MySQL storage engine can have a dramatic impact on overall
system efficiency and performance.

15.3 The MyISAM Storage Engine
Before MySQL 5.5.5, MyISAM is the default storage engine. (The default was changed to InnoDB in
MySQL 5.5.5.) MyISAM is based on the older (and no longer available) ISAM storage engine but has
many useful extensions.

Table 15.2 MyISAM Storage Engine Features

Storage limits 256TB Transactions No Locking granularity Table

MVCC No Geospatial data
type support

Yes Geospatial indexing
support

Yes

B-tree indexes Yes T-tree indexes No Hash indexes No

Full-text search
indexes

Yes Clustered indexes No Data caches No

Index caches Yes Compressed data Yesa Encrypted datab Yes

Cluster database
support

No Replication
supportc

Yes Foreign key support No

Backup / point-in-
time recoveryd

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aCompressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format
with MyISAM are read only.
bImplemented in the server (via encryption functions). Data-at-rest tablespace encryption is available in MySQL 5.7 and later.
cImplemented in the server, rather than in the storage engine.
dImplemented in the server, rather than in the storage engine.

Each MyISAM table is stored on disk in three files. The files have names that begin with the table name
and have an extension to indicate the file type. An .frm file stores the table format. The data file has
an .MYD (MYData) extension. The index file has an .MYI (MYIndex) extension.



The MyISAM Storage Engine

1776

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MYISAM;

As of MySQL 5.5.5, it is normally necessary to use ENGINE to specify the MyISAM storage engine
because InnoDB is the default engine. Before 5.5.5, this is unnecessary because MyISAM is the
default engine unless the default has been changed. To ensure that MyISAM is used in situations
where the default might have been changed, include the ENGINE option explicitly.

You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can
also compress MyISAM tables with myisampack to take up much less space. See Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”, Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”, and Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM
Tables”.

MyISAM tables have the following characteristics:

• All data values are stored with the low byte first. This makes the data machine and operating
system independent. The only requirements for binary portability are that the machine uses two's-
complement signed integers and IEEE floating-point format. These requirements are widely used
among mainstream machines. Binary compatibility might not be applicable to embedded systems,
which sometimes have peculiar processors.

There is no significant speed penalty for storing data low byte first; the bytes in a table row normally
are unaligned and it takes little more processing to read an unaligned byte in order than in reverse
order. Also, the code in the server that fetches column values is not time critical compared to other
code.

• All numeric key values are stored with the high byte first to permit better index compression.

• Large files (up to 63-bit file length) are supported on file systems and operating systems that support
large files.

• There is a limit of (232)2 (1.844E+19) rows in a MyISAM table.

• The maximum number of indexes per MyISAM table is 64.

The maximum number of columns per index is 16.

• The maximum key length is 1000 bytes. This can also be changed by changing the source and
recompiling. For the case of a key longer than 250 bytes, a larger key block size than the default of
1024 bytes is used.

• When rows are inserted in sorted order (as when you are using an AUTO_INCREMENT column), the
index tree is split so that the high node only contains one key. This improves space utilization in the
index tree.

• Internal handling of one AUTO_INCREMENT column per table is supported. MyISAM automatically
updates this column for INSERT and UPDATE operations. This makes AUTO_INCREMENT columns
faster (at least 10%). Values at the top of the sequence are not reused after being deleted. (When an
AUTO_INCREMENT column is defined as the last column of a multiple-column index, reuse of values
deleted from the top of a sequence does occur.) The AUTO_INCREMENT value can be reset with
ALTER TABLE or myisamchk.

• Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts. This is
done by automatically combining adjacent deleted blocks and by extending blocks if the next block is
deleted.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file,
you can INSERT new rows into it at the same time that other threads are reading from the table. A



Additional Resources

1777

free block can occur as a result of deleting rows or an update of a dynamic length row with more
data than its current contents. When all free blocks are used up (filled in), future inserts become
concurrent again. See Section 8.11.3, “Concurrent Inserts”.

• You can put the data file and index file in different directories on different physical devices to get
more speed with the DATA DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE.
See Section 13.1.17, “CREATE TABLE Syntax”.

• BLOB and TEXT columns can be indexed.

• NULL values are permitted in indexed columns. This takes 0 to 1 bytes per key.

• Each character column can have a different character set. See Section 10.1, “Character Set
Support”.

• There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If
mysqld is started with the --myisam-recover-options option, MyISAM tables are automatically
checked when opened, and are repaired if the table wasn't closed properly.

• myisamchk marks tables as checked if you run it with the --update-state option. myisamchk
--fast checks only those tables that don't have this mark.

• myisamchk --analyze stores statistics for portions of keys, as well as for entire keys.

• myisampack can pack BLOB and VARCHAR columns.

MyISAM also supports the following features:

• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in one or two bytes.

• Tables with VARCHAR columns may have fixed or dynamic row length.

• The sum of the lengths of the VARCHAR and CHAR columns in a table may be up to 64KB.

• Arbitrary length UNIQUE constraints.

Additional Resources

• A forum dedicated to the MyISAM storage engine is available at http://forums.mysql.com/list.php?21.

15.3.1 MyISAM Startup Options

The following options to mysqld can be used to change the behavior of MyISAM tables. For additional
information, see Section 5.1.4, “Server Command Options”.

Table 15.3 MyISAM Option/Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

bulk_insert_buffer_sizeYes Yes Yes  Both Yes

concurrent_insert Yes Yes Yes  Global Yes

delay-key-write Yes Yes   Global Yes

- Variable:
delay_key_write

  Yes  Global Yes

have_rtree_keys   Yes  Global No

key_buffer_size Yes Yes Yes  Global Yes

log-isam Yes Yes     

myisam-block-
size

Yes Yes     

http://forums.mysql.com/list.php?21


MyISAM Startup Options

1778

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

myisam_data_pointer_sizeYes Yes Yes  Global Yes

myisam_max_sort_file_sizeYes Yes Yes  Global Yes

myisam_mmap_sizeYes Yes Yes  Global No

myisam-recover Yes Yes     

- Variable:
myisam_recover_options

      

myisam-recover-
options

Yes Yes     

- Variable:
myisam_recover_options

      

myisam_recover_options  Yes  Global No

myisam_repair_threadsYes Yes Yes  Both Yes

myisam_sort_buffer_sizeYes Yes Yes  Both Yes

myisam_stats_methodYes Yes Yes  Both Yes

myisam_use_mmapYes Yes Yes  Global Yes

skip-concurrent-
insert

Yes Yes     

- Variable:
concurrent_insert

      

tmp_table_size Yes Yes Yes  Both Yes

•   --myisam-recover-options=mode

Set the mode for automatic recovery of crashed MyISAM tables.

•   --delay-key-write=ALL

Don't flush key buffers between writes for any MyISAM table.

Note

If you do this, you should not access MyISAM tables from another program
(such as from another MySQL server or with myisamchk) when the tables
are in use. Doing so risks index corruption. Using --external-locking
does not eliminate this risk.

The following system variables affect the behavior of MyISAM tables. For additional information, see
Section 5.1.5, “Server System Variables”.

• bulk_insert_buffer_size

The size of the tree cache used in bulk insert optimization.

Note

This is a limit per thread!

• myisam_max_sort_file_size

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be
larger than this value, the index is created using the key cache instead, which is slower. The value is
given in bytes.



Space Needed for Keys

1779

• myisam_sort_buffer_size

Set the size of the buffer used when recovering tables.

Automatic recovery is activated if you start mysqld with the --myisam-recover-options option.
In this case, when the server opens a MyISAM table, it checks whether the table is marked as crashed
or whether the open count variable for the table is not 0 and you are running the server with external
locking disabled. If either of these conditions is true, the following happens:

• The server checks the table for errors.

• If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating the
data file).

• If the repair fails because of an error in the data file (for example, a duplicate-key error), the server
tries again, this time re-creating the data file.

• If the repair still fails, the server tries once more with the old repair option method (write row by row
without sorting). This method should be able to repair any type of error and has low disk space
requirements.

If the recovery wouldn't be able to recover all rows from previously completed statements and you
didn't specify FORCE in the value of the --myisam-recover-options option, automatic repair aborts
with an error message in the error log:

Error: Couldn't repair table: test.g00pages

If you specify FORCE, a warning like this is written instead:

Warning: Found 344 of 354 rows when repairing ./test/g00pages

If the automatic recovery value includes BACKUP, the recovery process creates files with names of the
form tbl_name-datetime.BAK. You should have a cron script that automatically moves these files
from the database directories to backup media.

15.3.2 Space Needed for Keys

MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as
(key_length+4)/0.67, summed over all keys. This is for the worst case when all keys are inserted
in sorted order and the table doesn't have any compressed keys.

String indexes are space compressed. If the first index part is a string, it is also prefix compressed.
Space compression makes the index file smaller than the worst-case figure if a string column has a lot
of trailing space or is a VARCHAR column that is not always used to the full length. Prefix compression
is used on keys that start with a string. Prefix compression helps if there are many strings with an
identical prefix.

In MyISAM tables, you can also prefix compress numbers by specifying the PACK_KEYS=1 table option
when you create the table. Numbers are stored with the high byte first, so this helps when you have
many integer keys that have an identical prefix.

15.3.3 MyISAM Table Storage Formats

MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen
automatically depending on the type of columns you are using. The third, compressed format, can be
created only with the myisampack utility (see Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”).

When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns, you
can force the table format to FIXED or DYNAMIC with the ROW_FORMAT table option.



MyISAM Table Storage Formats

1780

See Section 13.1.17, “CREATE TABLE Syntax”, for information about ROW_FORMAT.

You can decompress (unpack) compressed MyISAM tables using myisamchk --unpack; see
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, for more information.

15.3.3.1 Static (Fixed-Length) Table Characteristics

Static format is the default for MyISAM tables. It is used when the table contains no variable-length
columns (VARCHAR, VARBINARY, BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to
corruption). It is also the fastest of the on-disk formats due to the ease with which rows in the data file
can be found on disk: To look up a row based on a row number in the index, multiply the row number
by the row length to calculate the row position. Also, when scanning a table, it is very easy to read a
constant number of rows with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format
MyISAM file. In this case, myisamchk can easily determine where each row starts and ends, so it
can usually reclaim all rows except the partially written one. MyISAM table indexes can always be
reconstructed based on the data rows.

Note

Fixed-length row format is only available for tables without BLOB or TEXT
columns. Creating a table with these columns with an explicit ROW_FORMAT
clause will not raise an error or warning; the format specification will be ignored.

Static-format tables have these characteristics:

• CHAR and VARCHAR columns are space-padded to the specified column width, although the column
type is not altered. BINARY and VARBINARY columns are padded with 0x00 bytes to the column
width.

• NULL columns require additional space in the row to record whether their values are NULL. Each
NULL column takes one bit extra, rounded up to the nearest byte.

• Very quick.

• Easy to cache.

• Easy to reconstruct after a crash, because rows are located in fixed positions.

• Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk
space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.

• Usually require more disk space than dynamic-format tables.

• The expected row length in bytes for static-sized rows is calculated using the following expression:

row length = 1
             + (sum of column lengths)
             + (number of NULL columns + delete_flag + 7)/8
             + (number of variable-length columns)

delete_flag is 1 for tables with static row format. Static tables use a bit in the row record for a flag
that indicates whether the row has been deleted. delete_flag is 0 for dynamic tables because the
flag is stored in the dynamic row header.

15.3.3.2 Dynamic Table Characteristics

Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR,
VARBINARY, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC table option.



MyISAM Table Storage Formats

1781

Dynamic format is a little more complex than static format because each row has a header that
indicates how long it is. A row can become fragmented (stored in noncontiguous pieces) when it is
made longer as a result of an update.

You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length
columns that you access or change frequently in a table that also contains some variable-length
columns, it might be a good idea to move the variable-length columns to other tables just to avoid
fragmentation.

Dynamic-format tables have these characteristics:

• All string columns are dynamic except those with a length less than four.

• Each row is preceded by a bitmap that indicates which columns contain the empty string (for string
columns) or zero (for numeric columns). This does not include columns that contain NULL values. If
a string column has a length of zero after trailing space removal, or a numeric column has a value of
zero, it is marked in the bitmap and not saved to disk. Nonempty strings are saved as a length byte
plus the string contents.

• NULL columns require additional space in the row to record whether their values are NULL. Each
NULL column takes one bit extra, rounded up to the nearest byte.

• Much less disk space usually is required than for fixed-length tables.

• Each row uses only as much space as is required. However, if a row becomes larger, it is split into
as many pieces as are required, resulting in row fragmentation. For example, if you update a row
with information that extends the row length, the row becomes fragmented. In this case, you may
have to run OPTIMIZE TABLE or myisamchk -r from time to time to improve performance. Use
myisamchk -ei to obtain table statistics.

• More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented
into many pieces and links (fragments) may be missing.

• The expected row length for dynamic-sized rows is calculated using the following expression:

3
+ (number of columns + 7) / 8
+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an
enlargement of the row. Each new link is at least 20 bytes, so the next enlargement probably goes in
the same link. If not, another link is created. You can find the number of links using myisamchk -
ed. All links may be removed with OPTIMIZE TABLE or myisamchk -r.

15.3.3.3 Compressed Table Characteristics

Compressed storage format is a read-only format that is generated with the myisampack tool.
Compressed tables can be uncompressed with myisamchk.

Compressed tables have the following characteristics:

• Compressed tables take very little disk space. This minimizes disk usage, which is helpful when
using slow disks (such as CD-ROMs).

• Each row is compressed separately, so there is very little access overhead. The header for a row
takes up one to three bytes depending on the biggest row in the table. Each column is compressed
differently. There is usually a different Huffman tree for each column. Some of the compression types
are:



MyISAM Table Problems

1782

• Suffix space compression.

• Prefix space compression.

• Numbers with a value of zero are stored using one bit.

• If values in an integer column have a small range, the column is stored using the smallest possible
type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte)
if all its values are in the range from -128 to 127.

• If a column has only a small set of possible values, the data type is converted to ENUM.

• A column may use any combination of the preceding compression types.

• Can be used for fixed-length or dynamic-length rows.

Note

While a compressed table is read only, and you cannot therefore update or add
rows in the table, DDL (Data Definition Language) operations are still valid. For
example, you may still use DROP to drop the table, and TRUNCATE TABLE to
empty the table.

15.3.4 MyISAM Table Problems

The file format that MySQL uses to store data has been extensively tested, but there are always
circumstances that may cause database tables to become corrupted. The following discussion
describes how this can happen and how to handle it.

15.3.4.1 Corrupted MyISAM Tables

Even though the MyISAM table format is very reliable (all changes to a table made by an SQL
statement are written before the statement returns), you can still get corrupted tables if any of the
following events occur:

• The mysqld process is killed in the middle of a write.

• An unexpected computer shutdown occurs (for example, the computer is turned off).

• Hardware failures.

• You are using an external program (such as myisamchk) to modify a table that is being modified by
the server at the same time.

• A software bug in the MySQL or MyISAM code.

Typical symptoms of a corrupt table are:

• You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

• Queries don't find rows in the table or return incomplete results.

You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a
corrupted MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check
or repair a table with the myisamchk command. See Section 13.7.2.2, “CHECK TABLE Syntax”,
Section 13.7.2.5, “REPAIR TABLE Syntax”, and Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

If your tables become corrupted frequently, you should try to determine why this is happening. The
most important thing to know is whether the table became corrupted as a result of a server crash. You



The MEMORY Storage Engine

1783

can verify this easily by looking for a recent restarted mysqld message in the error log. If there is
such a message, it is likely that table corruption is a result of the server dying. Otherwise, corruption
may have occurred during normal operation. This is a bug. You should try to create a reproducible test
case that demonstrates the problem. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”, and
Section 24.5, “Debugging and Porting MySQL”.

15.3.4.2 Problems from Tables Not Being Closed Properly

Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a
table has been closed properly. If you get the following warning from CHECK TABLE or myisamchk, it
means that this counter has gone out of sync:

clients are using or haven't closed the table properly

This warning doesn't necessarily mean that the table is corrupted, but you should at least check the
table.

The counter works as follows:

• The first time a table is updated in MySQL, a counter in the header of the index files is incremented.

• The counter is not changed during further updates.

• When the last instance of a table is closed (because a FLUSH TABLES operation was performed
or because there is no room in the table cache), the counter is decremented if the table has been
updated at any point.

• When you repair the table or check the table and it is found to be okay, the counter is reset to zero.

• To avoid problems with interaction with other processes that might check the table, the counter is not
decremented on close if it was zero.

In other words, the counter can become incorrect only under these conditions:

• A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.

• MySQL has crashed between an update and the final close. (The table may still be okay because
MySQL always issues writes for everything between each statement.)

• A table was modified by myisamchk --recover or myisamchk --update-state at the same
time that it was in use by mysqld.

• Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or CHECK
TABLE on the table while it was in use by another server. In this setup, it is safe to use CHECK
TABLE, although you might get the warning from other servers. However, REPAIR TABLE should
be avoided because when one server replaces the data file with a new one, this is not known to the
other servers.

In general, it is a bad idea to share a data directory among multiple servers. See Section 5.6,
“Running Multiple MySQL Instances on One Machine”, for additional discussion.

15.4 The MEMORY Storage Engine
The MEMORY storage engine (formerly known as HEAP) creates special-purpose tables with contents
that are stored in memory. Because the data is vulnerable to crashes, hardware issues, or power
outages, only use these tables as temporary work areas or read-only caches for data pulled from other
tables.

Table 15.4 MEMORY Storage Engine Features

Storage limits RAM Transactions No Locking granularity Table



Performance Characteristics

1784

MVCC No Geospatial data
type support

No Geospatial indexing
support

No

B-tree indexes Yes T-tree indexes No Hash indexes Yes

Full-text search
indexes

No Clustered indexes No Data caches N/A

Index caches N/A Compressed data No Encrypted dataa Yes

Cluster database
support

No Replication
supportb

Yes Foreign key support No

Backup / point-in-
time recoveryc

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aImplemented in the server (via encryption functions). Data-at-rest tablespace encryption is available in MySQL 5.7 and later.
bImplemented in the server, rather than in the storage engine.
cImplemented in the server, rather than in the storage engine.

When to Use MEMORY or NDB Cluster.  Developers looking to deploy applications that use the
MEMORY storage engine for important, highly available, or frequently updated data should consider
whether NDB Cluster is a better choice. A typical use case for the MEMORY engine involves these
characteristics:

• Operations involving transient, non-critical data such as session management or caching. When the
MySQL server halts or restarts, the data in MEMORY tables is lost.

• In-memory storage for fast access and low latency. Data volume can fit entirely in memory without
causing the operating system to swap out virtual memory pages.

• A read-only or read-mostly data access pattern (limited updates).

NDB Cluster offers the same features as the MEMORY engine with higher performance levels, and
provides additional features not available with MEMORY:

• Row-level locking and multiple-thread operation for low contention between clients.

• Scalability even with statement mixes that include writes.

• Optional disk-backed operation for data durability.

• Shared-nothing architecture and multiple-host operation with no single point of failure, enabling
99.999% availability.

• Automatic data distribution across nodes; application developers need not craft custom sharding or
partitioning solutions.

• Support for variable-length data types (including BLOB and TEXT) not supported by MEMORY.

Performance Characteristics

MEMORY performance is constrained by contention resulting from single-thread execution and table
lock overhead when processing updates. This limits scalability when load increases, particularly for
statement mixes that include writes.

Despite the in-memory processing for MEMORY tables, they are not necessarily faster than InnoDB
tables on a busy server, for general-purpose queries, or under a read/write workload. In particular, the
table locking involved with performing updates can slow down concurrent usage of MEMORY tables from
multiple sessions.

Depending on the kinds of queries performed on a MEMORY table, you might create indexes as either
the default hash data structure (for looking up single values based on a unique key), or a general-
purpose B-tree data structure (for all kinds of queries involving equality, inequality, or range operators



Physical Characteristics of MEMORY Tables

1785

such as less than or greater than). The following sections illustrate the syntax for creating both kinds
of indexes. A common performance issue is using the default hash indexes in workloads where B-tree
indexes are more efficient.

Physical Characteristics of MEMORY Tables

The MEMORY storage engine associates each table with one disk file, which stores the table definition
(not the data). The file name begins with the table name and has an extension of .frm.

MEMORY tables have the following characteristics:

• Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts.
No overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows
are put in a linked list and are reused when you insert new data into the table. MEMORY tables also
have none of the problems commonly associated with deletes plus inserts in hashed tables.

• MEMORY tables use a fixed-length row-storage format. Variable-length types such as VARCHAR are
stored using a fixed length.

• MEMORY tables cannot contain BLOB or TEXT columns.

• MEMORY includes support for AUTO_INCREMENT columns.

• Non-TEMPORARY MEMORY tables are shared among all clients, just like any other non-TEMPORARY
table.

DDL Operations for MEMORY Tables

To create a MEMORY table, specify the clause ENGINE=MEMORY on the CREATE TABLE statement.

CREATE TABLE t (i INT) ENGINE = MEMORY;

As indicated by the engine name, MEMORY tables are stored in memory. They use hash indexes by
default, which makes them very fast for single-value lookups, and very useful for creating temporary
tables. However, when the server shuts down, all rows stored in MEMORY tables are lost. The tables
themselves continue to exist because their definitions are stored in .frm files on disk, but they are
empty when the server restarts.

This example shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test ENGINE=MEMORY
    ->     SELECT ip,SUM(downloads) AS down
    ->     FROM log_table GROUP BY ip;
mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

The maximum size of MEMORY tables is limited by the max_heap_table_size system variable, which
has a default value of 16MB. To enforce different size limits for MEMORY tables, change the value of
this variable. The value in effect for CREATE TABLE, or a subsequent ALTER TABLE or TRUNCATE
TABLE, is the value used for the life of the table. A server restart also sets the maximum size of existing
MEMORY tables to the global max_heap_table_size value. You can set the size for individual tables
as described later in this section.

Indexes

The MEMORY storage engine supports both HASH and BTREE indexes. You can specify one or the other
for a given index by adding a USING clause as shown here:

CREATE TABLE lookup
    (id INT, INDEX USING HASH (id))



User-Created and Temporary Tables

1786

    ENGINE = MEMORY;
CREATE TABLE lookup
    (id INT, INDEX USING BTREE (id))
    ENGINE = MEMORY;

For general characteristics of B-tree and hash indexes, see Section 8.3.1, “How MySQL Uses
Indexes”.

MEMORY tables can have up to 64 indexes per table, 16 columns per index and a maximum key length
of 3072 bytes.

If a MEMORY table hash index has a high degree of key duplication (many index entries containing the
same value), updates to the table that affect key values and all deletes are significantly slower. The
degree of this slowdown is proportional to the degree of duplication (or, inversely proportional to the
index cardinality). You can use a BTREE index to avoid this problem.

MEMORY tables can have nonunique keys. (This is an uncommon feature for implementations of hash
indexes.)

Columns that are indexed can contain NULL values.

User-Created and Temporary Tables

MEMORY table contents are stored in memory, which is a property that MEMORY tables share with
internal temporary tables that the server creates on the fly while processing queries. However, the two
types of tables differ in that MEMORY tables are not subject to storage conversion, whereas internal
temporary tables are:

• If an internal temporary table becomes too large, the server automatically converts it to on-disk
storage, as described in Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• User-created MEMORY tables are never converted to disk tables.

Loading Data

To populate a MEMORY table when the MySQL server starts, you can use the --init-file option. For
example, you can put statements such as INSERT INTO ... SELECT or LOAD DATA INFILE into
this file to load the table from a persistent data source. See Section 5.1.4, “Server Command Options”,
and Section 13.2.6, “LOAD DATA INFILE Syntax”.

For loading data into MEMORY tables accessed by other sessions concurrently, MEMORY supports
INSERT DELAYED. See Section 13.2.5.2, “INSERT DELAYED Syntax”.

MEMORY Tables and Replication

A server's MEMORY tables become empty when it is shut down and restarted. If the server is a
replication master, its slaves are not aware that these tables have become empty, so you see out-of-
date content if you select data from the tables on the slaves. To synchronize master and slave MEMORY
tables, when a MEMORY table is used on a master for the first time since it was started, a DELETE
statement is written to the master's binary log, to empty the table on the slaves also. The slave still has
outdated data in the table during the interval between the master's restart and its first use of the table.
To avoid this interval when a direct query to the slave could return stale data, use the --init-file
option to populate the MEMORY table on the master at startup.

Managing Memory Use

The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

Memory is not reclaimed if you delete individual rows from a MEMORY table. Memory is reclaimed only
when the entire table is deleted. Memory that was previously used for deleted rows is re-used for
new rows within the same table. To free all the memory used by a MEMORY table when you no longer



Additional Resources

1787

require its contents, execute DELETE or TRUNCATE TABLE to remove all rows, or remove the table
altogether using DROP TABLE. To free up the memory used by deleted rows, use ALTER TABLE
ENGINE=MEMORY to force a table rebuild.

The memory needed for one row in a MEMORY table is calculated using the following expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) * 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char
pointer size. sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

As mentioned earlier, the max_heap_table_size system variable sets the limit on the maximum
size of MEMORY tables. To control the maximum size for individual tables, set the session value of
this variable before creating each table. (Do not change the global max_heap_table_size value
unless you intend the value to be used for MEMORY tables created by all clients.) The following example
creates two MEMORY tables, with a maximum size of 1MB and 2MB, respectively:

mysql> SET max_heap_table_size = 1024*1024;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.01 sec)

mysql> SET max_heap_table_size = 1024*1024*2;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.00 sec)

Both tables revert to the server's global max_heap_table_size value if the server restarts.

You can also specify a MAX_ROWS table option in CREATE TABLE statements for MEMORY tables to
provide a hint about the number of rows you plan to store in them. This does not enable the table to
grow beyond the max_heap_table_size value, which still acts as a constraint on maximum table
size. For maximum flexibility in being able to use MAX_ROWS, set max_heap_table_size at least as
high as the value to which you want each MEMORY table to be able to grow.

Additional Resources

A forum dedicated to the MEMORY storage engine is available at http://forums.mysql.com/list.php?92.

15.5 The CSV Storage Engine

The CSV storage engine stores data in text files using comma-separated values format.

The CSV storage engine is always compiled into the MySQL server.

To examine the source for the CSV engine, look in the storage/csv directory of a MySQL source
distribution.

When you create a CSV table, the server creates a table format file in the database directory. The file
begins with the table name and has an .frm extension. The storage engine also creates a data file.
Its name begins with the table name and has a .CSV extension. The data file is a plain text file. When
you store data into the table, the storage engine saves it into the data file in comma-separated values
format.

mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)
    -> ENGINE = CSV;
Query OK, 0 rows affected (0.12 sec)

http://forums.mysql.com/list.php?92


Repairing and Checking CSV Tables

1788

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM test;
+------+------------+
| i    | c          |
+------+------------+
|    1 | record one |
|    2 | record two |
+------+------------+
2 rows in set (0.00 sec)

Creating a CSV table also creates a corresponding Metafile that stores the state of the table and the
number of rows that exist in the table. The name of this file is the same as the name of the table with
the extension CSM.

If you examine the test.CSV file in the database directory created by executing the preceding
statements, its contents should look like this:

"1","record one"
"2","record two"

This format can be read, and even written, by spreadsheet applications such as Microsoft Excel or
StarOffice Calc.

15.5.1 Repairing and Checking CSV Tables

The CSV storage engines supports the CHECK and REPAIR statements to verify and if possible repair a
damaged CSV table.

When running the CHECK statement, the CSV file will be checked for validity by looking for the correct
field separators, escaped fields (matching or missing quotation marks), the correct number of fields
compared to the table definition and the existence of a corresponding CSV metafile. The first invalid
row discovered will report an error. Checking a valid table produces output like that shown below:

mysql> check table csvtest;
+--------------+-------+----------+----------+
| Table        | Op    | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | status   | OK       |
+--------------+-------+----------+----------+
1 row in set (0.00 sec)

A check on a corrupted table returns a fault:

mysql> check table csvtest;
+--------------+-------+----------+----------+
| Table        | Op    | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | error    | Corrupt  |
+--------------+-------+----------+----------+
1 row in set (0.01 sec)

If the check fails, the table is marked as crashed (corrupt). Once a table has been marked as
corrupt, it is automatically repaired when you next run CHECK or execute a SELECT statement. The
corresponding corrupt status and new status will be displayed when running CHECK:

mysql> check table csvtest;
+--------------+-------+----------+----------------------------+
| Table        | Op    | Msg_type | Msg_text                   |
+--------------+-------+----------+----------------------------+
| test.csvtest | check | warning  | Table is marked as crashed |
| test.csvtest | check | status   | OK                         |
+--------------+-------+----------+----------------------------+
2 rows in set (0.08 sec)



CSV Limitations

1789

To repair a table you can use REPAIR, this copies as many valid rows from the existing CSV data
as possible, and then replaces the existing CSV file with the recovered rows. Any rows beyond the
corrupted data are lost.

mysql> repair table csvtest;
+--------------+--------+----------+----------+
| Table        | Op     | Msg_type | Msg_text |
+--------------+--------+----------+----------+
| test.csvtest | repair | status   | OK       |
+--------------+--------+----------+----------+
1 row in set (0.02 sec)

Warning

During repair, only the rows from the CSV file up to the first damaged row are
copied to the new table. All other rows from the first damaged row to the end of
the table are removed, even valid rows.

15.5.2 CSV Limitations

The CSV storage engine does not support indexing.

Partitioning is not supported for tables using the CSV storage engine.

All tables that you create using the CSV storage engine must have the NOT NULL attribute on all
columns. However, for backward compatibility, you can continue to use tables with nullable columns
that were created in previous MySQL releases. (Bug #32050)

15.6 The ARCHIVE Storage Engine
The ARCHIVE storage engine is used for storing large amounts of data without indexes in a very small
footprint.

Table 15.5 ARCHIVE Storage Engine Features

Storage limits None Transactions No Locking granularity Row

MVCC No Geospatial data
type support

Yes Geospatial indexing
support

No

B-tree indexes No T-tree indexes No Hash indexes No

Full-text search
indexes

No Clustered indexes No Data caches No

Index caches No Compressed data Yes Encrypted dataa Yes

Cluster database
support

No Replication
supportb

Yes Foreign key support No

Backup / point-in-
time recoveryc

Yes Query cache
support

Yes Update statistics for
data dictionary

Yes

aImplemented in the server (via encryption functions). Data-at-rest tablespace encryption is available in MySQL 5.7 and later.
bImplemented in the server, rather than in the storage engine.
cImplemented in the server, rather than in the storage engine.

The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine
if you build MySQL from source, invoke CMake with the -DWITH_ARCHIVE_STORAGE_ENGINE option.

To examine the source for the ARCHIVE engine, look in the storage/archive directory of a MySQL
source distribution.

You can check whether the ARCHIVE storage engine is available with the SHOW ENGINES statement.

When you create an ARCHIVE table, the server creates a table format file in the database directory.
The file begins with the table name and has an .frm extension. The storage engine creates other files,



Additional Resources

1790

all having names beginning with the table name. The data file has an extension of .ARZ. An .ARN file
may appear during optimization operations.

The ARCHIVE engine supports INSERT, REPLACE, and SELECT, but not DELETE or UPDATE. It
does support ORDER BY operations, BLOB columns, and basically all but spatial data types (see
Section 11.5.1, “Spatial Data Types”). The ARCHIVE engine uses row-level locking.

The ARCHIVE engine supports the AUTO_INCREMENT column attribute. The AUTO_INCREMENT
column can have either a unique or nonunique index. Attempting to create an index on any other
column results in an error. The ARCHIVE engine also supports the AUTO_INCREMENT table option in
CREATE TABLE statements to specify the initial sequence value for a new table or reset the sequence
value for an existing table, respectively.

ARCHIVE does not support inserting a value into an AUTO_INCREMENT column less than the current
maximum column value. Attempts to do so result in an ER_DUP_KEY error.

The ARCHIVE engine ignores BLOB columns if they are not requested and scans past them while
reading.

Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data
compression (see http://www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack
it into a smaller format (for a reason to use OPTIMIZE TABLE, see later in this section). The engine
also supports CHECK TABLE. There are several types of insertions that are used:

• An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as
necessary. The insertion into the buffer is protected by a lock. A SELECT forces a flush to occur,
unless the only insertions that have come in were INSERT DELAYED (those flush as necessary).
See Section 13.2.5.2, “INSERT DELAYED Syntax”.

• A bulk insert is visible only after it completes, unless other inserts occur at the same time, in which
case it can be seen partially. A SELECT never causes a flush of a bulk insert unless a normal insert
occurs while it is loading.

Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT
operation performs a complete table scan: When a SELECT occurs, it finds out how many rows are
currently available and reads that number of rows. SELECT is performed as a consistent read. Note
that lots of SELECT statements during insertion can deteriorate the compression, unless only bulk or
delayed inserts are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR
TABLE. The number of rows in ARCHIVE tables reported by SHOW TABLE STATUS is always accurate.
See Section 13.7.2.4, “OPTIMIZE TABLE Syntax”, Section 13.7.2.5, “REPAIR TABLE Syntax”, and
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”.

Additional Resources

• A forum dedicated to the ARCHIVE storage engine is available at http://forums.mysql.com/list.php?
112.

15.7 The BLACKHOLE Storage Engine
The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does
not store it. Retrievals always return an empty result:

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM test;
Empty set (0.00 sec)

http://www.zlib.net/
http://forums.mysql.com/list.php?112
http://forums.mysql.com/list.php?112


The BLACKHOLE Storage Engine

1791

To enable the BLACKHOLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_BLACKHOLE_STORAGE_ENGINE option.

To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source
distribution.

When you create a BLACKHOLE table, the server creates a table format file in the database directory.
The file begins with the table name and has an .frm extension. There are no other files associated
with the table.

The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index
declarations in the table definition.

You can check whether the BLACKHOLE storage engine is available with the SHOW ENGINES
statement.

Inserts into a BLACKHOLE table do not store any data, but if statement based binary logging is enabled,
the SQL statements are logged and replicated to slave servers. This can be useful as a repeater or
filter mechanism.

Suppose that your application requires slave-side filtering rules, but transferring all binary log data to
the slave first results in too much traffic. In such a case, it is possible to set up on the master host a
“dummy” slave process whose default storage engine is BLACKHOLE, depicted as follows:

The master writes to its binary log. The “dummy” mysqld process acts as a slave, applying the desired
combination of replicate-do-* and replicate-ignore-* rules, and writes a new, filtered binary
log of its own. (See Section 17.1.3, “Replication and Binary Logging Options and Variables”.) This
filtered log is provided to the slave.

The dummy process does not actually store any data, so there is little processing overhead incurred
by running the additional mysqld process on the replication master host. This type of setup can be
repeated with additional replication slaves.

INSERT triggers for BLACKHOLE tables work as expected. However, because the BLACKHOLE table
does not actually store any data, UPDATE and DELETE triggers are not activated: The FOR EACH ROW
clause in the trigger definition does not apply because there are no rows.

Other possible uses for the BLACKHOLE storage engine include:

• Verification of dump file syntax.

• Measurement of the overhead from binary logging, by comparing performance using BLACKHOLE
with and without binary logging enabled.



The MERGE Storage Engine

1792

• BLACKHOLE is essentially a “no-op” storage engine, so it could be used for finding performance
bottlenecks not related to the storage engine itself.

The BLACKHOLE engine is transaction-aware, in the sense that committed transactions are written to
the binary log and rolled-back transactions are not.

Blackhole Engine and Auto Increment Columns

The Blackhole engine is a no-op engine. Any operations performed on a table using Blackhole will have
no effect. This should be born in mind when considering the behavior of primary key columns that auto
increment. The engine will not automatically increment field values, and does not retain auto increment
field state. This has important implications in replication.

Consider the following replication scenario where all three of the following conditions apply:

1. On a master server there is a blackhole table with an auto increment field that is a primary key.

2. On a slave the same table exists but using the MyISAM engine.

3. Inserts are performed into the master's table without explicitly setting the auto increment value in
the INSERT statement itself or through using a SET INSERT_ID statement.

In this scenario replication will fail with a duplicate entry error on the primary key column.

In statement based replication, the value of INSERT_ID in the context event will always be the same.
Replication will therefore fail due to trying insert a row with a duplicate value for a primary key column.

In row based replication, the value that the engine returns for the row always be the same for each
insert. This will result in the slave attempting to replay two insert log entries using the same value for
the primary key column, and so replication will fail.

Column Filtering

When using row-based replication, (binlog_format=ROW), a slave where the last columns are
missing from a table is supported, as described in the section Section 17.4.1.10, “Replication with
Differing Table Definitions on Master and Slave”.

This filtering works on the slave side, that is, the columns are copied to the slave before they are
filtered out. There are at least two cases where it is not desirable to copy the columns to the slave:

1. If the data is confidential, so the slave server should not have access to it.

2. If the master has many slaves, filtering before sending to the slaves may reduce network traffic.

Master column filtering can be achieved using the BLACKHOLE engine. This is carried out in a
way similar to how master table filtering is achieved - by using the BLACKHOLE engine and the --
replicate-do-table or --replicate-ignore-table option.

The setup for the master is:

CREATE TABLE t1 (public_col_1, ..., public_col_N,
                 secret_col_1, ..., secret_col_M) ENGINE=MyISAM;

The setup for the trusted slave is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=BLACKHOLE;

The setup for the untrusted slave is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=MyISAM;

15.8 The MERGE Storage Engine



The MERGE Storage Engine

1793

The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM
tables that can be used as one. “Identical” means that all tables have identical column and index
information. You cannot merge MyISAM tables in which the columns are listed in a different order, do
not have exactly the same columns, or have the indexes in different order. However, any or all of the
MyISAM tables can be compressed with myisampack. See Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”. Differences in table options such as AVG_ROW_LENGTH,
MAX_ROWS, or PACK_KEYS do not matter.

An alternative to a MERGE table is a partitioned table, which stores partitions of a single table in
separate files. Partitioning enables some operations to be performed more efficiently and is not limited
to the MyISAM storage engine. For more information, see Chapter 19, Partitioning.

When you create a MERGE table, MySQL creates two files on disk. The files have names that begin with
the table name and have an extension to indicate the file type. An .frm file stores the table format,
and an .MRG file contains the names of the underlying MyISAM tables that should be used as one. The
tables do not have to be in the same database as the MERGE table.

You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT,
DELETE, and UPDATE privileges on the MyISAM tables that you map to a MERGE table.

Note

The use of MERGE tables entails the following security issue: If a user has
access to MyISAM table t, that user can create a MERGE table m that accesses
t. However, if the user's privileges on t are subsequently revoked, the user can
continue to access t by doing so through m.

Use of DROP TABLE with a MERGE table drops only the MERGE specification. The underlying tables are
not affected.

To create a MERGE table, you must specify a UNION=(list-of-tables) option that indicates which
MyISAM tables to use. You can optionally specify an INSERT_METHOD option to control how inserts
into the MERGE table take place. Use a value of FIRST or LAST to cause inserts to be made in the first
or last underlying table, respectively. If you specify no INSERT_METHOD option or if you specify it with a
value of NO, inserts into the MERGE table are not permitted and attempts to do so result in an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (
    ->    a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    ->    message CHAR(20)) ENGINE=MyISAM;
mysql> CREATE TABLE t2 (
    ->    a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    ->    message CHAR(20)) ENGINE=MyISAM;
mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (
    ->    a INT NOT NULL AUTO_INCREMENT,
    ->    message CHAR(20), INDEX(a))
    ->    ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

Column a is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in the MERGE table.
There it is indexed but not as a PRIMARY KEY because a MERGE table cannot enforce uniqueness over
the set of underlying tables. (Similarly, a column with a UNIQUE index in the underlying tables should
be indexed in the MERGE table but not as a UNIQUE index.)

After creating the MERGE table, you can use it to issue queries that operate on the group of tables as a
whole:

mysql> SELECT * FROM total;
+---+---------+



The MERGE Storage Engine

1794

| a | message |
+---+---------+
| 1 | Testing |
| 2 | table   |
| 3 | t1      |
| 1 | Testing |
| 2 | table   |
| 3 | t2      |
+---+---------+

To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following
methods:

• DROP the MERGE table and re-create it.

• Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

It is also possible to use ALTER TABLE ... UNION=() (that is, with an empty UNION clause)
to remove all of the underlying tables. However, in this case, the table is effectively empty and
inserts fail because there is no underlying table to take new rows. Such a table might be useful as a
template for creating new MERGE tables with CREATE TABLE ... LIKE.

The underlying table definitions and indexes must conform closely to the definition of the MERGE table.
Conformance is checked when a table that is part of a MERGE table is opened, not when the MERGE
table is created. If any table fails the conformance checks, the operation that triggered the opening of
the table fails. This means that changes to the definitions of tables within a MERGE may cause a failure
when the MERGE table is accessed. The conformance checks applied to each table are:

• The underlying table and the MERGE table must have the same number of columns.

• The column order in the underlying table and the MERGE table must match.

• Additionally, the specification for each corresponding column in the parent MERGE table and the
underlying tables are compared and must satisfy these checks:

• The column type in the underlying table and the MERGE table must be equal.

• The column length in the underlying table and the MERGE table must be equal.

• The column of the underlying table and the MERGE table can be NULL.

• The underlying table must have at least as many indexes as the MERGE table. The underlying table
may have more indexes than the MERGE table, but cannot have fewer.

Note

A known issue exists where indexes on the same columns must be in
identical order, in both the MERGE table and the underlying MyISAM table. See
Bug #33653.

Each index must satisfy these checks:

• The index type of the underlying table and the MERGE table must be the same.

• The number of index parts (that is, multiple columns within a compound index) in the index
definition for the underlying table and the MERGE table must be the same.

• For each index part:

• Index part lengths must be equal.

• Index part types must be equal.

• Index part languages must be equal.



Additional Resources

1795

• Check whether index parts can be NULL.

If a MERGE table cannot be opened or used because of a problem with an underlying table, CHECK
TABLE displays information about which table caused the problem.

Additional Resources

• A forum dedicated to the MERGE storage engine is available at http://forums.mysql.com/list.php?93.

15.8.1 MERGE Table Advantages and Disadvantages

MERGE tables can help you solve the following problems:

• Easily manage a set of log tables. For example, you can put data from different months into separate
tables, compress some of them with myisampack, and then create a MERGE table to use them as
one.

• Obtain more speed. You can split a large read-only table based on some criteria, and then put
individual tables on different disks. A MERGE table structured this way could be much faster than
using a single large table.

• Perform more efficient searches. If you know exactly what you are looking for, you can search in just
one of the underlying tables for some queries and use a MERGE table for others. You can even have
many different MERGE tables that use overlapping sets of tables.

• Perform more efficient repairs. It is easier to repair individual smaller tables that are mapped to a
MERGE table than to repair a single large table.

• Instantly map many tables as one. A MERGE table need not maintain an index of its own because it
uses the indexes of the individual tables. As a result, MERGE table collections are very fast to create
or remap. (You must still specify the index definitions when you create a MERGE table, even though
no indexes are created.)

• If you have a set of tables from which you create a large table on demand, you can instead create a
MERGE table from them on demand. This is much faster and saves a lot of disk space.

• Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a
collection of MyISAM tables is not.

• You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that
single table. There should be no really notable performance impact from doing this (only a couple of
indirect calls and memcpy() calls for each read).

The disadvantages of MERGE tables are:

• You can use only identical MyISAM tables for a MERGE table.

• Some MyISAM features are unavailable in MERGE tables. For example, you cannot create FULLTEXT
indexes on MERGE tables. (You can create FULLTEXT indexes on the underlying MyISAM tables, but
you cannot search the MERGE table with a full-text search.)

• If the MERGE table is nontemporary, all underlying MyISAM tables must be nontemporary. If the
MERGE table is temporary, the MyISAM tables can be any mix of temporary and nontemporary.

• MERGE tables use more file descriptors than MyISAM tables. If 10 clients are using a MERGE table that
maps to 10 tables, the server uses (10 × 10) + 10 file descriptors. (10 data file descriptors for each of
the 10 clients, and 10 index file descriptors shared among the clients.)

• Index reads are slower. When you read an index, the MERGE storage engine needs to issue a read
on all underlying tables to check which one most closely matches a given index value. To read

http://forums.mysql.com/list.php?93


MERGE Table Problems

1796

the next index value, the MERGE storage engine needs to search the read buffers to find the next
value. Only when one index buffer is used up does the storage engine need to read the next index
block. This makes MERGE indexes much slower on eq_ref searches, but not much slower on ref
searches. For more information about eq_ref and ref, see Section 13.8.2, “EXPLAIN Syntax”.

15.8.2 MERGE Table Problems

The following are known problems with MERGE tables:

• In versions of MySQL Server prior to 5.1.23, it was possible to create temporary merge tables with
nontemporary child MyISAM tables.

From versions 5.1.23, MERGE children were locked through the parent table. If the parent was
temporary, it was not locked and so the children were not locked either. Parallel use of the MyISAM
tables corrupted them.

• If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the
underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into the
altered table, which then uses the specified storage engine.

• The INSERT_METHOD table option for a MERGE table indicates which underlying MyISAM table to use
for inserts into the MERGE table. However, use of the AUTO_INCREMENT table option for that MyISAM
table has no effect for inserts into the MERGE table until at least one row has been inserted directly
into the MyISAM table.

• A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an
INSERT, the data goes into the first or last MyISAM table (as determined by the INSERT_METHOD
option). MySQL ensures that unique key values remain unique within that MyISAM table, but not over
all the underlying tables in the collection.

• Because the MERGE engine cannot enforce uniqueness over the set of underlying tables, REPLACE
does not work as expected. The two key facts are:

• REPLACE can detect unique key violations only in the underlying table to which it is going to write
(which is determined by the INSERT_METHOD option). This differs from violations in the MERGE
table itself.

• If REPLACE detects a unique key violation, it will change only the corresponding row in the
underlying table it is writing to; that is, the first or last table, as determined by the INSERT_METHOD
option.

Similar considerations apply for INSERT ... ON DUPLICATE KEY UPDATE.

• MERGE tables do not support partitioning. That is, you cannot partition a MERGE table, nor can any of
a MERGE table's underlying MyISAM tables be partitioned.

• You should not use ANALYZE TABLE, REPAIR TABLE, OPTIMIZE TABLE, ALTER TABLE, DROP
TABLE, DELETE without a WHERE clause, or TRUNCATE TABLE on any of the tables that are mapped
into an open MERGE table. If you do so, the MERGE table may still refer to the original table and yield
unexpected results. To work around this problem, ensure that no MERGE tables remain open by
issuing a FLUSH TABLES statement prior to performing any of the named operations.

The unexpected results include the possibility that the operation on the MERGE table will report table
corruption. If this occurs after one of the named operations on the underlying MyISAM tables, the
corruption message is spurious. To deal with this, issue a FLUSH TABLES statement after modifying
the MyISAM tables.

• DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the
MERGE storage engine's table mapping is hidden from the upper layer of MySQL. Windows does not
permit open files to be deleted, so you first must flush all MERGE tables (with FLUSH TABLES) or
drop the MERGE table before dropping the table.



The FEDERATED Storage Engine

1797

• The definition of the MyISAM tables and the MERGE table are checked when the tables are accessed
(for example, as part of a SELECT or INSERT statement). The checks ensure that the definitions of
the tables and the parent MERGE table definition match by comparing column order, types, sizes and
associated indexes. If there is a difference between the tables, an error is returned and the statement
fails. Because these checks take place when the tables are opened, any changes to the definition
of a single table, including column changes, column ordering, and engine alterations will cause the
statement to fail.

• The order of indexes in the MERGE table and its underlying tables should be the same. If you use
ALTER TABLE to add a UNIQUE index to a table used in a MERGE table, and then use ALTER TABLE
to add a nonunique index on the MERGE table, the index ordering is different for the tables if there
was already a nonunique index in the underlying table. (This happens because ALTER TABLE
puts UNIQUE indexes before nonunique indexes to facilitate rapid detection of duplicate keys.)
Consequently, queries on tables with such indexes may return unexpected results.

• If you encounter an error message similar to ERROR 1017 (HY000): Can't find file:
'tbl_name.MRG' (errno: 2), it generally indicates that some of the underlying tables do not
use the MyISAM storage engine. Confirm that all of these tables are MyISAM.

• The maximum number of rows in a MERGE table is 264 (~1.844E+19; the same as for a MyISAM
table). It is not possible to merge multiple MyISAM tables into a single MERGE table that would have
more than this number of rows.

• The MERGE storage engine does not support INSERT DELAYED statements.

• Use of underlying MyISAM tables of differing row formats with a parent MERGE table is currently
known to fail. See Bug #32364.

• You cannot change the union list of a nontemporary MERGE table when LOCK TABLES is in effect.
The following does not work:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ...;
LOCK TABLES t1 WRITE, t2 WRITE, m1 WRITE;
ALTER TABLE m1 ... UNION=(t1,t2) ...;

However, you can do this with a temporary MERGE table.

• You cannot create a MERGE table with CREATE ... SELECT, neither as a temporary MERGE table,
nor as a nontemporary MERGE table. For example:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ... SELECT ...;

Attempts to do this result in an error: tbl_name is not BASE TABLE.

• In some cases, differing PACK_KEYS table option values among the MERGE and underlying
tables cause unexpected results if the underlying tables contain CHAR or BINARY columns. As a
workaround, use ALTER TABLE to ensure that all involved tables have the same PACK_KEYS value.
(Bug #50646)

15.9 The FEDERATED Storage Engine

The FEDERATED storage engine lets you access data from a remote MySQL database without using
replication or cluster technology. Querying a local FEDERATED table automatically pulls the data from
the remote (federated) tables. No data is stored on the local tables.

To include the FEDERATED storage engine if you build MySQL from source, invoke CMake with the -
DWITH_FEDERATED_STORAGE_ENGINE option.

The FEDERATED storage engine is not enabled by default in the running server; to enable FEDERATED,
you must start the MySQL server binary using the --federated option.



FEDERATED Storage Engine Overview

1798

To examine the source for the FEDERATED engine, look in the storage/federated directory of a
MySQL source distribution.

15.9.1 FEDERATED Storage Engine Overview

When you create a table using one of the standard storage engines (such as MyISAM, CSV or
InnoDB), the table consists of the table definition and the associated data. When you create a
FEDERATED table, the table definition is the same, but the physical storage of the data is handled on a
remote server.

A FEDERATED table consists of two elements:

• A remote server with a database table, which in turn consists of the table definition (stored in the
.frm file) and the associated table. The table type of the remote table may be any type supported by
the remote mysqld server, including MyISAM or InnoDB.

• A local server with a database table, where the table definition matches that of the corresponding
table on the remote server. The table definition is stored within the .frm file. However, there is no
data file on the local server. Instead, the table definition includes a connection string that points to
the remote table.

When executing queries and statements on a FEDERATED table on the local server, the operations that
would normally insert, update or delete information from a local data file are instead sent to the remote
server for execution, where they update the data file on the remote server or return matching rows from
the remote server.

The basic structure of a FEDERATED table setup is shown in Figure 15.1, “FEDERATED Table
Structure”.

Figure 15.1 FEDERATED Table Structure

When a client issues an SQL statement that refers to a FEDERATED table, the flow of information
between the local server (where the SQL statement is executed) and the remote server (where the
data is physically stored) is as follows:

1. The storage engine looks through each column that the FEDERATED table has and constructs an
appropriate SQL statement that refers to the remote table.

2. The statement is sent to the remote server using the MySQL client API.

3. The remote server processes the statement and the local server retrieves any result that the
statement produces (an affected-rows count or a result set).

4. If the statement produces a result set, each column is converted to internal storage engine format
that the FEDERATED engine expects and can use to display the result to the client that issued the
original statement.



How to Create FEDERATED Tables

1799

The local server communicates with the remote server using MySQL client C API functions. It invokes
mysql_real_query() to send the statement. To read a result set, it uses mysql_store_result()
and fetches rows one at a time using mysql_fetch_row().

15.9.2 How to Create FEDERATED Tables

To create a FEDERATED table you should follow these steps:

1. Create the table on the remote server. Alternatively, make a note of the table definition of an
existing table, perhaps using the SHOW CREATE TABLE statement.

2. Create the table on the local server with an identical table definition, but adding the connection
information that links the local table to the remote table.

For example, you could create the following table on the remote server:

CREATE TABLE test_table (
    id     INT(20) NOT NULL AUTO_INCREMENT,
    name   VARCHAR(32) NOT NULL DEFAULT '',
    other  INT(20) NOT NULL DEFAULT '0',
    PRIMARY KEY  (id),
    INDEX name (name),
    INDEX other_key (other)
)
ENGINE=MyISAM
DEFAULT CHARSET=latin1;

To create the local table that will be federated to the remote table, there are two options available.
You can either create the local table and specify the connection string (containing the server name,
login, password) to be used to connect to the remote table using the CONNECTION, or you can use an
existing connection that you have previously created using the CREATE SERVER statement.

Important

When you create the local table it must have an identical field definition to the
remote table.

Note

You can improve the performance of a FEDERATED table by adding indexes to
the table on the host. The optimization will occur because the query sent to the
remote server will include the contents of the WHERE clause and will be sent to
the remote server and subsequently executed locally. This reduces the network
traffic that would otherwise request the entire table from the server for local
processing.

15.9.2.1 Creating a FEDERATED Table Using CONNECTION

To use the first method, you must specify the CONNECTION string after the engine type in a CREATE
TABLE statement. For example:

CREATE TABLE federated_table (
    id     INT(20) NOT NULL AUTO_INCREMENT,
    name   VARCHAR(32) NOT NULL DEFAULT '',
    other  INT(20) NOT NULL DEFAULT '0',
    PRIMARY KEY  (id),
    INDEX name (name),
    INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';



How to Create FEDERATED Tables

1800

Note

CONNECTION replaces the COMMENT used in some previous versions of MySQL.

The CONNECTION string contains the information required to connect to the remote server containing
the table that will be used to physically store the data. The connection string specifies the server name,
login credentials, port number and database/table information. In the example, the remote table is on
the server remote_host, using port 9306. The name and port number should match the host name
(or IP address) and port number of the remote MySQL server instance you want to use as your remote
table.

The format of the connection string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Where:

• scheme: A recognized connection protocol. Only mysql is supported as the scheme value at this
point.

• user_name: The user name for the connection. This user must have been created on the remote
server, and must have suitable privileges to perform the required actions (SELECT, INSERT,
UPDATE, and so forth) on the remote table.

• password: (Optional) The corresponding password for user_name.

• host_name: The host name or IP address of the remote server.

• port_num: (Optional) The port number for the remote server. The default is 3306.

• db_name: The name of the database holding the remote table.

• tbl_name: The name of the remote table. The name of the local and the remote table do not have to
match.

Sample connection strings:

CONNECTION='mysql://username:password@hostname:port/database/tablename'
CONNECTION='mysql://username@hostname/database/tablename'
CONNECTION='mysql://username:password@hostname/database/tablename'

15.9.2.2 Creating a FEDERATED Table Using CREATE SERVER

If you are creating a number of FEDERATED tables on the same server, or if you want to simplify the
process of creating FEDERATED tables, you can use the CREATE SERVER statement to define the
server connection parameters, just as you would with the CONNECTION string.

The format of the CREATE SERVER statement is:

CREATE SERVER
server_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)

The server_name is used in the connection string when creating a new FEDERATED table.

For example, to create a server connection identical to the CONNECTION string:

CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

You would use the following statement:

CREATE SERVER fedlink



FEDERATED Storage Engine Notes and Tips

1801

FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'fed_user', HOST 'remote_host', PORT 9306, DATABASE 'federated');

To create a FEDERATED table that uses this connection, you still use the CONNECTION keyword, but
specify the name you used in the CREATE SERVER statement.

CREATE TABLE test_table (
    id     INT(20) NOT NULL AUTO_INCREMENT,
    name   VARCHAR(32) NOT NULL DEFAULT '',
    other  INT(20) NOT NULL DEFAULT '0',
    PRIMARY KEY  (id),
    INDEX name (name),
    INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='fedlink/test_table';

The connection name in this example contains the name of the connection (fedlink) and the name
of the table (test_table) to link to, separated by a slash. If you specify only the connection name
without a table name, the table name of the local table is used instead.

For more information on CREATE SERVER, see Section 13.1.16, “CREATE SERVER Syntax”.

The CREATE SERVER statement accepts the same arguments as the CONNECTION string. The
CREATE SERVER statement updates the rows in the mysql.servers table. See the following table for
information on the correspondence between parameters in a connection string, options in the CREATE
SERVER statement, and the columns in the mysql.servers table. For reference, the format of the
CONNECTION string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Description CONNECTION string CREATE SERVER
option

mysql.servers
column

Connection scheme scheme wrapper_name Wrapper

Remote user user_name USER Username

Remote password password PASSWORD Password

Remote host host_name HOST Host

Remote port port_num PORT Port

Remote database db_name DATABASE Db

15.9.3 FEDERATED Storage Engine Notes and Tips

You should be aware of the following points when using the FEDERATED storage engine:

• FEDERATED tables may be replicated to other slaves, but you must ensure that the slave servers are
able to use the user/password combination that is defined in the CONNECTION string (or the row in
the mysql.servers table) to connect to the remote server.

The following items indicate features that the FEDERATED storage engine does and does not support:

• The remote server must be a MySQL server.

• The remote table that a FEDERATED table points to must exist before you try to access the table
through the FEDERATED table.

• It is possible for one FEDERATED table to point to another, but you must be careful not to create a
loop.

• A FEDERATED table does not support indexes in the usual sense; because access to the table data
is handled remotely, it is actually the remote table that makes use of indexes. This means that, for a



FEDERATED Storage Engine Notes and Tips

1802

query that cannot use any indexes and so requires a full table scan, the server fetches all rows from
the remote table and filters them locally. This occurs regardless of any WHERE or LIMIT used with
this SELECT statement; these clauses are applied locally to the returned rows.

Queries that fail to use indexes can thus cause poor performance and network overload. In addition,
since returned rows must be stored in memory, such a query can also lead to the local server
swapping, or even hanging.

• Care should be taken when creating a FEDERATED table since the index definition from an equivalent
MyISAM or other table may not be supported. For example, creating a FEDERATED table with an
index prefix on VARCHAR, TEXT or BLOB columns will fail. The following definition in MyISAM is valid:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=MYISAM;

The key prefix in this example is incompatible with the FEDERATED engine, and the equivalent
statement will fail:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=FEDERATED
  CONNECTION='MYSQL://127.0.0.1:3306/TEST/T1';

If possible, you should try to separate the column and index definition when creating tables on both
the remote server and the local server to avoid these index issues.

• Internally, the implementation uses SELECT, INSERT, UPDATE, and DELETE, but not HANDLER.

• The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, TRUNCATE TABLE,
and indexes. It does not support ALTER TABLE, or any Data Definition Language statements that
directly affect the structure of the table, other than DROP TABLE. The current implementation does
not use prepared statements.

• FEDERATED accepts INSERT ... ON DUPLICATE KEY UPDATE statements, but if a duplicate-key
violation occurs, the statement fails with an error.

• Performance on a FEDERATED table when performing bulk inserts (for example, on a INSERT
INTO ... SELECT ... statement) is slower than with other table types because each selected
row is treated as an individual INSERT statement on the FEDERATED table.

• Transactions are not supported.

• FEDERATED performs bulk-insert handling such that multiple rows are sent to the remote table
in a batch. This provides a performance improvement and enables the remote table to perform
improvement. Also, if the remote table is transactional, it enables the remote storage engine
to perform statement rollback properly should an error occur. This capability has the following
limitations:

• The size of the insert cannot exceed the maximum packet size between servers. If the insert
exceeds this size, it is broken into multiple packets and the rollback problem can occur.

• Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.

• There is no way for the FEDERATED engine to know if the remote table has changed. The reason for
this is that this table must work like a data file that would never be written to by anything other than
the database system. The integrity of the data in the local table could be breached if there was any
change to the remote database.

• When using a CONNECTION string, you cannot use an '@' character in the password. You can get
round this limitation by using the CREATE SERVER statement to create a server connection.

• The insert_id and timestamp options are not propagated to the data provider.

• Any DROP TABLE statement issued against a FEDERATED table drops only the local table, not the
remote table.



FEDERATED Storage Engine Resources

1803

• FEDERATED tables do not work with the query cache.

• User-defined partitioning is not supported for FEDERATED tables.

15.9.4 FEDERATED Storage Engine Resources

The following additional resources are available for the FEDERATED storage engine:

• A forum dedicated to the FEDERATED storage engine is available at http://forums.mysql.com/list.php?
105.

15.10 The EXAMPLE Storage Engine

The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example
in the MySQL source code that illustrates how to begin writing new storage engines. As such, it is
primarily of interest to developers.

To enable the EXAMPLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_EXAMPLE_STORAGE_ENGINE option.

To examine the source for the EXAMPLE engine, look in the storage/example directory of a MySQL
source distribution.

When you create an EXAMPLE table, the server creates a table format file in the database directory.
The file begins with the table name and has an .frm extension. No other files are created. No data can
be stored into the table. Retrievals return an empty result.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)

mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't »
                    have this option

mysql> SELECT * FROM test;
Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

15.11 Other Storage Engines

Other storage engines may be available from third parties and community members that have used the
Custom Storage Engine interface.

Third party engines are not supported by MySQL. For further information, documentation, installation
guides, bug reporting or for any help or assistance with these engines, please contact the developer of
the engine directly.

For more information on developing a customer storage engine that can be used with the Pluggable
Storage Engine Architecture, see MySQL Internals: Writing a Custom Storage Engine.

http://forums.mysql.com/list.php?105
http://forums.mysql.com/list.php?105
http://dev.mysql.com/doc/internals/en/custom-engine.html


1804



1805

Chapter 16 High Availability and Scalability

Table of Contents
16.1 Using ZFS Replication ..................................................................................................... 1807

16.1.1 Using ZFS for File System Replication ................................................................... 1808
16.1.2 Configuring MySQL for ZFS Replication ................................................................. 1809
16.1.3 Handling MySQL Recovery with ZFS ..................................................................... 1810

16.2 Using MySQL with memcached ........................................................................................ 1810
16.2.1 Installing memcached ............................................................................................ 1811
16.2.2 Using memcached ................................................................................................ 1813
16.2.3 Developing a memcached Application .................................................................... 1831
16.2.4 Getting memcached Statistics ................................................................................ 1856
16.2.5 memcached FAQ .................................................................................................. 1864

Data is the currency of today's web, mobile, social, enterprise and cloud applications. Ensuring data is
always available is a top priority for any organization. Minutes of downtime can result in significant loss
of revenue and reputation.

There is no “one size fits all” approach to delivering High Availability (HA). Unique application
attributes, business requirements, operational capabilities and legacy infrastructure can all influence
HA technology selection. And technology is only one element in delivering HA: people and processes
are just as critical as the technology itself.

MySQL is deployed into many applications demanding availability and scalability. Availability refers to
the ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL,
the operating system, or the hardware and maintenance activity that may otherwise cause downtime.
Scalability refers to the ability to spread both the database and the load of your application queries
across multiple MySQL servers.

Because each application has different operational and availability requirements, MySQL offers a
range of certified and supported solutions, delivering the appropriate levels of High Availability (HA)
and scalability to meet service level requirements. Such solutions extend from replication, through
virtualization and geographically redundant, multi-data center solutions delivering 99.999% uptime.

Selecting the right high availability solution for an application largely depends on:

• The level of availability required.

• The type of application being deployed.

• Accepted best practices within your own environment.

The primary solutions supported by MySQL include:

• MySQL Replication. Learn more: Chapter 17, Replication.

• MySQL Fabric. Learn more: MySQL Fabric.

• MySQL Cluster. Learn more: Chapter 18, MySQL NDB Cluster 7.2.

• Oracle MySQL Cloud Service. Learn more about MySQL Cloud Service.

• Oracle Clusterware Agent for MySQL. Learn more about Oracle Clusterware.

• MySQL with Solaris Cluster. Learn more about Solaris Cluster.

Further options are available using third-party solutions.

Each architecture used to achieve highly available database services is differentiated by the levels of
uptime it offers. These architectures can be grouped into three main categories:

http://dev.mysql.com/doc/mysql-utilities/1.5/en/fabric.html
http://docs.oracle.com/cloud/latest/mysql-cloud/index.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/overview/index.html
http://www.oracle.com/technetwork/server-storage/solaris-cluster/overview/index.html


1806

• Data Replication.

• Clustered & Virtualized Systems.

• Shared-Nothing, Geographically-Replicated Clusters.

As illustrated in the following figure, each of these architectures offers progressively higher levels of
uptime, which must be balanced against potentially greater levels of cost and complexity that each can
incur. Simply deploying a high availability architecture is not a guarantee of actually delivering HA. In
fact, a poorly implemented and maintained shared-nothing cluster could easily deliver lower levels of
availability than a simple data replication solution.

Figure 16.1 Tradeoffs: Cost and Complexity versus Availability

The following table compares the HA and Scalability capabilities of the various MySQL solutions:

Table 16.1 Feature Comparison of MySQL HA Solutions

Requirement MySQL Replication MySQL Cluster

Availability

Platform Support All Supported by MySQL
Server (http://www.mysql.com/
support/supportedplatforms/
database.html)

All Supported by MySQL Cluster
(http://www.mysql.com/support/
supportedplatforms/cluster.html)

Automated IP Failover No Depends on Connector and
Configuration

Automated Database Failover No Yes

Automatic Data
Resynchronization

No Yes

Typical Failover Time User / Script Dependent 1 Second and Less

Synchronous Replication No, Asynchronous and
Semisynchronous

Yes

Shared Storage No, Distributed No, Distributed

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/cluster.html
http://www.mysql.com/support/supportedplatforms/cluster.html


Using ZFS Replication

1807

Requirement MySQL Replication MySQL Cluster

Geographic redundancy support Yes Yes, via MySQL Replication

Update Schema On-Line No Yes

Scalability

Number of Nodes One Master, Multiple Slaves 255

Built-in Load Balancing Reads, via MySQL Replication Yes, Reads and Writes

Supports Read-Intensive
Workloads

Yes Yes

Supports Write-Intensive
Workloads

Yes, via Application-Level
Sharding

Yes, via Auto-Sharding

Scale On-Line (add nodes,
repartition, etc.)

No Yes

16.1 Using ZFS Replication

To support high availability environments, providing an instant copy of the information on both the
currently active machine and the hot backup is a critical part of the HA solution. There are many
solutions to this problem, such as Chapter 17, Replication.

The ZFS file system provides functionality to create a snapshot of the file system contents, transfer
the snapshot to another machine, and extract the snapshot to recreate the file system. You can create
a snapshot at any time, and you can create as many snapshots as you like. By continually creating,
transferring, and restoring snapshots, you can provide synchronization between one or more machines
in a fashion similar to DRBD.

The following example shows a simple Solaris system running with a single ZFS pool, mounted at /
scratchpool:

Filesystem             size   used  avail capacity  Mounted on
/dev/dsk/c0d0s0        4.6G   3.7G   886M    82%    /
/devices                 0K     0K     0K     0%    /devices
ctfs                     0K     0K     0K     0%    /system/contract
proc                     0K     0K     0K     0%    /proc
mnttab                   0K     0K     0K     0%    /etc/mnttab
swap                   1.4G   892K   1.4G     1%    /etc/svc/volatile
objfs                    0K     0K     0K     0%    /system/object
/usr/lib/libc/libc_hwcap1.so.1
                       4.6G   3.7G   886M    82%    /lib/libc.so.1
fd                       0K     0K     0K     0%    /dev/fd
swap                   1.4G    40K   1.4G     1%    /tmp
swap                   1.4G    28K   1.4G     1%    /var/run
/dev/dsk/c0d0s7         26G   913M    25G     4%    /export/home
scratchpool             16G    24K    16G     1%    /scratchpool

The MySQL data is stored in a directory on /scratchpool. To help demonstrate some of the basic
replication functionality, there are also other items stored in /scratchpool as well:

total 17
drwxr-xr-x  31 root     bin           50 Jul 21 07:32 DTT/
drwxr-xr-x   4 root     bin            5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x  14 root     sys           16 Nov  5 09:56 SUNWspro/
drwxrwxrwx  19 1000     1000          40 Nov  6 19:16 emacs-22.1/

To create a snapshot of the file system, you use zfs snapshot, specifying the pool and the snapshot
name:

root-shell> zfs snapshot scratchpool@snap1



Using ZFS for File System Replication

1808

To list the snapshots already taken:

root-shell> zfs list -t snapshot
NAME                USED  AVAIL  REFER  MOUNTPOINT
scratchpool@snap1      0      -  24.5K  -
scratchpool@snap2      0      -  24.5K  -

The snapshots themselves are stored within the file system metadata, and the space required to keep
them varies as time goes on because of the way the snapshots are created. The initial creation of a
snapshot is very quick, because instead of taking an entire copy of the data and metadata required to
hold the entire snapshot, ZFS records only the point in time and metadata of when the snapshot was
created.

As more changes to the original file system are made, the size of the snapshot increases because
more space is required to keep the record of the old blocks. If you create lots of snapshots, say one
per day, and then delete the snapshots from earlier in the week, the size of the newer snapshots might
also increase, as the changes that make up the newer state have to be included in the more recent
snapshots, rather than being spread over the seven snapshots that make up the week.

You cannot directly back up the snapshots because they exist within the file system metadata rather
than as regular files. To get the snapshot into a format that you can copy to another file system, tape,
and so on, you use the zfs send command to create a stream version of the snapshot.

For example, to write the snapshot out to a file:

root-shell> zfs send scratchpool@snap1 >/backup/scratchpool-snap1

Or tape:

root-shell> zfs send scratchpool@snap1 >/dev/rmt/0

You can also write out the incremental changes between two snapshots using zfs send:

root-shell> zfs send scratchpool@snap1 scratchpool@snap2 >/backup/scratchpool-changes

To recover a snapshot, you use zfs recv, which applies the snapshot information either to a new file
system, or to an existing one.

16.1.1 Using ZFS for File System Replication

Because zfs send and zfs recv use streams to exchange data, you can use them to replicate
information from one system to another by combining zfs send, ssh, and zfs recv.

For example, to copy a snapshot of the scratchpool file system to a new file system called
slavepool on a new server, you would use the following command. This sequence combines the
snapshot of scratchpool, the transmission to the slave machine (using ssh with login credentials),
and the recovery of the snapshot on the slave using zfs recv:

root-shell> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool

The first part of the pipeline, zfs send scratchpool@snap1, streams the snapshot. The
ssh command, and the command that it executes on the other server, pfexec zfs recv -F
slavepool, receives the streamed snapshot data and writes it to slavepool. In this instance, I've
specified the -F option which forces the snapshot data to be applied, and is therefore destructive. This
is fine, as I'm creating the first version of my replicated file system.

On the slave machine, the replicated file system contains the exact same content:



Configuring MySQL for ZFS Replication

1809

root-shell> ls -al /slavepool/
total 23
drwxr-xr-x   6 root     root           7 Nov  8 09:13 ./
drwxr-xr-x  29 root     root          34 Nov  9 07:06 ../
drwxr-xr-x  31 root     bin           50 Jul 21 07:32 DTT/
drwxr-xr-x   4 root     bin            5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x  14 root     sys           16 Nov  5 09:56 SUNWspro/
drwxrwxrwx  19 1000     1000          40 Nov  6 19:16 emacs-22.1/

Once a snapshot has been created, to synchronize the file system again, you create a new snapshot
and then use the incremental snapshot feature of zfs send to send the changes between the two
snapshots to the slave machine again:

root-shell> zfs send -i scratchpool@snapshot1 scratchpool@snapshot2 |ssh id@host pfexec zfs recv slavepool

This operation only succeeds if the file system on the slave machine has not been modified at all. You
cannot apply the incremental changes to a destination file system that has changed. In the example
above, the ls command would cause problems by changing the metadata, such as the last access
time for files or directories.

To prevent changes on the slave file system, set the file system on the slave to be read-only:

root-shell> zfs set readonly=on slavepool

Setting readonly means that you cannot change the file system on the slave by normal means,
including the file system metadata. Operations that would normally update metadata (like our ls)
silently perform their function without attempting to update the file system state.

In essence, the slave file system is nothing but a static copy of the original file system. However, even
when configured to be read-only, a file system can have snapshots applied to it. With the file system
set to read only, re-run the initial copy:

root-shell> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool

Now you can make changes to the original file system and replicate them to the slave.

16.1.2 Configuring MySQL for ZFS Replication

Configuring MySQL on the source file system is a case of creating the data on the file system that
you intend to replicate. The configuration file in the example below has been updated to use /
scratchpool/mysql-data as the data directory, and now you can initialize the tables:

root-shell> mysql_install_db --defaults-file=/etc/mysql/5.5/my.cnf --user=mysql

To synchronize the initial information, perform a new snapshot and then send an incremental snapshot
to the slave using zfs send:

root-shell> zfs snapshot scratchpool@snap2
root-shell> zfs send -i scratchpool@snap1 scratchpool@snap2|ssh id@host pfexec zfs recv slavepool

Doublecheck that the slave has the data by looking at the MySQL data directory on the slavepool:

root-shell> ls -al /slavepool/mysql-data/

Now you can start up MySQL, create some data, and then replicate the changes using zfs send/
zfs recv to the slave to synchronize the changes.

The rate at which you perform the synchronization depends on your application and environment.
The limitation is the speed required to perform the snapshot and then to send the changes over the
network.



Handling MySQL Recovery with ZFS

1810

To automate the process, create a script that performs the snapshot, send, and receive operation, and
use cron to synchronize the changes at set times or intervals.

16.1.3 Handling MySQL Recovery with ZFS

When using ZFS replication to provide a constant copy of your data, ensure that you can recover your
tables, either manually or automatically, in the event of a failure of the original system.

In the event of a failure, follow this sequence:

1. Stop the script on the master, if it is still up and running.

2. Set the slave file system to be read/write:

root-shell> zfs set readonly=off slavepool

3. Start up mysqld on the slave. If you are using InnoDB, you get auto-recovery, if it is needed,
to make sure the table data is correct, as shown here when I started up from our mid-INSERT
snapshot:

InnoDB: The log sequence number in ibdata files does not match
InnoDB: the log sequence number in the ib_logfiles!
081109 15:59:59  InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...
081109 16:00:03  InnoDB: Started; log sequence number 0 1142807951
081109 16:00:03 [Note] /slavepool/mysql-5.0.67-solaris10-i386/bin/mysqld: ready for connections.
Version: '5.0.67'  socket: '/tmp/mysql.sock'  port: 3306  MySQL Community Server (GPL)

Use InnoDB tables and a regular synchronization schedule to reduce the risk for significant data
loss. On MyISAM tables, you might need to run REPAIR TABLE, and you might even have lost some
information.

16.2 Using MySQL with memcached
memcached is a simple, highly scalable key-based cache that stores data and objects wherever
dedicated or spare RAM is available for quick access by applications, without going through layers of
parsing or disk I/O. To use, you run the memcached command on one or more hosts and then use the
shared cache to store objects. For more usage instructions, see Section 16.2.2, “Using memcached”

Benefits of using memcached include:

• Because all information is stored in RAM, the access speed is faster than loading the information
each time from disk.

• Because the “value” portion of the key-value pair does not have any data type restrictions, you can
cache data such as complex structures, documents, images, or a mixture of such things.

• If you use the in-memory cache to hold transient information, or as a read-only cache for information
also stored in a database, the failure of any memcached server is not critical. For persistent data, you
can fall back to an alternative lookup method using database queries, and reload the data into RAM
on a different server.

The typical usage environment is to modify your application so that information is read from the cache
provided by memcached. If the information is not in memcached, then the data is loaded from the
MySQL database and written into the cache so that future requests for the same object benefit from the
cached data.

For a typical deployment layout, see Figure 16.2, “memcached Architecture Overview”.



Installing memcached

1811

Figure 16.2 memcached Architecture Overview

In the example structure, any of the clients can contact one of the memcached servers to request a
given key. Each client is configured to talk to all of the servers shown in the illustration. Within the
client, when the request is made to store the information, the key used to reference the data is hashed
and this hash is then used to select one of the memcached servers. The selection of the memcached
server takes place on the client before the server is contacted, keeping the process lightweight.

The same algorithm is used again when a client requests the same key. The same key generates
the same hash, and the same memcached server is selected as the source for the data. Using this
method, the cached data is spread among all of the memcached servers, and the cached information
is accessible from any client. The result is a distributed, memory-based, cache that can return
information, particularly complex data and structures, much faster than natively reading the information
from the database.

The data held within a traditional memcached server is never stored on disk (only in RAM, which
means there is no persistence of data), and the RAM cache is always populated from the backing store
(a MySQL database). If a memcached server fails, the data can always be recovered from the MySQL
database.

16.2.1 Installing memcached

You can build and install memcached from the source code directly, or you can use an existing
operating system package or installation.

Installing memcached from a Binary Distribution

To install memcached on a Red Hat, or Fedora host, use yum:

root-shell> yum install memcached

Note

On CentOS, you may be able to obtain a suitable RPM from another source, or
use the source tarball.

To install memcached on a Debian or Ubuntu host, use apt-get:

root-shell> apt-get install memcached

To install memcached on a Gentoo host, use emerge:

root-shell> emerge install memcached



Installing memcached

1812

Building memcached from Source

On other Unix-based platforms, including Solaris, AIX, HP-UX and OS X, and Linux distributions not
mentioned already, you must install from source. For Linux, make sure you have a 2.6-based kernel,
which includes the improved epoll interface. For all platforms, ensure that you have libevent 1.1 or
higher installed. You can obtain libevent from libevent web page.

You can obtain the source for memcached from memcached Web site.

To build memcached, follow these steps:

1. Extract the memcached source package:

shell> gunzip -c memcached-1.2.5.tar.gz | tar xf -

2. Change to the memcached-1.2.5 directory:

shell> cd memcached-1.2.5

3. Run configure

shell> ./configure

Some additional options you might specify to the configure:

• --prefix

To specify a different installation directory, use the --prefix option:

shell> ./configure --prefix=/opt

The default is to use the /usr/local directory.

• --with-libevent

If you have installed libevent and configure cannot find the library, use the --with-
libevent option to specify the location of the installed library.

• --enable-64bit

To build a 64-bit version of memcached (which enables you to use a single instance with a large
RAM allocation), use --enable-64bit.

• --enable-threads

To enable multi-threading support in memcached, which improves the response times on servers
with a heavy load, use --enable-threads. You must have support for the POSIX threads
within your operating system to enable thread support. For more information on the threading
support, see Section 16.2.2.8, “memcached Thread Support”.

• --enable-dtrace

memcached includes a range of DTrace threads that can be used to monitor and benchmark
a memcached instance. For more information, see Section 16.2.2.6, “Using memcached and
DTrace”.

4. Run make to build memcached:

shell> make

http://www.monkey.org/~provos/libevent/
http://www.danga.com/memcached


Using memcached

1813

5. Run make install to install memcached:

shell> make install

16.2.2 Using memcached

To start using memcached, start the memcached service on one or more servers. Running memcached
sets up the server, allocates the memory and starts listening for connections from clients.

Note

You do not need to be a privileged user (root) to run memcached except to
listen on one of the privileged TCP/IP ports (below 1024). You must, however,
use a user that has not had their memory limits restricted using setrlimit or
similar.

To start the server, run memcached as a nonprivileged (that is, non-root) user:

shell> memcached

By default, memcached uses the following settings:

• Memory allocation of 64MB

• Listens for connections on all network interfaces, using port 11211

• Supports a maximum of 1024 simultaneous connections

Typically, you would specify the full combination of options that you want when starting memcached,
and normally provide a startup script to handle the initialization of memcached. For example, the
following line starts memcached with a maximum of 1024MB RAM for the cache, listening on port
11211 on the IP address 192.168.0.110, running as a background daemon:

shell> memcached -d -m 1024 -p 11211 -l 192.168.0.110

To ensure that memcached is started up on boot, check the init script and configuration parameters.

16.2.2.1 memcached Command-Line Options

memcached supports the following options:

• -u user

If you start memcached as root, use the -u option to specify the user for executing memcached:

shell> memcached -u memcache

• -m memory

Set the amount of memory allocated to memcached for object storage. Default is 64MB.

To increase the amount of memory allocated for the cache, use the -m option to specify the amount
of RAM to be allocated (in megabytes). The more RAM you allocate, the more data you can store
and therefore the more effective your cache is.

Warning

Do not specify a memory allocation larger than your available RAM. If you
specify too large a value, then some RAM allocated for memcached uses
swap space, and not physical RAM. This may lead to delays when storing



Using memcached

1814

and retrieving values, because data is swapped to disk, instead of storing the
data directly in RAM.

You can use the output of the vmstat command to get the free memory, as
shown in free column:

shell> vmstat
kthr      memory            page            disk          faults      cpu
r b w   swap  free  re  mf pi po fr de sr s1 s2 -- --   in   sy   cs us sy id
0 0 0 5170504 3450392 2  7  2  0  0  0  4  0  0  0  0  296   54  199  0  0 100

For example, to allocate 3GB of RAM:

shell> memcached -m 3072

On 32-bit x86 systems where you are using PAE to access memory above the 4GB limit, you cannot
allocate RAM beyond the maximum process size. You can get around this by running multiple
instances of memcached, each listening on a different port:

shell> memcached -m 1024 -p11211
shell> memcached -m 1024 -p11212
shell> memcached -m 1024 -p11213

Note

On all systems, particularly 32-bit, ensure that you leave enough room for
both memcached application in addition to the memory setting. For example,
if you have a dedicated memcached host with 4GB of RAM, do not set the
memory size above 3500MB. Failure to do this may cause either a crash or
severe performance issues.

• -l interface

Specify a network interface/address to listen for connections. The default is to listen on all available
address (INADDR_ANY).

shell> memcached -l 192.168.0.110

Support for IPv6 address support was added in memcached 1.2.5.

• -p port

Specify the TCP port to use for connections. Default is 18080.

shell> memcached -p 18080

• -U port

Specify the UDP port to use for connections. Default is 11211, 0 switches UDP off.

shell> memcached -U 18080

• -s socket

Specify a Unix socket to listen on.

If you are running memcached on the same server as the clients, you can disable the network
interface and use a local Unix socket using the -s option:



Using memcached

1815

shell> memcached -s /tmp/memcached

Using a Unix socket automatically disables network support, and saves network ports (allowing more
ports to be used by your web server or other process).

• -a mask

Specify the access mask to be used for the Unix socket, in octal. Default is 0700.

• -c connections

Specify the maximum number of simultaneous connections to the memcached service. The default is
1024.

shell> memcached -c 2048

Use this option, either to reduce the number of connections (to prevent overloading memcached
service) or to increase the number to make more effective use of the server running memcached
server.

• -t threads

Specify the number of threads to use when processing incoming requests.

By default, memcached is configured to use 4 concurrent threads. The threading improves the
performance of storing and retrieving data in the cache, using a locking system to prevent different
threads overwriting or updating the same values. To increase or decrease the number of threads,
use the -t option:

shell> memcached -t 8

• -d

Run memcached as a daemon (background) process:

shell> memcached -d

• -r

Maximize the size of the core file limit. In the event of a failure, this attempts to dump the entire
memory space to disk as a core file, up to any limits imposed by setrlimit.

• -M

Return an error to the client when the memory has been exhausted. This replaces the normal
behavior of removing older items from the cache to make way for new items.

• -k

Lock down all paged memory. This reserves the memory before use, instead of allocating new slabs
of memory as new items are stored in the cache.

Note

There is a user-level limit on how much memory you can lock. Trying to
allocate more than the available memory fails. You can set the limit for the
user you started the daemon with (not for the -u user user) within the shell
by using ulimit -S -l NUM_KB

• -v



Using memcached

1816

Verbose mode. Prints errors and warnings while executing the main event loop.

• -vv

Very verbose mode. In addition to information printed by -v, also prints each client command and
the response.

• -vvv

Extremely verbose mode. In addition to information printed by -vv, also show the internal state
transitions.

• -h

Print the help message and exit.

• -i

Print the memcached and libevent license.

• -I mem

Specify the maximum size permitted for storing an object within the memcached instance. The size
supports a unit postfix (k for kilobytes, m for megabytes). For example, to increase the maximum
supported object size to 32MB:

shell> memcached -I 32m

The maximum object size you can specify is 128MB, the default remains at 1MB.

This option was added in 1.4.2.

• -b

Set the backlog queue limit. The backlog queue configures how many network connections can be
waiting to be processed by memcached. Increasing this limit may reduce errors received by the client
that it is not able to connect to the memcached instance, but does not improve the performance of
the server. The default is 1024.

• -P pidfile

Save the process ID of the memcached instance into file.

• -f

Set the chunk size growth factor. When allocating new memory chunks, the allocated size of new
chunks is determined by multiplying the default slab size by this factor.

To see the effects of this option without extensive testing, use the -vv command-line option to show
the calculated slab sizes. For more information, see Section 16.2.2.9, “memcached Logs”.

• -n bytes

The minimum space allocated for the key+value+flags information. The default is 48 bytes.

• -L

On systems that support large memory pages, enables large memory page use. Using large memory
pages enables memcached to allocate the item cache in one large chunk, which can improve the
performance by reducing the number misses when accessing memory.

• -C



Using memcached

1817

Disable the use of compare and swap (CAS) operations.

This option was added in memcached 1.3.x.

• -D char

Set the default character to be used as a delimiter between the key prefixes and IDs. This is used for
the per-prefix statistics reporting (see Section 16.2.4, “Getting memcached Statistics”). The default
is the colon (:). If this option is used, statistics collection is turned on automatically. If not used, you
can enable stats collection by sending the stats detail on command to the server.

This option was added in memcached 1.3.x.

• -R num

Sets the maximum number of requests per event process. The default is 20.

• -B protocol

Set the binding protocol, that is, the default memcached protocol support for client connections.
Options are ascii, binary or auto. Automatic (auto) is the default.

This option was added in memcached 1.4.0.

16.2.2.2 memcached Deployment

When using memcached you can use a number of different potential deployment strategies and
topologies. The exact strategy to use depends on your application and environment. When developing
a system for deploying memcached within your system, keep in mind the following points:

• memcached is only a caching mechanism. It shouldn't be used to store information that you cannot
otherwise afford to lose and then load from a different location.

• There is no security built into the memcached protocol. At a minimum, make sure that the servers
running memcached are only accessible from inside your network, and that the network ports being
used are blocked (using a firewall or similar). If the information on the memcached servers that is
being stored is any sensitive, then encrypt the information before storing it in memcached.

• memcached does not provide any sort of failover. Because there is no communication between
different memcached instances. If an instance fails, your application must capable of removing it from
the list, reloading the data and then writing data to another memcached instance.

• Latency between the clients and the memcached can be a problem if you are using different physical
machines for these tasks. If you find that the latency is a problem, move the memcached instances to
be on the clients.

• Key length is determined by the memcached server. The default maximum key size is 250 bytes.

• Try to use at least two memcached instances, especially for multiple clients, to avoid having a single
point of failure. Ideally, create as many memcached nodes as possible. When adding and removing
memcached instances from a pool, the hashing and distribution of key/value pairs may be affected.
For information on how to avoid problems, see Section 16.2.2.5, “memcached Hashing/Distribution
Types”.

16.2.2.3 Using Namespaces

The memcached cache is a very simple massive key/value storage system, and as such there is no
way of compartmentalizing data automatically into different sections. For example, if you are storing
information by the unique ID returned from a MySQL database, then storing the data from two different
tables could run into issues because the same ID might be valid in both tables.



Using memcached

1818

Some interfaces provide an automated mechanism for creating namespaces when storing information
into the cache. In practice, these namespaces are merely a prefix before a given ID that is applied
every time a value is stored or retrieve from the cache.

You can implement the same basic principle by using keys that describe the object and the unique
identifier within the key that you supply when the object is stored. For example, when storing user data,
prefix the ID of the user with user: or user-.

Note

Using namespaces or prefixes only controls the keys stored/retrieved. There is
no security within memcached, and therefore no way to enforce that a particular
client only accesses keys with a particular namespace. Namespaces are only
useful as a method of identifying data and preventing corruption of key/value
pairs.

16.2.2.4 Data Expiry

There are two types of data expiry within a memcached instance. The first type is applied at the point
when you store a new key/value pair into the memcached instance. If there is not enough space within
a suitable slab to store the value, then an existing least recently used (LRU) object is removed (evicted)
from the cache to make room for the new item.

The LRU algorithm ensures that the object that is removed is one that is either no longer in active
use or that was used so long ago that its data is potentially out of date or of little value. However, in
a system where the memory allocated to memcached is smaller than the number of regularly used
objects required in the cache, a lot of expired items could be removed from the cache even though they
are in active use. You use the statistics mechanism to get a better idea of the level of evictions (expired
objects). For more information, see Section 16.2.4, “Getting memcached Statistics”.

You can change this eviction behavior by setting the -M command-line option when starting
memcached. This option forces an error to be returned when the memory has been exhausted, instead
of automatically evicting older data.

The second type of expiry system is an explicit mechanism that you can set when a key/value pair is
inserted into the cache, or when deleting an item from the cache. Using an expiration time can be a
useful way of ensuring that the data in the cache is up to date and in line with your application needs
and requirements.

A typical scenario for explicitly setting the expiry time might include caching session data for a user
when accessing a Web site. memcached uses a lazy expiry mechanism where the explicit expiry time
that has been set is compared with the current time when the object is requested. Only objects that
have not expired are returned.

You can also set the expiry time when explicitly deleting an object from the cache. In this case, the
expiry time is really a timeout and indicates the period when any attempts to set the value for a given
key are rejected.

16.2.2.5 memcached Hashing/Distribution Types

The memcached client interface supports a number of different distribution algorithms that are used in
multi-server configurations to determine which host should be used when setting or getting data from
a given memcached instance. When you get or set a value, a hash is constructed from the supplied
key and then used to select a host from the list of configured servers. Because the hashing mechanism
uses the supplied key as the basis for the hash, the same server is selected during both set and get
operations.

You can think of this process as follows. Given an array of servers (a, b, and c), the client uses a
hashing algorithm that returns an integer based on the key being stored or retrieved. The resulting
value is then used to select a server from the list of servers configured in the client. Most standard



Using memcached

1819

client hashing within memcache clients uses a simple modulus calculation on the value against the
number of configured memcached servers. You can summarize the process in pseudocode as:

@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash($key);
$chosen = $value % length(@memcservers);

Replacing the above with values:

@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash('myid');
$chosen = 7009 % 3;

In the above example, the client hashing algorithm chooses the server at index 1 (7009 % 3 = 1),
and store or retrieve the key and value with that server.

Note

This selection and hashing process is handled automatically by the memcached
client you are using; you need only provide the list of memcached servers to
use.

You can see a graphical representation of this below in Figure 16.3, “memcached Hash Selection”.

Figure 16.3 memcached Hash Selection

The same hashing and selection process takes place during any operation on the specified key within
the memcached client.

Using this method provides a number of advantages:

• The hashing and selection of the server to contact is handled entirely within the client. This
eliminates the need to perform network communication to determine the right machine to contact.

• Because the determination of the memcached server occurs entirely within the client, the server can
be selected automatically regardless of the operation being executed (set, get, increment, etc.).

• Because the determination is handled within the client, the hashing algorithm returns the same value
for a given key; values are not affected or reset by differences in the server environment.

• Selection is very fast. The hashing algorithm on the key value is quick and the resulting selection of
the server is from a simple array of available machines.

• Using client-side hashing simplifies the distribution of data over each memcached server. Natural
distribution of the values returned by the hashing algorithm means that keys are automatically spread
over the available servers.

Providing that the list of servers configured within the client remains the same, the same stored key
returns the same value, and therefore selects the same server.



Using memcached

1820

However, if you do not use the same hashing mechanism then the same data may be recorded
on different servers by different interfaces, both wasting space on your memcached and leading to
potential differences in the information.

Note

One way to use a multi-interface compatible hashing mechanism is to use the
libmemcached library and the associated interfaces. Because the interfaces
for the different languages (including C, Ruby, Perl and Python) use the same
client library interface, they always generate the same hash code from the ID.

The problem with client-side selection of the server is that the list of the servers (including their
sequential order) must remain consistent on each client using the memcached servers, and the servers
must be available. If you try to perform an operation on a key when:

• A new memcached instance has been added to the list of available instances

• A memcached instance has been removed from the list of available instances

• The order of the memcached instances has changed

When the hashing algorithm is used on the given key, but with a different list of servers, the hash
calculation may choose a different server from the list.

If a new memcached instance is added into the list of servers, as new.memc is in the example below,
then a GET operation using the same key, myid, can result in a cache-miss. This is because the same
value is computed from the key, which selects the same index from the array of servers, but index 2
now points to the new server, not the server c.memc where the data was originally stored. This would
result in a cache miss, even though the key exists within the cache on another memcached instance.

Figure 16.4 memcached Hash Selection with New memcached instance

This means that servers c.memc and new.memc  both contain the information for key myid, but the
information stored against the key in eachs server may be different in each instance. A more significant
problem is a much higher number of cache-misses when retrieving data, as the addition of a new
server changes the distribution of keys, and this in turn requires rebuilding the cached data on the
memcached instances, causing an increase in database reads.

The same effect can occur if you actively manage the list of servers configured in your clients, adding
and removing the configured memcached instances as each instance is identified as being available.
For example, removing a memcached instance when the client notices that the instance can no longer
be contacted can cause the server selection to fail as described here.

To prevent this causing significant problems and invalidating your cache, you can select the hashing
algorithm used to select the server. There are two common types of hashing algorithm, consistent and
modula.

With consistent hashing algorithms, the same key when applied to a list of servers always uses the
same server to store or retrieve the keys, even if the list of configured servers changes. This means



Using memcached

1821

that you can add and remove servers from the configure list and always use the same server for a
given key. There are two types of consistent hashing algorithms available, Ketama and Wheel. Both
types are supported by libmemcached, and implementations are available for PHP and Java.

Any consistent hashing algorithm has some limitations. When you add servers to an existing list of
configured servers, keys are distributed to the new servers as part of the normal distribution. When you
remove servers from the list, the keys are re-allocated to another server within the list, meaning that
the cache needs to be re-populated with the information. Also, a consistent hashing algorithm does not
resolve the issue where you want consistent selection of a server across multiple clients, but where
each client contains a different list of servers. The consistency is enforced only within a single client.

With a modula hashing algorithm, the client selects a server by first computing the hash and then
choosing a server from the list of configured servers. As the list of servers changes, so the server
selected when using a modula hashing algorithm also changes. The result is the behavior described
above; changes to the list of servers mean that different servers are selected when retrieving data,
leading to cache misses and increase in database load as the cache is re-seeded with information.

If you use only a single memcached instance for each client, or your list of memcached servers
configured for a client never changes, then the selection of a hashing algorithm is irrelevant, as it has
no noticeable effect.

If you change your servers regularly, or you use a common set of servers that are shared among a
large number of clients, then using a consistent hashing algorithm should help to ensure that your
cache data is not duplicated and the data is evenly distributed.

16.2.2.6 Using memcached and DTrace

memcached includes a number of different DTrace probes that can be used to monitor the operation of
the server. The probes included can monitor individual connections, slab allocations, and modifications
to the hash table when a key/value pair is added, updated, or removed.

For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.

Support for DTrace probes was added to memcached 1.2.6 includes a number of DTrace probes that
can be used to help monitor your application. DTrace is supported on Solaris 10, OpenSolaris, OS X
10.5 and FreeBSD. To enable the DTrace probes in memcached, build from source and use the --
enable-dtrace option. For more information, see Section 16.2.1, “Installing memcached”.

The probes supported by memcached are:

• conn-allocate(connid)

Fired when a connection object is allocated from the connection pool.

• connid: The connection ID.

• conn-release(connid)

Fired when a connection object is released back to the connection pool.

Arguments:

• connid: The connection ID.

• conn-create(ptr)

Fired when a new connection object is being created (that is, there are no free connection objects in
the connection pool).

Arguments:

• ptr: A pointer to the connection. object

http://docs.oracle.com/cd/E19253-01/819-5488/


Using memcached

1822

• conn-destroy(ptr)

Fired when a connection object is being destroyed.

Arguments:

• ptr: A pointer to the connection object.

• conn-dispatch(connid, threadid)

Fired when a connection is dispatched from the main or connection-management thread to a worker
thread.

Arguments:

• connid: The connection ID.

• threadid: The thread ID.

• slabs-allocate(size, slabclass, slabsize, ptr)

Allocate memory from the slab allocator.

Arguments:

• size: The requested size.

• slabclass: The allocation is fulfilled in this class.

• slabsize: The size of each item in this class.

• ptr: A pointer to allocated memory.

• slabs-allocate-failed(size, slabclass)

Failed to allocate memory (out of memory).

Arguments:

• size: The requested size.

• slabclass: The class that failed to fulfill the request.

• slabs-slabclass-allocate(slabclass)

Fired when a slab class needs more space.

Arguments:

• slabclass: The class that needs more memory.

• slabs-slabclass-allocate-failed(slabclass)

Failed to allocate memory (out of memory).

Arguments:

• slabclass: The class that failed to grab more memory.

• slabs-free(size, slabclass, ptr)

Release memory.

Arguments:



Using memcached

1823

• size: The amount of memory to release, in bytes.

• slabclass: The class the memory belongs to.

• ptr: A pointer to the memory to release.

• assoc-find(key, depth)

Fired when we have searched the hash table for a named key. These two elements provide an
insight into how well the hash function operates. Traversals are a sign of a less optimal function,
wasting CPU capacity.

Arguments:

• key: The key searched for.

• depth: The depth in the list of hash table.

• assoc-insert(key, nokeys)

Fired when a new item has been inserted.

Arguments:

• key: The key just inserted.

• nokeys: The total number of keys currently being stored, including the key for which insert was
called.

• assoc-delete(key, nokeys)

Fired when a new item has been removed.

Arguments:

• key: The key just deleted.

• nokeys: The total number of keys currently being stored, excluding the key for which delete was
called.

• item-link(key, size)

Fired when an item is being linked in the cache.

Arguments:

• key: The items key.

• size: The size of the data.

• item-unlink(key, size)

Fired when an item is being deleted.

Arguments:

• key: The items key.

• size: The size of the data.

• item-remove(key, size)

Fired when the refcount for an item is reduced.



Using memcached

1824

Arguments:

• key: The item's key.

• size: The size of the data.

• item-update(key, size)

Fired when the "last referenced" time is updated.

Arguments:

• key: The item's key.

• size: The size of the data.

• item-replace(oldkey, oldsize, newkey, newsize)

Fired when an item is being replaced with another item.

Arguments:

• oldkey: The key of the item to replace.

• oldsize: The size of the old item.

• newkey: The key of the new item.

• newsize: The size of the new item.

• process-command-start(connid, request, size)

Fired when the processing of a command starts.

Arguments:

• connid: The connection ID.

• request: The incoming request.

• size: The size of the request.

• process-command-end(connid, response, size)

Fired when the processing of a command is done.

Arguments:

• connid: The connection ID.

• response: The response to send back to the client.

• size: The size of the response.

• command-get(connid, key, size)

Fired for a get command.

Arguments:

• connid: The connection ID.

• key: The requested key.



Using memcached

1825

• size: The size of the key's data (or -1 if not found).

• command-gets(connid, key, size, casid)

Fired for a gets command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• casid: The casid for the item.

• command-add(connid, key, size)

Fired for a add command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-set(connid, key, size)

Fired for a set command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-replace(connid, key, size)

Fired for a replace command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-prepend(connid, key, size)

Fired for a prepend command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).



Using memcached

1826

• command-append(connid, key, size)

Fired for a append command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-cas(connid, key, size, casid)

Fired for a cas command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• casid: The cas ID requested.

• command-incr(connid, key, val)

Fired for incr command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• val: The new value.

• command-decr(connid, key, val)

Fired for decr command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• val: The new value.

• command-delete(connid, key, exptime)

Fired for a delete command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• exptime: The expiry time.



Using memcached

1827

16.2.2.7 Memory Allocation within memcached

When you first start memcached, the memory that you have configured is not automatically allocated.
Instead, memcached only starts allocating and reserving physical memory once you start saving
information into the cache.

When you start to store data into the cache, memcached does not allocate the memory for the data
on an item by item basis. Instead, a slab allocation is used to optimize memory usage and prevent
memory fragmentation when information expires from the cache.

With slab allocation, memory is reserved in blocks of 1MB. The slab is divided up into a number of
blocks of equal size. When you try to store a value into the cache, memcached checks the size of the
value that you are adding to the cache and determines which slab contains the right size allocation for
the item. If a slab with the item size already exists, the item is written to the block within the slab.

If the new item is bigger than the size of any existing blocks, then a new slab is created, divided up into
blocks of a suitable size. If an existing slab with the right block size already exists, but there are no free
blocks, a new slab is created. If you update an existing item with data that is larger than the existing
block allocation for that key, then the key is re-allocated into a suitable slab.

For example, the default size for the smallest block is 88 bytes (40 bytes of value, and the default 48
bytes for the key and flag data). If the size of the first item you store into the cache is less than 40
bytes, then a slab with a block size of 88 bytes is created and the value stored.

If the size of the data that you intend to store is larger than this value, then the block size is increased
by the chunk size factor until a block size large enough to hold the value is determined. The block size
is always a function of the scale factor, rounded up to a block size which is exactly divisible into the
chunk size.

For a sample of the structure, see Figure 16.5, “Memory Allocation in memcached”.

Figure 16.5 Memory Allocation in memcached

The result is that you have multiple pages allocated within the range of memory allocated to
memcached. Each page is 1MB in size (by default), and is split into a different number of chunks,
according to the chunk size required to store the key/value pairs. Each instance has multiple pages
allocated, and a page is always created when a new item needs to be created requiring a chunk of a
particular size. A slab may consist of multiple pages, and each page within a slab contains an equal
number of chunks.

The chunk size of a new slab is determined by the base chunk size combined with the chunk size
growth factor. For example, if the initial chunks are 104 bytes in size, and the default chunk size growth
factor is used (1.25), then the next chunk size allocated would be the best power of 2 fit for 104*1.25,
or 136 bytes.

Allocating the pages in this way ensures that memory does not get fragmented. However, depending
on the distribution of the objects that you store, it may lead to an inefficient distribution of the slabs and
chunks if you have significantly different sized items. For example, having a relatively small number of
items within each chunk size may waste a lot of memory with just few chunks in each allocated page.



Using memcached

1828

You can tune the growth factor to reduce this effect by using the -f command line option, which adapts
the growth factor applied to make more effective use of the chunks and slabs allocated. For information
on how to determine the current slab allocation statistics, see Section 16.2.4.2, “memcached Slabs
Statistics”.

If your operating system supports it, you can also start memcached with the -L command line option.
This option preallocates all the memory during startup using large memory pages. This can improve
performance by reducing the number of misses in the CPU memory cache.

16.2.2.8 memcached Thread Support

If you enable the thread implementation within when building memcached from source, then
memcached uses multiple threads in addition to the libevent system to handle requests.

When enabled, the threading implementation operates as follows:

• Threading is handled by wrapping functions within the code to provide basic protection from updating
the same global structures at the same time.

• Each thread uses its own instance of the libevent to help improve performance.

• TCP/IP connections are handled with a single thread listening on the TCP/IP socket. Each
connection is then distributed to one of the active threads on a simple round-robin basis. Each
connection then operates solely within this thread while the connection remains open.

• For UDP connections, all the threads listen to a single UDP socket for incoming requests. Threads
that are not currently dealing with another request ignore the incoming packet. One of the remaining,
nonbusy, threads reads the request and sends the response. This implementation can lead to
increased CPU load as threads wake from sleep to potentially process the request.

Using threads can increase the performance on servers that have multiple CPU cores available, as the
requests to update the hash table can be spread between the individual threads. To minimize overhead
from the locking mechanism employed, experiment with different thread values to achieve the best
performance based on the number and type of requests within your given workload.

16.2.2.9 memcached Logs

If you enable verbose mode, using the -v, -vv, or -vvv options, then the information output by
memcached includes details of the operations being performed.

Without the verbose options, memcached normally produces no output during normal operating.

• Output when using -v

The lowest verbosity level shows you:

• Errors and warnings

• Transient errors

• Protocol and socket errors, including exhausting available connections

• Each registered client connection, including the socket descriptor number and the protocol used.

For example:

32: Client using the ascii protocol
33: Client using the ascii protocol

The socket descriptor is only valid while the client remains connected. Non-persistent connections
may not be effectively represented.

Examples of the error messages output at this level include:



Using memcached

1829

<%d send buffer was %d, now %d
Can't listen for events on fd %d
Can't read from libevent pipe
Catastrophic: event fd doesn't match conn fd!
Couldn't build response
Couldn't realloc input buffer
Couldn't update event
Failed to build UDP headers
Failed to read, and not due to blocking
Too many open connections
Unexpected state %d

• Output when using -vv

When using the second level of verbosity, you get more detailed information about protocol
operations, keys updated, chunk and network operatings and details.

During the initial start-up of memcached with this level of verbosity, you are shown the sizes of the
individual slab classes, the chunk sizes, and the number of entries per slab. These do not show the
allocation of the slabs, just the slabs that would be created when data is added. You are also given
information about the listen queues and buffers used to send information. A sample of the output
generated for a TCP/IP based system with the default memory and growth factors is given below:

shell> memcached -vv
slab class   1: chunk size     80 perslab 13107
slab class   2: chunk size    104 perslab 10082
slab class   3: chunk size    136 perslab  7710
slab class   4: chunk size    176 perslab  5957
slab class   5: chunk size    224 perslab  4681
slab class   6: chunk size    280 perslab  3744
slab class   7: chunk size    352 perslab  2978
slab class   8: chunk size    440 perslab  2383
slab class   9: chunk size    552 perslab  1899
slab class  10: chunk size    696 perslab  1506
slab class  11: chunk size    872 perslab  1202
slab class  12: chunk size   1096 perslab   956
slab class  13: chunk size   1376 perslab   762
slab class  14: chunk size   1720 perslab   609
slab class  15: chunk size   2152 perslab   487
slab class  16: chunk size   2696 perslab   388
slab class  17: chunk size   3376 perslab   310
slab class  18: chunk size   4224 perslab   248
slab class  19: chunk size   5280 perslab   198
slab class  20: chunk size   6600 perslab   158
slab class  21: chunk size   8256 perslab   127
slab class  22: chunk size  10320 perslab   101
slab class  23: chunk size  12904 perslab    81
slab class  24: chunk size  16136 perslab    64
slab class  25: chunk size  20176 perslab    51
slab class  26: chunk size  25224 perslab    41
slab class  27: chunk size  31536 perslab    33
slab class  28: chunk size  39424 perslab    26
slab class  29: chunk size  49280 perslab    21
slab class  30: chunk size  61600 perslab    17
slab class  31: chunk size  77000 perslab    13
slab class  32: chunk size  96256 perslab    10
slab class  33: chunk size 120320 perslab     8
slab class  34: chunk size 150400 perslab     6
slab class  35: chunk size 188000 perslab     5
slab class  36: chunk size 235000 perslab     4
slab class  37: chunk size 293752 perslab     3
slab class  38: chunk size 367192 perslab     2
slab class  39: chunk size 458992 perslab     2
<26 server listening (auto-negotiate)
<29 server listening (auto-negotiate)
<30 send buffer was 57344, now 2097152
<31 send buffer was 57344, now 2097152



Using memcached

1830

<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)

Using this verbosity level can be a useful way to check the effects of the growth factor used on slabs
with different memory allocations, which in turn can be used to better tune the growth factor to suit
the data you are storing in the cache. For example, if you set the growth factor to 4 (quadrupling the
size of each slab):

shell> memcached -f 4 -m 1g -vv
slab class   1: chunk size     80 perslab 13107
slab class   2: chunk size    320 perslab  3276
slab class   3: chunk size   1280 perslab   819
slab class   4: chunk size   5120 perslab   204
slab class   5: chunk size  20480 perslab    51
slab class   6: chunk size  81920 perslab    12
slab class   7: chunk size 327680 perslab     3
...

During use of the cache, this verbosity level also prints out detailed information on the storage
and recovery of keys and other information. An example of the output during a typical set/get and
increment/decrement operation is shown below.

32: Client using the ascii protocol
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key
>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key
>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key
>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key1 1 36

>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545



Developing a memcached Application

1831

During client communication, for each line, the initial character shows the direction of flow of
the information. The < for communication from the client to the memcached server and > for
communication back to the client. The number is the numeric socket descriptor for the connection.

• Output when using -vvv

This level of verbosity includes the transitions of connections between different states in the event
library while reading and writing content to/from the clients. It should be used to diagnose and
identify issues in client communication. For example, you can use this information to determine
if memcached is taking a long time to return information to the client, during the read of the client
operation or before returning and completing the operation. An example of the typical sequence for a
set operation is provided below:

<32 new auto-negotiating client connection
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_parse_cmd
32: Client using the ascii protocol
<32 set my_key 0 0 10
32: going from conn_parse_cmd to conn_nread
> NOT FOUND my_key
>32 STORED
32: going from conn_nread to conn_write
32: going from conn_write to conn_new_cmd
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_closing
<32 connection closed.

All of the verbosity levels in memcached are designed to be used during debugging or examination of
issues. The quantity of information generated, particularly when using -vvv, is significant, particularly
on a busy server. Also be aware that writing the error information out, especially to disk, may negate
some of the performance gains you achieve by using memcached. Therefore, use in production or
deployment environments is not recommended.

16.2.3 Developing a memcached Application

A number of language interfaces let applications store and retrieve information with memcached
servers. You can write memcached applications in popular languages such as Perl, PHP, Python,
Ruby, C, and Java.

Data stored into a memcached server is referred to by a single string (the key), with storage into the
cache and retrieval from the cache using the key as the reference. The cache therefore operates
like a large associative array or hash table. It is not possible to structure or otherwise organize the
information stored in the cache. To emulate database notions such as multiple tables or composite
key values, you must encode the extra information into the strings used as keys. For example, to store
or look up the address corresponding to a specific latitude and longitude, you might turn those two
numeric values into a single comma-separated string to use as a key.

16.2.3.1 Basic memcached Operations

The interface to memcached supports the following methods for storing and retrieving information in the
cache, and these are consistent across all the different APIs, although the language specific mechanics
might be different:

• get(key): Retrieves information from the cache. Returns the value associated with the key if the
specified key exists. Returns NULL, nil, undefined, or the closest equivalent in the corresponding
language, if the specified key does not exist.

• set(key, value [, expiry]): Sets the item associated with a key in the cache to the specified
value. This either updates an existing item if the key already exists, or adds a new key/value pair if



Developing a memcached Application

1832

the key doesn't exist. If the expiry time is specified, then the item expires (and is deleted) when the
expiry time is reached. The time is specified in seconds, and is taken as a relative time if the value is
less than 30 days (30*24*60*60), or an absolute time (epoch) if larger than this value.

• add(key, value [, expiry]): Adds the key and associated value to the cache, if the specified
key does not already exist.

• replace(key, value [, expiry]): Replaces the item associated with the specified key, only
if the key already exists. The new value is given by the value parameter.

• delete(key [, time]): Deletes the key and its associated item from the cache. If you supply a
time, then adding another item with the specified key is blocked for the specified period.

• incr(key , value): Increments the item associated with the key by the specified value.

• decr(key , value): Decrements the item associated with the key by the specified value.

• flush_all: Invalidates (or expires) all the current items in the cache. Technically they still exist
(they are not deleted), but they are silently destroyed the next time you try to access them.

In all implementations, most or all of these functions are duplicated through the corresponding native
language interface.

When practical, use memcached to store full items, rather than caching a single column value from the
database. For example, when displaying a record about an object (invoice, user history, or blog post),
load all the data for the associated entry from the database, and compile it into the internal structure
that would normally be required by the application. Save the complete object in the cache.

Complex data structures cannot be stored directly. Most interfaces serialize the data for you, that is,
put it in a textual form that can reconstruct the original pointers and nesting. Perl uses Storable, PHP
uses serialize, Python uses cPickle (or Pickle) and Java uses the Serializable interface.
In most cases, the serialization interface used is customizable. To share data stored in memcached
instances between different language interfaces, consider using a common serialization solution such
as JSON (Javascript Object Notation).

16.2.3.2 Using memcached as a MySQL Caching Layer

When using memcached to cache MySQL data, your application must retrieve data from the database
and load the appropriate key-value pairs into the cache. Then, subsequent lookups can be done
directly from the cache.

Because MySQL has its own in-memory caching mechanisms for queried data, such as the InnoDB
buffer pool and the MySQL query cache, look for opportunities beyond loading individual column values
or rows into the cache. Prefer to cache composite values, such as those retrieved from multiple tables
through a join query, or result sets assembled from multiple rows.

Caution

Limit the information in the cache to non-sensitive data, because there is no
security required to access or update the information within a memcached
instance. Anybody with access to the machine has the ability to read, view
and potentially update the information. To keep the data secure, encrypt the
information before caching it. To restrict the users capable of connecting to the
server, either disable network access, or use IPTables or similar techniques to
restrict access to the memcached ports to a select set of hosts.

You can introduce memcached to an existing application, even if caching was not part of the original
design. In many languages and environments the changes to the application will be just a few lines,
first to attempt to read from the cache when loading data, fall back to the old method if the information
is not cached, and to update the cache with information once the data has been read.



Developing a memcached Application

1833

The general sequence for using memcached in any language as a caching solution for MySQL is as
follows:

1. Request the item from the cache.

2. If the item exists, use the item data.

3. If the item does not exist, load the data from MySQL, and store the value into the cache. This
means the value is available to the next client that requests it from the cache.

For a flow diagram of this sequence, see Figure 16.6, “Typical memcached Application Flowchart”.

Figure 16.6 Typical memcached Application Flowchart

Adapting Database Best Practices to memcached Applications

The most direct way to cache MySQL data is to use a 2-column table, where the first column is a
primary key. Because of the uniqueness requirements for memcached keys, make sure your database
schema makes appropriate use of primary keys and unique constraints.

If you combine multiple column values into a single memcached item value, choose data types to
make it easy to parse the value back into its components, for example by using a separator character
between numeric values.

The queries that map most easily to memcached lookups are those with a single WHERE clause, using
an = or IN operator. For complicated WHERE clauses, or those using operators such as <, >, BETWEEN,
or LIKE, memcached does not provide a simple or efficient way to scan through or filter the keys
or associated values, so typically you perform those operations as SQL queries on the underlying
database.

16.2.3.3 Using libmemcached with C and C++

The libmemcached library provides both C and C++ interfaces to memcached and is also the
basis for a number of different additional API implementations, including Perl, Python and Ruby.
Understanding the core libmemcached functions can help when using these other interfaces.

The C library is the most comprehensive interface library for memcached and provides functions and
operational systems not always exposed in interfaces not based on the libmemcached library.



Developing a memcached Application

1834

The different functions can be divided up according to their basic operation. In addition to functions
that interface to the core API, a number of utility functions provide extended functionality, such as
appending and prepending data.

To build and install libmemcached, download the libmemcached package, run configure, and
then build and install:

shell> tar xjf libmemcached-0.21.tar.gz
shell> cd libmemcached-0.21
shell> ./configure
shell> make
shell> make install

On many Linux operating systems, you can install the corresponding libmemcached package through
the usual yum, apt-get, or similar commands.

To build an application that uses the library, first set the list of servers. Either directly manipulate the
servers configured within the main memcached_st structure, or separately populate a list of servers,
and then add this list to the memcached_st structure. The latter method is used in the following
example. Once the server list has been set, you can call the functions to store or retrieve data. A
simple application for setting a preset value to localhost is provided here:

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <libmemcached/memcached.h>

int main(int argc, char *argv[])
{
  memcached_server_st *servers = NULL;
  memcached_st *memc;
  memcached_return rc;
  char *key= "keystring";
  char *value= "keyvalue";

  memcached_server_st *memcached_servers_parse (char *server_strings);
  memc= memcached_create(NULL);

  servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
  rc= memcached_server_push(memc, servers);

  if (rc == MEMCACHED_SUCCESS)
    fprintf(stderr,"Added server successfully\n");
  else
    fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));

  rc= memcached_set(memc, key, strlen(key), value, strlen(value), (time_t)0, (uint32_t)0);

  if (rc == MEMCACHED_SUCCESS)
    fprintf(stderr,"Key stored successfully\n");
  else
    fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));

  return 0;
}

To test the success of an operation, use the return value, or populated result code, for a given function.
The value is always set to MEMCACHED_SUCCESS if the operation succeeded. In the event of a failure,
use the memcached_strerror() function to translate the result code into a printable string.

To build the application, specify the memcached library:

shell> gcc -o memc_basic memc_basic.c -lmemcached

Running the above sample application, after starting a memcached server, should return a success
message:



Developing a memcached Application

1835

shell> memc_basic
Added server successfully
Key stored successfully

libmemcached Base Functions

The base libmemcached functions let you create, destroy and clone the main memcached_st
structure that is used to interface with the memcached servers. The main functions are defined below:

memcached_st *memcached_create (memcached_st *ptr);

Creates a new memcached_st structure for use with the other libmemcached API functions. You
can supply an existing, static, memcached_st structure, or NULL to have a new structured allocated.
Returns a pointer to the created structure, or NULL on failure.

void memcached_free (memcached_st *ptr);

Frees the structure and memory allocated to a previously created memcached_st structure.

memcached_st *memcached_clone(memcached_st *clone, memcached_st *source);

Clones an existing memcached structure from the specified source, copying the defaults and list of
servers defined in the structure.

libmemcached Server Functions

The libmemcached API uses a list of servers, stored within the memcached_server_st structure,
to act as the list of servers used by the rest of the functions. To use memcached, you first create the
server list, and then apply the list of servers to a valid libmemcached object.

Because the list of servers, and the list of servers within an active libmemcached object can be
manipulated separately, you can update and manage server lists while an active libmemcached
interface is running.

The functions for manipulating the list of servers within a memcached_st structure are:

memcached_return
   memcached_server_add (memcached_st *ptr,
                         char *hostname,
                         unsigned int port);

Adds a server, using the given hostname and port into the memcached_st structure given in ptr.

memcached_return
   memcached_server_add_unix_socket (memcached_st *ptr,
                                     char *socket);

Adds a Unix socket to the list of servers configured in the memcached_st structure.

unsigned int memcached_server_count (memcached_st *ptr);

Returns a count of the number of configured servers within the memcached_st structure.

memcached_server_st *
   memcached_server_list (memcached_st *ptr);



Developing a memcached Application

1836

Returns an array of all the defined hosts within a memcached_st structure.

memcached_return
   memcached_server_push (memcached_st *ptr,
                          memcached_server_st *list);

Pushes an existing list of servers onto list of servers configured for a current memcached_st structure.
This adds servers to the end of the existing list, and duplicates are not checked.

The memcached_server_st structure can be used to create a list of memcached servers which can
then be applied individually to memcached_st structures.

memcached_server_st *
   memcached_server_list_append (memcached_server_st *ptr,
                                 char *hostname,
                                 unsigned int port,
                                 memcached_return *error);

Adds a server, with hostname and port, to the server list in ptr. The result code is handled by the
error argument, which should point to an existing memcached_return variable. The function returns
a pointer to the returned list.

unsigned int memcached_server_list_count (memcached_server_st *ptr);

Returns the number of the servers in the server list.

void memcached_server_list_free (memcached_server_st *ptr);

Frees the memory associated with a server list.

memcached_server_st *memcached_servers_parse (char *server_strings);

Parses a string containing a list of servers, where individual servers are separated by a comma, space,
or both, and where individual servers are of the form server[:port]. The return value is a server list
structure.

libmemcached Set Functions

The set-related functions within libmemcached provide the same functionality as the core functions
supported by the memcached protocol. The full definition for the different functions is the same for
all the base functions (add, replace, prepend, append). For example, the function definition for
memcached_set() is:

memcached_return
   memcached_set (memcached_st *ptr,
                  const char *key,
                  size_t key_length,
                  const char *value,
                  size_t value_length,
                  time_t expiration,
                  uint32_t flags);

The ptr is the memcached_st structure. The key and key_length define the key name and length,
and value and value_length the corresponding value and length. You can also set the expiration
and optional flags. For more information, see Controlling libmemcached Behaviors.

This table outlines the remainder of the set-related libmemcached functions and the equivalent core
functions supported by the memcached protocol.



Developing a memcached Application

1837

libmemcached Function Equivalent Core Function

memcached_set(memc, key, key_length,
value, value_length, expiration,
flags)

Generic set() operation.

memcached_add(memc, key, key_length,
value, value_length, expiration,
flags)

Generic add() function.

memcached_replace(memc, key,
key_length, value, value_length,
expiration, flags)

Generic replace().

memcached_prepend(memc, key,
key_length, value, value_length,
expiration, flags)

Prepends the specified value before the current
value of the specified key.

memcached_append(memc, key,
key_length, value, value_length,
expiration, flags)

Appends the specified value after the current
value of the specified key.

memcached_cas(memc, key, key_length,
value, value_length, expiration,
flags, cas)

Overwrites the data for a given key as long as the
corresponding cas value is still the same within
the server.

memcached_set_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the generic set(), but has the option
of an additional master key that can be used to
identify an individual server.

memcached_add_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the generic add(), but has the option
of an additional master key that can be used to
identify an individual server.

memcached_replace_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the generic replace(), but has the
option of an additional master key that can be
used to identify an individual server.

memcached_prepend_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_prepend(), but has
the option of an additional master key that can be
used to identify an individual server.

memcached_append_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_append(), but has
the option of an additional master key that can be
used to identify an individual server.

memcached_cas_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_cas(), but has the
option of an additional master key that can be
used to identify an individual server.

The by_key methods add two further arguments that define the master key, to be used and applied
during the hashing stage for selecting the servers. You can see this in the following definition:

memcached_return
   memcached_set_by_key(memcached_st *ptr,
                        const char *master_key,
                        size_t master_key_length,
                        const char *key,
                        size_t key_length,
                        const char *value,



Developing a memcached Application

1838

                        size_t value_length,
                        time_t expiration,
                        uint32_t flags);

All the functions return a value of type memcached_return, which you can compare against the
MEMCACHED_SUCCESS constant.

libmemcached Get Functions

The libmemcached functions provide both direct access to a single item, and a multiple-key request
mechanism that provides much faster responses when fetching a large number of keys simultaneously.

The main get-style function, which is equivalent to the generic get() is memcached_get(). This
function returns a string pointer, pointing to the value associated with the specified key.

char *memcached_get (memcached_st *ptr,
                     const char *key, size_t key_length,
                     size_t *value_length,
                     uint32_t *flags,
                     memcached_return *error);

A multi-key get, memcached_mget(), is also available. Using a multiple key get operation is much
quicker to do in one block than retrieving the key values with individual calls to memcached_get(). To
start the multi-key get, call memcached_mget():

memcached_return
    memcached_mget (memcached_st *ptr,
                    char **keys, size_t *key_length,
                    unsigned int number_of_keys);

The return value is the success of the operation. The keys parameter should be an array of strings
containing the keys, and key_length an array containing the length of each corresponding key.
number_of_keys is the number of keys supplied in the array.

To fetch the individual values, use memcached_fetch() to get each corresponding value.

char *memcached_fetch (memcached_st *ptr,
                       const char *key, size_t *key_length,
                       size_t *value_length,
                       uint32_t *flags,
                       memcached_return *error);

The function returns the key value, with the key, key_length and value_length parameters being
populated with the corresponding key and length information. The function returns NULL when there
are no more values to be returned. A full example, including the populating of the key data and the
return of the information is provided here.

#include <stdio.h>
#include <sstring.h>
#include <unistd.h>
#include <libmemcached/memcached.h>

int main(int argc, char *argv[])
{
  memcached_server_st *servers = NULL;
  memcached_st *memc;
  memcached_return rc;
  char *keys[]= {"huey", "dewey", "louie"};
  size_t key_length[3];
  char *values[]= {"red", "blue", "green"};
  size_t value_length[3];
  unsigned int x;
  uint32_t flags;



Developing a memcached Application

1839

  char return_key[MEMCACHED_MAX_KEY];
  size_t return_key_length;
  char *return_value;
  size_t return_value_length;

  memc= memcached_create(NULL);

  servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
  rc= memcached_server_push(memc, servers);

  if (rc == MEMCACHED_SUCCESS)
    fprintf(stderr,"Added server successfully\n");
  else
    fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));

  for(x= 0; x < 3; x++)
    {
      key_length[x] = strlen(keys[x]);
      value_length[x] = strlen(values[x]);

      rc= memcached_set(memc, keys[x], key_length[x], values[x],
                        value_length[x], (time_t)0, (uint32_t)0);
      if (rc == MEMCACHED_SUCCESS)
        fprintf(stderr,"Key %s stored successfully\n",keys[x]);
      else
        fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));
    }

  rc= memcached_mget(memc, keys, key_length, 3);

  if (rc == MEMCACHED_SUCCESS)
    {
      while ((return_value= memcached_fetch(memc, return_key, &return_key_length,
                                            &return_value_length, &flags, &rc)) != NULL)
        {
          if (rc == MEMCACHED_SUCCESS)
            {
              fprintf(stderr,"Key %s returned %s\n",return_key, return_value);
            }
        }
    }

  return 0;
}

Running the above application produces the following output:

shell> memc_multi_fetch
Added server successfully
Key huey stored successfully
Key dewey stored successfully
Key louie stored successfully
Key huey returned red
Key dewey returned blue
Key louie returned green

Controlling libmemcached Behaviors

The behavior of libmemcached can be modified by setting one or more behavior flags. These can
either be set globally, or they can be applied during the call to individual functions. Some behaviors
also accept an additional setting, such as the hashing mechanism used when selecting servers.

To set global behaviors:

memcached_return
   memcached_behavior_set (memcached_st *ptr,
                           memcached_behavior flag,
                           uint64_t data);



Developing a memcached Application

1840

To get the current behavior setting:

uint64_t
   memcached_behavior_get (memcached_st *ptr,
                           memcached_behavior flag);

The following table describes libmemcached behavior flags.

Behavior Description

MEMCACHED_BEHAVIOR_NO_BLOCK Caused libmemcached to use asynchronous I/O.

MEMCACHED_BEHAVIOR_TCP_NODELAY Turns on no-delay for network sockets.

MEMCACHED_BEHAVIOR_HASH Without a value, sets the default hashing algorithm
for keys to use MD5. Other valid values include
MEMCACHED_HASH_DEFAULT, MEMCACHED_HASH_MD5,
MEMCACHED_HASH_CRC, MEMCACHED_HASH_FNV1_64,
MEMCACHED_HASH_FNV1A_64,
MEMCACHED_HASH_FNV1_32, and
MEMCACHED_HASH_FNV1A_32.

MEMCACHED_BEHAVIOR_DISTRIBUTIONChanges the method of selecting the server
used to store a given value. The default method
is MEMCACHED_DISTRIBUTION_MODULA.
You can enable consistent hashing by setting
MEMCACHED_DISTRIBUTION_CONSISTENT.
MEMCACHED_DISTRIBUTION_CONSISTENT
is an alias for the value
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA.

MEMCACHED_BEHAVIOR_CACHE_LOOKUPSCache the lookups made to the DNS service. This can
improve the performance if you are using names instead of
IP addresses for individual hosts.

MEMCACHED_BEHAVIOR_SUPPORT_CAS Support CAS operations. By default, this is disabled because
it imposes a performance penalty.

MEMCACHED_BEHAVIOR_KETAMA Sets the default distribution to
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA and
the hash to MEMCACHED_HASH_MD5.

MEMCACHED_BEHAVIOR_POLL_TIMEOUTModify the timeout value used by poll(). Supply a signed
int pointer for the timeout value.

MEMCACHED_BEHAVIOR_BUFFER_REQUESTSBuffers IO requests instead of them being sent. A get
operation, or closing the connection causes the data to be
flushed.

MEMCACHED_BEHAVIOR_VERIFY_KEY Forces libmemcached to verify that a specified key is valid.

MEMCACHED_BEHAVIOR_SORT_HOSTS If set, hosts added to the list of configured hosts for a
memcached_st structure are placed into the host list in
sorted order. This breaks consistent hashing if that behavior
has been enabled.

MEMCACHED_BEHAVIOR_CONNECT_TIMEOUTIn nonblocking mode this changes the value of the timeout
during socket connection.

libmemcached Command-Line Utilities

In addition to the main C library interface, libmemcached also includes a number of command-line
utilities that can be useful when working with and debugging memcached applications.

All of the command-line tools accept a number of arguments, the most critical of which is servers,
which specifies the list of servers to connect to when returning information.



Developing a memcached Application

1841

The main tools are:

• memcat: Display the value for each ID given on the command line:

shell> memcat --servers=localhost hwkey
Hello world

• memcp: Copy the contents of a file into the cache, using the file name as the key:

shell> echo "Hello World" > hwkey
shell> memcp --servers=localhost hwkey
shell> memcat --servers=localhost hwkey
Hello world

• memrm: Remove an item from the cache:

shell> memcat --servers=localhost hwkey
Hello world
shell> memrm --servers=localhost hwkey
shell> memcat --servers=localhost hwkey

• memslap: Test the load on one or more memcached servers, simulating get/set and multiple client
operations. For example, you can simulate the load of 100 clients performing get operations:

shell> memslap --servers=localhost --concurrency=100 --flush --test=get
memslap --servers=localhost --concurrency=100 --flush --test=get Threads connecting to servers 100
 Took 13.571 seconds to read data

• memflush: Flush (empty) the contents of the memcached cache.

shell> memflush --servers=localhost

16.2.3.4 Using MySQL and memcached with Perl

The Cache::Memcached module provides a native interface to the Memcache protocol, and provides
support for the core functions offered by memcached. Install the module using your operating system's
package management system, or using CPAN:

root-shell> perl -MCPAN -e 'install Cache::Memcached'

To use memcached from Perl through the Cache::Memcached module, first create a new
Cache::Memcached object that defines the list of servers and other parameters for the connection.
The only argument is a hash containing the options for the cache interface. For example, to create a
new instance that uses three memcached servers:

use Cache::Memcached;

my $cache = new Cache::Memcached {
    'servers' => [
        '192.168.0.100:11211',
        '192.168.0.101:11211',
        '192.168.0.102:11211',
 ],
};

Note

When using the Cache::Memcached interface with multiple servers, the API
automatically performs certain operations across all the servers in the group.
For example, getting statistical information through Cache::Memcached



Developing a memcached Application

1842

returns a hash that contains data on a host-by-host basis, as well as
generalized statistics for all the servers in the group.

You can set additional properties on the cache object instance when it is created by specifying the
option as part of the option hash. Alternatively, you can use a corresponding method on the instance:

• servers or method set_servers(): Specifies the list of the servers to be used. The servers list
should be a reference to an array of servers, with each element as the address and port number
combination (separated by a colon). You can also specify a local connection through a Unix socket
(for example /tmp/sock/memcached). To specify the server with a weight (indicating how much
more frequently the server should be used during hashing), specify an array reference with the
memcached server instance and a weight number. Higher numbers give higher priority.

• compress_threshold or method set_compress_threshold(): Specifies the threshold when
values are compressed. Values larger than the specified number are automatically compressed
(using zlib) during storage and retrieval.

• no_rehash or method set_norehash(): Disables finding a new server if the original choice is
unavailable.

• readonly or method set_readonly(): Disables writes to the memcached servers.

Once the Cache::Memcached object instance has been configured, you can use the set() and
get() methods to store and retrieve information from the memcached servers. Objects stored in the
cache are automatically serialized and deserialized using the Storable module.

The Cache::Memcached interface supports the following methods for storing/retrieving data, and
relate to the generic methods as shown in the table.

Cache::Memcached Function Equivalent Generic Method

get() Generic get().

get_multi(keys) Gets multiple keys from memcache using just
one query. Returns a hash reference of key/value
pairs.

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

Below is a complete example for using memcached with Perl and the Cache::Memcached module:

#!/usr/bin/perl

use Cache::Memcached;
use DBI;
use Data::Dumper;

# Configure the memcached server

my $cache = new Cache::Memcached {
    'servers' => [
                   'localhost:11211',
                   ],
    };



Developing a memcached Application

1843

# Get the film name from the command line
# memcached keys must not contain spaces, so create
# a key name by replacing spaces with underscores

my $filmname = shift or die "Must specify the film name\n";
my $filmkey = $filmname;
$filmkey =~ s/ /_/;

# Load the data from the cache

my $filmdata = $cache->get($filmkey);

# If the data wasn't in the cache, then we load it from the database

if (!defined($filmdata))
{
    $filmdata = load_filmdata($filmname);

    if (defined($filmdata))
    {

# Set the data into the cache, using the key

 if ($cache->set($filmkey,$filmdata))
        {
            print STDERR "Film data loaded from database and cached\n";
        }
        else
        {
            print STDERR "Couldn't store to cache\n";
 }
    }
    else
    {
      die "Couldn't find $filmname\n";
    }
}
else
{
    print STDERR "Film data loaded from Memcached\n";
}

sub load_filmdata
{
    my ($filmname) = @_;

    my $dsn = "DBI:mysql:database=sakila;host=localhost;port=3306";

    $dbh = DBI->connect($dsn, 'sakila','password');

    my ($filmbase) = $dbh->selectrow_hashref(sprintf('select * from film where title = %s',
                                                     $dbh->quote($filmname)));

    if (!defined($filmname))
    {
      return (undef);
    }

    $filmbase->{stars} =
 $dbh->selectall_arrayref(sprintf('select concat(first_name," ",last_name) ' .
                                         'from film_actor left join (actor) ' .
                                         'on (film_actor.actor_id = actor.actor_id) ' .
                                         ' where film_id=%s',
                                         $dbh->quote($filmbase->{film_id})));

    return($filmbase);
}

The example uses the Sakila database, obtaining film data from the database and writing a composite
record of the film and actors to memcached. When calling it for a film does not exist, you get this result:



Developing a memcached Application

1844

shell> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from database and cached

When accessing a film that has already been added to the cache:

shell> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from Memcached

16.2.3.5 Using MySQL and memcached with Python

The Python memcache module interfaces to memcached servers, and is written in pure Python (that is,
without using one of the C APIs). You can download and install a copy from Python Memcached.

To install, download the package and then run the Python installer:

python setup.py install
running install
running bdist_egg
running egg_info
creating python_memcached.egg-info
...
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing python_memcached-1.43-py2.4.egg
creating /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Extracting python_memcached-1.43-py2.4.egg to /usr/lib64/python2.4/site-packages
Adding python-memcached 1.43 to easy-install.pth file

Installed /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Processing dependencies for python-memcached==1.43
Finished processing dependencies for python-memcached==1.43

Once installed, the memcache module provides a class-based interface to your memcached servers.
When you store Python data structures as memcached items, they are automatically serialized (turned
into string values) using the Python cPickle or pickle modules.

To create a new memcache interface, import the memcache module and create a new instance of the
memcache.Client class. For example, if the memcached daemon is running on localhost using the
default port:

import memcache
memc = memcache.Client(['127.0.0.1:11211'])

The first argument is an array of strings containing the server and port number for each memcached
instance to use. To enable debugging, set the optional debug parameter to 1.

By default, the hashing mechanism used to divide the items among multiple servers is crc32. To
change the function used, set the value of memcache.serverHashFunction to the alternate function
to use. For example:

from zlib import adler32
memcache.serverHashFunction = adler32

Once you have defined the servers to use within the memcache instance, the core functions provide
the same functionality as in the generic interface specification. The following table provides a summary
of the supported functions:

Python memcache Function Equivalent Generic Function

get() Generic get().

http://www.tummy.com/Community/software/python-memcached/


Developing a memcached Application

1845

Python memcache Function Equivalent Generic Function

get_multi(keys) Gets multiple values from the supplied array of
keys. Returns a hash reference of key/value
pairs.

set() Generic set().

set_multi(dict [, expiry [,
key_prefix]])

Sets multiple key/value pairs from the supplied
dict.

add() Generic add().

replace() Generic replace().

prepend(key, value [, expiry]) Prepends the supplied value to the value of the
existing key.

append(key, value [, expiry[) Appends the supplied value to the value of the
existing key.

delete() Generic delete().

delete_multi(keys [, expiry [,
key_prefix]] )

Deletes all the keys from the hash matching each
string in the array keys.

incr() Generic incr().

decr() Generic decr().

Note

Within the Python memcache module, all the *_multi()functions support an
optional key_prefix parameter. If supplied, then the string is used as a prefix
to all key lookups. For example, if you call:

memc.get_multi(['a','b'], key_prefix='users:')

The function retrieves the keys users:a and users:b from the servers.

Here is an example showing the storage and retrieval of information to a memcache instance, loading
the raw data from MySQL:

import sys
import MySQLdb
import memcache

memc = memcache.Client(['127.0.0.1:11211'], debug=1);

try:
    conn = MySQLdb.connect (host = "localhost",
                            user = "sakila",
                            passwd = "password",
                            db = "sakila")
except MySQLdb.Error, e:
     print "Error %d: %s" % (e.args[0], e.args[1])
     sys.exit (1)

popularfilms = memc.get('top5films')

if not popularfilms:
    cursor = conn.cursor()
    cursor.execute('select film_id,title from film order by rental_rate desc limit 5')
    rows = cursor.fetchall()
    memc.set('top5films',rows,60)
    print "Updated memcached with MySQL data"
else:
    print "Loaded data from memcached"
    for row in popularfilms:
        print "%s, %s" % (row[0], row[1])



Developing a memcached Application

1846

When executed for the first time, the data is loaded from the MySQL database and stored to the
memcached server.

shell> python memc_python.py
Updated memcached with MySQL data

Because the data is automatically serialized using cPickle/pickle, when you load the data back
from memcached, you can use the object directly. In the example above, the information stored to
memcached is in the form of rows from a Python DB cursor. When accessing the information (within
the 60 second expiry time), the data is loaded from memcached and dumped:

shell> python memc_python.py
Loaded data from memcached
2, ACE GOLDFINGER
7, AIRPLANE SIERRA
8, AIRPORT POLLOCK
10, ALADDIN CALENDAR
13, ALI FOREVER

The serialization and deserialization happens automatically. Because serialization of Python data may
be incompatible with other interfaces and languages, you can change the serialization module used
during initialization. For example, you might use JSON format when you store complex data structures
using a script written in one language, and access them in a script written in a different language.

16.2.3.6 Using MySQL and memcached with PHP

PHP provides support for the Memcache functions through a PECL extension. To enable the PHP
memcache extensions, build PHP using the --enable-memcache option to configure when
building from source.

If you are installing on a Red Hat-based server, you can install the php-pecl-memcache RPM:

root-shell> yum --install php-pecl-memcache

On Debian-based distributions, use the php-memcache package.

To set global runtime configuration options, specify the configuration option values within your
php.ini file. The following table provides the name, default value, and a description for each global
runtime configuration option.

Configuration option Default Description

memcache.allow_failover 1 Specifies whether another server in the list
should be queried if the first server selected
fails.

memcache.max_failover_attempts20 Specifies the number of servers to try before
returning a failure.

memcache.chunk_size 8192 Defines the size of network chunks used to
exchange data with the memcached server.

memcache.default_port 11211 Defines the default port to use when
communicating with the memcached servers.

memcache.hash_strategy standard Specifies which hash strategy to use. Set to
consistent to enable servers to be added
or removed from the pool without causing the
keys to be remapped to other servers. When
set to standard, an older (modula) strategy



Developing a memcached Application

1847

Configuration option Default Description
is used that potentially uses different servers
for storage.

memcache.hash_function crc32 Specifies which function to use when
mapping keys to servers. crc32 uses the
standard CRC32 hash. fnv uses the FNV-1a
hashing algorithm.

To create a connection to a memcached server, create a new Memcache object and then specify the
connection options. For example:

<?php

$cache = new Memcache;
$cache->connect('localhost',11211);
?>

This opens an immediate connection to the specified server.

To use multiple memcached servers, you need to add servers to the memcache object using
addServer():

bool Memcache::addServer ( string $host [, int $port [, bool $persistent
                 [, int $weight [, int $timeout [, int $retry_interval
                 [, bool $status [, callback $failure_callback
                 ]]]]]]] )

The server management mechanism within the php-memcache module is a critical part of the interface
as it controls the main interface to the memcached instances and how the different instances are
selected through the hashing mechanism.

To create a simple connection to two memcached instances:

<?php

$cache = new Memcache;
$cache->addServer('192.168.0.100',11211);
$cache->addServer('192.168.0.101',11211);
?>

In this scenario, the instance connection is not explicitly opened, but only opened when you try to store
or retrieve a value. To enable persistent connections to memcached instances, set the $persistent
argument to true. This is the default setting, and causes the connections to remain open.

To help control the distribution of keys to different instances, use the global
memcache.hash_strategy setting. This sets the hashing mechanism used to select. You can also
add another weight to each server, which effectively increases the number of times the instance entry
appears in the instance list, therefore increasing the likelihood of the instance being chosen over other
instances. To set the weight, set the value of the $weight argument to more than one.

The functions for setting and retrieving information are identical to the generic functional interface
offered by memcached, as shown in this table:

PECL memcache Function Generic Function

get() Generic get().

set() Generic set().

add() Generic add().



Developing a memcached Application

1848

PECL memcache Function Generic Function

replace() Generic replace().

delete() Generic delete().

increment() Generic incr().

decrement() Generic decr().

A full example of the PECL memcache interface is provided below. The code loads film data from the
Sakila database when the user provides a film name. The data stored into the memcached instance is
recorded as a mysqli result row, and the API automatically serializes the information for you.

<?php

$memc = new Memcache;
$memc->addServer('localhost','11211');

if(empty($_POST['film'])) {
?>
  <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
    <head>
      <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
      <title>Simple Memcache Lookup</title>
    </head>
    <body>
      <form method="post">
        <p><b>Film</b>: <input type="text" size="20" name="film"></p>
        <input type="submit">
      </form>
      <hr/>
<?php

} else {
  
    echo "Loading data...\n";
  
    $film   = htmlspecialchars($_POST['film'], ENT_QUOTES, 'UTF-8');
    $mfilms = $memc->get($film);

    if ($mfilms) {

        printf("<p>Film data for %s loaded from memcache</p>", $mfilms['title']);

        foreach (array_keys($mfilms) as $key) {
            printf("<p><b>%s</b>: %s</p>", $key, $mfilms[$key]);
        }

    } else {

        $mysqli = mysqli('localhost','sakila','password','sakila');
  
        if (mysqli_connect_error()) {
            sprintf("Database error: (%d) %s", mysqli_connect_errno(), mysqli_connect_error());
            exit;
        }
  
        $sql = sprintf('SELECT * FROM film WHERE title="%s"', $mysqli->real_escape_string($film));

        $result = $mysqli->query($sql);

        if (!$result) {
            sprintf("Database error: (%d) %s", $mysqli->errno, $mysqli->error);
            exit;
        }

        $row = $result->fetch_assoc();

        $memc->set($row['title'], $row);



Developing a memcached Application

1849

        printf("<p>Loaded (%s) from MySQL</p>", htmlspecialchars($row['title'], ENT_QUOTES, 'UTF-8');
    }
}
?>
  </body>
</html>

With PHP, the connections to the memcached instances are kept open as long as the PHP and
associated Apache instance remain running. When adding or removing servers from the list in a
running instance (for example, when starting another script that mentions additional servers), the
connections are shared, but the script only selects among the instances explicitly configured within the
script.

To ensure that changes to the server list within a script do not cause problems, make sure to use the
consistent hashing mechanism.

16.2.3.7 Using MySQL and memcached with Ruby

There are a number of different modules for interfacing to memcached within Ruby. The Ruby-
MemCache client library provides a native interface to memcached that does not require any external
libraries, such as libmemcached. You can obtain the installer package from http://www.deveiate.org/
projects/RMemCache.

To install, extract the package and then run install.rb:

shell> install.rb

If you have RubyGems, you can install the Ruby-MemCache gem:

shell> gem install Ruby-MemCache
Bulk updating Gem source index for: http://gems.rubyforge.org
Install required dependency io-reactor? [Yn]  y
Successfully installed Ruby-MemCache-0.0.1
Successfully installed io-reactor-0.05
Installing ri documentation for io-reactor-0.05...
Installing RDoc documentation for io-reactor-0.05...

To use a memcached instance from within Ruby, create a new instance of the MemCache object.

require 'memcache'
memc = MemCache::new '192.168.0.100:11211'

You can add a weight to each server to increase the likelihood of the server being selected during
hashing by appending the weight count to the server host name/port string:

require 'memcache'
memc = MemCache::new '192.168.0.100:11211:3'

To add servers to an existing list, you can append them directly to the MemCache object:

memc += ["192.168.0.101:11211"]

To set data into the cache, you can just assign a value to a key within the new cache object, which
works just like a standard Ruby hash object:

memc["key"] = "value"

http://www.deveiate.org/projects/RMemCache
http://www.deveiate.org/projects/RMemCache


Developing a memcached Application

1850

Or to retrieve the value:

print memc["key"]

For more explicit actions, you can use the method interface, which mimics the main memcached API
functions, as summarized in the following table:

Ruby MemCache Method Equivalent memcached API Functions

get() Generic get().

get_hash(keys) Get the values of multiple keys, returning the
information as a hash of the keys and their values.

set() Generic set().

set_many(pairs) Set the values of the keys and values in the hash
pairs.

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

16.2.3.8 Using MySQL and memcached with Java

The com.danga.MemCached class within Java provides a native interface to memcached instances.
You can obtain the client from https://github.com/gwhalin/Memcached-Java-Client/downloads. The
Java class uses hashes that are compatible with libmemcached, so you can mix and match Java and
libmemcached applications accessing the same memcached instances. The serialization between
Java and other interfaces are not compatible. If this is a problem, use JSON or a similar nonbinary
serialization format.

On most systems, you can download the package and use the jar directly.

To use the com.danga.MemCached interface, you create a MemCachedClient instance and then
configure the list of servers by configuring the SockIOPool. Through the pool specification you set up
the server list, weighting, and the connection parameters to optimized the connections between your
client and the memcached instances that you configure.

Generally, you can configure the memcached interface once within a single class, then use this
interface throughout the rest of your application.

For example, to create a basic interface, first configure the MemCachedClient and base
SockIOPool settings:

public class MyClass {

    protected static MemCachedClient mcc = new MemCachedClient();

    static {

        String[] servers =
            {
                "localhost:11211",
            };

        Integer[] weights = { 1 };

        SockIOPool pool = SockIOPool.getInstance();

https://github.com/gwhalin/Memcached-Java-Client/downloads


Developing a memcached Application

1851

        pool.setServers( servers );
        pool.setWeights( weights );

In the above sample, the list of servers is configured by creating an array of the memcached instances
to use. You can then configure individual weights for each server.

The remainder of the properties for the connection are optional, but you can set the connection
numbers (initial connections, minimum connections, maximum connections, and the idle timeout) by
setting the pool parameters:

pool.setInitConn( 5 );
pool.setMinConn( 5 );
pool.setMaxConn( 250 );
pool.setMaxIdle( 1000 * 60 * 60 * 6

Once the parameters have been configured, initialize the connection pool:

pool.initialize();

The pool, and the connection to your memcached instances should now be ready to use.

To set the hashing algorithm used to select the server used when storing a given key, use
pool.setHashingAlg():

pool.setHashingAlg( SockIOPool.NEW_COMPAT_HASH );

Valid values are NEW_COMPAT_HASH, OLD_COMPAT_HASH and NATIVE_HASH are also basic modula
hashing algorithms. For a consistent hashing algorithm, use CONSISTENT_HASH. These constants are
equivalent to the corresponding hash settings within libmemcached.

The following table outlines the Java com.danga.MemCached methods and the equivalent generic
methods in the memcached interface specification.

Java com.danga.MemCached Method Equivalent Generic Method

get() Generic get().

getMulti(keys) Get the values of multiple keys, returning
the information as Hash map using
java.lang.String for the keys and
java.lang.Object for the corresponding
values.

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

16.2.3.9 Using the memcached TCP Text Protocol

Communicating with a memcached server can be achieved through either the TCP or UDP protocols.
When using the TCP protocol, you can use a simple text based interface for the exchange of
information.



Developing a memcached Application

1852

When communicating with memcached, you can connect to the server using the port configured for the
server. You can open a connection with the server without requiring authorization or login. As soon as
you have connected, you can start to send commands to the server. When you have finished, you can
terminate the connection without sending any specific disconnection command. Clients are encouraged
to keep their connections open to decrease latency and improve performance.

Data is sent to the memcached server in two forms:

• Text lines, which are used to send commands to the server, and receive responses from the server.

• Unstructured data, which is used to receive or send the value information for a given key. Data is
returned to the client in exactly the format it was provided.

Both text lines (commands and responses) and unstructured data are always terminated with the string
\r\n. Because the data being stored may contain this sequence, the length of the data (returned by
the client before the unstructured data is transmitted should be used to determine the end of the data.

Commands to the server are structured according to their operation:

• Storage commands: set, add, replace, append, prepend, cas

Storage commands to the server take the form:

command key [flags] [exptime] length [noreply]

Or when using compare and swap (cas):

cas key [flags] [exptime] length [casunique] [noreply]

Where:

• command: The command name.

• set: Store value against key

• add: Store this value against key if the key does not already exist

• replace: Store this value against key if the key already exists

• append: Append the supplied value to the end of the value for the specified key. The flags
and exptime arguments should not be used.

• prepend: Append value currently in the cache to the end of the supplied value for the specified
key. The flags and exptime arguments should not be used.

• cas: Set the specified key to the supplied value, only if the supplied casunique matches.
This is effectively the equivalent of change the information if nobody has updated it since I last
fetched it.

• key: The key. All data is stored using a the specific key. The key cannot contain control characters
or whitespace, and can be up to 250 characters in size.

• flags: The flags for the operation (as an integer). Flags in memcached are transparent. The
memcached server ignores the contents of the flags. They can be used by the client to indicate
any type of information. In memcached 1.2.0 and lower the value is a 16-bit integer value. In
memcached 1.2.1 and higher the value is a 32-bit integer.

• exptime: The expiry time, or zero for no expiry.

• length: The length of the supplied value block in bytes, excluding the terminating \r\n
characters.



Developing a memcached Application

1853

• casunique: A unique 64-bit value of an existing entry. This is used to compare against the
existing value. Use the value returned by the gets command when issuing cas updates.

• noreply: Tells the server not to reply to the command.

For example, to store the value abcdef into the key xyzkey, you would use:

set xyzkey 0 0 6\r\nabcdef\r\n

The return value from the server is one line, specifying the status or error information. For more
information, see Table 16.3, “memcached Protocol Responses”.

• Retrieval commands: get, gets

Retrieval commands take the form:

get key1 [key2 .... keyn]
gets key1 [key2 ... keyn]

You can supply multiple keys to the commands, with each requested key separated by whitespace.

The server responds with an information line of the form:

VALUE key flags bytes [casunique]

Where:

• key: The key name.

• flags: The value of the flag integer supplied to the memcached server when the value was
stored.

• bytes: The size (excluding the terminating \r\n character sequence) of the stored value.

• casunique: The unique 64-bit integer that identifies the item.

The information line is immediately followed by the value data block. For example:

get xyzkey\r\n
VALUE xyzkey 0 6\r\n
abcdef\r\n

If you have requested multiple keys, an information line and data block is returned for each key
found. If a requested key does not exist in the cache, no information is returned.

• Delete commands: delete

Deletion commands take the form:

delete key [time] [noreply]

Where:

• key: The key name.

• time: The time in seconds (or a specific Unix time) for which the client wishes the server to refuse
add or replace commands on this key. All add, replace, get, and gets commands fail during
this period. set operations succeed. After this period, the key is deleted permanently and all
commands are accepted.



Developing a memcached Application

1854

If not supplied, the value is assumed to be zero (delete immediately).

• noreply: Tells the server not to reply to the command.

Responses to the command are either DELETED to indicate that the key was successfully removed,
or NOT_FOUND to indicate that the specified key could not be found.

• Increment/Decrement: incr, decr

The increment and decrement commands change the value of a key within the server without
performing a separate get/set sequence. The operations assume that the currently stored value is a
64-bit integer. If the stored value is not a 64-bit integer, then the value is assumed to be zero before
the increment or decrement operation is applied.

Increment and decrement commands take the form:

incr key value [noreply]
decr key value [noreply]

Where:

• key: The key name.

• value: An integer to be used as the increment or decrement value.

• noreply: Tells the server not to reply to the command.

The response is:

• NOT_FOUND: The specified key could not be located.

• value: The new value associated with the specified key.

Values are assumed to be unsigned. For decr operations, the value is never decremented below 0.
For incr operations, the value wraps around the 64-bit maximum.

• Statistics commands: stats

The stats command provides detailed statistical information about the current status of the
memcached instance and the data it is storing.

Statistics commands take the form:

STAT [name] [value]

Where:

• name: The optional name of the statistics to return. If not specified, the general statistics are
returned.

• value: A specific value to be used when performing certain statistics operations.

The return value is a list of statistics data, formatted as follows:

STAT name value

The statistics are terminated with a single line, END.

For more information, see Section 16.2.4, “Getting memcached Statistics”.



Developing a memcached Application

1855

For reference, a list of the different commands supported and their formats is provided below.

Table 16.2 memcached Command Reference

Command Command Formats

set set key flags exptime length, set key flags exptime
length noreply

add add key flags exptime length, add key flags exptime
length noreply

replace replace key flags exptime length, replace key flags
exptime length noreply

append append key length, append key length noreply

prepend prepend key length, prepend key length noreply

cas cas key flags exptime length casunique, cas key flags
exptime length casunique noreply

get get key1 [key2 ... keyn]

gets

delete delete key, delete key noreply, delete key expiry, delete
key expiry noreply

incr incr key, incr key noreply, incr key value, incr key value
noreply

decr decr key, decr key noreply, decr key value, decr key value
noreply

stat stat, stat name, stat name value

When sending a command to the server, the response from the server is one of the settings in the
following table. All response values from the server are terminated by \r\n:

Table 16.3 memcached Protocol Responses

String Description

STORED Value has successfully been stored.

NOT_STORED The value was not stored, but not because of an error. For commands
where you are adding a or updating a value if it exists (such as add and
replace), or where the item has already been set to be deleted.

EXISTS When using a cas command, the item you are trying to store already exists
and has been modified since you last checked it.

NOT_FOUND The item you are trying to store, update or delete does not exist or has
already been deleted.

ERROR You submitted a nonexistent command name.

CLIENT_ERROR
errorstring

There was an error in the input line, the detail is contained in
errorstring.

SERVER_ERROR
errorstring

There was an error in the server that prevents it from returning the
information. In extreme conditions, the server may disconnect the client after
this error occurs.

VALUE keys flags
length

The requested key has been found, and the stored key, flags and data
block are returned, of the specified length.

DELETED The requested key was deleted from the server.

STAT name value A line of statistics data.



Getting memcached Statistics

1856

String Description

END The end of the statistics data.

16.2.4 Getting memcached Statistics

The memcached system has a built-in statistics system that collects information about the data being
stored into the cache, cache hit ratios, and detailed information on the memory usage and distribution
of information through the slab allocation used to store individual items. Statistics are provided at
both a basic level that provide the core statistics, and more specific statistics for specific areas of the
memcached server.

This information can be useful to ensure that you are getting the correct level of cache and memory
usage, and that your slab allocation and configuration properties are set at an optimal level.

The stats interface is available through the standard memcached protocol, so the reports can be
accessed by using telnet to connect to the memcached. The supplied memcached-tool includes
support for obtaining the Section 16.2.4.2, “memcached Slabs Statistics” and Section 16.2.4.1,
“memcached General Statistics” information. For more information, see Section 16.2.4.6, “Using
memcached-tool”.

Alternatively, most of the language API interfaces provide a function for obtaining the statistics from the
server.

For example, to get the basic stats using telnet:

shell> telnet localhost 11211
Trying ::1...
Connected to localhost.
Escape character is '^]'.
stats
STAT pid 23599
STAT uptime 675
STAT time 1211439587
STAT version 1.2.5
STAT pointer_size 32
STAT rusage_user 1.404992
STAT rusage_system 4.694685
STAT curr_items 32
STAT total_items 56361
STAT bytes 2642
STAT curr_connections 53
STAT total_connections 438
STAT connection_structures 55
STAT cmd_get 113482
STAT cmd_set 80519
STAT get_hits 78926
STAT get_misses 34556
STAT evictions 0
STAT bytes_read 6379783
STAT bytes_written 4860179
STAT limit_maxbytes 67108864
STAT threads 1
END

When using Perl and the Cache::Memcached module, the stats() function returns information
about all the servers currently configured in the connection object, and total statistics for all the
memcached servers as a whole.

For example, the following Perl script obtains the stats and dumps the hash reference that is returned:

use Cache::Memcached;
use Data::Dumper;

my $memc = new Cache::Memcached;



Getting memcached Statistics

1857

$memc->set_servers(\@ARGV);

print Dumper($memc->stats());

When executed on the same memcached as used in the Telnet example above we get a hash
reference with the host by host and total statistics:

$VAR1 = {
    'hosts' => {
           'localhost:11211' => {
                      'misc' => {
                            'bytes' => '2421',
                            'curr_connections' => '3',
                            'connection_structures' => '56',
                            'pointer_size' => '32',
                            'time' => '1211440166',
                            'total_items' => '410956',
                            'cmd_set' => '588167',
                            'bytes_written' => '35715151',
                            'evictions' => '0',
                            'curr_items' => '31',
                            'pid' => '23599',
                            'limit_maxbytes' => '67108864',
                            'uptime' => '1254',
                            'rusage_user' => '9.857805',
                            'cmd_get' => '838451',
                            'rusage_system' => '34.096988',
                            'version' => '1.2.5',
                            'get_hits' => '581511',
                            'bytes_read' => '46665716',
                            'threads' => '1',
                            'total_connections' => '3104',
                            'get_misses' => '256940'
                          },
                      'sizes' => {
                             '128' => '16',
                             '64' => '15'
                           }
                    }
         },
    'self' => {},
    'total' => {
           'cmd_get' => 838451,
           'bytes' => 2421,
           'get_hits' => 581511,
           'connection_structures' => 56,
           'bytes_read' => 46665716,
           'total_items' => 410956,
           'total_connections' => 3104,
           'cmd_set' => 588167,
           'bytes_written' => 35715151,
           'curr_items' => 31,
           'get_misses' => 256940
         }
        };

The statistics are divided up into a number of distinct sections, and then can be requested by adding
the type to the stats command. Each statistics output is covered in more detail in the following
sections.

• General statistics, see Section 16.2.4.1, “memcached General Statistics”.

• Slab statistics (slabs), see Section 16.2.4.2, “memcached Slabs Statistics”.

• Item statistics (items), see Section 16.2.4.3, “memcached Item Statistics”.

• Size statistics (sizes), see Section 16.2.4.4, “memcached Size Statistics”.

• Detailed status (detail), see Section 16.2.4.5, “memcached Detail Statistics”.



Getting memcached Statistics

1858

16.2.4.1 memcached General Statistics

The output of the general statistics provides an overview of the performance and use of the
memcached instance. The statistics returned by the command and their meaning is shown in the
following table.

The following terms are used to define the value type for each statistics value:

• 32u: 32-bit unsigned integer

• 64u: 64-bit unsigned integer

• 32u:32u: Two 32-bit unsigned integers separated by a colon

• String: Character string

Statistic Data type Description Version

pid 32u Process ID of the memcached instance.

uptime 32u Uptime (in seconds) for this memcached instance.

time 32u Current time (as epoch).

version string Version string of this instance.

pointer_size string Size of pointers for this host specified in bits (32 or 64).

rusage_user 32u:32u Total user time for this instance
(seconds:microseconds).

rusage_system 32u:32u Total system time for this instance
(seconds:microseconds).

curr_items 32u Current number of items stored by this instance.

total_items 32u Total number of items stored during the life of this
instance.

bytes 64u Current number of bytes used by this server to store
items.

curr_connections32u Current number of open connections.

total_connections32u Total number of connections opened since the server
started running.

connection_structures32u Number of connection structures allocated by the
server.

cmd_get 64u Total number of retrieval requests (get operations).

cmd_set 64u Total number of storage requests (set operations).

get_hits 64u Number of keys that have been requested and found
present.

get_misses 64u Number of items that have been requested and not
found.

delete_hits 64u Number of keys that have been deleted and found
present.

1.3.x

delete_misses 64u Number of items that have been delete and not found. 1.3.x

incr_hits 64u Number of keys that have been incremented and found
present.

1.3.x

incr_misses 64u Number of items that have been incremented and not
found.

1.3.x

decr_hits 64u Number of keys that have been decremented and
found present.

1.3.x



Getting memcached Statistics

1859

Statistic Data type Description Version

decr_misses 64u Number of items that have been decremented and not
found.

1.3.x

cas_hits 64u Number of keys that have been compared and
swapped and found present.

1.3.x

cas_misses 64u Number of items that have been compared and
swapped and not found.

1.3.x

cas_badvalue 64u Number of keys that have been compared and
swapped, but the comparison (original) value did not
match the supplied value.

1.3.x

evictions 64u Number of valid items removed from cache to free
memory for new items.

bytes_read 64u Total number of bytes read by this server from network.

bytes_written 64u Total number of bytes sent by this server to network.

limit_maxbytes 32u Number of bytes this server is permitted to use for
storage.

threads 32u Number of worker threads requested.

conn_yields 64u Number of yields for connections (related to the -R
option).

1.4.0

The most useful statistics from those given here are the number of cache hits, misses, and evictions.

A large number of get_misses may just be an indication that the cache is still being populated
with information. The number should, over time, decrease in comparison to the number of cache
get_hits. If, however, you have a large number of cache misses compared to cache hits after an
extended period of execution, it may be an indication that the size of the cache is too small and you
either need to increase the total memory size, or increase the number of the memcached instances to
improve the hit ratio.

A large number of evictions from the cache, particularly in comparison to the number of items stored
is a sign that your cache is too small to hold the amount of information that you regularly want to keep
cached. Instead of items being retained in the cache, items are being evicted to make way for new
items keeping the turnover of items in the cache high, reducing the efficiency of the cache.

16.2.4.2 memcached Slabs Statistics

To get the slabs statistics, use the stats slabs command, or the API equivalent.

The slab statistics provide you with information about the slabs that have created and allocated for
storing information within the cache. You get information both on each individual slab-class and total
statistics for the whole slab.

STAT 1:chunk_size 104
STAT 1:chunks_per_page 10082
STAT 1:total_pages 1
STAT 1:total_chunks 10082
STAT 1:used_chunks 10081
STAT 1:free_chunks 1
STAT 1:free_chunks_end 10079
STAT 9:chunk_size 696
STAT 9:chunks_per_page 1506
STAT 9:total_pages 63
STAT 9:total_chunks 94878
STAT 9:used_chunks 94878
STAT 9:free_chunks 0
STAT 9:free_chunks_end 0
STAT active_slabs 2



Getting memcached Statistics

1860

STAT total_malloced 67083616
END

Individual stats for each slab class are prefixed with the slab ID. A unique ID is given to each allocated
slab from the smallest size up to the largest. The prefix number indicates the slab class number in
relation to the calculated chunk from the specified growth factor. Hence in the example, 1 is the first
chunk size and 9 is the 9th chunk allocated size.

The parameters returned for each chunk size and a description of each parameter are provided in the
following table.

Statistic Description Version

chunk_size Space allocated to each chunk within this slab class.

chunks_per_page Number of chunks within a single page for this slab class.

total_pages Number of pages allocated to this slab class.

total_chunks Number of chunks allocated to the slab class.

used_chunks Number of chunks allocated to an item..

free_chunks Number of chunks not yet allocated to items.

free_chunks_end Number of free chunks at the end of the last allocated page.

get_hits Number of get hits to this chunk 1.3.x

cmd_set Number of set commands on this chunk 1.3.x

delete_hits Number of delete hits to this chunk 1.3.x

incr_hits Number of increment hits to this chunk 1.3.x

decr_hits Number of decrement hits to this chunk 1.3.x

cas_hits Number of CAS hits to this chunk 1.3.x

cas_badval Number of CAS hits on this chunk where the existing value did not
match

1.3.x

mem_requested The true amount of memory of memory requested within this
chunk

1.4.1

The following additional statistics cover the information for the entire server, rather than on a chunk by
chunk basis:

Statistic Description Version

active_slabs Total number of slab classes allocated.

total_malloced Total amount of memory allocated to slab pages.

The key values in the slab statistics are the chunk_size, and the corresponding total_chunks
and used_chunks parameters. These given an indication of the size usage of the chunks within the
system. Remember that one key/value pair is placed into a chunk of a suitable size.

From these stats, you can get an idea of your size and chunk allocation and distribution. If you store
many items with a number of largely different sizes, consider adjusting the chunk size growth factor
to increase in larger steps to prevent chunk and memory wastage. A good indication of a bad growth
factor is a high number of different slab classes, but with relatively few chunks actually in use within
each slab. Increasing the growth factor creates fewer slab classes and therefore makes better use of
the allocated pages.

16.2.4.3 memcached Item Statistics

To get the items statistics, use the stats items command, or the API equivalent.



Getting memcached Statistics

1861

The items statistics give information about the individual items allocated within a given slab class.

STAT items:2:number 1
STAT items:2:age 452
STAT items:2:evicted 0
STAT items:2:evicted_nonzero 0
STAT items:2:evicted_time 2
STAT items:2:outofmemory 0
STAT items:2:tailrepairs 0
...
STAT items:27:number 1
STAT items:27:age 452
STAT items:27:evicted 0
STAT items:27:evicted_nonzero 0
STAT items:27:evicted_time 2
STAT items:27:outofmemory 0
STAT items:27:tailrepairs 0

The prefix number against each statistics relates to the corresponding chunk size, as returned by the
stats slabs statistics. The result is a display of the number of items stored within each chunk within
each slab size, and specific statistics about their age, eviction counts, and out of memory counts. A
summary of the statistics is given in the following table.

Statistic Description

number The number of items currently stored in this slab class.

age The age of the oldest item within the slab class, in seconds.

evicted The number of items evicted to make way for new entries.

evicted_time The time of the last evicted entry

evicted_nonzero The time of the last evicted non-zero entry 1.4.0

outofmemory The number of items for this slab class that have triggered an out
of memory error (only value when the -M command line option is
in effect).

tailrepairs Number of times the entries for a particular ID need repairing

Item level statistics can be used to determine how many items are stored within a given slab and their
freshness and recycle rate. You can use this to help identify whether there are certain slab classes that
are triggering a much larger number of evictions that others.

16.2.4.4 memcached Size Statistics

To get size statistics, use the stats sizes command, or the API equivalent.

The size statistics provide information about the sizes and number of items of each size within the
cache. The information is returned as two columns, the first column is the size of the item (rounded up
to the nearest 32 byte boundary), and the second column is the count of the number of items of that
size within the cache:

96 35
128 38
160 807
192 804
224 410
256 222
288 83
320 39
352 53
384 33
416 64
448 51



Getting memcached Statistics

1862

480 30
512 54
544 39
576 10065

Caution

Running this statistic locks up your cache as each item is read from the cache
and its size calculated. On a large cache, this may take some time and prevent
any set or get operations until the process completes.

The item size statistics are useful only to determine the sizes of the objects you are storing. Since the
actual memory allocation is relevant only in terms of the chunk size and page size, the information is
only useful during a careful debugging or diagnostic session.

16.2.4.5 memcached Detail Statistics

For memcached 1.3.x and higher, you can enable and obtain detailed statistics about the get, set,
and del operations on theindividual keys stored in the cache, and determine whether the attempts hit
(found) a particular key. These operations are only recorded while the detailed stats analysis is turned
on.

To enable detailed statistics, you must send the stats detail on command to the memcached
server:

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.
stats detail on
OK

Individual statistics are recorded for every get, set and del operation on a key, including keys that
are not currently stored in the server. For example, if an attempt is made to obtain the value of key
abckey and it does not exist, the get operating on the specified key are recorded while detailed
statistics are in effect, even if the key is not currently stored. The hits, that is, the number of get or
del operations for a key that exists in the server are also counted.

To turn detailed statistics off, send the stats detail off command to the memcached server:

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.
stats detail off
OK

To obtain the detailed statistics recorded during the process, send the stats detail dump
command to the memcached server:

stats detail dump
PREFIX hykkey get 0 hit 0 set 1 del 0
PREFIX xyzkey get 0 hit 0 set 1 del 0
PREFIX yukkey get 1 hit 0 set 0 del 0
PREFIX abckey get 3 hit 3 set 1 del 0
END

You can use the detailed statistics information to determine whether your memcached clients are using
a large number of keys that do not exist in the server by comparing the hit and get or del counts.
Because the information is recorded by key, you can also determine whether the failures or operations
are clustered around specific keys.



Getting memcached Statistics

1863

16.2.4.6 Using memcached-tool

The memcached-tool, located within the scripts directory within the memcached source directory.
The tool provides convenient access to some reports and statistics from any memcached instance.

The basic format of the command is:

shell> ./memcached-tool hostname:port [command]

The default output produces a list of the slab allocations and usage. For example:

shell> memcached-tool localhost:11211 display
  #  Item_Size  Max_age   Pages   Count   Full?  Evicted Evict_Time OOM
  1      80B        93s       1      20      no        0        0    0
  2     104B        93s       1      16      no        0        0    0
  3     136B      1335s       1      28      no        0        0    0
  4     176B      1335s       1      24      no        0        0    0
  5     224B      1335s       1      32      no        0        0    0
  6     280B      1335s       1      34      no        0        0    0
  7     352B      1335s       1      36      no        0        0    0
  8     440B      1335s       1      46      no        0        0    0
  9     552B      1335s       1      58      no        0        0    0
 10     696B      1335s       1      66      no        0        0    0
 11     872B      1335s       1      89      no        0        0    0
 12     1.1K      1335s       1     112      no        0        0    0
 13     1.3K      1335s       1     145      no        0        0    0
 14     1.7K      1335s       1     123      no        0        0    0
 15     2.1K      1335s       1     198      no        0        0    0
 16     2.6K      1335s       1     199      no        0        0    0
 17     3.3K      1335s       1     229      no        0        0    0
 18     4.1K      1335s       1     248     yes       36        2    0
 19     5.2K      1335s       2     328      no        0        0    0
 20     6.4K      1335s       2     316     yes      387        1    0
 21     8.1K      1335s       3     381     yes      492        1    0
 22    10.1K      1335s       3     303     yes      598        2    0
 23    12.6K      1335s       5     405     yes      605        1    0
 24    15.8K      1335s       6     384     yes      766        2    0
 25    19.7K      1335s       7     357     yes      908      170    0
 26    24.6K      1336s       7     287     yes     1012        1    0
 27    30.8K      1336s       7     231     yes     1193      169    0
 28    38.5K      1336s       4     104     yes     1323      169    0
 29    48.1K      1336s       1      21     yes     1287        1    0
 30    60.2K      1336s       1      17     yes     1093      169    0
 31    75.2K      1337s       1      13     yes      713      168    0
 32    94.0K      1337s       1      10     yes      278      168    0
 33   117.5K      1336s       1       3      no        0        0    0

This output is the same if you specify the command as display:

shell> memcached-tool localhost:11211 display
  #  Item_Size  Max_age   Pages   Count   Full?  Evicted Evict_Time OOM
  1      80B        93s       1      20      no        0        0    0
  2     104B        93s       1      16      no        0        0    0
...

The output shows a summarized version of the output from the slabs statistics. The columns provided
in the output are shown below:

• #: The slab number

• Item_Size: The size of the slab

• Max_age: The age of the oldest item in the slab

• Pages: The number of pages allocated to the slab



memcached FAQ

1864

• Count: The number of items in this slab

• Full?: Whether the slab is fully populated

• Evicted: The number of objects evicted from this slab

• Evict_Time: The time (in seconds) since the last eviction

• OOM: The number of items that have triggered an out of memory error

You can also obtain a dump of the general statistics for the server using the stats command:

shell> memcached-tool localhost:11211 stats
#localhost:11211   Field       Value
         accepting_conns           1
                   bytes         162
              bytes_read         485
           bytes_written        6820
              cas_badval           0
                cas_hits           0
              cas_misses           0
               cmd_flush           0
                 cmd_get           4
                 cmd_set           2
             conn_yields           0
   connection_structures          11
        curr_connections          10
              curr_items           2
               decr_hits           0
             decr_misses           1
             delete_hits           0
           delete_misses           0
               evictions           0
                get_hits           4
              get_misses           0
               incr_hits           0
             incr_misses           2
          limit_maxbytes    67108864
     listen_disabled_num           0
                     pid       12981
            pointer_size          32
           rusage_system    0.013911
             rusage_user    0.011876
                 threads           4
                    time  1255518565
       total_connections          20
             total_items           2
                  uptime         880
                 version       1.4.2

16.2.5 memcached FAQ

16.2.5.1 Can memcached be run on a Windows environment? .................................................. 1865
16.2.5.2 What is the maximum size of an object you can store in memcached? Is that

configurable? ................................................................................................................. 1865
16.2.5.3 Is it true memcached will be much more effective with db-read-intensive applications than

with db-write-intensive applications? ............................................................................... 1865
16.2.5.4 Is there any overhead in not using persistent connections? If persistent is always

recommended, what are the downsides (for example, locking up)? .................................. 1865
16.2.5.5 How is an event such as a crash of one of the memcached servers handled by the

memcached client? ........................................................................................................ 1865
16.2.5.6 What is a recommended hardware configuration for a memcached server? ................... 1866
16.2.5.7 Is memcached more effective for video and audio as opposed to textual read/writes? ..... 1866
16.2.5.8 Can memcached work with ASPX? ............................................................................. 1866
16.2.5.9 How expensive is it to establish a memcache connection? Should those connections be

pooled? ......................................................................................................................... 1866



memcached FAQ

1865

16.2.5.10 How is the data handled when the memcached server is down? ................................. 1866
16.2.5.11 How are auto-increment columns in the MySQL database coordinated across multiple

instances of memcached? ............................................................................................. 1866
16.2.5.12 Is compression available? ........................................................................................ 1866
16.2.5.13 Can we implement different types of memcached as different nodes in the same server,

so can there be deterministic and non-deterministic in the same server? .......................... 1866
16.2.5.14 What are best practices for testing an implementation, to ensure that it improves

performance, and to measure the impact of memcached configuration changes? And
would you recommend keeping the configuration very simple to start? ............................. 1867

16.2.5.1.Can memcached be run on a Windows environment?

No. Currently memcached is available only on the Unix/Linux platform. There is an unofficial port
available, see http://www.codeplex.com/memcachedproviders.

16.2.5.2.What is the maximum size of an object you can store in memcached? Is that configurable?

The default maximum object size is 1MB. In memcached 1.4.2 and later, you can change the
maximum size of an object using the -I command line option.

For versions before this, to increase this size, you have to re-compile memcached. You can
modify the value of the POWER_BLOCK within the slabs.c file within the source.

In memcached 1.4.2 and higher, you can configure the maximum supported object size by using
the -I command-line option. For example, to increase the maximum object size to 5MB:

$ memcached -I 5m

If an object is larger than the maximum object size, you must manually split it. memcached is
very simple: you give it a key and some data, it tries to cache it in RAM. If you try to store more
than the default maximum size, the value is just truncated for speed reasons.

16.2.5.3.Is it true memcached will be much more effective with db-read-intensive applications than with
db-write-intensive applications?

Yes. memcached plays no role in database writes, it is a method of caching data already read
from the database in RAM.

16.2.5.4.Is there any overhead in not using persistent connections? If persistent is always recommended,
what are the downsides (for example, locking up)?

If you don't use persistent connections when communicating with memcached, there will be a
small increase in the latency of opening the connection each time. The effect is comparable to
use nonpersistent connections with MySQL.

In general, the chance of locking or other issues with persistent connections is minimal, because
there is very little locking within memcached. If there is a problem, eventually your request will
time out and return no result, so your application will need to load from MySQL again.

16.2.5.5.How is an event such as a crash of one of the memcached servers handled by the memcached
client?

There is no automatic handling of this. If your client fails to get a response from a server, code a
fallback mechanism to load the data from the MySQL database.

The client APIs all provide the ability to add and remove memcached instances on the fly. If
within your application you notice that memcached server is no longer responding, you can
remove the server from the list of servers, and keys will automatically be redistributed to another
memcached server in the list. If retaining the cache content on all your servers is important,
make sure you use an API that supports a consistent hashing algorithm. For more information,
see Section 16.2.2.5, “memcached Hashing/Distribution Types”.

http://www.codeplex.com/memcachedproviders


memcached FAQ

1866

16.2.5.6.What is a recommended hardware configuration for a memcached server?

memcached has a very low processing overhead. All that is required is spare physical RAM
capacity. A memcached server does not require a dedicated machine. If you have web,
application, or database servers that have spare RAM capacity, then use them with memcached.

To build and deploy a dedicated memcached server, use a relatively low-power CPU, lots of
RAM, and one or more Gigabit Ethernet interfaces.

16.2.5.7.Is memcached more effective for video and audio as opposed to textual read/writes?

memcached works equally well for all kinds of data. To memcached, any value you store is
just a stream of data. Remember, though, that the maximum size of an object you can store in
memcached is 1MB, but can be configured to be larger by using the -I option in memcached
1.4.2 and later, or by modifying the source in versions before 1.4.2. If you plan on using
memcached with audio and video content, you will probably want to increase the maximum
object size. Also remember that memcached is a solution for caching information for reading. It
shouldn't be used for writes, except when updating the information in the cache.

16.2.5.8.Can memcached work with ASPX?

There are ports and interfaces for many languages and environments. ASPX relies on an
underlying language such as C# or VisualBasic, and if you are using ASP.NET then there
is a C# memcached library. For more information, see https://sourceforge.net/projects/
memcacheddotnet/.

16.2.5.9.How expensive is it to establish a memcache connection? Should those connections be pooled?

Opening the connection is relatively inexpensive, because there is no security, authentication
or other handshake taking place before you can start sending requests and getting results.
Most APIs support a persistent connection to a memcached instance to reduce the latency.
Connection pooling would depend on the API you are using, but if you are communicating
directly over TCP/IP, then connection pooling would provide some small performance benefit.

16.2.5.10.How is the data handled when the memcached server is down?

The behavior is entirely application dependent. Most applications fall back to loading the data
from the database (just as if they were updating the memcached information). If you are using
multiple memcached servers, you might also remove a downed server from the list to prevent
it from affecting performance. Otherwise, the client will still attempt to communicate with the
memcached server that corresponds to the key you are trying to load.

16.2.5.11.How are auto-increment columns in the MySQL database coordinated across multiple instances
of memcached?

They aren't. There is no relationship between MySQL and memcached unless your application
(or, if you are using the MySQL UDFs for memcached, your database definition) creates one.

If you are storing information based on an auto-increment key into multiple instances of
memcached, the information is only stored on one of the memcached instances anyway. The
client uses the key value to determine which memcached instance to store the information. It
doesn't store the same information across all the instances, as that would be a waste of cache
memory.

16.2.5.12.Is compression available?

Yes. Most of the client APIs support some sort of compression, and some even allow you to
specify the threshold at which a value is deemed appropriate for compression during storage.

16.2.5.13.Can we implement different types of memcached as different nodes in the same server, so can
there be deterministic and non-deterministic in the same server?

https://sourceforge.net/projects/memcacheddotnet/
https://sourceforge.net/projects/memcacheddotnet/


memcached FAQ

1867

Yes. You can run multiple instances of memcached on a single server, and in your client
configuration you choose the list of servers you want to use.

16.2.5.14.What are best practices for testing an implementation, to ensure that it improves performance,
and to measure the impact of memcached configuration changes? And would you recommend
keeping the configuration very simple to start?

The best way to test the performance is to start up a memcached instance. First, modify your
application so that it stores the data just before the data is about to be used or displayed into
memcached. Since the APIs handle the serialization of the data, it should just be a one-line
modification to your code. Then, modify the start of the process that would normally load that
information from MySQL with the code that requests the data from memcached. If the data
cannot be loaded from memcached, default to the MySQL process.

All of the changes required will probably amount to just a few lines of code. To get the best
benefit, make sure you cache entire objects (for example, all the components of a web page,
blog post, discussion thread, and so on), rather than using memcached as a simple cache of
individual rows of MySQL tables.

Keeping the configuration simple at the start, or even over the long term, is easy with
memcached. Once you have the basic structure up and running, often the only ongoing change
is to add more servers into the list of servers used by your applications. You don't need to
manage the memcached servers, and there is no complex configuration; just add more servers
to the list and let the client API and the memcached servers make the decisions.



1868



1869

Chapter 17 Replication

Table of Contents
17.1 Replication Configuration ................................................................................................. 1870

17.1.1 How to Set Up Replication .................................................................................... 1871
17.1.2 Replication Formats .............................................................................................. 1880
17.1.3 Replication and Binary Logging Options and Variables ........................................... 1887
17.1.4 Common Replication Administration Tasks ............................................................. 1940

17.2 Replication Implementation .............................................................................................. 1943
17.2.1 Replication Implementation Details ........................................................................ 1943
17.2.2 Replication Relay and Status Logs ........................................................................ 1945
17.2.3 How Servers Evaluate Replication Filtering Rules ................................................... 1948

17.3 Replication Solutions ....................................................................................................... 1954
17.3.1 Using Replication for Backups ............................................................................... 1955
17.3.2 Using Replication with Different Master and Slave Storage Engines ......................... 1958
17.3.3 Using Replication for Scale-Out ............................................................................. 1959
17.3.4 Replicating Different Databases to Different Slaves ................................................ 1960
17.3.5 Improving Replication Performance ........................................................................ 1962
17.3.6 Switching Masters During Failover ......................................................................... 1963
17.3.7 Setting Up Replication to Use Secure Connections ................................................. 1965
17.3.8 Semisynchronous Replication ................................................................................ 1966

17.4 Replication Notes and Tips .............................................................................................. 1971
17.4.1 Replication Features and Issues ............................................................................ 1971
17.4.2 Replication Compatibility Between MySQL Versions ............................................... 1996
17.4.3 Upgrading a Replication Setup .............................................................................. 1997
17.4.4 Troubleshooting Replication .................................................................................. 1998
17.4.5 How to Report Replication Bugs or Problems ......................................................... 1999

Replication enables data from one MySQL database server (the master) to be replicated to one or
more MySQL database servers (the slaves). Replication is asynchronous by default, therefore slaves
do not need to be connected permanently to receive updates from the master. This means that updates
can occur over long-distance connections and even over temporary or intermittent connections such as
a dial-up service. Depending on the configuration, you can replicate all databases, selected databases,
or even selected tables within a database.

For answers to some questions often asked by those who are new to MySQL Replication, see
Section A.13, “MySQL 5.5 FAQ: Replication”.

Advantages of replication in MySQL include:

• Scale-out solutions - spreading the load among multiple slaves to improve performance. In this
environment, all writes and updates must take place on the master server. Reads, however, may
take place on one or more slaves. This model can improve the performance of writes (since the
master is dedicated to updates), while dramatically increasing read speed across an increasing
number of slaves.

• Data security - because data is replicated to the slave, and the slave can pause the replication
process, it is possible to run backup services on the slave without corrupting the corresponding
master data.

• Analytics - live data can be created on the master, while the analysis of the information can take
place on the slave without affecting the performance of the master.

• Long-distance data distribution - if a branch office would like to work with a copy of your main data,
you can use replication to create a local copy of the data for their use without requiring permanent
access to the master.



Replication Configuration

1870

Replication in MySQL features support for one-way, asynchronous replication, in which one server acts
as the master, while one or more other servers act as slaves. This is in contrast to the synchronous
replication which is a characteristic of NDB Cluster (see Chapter 18, MySQL NDB Cluster 7.2).
In MySQL 5.5, an interface to semisynchronous replication is supported in addition to the built-in
asynchronous replication. With semisynchronous replication, a commit performed on the master
side blocks before returning to the session that performed the transaction until at least one slave
acknowledges that it has received and logged the events for the transaction. See Section 17.3.8,
“Semisynchronous Replication”

There are a number of solutions available for setting up replication between two servers, but the
best method to use depends on the presence of data and the engine types you are using. For more
information on the available options, see Section 17.1.1, “How to Set Up Replication”.

There are two core types of replication format, Statement Based Replication (SBR), which replicates
entire SQL statements, and Row Based Replication (RBR), which replicates only the changed rows.
You may also use a third variety, Mixed Based Replication (MBR). For more information on the
different replication formats, see Section 17.1.2, “Replication Formats”. In MySQL 5.5, statement-based
format is the default.

Replication is controlled through a number of different options and variables. These control the core
operation of the replication, timeouts, and the databases and filters that can be applied on databases
and tables. For more information on the available options, see Section 17.1.3, “Replication and Binary
Logging Options and Variables”.

You can use replication to solve a number of different problems, including problems with performance,
supporting the backup of different databases, and as part of a larger solution to alleviate system
failures. For information on how to address these issues, see Section 17.3, “Replication Solutions”.

For notes and tips on how different data types and statements are treated during replication, including
details of replication features, version compatibility, upgrades, and problems and their resolution,
including an FAQ, see Section 17.4, “Replication Notes and Tips”.

For detailed information on the implementation of replication, how replication works, the process and
contents of the binary log, background threads and the rules used to decide how statements are
recorded and replication, see Section 17.2, “Replication Implementation”.

17.1 Replication Configuration
Replication between servers in MySQL is based on the binary logging mechanism. The MySQL
instance operating as the master (the source of the database changes) writes updates and changes
as “events” to the binary log. The information in the binary log is stored in different logging formats
according to the database changes being recorded. Slaves are configured to read the binary log from
the master and to execute the events in the binary log on the slave's local database.

The master is “dumb” in this scenario. Once binary logging has been enabled, all statements are
recorded in the binary log. Each slave receives a copy of the entire contents of the binary log. It is the
responsibility of the slave to decide which statements in the binary log should be executed; you cannot
configure the master to log only certain events. If you do not specify otherwise, all events in the master
binary log are executed on the slave. If required, you can configure the slave to process only events
that apply to particular databases or tables.

Each slave keeps a record of the binary log coordinates: The file name and position within the file that
it has read and processed from the master. This means that multiple slaves can be connected to the
master and executing different parts of the same binary log. Because the slaves control this process,
individual slaves can be connected and disconnected from the server without affecting the master's
operation. Also, because each slave remembers the position within the binary log, it is possible for
slaves to be disconnected, reconnect and then “catch up” by continuing from the recorded position.

Both the master and each slave must be configured with a unique ID (using the server-id option).
In addition, each slave must be configured with information about the master host name, log file name,
and position within that file. These details can be controlled from within a MySQL session using the



How to Set Up Replication

1871

CHANGE MASTER TO statement on the slave. The details are stored within the slave's master.info
file.

This section describes the setup and configuration required for a replication environment, including
step-by-step instructions for creating a new replication environment. The major components of this
section are:

• For a guide to setting up two or more servers for replication, Section 17.1.1, “How to Set Up
Replication”, deals with the configuration of the systems and provides methods for copying data
between the master and slaves.

• Events in the binary log are recorded using a number of formats. These are referred to as statement-
based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication
(MIXED), uses SBR or RBR replication automatically to take advantage of the benefits of both
SBR and RBR formats when appropriate. The different formats are discussed in Section 17.1.2,
“Replication Formats”.

• Detailed information on the different configuration options and variables that apply to replication is
provided in Section 17.1.3, “Replication and Binary Logging Options and Variables”.

• Once started, the replication process should require little administration or monitoring. However, for
advice on common tasks that you may want to execute, see Section 17.1.4, “Common Replication
Administration Tasks”.

17.1.1 How to Set Up Replication

This section describes how to set up complete replication of a MySQL server. There are a number
of different methods for setting up replication, and the exact method to use depends on how you are
setting up replication, and whether you already have data within your master database.

There are some generic tasks that are common to all replication setups:

• On the master, you must enable binary logging and configure a unique server ID. This might require
a server restart. See Section 17.1.1.1, “Setting the Replication Master Configuration”.

• On each slave that you want to connect to the master, you must configure a unique server ID. This
might require a server restart. See Section 17.1.1.2, “Setting the Replication Slave Configuration”.

• You may want to create a separate user that will be used by your slaves to authenticate with the
master to read the binary log for replication. The step is optional. See Section 17.1.1.3, “Creating a
User for Replication”.

• Before creating a data snapshot or starting the replication process, you should record the position
of the binary log on the master. You will need this information when configuring the slave so that the
slave knows where within the binary log to start executing events. See Section 17.1.1.4, “Obtaining
the Replication Master Binary Log Coordinates”.

• If you already have data on your master and you want to use it to synchronize your slave,
you will need to create a data snapshot. You can create a snapshot using mysqldump (see
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”) or by copying the data files directly
(see Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”).

• You will need to configure the slave with settings for connecting to the master, such as the host
name, login credentials, and binary log file name and position. See Section 17.1.1.10, “Setting the
Master Configuration on the Slave”.

Once you have configured the basic options, you will need to follow the instructions for your replication
setup. A number of alternatives are provided:

• If you are establishing a new MySQL master and one or more slaves, you need only set up the
configuration, as you have no data to exchange. For guidance on setting up replication in this
situation, see Section 17.1.1.7, “Setting Up Replication with New Master and Slaves”.



How to Set Up Replication

1872

• If you are already running a MySQL server, and therefore already have data that must be transferred
to your slaves before replication starts, have not previously configured the binary log and are able to
shut down your MySQL server for a short period during the process, see Section 17.1.1.8, “Setting
Up Replication with Existing Data”.

• If you are adding slaves to an existing replication environment, you can set up the slaves without
affecting the master. See Section 17.1.1.9, “Introducing Additional Slaves to an Existing Replication
Environment”.

If you will be administering MySQL replication servers, we suggest that you read this entire chapter
through and try all statements mentioned in Section 13.4.1, “SQL Statements for Controlling Master
Servers”, and Section 13.4.2, “SQL Statements for Controlling Slave Servers”. You should also
familiarize yourself with the replication startup options described in Section 17.1.3, “Replication and
Binary Logging Options and Variables”.

Note

Note that certain steps within the setup process require the SUPER privilege. If
you do not have this privilege, it might not be possible to enable replication.

17.1.1.1 Setting the Replication Master Configuration

On a replication master, you must enable binary logging and establish a unique server ID. If this has
not already been done, this part of master setup requires a server restart.

Binary logging must be enabled on the master because the binary log is the basis for sending data
changes from the master to its slaves. If binary logging is not enabled, replication will not be possible.

Each server within a replication group must be configured with a unique server ID. This ID is used to
identify individual servers within the group, and must be a positive integer between 1 and (232)−1. How
you organize and select the numbers is entirely up to you.

To configure the binary log and server ID options, you will need to shut down your MySQL server and
edit the my.cnf or my.ini file. Add the following options to the configuration file within the [mysqld]
section. If these options already exist, but are commented out, uncomment the options and alter them
according to your needs. For example, to enable binary logging using a log file name prefix of mysql-
bin, and configure a server ID of 1, use these lines:

[mysqld]
log-bin=mysql-bin
server-id=1

After making the changes, restart the server.

Note

If you omit server-id (or set it explicitly to its default value of 0), a master
refuses connections from all slaves.

Note

For the greatest possible durability and consistency in a
replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the master
my.cnf file.

Note

Ensure that the skip-networking option is not enabled on your replication
master. If networking has been disabled, your slave will not able to
communicate with the master and replication will fail.



How to Set Up Replication

1873

17.1.1.2 Setting the Replication Slave Configuration

On a replication slave, you must establish a unique server ID. If this has not already been done, this
part of slave setup requires a server restart.

If the slave server ID is not already set, or the current value conflicts with the value that you have
chosen for the master server, you should shut down your slave server and edit the configuration to
specify a unique server ID. For example:

[mysqld]
server-id=2

After making the changes, restart the server.

If you are setting up multiple slaves, each one must have a unique server-id value that differs from
that of the master and from each of the other slaves. Think of server-id values as something similar
to IP addresses: These IDs uniquely identify each server instance in the community of replication
partners.

Note

If you omit server-id (or set it explicitly to its default value of 0), a slave
refuses to connect to a master.

You do not have to enable binary logging on the slave for replication to be enabled. However, if you
enable binary logging on the slave, you can use the binary log for data backups and crash recovery on
the slave, and also use the slave as part of a more complex replication topology (for example, where
the slave acts as a master to other slaves).

17.1.1.3 Creating a User for Replication

Each slave must connect to the master using a MySQL user name and password, so there must be
a user account on the master that the slave can use to connect. Any account can be used for this
operation, providing it has been granted the REPLICATION SLAVE privilege. You may wish to create a
different account for each slave, or connect to the master using the same account for each slave.

You need not create an account specifically for replication. However, you should be aware that the
user name and password will be stored in plain text within the master.info file (see Section 17.2.2.2,
“Slave Status Logs”). Therefore, you may want to create a separate account that has privileges only for
the replication process, to minimize the possibility of compromise to other accounts.

To create a new account, use CREATE USER. To grant this account the privileges required for
replication, use the GRANT statement. If you create an account solely for the purposes of replication,
that account needs only the REPLICATION SLAVE privilege. For example, to set up a new user,
repl, that can connect for replication from any host within the mydomain.com domain, issue these
statements on the master:

mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.mydomain.com';

See Section 13.7.1, “Account Management Statements”, for more information on statements for
manipulation of user accounts.

17.1.1.4 Obtaining the Replication Master Binary Log Coordinates

To configure replication on the slave you must determine the master's current coordinates within its
binary log. You will need this information so that when the slave starts the replication process, it is able
to start processing events from the binary log at the correct point.

If you have existing data on your master that you want to synchronize on your slaves before starting
the replication process, you must stop processing statements on the master, and then obtain its
current binary log coordinates and dump its data, before permitting the master to continue executing



How to Set Up Replication

1874

statements. If you do not stop the execution of statements, the data dump and the master status
information that you use will not match and you will end up with inconsistent or corrupted databases on
the slaves.

To obtain the master binary log coordinates, follow these steps:

1. Start a session on the master by connecting to it with the command-line client, and flush all tables
and block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

For InnoDB tables, note that FLUSH TABLES WITH READ LOCK also blocks COMMIT operations.

Warning

Leave the client from which you issued the FLUSH TABLES statement
running so that the read lock remains in effect. If you exit the client, the lock
is released.

2. In a different session on the master, use the SHOW MASTER STATUS statement to determine the
current binary log file name and position:

mysql > SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File             | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 | 73       | test         | manual,mysql     |
+------------------+----------+--------------+------------------+

The File column shows the name of the log file and Position shows the position within the file.
In this example, the binary log file is mysql-bin.000003 and the position is 73. Record these
values. You need them later when you are setting up the slave. They represent the replication
coordinates at which the slave should begin processing new updates from the master.

If the master has been running previously without binary logging enabled, the log file name and
position values displayed by SHOW MASTER STATUS or mysqldump --master-data will be
empty. In that case, the values that you need to use later when specifying the slave's log file and
position are the empty string ('') and 4.

You now have the information you need to enable the slave to start reading from the binary log in the
correct place to start replication.

If you have existing data that needs be to synchronized with the slave before you start replication,
leave the client running so that the lock remains in place and then proceed to Section 17.1.1.5,
“Creating a Data Snapshot Using mysqldump”, or Section 17.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”. The idea here is to prevent any further changes so that the data copied to the slaves
is in synchrony with the master.

If you are setting up a brand new master and slave replication group, you can exit the first session to
release the read lock.

17.1.1.5 Creating a Data Snapshot Using mysqldump

One way to create a snapshot of the data in an existing master database is to use the mysqldump tool
to create a dump of all the databases you want to replicate. Once the data dump has been completed,
you then import this data into the slave before starting the replication process.

The example shown here dumps all databases to a file named dbdump.db, and includes the --
master-data option which automatically appends the CHANGE MASTER TO statement required on
the slave to start the replication process:



How to Set Up Replication

1875

shell> mysqldump --all-databases --master-data > dbdump.db

If you do not use --master-data, then it is necessary to lock all tables in a separate session
manually (using FLUSH TABLES WITH READ LOCK) prior to running mysqldump, then exiting or
running UNLOCK TABLES from the second session to release the locks. You must also obtain binary
log position information matching the snapshot, using SHOW MASTER STATUS, and use this to issue
the appropriate CHANGE MASTER TO statement when starting the slave.

When choosing databases to include in the dump, remember that you need to filter out databases on
each slave that you do not want to include in the replication process.

To import the data, either copy the dump file to the slave, or access the file from the master when
connecting remotely to the slave.

17.1.1.6 Creating a Data Snapshot Using Raw Data Files

If your database is large, copying the raw data files can be more efficient than using mysqldump and
importing the file on each slave. This technique skips the overhead of updating indexes as the INSERT
statements are replayed.

Using this method with tables in storage engines with complex caching or logging algorithms requires
extra steps to produce a perfect “point in time” snapshot: the initial copy command might leave out
cache information and logging updates, even if you have acquired a global read lock. How the storage
engine responds to this depends on its crash recovery abilities.

This method also does not work reliably if the master and slave have different values for
ft_stopword_file, ft_min_word_len, or ft_max_word_len and you are copying tables having
full-text indexes.

If you use InnoDB tables, you can use the mysqlbackup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This command records the log name and
offset corresponding to the snapshot to be later used on the slave. MySQL Enterprise Backup is a
commercial product that is included as part of a MySQL Enterprise subscription. See Section 25.2,
“MySQL Enterprise Backup Overview” for detailed information.

Otherwise, use the cold backup technique to obtain a reliable binary snapshot of InnoDB tables: copy
all data files after doing a slow shutdown of the MySQL Server.

To create a raw data snapshot of MyISAM tables, you can use standard copy tools such as cp or
copy, a remote copy tool such as scp or rsync, an archiving tool such as zip or tar, or a file
system snapshot tool such as dump, providing that your MySQL data files exist on a single file system.
If you are replicating only certain databases, copy only those files that relate to those tables. (For
InnoDB, all tables in all databases are stored in the system tablespace files, unless you have the
innodb_file_per_table option enabled.)

You might want to specifically exclude the following files from your archive:

• Files relating to the mysql database.

• The master.info file.

• The master's binary log files.

• Any relay log files.

To get the most consistent results with a raw data snapshot, shut down the master server during the
process, as follows:

1. Acquire a read lock and get the master's status. See Section 17.1.1.4, “Obtaining the Replication
Master Binary Log Coordinates”.

2. In a separate session, shut down the master server:



How to Set Up Replication

1876

shell> mysqladmin shutdown

3. Make a copy of the MySQL data files. The following examples show common ways to do this. You
need to choose only one of them:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

4. Restart the master server.

If you are not using InnoDB tables, you can get a snapshot of the system from a master without
shutting down the server as described in the following steps:

1. Acquire a read lock and get the master's status. See Section 17.1.1.4, “Obtaining the Replication
Master Binary Log Coordinates”.

2. Make a copy of the MySQL data files. The following examples show common ways to do this. You
need to choose only one of them:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

3. In the client where you acquired the read lock, release the lock:

mysql> UNLOCK TABLES;

Once you have created the archive or copy of the database, copy the files to each slave before starting
the slave replication process.

17.1.1.7 Setting Up Replication with New Master and Slaves

The easiest and most straightforward method for setting up replication is to use new master and slave
servers.

You can also use this method if you are setting up new servers but have an existing dump of the
databases from a different server that you want to load into your replication configuration. By loading
the data into a new master, the data will be automatically replicated to the slaves.

To set up replication between a new master and slave:

1. Configure the MySQL master with the necessary configuration properties. See Section 17.1.1.1,
“Setting the Replication Master Configuration”.

2. Start up the MySQL master.

3. Set up a user. See Section 17.1.1.3, “Creating a User for Replication”.

4. Obtain the master status information. See Section 17.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”.

5. On the master, release the read lock:

mysql> UNLOCK TABLES;

6. On the slave, edit the MySQL configuration. See Section 17.1.1.2, “Setting the Replication Slave
Configuration”.

7. Start up the MySQL slave.

8. Execute a CHANGE MASTER TO statement to set the master replication server configuration. See
Section 17.1.1.10, “Setting the Master Configuration on the Slave”.



How to Set Up Replication

1877

Perform the slave setup steps on each slave.

Because there is no data to load or exchange on a new server configuration you do not need to copy or
import any information.

If you are setting up a new replication environment using the data from a different existing database
server, you will now need to run the dump file generated from that server on the new master. The
database updates will automatically be propagated to the slaves:

shell> mysql -h master < fulldb.dump

17.1.1.8 Setting Up Replication with Existing Data

When setting up replication with existing data, you will need to decide how best to get the data from the
master to the slave before starting the replication service.

The basic process for setting up replication with existing data is as follows:

1. With the MySQL master running, create a user to be used by the slave when connecting to the
master during replication. See Section 17.1.1.3, “Creating a User for Replication”.

2. If you have not already configured the server-id and enabled binary logging on the master
server, you will need to shut it down to configure these options. See Section 17.1.1.1, “Setting the
Replication Master Configuration”.

If you have to shut down your master server, this is a good opportunity to take a snapshot of its
databases. You should obtain the master status (see Section 17.1.1.4, “Obtaining the Replication
Master Binary Log Coordinates”) before taking down the master, updating the configuration
and taking a snapshot. For information on how to create a snapshot using raw data files, see
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”.

3. If your master server is already correctly configured, obtain its status (see Section 17.1.1.4,
“Obtaining the Replication Master Binary Log Coordinates”) and then use mysqldump to take
a snapshot (see Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”) or take a raw
snapshot of the live server using the guide in Section 17.1.1.6, “Creating a Data Snapshot Using
Raw Data Files”.

4. Update the configuration of the slave. See Section 17.1.1.2, “Setting the Replication Slave
Configuration”.

5. The next step depends on how you created the snapshot of data on the master.

If you used mysqldump:

a. Start the slave, using the --skip-slave-start option so that replication does not start.

b. Import the dump file:

shell> mysql < fulldb.dump

If you created a snapshot using the raw data files:

a. Extract the data files into your slave data directory. For example:

shell> tar xvf dbdump.tar

You may need to set permissions and ownership on the files so that the slave server can
access and modify them.

b. Start the slave, using the --skip-slave-start option so that replication does not start.



How to Set Up Replication

1878

6. Configure the slave with the replication coordinates from the master. This tells the slave the binary
log file and position within the file where replication needs to start. Also, configure the slave with the
login credentials and host name of the master. For more information on the CHANGE MASTER TO
statement required, see Section 17.1.1.10, “Setting the Master Configuration on the Slave”.

7. Start the slave threads:

mysql> START SLAVE;

After you have performed this procedure, the slave should connect to the master and catch up on any
updates that have occurred since the snapshot was taken.

If you have forgotten to set the server-id option for the master, slaves cannot connect to it.

If you have forgotten to set the server-id option for the slave, you get the following error in the
slave's error log:

Warning: You should set server-id to a non-0 value if master_host
is set; we will force server id to 2, but this MySQL server will
not act as a slave.

You also find error messages in the slave's error log if it is not able to replicate for any other reason.

Once a slave is replicating, you can find in its data directory one file named master.info and another
named relay-log.info. The slave uses these two files to keep track of how much of the master's
binary log it has processed. Do not remove or edit these files unless you know exactly what you are
doing and fully understand the implications. Even in that case, it is preferred that you use the CHANGE
MASTER TO statement to change replication parameters. The slave will use the values specified in the
statement to update the status files automatically.

Note

The content of master.info overrides some of the server options specified
on the command line or in my.cnf. See Section 17.1.3, “Replication and Binary
Logging Options and Variables”, for more details.

A single snapshot of the master suffices for multiple slaves. To set up additional slaves, use the same
master snapshot and follow the slave portion of the procedure just described.

17.1.1.9 Introducing Additional Slaves to an Existing Replication Environment

To add another slave to an existing replication configuration, you can do so without stopping the
master. Instead, set up the new slave by making a copy of an existing slave, except that you configure
the new slave with a different server-id value.

To duplicate an existing slave:

1. Shut down the existing slave:

shell> mysqladmin shutdown

2. Copy the data directory from the existing slave to the new slave. You can do this by creating an
archive using tar or WinZip, or by performing a direct copy using a tool such as cp or rsync.
Ensure that you also copy the log files and relay log files.

A common problem that is encountered when adding new replication slaves is that the new slave
fails with a series of warning and error messages like these:

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a slave and has his hostname
changed!! Please use '--relay-log=new_slave_hostname-relay-bin' to avoid this problem.



How to Set Up Replication

1879

071118 16:44:10 [ERROR] Failed to open the relay log './old_slave_hostname-relay-bin.003525'
(relay_log_pos 22940879)
071118 16:44:10 [ERROR] Could not find target log during relay log initialization
071118 16:44:10 [ERROR] Failed to initialize the master info structure

This is due to the fact that, if the --relay-log option is not specified, the relay log files contain
the host name as part of their file names. (This is also true of the relay log index file if the --
relay-log-index option is not used. See Section 17.1.3, “Replication and Binary Logging
Options and Variables”, for more information about these options.)

To avoid this problem, use the same value for --relay-log on the new slave that was
used on the existing slave. (If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin.) If this is not feasible, copy the existing slave's relay
log index file to the new slave and set the --relay-log-index option on the new slave to match
what was used on the existing slave. (If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin.index.) Alternatively—if you have already tried to
start the new slave (after following the remaining steps in this section) and have encountered errors
like those described previously—then perform the following steps:

a. If you have not already done so, issue a STOP SLAVE on the new slave.

If you have already started the existing slave again, issue a STOP SLAVE on the existing slave
as well.

b. Copy the contents of the existing slave's relay log index file into the new slave's relay log index
file, making sure to overwrite any content already in the file.

c. Proceed with the remaining steps in this section.

3. Copy the master.info and relay-log.info files from the existing slave to the new slave if
they were not located in the data directory. These files hold the current log coordinates for the
master's binary log and the slave's relay log.

4. Start the existing slave.

5. On the new slave, edit the configuration and give the new slave a unique server-id not used by
the master or any of the existing slaves.

6. Start the new slave. The slave will use the information in its master.info file to start the
replication process.

17.1.1.10 Setting the Master Configuration on the Slave

To set up the slave to communicate with the master for replication, you must tell the slave the
necessary connection information. To do this, execute the following statement on the slave, replacing
the option values with the actual values relevant to your system:

mysql> CHANGE MASTER TO
    ->     MASTER_HOST='master_host_name',
    ->     MASTER_USER='replication_user_name',
    ->     MASTER_PASSWORD='replication_password',
    ->     MASTER_LOG_FILE='recorded_log_file_name',
    ->     MASTER_LOG_POS=recorded_log_position;

Note

Replication cannot use Unix socket files. You must be able to connect to the
master MySQL server using TCP/IP.

The CHANGE MASTER TO statement has other options as well. For example, it is possible to set up
secure replication using SSL. For a full list of options, and information about the maximum permissible
length for the string-valued options, see Section 13.4.2.1, “CHANGE MASTER TO Syntax”.



Replication Formats

1880

17.1.2 Replication Formats

Replication works because events written to the binary log are read from the master and then
processed on the slave. The events are recorded within the binary log in different formats according
to the type of event. The different replication formats used correspond to the binary logging format
used when the events were recorded in the master's binary log. The correlation between binary logging
formats and the terms used during replication are:

• Replication capabilities in MySQL originally were based on propagation of SQL statements from
master to slave. This is called statement-based replication (often abbreviated as SBR), which
corresponds to the standard statement-based binary logging format. In older versions of MySQL
(5.1.4 and earlier), binary logging and replication used this format exclusively.

• Row-based binary logging logs changes in individual table rows. When used with MySQL replication,
this is known as row-based replication (often abbreviated as RBR). In row-based replication, the
master writes events to the binary log that indicate how individual table rows are changed.

• The server can change the binary logging format in real time according to the type of event using
mixed-format logging.

When the mixed format is in effect, statement-based logging is used by default, but automatically
switches to row-based logging in particular cases as described later. Replication using the mixed
format is often referred to as mixed-based replication or mixed-format replication. For more
information, see Section 5.4.4.3, “Mixed Binary Logging Format”.

In MySQL 5.5, statement-based format is the default.

NDB Cluster.  The default binary logging format in all MySQL NDB Cluster 7.2 releases, beginning
with MySQL NDB Cluster 7.2.1, is STATEMENT. (This is a change from previous versions of NDB
Cluster.) You should note that NDB Cluster Replication always uses row-based replication, and that
the NDB storage engine is incompatible with statement-based replication. This means that you must
manually set the format to ROW prior to enabling NDB Cluster Replication. See Section 18.6.2, “General
Requirements for NDB Cluster Replication”, for more information.

When using MIXED format, the binary logging format is determined in part by the storage engine being
used and the statement being executed. For more information on mixed-format logging and the rules
governing the support of different logging formats, see Section 5.4.4.3, “Mixed Binary Logging Format”.

The logging format in a running MySQL server is controlled by setting the binlog_format server
system variable. This variable can be set with session or global scope. The rules governing when and
how the new setting takes effect are the same as for other MySQL server system variables—setting
the variable for the current session lasts only until the end of that session, and the change is not visible
to other sessions; setting the variable globally requires a restart of the server to take effect. For more
information, see Section 13.7.4.1, “SET Syntax for Variable Assignment”.

There are conditions under which you cannot change the binary logging format at runtime or doing so
causes replication to fail. See Section 5.4.4.2, “Setting The Binary Log Format”.

You must have the SUPER privilege to set either the global or session binlog_format value.

The statement-based and row-based replication formats have different issues and limitations. For a
comparison of their relative advantages and disadvantages, see Section 17.1.2.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

With statement-based replication, you may encounter issues with replicating stored routines or
triggers. You can avoid these issues by using row-based replication instead. For more information, see
Section 20.7, “Binary Logging of Stored Programs”.

17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication



Replication Formats

1881

Each binary logging format has advantages and disadvantages. For most users, the mixed replication
format should provide the best combination of data integrity and performance. If, however, you want to
take advantage of the features specific to the statement-based or row-based replication format when
performing certain tasks, you can use the information in this section, which provides a summary of their
relative advantages and disadvantages, to determine which is best for your needs.

• Advantages of statement-based replication

• Disadvantages of statement-based replication

• Advantages of row-based replication

• Disadvantages of row-based replication

Advantages of statement-based replication

• Proven technology.

• Less data written to log files. When updates or deletes affect many rows, this results in much less
storage space required for log files. This also means that taking and restoring from backups can be
accomplished more quickly.

• Log files contain all statements that made any changes, so they can be used to audit the database.

Disadvantages of statement-based replication

• Statements that are unsafe for SBR. 
Not all statements which modify data (such as INSERT DELETE, UPDATE, and REPLACE statements)
can be replicated using statement-based replication. Any nondeterministic behavior is difficult
to replicate when using statement-based replication. Examples of such DML (Data Modification
Language) statements include the following:

• A statement that depends on a UDF or stored program that is nondeterministic, since the value
returned by such a UDF or stored program or depends on factors other than the parameters
supplied to it. (Row-based replication, however, simply replicates the value returned by the UDF
or stored program, so its effect on table rows and data is the same on both the master and slave.)
See Section 17.4.1.12, “Replication of Invoked Features”, for more information.

• DELETE and UPDATE statements that use a LIMIT clause without an ORDER BY are
nondeterministic. See Section 17.4.1.16, “Replication and LIMIT”.

• Statements using any of the following functions cannot be replicated properly using statement-
based replication:

• LOAD_FILE()

• UUID(), UUID_SHORT()

• USER()

• FOUND_ROWS()

• SYSDATE() (unless both the master and the slave are started with the --sysdate-is-now
option)

• GET_LOCK()

• IS_FREE_LOCK()

• IS_USED_LOCK()

• MASTER_POS_WAIT()



Replication Formats

1882

• RAND()

• RELEASE_LOCK()

• SLEEP()

• VERSION()

However, all other functions are replicated correctly using statement-based replication, including
NOW() and so forth.

For more information, see Section 17.4.1.15, “Replication and System Functions”.

Statements that cannot be replicated correctly using statement-based replication are logged with a
warning like the one shown here:

[Warning] Statement is not safe to log in statement format.

A similar warning is also issued to the client in such cases. The client can display it using SHOW
WARNINGS.

• INSERT ... SELECT requires a greater number of row-level locks than with row-based replication.

• UPDATE statements that require a table scan (because no index is used in the WHERE clause) must
lock a greater number of rows than with row-based replication.

• For InnoDB: An INSERT statement that uses AUTO_INCREMENT blocks other nonconflicting INSERT
statements.

• For complex statements, the statement must be evaluated and executed on the slave before the
rows are updated or inserted. With row-based replication, the slave only has to modify the affected
rows, not execute the full statement.

• If there is an error in evaluation on the slave, particularly when executing complex statements,
statement-based replication may slowly increase the margin of error across the affected rows over
time. See Section 17.4.1.29, “Slave Errors During Replication”.

• Stored functions execute with the same NOW() value as the calling statement. However, this is not
true of stored procedures.

• Deterministic UDFs must be applied on the slaves.

• Table definitions must be (nearly) identical on master and slave. See Section 17.4.1.10, “Replication
with Differing Table Definitions on Master and Slave”, for more information.

Advantages of row-based replication

• All changes can be replicated. This is the safest form of replication.

The mysql database is not replicated. The mysql database is instead seen as a node-specific
database. Row-based replication is not supported on tables in this database. Instead, statements
that would normally update this information—such as GRANT, REVOKE and the manipulation of
triggers, stored routines (including stored procedures), and views—are all replicated to slaves using
statement-based replication.

For statements such as CREATE TABLE ... SELECT, a CREATE statement is generated from the
table definition and replicated using statement-based format, while the row insertions are replicated
using row-based format.

• The technology is the same as in most other database management systems; knowledge about
other systems transfers to MySQL.



Replication Formats

1883

• Fewer row locks are required on the master, which thus achieves higher concurrency, for the
following types of statements:

• INSERT ... SELECT

• INSERT statements with AUTO_INCREMENT

• UPDATE or DELETE statements with WHERE clauses that do not use keys or do not change most of
the examined rows.

• Fewer row locks are required on the slave for any INSERT, UPDATE, or DELETE statement.

Disadvantages of row-based replication

• RBR tends to generate more data that must be logged. To replicate a DML statement (such as an
UPDATE or DELETE statement), statement-based replication writes only the statement to the binary
log. By contrast, row-based replication writes each changed row to the binary log. If the statement
changes many rows, row-based replication may write significantly more data to the binary log; this is
true even for statements that are rolled back. This also means that taking and restoring from backup
can require more time. In addition, the binary log is locked for a longer time to write the data, which
may cause concurrency problems.

• Deterministic UDFs that generate large BLOB values take longer to replicate with row-based
replication than with statement-based replication. This is because the BLOB column value is logged,
rather than the statement generating the data.

• You cannot examine the logs to see what statements were executed, nor can you see on the slave
what statements were received from the master and executed.

However, you can see what data was changed using mysqlbinlog with the options --base64-
output=DECODE-ROWS and --verbose.

• For tables using the MyISAM storage engine, a stronger lock is required on the slave for INSERT
statements when applying them as row-based events to the binary log than when applying them as
statements. This means that concurrent inserts on MyISAM tables are not supported when using row-
based replication.

17.1.2.2 Usage of Row-Based Logging and Replication

Major changes in the replication environment and in the behavior of applications can result from using
row-based logging (RBL) or row-based replication (RBR) rather than statement-based logging or
replication. This section describes a number of issues known to exist when using row-based logging
or replication, and discusses some best practices for taking advantage of row-based logging and
replication.

For additional information, see Section 17.1.2, “Replication Formats”, and Section 17.1.2.1,
“Advantages and Disadvantages of Statement-Based and Row-Based Replication”.

For information about issues specific to NDB Cluster Replication (which depends on row-based
replication), see Section 18.6.3, “Known Issues in NDB Cluster Replication”.

• RBL, RBR, and temporary tables.  As noted in Section 17.4.1.24, “Replication and Temporary
Tables”, temporary tables are not replicated when using row-based format. When mixed format is in
effect, “safe” statements involving temporary tables are logged using statement-based format. For
more information, see Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and
Row-Based Replication”.

Temporary tables are not replicated when using row-based format because there is no need. In
addition, because temporary tables can be read only from the thread which created them, there is
seldom if ever any benefit obtained from replicating them, even when using statement-based format.



Replication Formats

1884

Beginning with MySQL 5.5.5, you can switch from statement-based to row-based binary logging
mode even when temporary tables have been created. However, while using the row-based format,
the MySQL server cannot determine the logging mode that was in effect when a given temporary
table was created. For this reason, the server in such cases logs a DROP TEMPORARY TABLE
IF EXISTS statement for each temporary table that still exists for a given client session when
that session ends. (Bug #11760229, Bug #11762267) While this means that it is possible that an
unnecessary DROP TEMPORARY TABLE statement might be logged in some cases, the statement is
harmless, and does not cause an error even if the table does not exist, due to the presence of the IF
EXISTS option.

• RBL and synchronization of nontransactional tables.  When many rows are affected, the set
of changes is split into several events; when the statement commits, all of these events are written to
the binary log. When executing on the slave, a table lock is taken on all tables involved, and then the
rows are applied in batch mode. (This may or may not be effective, depending on the engine used for
the slave's copy of the table.)

• Latency and binary log size.  Because RBL writes changes for each row to the binary log, its
size can increase quite rapidly. In a replication environment, this can significantly increase the time
required to make changes on the slave that match those on the master. You should be aware of the
potential for this delay in your applications.

• Reading the binary log.  mysqlbinlog displays row-based events in the binary log using the
BINLOG statement (see Section 13.7.6.1, “BINLOG Syntax”). This statement displays an event in
printable form, but as a base 64-encoded string the meaning of which is not evident. When invoked
with the --base64-output=DECODE-ROWS and --verbose options, mysqlbinlog formats the
contents of the binary log in a manner that is easily human readable. This is helpful when binary log
events were written in row-based format if you want to read or recover from a replication or database
failure using the contents of the binary log. For more information, see Section 4.6.7.2, “mysqlbinlog
Row Event Display”.

• Binary log execution errors and slave_exec_mode.  If slave_exec_mode is IDEMPOTENT, a
failure to apply changes from RBL because the original row cannot be found does not trigger an error
or cause replication to fail. This means that it is possible that updates are not applied on the slave,
so that the master and slave are no longer synchronized. Latency issues and use of nontransactional
tables with RBR when slave_exec_mode is IDEMPOTENT can cause the master and slave to
diverge even further. For more information about slave_exec_mode, see Section 5.1.5, “Server
System Variables”.

Note

slave_exec_mode=IDEMPOTENT is generally useful only for circular
replication or multi-master replication with NDB Cluster, for which
IDEMPOTENT is the default value (see Section 18.6, “NDB Cluster
Replication”).

For other scenarios, setting slave_exec_mode to STRICT is normally
sufficient; this is the default value for storage engines other than NDB.

• Lack of binary log checksums.  RBL uses no checksums. This means that network, disk, and
other errors may not be identified when processing the binary log. To ensure that data is transmitted
without network corruption, you may want to consider using SSL, which adds another layer of
checksumming, for replication connections. The CHANGE MASTER TO statement has options to
enable replication over SSL. See also Section 13.4.2.1, “CHANGE MASTER TO Syntax”, for general
information about setting up MySQL with SSL.

• Filtering based on server ID not supported.  A common practice is to filter out changes on
some slaves by using a WHERE clause that includes the relation @@server_id <> id_value
clause with UPDATE and DELETE statements, a simple example of such a clause being
WHERE @@server_id <> 1. However, this does not work correctly with row-based logging.



Replication Formats

1885

If you must use the server_id system variable for statement filtering, you must also use --
binlog_format=STATEMENT.

In MySQL 5.5, you can do filtering based on server ID by using the IGNORE_SERVER_IDS option
for the CHANGE MASTER TO statement. This option works with the statement-based and row-based
logging formats.

• Database-level replication options.  The effects of the --replicate-do-db, --replicate-
ignore-db, and --replicate-rewrite-db options differ considerably depending on whether
row-based or statement-based logging is used. Because of this, it is recommended to avoid
database-level options and instead use table-level options such as --replicate-do-table and
--replicate-ignore-table. For more information about these options and the impact that your
choice of replication format has on how they operate, see Section 17.1.3, “Replication and Binary
Logging Options and Variables”.

• RBL, nontransactional tables, and stopped slaves.  When using row-based logging, if the
slave server is stopped while a slave thread is updating a nontransactional table, the slave database
may reaches an inconsistent state. For this reason, it is recommended that you use a transactional
storage engine such as InnoDB for all tables replicated using the row-based format.

Use of STOP SLAVE (or STOP SLAVE SQL_THREAD in MySQL 5.5.9 and later) prior to
shutting down the slave MySQL server helps prevent such issues from occurring, and is always
recommended regardless of the logging format or storage engines employed.

17.1.2.3 Determination of Safe and Unsafe Statements in Binary Logging

When speaking of the “safeness” of a statement in MySQL Replication, we are referring to whether a
statement and its effects can be replicated correctly using statement-based format. If this is true of the
statement, we refer to the statement as safe; otherwise, we refer to it as unsafe.

In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain
nondeterministic functions are not considered unsafe (see Nondeterministic functions not considered
unsafe, later in this section). In addition, statements using results from floating-point math functions—
which are hardware-dependent—are always considered unsafe (see Section 17.4.1.13, “Replication
and Floating-Point Values”).

Handling of safe and unsafe statements.  A statement is treated differently depending on whether
the statement is considered safe, and with respect to the binary logging format (that is, the current
value of binlog_format).

• No distinction is made in the treatment of safe and unsafe statements when the binary logging mode
is ROW.

• If the binary logging format is MIXED, statements flagged as unsafe are logged using the row-based
format; statements regarded as safe are logged using the statement-based format.

• If the binary logging format is STATEMENT, statements flagged as being unsafe generate a warning
to this effect. (Safe statements are logged normally.)

Each statement flagged as unsafe generates a warning. Formerly, in cases where a great many
such statements were executed on the master, this could lead to very large error log files, sometimes
even filling up an entire disk unexpectedly. To guard against this, MySQL 5.5.27 introduced
a warning suppression mechanism, which behaves as follows: Whenever the 50 most recent
ER_BINLOG_UNSAFE_STATEMENT warnings have been generated more than 50 times in any 50-
second period, warning suppression is enabled. When activated, this causes such warnings not to be
written to the error log; instead, for each 50 warnings of this type, a note The last warning was
repeated N times in last S seconds is written to the error log. This continues as long as the
50 most recent such warnings were issued in 50 seconds or less; once the rate has decreased below
this threshold, the warnings are once again logged normally. Warning suppression has no effect on
how the safety of statements for statement-based logging is determined, nor on how warnings are sent
to the client (MySQL clients still receive one warning for each such statement).



Replication Formats

1886

For more information, see Section 17.1.2, “Replication Formats”.

Statements considered unsafe. 
Statements having the following characteristics are considered unsafe:

• Statements containing system functions that may return a different value on slave. 
These functions include FOUND_ROWS(), GET_LOCK(), IS_FREE_LOCK(), IS_USED_LOCK(),
LOAD_FILE(), MASTER_POS_WAIT(), RAND(), RELEASE_LOCK(), ROW_COUNT(),
SESSION_USER(), SLEEP(), SYSDATE(), SYSTEM_USER(), USER(), UUID(), and
UUID_SHORT().

Nondeterministic functions not considered unsafe.  Although these functions are not
deterministic, they are treated as safe for purposes of logging and replication: CONNECTION_ID(),
CURDATE(), CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP(), CURTIME(),
LOCALTIME(), LOCALTIMESTAMP(), NOW(), UNIX_TIMESTAMP(), UTC_DATE(), UTC_TIME(),
UTC_TIMESTAMP(), and LAST_INSERT_ID()

For more information, see Section 17.4.1.15, “Replication and System Functions”.

• References to system variables.  Most system variables are not replicated correctly using the
statement-based format. For exceptions, see Section 5.4.4.3, “Mixed Binary Logging Format”.

See Section 17.4.1.38, “Replication and Variables”.

• UDFs.  Since we have no control over what a UDF does, we must assume that it is executing
unsafe statements.

• Updates a table having an AUTO_INCREMENT column.  Prior to MySQL 5.5.3, all such
statements were always considered unsafe because the order in which the rows are updated could
differ on the master and the slave. In MySQL 5.3.3 and later, these statements are unsafe only when
they are executed by a trigger or stored program (Bug #50192, Bug #11758052).

An INSERT into a table that has a composite primary key containing an AUTO_INCREMENT column
that is not the first column of this composite key is unsafe.

For more information, see Section 17.4.1.1, “Replication and AUTO_INCREMENT”.

• INSERT DELAYED statement.  This statement is considered unsafe because the insertion of the
rows may interleave with concurrently executing statements.

• INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or unique
keys.  When executed against a table that contains more than one primary or unique key, this
statement is considered unsafe, being sensitive to the order in which the storage engine checks
the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server
depends.

An INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than one
unique or primary key is marked as unsafe for statement-based replication beginning with MySQL
5.5.24. (Bug #11765650, Bug #58637)

• Updates using LIMIT.  The order in which rows are retrieved is not specified.

See Section 17.4.1.16, “Replication and LIMIT”.

• Accesses or references log tables.  The contents of the system log table may differ between
master and slave.

• Nontransactional operations after transactional operations.  Within a transaction, allowing
any nontransactional reads or writes to execute after any transactional reads or writes is considered
unsafe.

For more information, see Section 17.4.1.35, “Replication and Transactions”.



Replication and Binary Logging Options and Variables

1887

• Accesses or references self-logging tables.  All reads and writes to self-logging tables are
considered unsafe. Within a transaction, any statement following a read or write to self-logging tables
is also considered unsafe.

• LOAD DATA INFILE statements.  Beginning with MySQL 5.5.6, LOAD DATA INFILE is treated
as unsafe and when binlog_format=mixed the statement is logged in row-based format. When
binlog_format=statement LOAD DATA INFILE does not generate a warning, unlike other
unsafe statements.

For additional information, see Section 17.4.1, “Replication Features and Issues”.

17.1.3 Replication and Binary Logging Options and Variables

The next few sections contain information about mysqld options and server variables that are used in
replication and for controlling the binary log. Options and variables for use on replication masters and
replication slaves are covered separately, as are options and variables relating to binary logging. A set
of quick-reference tables providing basic information about these options and variables is also included
(in the next section following this one).

  Of particular importance is the --server-id option.

Command-Line Format --server-id=#

Name server_id

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

This option is common to both master and slave replication servers, and is used in replication to
enable master and slave servers to identify themselves uniquely. For additional information, see
Section 17.1.3.2, “Replication Master Options and Variables”, and Section 17.1.3.3, “Replication Slave
Options and Variables”.

On the master and each slave, you must use the --server-id option to establish a unique replication
ID in the range from 1 to 232 − 1. “Unique”, means that each ID must be different from every other ID in
use by any other replication master or slave. Example: server-id=3.

If you omit --server-id, the default ID is 0, in which case the master refuses connections from all
slaves, and slaves refuse to connect to the master. In MySQL 5.5, whether the server ID is set to 0
explicitly or the default is allowed to be used, the server sets the server_id system variable to 1; this
is a known issue that is fixed in MySQL 5.7.

For more information, see Section 17.1.1.2, “Setting the Replication Slave Configuration”.

17.1.3.1 Replication and Binary Logging Option and Variable Reference

The following tables list basic information about the MySQL command-line options and system
variables applicable to replication and the binary log.



Replication and Binary Logging Options and Variables

1888

Table 17.1 Summary of Replication options and variables in MySQL 5.5

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

abort-slave-event-count

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

Com_change_master

No No Yes

No Both No

DESCRIPTION: Count of CHANGE MASTER TO statements

Com_show_master_status

No No Yes

No Both No

DESCRIPTION: Count of SHOW MASTER STATUS statements

Com_show_new_master

No No Yes

No Both No

DESCRIPTION: Count of SHOW NEW MASTER statements

Com_show_slave_hosts

No No Yes

No Both No

DESCRIPTION: Count of SHOW SLAVE HOSTS statements

Com_show_slave_status

No No Yes

No Both No

DESCRIPTION: Count of SHOW SLAVE STATUS statements

Com_slave_start

No No Yes

No Both No

DESCRIPTION: Count of START SLAVE statements

Com_slave_stop

No No Yes

No Both No

DESCRIPTION: Count of STOP SLAVE statements

disconnect-slave-event-count

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

init_slave



Replication and Binary Logging Options and Variables

1889

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes Yes No

Yes Global Yes

DESCRIPTION: Statements that are executed when a slave connects to a master

log-slave-updates

Yes Yes No

Yes Global No

DESCRIPTION: Tells the slave to log the updates performed by its SQL thread to its own binary log

log_slave_updates

Yes Yes No

Yes Global No

DESCRIPTION: Whether the slave should log the updates performed by its SQL thread to its own
binary log. Read-only; set using the --log-slave-updates server option.

master-connect-retry

Yes No No

Yes No

DESCRIPTION: Number of seconds the slave thread will sleep before retrying to connect to the
master in case the master goes down or the connection is lost

master-host

Yes No No

Yes No

DESCRIPTION: Master host name or IP address for replication

master-info-file

Yes No No

Yes No

DESCRIPTION: The location and name of the file that remembers the master and where the I/O
replication thread is in the master's binary logs

master-password

Yes No No

Yes No

DESCRIPTION: The password the slave thread will authenticate with when connecting to master

master-port

Yes No No

Yes No

DESCRIPTION: The port the master is listening on

master-retry-count

Yes No No

Yes No

DESCRIPTION: Number of tries the slave makes to connect to the master before giving up

master-ssl



Replication and Binary Logging Options and Variables

1890

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes No No

Yes No

DESCRIPTION: Enable the slave to connect to the master using SSL

master-ssl-ca

Yes No No

Yes No

DESCRIPTION: Master SSL CA file; applies only if master-ssl is enabled

master-ssl-capath

Yes No No

Yes No

DESCRIPTION: Master SSL CA path; applies only if master-ssl is enabled

master-ssl-cert

Yes No No

Yes No

DESCRIPTION: Master SSL certificate file name; applies only if master-ssl is enabled

master-ssl-cipher

Yes No No

Yes No

DESCRIPTION: Master SSL cipher; applies only if master-ssl is enabled

master-ssl-key

Yes No No

Yes No

DESCRIPTION: Master SSL key file name; applies only if master-ssl is enabled

master-user

Yes No No

Yes No

DESCRIPTION: The user name the slave thread will use for authentication when connecting to
master. The user must have FILE privilege. If the master user is not set, user test is assumed. The
value in master.info will take precedence if it can be read

relay-log

Yes Yes No

Yes Global No

DESCRIPTION: The location and base name to use for relay logs

relay-log-index

Yes Yes No

Yes Global No

DESCRIPTION: The location and name to use for the file that keeps a list of the last relay logs

relay-log-info-file

Yes No No



Replication and Binary Logging Options and Variables

1891

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes No

DESCRIPTION: The location and name of the file that remembers where the SQL replication thread
is in the relay logs

relay-log-recovery

Yes No No

Yes No

DESCRIPTION: Enables automatic recovery of relay log files from master at startup

relay_log_index

Yes Yes No

Yes Global No

DESCRIPTION: The name of the relay log index file

relay_log_info_file

Yes Yes No

Yes Global No

DESCRIPTION: The name of the file in which the slave records information about the relay logs

relay_log_purge

Yes Yes No

Yes Global Yes

DESCRIPTION: Determines whether relay logs are purged

relay_log_recovery

Yes Yes No

Yes Global Yes

DESCRIPTION: Whether automatic recovery of relay log files from master at startup is enabled; must
be enabled for a crash-safe slave.

relay_log_space_limit

Yes Yes No

Yes Global No

DESCRIPTION: Maximum space to use for all relay logs

replicate-do-db

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread to restrict replication to the specified database

replicate-do-table

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread to restrict replication to the specified table

replicate-ignore-db

Yes No No

Yes No



Replication and Binary Logging Options and Variables

1892

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Tells the slave SQL thread not to replicate to the specified database

replicate-ignore-table

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread not to replicate to the specified table

replicate-rewrite-db

Yes No No

Yes No

DESCRIPTION: Updates to a database with a different name than the original

replicate-same-server-id

Yes No No

Yes No

DESCRIPTION: In replication, if set to 1, do not skip events having our server id

replicate-wild-do-table

Yes No No

Yes No

DESCRIPTION: Tells the slave thread to restrict replication to the tables that match the specified
wildcard pattern

replicate-wild-ignore-table

Yes No No

Yes No

DESCRIPTION: Tells the slave thread not to replicate to the tables that match the given wildcard
pattern

report-host

Yes Yes No

Yes Global No

DESCRIPTION: Host name or IP of the slave to be reported to the master during slave registration

report-password

Yes Yes No

Yes Global No

DESCRIPTION: An arbitrary password that the slave server should report to the master. Not the
same as the password for the MySQL replication user account.

report-port

Yes Yes No

Yes Global No

DESCRIPTION: Port for connecting to slave reported to the master during slave registration

report-user

Yes Yes No

Yes Global No



Replication and Binary Logging Options and Variables

1893

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: An arbitrary user name that a slave server should report to the master. Not the same
as the name used with the MySQL replication user account.

rpl_recovery_rank

No Yes No

No Global Yes

DESCRIPTION: Not used; removed in later versions

Rpl_semi_sync_master_clients

No No Yes

No Global No

DESCRIPTION: Number of semisynchronous slaves

rpl_semi_sync_master_enabled

No Yes No

No Global Yes

DESCRIPTION: Whether semisynchronous replication is enabled on the master

Rpl_semi_sync_master_net_avg_wait_time

No No Yes

No Global No

DESCRIPTION: The average time the master waited for a slave reply

Rpl_semi_sync_master_net_wait_time

No No Yes

No Global No

DESCRIPTION: The total time the master waited for slave replies

Rpl_semi_sync_master_net_waits

No No Yes

No Global No

DESCRIPTION: The total number of times the master waited for slave replies

Rpl_semi_sync_master_no_times

No No Yes

No Global No

DESCRIPTION: Number of times the master turned off semisynchronous replication

Rpl_semi_sync_master_no_tx

No No Yes

No Global No

DESCRIPTION: Number of commits not acknowledged successfully

Rpl_semi_sync_master_status

No No Yes

No Global No

DESCRIPTION: Whether semisynchronous replication is operational on the master



Replication and Binary Logging Options and Variables

1894

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Rpl_semi_sync_master_timefunc_failures

No No Yes

No Global No

DESCRIPTION: Number of times the master failed when calling time functions

rpl_semi_sync_master_timeout

No Yes No

No Global Yes

DESCRIPTION: Number of milliseconds to wait for slave acknowledgment

rpl_semi_sync_master_trace_level

No Yes No

No Global Yes

DESCRIPTION: The semisynchronous replication debug trace level on the master

Rpl_semi_sync_master_tx_avg_wait_time

No No Yes

No Global No

DESCRIPTION: The average time the master waited for each transaction

Rpl_semi_sync_master_tx_wait_time

No No Yes

No Global No

DESCRIPTION: The total time the master waited for transactions

Rpl_semi_sync_master_tx_waits

No No Yes

No Global No

DESCRIPTION: The total number of times the master waited for transactions

rpl_semi_sync_master_wait_no_slave

No Yes No

No Global Yes

DESCRIPTION: Whether master waits for timeout even with no slaves

Rpl_semi_sync_master_wait_pos_backtraverse

No No Yes

No Global No

DESCRIPTION: The total number of times the master waited for an event with binary coordinates
lower than events waited for previously

Rpl_semi_sync_master_wait_sessions

No No Yes

No Global No

DESCRIPTION: Number of sessions currently waiting for slave replies

Rpl_semi_sync_master_yes_tx



Replication and Binary Logging Options and Variables

1895

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

No No Yes

No Global No

DESCRIPTION: Number of commits acknowledged successfully

rpl_semi_sync_slave_enabled

No Yes No

No Global Yes

DESCRIPTION: Whether semisynchronous replication is enabled on slave

Rpl_semi_sync_slave_status

No No Yes

No Global No

DESCRIPTION: Whether semisynchronous replication is operational on slave

rpl_semi_sync_slave_trace_level

No Yes No

No Global Yes

DESCRIPTION: The semisynchronous replication debug trace level on the slave

Rpl_status

No No Yes

No Global No

DESCRIPTION: The status of fail-safe replication (not implemented)

show-slave-auth-info

Yes No No

Yes No

DESCRIPTION: Show user name and password in SHOW SLAVE HOSTS on this master

skip-slave-start

Yes No No

Yes No

DESCRIPTION: If set, slave is not autostarted

slave-load-tmpdir

Yes Yes No

Yes Global No

DESCRIPTION: The location where the slave should put its temporary files when replicating a LOAD
DATA INFILE statement

slave-max-allowed-packet

Yes No No

Yes No

DESCRIPTION: Maximum size, in bytes, of a packet that can be sent from a replication master to a
slave; overrides max_allowed_packet.

slave_net_timeout

Yes Yes No



Replication and Binary Logging Options and Variables

1896

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes Global Yes

DESCRIPTION: Number of seconds to wait for more data from a master/slave connection before
aborting the read

slave-skip-errors

Yes Yes No

Yes Global No

DESCRIPTION: Tells the slave thread to continue replication when a query returns an error from the
provided list

slave_compressed_protocol

Yes Yes No

Yes Global Yes

DESCRIPTION: Use compression on master/slave protocol

slave_exec_mode

Yes Yes No

Yes Global Yes

DESCRIPTION: Allows for switching the slave thread between IDEMPOTENT mode (key and some
other errors suppressed) and STRICT mode; STRICT mode is the default, except for NDB Cluster,
where IDEMPOTENT is always used

Slave_heartbeat_period

No No Yes

No Global No

DESCRIPTION: The slave's replication heartbeat interval, in seconds

slave_max_allowed_packet

No Yes No

No Global Yes

DESCRIPTION: Maximum size, in bytes, of a packet that can be sent from a replication master to a
slave; overrides max_allowed_packet.

Slave_open_temp_tables

No No Yes

No Global No

DESCRIPTION: Number of temporary tables that the slave SQL thread currently has open

Slave_retried_transactions

No No Yes

No Global No

DESCRIPTION: The total number of times since startup that the replication slave SQL thread has
retried transactions

Slave_running

No No Yes

No Global No

DESCRIPTION: The state of this server as a replication slave (slave I/O thread status)



Replication and Binary Logging Options and Variables

1897

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

slave_transaction_retries

Yes Yes No

Yes Global Yes

DESCRIPTION: Number of times the slave SQL thread will retry a transaction in case it failed with a
deadlock or elapsed lock wait timeout, before giving up and stopping

slave_type_conversions

Yes Yes No

Yes Global No

DESCRIPTION: Controls type conversion mode on replication slave. Value is a list of zero or more
elements from the list: ALL_LOSSY, ALL_NON_LOSSY. Set to an empty string to disallow type
conversions between master and slave.

sql_slave_skip_counter

No Yes No

No Global Yes

DESCRIPTION: Number of events from the master that a slave server should skip. Not compatible
with GTID replication.

sync_binlog

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronously flush binary log to disk after every #th event

sync_master_info

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronize master.info to disk after every #th event.

sync_relay_log

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronize relay log to disk after every #th event.

sync_relay_log_info

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronize relay.info file to disk after every #th event.

Section 17.1.3.2, “Replication Master Options and Variables”, provides more detailed information about
options and variables relating to replication master servers. For more information about options and
variables relating to replication slaves, see Section 17.1.3.3, “Replication Slave Options and Variables”.



Replication and Binary Logging Options and Variables

1898

Table 17.2 Summary of Binary Logging options and variables in MySQL 5.5

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

binlog-do-db

Yes No No

Yes No

DESCRIPTION: Limits binary logging to specific databases

binlog_format

Yes Yes No

Yes Both Yes

DESCRIPTION: Specifies the format of the binary log

binlog-ignore-db

Yes No No

Yes No

DESCRIPTION: Tells the master that updates to the given database should not be logged to the
binary log

binlog-row-event-max-size

Yes No No

Yes No

DESCRIPTION: Binary log max event size

Binlog_cache_disk_use

No No Yes

No Global No

DESCRIPTION: Number of transactions that used a temporary file instead of the binary log cache

binlog_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Size of the cache to hold the SQL statements for the binary log during a transaction

Binlog_cache_use

No No Yes

No Global No

DESCRIPTION: Number of transactions that used the temporary binary log cache

binlog_direct_non_transactional_updates

Yes Yes No

Yes Both Yes

DESCRIPTION: Causes updates using statement format to nontransactional engines to be written
directly to binary log. See documentation before using.

Binlog_stmt_cache_disk_use

No No Yes

No Global No



Replication and Binary Logging Options and Variables

1899

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Number of nontransactional statements that used a temporary file instead of the
binary log statement cache

binlog_stmt_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Size of the cache to hold nontransactional statements for the binary log during a
transaction

Binlog_stmt_cache_use

No No Yes

No Global No

DESCRIPTION: Number of statements that used the temporary binary log statement cache

Com_show_binlog_events

No No Yes

No Both No

DESCRIPTION: Count of SHOW BINLOG EVENTS statements

Com_show_binlogs

No No Yes

No Both No

DESCRIPTION: Count of SHOW BINLOGS statements

log-bin-use-v1-row-events

Yes Yes No

Yes Global No

DESCRIPTION: Use version 1 binary log row events

log_bin_use_v1_row_events

Yes Yes No

Yes Global No

DESCRIPTION: Shows whether server is using version 1 binary log row events

max-binlog-dump-events

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

max_binlog_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Can be used to restrict the total size used to cache a multi-statement transaction

max_binlog_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Binary log will be rotated automatically when size exceeds this value



Replication and Binary Logging Options and Variables

1900

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

max_binlog_stmt_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Can be used to restrict the total size used to cache all nontransactional statements
during a transaction

sporadic-binlog-dump-fail

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

Section 17.1.3.4, “Binary Log Options and Variables”, provides more detailed information about options
and variables relating to binary logging. For additional general information about the binary log, see
Section 5.4.4, “The Binary Log”.

For information about the sql_log_bin and sql_log_off variables, see Section 5.1.5, “Server
System Variables”.

For a table showing all command-line options, system and status variables used with mysqld, see
Section 5.1.3, “Server Option and Variable Reference”.

17.1.3.2 Replication Master Options and Variables

This section describes the server options and system variables that you can use on replication master
servers. You can specify the options either on the command line or in an option file. You can specify
system variable values using SET.

On the master and each slave, you must use the server-id option to establish a unique replication
ID. For each server, you should pick a unique positive integer in the range from 1 to 232 − 1, and each
ID must be different from every other ID in use by any other replication master or slave. Example:
server-id=3.

For options used on the master for controlling binary logging, see Section 17.1.3.4, “Binary Log Options
and Variables”.

System Variables Used on Replication Masters

The following system variables are used in controlling replication masters:

•   auto_increment_increment

Name auto_increment_increment

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Permitted Values

Min
Value

1



Replication and Binary Logging Options and Variables

1901

Max
Value

65535

auto_increment_increment and auto_increment_offset are intended for use with master-
to-master replication, and can be used to control the operation of AUTO_INCREMENT columns. Both
variables have global and session values, and each can assume an integer value between 1 and
65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be set
to 1 instead. Attempting to set the value of either of these two variables to an integer greater than
65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the value of
auto_increment_increment or auto_increment_offset to a noninteger value gives rise to
an error, and the actual value of the variable remains unchanged.

Note

auto_increment_increment is also supported for use with NDB tables.

These two variables affect AUTO_INCREMENT column behavior as follows:

• auto_increment_increment controls the interval between successive column values. For
example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name            | Value |
+--------------------------+-------+
| auto_increment_increment | 1     |
| auto_increment_offset    | 1     |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc1
    -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
  Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name            | Value |
+--------------------------+-------+
| auto_increment_increment | 10    |
| auto_increment_offset    | 1     |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4  Duplicates: 0  Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
|   1 |
|  11 |
|  21 |
|  31 |
+-----+
4 rows in set (0.00 sec)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT column
value. Consider the following, assuming that these statements are executed during the same
session as the example given in the description for auto_increment_increment:



Replication and Binary Logging Options and Variables

1902

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name            | Value |
+--------------------------+-------+
| auto_increment_increment | 10    |
| auto_increment_offset    | 5     |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2
    -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4  Duplicates: 0  Warnings: 0

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
|   5 |
|  15 |
|  25 |
|  35 |
+-----+
4 rows in set (0.02 sec)

If the value of auto_increment_offset is greater than that of auto_increment_increment,
the value of auto_increment_offset is ignored.

Should one or both of these variables be changed and then new rows inserted into a table containing
an AUTO_INCREMENT column, the results may seem counterintuitive because the series of
AUTO_INCREMENT values is calculated without regard to any values already present in the column,
and the next value inserted is the least value in the series that is greater than the maximum existing
value in the AUTO_INCREMENT column. In other words, the series is calculated like so:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name            | Value |
+--------------------------+-------+
| auto_increment_increment | 10    |
| auto_increment_offset    | 5     |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
|   1 |
|  11 |
|  21 |
|  31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4  Duplicates: 0  Warnings: 0



Replication and Binary Logging Options and Variables

1903

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
|   1 |
|  11 |
|  21 |
|  31 |
|  35 |
|  45 |
|  55 |
|  65 |
+-----+
8 rows in set (0.00 sec)

The values shown for auto_increment_increment and auto_increment_offset generate
the series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The greatest value present in the col column
prior to the INSERT is 31, and the next available value in the AUTO_INCREMENT series is 35, so the
inserted values for col begin at that point and the results are as shown for the SELECT query.

It is not possible to confine the effects of these two variables to a single table, and thus they do
not take the place of the sequences offered by some other database management systems; these
variables control the behavior of all AUTO_INCREMENT columns in all tables on the MySQL server.
If the global value of either variable is set, its effects persist until the global value is changed or
overridden by setting the session value, or until mysqld is restarted. If the local value is set, the
new value affects AUTO_INCREMENT columns for all tables into which new rows are inserted by the
current user for the duration of the session, unless the values are changed during that session.

The default value of auto_increment_increment is 1. See Section 17.4.1.1, “Replication and
AUTO_INCREMENT”.

•   auto_increment_offset

Name auto_increment_offset

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

1

Permitted Values

Max
Value

65535

This variable has a default value of 1. For particulars, see the description for
auto_increment_increment.

Note

auto_increment_offset is also supported for use with NDB tables.

17.1.3.3 Replication Slave Options and Variables

Startup Options for Replication Slaves

Obsolete Replication Slave Options

System Variables Used on Replication Slaves



Replication and Binary Logging Options and Variables

1904

This section describes the server options and system variables that apply to slave replication servers.
You can specify the options either on the command line or in an option file. Many of the options can be
set while the server is running by using the CHANGE MASTER TO statement. You can specify system
variable values using SET.

Server ID.  On the master and each slave, you must use the server-id option to establish a
unique replication ID in the range from 1 to 232 − 1. “Unique” means that each ID must be different from
every other ID in use by any other replication master or slave. Example my.cnf file:

[mysqld]
server-id=3

Startup Options for Replication Slaves

The following list describes startup options for controlling replication slave servers. Many of these
options can be set while the server is running by using the CHANGE MASTER TO statement. Others,
such as the --replicate-* options, can be set only when the slave server starts. Replication-related
system variables are discussed later in this section.

•   --abort-slave-event-count

Command-Line Format --abort-slave-event-count=#

Type integer

Default 0

Permitted Values

Min
Value

0

When this option is set to some positive integer value other than 0 (the default) it affects replication
behavior as follows: After the slave SQL thread has started, value log events are permitted to be
executed; after that, the slave SQL thread does not receive any more events, just as if the network
connection from the master were cut. The slave thread continues to run, and the output from SHOW
SLAVE STATUS displays Yes in both the Slave_IO_Running and the Slave_SQL_Running
columns, but no further events are read from the relay log.

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting.

•   --disconnect-slave-event-count

Command-Line Format --disconnect-slave-event-count=#

Type integerPermitted Values

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

•   --log-slave-updates

Command-Line Format --log-slave-updates

Name log_slave_updates

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF



Replication and Binary Logging Options and Variables

1905

Normally, a slave does not log to its own binary log any updates that are received from a master
server. This option tells the slave to log the updates performed by its SQL thread to its own binary
log. For this option to have any effect, the slave must also be started with the --log-bin option
to enable binary logging. Prior to MySQL 5.5, the server would not start when using the --log-
slave-updates option without also starting the server with the --log-bin option, and would fail
with an error; in MySQL 5.5, only a warning is generated. (Bug #44663) --log-slave-updates is
used when you want to chain replication servers. For example, you might want to set up replication
servers using this arrangement:

A -> B -> C

Here, A serves as the master for the slave B, and B serves as the master for the slave C. For this to
work, B must be both a master and a slave. You must start both A and B with --log-bin to enable
binary logging, and B with the --log-slave-updates option so that updates received from A are
logged by B to its binary log.

•   --log-slow-slave-statements

Command-Line Format --log-slow-slave-statements

Type booleanPermitted Values

Default OFF

When the slow query log is enabled, this option enables logging for queries that have taken more
than long_query_time seconds to execute on the slave.

•   --log-warnings[=level]

Command-Line Format --log-warnings[=#]

Name log_warnings

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615



Replication and Binary Logging Options and Variables

1906

This option causes a server to print more messages to the error log about what it is doing. With
respect to replication, the server generates warnings that it succeeded in reconnecting after a
network/connection failure, and informs you as to how each slave thread started. This option is
enabled (1) by default; to disable it, use --log-warnings=0. If the value is greater than 1, aborted
connections are written to the error log, and access-denied errors for new connection attempts are
written. See Section B.5.2.11, “Communication Errors and Aborted Connections”.

Note that the effects of this option are not limited to replication. It produces warnings across a
spectrum of server activities.

•   --master-info-file=file_name

Command-Line Format --master-info-file=file_name

Type file namePermitted Values

Default master.info

The name to use for the file in which the slave records information about the master. The default
name is master.info in the data directory. For information about the format of this file, see
Section 17.2.2.2, “Slave Status Logs”.

•   --master-retry-count=count

Command-Line Format --master-retry-count=#

Type integer

Default 86400

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 86400

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The number of times that the slave tries to connect to the master before giving up. Reconnects are
attempted at intervals set by the MASTER_CONNECT_RETRY option of the CHANGE MASTER TO
statement (default 60). Reconnects are triggered when data reads by the slave time out according to
the --slave-net-timeout option. The default value is 86400. A value of 0 means “infinite”; the
slave attempts to connect forever.

•   slave-max-allowed-packet=bytes

Introduced 5.5.26

Command-Line Format --slave-max-allowed-packet=#

Type integer

Default 1073741824

Min
Value

1024

Permitted Values

Max
Value

1073741824



Replication and Binary Logging Options and Variables

1907

In MySQL 5.5.26 and later, this option sets the maximum packet size in bytes for the slave SQL
and I/O threads, so that large updates using row-based replication do not cause replication to fail
because an update exceeded max_allowed_packet. (Bug #12400221, Bug #60926)

The corresponding server variable slave_max_allowed_packet always has a value that is a
positive integer multiple of 1024; if you set it to some value that is not such a multiple, the value is
automatically rounded down to the next highest multiple of 1024. (For example, if you start the server
with --slave-max-allowed-packet=10000, the value used is 9216; setting 0 as the value
causes 1024 to be used.) A truncation warning is issued in such cases.

The maximum (and default) value is 1073741824 (1 GB); the minimum is 1024.

•   --max-relay-log-size=size

Command-Line Format --max-relay-log-size=#

Name max_relay_log_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1073741824

The size at which the server rotates relay log files automatically. If this value is nonzero, the relay
log is rotated automatically when its size exceeds this value. If this value is zero (the default), the
size at which relay log rotation occurs is determined by the value of max_binlog_size. For more
information, see Section 17.2.2.1, “The Slave Relay Log”.

•   --relay-log=file_name

Command-Line Format --relay-log=file_name

Name relay_log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The base name for the relay log. The default base name is host_name-relay-bin. The server
writes the file in the data directory unless the base name is given with a leading absolute path name
to specify a different directory. The server creates relay log files in sequence by adding a numeric
suffix to the base name.

Due to the manner in which MySQL parses server options, if you specify this option, you must supply
a value; the default base name is used only if the option is not actually specified. If you use the --
relay-log option without specifying a value, unexpected behavior is likely to result; this behavior
depends on the other options used, the order in which they are specified, and whether they are
specified on the command line or in an option file. For more information about how MySQL handles
server options, see Section 4.2.3, “Specifying Program Options”.



Replication and Binary Logging Options and Variables

1908

If you specify this option, the value specified is also used as the base name for the relay log index
file. You can override this behavior by specifying a different relay log index file base name using the
--relay-log-index option.

Starting with MySQL 5.5.20, when the server reads an entry from the index file, it checks whether
the entry contains a relative path. If it does, the relative part of the path in replaced with the absolute
path set using the --relay-log option. An absolute path remains unchanged; in such a case,
the index must be edited manually to enable the new path or paths to be used. Prior to MySQL
5.5.20, manual intervention was required whenever relocating the binary log or relay log files. (Bug
#11745230, Bug #12133)

You may find the --relay-log option useful in performing the following tasks:

• Creating relay logs whose names are independent of host names.

• If you need to put the relay logs in some area other than the data directory because your relay logs
tend to be very large and you do not want to decrease max_relay_log_size.

• To increase speed by using load-balancing between disks.

•   --relay-log-index=file_name

Command-Line Format --relay-log-index=file_name

Name relay_log_index

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name to use for the relay log index file. The default name is host_name-relay-bin.index in
the data directory, where host_name is the name of the slave server.

Due to the manner in which MySQL parses server options, if you specify this option, you must supply
a value; the default base name is used only if the option is not actually specified. If you use the --
relay-log-index option without specifying a value, unexpected behavior is likely to result; this
behavior depends on the other options used, the order in which they are specified, and whether
they are specified on the command line or in an option file. For more information about how MySQL
handles server options, see Section 4.2.3, “Specifying Program Options”.

If you specify this option, the value specified is also used as the base name for the relay logs. You
can override this behavior by specifying a different relay log file base name using the --relay-log
option.

•   --relay-log-info-file=file_name

Command-Line Format --relay-log-info-file=file_name

Type file namePermitted Values

Default relay-log.info

The name to use for the file in which the slave records information about the relay logs. The default
name is relay-log.info in the data directory. For information about the format of this file, see
Section 17.2.2.2, “Slave Status Logs”.

•   --relay-log-purge={0|1}



Replication and Binary Logging Options and Variables

1909

Command-Line Format --relay-log-purge

Name relay_log_purge

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default
value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL
relay_log_purge = N.

•   --relay-log-recovery={0|1}

Command-Line Format --relay-log-recovery

Type booleanPermitted Values

Default FALSE

Enables automatic relay log recovery immediately following server startup, which means that the
replication slave discards all unprocessed relay logs and retrieves them from the replication master.
This should be used following a crash on the replication slave to ensure that no possibly corrupted
relay logs are processed. The default value is 0 (disabled).

•   --relay-log-space-limit=size

Command-Line Format --relay-log-space-limit=#

Name relay_log_space_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Permitted Values (64-bit
platforms, >= 5.5.3)

Min
Value

0



Replication and Binary Logging Options and Variables

1910

Max
Value

18446744073709551615

This option places an upper limit on the total size in bytes of all relay logs on the slave. A value of 0
means “no limit.” This is useful for a slave server host that has limited disk space. When the limit is
reached, the I/O thread stops reading binary log events from the master server until the SQL thread
has caught up and deleted some unused relay logs. Note that this limit is not absolute: There are
cases where the SQL thread needs more events before it can delete relay logs. In that case, the I/
O thread exceeds the limit until it becomes possible for the SQL thread to delete some relay logs
because not doing so would cause a deadlock. You should not set --relay-log-space-limit to
less than twice the value of --max-relay-log-size (or --max-binlog-size if --max-relay-
log-size is 0). In that case, there is a chance that the I/O thread waits for free space because
--relay-log-space-limit is exceeded, but the SQL thread has no relay log to purge and is
unable to satisfy the I/O thread. This forces the I/O thread to ignore --relay-log-space-limit
temporarily.

•   --replicate-do-db=db_name

Command-Line Format --replicate-do-db=name

Permitted Values Type string

The effects of this option depend on whether statement-based or row-based replication is in use.

Statement-based replication.  Tell the slave SQL thread to restrict replication to statements
where the default database (that is, the one selected by USE) is db_name. To specify more than
one database, use this option multiple times, once for each database; however, doing so does not
replicate cross-database statements such as UPDATE some_db.some_table SET foo='bar'
while a different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, if you supply a comma
separated list then the list will be treated as the name of a single database.

An example of what does not work as you might expect when using statement-based replication: If
the slave is started with --replicate-do-db=sales and you issue the following statements on
the master, the UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “check just the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table
DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

Row-based replication.  Tells the slave SQL thread to restrict replication to database db_name.
Only tables belonging to db_name are changed; the current database has no effect on this. Suppose
that the slave is started with --replicate-do-db=sales and row-based replication is in effect,
and then the following statements are run on the master:

USE prices;
UPDATE sales.february SET amount=amount+100;

The february table in the sales database on the slave is changed in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, issuing the following



Replication and Binary Logging Options and Variables

1911

statements on the master has no effect on the slave when using row-based replication and --
replicate-do-db=sales:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the statement USE prices were changed to USE sales, the UPDATE statement's effects
would still not be replicated.

Another important difference in how --replicate-do-db is handled in statement-based replication
as opposed to row-based replication occurs with regard to statements that refer to multiple
databases. Suppose that the slave is started with --replicate-do-db=db1, and the following
statements are executed on the master:

USE db1;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

If you are using statement-based replication, then both tables are updated on the slave. However,
when using row-based replication, only table1 is affected on the slave; since table2 is in a
different database, table2 on the slave is not changed by the UPDATE. Now suppose that, instead
of the USE db1 statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

In this case, the UPDATE statement would have no effect on the slave when using statement-based
replication. However, if you are using row-based replication, the UPDATE would change table1 on
the slave, but not table2—in other words, only tables in the database named by --replicate-
do-db are changed, and the choice of default database has no effect on this behavior.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.%
instead. See Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-do-db
affects binary logging, and the effects of the replication format on how --
replicate-do-db affects replication behavior are the same as those of the
logging format on the behavior of --binlog-do-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

•   --replicate-ignore-db=db_name

Command-Line Format --replicate-ignore-db=name

Permitted Values Type string

As with --replicate-do-db, the effects of this option depend on whether statement-based or
row-based replication is in use.

Statement-based replication.  Tells the slave SQL thread not to replicate any statement where
the default database (that is, the one selected by USE) is db_name.

Row-based replication.  Tells the slave SQL thread not to update any tables in the database
db_name. The default database has no effect.

When using statement-based replication, the following example does not work as you might expect.
Suppose that the slave is started with --replicate-ignore-db=sales and you issue the
following statements on the master:



Replication and Binary Logging Options and Variables

1912

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is replicated in such a case because --replicate-ignore-db applies
only to the default database (determined by the USE statement). Because the sales database
was specified explicitly in the statement, the statement has not been filtered. However, when using
row-based replication, the UPDATE statement's effects are not propagated to the slave, and the
slave's copy of the sales.january table is unchanged; in this instance, --replicate-ignore-
db=sales causes all changes made to tables in the master's copy of the sales database to be
ignored by the slave.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, if you supply a comma separated list then the list
will be treated as the name of a single database.

You should not use this option if you are using cross-database updates and you do not want these
updates to be replicated. See Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.

If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.
% instead. See Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-ignore-
db affects binary logging, and the effects of the replication format on how --
replicate-ignore-db affects replication behavior are the same as those
of the logging format on the behavior of --binlog-ignore-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

•   --replicate-do-table=db_name.tbl_name

Command-Line Format --replicate-do-table=name

Permitted Values Type string

Tells the slave SQL thread to restrict replication to the specified table. To specify more than one
table, use this option multiple times, once for each table. This works for both cross-database updates
and default database updates, in contrast to --replicate-do-db. See Section 17.2.3, “How
Servers Evaluate Replication Filtering Rules”.

This option affects only statements that apply to tables. It does not affect statements that apply only
to other database objects, such as stored routines. To filter statements operating on stored routines,
use one or more of the --replicate-*-db options.

•   --replicate-ignore-table=db_name.tbl_name

Command-Line Format --replicate-ignore-table=name

Permitted Values Type string

Tells the slave SQL thread not to replicate any statement that updates the specified table, even if any
other tables might be updated by the same statement. To specify more than one table to ignore, use
this option multiple times, once for each table. This works for cross-database updates, in contrast
to --replicate-ignore-db. See Section 17.2.3, “How Servers Evaluate Replication Filtering
Rules”.

This option affects only statements that apply to tables. It does not affect statements that apply only
to other database objects, such as stored routines. To filter statements operating on stored routines,
use one or more of the --replicate-*-db options.



Replication and Binary Logging Options and Variables

1913

•   --replicate-rewrite-db=from_name->to_name

Command-Line Format --replicate-rewrite-db=old_name->new_name

Permitted Values Type string

Tells the slave to translate the default database (that is, the one selected by USE) to to_name if it
was from_name on the master. Only statements involving tables are affected (not statements such
as CREATE DATABASE, DROP DATABASE, and ALTER DATABASE), and only if from_name is the
default database on the master. To specify multiple rewrites, use this option multiple times. The
server uses the first one with a from_name value that matches. The database name translation is
done before the --replicate-* rules are tested.

Statements in which table names are qualified with database names when using this option do not
work with table-level replication filtering options such as --replicate-do-table. Suppose we
have a database named a on the master, one named b on the slave, each containing a table t, and
have started the master with --replicate-rewrite-db='a->b'. At a later point in time, we
execute DELETE FROM a.t. In this case, no relevant filtering rule works, for the reasons shown
here:

1. --replicate-do-table=a.t does not work because the slave has table t in database b.

2. --replicate-do-table=b.t does not match the original statement and so is ignored.

3. --replicate-do-table=*.t is handled identically to --replicate-do-table=a.t, and
thus does not work, either.

Similarly, the --replication-rewrite-db option does not work with cross-database updates.

If you use this option on the command line and the > character is special to your command
interpreter, quote the option value. For example:

shell> mysqld --replicate-rewrite-db="olddb->newdb"

•   --replicate-same-server-id

Command-Line Format --replicate-same-server-id

Type booleanPermitted Values

Default FALSE

To be used on slave servers. Usually you should use the default setting of 0, to prevent infinite loops
caused by circular replication. If set to 1, the slave does not skip events having its own server ID.
Normally, this is useful only in rare configurations. Cannot be set to 1 if --log-slave-updates is
used. By default, the slave I/O thread does not write binary log events to the relay log if they have the
slave's server ID (this optimization helps save disk usage). If you want to use --replicate-same-
server-id, be sure to start the slave with this option before you make the slave read its own events
that you want the slave SQL thread to execute.

•   --replicate-wild-do-table=db_name.tbl_name

Command-Line Format --replicate-wild-do-table=name

Permitted Values Type string

Tells the slave thread to restrict replication to statements where any of the updated tables match the
specified database and table name patterns. Patterns can contain the % and _ wildcard characters,
which have the same meaning as for the LIKE pattern-matching operator. To specify more than one
table, use this option multiple times, once for each table. This works for cross-database updates. See
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.



Replication and Binary Logging Options and Variables

1914

This option applies to tables, views, and triggers. It does not apply to stored procedures and
functions, or events. To filter statements operating on the latter objects, use one or more of the --
replicate-*-db options.

Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a table
where the database name starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-
level statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if
you use --replicate-wild-do-table=foo%.%, database-level statements are replicated if the
database name matches the pattern foo%.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not
replicate tables from the my1ownAABCdb database, you should escape the _ and % characters like
this: --replicate-wild-do-table=my\_own\%db. If you use the option on the command line,
you might need to double the backslashes or quote the option value, depending on your command
interpreter. For example, with the bash shell, you would need to type --replicate-wild-do-
table=my\\_own\\%db.

•   --replicate-wild-ignore-table=db_name.tbl_name

Command-Line Format --replicate-wild-ignore-table=name

Permitted Values Type string

Tells the slave thread not to replicate a statement where any table matches the given wildcard
pattern. To specify more than one table to ignore, use this option multiple times, once for each table.
This works for cross-database updates. See Section 17.2.3, “How Servers Evaluate Replication
Filtering Rules”.

Example: --replicate-wild-ignore-table=foo%.bar% does not replicate updates that use a
table where the database name starts with foo and the table name starts with bar.

For information about how matching works, see the description of the --replicate-wild-do-
table option. The rules for including literal wildcard characters in the option value are the same as
for --replicate-wild-ignore-table as well.

•   --report-host=host_name

Command-Line Format --report-host=host_name

Name report_host

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The host name or IP address of the slave to be reported to the master during slave registration. This
value appears in the output of SHOW SLAVE HOSTS on the master server. Leave the value unset if
you do not want the slave to register itself with the master. Note that it is not sufficient for the master
to simply read the IP address of the slave from the TCP/IP socket after the slave connects. Due to
NAT and other routing issues, that IP may not be valid for connecting to the slave from the master or
other hosts.

•   --report-password=password



Replication and Binary Logging Options and Variables

1915

Command-Line Format --report-password=name

Name report_password

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The account password of the slave to be reported to the master during slave registration. This value
appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-
info option is given.

Although the name of this option might imply otherwise, --report-password is not connected to
the MySQL user privilege system and so is not necessarily (or even likely to be) the same as the
password for the MySQL replication user account.

•   --report-port=slave_port_num

Command-Line Format --report-port=#

Name report_port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 3306

Min
Value

0

Permitted Values (<=
5.5.22)

Max
Value

65535

Type integer

Default 0

Min
Value

0

Permitted Values (>=
5.5.23)

Max
Value

65535

The TCP/IP port number for connecting to the slave, to be reported to the master during slave
registration. Set this only if the slave is listening on a nondefault port or if you have a special tunnel
from the master or other clients to the slave. If you are not sure, do not use this option.

Prior to MySQL 5.5.23, the default value for this option was 3306. In MySQL 5.5.23 and later, the
value shown is the port number actually used by the slave (Bug #13333431). This change also
affects the default value displayed by SHOW SLAVE HOSTS.

•   --report-user=user_name

Command-Line Format --report-user=name

Name report_userSystem Variable

Variable
Scope

Global



Replication and Binary Logging Options and Variables

1916

Dynamic
Variable

No

Permitted Values Type string

The account user name of the slave to be reported to the master during slave registration. This value
appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-
info option is given.

Although the name of this option might imply otherwise, --report-user is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the name
of the MySQL replication user account.

•   --show-slave-auth-info

Command-Line Format --show-slave-auth-info

Type booleanPermitted Values

Default FALSE

Display slave user names and passwords in the output of SHOW SLAVE HOSTS on the master server
for slaves started with the --report-user and --report-password options.

•   --skip-slave-start

Command-Line Format --skip-slave-start

Type booleanPermitted Values

Default FALSE

Tells the slave server not to start the slave threads when the server starts. To start the threads later,
use a START SLAVE statement.

•   --slave_compressed_protocol={0|1}

Command-Line Format --slave-compressed-protocol

Name slave_compressed_protocol

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If this option is set to 1, use compression for the slave/master protocol if both the slave and the
master support it. The default is 0 (no compression).

•   --slave-load-tmpdir=dir_name

Command-Line Format --slave-load-tmpdir=dir_name

Name slave_load_tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name



Replication and Binary Logging Options and Variables

1917

Default /tmp

The name of the directory where the slave creates temporary files. This option is by default equal
to the value of the tmpdir system variable. When the slave SQL thread replicates a LOAD DATA
INFILE statement, it extracts the file to be loaded from the relay log into temporary files, and then
loads these into the table. If the file loaded on the master is huge, the temporary files on the slave
are huge, too. Therefore, it might be advisable to use this option to tell the slave to put temporary
files in a directory located in some file system that has a lot of available space. In that case, the relay
logs are huge as well, so you might also want to use the --relay-log option to place the relay logs
in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-
based file system) because the temporary files used to replicate LOAD DATA INFILE must survive
machine restarts. The directory also should not be one that is cleared by the operating system during
the system startup process.

•   --slave-net-timeout=seconds

Command-Line Format --slave-net-timeout=#

Name slave_net_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 3600

Permitted Values

Min
Value

1

The number of seconds to wait for more data from the master before the slave considers the
connection broken, aborts the read, and tries to reconnect. The first retry occurs immediately after
the timeout. The interval between retries is controlled by the MASTER_CONNECT_RETRY option for
the CHANGE MASTER TO statement, and the number of reconnection attempts is limited by the --
master-retry-count option. The default is 3600 seconds (one hour).

•   --slave-skip-errors=[err_code1,err_code2,...|all]

(MySQL NDB Cluster 7.2.6 and later:) --slave-skip-errors=[err_code1,err_code2,...|
all|ddl_exist_errors]

Command-Line Format --slave-skip-errors=name

Name slave_skip_errors

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors



Replication and Binary Logging Options and Variables

1918

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors

Type string

Default OFF

OFF

[list of error codes]

Permitted Values (>=
5.5.15-ndb-7.2.1, <=
5.5.20-ndb-7.2.5)

Valid
Values

all

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values (>=
5.5.22-ndb-7.2.6)

Valid
Values

ddl_exist_errors

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to
resolve the inconsistency in the data manually. This option tells the slave SQL thread to continue
replication when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no
bugs in your replication setup and client programs, and no bugs in MySQL itself, an error that
stops replication should never occur. Indiscriminate use of this option results in slaves becoming
hopelessly out of synchrony with the master, with you having no idea why this has occurred.

For error codes, you should use the numbers provided by the error message in your slave error
log and in the output of SHOW SLAVE STATUS. Appendix B, Errors, Error Codes, and Common
Problems, lists server error codes.

You can also (but should not) use the very nonrecommended value of all to cause the slave to
ignore all error messages and keeps going regardless of what happens. Needless to say, if you use
all, there are no guarantees regarding the integrity of your data. Please do not complain (or file bug
reports) in this case if the slave's data is not anywhere close to what it is on the master. You have
been warned.

MySQL NDB Cluster 7.2.6 and later support an additional shorthand value ddl_exist_errors
for use with the enhanced failover mechanism which is implemented beginning
with that version of NDB Cluster. This value is equivalent to the error code list
1007,1008,1050,1051,1054,1060,1061,1068,1094,1146. This value is not supported by
the mysqld binary included with the MySQL Server 5.5 distribution. (Bug #11762277, Bug #54854)
For more information, see Section 18.6.8, “Implementing Failover with NDB Cluster Replication”.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all
--slave-skip-errors=ddl_exist_errors



Replication and Binary Logging Options and Variables

1919

Obsolete Replication Slave Options

The following options are removed in MySQL 5.5. If you attempt to start mysqld with any of these
options in MySQL 5.5, the server aborts with an unknown variable error. To set the replication
parameters formerly associated with these options, you must use the CHANGE MASTER TO ...
statement (see Section 13.4.2.1, “CHANGE MASTER TO Syntax”).

The options affected are shown in this list:

• --master-host

• --master-user

• --master-password

• --master-port

• --master-connect-retry

• --master-ssl

• --master-ssl-ca

• --master-ssl-capath

• --master-ssl-cert

• --master-ssl-cipher

• --master-ssl-key

System Variables Used on Replication Slaves

The following list describes system variables for controlling replication slave servers. They can be set
at server startup and some of them can be changed at runtime using SET. Server options used with
replication slaves are listed earlier in this section.

•   init_slave

Command-Line Format --init-slave=name

Name init_slave

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

This variable is similar to init_connect, but is a string to be executed by a slave server each time
the SQL thread starts. The format of the string is the same as for the init_connect variable.

Note

The SQL thread sends an acknowledgment to the client before it executes
init_slave. Therefore, it is not guaranteed that init_slave has been
executed when START SLAVE returns. See Section 13.4.2.5, “START SLAVE
Syntax”, for more information.

•   relay_log

Command-Line Format --relay-log=file_name

System Variable Name relay_log



Replication and Binary Logging Options and Variables

1920

Variable
Scope

Global

Dynamic
Variable

No

Permitted Values Type file name

The name of the relay log file.

•   relay_log_index

Command-Line Format --relay-log-index

Name relay_log_index

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default *host_name*-relay-bin.index

The name of the relay log index file. The default name is host_name-relay-bin.index in the
data directory, where host_name is the name of the slave server.

•   relay_log_info_file

Command-Line Format --relay-log-info-file=file_name

Name relay_log_info_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default relay-log.info

The name of the file in which the slave records information about the relay logs. The default name is
relay-log.info in the data directory.

•   relay_log_recovery

Command-Line Format --relay-log-recovery

Name relay_log_recovery

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

Enables automatic relay log recovery immediately following server startup, which means that the
replication slave discards all unprocessed relay logs and retrieves them from the replication master.
This should be used following a crash on the replication slave to ensure that no possibly corrupted
relay logs are processed. The default value is 0 (disabled). This global variable can be changed
dynamically, or by starting the slave with the --relay-log-recovery option.



Replication and Binary Logging Options and Variables

1921

• rpl_recovery_rank

This variable is unused, and is removed in MySQL 5.6.

•   slave_compressed_protocol

Command-Line Format --slave-compressed-protocol

Name slave_compressed_protocol

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether to use compression of the slave/master protocol if both the slave and the master support it.

•   slave_exec_mode

Command-Line Format --slave-exec-mode=mode

Name slave_exec_mode

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default STRICT (ALL)

Default IDEMPOTENT (NDB)

IDEMPOTENT

Permitted Values

Valid
Values STRICT

Controls how a slave thread resolves conflicts and errors during replication. IDEMPOTENT mode
causes suppression of duplicate-key and no-key-found errors. This mode should be employed in
multi-master replication, circular replication, and some other special replication scenarios. STRICT
mode is the default, and is suitable for most other cases.

This mode is needed for multi-master replication, circular replication, and some other special
replication scenarios for NDB Cluster Replication. (See Section 18.6.10, “NDB Cluster Replication:
Multi-Master and Circular Replication”, and Section 18.6.11, “NDB Cluster Replication Conflict
Resolution”, for more information.) The mysqld supplied with NDB Cluster ignores any value
explicitly set for slave_exec_mode, and always treats it as IDEMPOTENT.

In MySQL Server 5.5, STRICT mode is the default value. This should not be changed; currently,
IDEMPOTENT mode is supported only by NDB.

•   slave_load_tmpdir

Command-Line Format --slave-load-tmpdir=dir_name

Name slave_load_tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No



Replication and Binary Logging Options and Variables

1922

Type directory namePermitted Values

Default /tmp

The name of the directory where the slave creates temporary files for replicating LOAD DATA
INFILE statements.

•   slave_max_allowed_packet

Introduced 5.5.26

Name slave_max_allowed_packet

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1073741824

Min
Value

1024

Permitted Values

Max
Value

1073741824

In MySQL 5.5.26 and later, this variable sets the maximum packet size for the slave SQL and I/O
threads, so that large updates using row-based replication do not cause replication to fail because an
update exceeded max_allowed_packet.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or
used; setting slave_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning
is issued in all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is
1024.

slave_max_allowed_packet can also be set at startup, using the --slave-max-allowed-
packet option.

•   slave_net_timeout

Command-Line Format --slave-net-timeout=#

Name slave_net_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 3600

Permitted Values

Min
Value

1

The number of seconds to wait for more data from a master/slave connection before aborting the
read.

•   slave_skip_errors

Command-Line Format --slave-skip-errors=name



Replication and Binary Logging Options and Variables

1923

Name slave_skip_errors

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors

Type string

Default OFF

OFF

[list of error codes]

Permitted Values (>=
5.5.15-ndb-7.2.1, <=
5.5.20-ndb-7.2.5)

Valid
Values

all

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values (>=
5.5.22-ndb-7.2.6)

Valid
Values

ddl_exist_errors

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to
resolve the inconsistency in the data manually. This variable tells the slave SQL thread to continue
replication when a statement returns any of the errors listed in the variable value.

•   slave_transaction_retries

Command-Line Format --slave-transaction-retries=#

Name slave_transaction_retries

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Permitted Values (32-bit
platforms)

Min
Value

0



Replication and Binary Logging Options and Variables

1924

Max
Value

4294967295

Type integer

Default 10

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 10

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

If a replication slave SQL thread fails to execute a transaction because of an
InnoDB deadlock or because the transaction's execution time exceeded InnoDB's
innodb_lock_wait_timeout or NDBCLUSTER's TransactionDeadlockDetectionTimeout
or TransactionInactiveTimeout, it automatically retries slave_transaction_retries
times before stopping with an error. The default value is 10.

•   slave_type_conversions

Introduced 5.5.3

Command-Line Format --slave-type-conversions=set

Name slave_type_conversions

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type set

Default

ALL_LOSSY

Permitted Values

Valid
Values ALL_NON_LOSSY

Controls the type conversion mode in effect on the slave when using row-based replication, including
NDB Cluster Replication. Its value is a comma-delimited set of zero or more elements from the list:
ALL_LOSSY, ALL_NON_LOSSY. Set this variable to an empty string to disallow type conversions
between the master and the slave. Changes require a restart of the slave to take effect.

For additional information on type conversion modes applicable to attribute promotion and demotion
in row-based replication, see Row-based replication: attribute promotion and demotion.

This variable was added in MySQL 5.5.3.

•   sql_slave_skip_counter

Name sql_slave_skip_counterSystem Variable

Variable
Scope

Global



Replication and Binary Logging Options and Variables

1925

Dynamic
Variable

Yes

Permitted Values Type integer

The number of events from the master that a slave server should skip.

Important

If skipping the number of events specified by setting this variable would
cause the slave to begin in the middle of an event group, the slave continues
to skip until it finds the beginning of the next event group and begins from
that point. For more information, see Section 13.4.2.4, “SET GLOBAL
sql_slave_skip_counter Syntax”.

•   sync_master_info

Command-Line Format --sync-master-info=#

Name sync_master_info

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

If the value of this variable is greater than 0, a replication slave synchronizes its master.info
file to disk (using fdatasync()) after every sync_master_info events. The default value is 0
(recommended in most situations), which does not force any synchronization to disk by the MySQL
server; in this case, the server relies on the operating system to flush the master.info file's
contents from time to time as for any other file.

•   sync_relay_log

Command-Line Format --sync-relay-log=#

System Variable Name sync_relay_log



Replication and Binary Logging Options and Variables

1926

Variable
Scope

Global

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk
(using fdatasync()) after every sync_relay_log events are written to the relay log.

The default value of sync_relay_log is 0, which does no synchronizing to disk; in this case, the
server relies on the operating system to flush the relay log's contents from time to time as for any
other file.

A value of 1 is the safest choice because in the event of a crash you lose at most one event from the
relay log. However, it is also the slowest choice (unless the disk has a battery-backed cache, which
makes synchronization very fast).

•   sync_relay_log_info

Command-Line Format --sync-relay-log-info=#

Name sync_relay_log_info

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integerPermitted Values (64-bit
platforms, <= 5.5.2) Default 0



Replication and Binary Logging Options and Variables

1927

Min
Value

0

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

If the value of this variable is greater than 0, a replication slave synchronizes its relay-log.info
file to disk (using fdatasync()) after every sync_relay_log_info transactions. A value of 1
is the generally the best choice. The default value of sync_relay_log_info is 0, which does
not force any synchronization to disk by the MySQL server—in this case, the server relies on the
operating system to flush the relay-log.info file's contents from time to time as for any other file.

17.1.3.4 Binary Log Options and Variables

Startup Options Used with Binary Logging

System Variables Used with Binary Logging

You can use the mysqld options and system variables that are described in this section to affect
the operation of the binary log as well as to control which statements are written to the binary log.
For additional information about the binary log, see Section 5.4.4, “The Binary Log”. For additional
information about using MySQL server options and system variables, see Section 5.1.4, “Server
Command Options”, and Section 5.1.5, “Server System Variables”.

Startup Options Used with Binary Logging

The following list describes startup options for enabling and configuring the binary log. System
variables used with binary logging are discussed later in this section.

•   --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Type integer

Default 1024

Min
Value

256

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1024

Min
Value

256

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 1024

Permitted Values (64-bit
platforms, >= 5.5.3)

Min
Value

256



Replication and Binary Logging Options and Variables

1928

Max
Value

18446744073709551615

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 1024. See
Section 17.1.2, “Replication Formats”.

•   --log-bin[=base_name]

Command-Line Format --log-bin

Name log_bin

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Enable binary logging. The server logs all statements that change data to the binary log, which is
used for backup and replication. See Section 5.4.4, “The Binary Log”.

The option value, if given, is the base name for the log sequence. The server creates binary log files
in sequence by adding a numeric suffix to the base name. It is recommended that you specify a
base name (see Section B.5.7, “Known Issues in MySQL”, for the reason). Otherwise, MySQL uses
host_name-bin as the base name.

In MySQL 5.5.20 and later, when the server reads an entry from the index file, it checks whether the
entry contains a relative path, and if it does, the relative part of the path is replaced with the absolute
path set using the --log-bin option. An absolute path remains unchanged; in such a case, the
index must be edited manually to enable the new path or paths to be used. Previous to MySQL
5.5.20, manual intervention was required whenever relocating the binary log or relay log files. (Bug
#11745230, Bug #12133)

Setting this option causes the log_bin system variable to be set to ON (or 1), and not to the base
name. This is a known issue; see Bug #19614 for more information.

•   --log-bin-index[=file_name]

Command-Line Format --log-bin-index=file_name

Permitted Values Type file name

The index file for binary log file names. See Section 5.4.4, “The Binary Log”. If you omit the file
name, and if you did not specify one with --log-bin, MySQL uses host_name-bin.index as the
file name.

•   --log-bin-trust-function-creators[={0|1}]

Command-Line Format --log-bin-trust-function-creators

Name log_bin_trust_function_creators

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE



Replication and Binary Logging Options and Variables

1929

This option sets the corresponding log_bin_trust_function_creators system variable. If no
argument is given, the option sets the variable to 1. log_bin_trust_function_creators affects
how MySQL enforces restrictions on stored function and trigger creation. See Section 20.7, “Binary
Logging of Stored Programs”.

•   --log-bin-use-v1-row-events[={0|1}]

Introduced 5.5.15-ndb-7.2.1

Command-Line Format --log-bin-use-v1-row-events[={0|1}]

Name log_bin_use_v1_row_events

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values (>=
5.5.15-ndb-7.2.1) Default 0

Version 2 binary log row events are used by default beginning with MySQL NDB Cluster 7.2.1;
however, Version 2 events cannot be read by previous NDB Cluster releases. Setting --log-bin-
use-v1-row-events to 1 causes mysqld to write the binary log using Version 1 logging events,
which is the only version of binary log events used in previous releases, and thus produce binary
logs that can be read by older slaves.

The value used for this option can be obtained from the read-only log_bin_use_v1_row_events
system variable.

--log-bin-use-v1-row-events is chiefly of interest when setting up replication conflict
detection and resolution using NDB$EPOCH_TRANS() as the conflict detection function, which
requires Version 2 binary log row events. Thus, this option and --ndb-log-transaction-id are
not compatible.

Note

Version 2 binary log row events are also available in MySQL NDB Cluster
7.0.27 and MySQL NDB Cluster 7.1.6 and later MySQL NDB Cluster 7.0 and
7.1 releases. However, prior to MySQL NDB Cluster 7.2.1, Version 1 events
are the default (and so the default value for this option is 1 in those versions).
You should keep this mind when planning upgrades for setups using NDB
Cluster Replication.

--log-bin-use-v1-row-events is not supported in mainline MySQL Server 5.5 releases.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

Statement selection options.  The options in the following list affect which statements are written
to the binary log, and thus sent by a replication master server to its slaves. There are also options for
slave servers that control which statements received from the master should be executed or ignored.
For details, see Section 17.1.3.3, “Replication Slave Options and Variables”.

•   --binlog-do-db=db_name

Command-Line Format --binlog-do-db=name

Permitted Values Type string

This option affects binary logging in a manner similar to the way that --replicate-do-db affects
replication.



Replication and Binary Logging Options and Variables

1930

The effects of this option depend on whether the statement-based or row-based logging format is
in use, in the same way that the effects of --replicate-do-db depend on whether statement-
based or row-based replication is in use. You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated by the value of binlog_format.
For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as
statements, without regard to the logging format in effect, so the following statement-based rules for
--binlog-do-db always apply in determining whether or not the statement is logged.

Statement-based logging.  Only those statements are written to the binary log where the default
database (that is, the one selected by USE) is db_name. To specify more than one database,
use this option multiple times, once for each database; however, doing so does not cause cross-
database statements such as UPDATE some_db.some_table SET foo='bar' to be logged
while a different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, the list will be treated as the
name of a single database if you supply a comma-separated list.

An example of what does not work as you might expect when using statement-based logging: If the
server is started with --binlog-do-db=sales and you issue the following statements, the UPDATE
statement is not logged:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “just check the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table
DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

Another case which may not be self-evident occurs when a given database is replicated even though
it was not specified when setting the option. If the server is started with --binlog-do-db=sales,
the following UPDATE statement is logged even though prices was not included when setting --
binlog-do-db:

        
USE sales;
UPDATE prices.discounts SET percentage = percentage + 10;

Because sales is the default database when the UPDATE statement is issued, the UPDATE is
logged.

Row-based logging.  Logging is restricted to database db_name. Only changes to tables
belonging to db_name are logged; the default database has no effect on this. Suppose that the
server is started with --binlog-do-db=sales and row-based logging is in effect, and then the
following statements are executed:

USE prices;
UPDATE sales.february SET amount=amount+100;

The changes to the february table in the sales database are logged in accordance with the
UPDATE statement; this occurs whether or not the USE statement was issued. However, when using
the row-based logging format and --binlog-do-db=sales, changes made by the following
UPDATE are not logged:

USE prices;



Replication and Binary Logging Options and Variables

1931

UPDATE prices.march SET amount=amount-25;

Even if the USE prices statement were changed to USE sales, the UPDATE statement's effects
would still not be written to the binary log.

Another important difference in --binlog-do-db handling for statement-based logging as opposed
to the row-based logging occurs with regard to statements that refer to multiple databases. Suppose
that the server is started with --binlog-do-db=db1, and the following statements are executed:

USE db1;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

If you are using statement-based logging, the updates to both tables are written to the binary log.
However, when using the row-based format, only the changes to table1 are logged; table2 is in a
different database, so it is not changed by the UPDATE. Now suppose that, instead of the USE db1
statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

In this case, the UPDATE statement is not written to the binary log when using statement-based
logging. However, when using row-based logging, the change to table1 is logged, but not that to
table2—in other words, only changes to tables in the database named by --binlog-do-db are
logged, and the choice of default database has no effect on this behavior.

•   --binlog-ignore-db=db_name

Command-Line Format --binlog-ignore-db=name

Permitted Values Type string

This option affects binary logging in a manner similar to the way that --replicate-ignore-db
affects replication.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --replicate-ignore-db depend on whether statement-
based or row-based replication is in use. You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated by the value of binlog_format.
For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as
statements, without regard to the logging format in effect, so the following statement-based rules for
--binlog-ignore-db always apply in determining whether or not the statement is logged.

Statement-based logging.  Tells the server to not log any statement where the default database
(that is, the one selected by USE) is db_name.

Prior to MySQL 5.5.32, this option caused any statements containing fully qualified table names not
to be logged if there was no default database specified (that is, when SELECT DATABASE() returned
NULL). In MySQL 5.5.32 and later, when there is no default database, no --binlog-ignore-db
options are applied, and such statements are always logged. (Bug #11829838, Bug #60188)

Row-based format.  Tells the server not to log updates to any tables in the database db_name.
The current database has no effect.

When using statement-based logging, the following example does not work as you might expect.
Suppose that the server is started with --binlog-ignore-db=sales and you issue the following
statements:

USE prices;
UPDATE sales.january SET amount=amount+1000;



Replication and Binary Logging Options and Variables

1932

The UPDATE statement is logged in such a case because --binlog-ignore-db applies only
to the default database (determined by the USE statement). Because the sales database was
specified explicitly in the statement, the statement has not been filtered. However, when using row-
based logging, the UPDATE statement's effects are not written to the binary log, which means that no
changes to the sales.january table are logged; in this instance, --binlog-ignore-db=sales
causes all changes made to tables in the master's copy of the sales database to be ignored for
purposes of binary logging.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, the list will be treated as the name of a single
database if you supply a comma-separated list.

You should not use this option if you are using cross-database updates and you do not want these
updates to be logged.

Testing and debugging options.  The following binary log options are used in replication testing
and debugging. They are not intended for use in normal operations.

•   --max-binlog-dump-events=N

Command-Line Format --max-binlog-dump-events=#

Type integerPermitted Values

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

•   --sporadic-binlog-dump-fail

Command-Line Format --sporadic-binlog-dump-fail

Type booleanPermitted Values

Default FALSE

This option is used internally by the MySQL test suite for replication testing and debugging.

System Variables Used with Binary Logging

The following list describes system variables for controlling binary logging. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used to control binary
logging are listed earlier in this section. For information about the sql_log_bin and sql_log_off
variables, see Section 5.1.5, “Server System Variables”.

•   binlog_cache_size

Command-Line Format --binlog-cache-size=#

Name binlog_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 32768

Min
Value

4096

Permitted Values (32-bit
platforms)

Max
Value

4294967295



Replication and Binary Logging Options and Variables

1933

Type integer

Default 32768

Min
Value

4096

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 32768

Min
Value

4096

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

The size of the cache to hold changes to the binary log during a transaction. A binary log cache is
allocated for each client if the server supports any transactional storage engines and if the server has
the binary log enabled (--log-bin option). If you often use large transactions, you can increase this
cache size to get better performance. The Binlog_cache_use and Binlog_cache_disk_use
status variables can be useful for tuning the size of this variable. See Section 5.4.4, “The Binary
Log”.

In MySQL 5.5.3, a separate binary log cache (the binary log statement cache) was introduced for
nontransactional statements and in MySQL 5.5.3 through 5.5.8, this variable sets.the size for both
caches. This means that, in these MySQL versions, the total memory used for these caches is
double the value set for binlog_cache_size.

Beginning with MySQL 5.5.9, binlog_cache_size sets the size for the transaction cache only,
and the size of the statement cache is governed by the binlog_stmt_cache_size system
variable.

•   binlog_direct_non_transactional_updates

Introduced 5.5.2

Command-Line Format --binlog-direct-non-transactional-updates[=value]

Name binlog_direct_non_transactional_updates

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Due to concurrency issues, a slave can become inconsistent when a transaction contains updates
to both transactional and nontransactional tables. MySQL tries to preserve causality among these
statements by writing nontransactional statements to the transaction cache, which is flushed upon
commit. However, problems arise when modifications done to nontransactional tables on behalf of
a transaction become immediately visible to other connections because these changes may not be
written immediately into the binary log.

Beginning with MySQL 5.5.2, the binlog_direct_non_transactional_updates variable
offers one possible workaround to this issue. By default, this variable is disabled. Enabling
binlog_direct_non_transactional_updates causes updates to nontransactional tables to
be written directly to the binary log, rather than to the transaction cache.



Replication and Binary Logging Options and Variables

1934

binlog_direct_non_transactional_updates works only for statements that are replicated
using the statement-based binary logging format; that is, it works only when the value of
binlog_format is STATEMENT, or when binlog_format is MIXED and a given statement is
being replicated using the statement-based format. This variable has no effect when the binary log
format is ROW, or when binlog_format is set to MIXED and a given statement is replicated using
the row-based format.

Important

Before enabling this variable, you must make certain that there are no
dependencies between transactional and nontransactional tables; an
example of such a dependency would be the statement INSERT INTO
myisam_table SELECT * FROM innodb_table. Otherwise, such
statements are likely to cause the slave to diverge from the master.

Beginning with MySQL 5.5.5, this variable has no effect when the binary log format is ROW or MIXED.
(Bug #51291)

•   binlog_format

Command-Line Format --binlog-format=format

Name binlog_format

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default STATEMENT

ROW

STATEMENT

Permitted Values

Valid
Values

MIXED

Type enumeration

Default STATEMENT

ROW

STATEMENT

Permitted Values (>=
5.5.15-ndb-7.2.1, <=
5.5.30-ndb-7.2.12)

Valid
Values

MIXED

Type enumeration

Default MIXED

ROW

STATEMENT

Permitted Values (>=
5.5.31-ndb-7.2.13)

Valid
Values

MIXED

This variable sets the binary logging format, and can be any one of STATEMENT, ROW, or MIXED. See
Section 17.1.2, “Replication Formats”. binlog_format is set by the --binlog-format option at
startup, or by the binlog_format system variable at runtime.

Note

While you can change the logging format at runtime, it is not recommended
that you change it while replication is ongoing. This is due in part to the fact



Replication and Binary Logging Options and Variables

1935

that slaves do not honor the master's binlog_format setting; a given
MySQL Server can change only its own logging format.

In MySQL 5.5, the default format is STATEMENT.

Exception.    In MySQL NDB Cluster 7.2.1 through MySQL NDB Cluster 7.2.12, the default for
this variable is STATEMENT. In MySQL NDB Cluster 7.2.13 and later, when the NDB storage engine
is enabled, the default is MIXED. (Bug #16417224) See also Section 18.6.6, “Starting NDB Cluster
Replication (Single Replication Channel)”, and Section 18.6.7, “Using Two Replication Channels for
NDB Cluster Replication”.

You must have the SUPER privilege to set either the global or session binlog_format value.

The rules governing when changes to this variable take effect and how long the effect lasts are the
same as for other MySQL server system variables. For more information, see Section 13.7.4.1, “SET
Syntax for Variable Assignment”.

When MIXED is specified, statement-based replication is used, except for cases where only
row-based replication is guaranteed to lead to proper results. For example, this happens when
statements contain user-defined functions (UDF) or the UUID() function. An exception to this rule is
that MIXED always uses statement-based replication for stored functions and triggers.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger.

• If the session is currently in row-based replication mode and has open temporary tables.

• Beginning with MySQL 5.5.3, within a transaction. (Bug #47863)

Trying to switch the format in those cases results in an error.

Note

  Prior to MySQL NDB Cluster 7.2.1, it was also not possible to change the
binary logging format at runtime when the NDBCLUSTER storage engine was
enabled. In MySQL NDB Cluster 7.2.1 and later, this restriction is removed.

The binary log format affects the behavior of the following server options:

• --replicate-do-db

• --replicate-ignore-db

• --binlog-do-db

• --binlog-ignore-db

These effects are discussed in detail in the descriptions of the individual options.

•   binlog_stmt_cache_size

Introduced 5.5.9

Command-Line Format --binlog-stmt-cache-size=#

Name binlog_stmt_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes



Replication and Binary Logging Options and Variables

1936

Type integer

Default 32768

Min
Value

4096

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 32768

Min
Value

4096

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

Beginning with MySQL 5.5.9, this variable determines the size of the cache for the binary log
to hold nontransactional statements issued during a transaction. In MySQL 5.5.3 and later,
separate binary log transaction and statement caches are allocated for each client if the server
supports any transactional storage engines and if the server has the binary log enabled (--
log-bin option). If you often use large nontransactional statements during transactions, you
can increase this cache size to get more performance. The Binlog_stmt_cache_use and
Binlog_stmt_cache_disk_use status variables can be useful for tuning the size of this variable.
See Section 5.4.4, “The Binary Log”.

In MySQL 5.5.3 through 5.5.8, the size for both caches is set using binlog_cache_size. This
means that, in these MySQL versions, the total memory used for these caches is double the value
set for binlog_cache_size. Beginning with MySQL 5.5.9, binlog_cache_size sets the size for
the transaction cache only.

•   log_bin

Name log_bin

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Whether the binary log is enabled. If the --log-bin option is used, then the value of this variable
is ON; otherwise it is OFF. This variable reports only on the status of binary logging (enabled or
disabled); it does not actually report the value to which --log-bin is set.

See Section 5.4.4, “The Binary Log”.

•   log_bin_use_v1_row_events

Introduced 5.5.15-ndb-7.2.1

Command-Line Format --log-bin-use-v1-row-events[={0|1}]

Name log_bin_use_v1_row_events

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values (>=
5.5.15-ndb-7.2.1) Default 0



Replication and Binary Logging Options and Variables

1937

Shows whether Version 2 binary logging, available beginning with MySQL NDB Cluster 7.2.1, is in
use. A value of 1 shows that the server is writing the binary log using Version 1 logging events (the
only version of binary log events used in previous releases), and thus producing a binary log that can
be read by older slaves. 0 indicates that Version 2 binary log events are in use.

This variable is read-only. To switch between Version 1 and Version 2 binary event binary logging, it
is necessary to restart mysqld with the --log-bin-use-v1-row-events option.

Other than when performing upgrades of NDB Cluster Replication, --log-bin-use-v1-
events is chiefly of interest when setting up replication conflict detection and resolution using NDB
$EPOCH_TRANS(), which requires Version 2 binary row event logging. Thus, this option and --
ndb-log-transaction-id are not compatible.

Note

MySQL NDB Cluster 7.2.1 and later use Version 2 binary log row events
by default (and so the default value for this variable changes to 0 in those
versions). You should keep this mind when planning upgrades for setups
using NDB Cluster Replication.

This variable is not supported in mainline MySQL Server 5.5.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

•   log_slave_updates

Command-Line Format --log-slave-updates

Name log_slave_updates

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default FALSE

Whether updates received by a slave server from a master server should be logged to the slave's
own binary log. Binary logging must be enabled on the slave for this variable to have any effect. See
Section 17.1.3, “Replication and Binary Logging Options and Variables”.

•   max_binlog_cache_size

Command-Line Format --max-binlog-cache-size=#

Name max_binlog_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 18446744073709547520

Min
Value

4096

Permitted Values (<=
5.5.2)

Max
Value

18446744073709547520



Replication and Binary Logging Options and Variables

1938

Type integer

Default 18446744073709551615

Min
Value

4096

Permitted Values (>=
5.5.3)

Max
Value

18446744073709551615

If a transaction requires more than this many bytes of memory, the server generates a Multi-
statement transaction required more than 'max_binlog_cache_size' bytes of
storage error. The minimum value is 4096. The maximum possible value is 16EB (exabytes). The
maximum recommended value is 4GB; this is due to the fact that MySQL currently cannot work with
binary log positions greater than 4GB.

Note

Prior to MySQL 5.5.28, 64-bit Windows platforms truncated the stored
value for this variable to 4G, even when it was set to a greater value (Bug
#13961678).

In MySQL 5.5.3, a separate binary log cache (the binary log statement cache) was introduced for
nontransactional statements and in MySQL 5.5.3 through 5.5.8, this variable sets.the upper limit for
both caches. This means that, in these MySQL versions, the effective maximum for these caches is
double the value set for max_binlog_cache_size.

Beginning with MySQL 5.5.9, max_binlog_cache_size sets the size for the
transaction cache only, and the upper limit for the statement cache is governed by the
max_binlog_stmt_cache_size system variable.

Also beginning with MySQL 5.5.9, the session visibility of the max_binlog_cache_size system
variable matches that of the binlog_cache_size system variable: In MySQL 5.5.8 and earlier
releases, a change in max_binlog_cache_size took immediate effect; in MySQL 5.5.9 and later,
a change in max_binlog_cache_size takes effect only for new sessions that started after the
value is changed.

•   max_binlog_size

Command-Line Format --max-binlog-size=#

Name max_binlog_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1073741824

Min
Value

4096

Permitted Values

Max
Value

1073741824

If a write to the binary log causes the current log file size to exceed the value of this variable, the
server rotates the binary logs (closes the current file and opens the next one). The minimum value is
4096 bytes. The maximum and default value is 1GB.



Replication and Binary Logging Options and Variables

1939

A transaction is written in one chunk to the binary log, so it is never split between several
binary logs. Therefore, if you have big transactions, you might see binary log files larger than
max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

•   max_binlog_stmt_cache_size

Introduced 5.5.9

Command-Line Format --max-binlog-stmt-cache-size=#

Name max_binlog_stmt_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 18446744073709547520

Min
Value

4096

Permitted Values

Max
Value

18446744073709547520

If nontransactional statements within a transaction require more than this many bytes of memory, the
server generates an error. The minimum value is 4096. The maximum and default values are 4GB
on 32-bit platforms and 16EB (exabytes) on 64-bit platforms.

Note

Prior to MySQL 5.5.28, 64-bit Windows platforms truncated the stored
value for this variable to 4G, even when it was set to a greater value (Bug
#13961678).

In MySQL 5.5.3, a separate binary log cache (the binary log statement cache) was introduced for
nontransactional statements and in MySQL 5.5.3 through 5.5.8, this variable sets.the upper limit for
both caches. This means that, in these MySQL versions, the effective maximum for these caches is
double the value set for max_binlog_cache_size.

Beginning with MySQL 5.5.9, max_binlog_stmt_cache_size sets the size for the statement
cache only, and the upper limit for the transaction cache is governed exclusively by the
max_binlog_cache_size system variable.

•   sync_binlog

Command-Line Format --sync-binlog=#

Name sync_binlog

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values (32-bit
platforms)

Min
Value

0



Common Replication Administration Tasks

1940

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

4294967295

If the value of this variable is greater than 0, the MySQL server synchronizes its binary log to disk
(using fdatasync()) after every sync_binlog writes to the binary log. There is one write to the
binary log per statement if autocommit is enabled, and one write per transaction otherwise. The
default value of sync_binlog is 0, which does no synchronizing to disk—in this case, the server
relies on the operating system to flush the binary log's contents from time to time as for any other file.
A value of 1 is the safest choice because in the event of a crash you lose at most one statement or
transaction from the binary log. However, it is also the slowest choice (unless the disk has a battery-
backed cache, which makes synchronization very fast).

17.1.4 Common Replication Administration Tasks

Once replication has been started it should execute without requiring much regular administration.
Depending on your replication environment, you will want to check the replication status of each slave
periodically, daily, or even more frequently.

17.1.4.1 Checking Replication Status

The most common task when managing a replication process is to ensure that replication is taking
place and that there have been no errors between the slave and the master. The primary statement for
this is SHOW SLAVE STATUS, which you must execute on each slave:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
               Slave_IO_State: Waiting for master to send event
                  Master_Host: master1
                  Master_User: root
                  Master_Port: 3306
                Connect_Retry: 60
              Master_Log_File: mysql-bin.000004
          Read_Master_Log_Pos: 931
               Relay_Log_File: slave1-relay-bin.000056
                Relay_Log_Pos: 950
        Relay_Master_Log_File: mysql-bin.000004
             Slave_IO_Running: Yes
            Slave_SQL_Running: Yes
              Replicate_Do_DB:
          Replicate_Ignore_DB:
           Replicate_Do_Table:
       Replicate_Ignore_Table:
      Replicate_Wild_Do_Table:
  Replicate_Wild_Ignore_Table:
                   Last_Errno: 0
                   Last_Error:
                 Skip_Counter: 0
          Exec_Master_Log_Pos: 931



Common Replication Administration Tasks

1941

              Relay_Log_Space: 1365
              Until_Condition: None
               Until_Log_File:
                Until_Log_Pos: 0
           Master_SSL_Allowed: No
           Master_SSL_CA_File:
           Master_SSL_CA_Path:
              Master_SSL_Cert:
            Master_SSL_Cipher:
               Master_SSL_Key:
        Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
                Last_IO_Errno: 0
                Last_IO_Error:
               Last_SQL_Errno: 0
               Last_SQL_Error:
  Replicate_Ignore_Server_Ids: 0

The key fields from the status report to examine are:

• Slave_IO_State: The current status of the slave. See Section 8.14.6, “Replication Slave I/O
Thread States”, and Section 8.14.7, “Replication Slave SQL Thread States”, for more information.

• Slave_IO_Running: Whether the I/O thread for reading the master's binary log is running.
Normally, you want this to be Yes unless you have not yet started replication or have explicitly
stopped it with STOP SLAVE.

• Slave_SQL_Running: Whether the SQL thread for executing events in the relay log is running. As
with the I/O thread, this should normally be Yes.

• Last_IO_Error, Last_SQL_Error: The last errors registered by the I/O and SQL threads when
processing the relay log. Ideally these should be blank, indicating no errors.

• Seconds_Behind_Master: The number of seconds that the slave SQL thread is behind processing
the master binary log. A high number (or an increasing one) can indicate that the slave is unable to
handle events from the master in a timely fashion.

A value of 0 for Seconds_Behind_Master can usually be interpreted as meaning that the slave
has caught up with the master, but there are some cases where this is not strictly true. For example,
this can occur if the network connection between master and slave is broken but the slave I/O thread
has not yet noticed this—that is, slave_net_timeout has not yet elapsed.

It is also possible that transient values for Seconds_Behind_Master may not reflect the situation
accurately. When the slave SQL thread has caught up on I/O, Seconds_Behind_Master displays
0; but when the slave I/O thread is still queuing up a new event, Seconds_Behind_Master may
show a large value until the SQL thread finishes executing the new event. This is especially likely
when the events have old timestamps; in such cases, if you execute SHOW SLAVE STATUS several
times in a relatively short period, you may see this value change back and forth repeatedly between
0 and a relatively large value.

Several pairs of fields provide information about the progress of the slave in reading events from the
master binary log and processing them in the relay log:

• (Master_Log_file, Read_Master_Log_Pos): Coordinates in the master binary log indicating
how far the slave I/O thread has read events from that log.

• (Relay_Master_Log_File, Exec_Master_Log_Pos): Coordinates in the master binary log
indicating how far the slave SQL thread has executed events received from that log.

• (Relay_Log_File, Relay_Log_Pos): Coordinates in the slave relay log indicating how far the
slave SQL thread has executed the relay log. These correspond to the preceding coordinates, but
are expressed in slave relay log coordinates rather than master binary log coordinates.

On the master, you can check the status of connected slaves using SHOW PROCESSLIST to examine
the list of running processes. Slave connections have Binlog Dump in the Command field:



Common Replication Administration Tasks

1942

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
     Id: 10
   User: root
   Host: slave1:58371
     db: NULL
Command: Binlog Dump
   Time: 777
  State: Has sent all binlog to slave; waiting for binlog to be updated
   Info: NULL

Because it is the slave that drives the replication process, very little information is available in this
report.

For slaves that were started with the --report-host option and are connected to the master, the
SHOW SLAVE HOSTS statement on the master shows basic information about the slaves. The output
includes the ID of the slave server, the value of the --report-host option, the connecting port, and
master ID:

mysql> SHOW SLAVE HOSTS;
+-----------+--------+------+-------------------+-----------+
| Server_id | Host   | Port | Rpl_recovery_rank | Master_id |
+-----------+--------+------+-------------------+-----------+
|        10 | slave1 | 3306 |                 0 |         1 |
+-----------+--------+------+-------------------+-----------+
1 row in set (0.00 sec)

17.1.4.2 Pausing Replication on the Slave

You can stop and start the replication of statements on the slave using the STOP SLAVE and START
SLAVE statements.

To stop processing of the binary log from the master, use STOP SLAVE:

mysql> STOP SLAVE;

When replication is stopped, the slave I/O thread stops reading events from the master binary log and
writing them to the relay log, and the SQL thread stops reading events from the relay log and executing
them. You can pause the I/O or SQL thread individually by specifying the thread type:

mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;

To start execution again, use the START SLAVE statement:

mysql> START SLAVE;

To start a particular thread, specify the thread type:

mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;

For a slave that performs updates only by processing events from the master, stopping only the SQL
thread can be useful if you want to perform a backup or other task. The I/O thread will continue to read
events from the master but they are not executed. This makes it easier for the slave to catch up when
you restart the SQL thread.

Stopping only the I/O thread enables the events in the relay log to be executed by the SQL thread up
to the point where the relay log ends. This can be useful when you want to pause execution to catch



Replication Implementation

1943

up with events already received from the master, when you want to perform administration on the slave
but also ensure that it has processed all updates to a specific point. This method can also be used
to pause event receipt on the slave while you conduct administration on the master. Stopping the I/O
thread but permitting the SQL thread to run helps ensure that there is not a massive backlog of events
to be executed when replication is started again.

17.2 Replication Implementation

Replication is based on the master server keeping track of all changes to its databases (updates,
deletes, and so on) in its binary log. The binary log serves as a written record of all events that modify
database structure or content (data) from the moment the server was started. Typically, SELECT
statements are not recorded because they modify neither database structure nor content.

Each slave that connects to the master requests a copy of the binary log. That is, it pulls the data from
the master, rather than the master pushing the data to the slave. The slave also executes the events
from the binary log that it receives. This has the effect of repeating the original changes just as they
were made on the master. Tables are created or their structure modified, and data is inserted, deleted,
and updated according to the changes that were originally made on the master.

Because each slave is independent, the replaying of the changes from the master's binary log occurs
independently on each slave that is connected to the master. In addition, because each slave receives
a copy of the binary log only by requesting it from the master, the slave is able to read and update
the copy of the database at its own pace and can start and stop the replication process at will without
affecting the ability to update to the latest database status on either the master or slave side.

For more information on the specifics of the replication implementation, see Section 17.2.1,
“Replication Implementation Details”.

Masters and slaves report their status in respect of the replication process regularly so that you can
monitor them. See Section 8.14, “Examining Thread Information”, for descriptions of all replicated-
related states.

The master binary log is written to a local relay log on the slave before it is processed. The slave also
records information about the current position with the master's binary log and the local relay log. See
Section 17.2.2, “Replication Relay and Status Logs”.

Database changes are filtered on the slave according to a set of rules that are applied according to the
various configuration options and variables that control event evaluation. For details on how these rules
are applied, see Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”.

17.2.1 Replication Implementation Details

MySQL replication capabilities are implemented using three threads, one on the master server and two
on the slave:

• Binlog dump thread.  The master creates a thread to send the binary log contents to a slave
when the slave connects. This thread can be identified in the output of SHOW PROCESSLIST on the
master as the Binlog Dump thread.

The binary log dump thread acquires a lock on the master's binary log for reading each event that
is to be sent to the slave. As soon as the event has been read, the lock is released, even before the
event is sent to the slave.

• Slave I/O thread.  When a START SLAVE statement is issued on a slave server, the slave creates
an I/O thread, which connects to the master and asks it to send the updates recorded in its binary
logs.

The slave I/O thread reads the updates that the master's Binlog Dump thread sends (see previous
item) and copies them to local files that comprise the slave's relay log.



Replication Implementation Details

1944

The state of this thread is shown as Slave_IO_running in the output of SHOW SLAVE STATUS or
as Slave_running in the output of SHOW STATUS.

• Slave SQL thread.  The slave creates an SQL thread to read the relay log that is written by the
slave I/O thread and execute the events contained therein.

In the preceding description, there are three threads per master/slave connection. A master that has
multiple slaves creates one binary log dump thread for each currently connected slave, and each slave
has its own I/O and SQL threads.

A slave uses two threads to separate reading updates from the master and executing them into
independent tasks. Thus, the task of reading statements is not slowed down if statement execution
is slow. For example, if the slave server has not been running for a while, its I/O thread can quickly
fetch all the binary log contents from the master when the slave starts, even if the SQL thread lags
far behind. If the slave stops before the SQL thread has executed all the fetched statements, the I/
O thread has at least fetched everything so that a safe copy of the statements is stored locally in the
slave's relay logs, ready for execution the next time that the slave starts. This enables the master
server to purge its binary logs sooner because it no longer needs to wait for the slave to fetch their
contents.

The SHOW PROCESSLIST statement provides information that tells you what is happening on the
master and on the slave regarding replication. For information on master states, see Section 8.14.5,
“Replication Master Thread States”. For slave states, see Section 8.14.6, “Replication Slave I/O Thread
States”, and Section 8.14.7, “Replication Slave SQL Thread States”.

The following example illustrates how the three threads show up in the output from SHOW
PROCESSLIST.

On the master server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
     Id: 2
   User: root
   Host: localhost:32931
     db: NULL
Command: Binlog Dump
   Time: 94
  State: Has sent all binlog to slave; waiting for binlog to
         be updated
   Info: NULL

Here, thread 2 is a Binlog Dump replication thread that services a connected slave. The State
information indicates that all outstanding updates have been sent to the slave and that the master is
waiting for more updates to occur. If you see no Binlog Dump threads on a master server, this means
that replication is not running; that is, no slaves are currently connected.

On a slave server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
     Id: 10
   User: system user
   Host:
     db: NULL
Command: Connect
   Time: 11
  State: Waiting for master to send event
   Info: NULL
*************************** 2. row ***************************
     Id: 11
   User: system user



Replication Relay and Status Logs

1945

   Host:
     db: NULL
Command: Connect
   Time: 11
  State: Has read all relay log; waiting for the slave I/O
         thread to update it
   Info: NULL

The State information indicates that thread 10 is the I/O thread that is communicating with the master
server, and thread 11 is the SQL thread that is processing the updates stored in the relay logs. At the
time that SHOW PROCESSLIST was run, both threads were idle, waiting for further updates.

The value in the Time column can show how late the slave is compared to the master. See
Section A.13, “MySQL 5.5 FAQ: Replication”. If sufficient time elapses on the master side without
activity on the Binlog Dump thread, the master determines that the slave is no longer connected. As
for any other client connection, the timeouts for this depend on the values of net_write_timeout
and net_retry_count; for more information about these, see Section 5.1.5, “Server System
Variables”.

The SHOW SLAVE STATUS statement provides additional information about replication processing on a
slave server. See Section 17.1.4.1, “Checking Replication Status”.

17.2.2 Replication Relay and Status Logs

During replication, a slave server creates several logs that hold the binary log events relayed from the
master to the slave, and to record information about the current status and location within the relay log.
There are three types of logs used in the process, listed here:

• The relay log consists of the events read from the binary log of the master and written by the slave I/
O thread. Events in the relay log are executed on the slave as part of the SQL thread.

• The master info log contains status and current configuration information for the slave's connection
to the master. This log holds information on the master host name, login credentials, and coordinates
indicating how far the slave has read from the master's binary log.

• The relay log info log holds status information about the execution point within the slave's relay log.

17.2.2.1 The Slave Relay Log

The relay log, like the binary log, consists of a set of numbered files containing events that describe
database changes, and an index file that contains the names of all used relay log files.

The term “relay log file” generally denotes an individual numbered file containing database events. The
term “relay log” collectively denotes the set of numbered relay log files plus the index file.

Relay log files have the same format as binary log files and can be read using mysqlbinlog (see
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”).

By default, relay log file names have the form host_name-relay-bin.nnnnnn in the data
directory, where host_name is the name of the slave server host and nnnnnn is a sequence number.
Successive relay log files are created using successive sequence numbers, beginning with 000001.
The slave uses an index file to track the relay log files currently in use. The default relay log index file
name is host_name-relay-bin.index in the data directory.

The default relay log file and relay log index file names can be overridden with, respectively, the --
relay-log and --relay-log-index server options (see Section 17.1.3, “Replication and Binary
Logging Options and Variables”).

If a slave uses the default host-based relay log file names, changing a slave's host name after
replication has been set up can cause replication to fail with the errors Failed to open the relay
log and Could not find target log during relay log initialization. This is a



Replication Relay and Status Logs

1946

known issue (see Bug #2122). If you anticipate that a slave's host name might change in the future (for
example, if networking is set up on the slave such that its host name can be modified using DHCP),
you can avoid this issue entirely by using the --relay-log and --relay-log-index options to
specify relay log file names explicitly when you initially set up the slave. This will make the names
independent of server host name changes.

If you encounter the issue after replication has already begun, one way to work around it is to stop the
slave server, prepend the contents of the old relay log index file to the new one, and then restart the
slave. On a Unix system, this can be done as shown here:

shell> cat new_relay_log_name.index >> old_relay_log_name.index
shell> mv old_relay_log_name.index new_relay_log_name.index

A slave server creates a new relay log file under the following conditions:

• Each time the I/O thread starts.

• When the logs are flushed; for example, with FLUSH LOGS or mysqladmin flush-logs.

• When the size of the current relay log file becomes “too large,” determined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay
log file size.

The SQL thread automatically deletes each relay log file as soon as it has executed all events in the
file and no longer needs it. There is no explicit mechanism for deleting relay logs because the SQL
thread takes care of doing so. However, FLUSH LOGS rotates relay logs, which influences when the
SQL thread deletes them.

17.2.2.2 Slave Status Logs

A replication slave server creates two logs. By default, these logs are files named master.info and
relay-log.info and created in the data directory. The names and locations of these files can be
changed by using the --master-info-file and --relay-log-info-file options, respectively.
See Section 17.1.3, “Replication and Binary Logging Options and Variables”.

The two status logs contain information like that shown in the output of the SHOW SLAVE STATUS
statement, which is discussed in Section 13.4.2, “SQL Statements for Controlling Slave Servers”.
Because the status logs are stored on disk, they survive a slave server's shutdown. The next time the
slave starts up, it reads the two logs to determine how far it has proceeded in reading binary logs from
the master and in processing its own relay logs.

The master info log should be protected because it contains the password for connecting to the master.
See Section 6.1.2.3, “Passwords and Logging”.

The slave I/O thread updates the master info log. The following table shows the correspondence
between the lines in the master.info file and the columns displayed by SHOW SLAVE STATUS.

Line in
master.info

SHOW SLAVE STATUS Column Description

1  Number of lines in the file

2 Master_Log_File The name of the master binary log currently
being read from the master

3 Read_Master_Log_Pos The current position within the master binary
log that have been read from the master



Replication Relay and Status Logs

1947

Line in
master.info

SHOW SLAVE STATUS Column Description

4 Master_Host The host name of the master

5 Master_User The user name used to connect to the
master

6 Password (not shown by SHOW SLAVE
STATUS)

The password used to connect to the master

7 Master_Port The network port used to connect to the
master

8 Connect_Retry The period (in seconds) that the slave will
wait before trying to reconnect to the master

9 Master_SSL_Allowed Indicates whether the server supports SSL
connections

10 Master_SSL_CA_File The file used for the Certificate Authority
(CA) certificate

11 Master_SSL_CA_Path The path to the Certificate Authority (CA)
certificates

12 Master_SSL_Cert The name of the SSL certificate file

13 Master_SSL_Cipher The list of possible ciphers used in the
handshake for the SSL connection

14 Master_SSL_Key The name of the SSL key file

15 Master_SSL_Verify_Server_Cert Whether to verify the server certificate

17 Replicate_Ignore_Server_Ids The number of server IDs to be ignored,
followed by the actual server IDs

The slave SQL thread updates the relay log info log. The following table shows the correspondence
between the lines in the relay-log.info file and the columns displayed by SHOW SLAVE STATUS.

Line in
relay-
log.info

SHOW SLAVE STATUS Column Description

1 Relay_Log_File The name of the current relay log file

2 Relay_Log_Pos The current position within the relay log file;
events up to this position have been executed on
the slave database

3 Relay_Master_Log_File The name of the master binary log file from which
the events in the relay log file were read

4 Exec_Master_Log_Pos The equivalent position within the master's binary
log file of events that have already been executed

The contents of the relay-log.info file and the states shown by the SHOW SLAVE STATUS
statement might not match if the relay-log.info file has not been flushed to disk. Ideally, you
should only view relay-log.info on a slave that is offline (that is, mysqld is not running). For a
running system, SHOW SLAVE STATUS should be used.

When you back up the slave's data, you should back up these two status logs, along with the relay
log files. The status logs are needed to resume replication after you restore the data from the slave.
If you lose the relay logs but still have the relay log info log, you can check it to determine how far the
SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with the
MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from that
point. Of course, this requires that the binary logs still exist on the master.



How Servers Evaluate Replication Filtering Rules

1948

17.2.3 How Servers Evaluate Replication Filtering Rules

If a master server does not write a statement to its binary log, the statement is not replicated. If the
server does log the statement, the statement is sent to all slaves and each slave determines whether to
execute it or ignore it.

On the master, you can control which databases to log changes for by using the --binlog-do-
db and --binlog-ignore-db options to control binary logging. For a description of the rules
that servers use in evaluating these options, see Section 17.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”. You should not use these options to control which databases
and tables are replicated. Instead, use filtering on the slave to control the events that are executed on
the slave.

On the slave side, decisions about whether to execute or ignore statements received from the
master are made according to the --replicate-* options that the slave was started with. (See
Section 17.1.3, “Replication and Binary Logging Options and Variables”.)

In the simplest case, when there are no --replicate-* options, the slave executes all statements
that it receives from the master. Otherwise, the result depends on the particular options given.

Database-level options (--replicate-do-db, --replicate-ignore-db) are checked first;
see Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a
description of this process. If no database-level options are used, option checking proceeds to any
table-level options that may be in use (see Section 17.2.3.2, “Evaluation of Table-Level Replication
Options”, for a discussion of these). If one or more database-level options are used but none are
matched, the statement is not replicated.

To make it easier to determine what effect an option set will have, it is recommended that you avoid
mixing “do” and “ignore” options, or wildcard and nonwildcard options. An example of the latter that
may have unintended effects is the use of --replicate-do-db and --replicate-wild-do-
table together, where --replicate-wild-do-table uses a pattern for the database name
that matches the name given for --replicate-do-db. Suppose a replication slave is started with
--replicate-do-db=dbx --replicate-wild-do-table=db%.t1. Then, suppose that on
the master, you issue the statement CREATE DATABASE dbx. Although you might expect it, this
statement is not replicated because it does not reference a table named t1.

If any --replicate-rewrite-db options were specified, they are applied before the --
replicate-* filtering rules are tested.

Note

Database-level filtering options are case-sensitive on platforms supporting
case sensitivity in filenames, whereas table-level filtering options are
not (regardless of platform). This is true regardless of the value of the
lower_case_table_names system variable.

17.2.3.1 Evaluation of Database-Level Replication and Binary Logging Options

When evaluating replication options, the slave begins by checking to see whether there are any --
replicate-do-db or --replicate-ignore-db options that apply. When using --binlog-do-db
or --binlog-ignore-db, the process is similar, but the options are checked on the master.

With statement-based replication, the default database is checked for a match. With row-based
replication, the database where data is to be changed is the database that is checked. Regardless
of the binary logging format, checking of database-level options proceeds as shown in the following
diagram.



How Servers Evaluate Replication Filtering Rules

1949

The steps involved are listed here:

1. Are there any --replicate-do-db options?

• Yes.  Do any of them match the database?

• Yes.  Execute the statement and exit.

• No.  Ignore the statement and exit.

• No.  Continue to step 2.

2. Are there any --replicate-ignore-db options?

• Yes.  Do any of them match the database?

• Yes.  Ignore the statement and exit.

• No.  Continue to step 3.

• No.  Continue to step 3.

3. Proceed to checking the table-level replication options, if there are any. For a description of how
these options are checked, see Section 17.2.3.2, “Evaluation of Table-Level Replication Options”.



How Servers Evaluate Replication Filtering Rules

1950

Important

A statement that is still permitted at this stage is not yet actually executed.
The statement is not executed until all table-level options (if any) have also
been checked, and the outcome of that process permits execution of the
statement.

For binary logging, the steps involved are listed here:

1. Are there any --binlog-do-db or --binlog-ignore-db options?

• Yes.  Continue to step 2.

• No.  Log the statement and exit.

2. Is there a default database (has any database been selected by USE)?

• Yes.  Continue to step 3.

• No.  Ignore the statement and exit.

3. There is a default database. Are there any --binlog-do-db options?

• Yes.  Do any of them match the database?

• Yes.  Log the statement and exit.

• No.  Ignore the statement and exit.

• No.  Continue to step 4.

4. Do any of the --binlog-ignore-db options match the database?

• Yes.  Ignore the statement and exit.

• No.  Log the statement and exit.

Important

For statement-based logging, an exception is made in the rules just given for
the CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements.
In those cases, the database being created, altered, or dropped replaces the
default database when determining whether to log or ignore updates.

--binlog-do-db can sometimes mean “ignore other databases”. For example, when using
statement-based logging, a server running with only --binlog-do-db=sales does not write to
the binary log statements for which the default database differs from sales. When using row-based
logging with the same option, the server logs only those updates that change data in sales.

17.2.3.2 Evaluation of Table-Level Replication Options

The slave checks for and evaluates table options only if either of the following two conditions is true:

• No matching database options were found.

• One or more database options were found, and were evaluated to arrive at an “execute” condition
according to the rules described in the previous section (see Section 17.2.3.1, “Evaluation of
Database-Level Replication and Binary Logging Options”).

First, as a preliminary condition, the slave checks whether statement-based replication is enabled.
If so, and the statement occurs within a stored function, the slave executes the statement and exits.



How Servers Evaluate Replication Filtering Rules

1951

If row-based replication is enabled, the slave does not know whether a statement occurred within a
stored function on the master, so this condition does not apply.

Note

For statement-based replication, replication events represent statements (all
changes making up a given event are associated with a single SQL statement);
for row-based replication, each event represents a change in a single table row
(thus a single statement such as UPDATE mytable SET mycol = 1 may
yield many row-based events). When viewed in terms of events, the process
of checking table options is the same for both row-based and statement-based
replication.

Having reached this point, if there are no table options, the slave simply executes all events. If there
are any --replicate-do-table or --replicate-wild-do-table options, the event must match
one of these if it is to be executed; otherwise, it is ignored. If there are any --replicate-ignore-
table or --replicate-wild-ignore-table options, all events are executed except those that
match any of these options. This process is illustrated in the following diagram.



How Servers Evaluate Replication Filtering Rules

1952

The following steps describe this evaluation in more detail:

1. Are there any table options?

• Yes.  Continue to step 2.

• No.  Execute the event and exit.

2. Are there any --replicate-do-table options?



How Servers Evaluate Replication Filtering Rules

1953

• Yes.  Does the table match any of them?

• Yes.  Execute the event and exit.

• No.  Continue to step 3.

• No.  Continue to step 3.

3. Are there any --replicate-ignore-table options?

• Yes.  Does the table match any of them?

• Yes.  Ignore the event and exit.

• No.  Continue to step 4.

• No.  Continue to step 4.

4. Are there any --replicate-wild-do-table options?

• Yes.  Does the table match any of them?

• Yes.  Execute the event and exit.

• No.  Continue to step 5.

• No.  Continue to step 5.

5. Are there any --replicate-wild-ignore-table options?

• Yes.  Does the table match any of them?

• Yes.  Ignore the event and exit.

• No.  Continue to step 6.

• No.  Continue to step 6.

6. Are there any --replicate-do-table or --replicate-wild-do-table options?

• Yes.  Ignore the event and exit.

• No.  Execute the event and exit.

17.2.3.3 Replication Rule Application

This section provides additional explanation and examples of usage for different combinations of
replication filtering options.

Some typical combinations of replication filter rule types are given in the following table:

Condition (Types of Options) Outcome

No --replicate-* options at all: The slave executes all events that it receives from the
master.

--replicate-*-db options, but no
table options:

The slave accepts or ignores events using the database
options. It executes all events permitted by those options
because there are no table restrictions.

--replicate-*-table options, but
no database options:

All events are accepted at the database-checking stage
because there are no database conditions. The slave



Replication Solutions

1954

Condition (Types of Options) Outcome
executes or ignores events based solely on the table
options.

A combination of database and table
options:

The slave accepts or ignores events using the database
options. Then it evaluates all events permitted by those
options according to the table options. This can sometimes
lead to results that seem counterintuitive, and that may be
different depending on whether you are using statement-
based or row-based replication; see the text for an example.

A more complex example follows, in which we examine the outcomes for both statement-based and
row-based settings.

Suppose that we have two tables mytbl1 in database db1 and mytbl2 in database db2 on the
master, and the slave is running with the following options (and no other replication filtering options):

replicate-ignore-db = db1
replicate-do-table  = db2.tbl2

Now we execute the following statements on the master:

USE db1;
INSERT INTO db2.tbl2 VALUES (1);

The results on the slave vary considerably depending on the binary log format, and may not match
initial expectations in either case.

Statement-based replication.  The USE statement causes db1 to be the default database. Thus the
--replicate-ignore-db option matches, and the INSERT statement is ignored. The table options
are not checked.

Row-based replication.  The default database has no effect on how the slave reads database
options when using row-based replication. Thus, the USE statement makes no difference in how the
--replicate-ignore-db option is handled: the database specified by this option does not match
the database where the INSERT statement changes data, so the slave proceeds to check the table
options. The table specified by --replicate-do-table matches the table to be updated, and the
row is inserted.

17.3 Replication Solutions

Replication can be used in many different environments for a range of purposes. This section provides
general notes and advice on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup
procedure, and files to back up, see Section 17.3.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the master and slaves, see Section 17.3.2,
“Using Replication with Different Master and Slave Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of
applications that use the solution. See Section 17.3.3, “Using Replication for Scale-Out”.

For performance or data distribution reasons, you may want to replicate different databases to different
replication slaves. See Section 17.3.4, “Replicating Different Databases to Different Slaves”

As the number of replication slaves increases, the load on the master can increase and lead to reduced
performance (because of the need to replicate the binary log to each slave). For tips on improving



Using Replication for Backups

1955

your replication performance, including using a single secondary server as a replication master, see
Section 17.3.5, “Improving Replication Performance”.

For guidance on switching masters, or converting slaves into masters as part of an emergency failover
solution, see Section 17.3.6, “Switching Masters During Failover”.

To secure your replication communication, you can encrypt the communication channel. For step-by-
step instructions, see Section 17.3.7, “Setting Up Replication to Use Secure Connections”.

17.3.1 Using Replication for Backups

To use replication as a backup solution, replicate data from the master to a slave, and then back up
the data slave. The slave can be paused and shut down without affecting the running operation of the
master, so you can produce an effective snapshot of “live” data that would otherwise require the master
to be shut down.

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replication slave state so that you can rebuild the slave in the event of failure. There are
therefore two choices:

• If you are using replication as a solution to enable you to back up the data on the master, and the
size of your database is not too large, the mysqldump tool may be suitable. See Section 17.3.1.1,
“Backing Up a Slave Using mysqldump”.

• For larger databases, where mysqldump would be impractical or inefficient, you can back up the
raw data files instead. Using the raw data files option also means that you can back up the binary
and relay logs that will enable you to recreate the slave in the event of a slave failure. For more
information, see Section 17.3.1.2, “Backing Up Raw Data from a Slave”.

Another backup strategy, which can be used for either master or slave servers, is to put the server in a
read-only state. The backup is performed against the read-only server, which then is changed back to
its usual read/write operational status. See Section 17.3.1.3, “Backing Up a Master or Slave by Making
It Read Only”.

17.3.1.1 Backing Up a Slave Using mysqldump

Using mysqldump to create a copy of a database enables you to capture all of the data in the
database in a format that enables the information to be imported into another instance of MySQL
Server (see Section 4.5.4, “mysqldump — A Database Backup Program”). Because the format of the
information is SQL statements, the file can easily be distributed and applied to running servers in the
event that you need access to the data in an emergency. However, if the size of your data set is very
large, mysqldump may be impractical.

When using mysqldump, you should stop replication on the slave before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the slave from processing requests. You can stop replication completely on the slave using
mysqladmin:

shell> mysqladmin stop-slave

Alternatively, you can stop only the slave SQL thread to pause event execution:

shell> mysql -e 'STOP SLAVE SQL_THREAD;'

This enables the slave to continue to receive data change events from the master's binary log
and store them in the relay logs using the I/O thread, but prevents the slave from executing these
events and changing its data. Within busy replication environments, permitting the I/O thread to run
during backup may speed up the catch-up process when you restart the slave SQL thread.

2. Run mysqldump to dump your databases. You may either dump all databases or select databases
to be dumped. For example, to dump all databases:



Using Replication for Backups

1956

shell> mysqldump --all-databases > fulldb.dump

3. Once the dump has completed, start slave operations again:

shell> mysqladmin start-slave

In the preceding example, you may want to add login credentials (user name, password) to the
commands, and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the slave replication process to ensure that the time
taken to run the backup does not affect the slave's ability to keep up with events from the master. See
Section 17.1.4.1, “Checking Replication Status”. If the slave is unable to keep up, you may want to add
another slave and distribute the backup process. For an example of how to configure this scenario, see
Section 17.3.4, “Replicating Different Databases to Different Slaves”.

17.3.1.2 Backing Up Raw Data from a Slave

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL
replication slave should take place while your slave server is shut down. If the MySQL server is still
running, background tasks may still be updating the database files, particularly those involving storage
engines with background processes such as InnoDB. With InnoDB, these problems should be
resolved during crash recovery, but since the slave server can be shut down during the backup process
without affecting the execution of the master it makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the slave MySQL server:

shell> mysqladmin shutdown

2. Copy the data files. You can use any suitable copying or archive utility, including cp, tar or
WinZip. For example, assuming that the data directory is located under the current directory, you
can archive the entire directory as follows:

shell> tar cf /tmp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

shell> mysqld_safe &

Under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqld"

Normally you should back up the entire data directory for the slave MySQL server. If you want to be
able to restore the data and operate as a slave (for example, in the event of failure of the slave), then in
addition to the slave's data, you should also back up the slave status files, master.info and relay-
log.info, along with the relay log files. These files are needed to resume replication after you restore
the slave's data.

If you lose the relay logs but still have the relay-log.info file, you can check it to determine how far
the SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with
the MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from
that point. This requires that the binary logs still exist on the master server.

If your slave is replicating LOAD DATA INFILE statements, you should also back up any SQL_LOAD-
* files that exist in the directory that the slave uses for this purpose. The slave needs these files to
resume replication of any interrupted LOAD DATA INFILE operations. The location of this directory
is the value of the --slave-load-tmpdir option. If the server was not started with that option, the
directory location is the value of the tmpdir system variable.



Using Replication for Backups

1957

17.3.1.3 Backing Up a Master or Slave by Making It Read Only

It is possible to back up either master or slave servers in a replication setup by acquiring a global read
lock and manipulating the read_only system variable to change the read-only state of the server to
be backed up:

1. Make the server read-only, so that it processes only retrievals and blocks updates.

2. Perform the backup.

3. Change the server back to its normal read/write state.

Note

The instructions in this section place the server to be backed up in a state that is
safe for backup methods that get the data from the server, such as mysqldump
(see Section 4.5.4, “mysqldump — A Database Backup Program”). You should
not attempt to use these instructions to make a binary backup by copying files
directly because the server may still have modified data cached in memory and
not flushed to disk.

The following instructions describe how to do this for a master server and for a slave server. For both
scenarios discussed here, suppose that you have the following replication setup:

• A master server M1

• A slave server S1 that has M1 as its master

• A client C1 connected to M1

• A client C2 connected to S1

In either scenario, the statements to acquire the global read lock and manipulate the read_only
variable are performed on the server to be backed up and do not propagate to any slaves of that
server.

Scenario 1: Backup with a Read-Only Master

Put the master M1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While M1 is in a read-only state, the following properties are true:

• Requests for updates sent by C1 to M1 will block because the server is in read-only mode.

• Requests for query results sent by C1 to M1 will succeed.

• Making a backup on M1 is safe.

• Making a backup on S1 is not safe. This server is still running, and might be processing the binary
log or update requests coming from client C2

While M1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on M1 completes, restore M1 to its normal operational state by executing
these statements:

mysql> SET GLOBAL read_only = OFF;



Using Replication with Different Master and Slave Storage Engines

1958

mysql> UNLOCK TABLES;

Although performing the backup on M1 is safe (as far as the backup is concerned), it is not optimal for
performance because clients of M1 are blocked from executing updates.

This strategy applies to backing up a master server in a replication setup, but can also be used for a
single server in a nonreplication setting.

Scenario 2: Backup with a Read-Only Slave

Put the slave S1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While S1 is in a read-only state, the following properties are true:

• The master M1 will continue to operate, so making a backup on the master is not safe.

• The slave S1 is stopped, so making a backup on the slave S1 is safe.

These properties provide the basis for a popular backup scenario: Having one slave busy performing a
backup for a while is not a problem because it does not affect the entire network, and the system is still
running during the backup. In particular, clients can still perform updates on the master server, which
remains unaffected by backup activity on the slave.

While S1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on S1 completes, restore S1 to its normal operational state by executing
these statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

After the slave is restored to normal operation, it again synchronizes to the master by catching up with
any outstanding updates from the binary log of the master.

17.3.2 Using Replication with Different Master and Slave Storage Engines

It does not matter for the replication process whether the source table on the master and the
replicated table on the slave use different engine types. In fact, the default_storage_engine and
storage_engine system variables are not replicated.

This provides a number of benefits in the replication process in that you can take advantage of different
engine types for different replication scenarios. For example, in a typical scale-out scenario (see
Section 17.3.3, “Using Replication for Scale-Out”), you want to use InnoDB tables on the master to
take advantage of the transactional functionality, but use MyISAM on the slaves where transaction
support is not required because the data is only read. When using replication in a data-logging
environment you may want to use the Archive storage engine on the slave.

Configuring different engines on the master and slave depends on how you set up the initial replication
process:

• If you used mysqldump to create the database snapshot on your master, you could edit the dump
file text to change the engine type used on each table.

Another alternative for mysqldump is to disable engine types that you do not want to use on the
slave before using the dump to build the data on the slave. For example, you can add the --skip-
innodb option on your slave to disable the InnoDB engine. If a specific engine does not exist for a
table to be created, MySQL will use the default engine type, usually MyISAM. (This requires that the



Using Replication for Scale-Out

1959

NO_ENGINE_SUBSTITUTION SQL mode is not enabled.) If you want to disable additional engines
in this way, you may want to consider building a special binary to be used on the slave that only
supports the engines you want.

• If you are using raw data files (a binary backup) to set up the slave, you will be unable to change the
initial table format. Instead, use ALTER TABLE to change the table types after the slave has been
started.

• For new master/slave replication setups where there are currently no tables on the master, avoid
specifying the engine type when creating new tables.

If you are already running a replication solution and want to convert your existing tables to another
engine type, follow these steps:

1. Stop the slave from running replication updates:

mysql> STOP SLAVE;

This will enable you to change engine types without interruptions.

2. Execute an ALTER TABLE ... ENGINE='engine_type' for each table to be changed.

3. Start the slave replication process again:

mysql> START SLAVE;

Although the default_storage_engine variable is not replicated, be aware that CREATE TABLE
and ALTER TABLE statements that include the engine specification will be correctly replicated to the
slave. For example, if you have a CSV table and you execute:

mysql> ALTER TABLE csvtable Engine='MyISAM';

The above statement will be replicated to the slave and the engine type on the slave will be converted
to MyISAM, even if you have previously changed the table type on the slave to an engine other than
CSV. If you want to retain engine differences on the master and slave, you should be careful to use the
default_storage_engine variable on the master when creating a new table. For example, instead
of:

mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;

Use this format:

mysql> SET default_storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);

When replicated, the default_storage_engine variable will be ignored, and the CREATE TABLE
statement will execute on the slave using the slave's default engine.

17.3.3 Using Replication for Scale-Out

You can use replication as a scale-out solution; that is, where you want to split up the load of database
queries across multiple database servers, within some reasonable limitations.

Because replication works from the distribution of one master to one or more slaves, using replication
for scale-out works best in an environment where you have a high number of reads and low number of
writes/updates. Most Web sites fit into this category, where users are browsing the Web site, reading
articles, posts, or viewing products. Updates only occur during session management, or when making a
purchase or adding a comment/message to a forum.



Replicating Different Databases to Different Slaves

1960

Replication in this situation enables you to distribute the reads over the replication slaves, while still
enabling your web servers to communicate with the replication master when a write is required. You
can see a sample replication layout for this scenario in Figure 17.1, “Using Replication to Improve
Performance During Scale-Out”.

Figure 17.1 Using Replication to Improve Performance During Scale-Out

If the part of your code that is responsible for database access has been properly abstracted/
modularized, converting it to run with a replicated setup should be very smooth and easy. Change
the implementation of your database access to send all writes to the master, and to send reads to
either the master or a slave. If your code does not have this level of abstraction, setting up a replicated
system gives you the opportunity and motivation to clean it up. Start by creating a wrapper library or
module that implements the following functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions.
You can use different names for the functions. The important thing is to have a unified interface for
connecting for reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to take
advantage of a master/slave configuration, even one involving multiple slaves. The code is much easier
to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions;
for example, to log how long each statement took, or which statement among those issued gave you an
error.

If you have written a lot of code, you may want to automate the conversion task by using the replace
utility that comes with standard MySQL distributions, or write your own conversion script. Ideally, your
code uses consistent programming style conventions. If not, then you are probably better off rewriting it
anyway, or at least going through and manually regularizing it to use a consistent style.

17.3.4 Replicating Different Databases to Different Slaves

There may be situations where you have a single master and want to replicate different databases to
different slaves. For example, you may want to distribute different sales data to different departments



Replicating Different Databases to Different Slaves

1961

to help spread the load during data analysis. A sample of this layout is shown in Figure 17.2, “Using
Replication to Replicate Databases to Separate Replication Slaves”.

Figure 17.2 Using Replication to Replicate Databases to Separate Replication Slaves

You can achieve this separation by configuring the master and slaves as normal, and then limiting
the binary log statements that each slave processes by using the --replicate-wild-do-table
configuration option on each slave.

Important

You should not use --replicate-do-db for this purpose when using
statement-based replication, since statement-based replication causes this
option's affects to vary according to the database that is currently selected. This
applies to mixed-format replication as well, since this enables some updates to
be replicated using the statement-based format.

However, it should be safe to use --replicate-do-db for this purpose if you
are using row-based replication only, since in this case the currently selected
database has no effect on the option's operation.

For example, to support the separation as shown in Figure 17.2, “Using Replication to Replicate
Databases to Separate Replication Slaves”, you should configure each replication slave as follows,
before executing START SLAVE:

• Replication slave 1 should use --replicate-wild-do-table=databaseA.%.

• Replication slave 2 should use --replicate-wild-do-table=databaseB.%.

• Replication slave 3 should use --replicate-wild-do-table=databaseC.%.

Each slave in this configuration receives the entire binary log from the master, but executes only those
events from the binary log that apply to the databases and tables included by the --replicate-
wild-do-table option in effect on that slave.

If you have data that must be synchronized to the slaves before replication starts, you have a number
of choices:

• Synchronize all the data to each slave, and delete the databases, tables, or both that you do not
want to keep.

• Use mysqldump to create a separate dump file for each database and load the appropriate dump file
on each slave.

• Use a raw data file dump and include only the specific files and databases that you need for each
slave.

Note

This does not work with InnoDB databases unless you use
innodb_file_per_table.



Improving Replication Performance

1962

17.3.5 Improving Replication Performance

As the number of slaves connecting to a master increases, the load, although minimal, also increases,
as each slave uses a client connection to the master. Also, as each slave must receive a full copy of
the master binary log, the network load on the master may also increase and create a bottleneck.

If you are using a large number of slaves connected to one master, and that master is also busy
processing requests (for example, as part of a scale-out solution), then you may want to improve the
performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication
structure that enables the master to replicate to only one slave, and for the remaining slaves to connect
to this primary slave for their individual replication requirements. A sample of this structure is shown in
Figure 17.3, “Using an Additional Replication Host to Improve Performance”.

Figure 17.3 Using an Additional Replication Host to Improve Performance

For this to work, you must configure the MySQL instances as follows:

• Master 1 is the primary master where all changes and updates are written to the database. Binary
logging should be enabled on this machine.

• Master 2 is the slave to the Master 1 that provides the replication functionality to the remainder of
the slaves in the replication structure. Master 2 is the only machine permitted to connect to Master
1. Master 2 also has binary logging enabled, and the --log-slave-updates option so that
replication instructions from Master 1 are also written to Master 2's binary log so that they can then
be replicated to the true slaves.

• Slave 1, Slave 2, and Slave 3 act as slaves to Master 2, and replicate the information from Master 2,
which actually consists of the upgrades logged on Master 1.

The above solution reduces the client load and the network interface load on the primary master, which
should improve the overall performance of the primary master when used as a direct database solution.

If your slaves are having trouble keeping up with the replication process on the master, there are a
number of options available:

• If possible, put the relay logs and the data files on different physical drives. To do this, use the --
relay-log option to specify the location of the relay log.

• If the slaves are significantly slower than the master, you may want to divide up the responsibility
for replicating different databases to different slaves. See Section 17.3.4, “Replicating Different
Databases to Different Slaves”.

• If your master makes use of transactions and you are not concerned about transaction support on
your slaves, use MyISAM or another nontransactional engine on the slaves. See Section 17.3.2,
“Using Replication with Different Master and Slave Storage Engines”.

• If your slaves are not acting as masters, and you have a potential solution in place to ensure that you
can bring up a master in the event of failure, then you can switch off --log-slave-updates. This
prevents “dumb” slaves from also logging events they have executed into their own binary log.



Switching Masters During Failover

1963

17.3.6 Switching Masters During Failover

There is in MySQL 5.5 no official solution for providing failover between master and slaves in the
event of a failure. Instead, you must set up a master and one or more slaves; then, you need to write
an application or script that monitors the master to check whether it is up, and instructs the slaves
and applications to change master in case of failure. This section discusses some of the issues
encountered when setting up failover in this fashion.

Note

The MySQL Utilities include a mysqlfailover tool that provides failover
capability using GTIDs, support for which requires MySQL 5.6 or later. For more
information, see mysqlfailover — Automatic replication health monitoring
and failover, and Replication with Global Transaction Identifiers.

You can tell a slave to change to a new master using the CHANGE MASTER TO statement. The slave
does not check whether the databases on the master are compatible with those on the slave; it simply
begins reading and executing events from the specified coordinates in the new master's binary log. In
a failover situation, all the servers in the group are typically executing the same events from the same
binary log file, so changing the source of the events should not affect the structure or integrity of the
database, provided that you exercise care in making the change.

Slaves should be run with the --log-bin option and without --log-slave-updates. In this way,
the slave is ready to become a master without restarting the slave mysqld. Assume that you have the
structure shown in Figure 17.4, “Redundancy Using Replication, Initial Structure”.

Remember that you can tell a slave to change its master at any time, using the CHANGE MASTER TO
statement. The slave will not check whether the databases on the master are compatible with the
slave, it will just start reading and executing events from the specified binary log coordinates on the
new master. In a failover situation, all the servers in the group are typically executing the same events
from the same binary log file, so changing the source of the events should not affect the database
structure or integrity providing you are careful.

Run your slaves with the --log-bin option and without --log-slave-updates. In this way, the
slave is ready to become a master as soon as you issue STOP SLAVE; RESET MASTER, and CHANGE
MASTER TO statement on the other slaves. For example, assume that you have the structure shown in
Figure 17.4, “Redundancy Using Replication, Initial Structure”.

Figure 17.4 Redundancy Using Replication, Initial Structure

In this diagram, the MySQL Master holds the master database, the MySQL Slave hosts are
replication slaves, and the Web Client machines are issuing database reads and writes. Web clients
that issue only reads (and would normally be connected to the slaves) are not shown, as they do not

http://dev.mysql.com/doc/mysql-utilities/1.5/en/mysqlfailover.html
http://dev.mysql.com/doc/mysql-utilities/1.5/en/mysqlfailover.html
http://dev.mysql.com/doc/refman/5.6/en/replication-gtids.html


Switching Masters During Failover

1964

need to switch to a new server in the event of failure. For a more detailed example of a read/write
scale-out replication structure, see Section 17.3.3, “Using Replication for Scale-Out”.

Each MySQL Slave (Slave 1, Slave 2, and Slave 3) is a slave running with --log-bin and
without --log-slave-updates. Because updates received by a slave from the master are not
logged in the binary log unless --log-slave-updates is specified, the binary log on each slave is
empty initially. If for some reason MySQL Master becomes unavailable, you can pick one of the slaves
to become the new master. For example, if you pick Slave 1, all Web Clients should be redirected
to Slave 1, which writes the updates to its binary log. Slave 2 and Slave 3 should then replicate
from Slave 1.

The reason for running the slave without --log-slave-updates is to prevent slaves from receiving
updates twice in case you cause one of the slaves to become the new master. If Slave 1 has --log-
slave-updates enabled, it writes any updates that it receives from Master in its own binary log. This
means that, when Slave 2 changes from Master to Slave 1 as its master, it may receive updates
from Slave 1 that it has already received from Master.

Make sure that all slaves have processed any statements in their relay log. On each slave, issue STOP
SLAVE IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has read all
relay log. When this is true for all slaves, they can be reconfigured to the new setup. On the slave
Slave 1 being promoted to become the master, issue STOP SLAVE and RESET MASTER.

On the other slaves Slave 2 and Slave 3, use STOP SLAVE and CHANGE MASTER TO
MASTER_HOST='Slave1' (where 'Slave1' represents the real host name of Slave 1). To use
CHANGE MASTER TO, add all information about how to connect to Slave 1 from Slave 2 or Slave
3 (user, password, port). When issuing the CHANGE MASTER TO statement in this, there is no need
to specify the name of the Slave 1 binary log file or log position to read from, since the first binary log
file and position 4, are the defaults. Finally, execute START SLAVE on Slave 2 and Slave 3.

Once the new replication setup is in place, you need to tell each Web Client to direct its statements
to Slave 1. From that point on, all updates statements sent by Web Client to Slave 1 are written
to the binary log of Slave 1, which then contains every update statement sent to Slave 1 since
Master died.

The resulting server structure is shown in Figure 17.5, “Redundancy Using Replication, After Master
Failure”.

Figure 17.5 Redundancy Using Replication, After Master Failure



Setting Up Replication to Use Secure Connections

1965

When Master becomes available again, you should make it a slave of Slave 1. To do this, issue
on Master the same CHANGE MASTER TO statement as that issued on Slave 2 and Slave 3
previously. Master then becomes a slave of S1ave 1 and picks up the Web Client writes that it
missed while it was offline.

To make Master a master again, use the preceding procedure as if Slave 1 was unavailable and
Master was to be the new master. During this procedure, do not forget to run RESET MASTER on
Master before making Slave 1, Slave 2, and Slave 3 slaves of Master. If you fail to do this,
the slaves may pick up stale writes from the Web Client applications dating from before the point at
which Master became unavailable.

You should be aware that there is no synchronization between slaves, even when they share the same
master, and thus some slaves might be considerably ahead of others. This means that in some cases
the procedure outlined in the previous example might not work as expected. In practice, however, relay
logs on all slaves should be relatively close together.

One way to keep applications informed about the location of the master is to have a dynamic DNS
entry for the master. With bind you can use nsupdate to update the DNS dynamically.

17.3.7 Setting Up Replication to Use Secure Connections

To use a secure connection for encrypting the transfer of the binary log required during replication, both
the master and the slave servers must support encrypted network connections. If either server does
not support secure connections (because it has not been compiled or configured for them), replication
through an encrypted connection is not possible.

Setting up secure connections for replication is similar to doing so for client/server connections. You
must obtain (or create) a suitable security certificate that you can use on the master, and a similar
certificate (from the same certificate authority) on each slave. You must also obtain suitable key files.

For more information on setting up a server and client for secure connections, see Section 6.4.4,
“Configuring MySQL to Use Secure Connections”.

To enable secure connections on the master, you must create or obtain suitable certificate and
key files, and then add the following configuration options to the master's configuration within the
[mysqld] section of the master's my.cnf file, changing the file names as necessary:

[mysqld]
ssl-ca=cacert.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem

The paths to the files may be relative or absolute; we recommend that you always use complete paths
for this purpose.

The options are as follows:

• ssl-ca identifies the Certificate Authority (CA) certificate.

• ssl-cert identifies the server public key certificate. This can be sent to the client and authenticated
against the CA certificate that it has.

• ssl-key identifies the server private key.

On the slave, there are two ways to specify the information required for connecting securely to the
master. You can either name the slave certificate and key files in the [client] section of the slave's
my.cnf file, or you can explicitly specify that information using the CHANGE MASTER TO statement:

• To name the slave certificate and key files using an option file, add the following lines to the
[client] section of the slave's my.cnf file, changing the file names as necessary:



Semisynchronous Replication

1966

[client]
ssl-ca=cacert.pem
ssl-cert=client-cert.pem
ssl-key=client-key.pem

Restart the slave server, using the --skip-slave-start option to prevent the slave from
connecting to the master. Use CHANGE MASTER TO to specify the master configuration, using the
MASTER_SSL option to connect securely:

mysql> CHANGE MASTER TO
    -> MASTER_HOST='master_hostname',
    -> MASTER_USER='replicate',
    -> MASTER_PASSWORD='password',
    -> MASTER_SSL=1;

• To specify the certificate and key names using the CHANGE MASTER TO statement, append the
appropriate MASTER_SSL_xxx options:

mysql> CHANGE MASTER TO
    -> MASTER_HOST='master_hostname',
    -> MASTER_USER='replicate',
    -> MASTER_PASSWORD='password',
    -> MASTER_SSL=1,
    -> MASTER_SSL_CA = 'ca_file_name',
    -> MASTER_SSL_CAPATH = 'ca_directory_name',
    -> MASTER_SSL_CERT = 'cert_file_name',
    -> MASTER_SSL_KEY = 'key_file_name';

After the master information has been updated, start the slave replication process:

mysql> START SLAVE;

You can use the SHOW SLAVE STATUS statement to confirm that a secure connection was established
successfully.

For more information on the CHANGE MASTER TO statement, see Section 13.4.2.1, “CHANGE
MASTER TO Syntax”.

If you want to enforce the use of secure connections during replication, then create a user with the
REPLICATION SLAVE privilege and use the REQUIRE SSL option for that user. For example:

mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.*
    -> TO 'repl'@'%.mydomain.com' REQUIRE SSL;

If the account already exists, you can add REQUIRE SSL to it with this statement:

mysql> GRANT USAGE ON *.*
    -> TO 'repl'@'%.mydomain.com' REQUIRE SSL;

17.3.8 Semisynchronous Replication

In addition to the built-in asynchronous replication, MySQL 5.5 supports an interface to
semisynchronous replication that is implemented by plugins. This section discusses what
semisynchronous replication is and how it works. The following sections cover the administrative
interface to semisynchronous replication and how to install, configure, and monitor it.

MySQL replication by default is asynchronous. The master writes events to its binary log but does not
know whether or when a slave has retrieved and processed them. With asynchronous replication, if
the master crashes, transactions that it has committed might not have been transmitted to any slave.
Consequently, failover from master to slave in this case may result in failover to a server that is missing
transactions relative to the master.



Semisynchronous Replication

1967

Semisynchronous replication can be used as an alternative to asynchronous replication:

• A slave indicates whether it is semisynchronous-capable when it connects to the master.

• If semisynchronous replication is enabled on the master side and there is at least one
semisynchronous slave, a thread that performs a transaction commit on the master blocks after
the commit is done and waits until at least one semisynchronous slave acknowledges that it has
received all events for the transaction, or until a timeout occurs.

• The slave acknowledges receipt of a transaction's events only after the events have been written to
its relay log and flushed to disk.

• If a timeout occurs without any slave having acknowledged the transaction, the master reverts to
asynchronous replication. When at least one semisynchronous slave catches up, the master returns
to semisynchronous replication.

• Semisynchronous replication must be enabled on both the master and slave sides. If
semisynchronous replication is disabled on the master, or enabled on the master but on no slaves,
the master uses asynchronous replication.

While the master is blocking (waiting for acknowledgment from a slave after having performed a
commit), it does not return to the session that performed the transaction. When the block ends, the
master returns to the session, which then can proceed to execute other statements. At this point, the
transaction has committed on the master side, and receipt of its events has been acknowledged by at
least one slave.

Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction
that modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though
it has no effect for transactional tables because the modifications to the nontransactional tables cannot
be rolled back and must be sent to slaves.

For statements that do not occur in transactional context (that is, when no transaction has been started
with START TRANSACTION or SET autocommit = 0), autocommit is enabled and each statement
commits implicitly. With semisynchronous replication, the master blocks after committing each such
statement, just as it does for explicit transaction commits.

To understand what the “semi” in “semisynchronous replication” means, compare it with asynchronous
and fully synchronous replication:

• With asynchronous replication, the master writes events to its binary log and slaves request them
when they are ready. There is no guarantee that any event will ever reach any slave.

• With fully synchronous replication, when a master commits a transaction, all slaves also will have
committed the transaction before the master returns to the session that performed the transaction.
The drawback of this is that there might be a lot of delay to complete a transaction.

• Semisynchronous replication falls between asynchronous and fully synchronous replication. The
master waits after commit only until at least one slave has received and logged the events. It does
not wait for all slaves to acknowledge receipt, and it requires only receipt, not that the events have
been fully executed and committed on the slave side.

Compared to asynchronous replication, semisynchronous replication provides improved data integrity.
When a commit returns successfully, it is known that the data exists in at least two places (on the
master and at least one slave). If the master commits but a crash occurs while the master is waiting for
acknowledgment from a slave, it is possible that the transaction may not have reached any slave.

Semisynchronous replication also places a rate limit on busy sessions by constraining the speed at
which binary log events can be sent from master to slave. When one user is too busy, this will slow it
down, which is useful in some deployment situations.

Semisynchronous replication does have some performance impact because commits are slower due
to the need to wait for slaves. This is the tradeoff for increased data integrity. The amount of slowdown



Semisynchronous Replication

1968

is at least the TCP/IP roundtrip time to send the commit to the slave and wait for the acknowledgment
of receipt by the slave. This means that semisynchronous replication works best for close servers
communicating over fast networks, and worst for distant servers communicating over slow networks.

17.3.8.1 Semisynchronous Replication Administrative Interface

The administrative interface to semisynchronous replication has several components:

• Two plugins implement semisynchronous capability. There is one plugin for the master side and one
for the slave side.

• System variables control plugin behavior. Some examples:

• rpl_semi_sync_master_enabled

Controls whether semisynchronous replication is enabled on the master. To enable or disable the
plugin, set this variable to 1 or 0, respectively. The default is 0 (off).

• rpl_semi_sync_master_timeout

A value in milliseconds that controls how long the master waits on a commit for acknowledgment
from a slave before timing out and reverting to asynchronous replication. The default value is
10000 (10 seconds).

• rpl_semi_sync_slave_enabled

Similar to rpl_semi_sync_master_enabled, but controls the slave plugin.

All rpl_semi_sync_xxx system variables are described at Section 5.1.5, “Server System
Variables”.

• Status variables enable semisynchronous replication monitoring. Some examples:

• Rpl_semi_sync_master_clients

The number of semisynchronous slaves.

• Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the master. The value is 1 if the
plugin has been enabled and a commit acknowledgment has occurred. It is 0 if the plugin is not
enabled or the master has fallen back to asynchronous replication due to commit acknowledgment
timeout.

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a slave.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a slave.

• Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the slave. This is 1 if the plugin
has been enabled and the slave I/O thread is running, 0 otherwise.

All Rpl_semi_sync_xxx status variables are described at Section 5.1.7, “Server Status Variables”.

The system and status variables are available only if the appropriate master or slave plugin has been
installed with INSTALL PLUGIN.

17.3.8.2 Semisynchronous Replication Installation and Configuration



Semisynchronous Replication

1969

Semisynchronous replication is implemented using plugins, so the plugins must be installed into the
server to make them available. After a plugin has been installed, you control it by means of the system
variables associated with it. These system variables are unavailable until the associated plugin has
been installed.

This section describes how to install the semisynchronous replication plugins. For general information
about installing plugins, see Section 5.5.2, “Installing and Uninstalling Plugins”.

To use semisynchronous replication, the following requirements must be satisfied:

• MySQL 5.5 or higher must be installed.

• The capability of installing plugins requires a MySQL server that supports dynamic loading. To
verify this, check that the value of the have_dynamic_loading system variable is YES. Binary
distributions should support dynamic loading.

• Replication must already be working. For information on creating a master/slave relationship, see
Section 17.1.1, “How to Set Up Replication”.

To set up semisynchronous replication, use the following instructions. The INSTALL PLUGIN, SET
GLOBAL, STOP SLAVE, and START SLAVE statements mentioned here require the SUPER privilege.

MySQL distributions include semisynchronous replication plugin files for the master side and the slave
side.

To be usable by a master or slave server, the appropriate plugin library file must be located in the
MySQL plugin directory (the directory named by the plugin_dir system variable). If necessary, set
the value of plugin_dir at server startup to tell the server the plugin directory location.

The plugin library file base names are semisync_master and semisync_slave. The file name
suffix differs per platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

The master plugin library file must be present in the plugin directory of the master server. The slave
plugin library file must be present in the plugin directory of each slave server.

To load the plugins, use the INSTALL PLUGIN statement on the master and on each slave that is to
be semisynchronous (adjust the .so suffix for your platform as necessary).

On the master:

INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';

On each slave:

INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';

If an attempt to install a plugin results in an error on Linux similar to that shown here, you must install
libimf:

mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
ERROR 1126 (HY000): Can't open shared library
'/usr/local/mysql/lib/plugin/semisync_master.so'
(errno: 22 libimf.so: cannot open shared object file:
No such file or directory)

You can obtain libimf from http://dev.mysql.com/downloads/os-linux.html.

To see which plugins are installed, use the SHOW PLUGINS statement, or query the
INFORMATION_SCHEMA.PLUGINS table.

http://dev.mysql.com/downloads/os-linux.html


Semisynchronous Replication

1970

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement (see Section 5.5.3, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
       FROM INFORMATION_SCHEMA.PLUGINS
       WHERE PLUGIN_NAME LIKE '%semi%';
+----------------------+---------------+
| PLUGIN_NAME          | PLUGIN_STATUS |
+----------------------+---------------+
| rpl_semi_sync_master | ACTIVE        |
+----------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins
must be enabled both on the master side and the slave side to enable semisynchronous replication. If
only one side is enabled, replication will be asynchronous.

To control whether an installed plugin is enabled, set the appropriate system variables. You can set
these variables at runtime using SET GLOBAL, or at server startup on the command line or in an option
file.

At runtime, these master-side system variables are available:

SET GLOBAL rpl_semi_sync_master_enabled = {0|1};
SET GLOBAL rpl_semi_sync_master_timeout = N;

On the slave side, this system variable is available:

SET GLOBAL rpl_semi_sync_slave_enabled = {0|1};

For rpl_semi_sync_master_enabled or rpl_semi_sync_slave_enabled, the value should be
1 to enable semisynchronous replication or 0 to disable it. By default, these variables are set to 0.

For rpl_semi_sync_master_timeout, the value N is given in milliseconds. The default value is
10000 (10 seconds).

If you enable semisynchronous replication on a slave at runtime, you must also start the slave I/O
thread (stopping it first if it is already running) to cause the slave to connect to the master and register
as a semisynchronous slave:

STOP SLAVE IO_THREAD;
START SLAVE IO_THREAD;

If the I/O thread is already running and you do not restart it, the slave continues to use asynchronous
replication.

At server startup, the variables that control semisynchronous replication can be set as command-line
options or in an option file. A setting listed in an option file takes effect each time the server starts. For
example, you can set the variables in my.cnf files on the master and slave sides as follows.

On the master:

[mysqld]
rpl_semi_sync_master_enabled=1
rpl_semi_sync_master_timeout=1000 # 1 second

On each slave:



Replication Notes and Tips

1971

[mysqld]
rpl_semi_sync_slave_enabled=1

17.3.8.3 Semisynchronous Replication Monitoring

The plugins for the semisynchronous replication capability expose several system and status variables
that you can examine to determine its configuration and operational state.

The system variable reflect how semisynchronous replication is configured. To check their values, use
SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'rpl_semi_sync%';

The status variables enable you to monitor the operation of semisynchronous replication. To check
their values, use SHOW STATUS:

mysql> SHOW STATUS LIKE 'Rpl_semi_sync%';

When the master switches between asynchronous or semisynchronous replication due to commit-
blocking timeout or a slave catching up, it sets the value of the Rpl_semi_sync_master_status
status variable appropriately. Automatic fallback from semisynchronous to asynchronous replication on
the master means that it is possible for the rpl_semi_sync_master_enabled system variable to
have a value of 1 on the master side even when semisynchronous replication is in fact not operational
at the moment. You can monitor the Rpl_semi_sync_master_status status variable to determine
whether the master currently is using asynchronous or semisynchronous replication.

To see how many semisynchronous slaves are connected, check
Rpl_semi_sync_master_clients.

The number of commits that have been acknowledged successfully or unsuccessfully by slaves
are indicated by the Rpl_semi_sync_master_yes_tx and Rpl_semi_sync_master_no_tx
variables.

On the slave side, Rpl_semi_sync_slave_status indicates whether semisynchronous replication
currently is operational.

17.4 Replication Notes and Tips

17.4.1 Replication Features and Issues

The following sections provide information about what is supported and what is not in MySQL
replication, and about specific issues and situations that may occur when replicating certain
statements.

Statement-based replication depends on compatibility at the SQL level between the master and slave.
In others, successful SBR requires that any SQL features used be supported by both the master and
the slave servers. For example, if you use a feature on the master server that is available only in
MySQL 5.5 (or later), you cannot replicate to a slave that uses MySQL 5.1 (or earlier).

Such incompatibilities also can occur within a release series when using pre-production releases of
MySQL. For example, the SLEEP() function is available beginning with MySQL 5.0.12. If you use this
function on the master, you cannot replicate to a slave that uses MySQL 5.0.11 or earlier.

For this reason, use Generally Available (GA) releases of MySQL for statement-based replication in a
production setting, since we do not introduce new SQL statements or change their behavior within a
given release series once that series reaches GA release status.

If you are planning to use statement-based replication between MySQL 5.5 and a previous MySQL
release series, it is also a good idea to consult the edition of the MySQL Reference Manual



Replication Features and Issues

1972

corresponding to the earlier release series for information regarding the replication characteristics of
that series.

With MySQL's statement-based replication, there may be issues with replicating stored routines or
triggers. You can avoid these issues by using MySQL's row-based replication instead. For a detailed
list of issues, see Section 20.7, “Binary Logging of Stored Programs”. For more information about
row-based logging and row-based replication, see Section 5.4.4.1, “Binary Logging Formats”, and
Section 17.1.2, “Replication Formats”.

For additional information specific to replication and InnoDB, see Section 14.22, “InnoDB and MySQL
Replication”. For information relating to replication with NDB Cluster, see Section 18.6, “NDB Cluster
Replication”.

17.4.1.1 Replication and AUTO_INCREMENT

Statement-based replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is
done correctly, subject to the following exceptions:

• When using statement-based replication prior to MySQL 5.5.30, AUTO_INCREMENT columns
in tables on the slave must match the same columns on the master; that is, AUTO_INCREMENT
columns must be replicated to AUTO_INCREMENT columns. (Bug #12669186)

• A statement invoking a trigger or function that causes an update to an AUTO_INCREMENT column
is not replicated correctly using statement-based replication. In MySQL 5.5, such statements are
marked as unsafe. (Bug #45677)

• An INSERT into a table that has a composite primary key that includes an AUTO_INCREMENT
column that is not the first column of this composite key is not safe for statement-based logging or
replication. Beginning with MySQL 5.5.25, such statements are marked as unsafe. (Bug #11754117,
Bug #45670)

This issue does not affect tables using the InnoDB storage engine, since an InnoDB table with an
AUTO_INCREMENT column requires at least one key where the auto-increment column is the only
or leftmost column.

• Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the slave and the master. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for the table and the order in which
the rows were inserted. If it is important to have the same order on the master and slave, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to a table t1 that has columns col1 and col2, the following statements
produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both master and slave, the ORDER BY
clause must name all columns of t1.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key
definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options. If a
table definition includes any of those characteristics, create t2 using a CREATE TABLE statement
that is identical to the one used to create t1, but with the addition of the AUTO_INCREMENT column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT
column, the final step is to drop the original table and then rename the copy:



Replication Features and Issues

1973

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Section B.5.6.1, “Problems with ALTER TABLE”.

17.4.1.2 Replication and BLACKHOLE Tables

The BLACKHOLE storage engine accepts data but discards it and does not store it. When performing
binary logging, all inserts to such tables are always logged, regardless of the logging format in use.
Updates and deletes are handled differently depending on whether statement based or row based
logging is in use. With the statement based logging format, all statements affecting BLACKHOLE tables
are logged, but their effects ignored. When using row-based logging, updates and deletes to such
tables are simply skipped—they are not written to the binary log. In MySQL 5.5.32 and later, a warning
is logged whenever this occurs (Bug #13004581)

For this reason we recommend when you replicate to tables using the BLACKHOLE storage engine that
you have the binlog_format server variable set to STATEMENT, and not to either ROW or MIXED.

17.4.1.3 Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

• If the master has databases with a character set different from the global character_set_server
value, you should design your CREATE TABLE statements so that they do not implicitly rely on
the database default character set. A good workaround is to state the character set and collation
explicitly in CREATE TABLE statements.

17.4.1.4 Replication and CHECKSUM TABLE

CHECKSUM TABLE returns a checksum that is calculated row by row, using a method that depends
on the table row storage format, which is not guaranteed to remain the same between MySQL release
series. For example, the storage format for temporal types such as TIME, DATETIME, and TIMESTAMP
changes in MySQL 5.6 prior to MySQL 5.6.5, so if a 5.5 table is upgraded to MySQL 5.6, the checksum
value may change.

17.4.1.5 Replication of CREATE ... IF NOT EXISTS Statements

MySQL applies these rules when various CREATE ... IF NOT EXISTS statements are replicated:

• Every CREATE DATABASE IF NOT EXISTS statement is replicated, whether or not the database
already exists on the master.

• Similarly, every CREATE TABLE IF NOT EXISTS statement without a SELECT is replicated,
whether or not the table already exists on the master. This includes CREATE TABLE IF NOT
EXISTS ... LIKE. Replication of CREATE TABLE IF NOT EXISTS ... SELECT follows
somewhat different rules; see Section 17.4.1.6, “Replication of CREATE TABLE ... SELECT
Statements”, for more information.

• CREATE EVENT IF NOT EXISTS is always replicated in MySQL 5.5, whether or not the event
named in the statement already exists on the master.

See also Bug #45574.

17.4.1.6 Replication of CREATE TABLE ... SELECT Statements

This section discusses how MySQL replicates CREATE TABLE ... SELECT statements.

These behaviors are not dependent on MySQL version:

• CREATE TABLE ... SELECT always performs an implicit commit (Section 13.3.3, “Statements
That Cause an Implicit Commit”).



Replication Features and Issues

1974

• If destination table does not exist, logging occurs as follows. It does not matter whether IF NOT
EXISTS is present.

• STATEMENT or MIXED format: The statement is logged as written.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-
row events.

• If the statement fails, nothing is logged. This includes the case that the destination table exists and
IF NOT EXISTS is not given.

When the destination table exists and IF NOT EXISTS is given, MySQL handles the statement in a
version-dependent way.

In MySQL 5.1 before 5.1.51 and in MySQL 5.5 before 5.5.6 (this is the original behavior):

• STATEMENT or MIXED format: The statement is logged as written.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-
row events.

In MySQL 5.1 as of 5.1.51:

• STATEMENT or MIXED format: The statement is logged as the equivalent pair of CREATE TABLE and
INSERT INTO ... SELECT statements.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-
row events.

In MySQL 5.5 as of 5.5.6:

• Nothing is inserted or logged.

These version dependencies arise due to a change in MySQL 5.5.6 in handling of CREATE
TABLE ... SELECT not to insert rows if the destination table already exists, and a change made in
MySQL 5.1.51 to preserve forward compatibility in replication of such statements from a 5.1 master to a
5.5 slave. For details, see Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”.

When using statement-based replication between a MySQL 5.6 or later slave and a master running
a previous version of MySQL, a CREATE TABLE ... SELECT statement causing changes in other
tables on the master fails on the slave, causing replication to stop. This is due to the fact that MySQL
5.6 does not allow a CREATE TABLE ... SELECT statement to make any changes in tables other
than the table that is created by the statement—a change in behavior from previous versions of
MySQL, which permitted these statements to do so. To keep this from happening, you should use
row-based replication, rewrite the offending statement before running it on the master, or upgrade the
master to MySQL 5.6 (or later). (If you choose to upgrade the master, keep in mind that such a CREATE
TABLE ... SELECT statement will fail there as well, following the upgrade, unless the statement
is rewritten to remove any side effects on other tables.) This is not an issue when using row-based
replication, because the statement is logged as a CREATE TABLE statement with any changes to table
data logged as row-insert events (or possibly row-update events), rather than as the entire CREATE
TABLE ... SELECT statement.

17.4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

In MySQL 5.5, the statements CREATE SERVER, ALTER SERVER, and DROP SERVER are not written
to the binary log, regardless of the binary logging format that is in use.

17.4.1.8 Replication of CURRENT_USER()

The following statements support use of the CURRENT_USER() function to take the place of the name
of (and, possibly, the host for) an affected user or a definer; in such cases, CURRENT_USER() is
expanded where and as needed:



Replication Features and Issues

1975

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

When CURRENT_USER() or CURRENT_USER is used as the definer in any of the statements CREATE
FUNCTION, CREATE PROCEDURE, CREATE TRIGGER, CREATE EVENT, CREATE VIEW, or ALTER
VIEW when binary logging is enabled, the function reference is expanded before it is written to the
binary log, so that the statement refers to the same user on both the master and the slave when the
statement is replicated. CURRENT_USER() or CURRENT_USER is also expanded prior to being written
to the binary log when used in DROP USER, RENAME USER, GRANT, REVOKE, or ALTER EVENT.

17.4.1.9 Replication of DROP ... IF EXISTS Statements

The DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, and DROP VIEW IF EXISTS
statements are always replicated, even if the database, table, or view to be dropped does not exist on
the master. This is to ensure that the object to be dropped no longer exists on either the master or the
slave, once the slave has caught up with the master.

DROP ... IF EXISTS statements for stored programs (stored procedures and functions, triggers,
and events) are also replicated, even if the stored program to be dropped does not exist on the master.

17.4.1.10 Replication with Differing Table Definitions on Master and Slave

Source and target tables for replication do not have to be identical. A table on the master can have
more or fewer columns than the slave's copy of the table. In addition, corresponding table columns on
the master and the slave can use different data types, subject to certain conditions.

Note

Replication between tables which are partitioned differently from one another is
not supported. See Section 17.4.1.19, “Replication and Partitioning”.

In all cases where the source and target tables do not have identical definitions, the database and table
names must be the same on both the master and the slave. Additional conditions are discussed, with
examples, in the following two sections.

Replication with More Columns on Master or Slave

You can replicate a table from the master to the slave such that the master and slave copies of the
table have differing numbers of columns, subject to the following conditions:



Replication Features and Issues

1976

• Columns common to both versions of the table must be defined in the same order on the master and
the slave.

(This is true even if both tables have the same number of columns.)

• Columns common to both versions of the table must be defined before any additional columns.

This means that executing an ALTER TABLE statement on the slave where a new column is inserted
into the table within the range of columns common to both tables causes replication to fail, as shown
in the following example:

Suppose that a table t, existing on the master and the slave, is defined by the following CREATE
TABLE statement:

CREATE TABLE t (
    c1 INT,
    c2 INT,
    c3 INT
);

Suppose that the ALTER TABLE statement shown here is executed on the slave:

ALTER TABLE t ADD COLUMN cnew1 INT AFTER c3;

The previous ALTER TABLE is permitted on the slave because the columns c1, c2, and c3 that are
common to both versions of table t remain grouped together in both versions of the table, before any
columns that differ.

However, the following ALTER TABLE statement cannot be executed on the slave without causing
replication to break:

ALTER TABLE t ADD COLUMN cnew2 INT AFTER c2;

Replication fails after execution on the slave of the ALTER TABLE statement just shown, because
the new column cnew2 comes between columns common to both versions of t.

• Each “extra” column in the version of the table having more columns must have a default value.

Note

A column's default value is determined by a number of factors, including its
type, whether it is defined with a DEFAULT option, whether it is declared as
NULL, and the server SQL mode in effect at the time of its creation; for more
information, see Section 11.6, “Data Type Default Values”).

In addition, when the slave's copy of the table has more columns than the master's copy, each column
common to the tables must use the same data type in both tables.

Examples.  The following examples illustrate some valid and invalid table definitions:

More columns on the master.  The following table definitions are valid and replicate correctly:

master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave>  CREATE TABLE t1 (c1 INT, c2 INT);

The following table definitions would raise an error because the definitions of the columns common to
both versions of the table are in a different order on the slave than they are on the master:

master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave>  CREATE TABLE t1 (c2 INT, c1 INT);



Replication Features and Issues

1977

The following table definitions would also raise an error because the definition of the extra column on
the master appears before the definitions of the columns common to both versions of the table:

master> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
slave>  CREATE TABLE t1 (c1 INT, c2 INT);

More columns on the slave.  The following table definitions are valid and replicate correctly:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave>  CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
                  

The following definitions raise an error because the columns common to both versions of the table are
not defined in the same order on both the master and the slave:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave>  CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);

The following table definitions also raise an error because the definition for the extra column in the
slave's version of the table appears before the definitions for the columns which are common to both
versions of the table:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave>  CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);

The following table definitions fail because the slave's version of the table has additional columns
compared to the master's version, and the two versions of the table use different data types for the
common column c2:

master> CREATE TABLE t1 (c1 INT, c2 BIGINT);
slave>  CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

Replication of Columns Having Different Data Types

Corresponding columns on the master's and the slave's copies of the same table ideally should have
the same data type. However, beginning with MySQL 5.1.21, this is not always strictly enforced, as
long as certain conditions are met.

All other things being equal, it is always possible to replicate from a column of a given data type to
another column of the same type and same size or width, where applicable, or larger. For example,
you can replicate from a CHAR(10) column to another CHAR(10), or from a CHAR(10) column to a
CHAR(25) column without any problems. In certain cases, it also possible to replicate from a column
having one data type (on the master) to a column having a different data type (on the slave); when the
data type of the master's version of the column is promoted to a type that is the same size or larger on
the slave, this is known as attribute promotion.

Attribute promotion can be used with both statement-based and row-based replication, and is not
dependent on the storage engine used by either the master or the slave. However, the choice of
logging format does have an effect on the type conversions that are permitted; the particulars are
discussed later in this section.

Important

Whether you use statement-based or row-based replication, the slave's copy
of the table cannot contain more columns than the master's copy if you wish to
employ attribute promotion.

Statement-based replication.  When using statement-based replication, a simple rule of thumb to
follow is, “If the statement run on the master would also execute successfully on the slave, it should



Replication Features and Issues

1978

also replicate successfully”. In other words, if the statement uses a value that is compatible with the
type of a given column on the slave, the statement can be replicated. For example, you can insert any
value that fits in a TINYINT column into a BIGINT column as well; it follows that, even if you change
the type of a TINYINT column in the slave's copy of a table to BIGINT, any insert into that column
on the master that succeeds should also succeed on the slave, since it is impossible to have a legal
TINYINT value that is large enough to exceed a BIGINT column.

Prior to MySQL 5.5.30, when using statement-based replication, AUTO_INCREMENT columns were
required to be the same on both the master and the slave; otherwise, updates could be applied to the
wrong table on the slave. (Bug #12669186)

Row-based replication: attribute promotion and demotion.  Formerly, due to the fact that in
row-based replication changes rather than statements are replicated, and that these changes are
transmitted using formats that do not always map directly to MySQL server column data types, you
could not replicate between different subtypes of the same general type (for example, from TINYINT
to BIGINT, both INT subtypes). However, beginning with MySQL 5.5.3, MySQL Replication supports
attribute promotion and demotion between smaller data types and larger types. It is also possible to
specify whether or not to permit lossy (truncated) or non-lossy conversions of demoted column values,
as explained later in this section.

Lossy and non-lossy conversions.  In the event that the target type cannot represent the value
being inserted, a decision must be made on how to handle the conversion. If we permit the conversion
but truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make
what is known as a lossy conversion. A conversion which does not require truncation or similar
modifications to fit the source column value in the target column is a non-lossy conversion.

Type conversion modes (slave_type_conversions variable).  The setting of the
slave_type_conversions global server variable controls the type conversion mode used on the
slave. This variable takes a set of values from the following table, which shows the effects of each
mode on the slave's type-conversion behavior:

Mode Effect

ALL_LOSSY In this mode, type conversions that would mean loss of
information are permitted.

This does not imply that non-lossy conversions are permitted,
merely that only cases requiring either lossy conversions or no
conversion at all are permitted; for example, enabling only this
mode permits an INT column to be converted to TINYINT (a
lossy conversion), but not a TINYINT column to an INT column
(non-lossy). Attempting the latter conversion in this case would
cause replication to stop with an error on the slave.

ALL_NON_LOSSY This mode permits conversions that do not require truncation
or other special handling of the source value; that is, it permits
conversions where the target type has a wider range than the
source type.

Setting this mode has no bearing on whether lossy conversions
are permitted; this is controlled with the ALL_LOSSY mode. If only
ALL_NON_LOSSY is set, but not ALL_LOSSY, then attempting a
conversion that would result in the loss of data (such as INT to
TINYINT, or CHAR(25) to VARCHAR(20)) causes the slave to
stop with an error.

ALL_LOSSY,ALL_NON_LOSSY When this mode is set, all supported type conversions are
permitted, whether or not they are lossy conversions.

[empty] When slave_type_conversions is not set, no attribute
promotion or demotion is permitted; this means that all columns in
the source and target tables must be of the same types.



Replication Features and Issues

1979

Mode Effect
This mode is the default.

Changing the type conversion mode requires restarting the slave with the new
slave_type_conversions setting.

Supported conversions.  Supported conversions between different but similar data types are
shown in the following list:

• Between any of the integer types TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.

This includes conversions between the signed and unsigned versions of these types.

Lossy conversions are made by truncating the source value to the maximum (or minimum) permitted
by the target column. For insuring non-lossy conversions when going from unsigned to signed types,
the target column must be large enough to accommodate the range of values in the source column.
For example, you can demote TINYINT UNSIGNED non-lossily to SMALLINT, but not to TINYINT.

• Between any of the decimal types DECIMAL, FLOAT, DOUBLE, and NUMERIC.

FLOAT to DOUBLE is a non-lossy conversion; DOUBLE to FLOAT can only be handled lossily. A
conversion from DECIMAL(M,D) to DECIMAL(M',D') where D' >= D and (M'-D') >= (M-D)
are non-lossy; for any case where M' < M, D' < D, or both, only a lossy conversion can be made.

For any of the decimal types, if a value to be stored cannot be fit in the target type, the value
is rounded down according to the rounding rules defined for the server elsewhere in the
documentation. See Section 12.18.4, “Rounding Behavior”, for information about how this is done for
decimal types.

• Between any of the string types CHAR, VARCHAR, and TEXT, including conversions between different
widths.

Conversion of a CHAR, VARCHAR, or TEXT to a CHAR, VARCHAR, or TEXT column the same size or
larger is never lossy. Lossy conversion is handled by inserting only the first N characters of the string
on the slave, where N is the width of the target column.

Important

Replication between columns using different character sets is not supported.

• Between any of the binary data types BINARY, VARBINARY, and BLOB, including conversions
between different widths.

Conversion of a BINARY, VARBINARY, or BLOB to a BINARY, VARBINARY, or BLOB column the
same size or larger is never lossy. Lossy conversion is handled by inserting only the first N bytes of
the string on the slave, where N is the width of the target column.

• Between any 2 BIT columns of any 2 sizes.

When inserting a value from a BIT(M) column into a BIT(M') column, where M' > M, the most
significant bits of the BIT(M') columns are cleared (set to zero) and the M bits of the BIT(M) value
are set as the least significant bits of the BIT(M') column.

When inserting a value from a source BIT(M) column into a target BIT(M') column, where M' <
M, the maximum possible value for the BIT(M') column is assigned; in other words, an “all-set”
value is assigned to the target column.

Conversions between types not in the previous list are not permitted.

Replication type conversions in MySQL 5.5.3 and earlier.  Prior to MySQL 5.5.3, with row-based
binary logging, you could not replicate between different INT subtypes, such as from TINYINT to



Replication Features and Issues

1980

BIGINT, because changes to columns of these types were represented differently from one another in
the binary log when using row-based logging. (However, you could replicate from BLOB to TEXT using
row-based replication because changes to BLOB and TEXT columns were represented using the same
format in the binary log.)

Supported conversions for attribute promotion when using row-based replication prior to MySQL 5.5.3
are shown in the following table:

From (Master) To (Slave)

BINARY CHAR

BLOB TEXT

CHAR BINARY

DECIMAL NUMERIC

NUMERIC DECIMAL

TEXT BLOB

VARBINARY VARCHAR

VARCHAR VARBINARY

Note

In all cases, the size or width of the column on the slave must be equal to or
greater than that of the column on the master. For example, you could replicate
from a CHAR(10) column on the master to a column that used BINARY(10)
or BINARY(25) on the slave, but you could not replicate from a CHAR(10)
column on the master to BINARY(5) column on the slave.

Any unique index (including primary keys) having a prefix must use a prefix
of the same length on both master and slave; in such cases, differing prefix
lengths are disallowed. It is possible to use a nonunique index whose
prefix length differs between master and slave, but this can cause serious
performance issues, particularly when the prefix used on the master is longer.
This is due to the fact that 2 unique prefixes of a given length may no longer
be unique at a shorter length; for example, the words catalogue and catamount
have the 5-character prefixes catal and catam, respectively, but share the
same 4-character prefix (cata). This can lead to queries that use such indexes
executing less efficiently on the slave, when a shorter prefix is employed in the
slave' definition of the same index than on the master.

For DECIMAL and NUMERIC columns, both the mantissa (M) and the number of
decimals (D) must be the same size or larger on the slave as compared with the
master. For example, replication from a NUMERIC(5,4) to a DECIMAL(6,4)
worked, but not from a NUMERIC(5,4) to a DECIMAL(5,3).

Prior to MySQL 5.5.3, MySQL replication did not support attribute promotion of any of the following
data types to or from any other data type when using row-based replication:

• INT (including TINYINT, SMALLINT, MEDIUMINT, BIGINT).

Promotion between INT subtypes—for example, from SMALLINT to BIGINT—was also not
supported prior to MySQL 5.5.3.

• SET or ENUM.

• FLOAT or DOUBLE.

• All of the data types relating to dates, times, or both: DATE, TIME, DATETIME, TIMESTAMP, and
YEAR.



Replication Features and Issues

1981

17.4.1.11 Replication and DIRECTORY Table Options

If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement
on the master server, the table option is also used on the slave. This can cause problems if no
corresponding directory exists in the slave host file system or if it exists but is not accessible to the
slave server. This can be overridden by using the NO_DIR_IN_CREATE server SQL mode on the slave,
which causes the slave to ignore the DATA DIRECTORY and INDEX DIRECTORY table options when
replicating CREATE TABLE statements. The result is that MyISAM data and index files are created in
the table's database directory.

For more information, see Section 5.1.8, “Server SQL Modes”.

17.4.1.12 Replication of Invoked Features

Replication of invoked features such as user-defined functions (UDFs) and stored programs (stored
procedures and functions, triggers, and events) provides the following characteristics:

• The effects of the feature are always replicated.

• The following statements are replicated using statement-based replication:

• CREATE EVENT

• ALTER EVENT

• DROP EVENT

• CREATE PROCEDURE

• DROP PROCEDURE

• CREATE FUNCTION

• DROP FUNCTION

• CREATE TRIGGER

• DROP TRIGGER

However, the effects of features created, modified, or dropped using these statements are replicated
using row-based replication.

Note

Attempting to replicate invoked features using statement-based replication
produces the warning Statement is not safe to log in statement
format. For example, trying to replicate a UDF with statement-based
replication generates this warning because it currently cannot be determined
by the MySQL server whether the UDF is deterministic. If you are absolutely
certain that the invoked feature's effects are deterministic, you can safely
disregard such warnings.

•     In the case of CREATE EVENT and ALTER EVENT:

• The status of the event is set to SLAVESIDE_DISABLED on the slave regardless of the state
specified (this does not apply to DROP EVENT).

• The master on which the event was created is identified on the slave by its server ID. The
ORIGINATOR column in INFORMATION_SCHEMA.EVENTS and the originator column in
mysql.event store this information. See Section 21.7, “The INFORMATION_SCHEMA EVENTS
Table”, and Section 13.7.5.19, “SHOW EVENTS Syntax”, for more information.



Replication Features and Issues

1982

• The feature implementation resides on the slave in a renewable state so that if the master fails, the
slave can be used as the master without loss of event processing.

To determine whether there are any scheduled events on a MySQL server that were created on a
different server (that was acting as a replication master), query the INFORMATION_SCHEMA.EVENTS
table in a manner similar to what is shown here:

SELECT EVENT_SCHEMA, EVENT_NAME
    FROM INFORMATION_SCHEMA.EVENTS
    WHERE STATUS = 'SLAVESIDE_DISABLED';

Alternatively, you can use the SHOW EVENTS statement, like this:

SHOW EVENTS
    WHERE STATUS = 'SLAVESIDE_DISABLED';

When promoting a replication slave having such events to a replication master, you must enable each
event using ALTER EVENT event_name ENABLE, where event_name is the name of the event.

If more than one master was involved in creating events on this slave, and you wish to identify events
that were created only on a given master having the server ID master_id, modify the previous query
on the EVENTS table to include the ORIGINATOR column, as shown here:

SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
    FROM INFORMATION_SCHEMA.EVENTS
    WHERE STATUS = 'SLAVESIDE_DISABLED'
    AND   ORIGINATOR = 'master_id'

You can employ ORIGINATOR with the SHOW EVENTS statement in a similar fashion:

SHOW EVENTS
    WHERE STATUS = 'SLAVESIDE_DISABLED'
    AND   ORIGINATOR = 'master_id'

Before enabling events that were replicated from the master, you should disable the MySQL Event
Scheduler on the slave (using a statement such as SET GLOBAL event_scheduler = OFF;), run
any necessary ALTER EVENT statements, restart the server, then re-enable the Event Scheduler on
the slave afterward (using a statement such as SET GLOBAL event_scheduler = ON;)-

If you later demote the new master back to being a replication slave, you must disable manually all
events enabled by the ALTER EVENT statements. You can do this by storing in a separate table the
event names from the SELECT statement shown previously, or using ALTER EVENT statements to
rename the events with a common prefix such as replicated_ to identify them.

If you rename the events, then when demoting this server back to being a replication slave, you can
identify the events by querying the EVENTS table, as shown here:

SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS 'Db.Event'
      FROM INFORMATION_SCHEMA.EVENTS
      WHERE INSTR(EVENT_NAME, 'replicated_') = 1;

17.4.1.13 Replication and Floating-Point Values

With statement-based replication, values are converted from decimal to binary. Because conversions
between decimal and binary representations of them may be approximate, comparisons involving
floating-point values are inexact. This is true for operations that use floating-point values explicitly,
or that use values that are converted to floating-point implicitly. Comparisons of floating-point values
might yield different results on master and slave servers due to differences in computer architecture,
the compiler used to build MySQL, and so forth. See Section 12.2, “Type Conversion in Expression
Evaluation”, and Section B.5.4.8, “Problems with Floating-Point Values”.



Replication Features and Issues

1983

17.4.1.14 Replication and FLUSH

Some forms of the FLUSH statement are not logged because they could cause problems if replicated
to a slave: FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ LOCK.
For a syntax example, see Section 13.7.6.3, “FLUSH Syntax”. The FLUSH TABLES, ANALYZE TABLE,
OPTIMIZE TABLE, and REPAIR TABLE statements are written to the binary log and thus replicated to
slaves. This is not normally a problem because these statements do not modify table data.

However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege
tables in the mysql database and update those tables directly without using GRANT, you must issue
a FLUSH PRIVILEGES on the slaves to put the new privileges into effect. In addition, if you use
FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH
TABLES manually on the slaves. These statements are written to the binary log unless you specify
NO_WRITE_TO_BINLOG or its alias LOCAL.

17.4.1.15 Replication and System Functions

Certain functions do not replicate well under some conditions:

• The USER(), CURRENT_USER() (or CURRENT_USER), UUID(), VERSION(), and LOAD_FILE()
functions are replicated without change and thus do not work reliably on the slave unless row-based
replication is enabled. (See Section 17.1.2, “Replication Formats”.)

USER() and CURRENT_USER() are automatically replicated using row-based replication when
using MIXED mode, and generate a warning in STATEMENT mode. (Bug #28086) (See also
Section 17.4.1.8, “Replication of CURRENT_USER()”.)

Beginning with MySQL 5.5.1, VERSION() is also automatically replicated using row-based
replication when using MIXED mode, and generates a warning in STATEMENT mode. (Bug #47995)
Beginning with MySQL 5.5.2, this is also true with regard to the RAND() function. (Bug #49222)

• For NOW(), the binary log includes the timestamp. This means that the value as returned by the call
to this function on the master is replicated to the slave. This can lead to a possibly unexpected result
when replicating between MySQL servers in different time zones. Suppose that the master is located
in New York, the slave is located in Stockholm, and both servers are using local time. Suppose
further that, on the master, you create a table mytable, perform an INSERT statement on this table,
and then select from the table, as shown here:

mysql> CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO mytable VALUES ( NOW() );
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM mytable;
+---------------------+
| mycol               |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOW() on the
slave at that exact same instant, the value 2009-09-01 18:00:00 is returned. For this reason,
if you select from the slave's copy of mytable after the CREATE TABLE and INSERT statements
just shown have been replicated, you might expect mycol to contain the value 2009-09-01
18:00:00. However, this is not the case; when you select from the slave's copy of mytable, you
obtain exactly the same result as on the master:

mysql> SELECT * FROM mytable;
+---------------------+



Replication Features and Issues

1984

| mycol               |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Unlike NOW(), the SYSDATE() function is not replication-safe because it is not affected by SET
TIMESTAMP statements in the binary log and is nondeterministic if statement-based logging is used.
This is not a problem if row-based logging is used.

An alternative is to use the --sysdate-is-now option to cause SYSDATE() to be an alias for
NOW(). This must be done on the master and the slave to work correctly. In such cases, a warning
is still issued by this function, but can safely be ignored as long as --sysdate-is-now is used on
both the master and the slave.

Beginning with MySQL 5.5.1, SYSDATE() is automatically replicated using row-based replication
when using MIXED mode, and generates a warning in STATEMENT mode. (Bug #47995)

See also Section 17.4.1.34, “Replication and Time Zones”.

• The following restriction applies to statement-based replication only, not to row-based replication.
The GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that
handle user-level locks are replicated without the slave knowing the concurrency context on the
master. Therefore, these functions should not be used to insert into a master table because the
content on the slave would differ. For example, do not issue a statement such as INSERT INTO
mytable VALUES(GET_LOCK(...)).

Beginning with MySQL 5.5.1, these functions are automatically replicated using row-based
replication when using MIXED mode, and generate a warning in STATEMENT mode. (Bug #47995)

As a workaround for the preceding limitations when statement-based replication is in effect, you can
use the strategy of saving the problematic function result in a user variable and referring to the variable
in a later statement. For example, the following single-row INSERT is problematic due to the reference
to the UUID() function:

INSERT INTO t VALUES(UUID());

To work around the problem, do this instead:

SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);

That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a
user-variable event prior to the INSERT statement and is available for use in the INSERT.

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert,
you can do this:

SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For
example, you cannot convert the following statement to one in which a given individual user variable is
associated with each row:

INSERT INTO t2 SELECT UUID(), * FROM t1;

Within a stored function, RAND() replicates correctly as long as it is invoked only once during the
execution of the function. (You can consider the function execution timestamp and random number
seed as implicit inputs that are identical on the master and slave.)



Replication Features and Issues

1985

The FOUND_ROWS() and ROW_COUNT() functions are not replicated reliably using statement-based
replication. A workaround is to store the result of the function call in a user variable, and then use that
in the INSERT statement. For example, if you wish to store the result in a table named mytable, you
might normally do so like this:

SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES( FOUND_ROWS() );

However, if you are replicating mytable, you should use SELECT ... INTO, and then store the
variable in the table, like this:

SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);

In this way, the user variable is replicated as part of the context, and applied on the slave correctly.

These functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode. (Bug #12092, Bug #30244)

Prior to MySQL 5.5.35, the value of LAST_INSERT_ID() was not replicated correctly if any filtering
options such as --replicate-ignore-db and --replicate-do-table were enabled on the
slave. (Bug #17234370, BUG# 69861)

17.4.1.16 Replication and LIMIT

Statement-based replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT
statements is unsafe since the order of the rows affected is not defined. (Such statements can be
replicated correctly with statement-based replication only if they also contain an ORDER BY clause.)
When such a statement is encountered:

• When using STATEMENT mode, a warning that the statement is not safe for statement-based
replication is now issued.

When using STATEMENT mode, warnings are issued for DML statements containing LIMIT even
when they also have an ORDER BY clause (and so are made deterministic). This is a known issue.
(Bug #42851)

• When using MIXED mode, the statement is now automatically replicated using row-based mode.

17.4.1.17 Replication and LOAD DATA INFILE

In MySQL 5.5.6 and later, LOAD DATA INFILE is considered unsafe (see Section 17.1.2.3,
“Determination of Safe and Unsafe Statements in Binary Logging”).

17.4.1.18 Replication and the Slow Query Log

In older versions of MySQL, replication slaves did not write replicated queries to the slow query log,
even if the same queries were written to the slow query log on the master. This is no longer an issue in
MySQL 5.5. (Bug #23300)

17.4.1.19 Replication and Partitioning

Replication is supported between partitioned tables as long as they use the same partitioning scheme
and otherwise have the same structure except where an exception is specifically allowed (see
Section 17.4.1.10, “Replication with Differing Table Definitions on Master and Slave”).

Replication between tables having different partitioning is generally not supported. This because
statements (such as ALTER TABLE ... DROP PARTITION) acting directly on partitions in such



Replication Features and Issues

1986

cases may produce different results on master and slave. In the case where a table is partitioned on
the master but not on the slave, any statements operating on partitions on the master's copy of the
slave fail on the slave. When the slave's copy of the table is partitioned but the master's copy is not,
statements acting on partitions cannot be run on the master without causing errors there.

Due to these dangers of causing replication to fail entirely (on account of failed statements) and of
inconsistencies (when the result of a partition-level SQL statement produces different results on master
and slave), we recommend that insure that the partitioning of any tables to be replicated from the
master is matched by the slave's versions of these tables.

17.4.1.20 Replication and REPAIR TABLE

When used on a corrupted or otherwise damaged table, it is possible for the REPAIR TABLE statement
to delete rows that cannot be recovered. However, any such modifications of table data performed
by this statement are not replicated, which can cause master and slave to lose synchronization.
For this reason, in the event that a table on the master becomes damaged and you use REPAIR
TABLE to repair it, you should first stop replication (if it is still running) before using REPAIR TABLE,
then afterward compare the master's and slave's copies of the table and be prepared to correct any
discrepancies manually, before restarting replication.

17.4.1.21 Replication and Master or Slave Shutdowns

It is safe to shut down a master server and restart it later. When a slave loses its connection to the
master, the slave tries to reconnect immediately and retries periodically if that fails. The default is to
retry every 60 seconds. This may be changed with the CHANGE MASTER TO statement. A slave also
is able to deal with network connectivity outages. However, the slave notices the network outage only
after receiving no data from the master for slave_net_timeout seconds. If your outages are short,
you may want to decrease slave_net_timeout. See Section 5.1.5, “Server System Variables”.

An unclean shutdown (for example, a crash) on the master side can result in the master binary log
having a final position less than the most recent position read by the slave, due to the master binary
log file not being flushed. This can cause the slave not to be able to replicate when the master comes
back up. Setting sync_binlog=1 in the master my.cnf file helps to minimize this problem because it
causes the master to flush its binary log more frequently.

Shutting down a slave cleanly is safe because it keeps track of where it left off. However, be careful
that the slave does not have temporary tables open; see Section 17.4.1.24, “Replication and
Temporary Tables”. Unclean shutdowns might produce problems, especially if the disk cache was not
flushed to disk before the problem occurred:

• For transactions, the slave commits and then updates relay-log.info. If a crash occurs between
these two operations, relay log processing will have proceeded further than the information file
indicates and the slave will re-execute the events from the last transaction in the relay log after it has
been restarted.

• A similar problem can occur if the slave updates relay-log.info but the server host
crashes before the write has been flushed to disk. To minimize the chance of this occurring, set
sync_relay_log_info=1 in the slave my.cnf file. The default value of sync_relay_log_info
is 0, which does not cause writes to be forced to disk; the server relies on the operating system to
flush the file from time to time.

The fault tolerance of your system for these types of problems is greatly increased if you have a good
uninterruptible power supply.

17.4.1.22 Replication and max_allowed_packet

max_allowed_packet sets an upper limit on the size of any single message between the MySQL
server and clients, including replication slaves. If you are replicating large column values (such as
might be found in TEXT or BLOB columns) and max_allowed_packet is too small on the master, the



Replication Features and Issues

1987

master fails with an error, and the slave shuts down the I/O thread. If max_allowed_packet is too
small on the slave, this also causes the slave to stop the I/O thread.

Row-based replication currently sends all columns and column values for updated rows from the
master to the slave, including values of columns that were not actually changed by the update. This
means that, when you are replicating large column values using row-based replication, you must take
care to set max_allowed_packet large enough to accommodate the largest row in any table to be
replicated, even if you are replicating updates only, or you are inserting only relatively small values.

17.4.1.23 Replication and MEMORY Tables

When a master server shuts down and restarts, its MEMORY tables become empty. To replicate this
effect to slaves, the first time that the master uses a given MEMORY table after startup, it logs an event
that notifies slaves that the table must to be emptied by writing a DELETE statement for that table to the
binary log.

When a slave server shuts down and restarts, its MEMORY tables become empty. This causes the slave
to be out of synchrony with the master and may lead to other failures or cause the slave to stop:

• Row-format updates and deletes received from the master may fail with Can't find record in
'memory_table'.

• Statements such as INSERT INTO ... SELECT FROM memory_table may insert a different set
of rows on the master and slave.

The safe way to restart a slave that is replicating MEMORY tables is to first drop or delete all rows from
the MEMORY tables on the master and wait until those changes have replicated to the slave. Then it is
safe to restart the slave.

An alternative restart method may apply in some cases. When binlog_format=ROW, you can prevent
the slave from stopping if you set slave_exec_mode=IDEMPOTENT before you start the slave again.
This allows the slave to continue to replicate, but its MEMORY tables will still be different from those on
the master. This can be okay if the application logic is such that the contents of MEMORY tables can be
safely lost (for example, if the MEMORY tables are used for caching). slave_exec_mode=IDEMPOTENT
applies globally to all tables, so it may hide other replication errors in non-MEMORY tables.

(The method just described is not applicable in NDB Cluster, where slave_exec_mode is always
IDEMPOTENT, and cannot be changed.)

The size of MEMORY tables is limited by the value of the max_heap_table_size system
variable, which is not replicated (see Section 17.4.1.38, “Replication and Variables”). A change in
max_heap_table_size takes effect for MEMORY tables that are created or updated using ALTER
TABLE ... ENGINE = MEMORY or TRUNCATE TABLE following the change, or for all MEMORY tables
following a server restart. If you increase the value of this variable on the master without doing so on
the slave, it becomes possible for a table on the master to grow larger than its counterpart on the slave,
leading to inserts that succeed on the master but fail on the slave with Table is full errors. This is
a known issue (Bug #48666). In such cases, you must set the global value of max_heap_table_size
on the slave as well as on the master, then restart replication. It is also recommended that you restart
both the master and slave MySQL servers, to insure that the new value takes complete (global) effect
on each of them.

See Section 15.4, “The MEMORY Storage Engine”, for more information about MEMORY tables.

17.4.1.24 Replication and Temporary Tables

The discussion in the following paragraphs does not apply when binlog_format=ROW because, in
that case, temporary tables are not replicated; this means that there are never any temporary tables
on the slave to be lost in the event of an unplanned shutdown by the slave. The remainder of this
section applies only when using statement-based or mixed-format replication. Loss of replicated
temporary tables on the slave can be an issue, whenever binlog_format is STATEMENT or MIXED,



Replication Features and Issues

1988

for statements involving temporary tables that can be logged safely using statement-based format. For
more information about row-based replication and temporary tables, see RBL, RBR, and temporary
tables.

Safe slave shutdown when using temporary tables.  Temporary tables are replicated except
in the case where you stop the slave server (not just the slave threads) and you have replicated
temporary tables that are open for use in updates that have not yet been executed on the slave. If you
stop the slave server, the temporary tables needed by those updates are no longer available when
the slave is restarted. To avoid this problem, do not shut down the slave while it has temporary tables
open. Instead, use the following procedure:

1. Issue a STOP SLAVE SQL_THREAD statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

3. If the value is not 0, restart the slave SQL thread with START SLAVE SQL_THREAD and repeat the
procedure later.

4. When the value is 0, issue a mysqladmin shutdown command to stop the slave.

Temporary tables and replication options.  By default, all temporary tables are replicated; this
happens whether or not there are any matching --replicate-do-db, --replicate-do-table, or
--replicate-wild-do-table options in effect. However, the --replicate-ignore-table and
--replicate-wild-ignore-table options are honored for temporary tables.

A recommended practice when using statement-based or mixed-format replication is to designate a
prefix for exclusive use in naming temporary tables that you do not want replicated, then employ a --
replicate-wild-ignore-table option to match that prefix. For example, you might give all such
tables names beginning with norep (such as norepmytable, norepyourtable, and so on), then
use --replicate-wild-ignore-table=norep% to prevent them from being replicated.

17.4.1.25 Replication of the mysql System Database

Data modification statements made to tables in the mysql database are replicated according to the
value of binlog_format; if this value is MIXED, these statements are replicated using row-based
format. However, statements that would normally update this information indirectly—such GRANT,
REVOKE, and statements manipulating triggers, stored routines, and views—are replicated to slaves
using statement-based replication.

17.4.1.26 Replication and the Query Optimizer

It is possible for the data on the master and slave to become different if a statement is written in such
a way that the data modification is nondeterministic; that is, left up the query optimizer. (In general, this
is not a good practice, even outside of replication.) Examples of nondeterministic statements include
DELETE or UPDATE statements that use LIMIT with no ORDER BY clause; see Section 17.4.1.16,
“Replication and LIMIT”, for a detailed discussion of these.

17.4.1.27 Replication and Reserved Words

You can encounter problems when you attempt to replicate from an older master to a newer slave
and you make use of identifiers on the master that are reserved words in the newer MySQL version
running on the slave. An example of this is using a table column named range on a 5.0 master
that is replicating to a 5.1 or higher slave because RANGE is a reserved word beginning in MySQL
5.1. Replication can fail in such cases with Error 1064 You have an error in your SQL
syntax..., even if a database or table named using the reserved word or a table having a column
named using the reserved word is excluded from replication. This is due to the fact that each SQL
event must be parsed by the slave prior to execution, so that the slave knows which database object
or objects would be affected; only after the event is parsed can the slave apply any filtering rules
defined by --replicate-do-db, --replicate-do-table, --replicate-ignore-db, and --
replicate-ignore-table.



Replication Features and Issues

1989

To work around the problem of database, table, or column names on the master which would be
regarded as reserved words by the slave, do one of the following:

• Use one or more ALTER TABLE statements on the master to change the names of any database
objects where these names would be considered reserved words on the slave, and change any SQL
statements that use the old names to use the new names instead.

• In any SQL statements using these database object names, write the names as quoted identifiers
using backtick characters (`).

For listings of reserved words by MySQL version, see Reserved Words, in the MySQL Server Version
Reference. For identifier quoting rules, see Section 9.2, “Schema Object Names”.

17.4.1.28 SET PASSWORD and Row-Based Replication

Row-based replication of SET PASSWORD statements from a MySQL 5.1 master to a MySQL 5.5 slave
did not work correctly prior to MySQL 5.1.53 on the master and MySQL 5.5.7 on the slave (see Bug
#57098, Bug #57357).

17.4.1.29 Slave Errors During Replication

If a statement produces the same error (identical error code) on both the master and the slave, the
error is logged, but replication continues.

If a statement produces different errors on the master and the slave, the slave SQL thread terminates,
and the slave writes a message to its error log and waits for the database administrator to decide what
to do about the error. This includes the case that a statement produces an error on the master or the
slave, but not both. To address the issue, connect to the slave manually and determine the cause of
the problem. SHOW SLAVE STATUS is useful for this. Then fix the problem and run START SLAVE. For
example, you might need to create a nonexistent table before you can start the slave again.

If this error code validation behavior is not desirable, some or all errors can be masked out (ignored)
with the --slave-skip-errors option.

For nontransactional storage engines such as MyISAM, it is possible to have a statement that only
partially updates a table and returns an error code. This can happen, for example, on a multiple-row
insert that has one row violating a key constraint, or if a long update statement is killed after updating
some of the rows. If that happens on the master, the slave expects execution of the statement to result
in the same error code. If it does not, the slave SQL thread stops as described previously.

If you are replicating between tables that use different storage engines on the master and slave, keep
in mind that the same statement might produce a different error when run against one version of the
table, but not the other, or might cause an error for one version of the table, but not the other. For
example, since MyISAM ignores foreign key constraints, an INSERT or UPDATE statement accessing
an InnoDB table on the master might cause a foreign key violation but the same statement performed
on a MyISAM version of the same table on the slave would produce no such error, causing replication
to stop.

17.4.1.30 Replication of Server-Side Help Tables

The server maintains tables in the mysql database that store information for the HELP statement (see
Section 13.8.3, “HELP Syntax”. These tables can be loaded manually as described at Section 5.1.10,
“Server-Side Help”.

Help table content is derived from the MySQL Reference Manual. There are versions of the manual
specific to each MySQL release series, so help content is specific to each series as well. Normally, you
load a version of help content that matches the server version. This has implications for replication. For
example, you would load MySQL 5.5 help content into a MySQL 5.5 master server, but not necessarily
replicate that content to a MySQL 5.6 slave server for which 5.6 help content is more appropriate.

http://dev.mysql.com/doc/mysqld-version-reference/en/mysqld-version-reference-optvar.html


Replication Features and Issues

1990

This section describes how to manage help table content upgrades when your servers participate in
replication. Server versions are one factor in this task. Another is that help table structure may differ
between the master and the slave.

Assume that help content is stored in a file named fill_help_tables.sql. In MySQL distributions,
this file is located under the share or share/mysql directory, and the most recent version is always
available for download from http://dev.mysql.com/doc/index-other.html.

To upgrade help tables, using the following procedure. Connection parameters are not shown for the
mysql commands discussed here; in all cases, connect to the server using an account such as root
that has privileges for modifying tables in the mysql database.

1. Upgrade your servers by running mysql_upgrade, first on the slaves and then on the master. This
is the usual principle of upgrading slaves first.

2. Decide whether you want to replicate help table content from the master to its slaves. If not, load
the content on the master and each slave individually. Otherwise, check for and resolve any
incompatibilities between help table structure on the master and its slaves, then load the content
into the master and let it replicate to the slaves.

More detail about these two methods of loading help table content follows.

Loading Help Table Content Without Replication to Slaves

To load help table content without replication, run this command on the master and each slave
individually, using a fill_help_tables.sql file containing content appropriate to the server version
(enter the command on one line):

mysql --init-command="SET sql_log_bin=0"
  mysql < fill_help_tables.sql

Use the --init-command option on each server, including the slaves, in case a slave also acts as a
master to other slaves in your replication topology. The SET statement suppresses binary logging. After
the command has been run on each server to be upgraded, you are done.

Loading Help Table Content With Replication to Slaves

If you do want to replicate help table content, check for help table incompatibilities between your
master and its slaves. The url column in the help_category and help_topic tables was originally
CHAR(128), but is TEXT in newer MySQL versions to accommodate longer URLs. To check help table
structure, use this statement:

SELECT TABLE_NAME, COLUMN_NAME, COLUMN_TYPE
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = 'mysql'
AND COLUMN_NAME = 'url';

For tables with the old structure, the statement produces this result:

+---------------+-------------+-------------+
| TABLE_NAME    | COLUMN_NAME | COLUMN_TYPE |
+---------------+-------------+-------------+
| help_category | url         | char(128)   |
| help_topic    | url         | char(128)   |
+---------------+-------------+-------------+

For tables with the new structure, the statement produces this result:

+---------------+-------------+-------------+
| TABLE_NAME    | COLUMN_NAME | COLUMN_TYPE |

http://dev.mysql.com/doc/index-other.html


Replication Features and Issues

1991

+---------------+-------------+-------------+
| help_category | url         | text        |
| help_topic    | url         | text        |
+---------------+-------------+-------------+

If the master and slave both have the old structure or both have the new structure, they are compatible
and you can replicate help table content by executing this command on the master:

mysql mysql < fill_help_tables.sql

The table content will load into the master, then replicate to the slaves.

If the master and slave have incompatible help tables (one server has the old structure and the other
has the new), you have a choice between not replicating help table content after all, or making the table
structures compatible so that you can replicate the content.

• If you decide not to replicate the content after all, upgrade the master and slaves individually using
mysql with the --init-command option, as described previously.

• If instead you decide to make the table structures compatible, upgrade the tables on the server that
has the old structure. Suppose that your master server has the old table structure. Upgrade its tables
to the new structure manually by executing these statements (binary logging is disabled here to
prevent replication of the changes to the slaves, which already have the new structure):

SET sql_log_bin=0;
ALTER TABLE mysql.help_category ALTER COLUMN url TEXT;
ALTER TABLE mysql.help_topic ALTER COLUMN url TEXT;

Then run this command on the master:

mysql mysql < fill_help_tables.sql

The table content will load into the master, then replicate to the slaves.

17.4.1.31 Replication and Server SQL Mode

Using different server SQL mode settings on the master and the slave may cause the same INSERT
statements to be handled differently on the master and the slave, leading the master and slave to
diverge. For best results, you should always use the same server SQL mode on the master and on the
slave. This advice applies whether you are using statement-based or row-based replication.

If you are replicating partitioned tables, using different SQL modes on the master and the slave is likely
to cause issues. At a minimum, this is likely to cause the distribution of data among partitions to be
different in the master's and slave's copies of a given table. It may also cause inserts into partitioned
tables that succeed on the master to fail on the slave.

For more information, see Section 5.1.8, “Server SQL Modes”.

17.4.1.32 Replication Retries and Timeouts

The global system variable slave_transaction_retries affects replication as follows:
If the slave SQL thread fails to execute a transaction because of an InnoDB deadlock or
because it exceeded the InnoDB innodb_lock_wait_timeout value, or the NDBCLUSTER
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout value, the slave
automatically retries the transaction slave_transaction_retries times before stopping with an
error. The default value is 10. The total retry count can be seen in the output of SHOW STATUS; see
Section 5.1.7, “Server Status Variables”.

17.4.1.33 Replication and TIMESTAMP



Replication Features and Issues

1992

Older versions of MySQL (prior to 4.1) differed significantly in several ways in their handling of the
TIMESTAMP data type from what is supported in MySQL versions 5.5 and newer; these include syntax
extensions which are deprecated in MySQL 5.1, and that no longer supported in MySQL 5.5. This can
cause problems (including replication failures) when replicating between MySQL Server versions, if
you are using columns that are defined using the old TIMESTAMP(N) syntax. See Section 2.11.1.1,
“Changes Affecting Upgrades to MySQL 5.5”, for more information about the differences, how they can
impact MySQL replication, and what you can do if you encounter such problems.

17.4.1.34 Replication and Time Zones

The same system time zone should be set for both master and slave. Otherwise, statements
depending on the local time on the master are not replicated properly, such as statements that use
the NOW() or FROM_UNIXTIME() functions. You can set the time zone in which MySQL server runs
by using the --timezone=timezone_name option of the mysqld_safe script or by setting the TZ
environment variable. See also Section 17.4.1.15, “Replication and System Functions”.

17.4.1.35 Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction.  In
general, you should avoid transactions that update both transactional and nontransactional tables in a
replication environment. You should also avoid using any statement that accesses both transactional
(or temporary) and nontransactional tables and writes to any of them.

As of MySQL 5.5.2, the server uses these rules for binary logging:

• If the initial statements in a transaction are nontransactional, they are written to the binary log
immediately. The remaining statements in the transaction are cached and not written to the binary
log until the transaction is committed. (If the transaction is rolled back, the cached statements are
written to the binary log only if they make nontransactional changes that cannot be rolled back.
Otherwise, they are discarded.)

• For statement-based logging, logging of nontransactional statements is affected by the
binlog_direct_non_transactional_updates system variable. When this variable is OFF
(the default), logging is as just described. When this variable is ON, logging occurs immediately for
nontransactional statements occurring anywhere in the transaction (not just initial nontransactional
statements). Other statements are kept in the transaction cache and logged when the transaction
commits. binlog_direct_non_transactional_updates has no effect for row-format or mixed-
format binary logging.

Transactional, nontransactional, and mixed statements. 
To apply those rules, the server considers a statement nontransactional if it changes only
nontransactional tables, and transactional if it changes only transactional tables. Prior to MySQL 5.5.6,
a statement that changed both nontransactional and transactional tables was considered “mixed”.
Beginning with MySQL 5.5.6, a statement that references both nontransactional and transactional
tables and updates any of the tables involved, is considered a mixed statement. Mixed statements, like
transactional statements, are cached and logged when the transaction commits.

Beginning with MySQL 5.5.6, a mixed statement that updates a transactional table is considered
unsafe if the statement also performs either of the following actions:

• Updates or reads a transactional table

• Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ

Also beginning with MySQL 5.5.6, any mixed statement following the update of a transactional table
within a transaction is considered unsafe if it performs either of the following actions:

• Updates any table and reads from any temporary table

• Updates a nontransactional table and binlog_direct_non_trans_update is OFF



Replication Features and Issues

1993

For more information, see Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary
Logging”.

Note

A mixed statement is unrelated to mixed binary logging format.

Before MySQL 5.5.2, the rules for binary logging are similar to those just described, except that
there is no binlog_direct_non_transactional_updates system variable to affect logging of
transactional statements. Thus, the server immediately logs only the initial nontransactional statements
in a transaction and caches the rest until commit time.

In situations where transactions mix updates to transactional and nontransactional tables, the order of
statements in the binary log is correct, and all needed statements are written to the binary log even in
case of a ROLLBACK. However, when a second connection updates the nontransactional table before
the first connection transaction is complete, statements can be logged out of order because the second
connection update is written immediately after it is performed, regardless of the state of the transaction
being performed by the first connection.

Using different storage engines on master and slave.  It is possible to replicate transactional
tables on the master using nontransactional tables on the slave. For example, you can replicate an
InnoDB master table as a MyISAM slave table. However, if you do this, there are problems if the slave
is stopped in the middle of a BEGIN ... COMMIT block because the slave restarts at the beginning of the
BEGIN block.

Beginning with MySQL 5.5.0, it is also safe to replicate transactions from MyISAM tables on the master
to transactional tables—such as tables that use the InnoDB storage engine—on the slave. In such
cases (beginning with MySQL 5.5.0), an AUTOCOMMIT=1 statement issued on the master is replicated,
thus enforcing AUTOCOMMIT mode on the slave.

When the storage engine type of the slave is nontransactional, transactions on the master that mix
updates of transactional and nontransactional tables should be avoided because they can cause
inconsistency of the data between the master transactional table and the slave nontransactional table.
That is, such transactions can lead to master storage engine-specific behavior with the possible effect
of replication going out of synchrony. MySQL does not issue a warning about this currently, so extra
care should be taken when replicating transactional tables from the master to nontransactional tables
on the slaves.

Changing the binary logging format within transactions.  Beginning with MySQL 5.5.3, the
binlog_format system variable is read-only as long as a transaction is in progress. (Bug #47863)

Every transaction (including autocommit transactions) is recorded in the binary log as though it starts
with a BEGIN statement, and ends with either a COMMIT or a ROLLBACK statement. In MySQL 5.5,
this true is even for statements affecting tables that use a nontransactional storage engine (such as
MyISAM).

17.4.1.36 Replication and Triggers

With statement-based replication, triggers executed on the master also execute on the slave. With
row-based replication, triggers executed on the master do not execute on the slave. Instead, the row
changes on the master resulting from trigger execution are replicated and applied on the slave.

This behavior is by design. If under row-based replication the slave applied the triggers as well as the
row changes caused by them, the changes would in effect be applied twice on the slave, leading to
different data on the master and the slave.

If you want triggers to execute on both the master and the slave—perhaps because you have different
triggers on the master and slave—you must use statement-based replication. However, to enable
slave-side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to



Replication Features and Issues

1994

switch to statement-based replication only for those statements where you want this effect, and to use
row-based replication the rest of the time.

A statement invoking a trigger (or function) that causes an update to an AUTO_INCREMENT column
is not replicated correctly using statement-based replication. MySQL 5.5 marks such statements as
unsafe. (Bug #45677)

17.4.1.37 Replication and TRUNCATE TABLE

TRUNCATE TABLE is normally regarded as a DML statement, and so would be expected to be
logged and replicated using row-based format when the binary logging mode is ROW or MIXED.
However this caused issues when logging or replicating, in STATEMENT or MIXED mode, tables that
used transactional storage engines such as InnoDB when the transaction isolation level was READ
COMMITTED or READ UNCOMMITTED, which precludes statement-based logging.

TRUNCATE TABLE is treated for purposes of logging and replication as DDL rather than DML so that
it can be logged and replicated as a statement. However, the effects of the statement as applicable
to InnoDB and other transactional tables on replication slaves still follow the rules described in
Section 13.1.33, “TRUNCATE TABLE Syntax” governing such tables. (Bug #36763)

17.4.1.38 Replication and Variables

System variables are not replicated correctly when using STATEMENT mode, except for the following
variables when they are used with session scope:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

When MIXED mode is used, the variables in the preceding list, when used with session scope, cause
a switch from statement-based to row-based logging. See Section 5.4.4.3, “Mixed Binary Logging
Format”.



Replication Features and Issues

1995

sql_mode is also replicated except for the NO_DIR_IN_CREATE mode; the slave always preserves
its own value for NO_DIR_IN_CREATE, regardless of changes to it on the master. This is true for all
replication formats.

However, when mysqlbinlog parses a SET @@sql_mode = mode statement, the full mode value,
including NO_DIR_IN_CREATE, is passed to the receiving server. For this reason, replication of such a
statement may not be safe when STATEMENT mode is in use.

The default_storage_engine and storage_engine system variables are not replicated,
regardless of the logging mode; this is intended to facilitate replication between different storage
engines.

The read_only system variable is not replicated. In addition, the enabling this variable has different
effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different
MySQL versions.

The max_heap_table_size system variable is not replicated. Increasing the value of this variable on
the master without doing so on the slave can lead eventually to Table is full errors on the slave
when trying to execute INSERT statements on a MEMORY table on the master that is thus permitted to
grow larger than its counterpart on the slave. For more information, see Section 17.4.1.23, “Replication
and MEMORY Tables”.

In statement-based replication, session variables are not replicated properly when used in statements
that update tables. For example, the following sequence of statements will not insert the same data on
the master and the slave:

SET max_join_size=1000;
INSERT INTO mytable VALUES(@@max_join_size);

This does not apply to the common sequence:

SET time_zone=...;
INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));

Replication of session variables is not a problem when row-based replication is being used, in which
case, session variables are always replicated safely. See Section 17.1.2, “Replication Formats”.

In MySQL 5.5, the following session variables are written to the binary log and honored by the
replication slave when parsing the binary log, regardless of the logging format:

• sql_mode

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

Important

Even though session variables relating to character sets and collations are
written to the binary log, replication between different character sets is not
supported.



Replication Compatibility Between MySQL Versions

1996

It is strongly recommended that you always use the same setting for the lower_case_table_names
system variable on both master and slave. In particular, when a case-sensitive file system is used,
setting this variable to 1 on the slave, but to a different value on the master, can cause two types of
problems: Names of databases are not converted to lowercase; in addition, when using row-based
replication names of tables are also not converted. Either of these problems can cause replication to
fail. This is a known issue, which is fixed in MySQL 5.6.

17.4.1.39 Replication and Views

Views are always replicated to slaves. Views are filtered by their own name, not by the tables they refer
to. This means that a view can be replicated to the slave even if the view contains a table that would
normally be filtered out by replication-ignore-table rules. Care should therefore be taken to
ensure that views do not replicate table data that would normally be filtered for security reasons.

Replication from a table to a samed-named view is supported using statement-based logging, but not
when using row-based logging. In MySQL 5.5.31 and later, trying to do so when row-based logging is
in effect causes an error. (Bug #11752707, Bug #43975)

17.4.2 Replication Compatibility Between MySQL Versions

MySQL supports replication from one release series to the next higher release series. For example,
you can replicate from a master running MySQL 5.1 to a slave running MySQL 5.5, from a master
running MySQL 5.5 to a slave running MySQL 5.6, and so on.

However, one may encounter difficulties when replicating from an older master to a newer slave if the
master uses statements or relies on behavior no longer supported in the version of MySQL used on
the slave. For example, in MySQL 5.5, CREATE TABLE ... SELECT statements are permitted to
change tables other than the one being created, but are no longer allowed to do so in MySQL 5.6 (see
Section 17.4.1.6, “Replication of CREATE TABLE ... SELECT Statements”).

The use of more than two MySQL Server versions is not supported in replication setups involving
multiple masters, regardless of the number of master or slave MySQL servers. This restriction applies
not only to release series, but to version numbers within the same release series as well. For example,
if you are using a chained or circular replication setup, you cannot use MySQL 5.5.1, MySQL 5.5.2, and
MySQL 5.5.4 concurrently, although you could use any two of these releases together.

Important

It is strongly recommended to use the most recent release available within a
given MySQL release series because replication (and other) capabilities are
continually being improved. It is also recommended to upgrade masters and
slaves that use early releases of a release series of MySQL to GA (production)
releases when the latter become available for that release series.

Replication from newer masters to older slaves may be possible, but is generally not supported. This is
due to a number of factors:

• Binary log format changes.  The binary log format can change between major releases. While
we attempt to maintain backward compatibility, this is not always possible. For example, the binary
log format implemented in MySQL 5.0 changed considerably from that used in previous versions,
especially with regard to handling of character sets, LOAD DATA INFILE, and time zones. This
means that replication from a MySQL 5.0 (or later) master to a MySQL 4.1 (or earlier) slave is
generally not supported.

This also has significant implications for upgrading replication servers; see Section 17.4.3,
“Upgrading a Replication Setup”, for more information.

• Use of row-based replication.  Row-based replication was implemented in MySQL 5.1.5, so you
cannot replicate using row-based replication from any MySQL 5.5 or later master to a slave older
than MySQL 5.1.5.



Upgrading a Replication Setup

1997

For more information about row-based replication, see Section 17.1.2, “Replication Formats”.

• SQL incompatibilities.  You cannot replicate from a newer master to an older slave using
statement-based replication if the statements to be replicated use SQL features available on the
master but not on the slave.

However, if both the master and the slave support row-based replication, and there are no data
definition statements to be replicated that depend on SQL features found on the master but not on
the slave, you can use row-based replication to replicate the effects of data modification statements
even if the DDL run on the master is not supported on the slave.

For more information on potential replication issues, see Section 17.4.1, “Replication Features and
Issues”.

17.4.3 Upgrading a Replication Setup

When you upgrade servers that participate in a replication setup, the procedure for upgrading depends
on the current server versions and the version to which you are upgrading. This section provides
information about how upgrading affects replication. For general information about upgrading MySQL,
see Section 2.11.1, “Upgrading MySQL”

When you upgrade a master to 5.5 from an earlier MySQL release series, you should first ensure that
all the slaves of this master are using the same 5.5.x release. If this is not the case, you should first
upgrade the slaves. To upgrade each slave, shut it down, upgrade it to the appropriate 5.5.x version,
restart it, and restart replication. The 5.5 slave is able to read the old relay logs written prior to the
upgrade and to execute the statements they contain. Relay logs created by the slave after the upgrade
are in 5.5 format.

After the slaves have been upgraded, shut down the master, upgrade it to the same 5.5.x release as
the slaves, and restart it. The 5.5 master is able to read the old binary logs written prior to the upgrade
and to send them to the 5.5 slaves. The slaves recognize the old format and handle it properly. Binary
logs created by the master subsequent to the upgrade are in 5.5 format. These too are recognized by
the 5.5 slaves.

In other words, when upgrading to MySQL 5.5, the slaves must be MySQL 5.5 before you can upgrade
the master to 5.5. Note that downgrading from 5.5 to older versions does not work so simply: You must
ensure that any 5.5 binary log or relay log has been fully processed, so that you can remove it before
proceeding with the downgrade.

Some upgrades may require that you drop and re-create database objects when you move from one
MySQL series to the next. For example, collation changes might require that table indexes be rebuilt.
Such operations, if necessary, are detailed at Section 2.11.1.1, “Changes Affecting Upgrades to
MySQL 5.5”. It is safest to perform these operations separately on the slaves and the master, and to
disable replication of these operations from the master to the slave. To achieve this, use the following
procedure:

1. Stop all the slaves and upgrade them. Restart them with the --skip-slave-start option so
that they do not connect to the master. Perform any table repair or rebuilding operations needed
to re-create database objects, such as use of REPAIR TABLE or ALTER TABLE, or dumping and
reloading tables or triggers.

2. Disable the binary log on the master. To do this without restarting the master, execute a SET
sql_log_bin = 0 statement. Alternatively, stop the master and restart it without the --log-bin
option. If you restart the master, you might also want to disallow client connections. For example,
if all clients connect using TCP/IP, use the --skip-networking option when you restart the
master.

3. With the binary log disabled, perform any table repair or rebuilding operations needed to re-create
database objects. The binary log must be disabled during this step to prevent these operations from
being logged and sent to the slaves later.



Troubleshooting Replication

1998

4. Re-enable the binary log on the master. If you set sql_log_bin to 0 earlier, execute a SET
sql_log_bin = 1 statement. If you restarted the master to disable the binary log, restart it with
--log-bin, and without --skip-networking so that clients and slaves can connect.

5. Restart the slaves, this time without the --skip-slave-start option.

17.4.4 Troubleshooting Replication

If you have followed the instructions but your replication setup is not working, the first thing to do is
check the error log for messages. Many users have lost time by not doing this soon enough after
encountering problems.

If you cannot tell from the error log what the problem was, try the following techniques:

• Verify that the master has binary logging enabled by issuing a SHOW MASTER STATUS statement. If
logging is enabled, Position is nonzero. If binary logging is not enabled, verify that you are running
the master with the --log-bin option.

• Verify that the master and slave both were started with the --server-id option and that the ID
value is unique on each server.

• Verify that the slave is running. Use SHOW SLAVE STATUS to check whether the
Slave_IO_Running and Slave_SQL_Running values are both Yes. If not, verify the options that
were used when starting the slave server. For example, --skip-slave-start prevents the slave
threads from starting until you issue a START SLAVE statement.

• If the slave is running, check whether it established a connection to the master. Use SHOW
PROCESSLIST, find the I/O and SQL threads and check their State column to see what they
display. See Section 17.2.1, “Replication Implementation Details”. If the I/O thread state says
Connecting to master, check the following:

• Verify the privileges for the user being used for replication on the master.

• Check that the host name of the master is correct and that you are using the correct port to
connect to the master. The port used for replication is the same as used for client network
communication (the default is 3306). For the host name, ensure that the name resolves to the
correct IP address.

• Check that networking has not been disabled on the master or slave. Look for the skip-
networking option in the configuration file. If present, comment it out or remove it.

• If the master has a firewall or IP filtering configuration, ensure that the network port being used for
MySQL is not being filtered.

• Check that you can reach the master by using ping or traceroute/tracert to reach the host.

• If the slave was running previously but has stopped, the reason usually is that some statement
that succeeded on the master failed on the slave. This should never happen if you have taken
a proper snapshot of the master, and never modified the data on the slave outside of the slave
thread. If the slave stops unexpectedly, it is a bug or you have encountered one of the known
replication limitations described in Section 17.4.1, “Replication Features and Issues”. If it is a bug,
see Section 17.4.5, “How to Report Replication Bugs or Problems”, for instructions on how to report
it.

• If a statement that succeeded on the master refuses to run on the slave, try the following procedure
if it is not feasible to do a full database resynchronization by deleting the slave's databases and
copying a new snapshot from the master:

1. Determine whether the affected table on the slave is different from the master table. Try to
understand how this happened. Then make the slave's table identical to the master's and run
START SLAVE.



How to Report Replication Bugs or Problems

1999

2. If the preceding step does not work or does not apply, try to understand whether it would be safe
to make the update manually (if needed) and then ignore the next statement from the master.

3. If you decide that the slave can skip the next statement from the master, issue the following
statements:

mysql> SET GLOBAL sql_slave_skip_counter = N;
mysql> START SLAVE;

The value of N should be 1 if the next statement from the master does not use AUTO_INCREMENT
or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2 for
statements that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two events in
the binary log of the master.

See also Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Syntax”.

4. If you are sure that the slave started out perfectly synchronized with the master, and that no one
has updated the tables involved outside of the slave thread, then presumably the discrepancy
is the result of a bug. If you are running the most recent version of MySQL, please report the
problem. If you are running an older version, try upgrading to the latest production release to
determine whether the problem persists.

17.4.5 How to Report Replication Bugs or Problems

When you have determined that there is no user error involved, and replication still either does not
work at all or is unstable, it is time to send us a bug report. We need to obtain as much information as
possible from you to be able to track down the bug. Please spend some time and effort in preparing a
good bug report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database
using the instructions given in Section 1.6, “How to Report Bugs or Problems”. If you have a “phantom”
problem (one that you cannot duplicate at will), use the following procedure:

1. Verify that no user error is involved. For example, if you update the slave outside of the slave
thread, the data goes out of synchrony, and you can have unique key violations on updates. In
this case, the slave thread stops and waits for you to clean up the tables manually to bring them
into synchrony. This is not a replication problem. It is a problem of outside interference causing
replication to fail.

2. Run the slave with the --log-slave-updates and --log-bin options. These options cause the
slave to log the updates that it receives from the master into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

• All binary log files from the master

• All binary log files from the slave

• The output of SHOW MASTER STATUS from the master at the time you discovered the problem

• The output of SHOW SLAVE STATUS from the slave at the time you discovered the problem

• Error logs from the master and the slave

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem
statement. log_file and log_pos are the Master_Log_File and Read_Master_Log_Pos
values from SHOW SLAVE STATUS.



How to Report Replication Bugs or Problems

2000

shell> mysqlbinlog --start-position=log_pos log_file | head

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
Section 1.6, “How to Report Bugs or Problems”.



2001

Chapter 18 MySQL NDB Cluster 7.2

Table of Contents
18.1 NDB Cluster Overview ..................................................................................................... 2004

18.1.1 NDB Cluster Core Concepts .................................................................................. 2006
18.1.2 NDB Cluster Nodes, Node Groups, Replicas, and Partitions .................................... 2008
18.1.3 NDB Cluster Hardware, Software, and Networking Requirements ............................ 2011
18.1.4 What is New in MySQL NDB Cluster 7.2 ............................................................... 2012
18.1.5 MySQL Server Using InnoDB Compared with NDB Cluster ..................................... 2015
18.1.6 Known Limitations of NDB Cluster ......................................................................... 2018

18.2 NDB Cluster Installation and Upgrades ............................................................................. 2030
18.2.1 Installing NDB Cluster on Linux ............................................................................. 2032
18.2.2 Installing NDB Cluster on Windows ....................................................................... 2038
18.2.3 Initial Configuration of NDB Cluster ....................................................................... 2047
18.2.4 Initial Startup of NDB Cluster ................................................................................ 2049
18.2.5 NDB Cluster Example with Tables and Data .......................................................... 2050
18.2.6 Safe Shutdown and Restart of NDB Cluster ........................................................... 2053
18.2.7 Upgrading and Downgrading NDB Cluster 7.2 ........................................................ 2054

18.3 Configuration of NDB Cluster ........................................................................................... 2056
18.3.1 Quick Test Setup of NDB Cluster .......................................................................... 2056
18.3.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables ............ 2058
18.3.3 NDB Cluster Configuration Files ............................................................................ 2100
18.3.4 Using High-Speed Interconnects with NDB Cluster ................................................. 2224

18.4 NDB Cluster Programs .................................................................................................... 2224
18.4.1 ndbd — The NDB Cluster Data Node Daemon ...................................................... 2224
18.4.2 ndbinfo_select_all — Select From ndbinfo Tables .......................................... 2231
18.4.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded) ......................... 2232
18.4.4 ndb_mgmd — The NDB Cluster Management Server Daemon ................................ 2233
18.4.5 ndb_mgm — The NDB Cluster Management Client ................................................. 2241
18.4.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables ............................................................................................................................. 2242
18.4.7 ndb_config — Extract NDB Cluster Configuration Information .............................. 2245
18.4.8 ndb_cpcd — Automate Testing for NDB Development ........................................... 2252
18.4.9 ndb_delete_all — Delete All Rows from an NDB Table ..................................... 2252
18.4.10 ndb_desc — Describe NDB Tables .................................................................... 2253
18.4.11 ndb_drop_index — Drop Index from an NDB Table .......................................... 2258
18.4.12 ndb_drop_table — Drop an NDB Table ........................................................... 2259
18.4.13 ndb_error_reporter — NDB Error-Reporting Utility ......................................... 2259
18.4.14 ndb_index_stat — NDB Index Statistics Utility ................................................. 2260
18.4.15 ndb_move_data — NDB Data Copy Utility ......................................................... 2266
18.4.16 ndb_print_backup_file — Print NDB Backup File Contents ........................... 2268
18.4.17 ndb_print_file — Print NDB Disk Data File Contents ...................................... 2269
18.4.18 ndb_print_schema_file — Print NDB Schema File Contents .......................... 2269
18.4.19 ndb_print_sys_file — Print NDB System File Contents ................................. 2269
18.4.20 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log ............ 2270
18.4.21 ndb_restore — Restore an NDB Cluster Backup .............................................. 2273
18.4.22 ndb_select_all — Print Rows from an NDB Table ........................................... 2288
18.4.23 ndb_select_count — Print Row Counts for NDB Tables ................................... 2291
18.4.24 ndb_show_tables — Display List of NDB Tables ............................................... 2292
18.4.25 ndb_size.pl — NDBCLUSTER Size Requirement Estimator .............................. 2293
18.4.26 ndb_waiter — Wait for NDB Cluster to Reach a Given Status ............................ 2296
18.4.27 Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs ........................................................................................................................ 2298

18.5 Management of NDB Cluster ........................................................................................... 2302
18.5.1 Summary of NDB Cluster Start Phases .................................................................. 2303



2002

18.5.2 Commands in the NDB Cluster Management Client ................................................ 2304
18.5.3 Online Backup of NDB Cluster .............................................................................. 2308
18.5.4 MySQL Server Usage for NDB Cluster .................................................................. 2313
18.5.5 Performing a Rolling Restart of an NDB Cluster ..................................................... 2314
18.5.6 Event Reports Generated in NDB Cluster .............................................................. 2316
18.5.7 NDB Cluster Log Messages .................................................................................. 2326
18.5.8 NDB Cluster Single User Mode ............................................................................. 2341
18.5.9 Quick Reference: NDB Cluster SQL Statements ..................................................... 2342
18.5.10 ndbinfo: The NDB Cluster Information Database ................................................... 2344
18.5.11 NDB Cluster Security Issues ............................................................................... 2365
18.5.12 NDB Cluster Disk Data Tables ............................................................................ 2372
18.5.13 Adding NDB Cluster Data Nodes Online .............................................................. 2378
18.5.14 Distributed MySQL Privileges for NDB Cluster ...................................................... 2389
18.5.15 NDB API Statistics Counters and Variables .......................................................... 2392

18.6 NDB Cluster Replication .................................................................................................. 2403
18.6.1 NDB Cluster Replication: Abbreviations and Symbols ............................................. 2404
18.6.2 General Requirements for NDB Cluster Replication ................................................ 2405
18.6.3 Known Issues in NDB Cluster Replication .............................................................. 2406
18.6.4 NDB Cluster Replication Schema and Tables ......................................................... 2413
18.6.5 Preparing the NDB Cluster for Replication ............................................................. 2416
18.6.6 Starting NDB Cluster Replication (Single Replication Channel) ................................ 2417
18.6.7 Using Two Replication Channels for NDB Cluster Replication .................................. 2419
18.6.8 Implementing Failover with NDB Cluster Replication ............................................... 2420
18.6.9 NDB Cluster Backups With NDB Cluster Replication ............................................... 2422
18.6.10 NDB Cluster Replication: Multi-Master and Circular Replication ............................. 2428
18.6.11 NDB Cluster Replication Conflict Resolution ......................................................... 2432

18.7 NDB Cluster Release Notes ............................................................................................. 2441

MySQL NDB Cluster is a high-availability, high-redundancy version of MySQL adapted for the
distributed computing environment. Recent releases of NDB Cluster use version 7 of the NDBCLUSTER
storage engine (also known as NDB) to enable running several computers with MySQL servers and
other software in a cluster. NDB Cluster 7.5, now available as a General Availability (GA) release
beginning with version 7.5.4, incorporates version 7.5 of the NDB storage engine. NDB Cluster 7.6,
currently under development and available for evaluation and testing as a Developer Preview release,
uses version 7.6 of NDB. Previous GA releases still available for production, NDB Cluster 7.3 and NDB
Cluster 7.4, incorporate NDB versions 7.3 and 7.4, respectively.

Support for the NDBCLUSTER storage engine is not included in standard MySQL Server 5.5 binaries
built by Oracle. Instead, users of NDB Cluster binaries from Oracle should upgrade to the most recent
binary release of NDB Cluster for supported platforms—these include RPMs that should work with
most Linux distributions. NDB Cluster users who build from source should use the sources provided for
NDB Cluster. (Locations where the sources can be obtained are listed later in this section.)

This chapter contains information about NDB Cluster 7.2 releases through 5.5.56-ndb-7.2.30.
Currently, NDB Cluster 7.5 is available as a General Availability release, and recommended for new
deployments. The NDB Cluster 7.4 and NDB Cluster 7.3 release series are previous GA releases
still supported in production. NDB Cluster 7.2 is a previous GA release series which is still supported,
although we recommend that new deployments for production use NDB Cluster 7.5 (see MySQL NDB
Cluster 7.5 and NDB Cluster 7.6). For more information about NDB Cluster 7.4 and NDB Cluster 7.3,
see MySQL NDB Cluster 7.3 and NDB Cluster 7.4. NDB Cluster 7.6, currently under development, is
now available for evaluation and testing as a Developer Preview release; for information about NDB
Cluster 7.6, see What is New in NDB Cluster 7.6.

Release notes for the changes in each release of NDB Cluster are located at NDB Cluster 7.2 Release
Notes.

Supported Platforms.  NDB Cluster is currently available and supported on a number of platforms.
For exact levels of support available for on specific combinations of operating system versions,

http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
http://dev.mysql.com/doc/relnotes/mysql-cluster/7.2/en/
http://dev.mysql.com/doc/relnotes/mysql-cluster/7.2/en/


2003

operating system distributions, and hardware platforms, please refer to http://www.mysql.com/support/
supportedplatforms/cluster.html.

Availability.  NDB Cluster binary and source packages are available for supported platforms from
http://dev.mysql.com/downloads/cluster/.

NDB Cluster release numbers.  NDB Cluster follows a somewhat different release pattern from the
mainline MySQL Server 5.5 series of releases. In this Manual and other MySQL documentation, we
identify these and later NDB Cluster releases employing a version number that begins with “NDB”. This
version number is that of the NDBCLUSTER storage engine used in the release, and not of the MySQL
server version on which the NDB Cluster release is based.

Version strings used in NDB Cluster software.  The version string displayed by NDB Cluster
programs uses this format:

mysql-mysql_server_version-ndb-ndb_engine_version

mysql_server_version represents the version of the MySQL Server on which the NDB Cluster
release is based. For all NDB Cluster 6.x and 7.x releases, this is “5.1”. ndb_engine_version is the
version of the NDB storage engine used by this release of the NDB Cluster software. You can see this
format used in the mysql client, as shown here:

shell> mysql
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.5.56-ndb-7.2.30 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT VERSION()\G
*************************** 1. row ***************************
VERSION(): 5.5.56-ndb-7.2.30
1 row in set (0.00 sec)

This version string is also displayed in the output of the SHOW command in the ndb_mgm client:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration
---------------------
[ndbd(NDB)]     2 node(s)
id=1    @10.0.10.6  (5.5.56-ndb-7.2.30, Nodegroup: 0, *)
id=2    @10.0.10.8  (5.5.56-ndb-7.2.30, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=3    @10.0.10.2  (5.5.56-ndb-7.2.30)

[mysqld(API)]   2 node(s)
id=4    @10.0.10.10  (5.5.56-ndb-7.2.30)
id=5 (not connected, accepting connect from any host)

The version string identifies the mainline MySQL version from which the NDB Cluster release was
branched and the version of the NDBCLUSTER storage engine used. For example, the full version
string for NDB 7.2.4 (the first NDB Cluster production release based on MySQL Server 5.5) is
mysql-5.5.19-ndb-7.2.4. From this we can determine the following:

• Since the portion of the version string preceding -ndb- is the base MySQL Server version, this
means that NDB 7.2.4 derives from the MySQL 5.5.19, and contains all feature enhancements and
bugfixes from MySQL 5.5 up to and including MySQL 5.5.19.

• Since the portion of the version string following -ndb- represents the version number of the NDB (or
NDBCLUSTER) storage engine, NDB 7.2.4 uses version 7.2.4 of the NDBCLUSTER storage engine.

http://www.mysql.com/support/supportedplatforms/cluster.html
http://www.mysql.com/support/supportedplatforms/cluster.html
http://dev.mysql.com/downloads/cluster/


NDB Cluster Overview

2004

New NDB Cluster releases are numbered according to updates in the NDB storage engine, and do not
necessarily correspond in a one-to-one fashion with mainline MySQL Server releases. For example,
NDB 7.2.4 (as previously noted) is based on MySQL 5.5.19, while NDB 7.2.0 was based on MySQL
5.1.51 (version string: mysql-5.1.51-ndb-7.2.0).

Compatibility with standard MySQL 5.5 releases.  While many standard MySQL schemas and
applications can work using NDB Cluster, it is also true that unmodified applications and database
schemas may be slightly incompatible or have suboptimal performance when run using NDB Cluster
(see Section 18.1.6, “Known Limitations of NDB Cluster”). Most of these issues can be overcome, but
this also means that you are very unlikely to be able to switch an existing application datastore—that
currently uses, for example, MyISAM or InnoDB—to use the NDB storage engine without allowing for
the possibility of changes in schemas, queries, and applications. In addition, the MySQL Server and
NDB Cluster codebases diverge considerably, so that the standard mysqld cannot function as a drop-
in replacement for the version of mysqld supplied with NDB Cluster.

NDB Cluster development source trees.  NDB Cluster development trees can also be accessed
from https://github.com/mysql/mysql-server.

The NDB Cluster development sources maintained at https://github.com/mysql/mysql-server are
licensed under the GPL. For information about obtaining MySQL sources using Git and building them
yourself, see Section 2.9.3, “Installing MySQL Using a Development Source Tree”.

Note

As with MySQL Server 5.5, NDB Cluster 7.2 is built using CMake.

Currently, NDB Cluster 7.3 and NDB Cluster 7.4 releases are Generally Available (GA). We
recommend that new deployments use NDB Cluster 7.4. NDB Cluster 7.1 and earlier versions are no
longer in active development. For an overview of major features added in NDB Cluster 7.4, see What
is New in NDB Cluster 7.4. For similar information about NDB Cluster 7.3, see What is New in NDB
Cluster 7.3. For an overview of major features added in past NDB Cluster releases, see the MySQL
5.1 Reference Manual. NDB Cluster 7.5 is also available as a Developer Preview for testing of new
features; for more information, see MySQL NDB Cluster 7.5 and NDB Cluster 7.6.

This chapter represents a work in progress, and its contents are subject to revision as NDB Cluster
continues to evolve. Additional information regarding NDB Cluster can be found on the MySQL Web
site at http://www.mysql.com/products/cluster/.

Additional Resources.  More information about NDB Cluster can be found in the following places:

• For answers to some commonly asked questions about NDB Cluster, see Section A.10, “MySQL
FAQ: MySQL 5.5 and NDB Cluster”.

• The NDB Cluster mailing list: http://lists.mysql.com/cluster.

• The NDB Cluster Forum: http://forums.mysql.com/list.php?25.

• Many NDB Cluster users and developers blog about their experiences with NDB Cluster, and make
feeds of these available through PlanetMySQL.

18.1 NDB Cluster Overview

NDB Cluster is a technology that enables clustering of in-memory databases in a shared-nothing
system. The shared-nothing architecture enables the system to work with very inexpensive hardware,
and with a minimum of specific requirements for hardware or software.

NDB Cluster is designed not to have any single point of failure. In a shared-nothing system, each
component is expected to have its own memory and disk, and the use of shared storage mechanisms
such as network shares, network file systems, and SANs is not recommended or supported.

https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
http://www.mysql.com/products/cluster/
http://lists.mysql.com/cluster
http://forums.mysql.com/list.php?25
http://www.planetmysql.org/


NDB Cluster Overview

2005

NDB Cluster integrates the standard MySQL server with an in-memory clustered storage engine
called NDB (which stands for “Network DataBase”). In our documentation, the term NDB refers to the
part of the setup that is specific to the storage engine, whereas “MySQL NDB Cluster” refers to the
combination of one or more MySQL servers with the NDB storage engine.

An NDB Cluster consists of a set of computers, known as hosts, each running one or more processes.
These processes, known as nodes, may include MySQL servers (for access to NDB data), data nodes
(for storage of the data), one or more management servers, and possibly other specialized data access
programs. The relationship of these components in an NDB Cluster is shown here:

Figure 18.1 NDB Cluster Components

All these programs work together to form an NDB Cluster (see Section 18.4, “NDB Cluster Programs”.
When data is stored by the NDB storage engine, the tables (and table data) are stored in the data
nodes. Such tables are directly accessible from all other MySQL servers (SQL nodes) in the cluster.
Thus, in a payroll application storing data in a cluster, if one application updates the salary of an
employee, all other MySQL servers that query this data can see this change immediately.

Although an NDB Cluster SQL node uses the mysqld server daemon, it differs in a number of critical
respects from the mysqld binary supplied with the MySQL 5.5 distributions, and the two versions of
mysqld are not interchangeable.

In addition, a MySQL server that is not connected to an NDB Cluster cannot use the NDB storage
engine and cannot access any NDB Cluster data.

The data stored in the data nodes for NDB Cluster can be mirrored; the cluster can handle failures of
individual data nodes with no other impact than that a small number of transactions are aborted due
to losing the transaction state. Because transactional applications are expected to handle transaction
failure, this should not be a source of problems.

Individual nodes can be stopped and restarted, and can then rejoin the system (cluster). Rolling
restarts (in which all nodes are restarted in turn) are used in making configuration changes and
software upgrades (see Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”). Rolling
restarts are also used as part of the process of adding new data nodes online (see Section 18.5.13,
“Adding NDB Cluster Data Nodes Online”). For more information about data nodes, how they are
organized in an NDB Cluster, and how they handle and store NDB Cluster data, see Section 18.1.2,
“NDB Cluster Nodes, Node Groups, Replicas, and Partitions”.

Backing up and restoring NDB Cluster databases can be done using the NDB-native functionality
found in the NDB Cluster management client and the ndb_restore program included in the NDB
Cluster distribution. For more information, see Section 18.5.3, “Online Backup of NDB Cluster”,
and Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”. You can also use the



NDB Cluster Core Concepts

2006

standard MySQL functionality provided for this purpose in mysqldump and the MySQL server. See
Section 4.5.4, “mysqldump — A Database Backup Program”, for more information.

NDB Cluster nodes can employ different transport mechanisms for inter-node communications; TCP/IP
over standard 100 Mbps or faster Ethernet hardware is used in most real-world deployments.

18.1.1 NDB Cluster Core Concepts

NDBCLUSTER (also known as NDB) is an in-memory storage engine offering high-availability and data-
persistence features.

The NDBCLUSTER storage engine can be configured with a range of failover and load-balancing
options, but it is easiest to start with the storage engine at the cluster level. NDB Cluster's NDB storage
engine contains a complete set of data, dependent only on other data within the cluster itself.

The “Cluster” portion of NDB Cluster is configured independently of the MySQL servers. In an NDB
Cluster, each part of the cluster is considered to be a node.

Note

In many contexts, the term “node” is used to indicate a computer, but when
discussing NDB Cluster it means a process. It is possible to run multiple nodes
on a single computer; for a computer on which one or more cluster nodes are
being run we use the term cluster host.

There are three types of cluster nodes, and in a minimal NDB Cluster configuration, there will be at
least three nodes, one of each of these types:

• Management node: The role of this type of node is to manage the other nodes within the NDB
Cluster, performing such functions as providing configuration data, starting and stopping nodes, and
running backups. Because this node type manages the configuration of the other nodes, a node of
this type should be started first, before any other node. An MGM node is started with the command
ndb_mgmd.

• Data node: This type of node stores cluster data. There are as many data nodes as there are
replicas, times the number of fragments (see Section 18.1.2, “NDB Cluster Nodes, Node Groups,
Replicas, and Partitions”). For example, with two replicas, each having two fragments, you need four
data nodes. One replica is sufficient for data storage, but provides no redundancy; therefore, it is
recommended to have 2 (or more) replicas to provide redundancy, and thus high availability. A data
node is started with the command ndbd (see Section 18.4.1, “ndbd — The NDB Cluster Data Node
Daemon”) or ndbmtd (see Section 18.4.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-
Threaded)”).

NDB Cluster tables are normally stored completely in memory rather than on disk (this is why we
refer to NDB Cluster as an in-memory database). However, some NDB Cluster data can be stored
on disk; see Section 18.5.12, “NDB Cluster Disk Data Tables”, for more information.

• SQL node: This is a node that accesses the cluster data. In the case of NDB Cluster, an SQL node
is a traditional MySQL server that uses the NDBCLUSTER storage engine. An SQL node is a mysqld
process started with the --ndbcluster and --ndb-connectstring options, which are explained
elsewhere in this chapter, possibly with additional MySQL server options as well.

An SQL node is actually just a specialized type of API node, which designates any application which
accesses NDB Cluster data. Another example of an API node is the ndb_restore utility that is
used to restore a cluster backup. It is possible to write such applications using the NDB API. For
basic information about the NDB API, see Getting Started with the NDB API.

Important

It is not realistic to expect to employ a three-node setup in a production
environment. Such a configuration provides no redundancy; to benefit from NDB

http://dev.mysql.com/doc/ndbapi/en/ndb-getting-started.html


NDB Cluster Core Concepts

2007

Cluster's high-availability features, you must use multiple data and SQL nodes.
The use of multiple management nodes is also highly recommended.

For a brief introduction to the relationships between nodes, node groups, replicas, and partitions in
NDB Cluster, see Section 18.1.2, “NDB Cluster Nodes, Node Groups, Replicas, and Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up
individual communication links between nodes. NDB Cluster is currently designed with the intention
that data nodes are homogeneous in terms of processor power, memory space, and bandwidth. In
addition, to provide a single point of configuration, all configuration data for the cluster as a whole is
located in one configuration file.

The management server manages the cluster configuration file and the cluster log. Each node in
the cluster retrieves the configuration data from the management server, and so requires a way to
determine where the management server resides. When interesting events occur in the data nodes,
the nodes transfer information about these events to the management server, which then writes the
information to the cluster log.

In addition, there can be any number of cluster client processes or applications. These include
standard MySQL clients, NDB-specific API programs, and management clients. These are described in
the next few paragraphs.

Standard MySQL clients.  NDB Cluster can be used with existing MySQL applications written in
PHP, Perl, C, C++, Java, Python, Ruby, and so on. Such client applications send SQL statements to
and receive responses from MySQL servers acting as NDB Cluster SQL nodes in much the same way
that they interact with standalone MySQL servers.

MySQL clients using an NDB Cluster as a data source can be modified to take advantage of the ability
to connect with multiple MySQL servers to achieve load balancing and failover. For example, Java
clients using Connector/J 5.0.6 and later can use jdbc:mysql:loadbalance:// URLs (improved
in Connector/J 5.1.7) to achieve load balancing transparently; for more information about using
Connector/J with NDB Cluster, see Using Connector/J with NDB Cluster.

NDB client programs.  Client programs can be written that access NDB Cluster data directly from
the NDBCLUSTER storage engine, bypassing any MySQL Servers that may be connected to the cluster,
using the NDB API, a high-level C++ API. Such applications may be useful for specialized purposes
where an SQL interface to the data is not needed. For more information, see The NDB API.

NDB-specific Java applications can also be written for NDB Cluster using the NDB Cluster Connector
for Java. This NDB Cluster Connector includes ClusterJ, a high-level database API similar to object-
relational mapping persistence frameworks such as Hibernate and JPA that connect directly to
NDBCLUSTER, and so does not require access to a MySQL Server. Support is also provided in NDB
Cluster for ClusterJPA, an OpenJPA implementation for NDB Cluster that leverages the strengths of
ClusterJ and JDBC; ID lookups and other fast operations are performed using ClusterJ (bypassing the
MySQL Server), while more complex queries that can benefit from MySQL's query optimizer are sent
through the MySQL Server, using JDBC. See Java and NDB Cluster, and The ClusterJ API and Data
Object Model, for more information.

The Memcache API for NDB Cluster, implemented as the loadable ndbmemcache storage engine
for memcached version 1.6 and later, is available beginning with NDB 7.2.2. This API can be used to
provide a persistent NDB Cluster data store, accessed using the memcache protocol.

The standard memcached caching engine is included in the NDB Cluster 7.2 distribution (7.2.2 and
later). Each memcached server has direct access to data stored in NDB Cluster, but is also able to
cache data locally and to serve (some) requests from this local cache.

For more information, see ndbmemcache—Memcache API for NDB Cluster.

Management clients.  These clients connect to the management server and provide commands
for starting and stopping nodes gracefully, starting and stopping message tracing (debug versions

http://dev.mysql.com/doc/ndbapi/en/mccj-using-connectorj.html
http://dev.mysql.com/doc/ndbapi/en/ndbapi.html
http://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
http://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
http://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html


NDB Cluster Nodes, Node Groups, Replicas, and Partitions

2008

only), showing node versions and status, starting and stopping backups, and so on. An example of this
type of program is the ndb_mgm management client supplied with NDB Cluster (see Section 18.4.5,
“ndb_mgm — The NDB Cluster Management Client”). Such applications can be written using the MGM
API, a C-language API that communicates directly with one or more NDB Cluster management servers.
For more information, see The MGM API.

Oracle also makes available MySQL Cluster Manager, which provides an advanced command-line
interface simplifying many complex NDB Cluster management tasks, such restarting an NDB Cluster
with a large number of nodes. The MySQL Cluster Manager client also supports commands for getting
and setting the values of most node configuration parameters as well as mysqld server options
and variables relating to NDB Cluster. See MySQL™ Cluster Manager 1.3.6 User Manual, for more
information.

Event logs.  NDB Cluster logs events by category (startup, shutdown, errors, checkpoints, and so
on), priority, and severity. A complete listing of all reportable events may be found in Section 18.5.6,
“Event Reports Generated in NDB Cluster”. Event logs are of the two types listed here:

• Cluster log: Keeps a record of all desired reportable events for the cluster as a whole.

• Node log: A separate log which is also kept for each individual node.

Note

Under normal circumstances, it is necessary and sufficient to keep and examine
only the cluster log. The node logs need be consulted only for application
development and debugging purposes.

Checkpoint.  Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. More specific to NDB Cluster, a checkpoint is a point in time where all committed transactions
are stored on disk. With regard to the NDB storage engine, there are two types of checkpoints which
work together to ensure that a consistent view of the cluster's data is maintained. These are shown in
the following list:

• Local Checkpoint (LCP): This is a checkpoint that is specific to a single node; however, LCPs take
place for all nodes in the cluster more or less concurrently. An LCP involves saving all of a node's
data to disk, and so usually occurs every few minutes. The precise interval varies, and depends upon
the amount of data stored by the node, the level of cluster activity, and other factors.

• Global Checkpoint (GCP): A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the redo-log is flushed to disk.

For more information about the files and directories created by local checkpoints and global
checkpoints, see NDB Cluster Data Node File System Directory Files.

18.1.2 NDB Cluster Nodes, Node Groups, Replicas, and Partitions

This section discusses the manner in which NDB Cluster divides and duplicates data for storage.

A number of concepts central to an understanding of this topic are discussed in the next few
paragraphs.

Data node.  An ndbd or ndbmtd process, which stores one or more replicas—that is, copies of the
partitions (discussed later in this section) assigned to the node group of which the node is a member.

Each data node should be located on a separate computer. While it is also possible to host multiple
data node processes on a single computer, such a configuration is not usually recommended.

It is common for the terms “node” and “data node” to be used interchangeably when referring to an
ndbd or ndbmtd process; where mentioned, management nodes (ndb_mgmd processes) and SQL
nodes (mysqld processes) are specified as such in this discussion.

http://dev.mysql.com/doc/ndbapi/en/mgm-api.html
http://dev.mysql.com/doc/mysql-cluster-manager/1.3/en/
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html


NDB Cluster Nodes, Node Groups, Replicas, and Partitions

2009

Node group.  A node group consists of one or more nodes, and stores partitions, or sets of replicas
(see next item).

The number of node groups in an NDB Cluster is not directly configurable; it is a function of the number
of data nodes and of the number of replicas (NoOfReplicas configuration parameter), as shown here:

[# of node groups] = [# of data nodes] / NoOfReplicas

Thus, an NDB Cluster with 4 data nodes has 4 node groups if NoOfReplicas is set to 1 in the
config.ini file, 2 node groups if NoOfReplicas is set to 2, and 1 node group if NoOfReplicas is
set to 4. Replicas are discussed later in this section; for more information about NoOfReplicas, see
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”.

Note

All node groups in an NDB Cluster must have the same number of data nodes.

You can add new node groups (and thus new data nodes) online, to a running NDB Cluster; see
Section 18.5.13, “Adding NDB Cluster Data Nodes Online”, for more information.

Partition.  This is a portion of the data stored by the cluster. Each node is responsible for keeping at
least one copy of any partitions assigned to it (that is, at least one replica) available to the cluster.

The number of partitions used by default by NDB Cluster depends on the number of data nodes and
the number of LDM threads in use by the data nodes, as shown here:

[# of partitions] = [# of data nodes] * [# of LDM threads]

When using data nodes running ndbmtd, the number of LDM threads is controlled by the setting
for MaxNoOfExecutionThreads. When using ndbd there is a single LDM thread, which means
that there are as many cluster partitions as nodes participating in the cluster. This is also the
case when using ndbmtd with MaxNoOfExecutionThreads set to 3 or less. (You should be
aware that the number of LDM threads increases with the value of this parameter, but not in a
strictly linear fashion, and that there are additional constraints on setting it; see the description of
MaxNoOfExecutionThreads for more information.)

NDB and user-defined partitioning.  NDB Cluster normally partitions NDBCLUSTER tables
automatically. However, it is also possible to employ user-defined partitioning with NDBCLUSTER tables.
This is subject to the following limitations:

1. Only the KEY and LINEAR KEY partitioning schemes are supported in production with NDB tables.

2. The maximum number of partitions that may be defined explicitly for any NDB table is 8 *
MaxNoOfExecutionThreads * [number of node groups], the number of node groups in
an NDB Cluster being determined as discussed previously in this section. When using ndbd for
data node processes, setting MaxNoOfExecutionThreads has no effect; in such a case, it can
be treated as though it were equal to 1 for purposes of performing this calculation.

See Section 18.4.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”, for more
information.

For more information relating to NDB Cluster and user-defined partitioning, see Section 18.1.6, “Known
Limitations of NDB Cluster”, and Section 19.5.2, “Partitioning Limitations Relating to Storage Engines”.

Replica.  This is a copy of a cluster partition. Each node in a node group stores a replica. Also
sometimes known as a partition replica. The number of replicas is equal to the number of nodes per
node group.

A replica belongs entirely to a single node; a node can (and usually does) store several replicas.



NDB Cluster Nodes, Node Groups, Replicas, and Partitions

2010

The following diagram illustrates an NDB Cluster with four data nodes running ndbd, arranged in two
node groups of two nodes each; nodes 1 and 2 belong to node group 0, and nodes 3 and 4 belong to
node group 1.

Note

Only data nodes are shown here; although a working NDB Cluster requires
an ndb_mgmd process for cluster management and at least one SQL node to
access the data stored by the cluster, these have been omitted from the figure
for clarity.

Figure 18.2 NDB Cluster with Two Node Groups

The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is
stored—in multiple copies—on the same node group. Partitions are stored on alternate node groups as
follows:

• Partition 0 is stored on node group 0; a primary replica (primary copy) is stored on node 1, and a
backup replica (backup copy of the partition) is stored on node 2.

• Partition 1 is stored on the other node group (node group 1); this partition's primary replica is on node
3, and its backup replica is on node 4.

• Partition 2 is stored on node group 0. However, the placing of its two replicas is reversed from that of
Partition 0; for Partition 2, the primary replica is stored on node 2, and the backup on node 1.

• Partition 3 is stored on node group 1, and the placement of its two replicas are reversed from those
of partition 1. That is, its primary replica is located on node 4, with the backup on node 3.

What this means regarding the continued operation of an NDB Cluster is this: so long as each node
group participating in the cluster has at least one node operating, the cluster has a complete copy of all
data and remains viable. This is illustrated in the next diagram.



NDB Cluster Hardware, Software, and Networking Requirements

2011

Figure 18.3 Nodes Required for a 2x2 NDB Cluster

In this example, where the cluster consists of two node groups of two data nodes, each running an
instance of ndbd, any combination of at least one node in node group 0 and at least one node in node
group 1 is sufficient to keep the cluster “alive” (indicated by arrows in the diagram). However, if both
nodes from either node group fail, the remaining two nodes are not sufficient (shown by the arrows
marked out with an X); in either case, the cluster has lost an entire partition and so can no longer
provide access to a complete set of all NDB Cluster data.

18.1.3 NDB Cluster Hardware, Software, and Networking Requirements

One of the strengths of NDB Cluster is that it can be run on commodity hardware and has no unusual
requirements in this regard, other than for large amounts of RAM, due to the fact that all live data
storage is done in memory. (It is possible to reduce this requirement using Disk Data tables—see
Section 18.5.12, “NDB Cluster Disk Data Tables”, for more information about these.) Naturally, multiple
and faster CPUs can enhance performance. Memory requirements for other NDB Cluster processes
are relatively small.

The software requirements for NDB Cluster are also modest. Host operating systems do not require
any unusual modules, services, applications, or configuration to support NDB Cluster. For supported
operating systems, a standard installation should be sufficient. The MySQL software requirements
are simple: all that is needed is a production release of NDB Cluster. It is not strictly necessary to
compile MySQL yourself merely to be able to use NDB Cluster. We assume that you are using the
binaries appropriate to your platform, available from the NDB Cluster software downloads page at
http://dev.mysql.com/downloads/cluster/.

For communication between nodes, NDB Cluster supports TCP/IP networking in any standard
topology, and the minimum expected for each host is a standard 100 Mbps Ethernet card, plus
a switch, hub, or router to provide network connectivity for the cluster as a whole. We strongly
recommend that an NDB Cluster be run on its own subnet which is not shared with machines not
forming part of the cluster for the following reasons:

• Security.  Communications between NDB Cluster nodes are not encrypted or shielded in any
way. The only means of protecting transmissions within an NDB Cluster is to run your NDB Cluster
on a protected network. If you intend to use NDB Cluster for Web applications, the cluster should
definitely reside behind your firewall and not in your network's De-Militarized Zone (DMZ) or
elsewhere.

See Section 18.5.11.1, “NDB Cluster Security and Networking Issues”, for more information.

http://dev.mysql.com/downloads/cluster/
http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm


What is New in MySQL NDB Cluster 7.2

2012

• Efficiency.  Setting up an NDB Cluster on a private or protected network enables the cluster
to make exclusive use of bandwidth between cluster hosts. Using a separate switch for your NDB
Cluster not only helps protect against unauthorized access to NDB Cluster data, it also ensures
that NDB Cluster nodes are shielded from interference caused by transmissions between other
computers on the network. For enhanced reliability, you can use dual switches and dual cards
to remove the network as a single point of failure; many device drivers support failover for such
communication links.

Network communication and latency.  NDB Cluster requires communication between data nodes
and API nodes (including SQL nodes), as well as between data nodes and other data nodes, to
execute queries and updates. Communication latency between these processes can directly affect the
observed performance and latency of user queries. In addition, to maintain consistency and service
despite the silent failure of nodes, NDB Cluster uses heartbeating and timeout mechanisms which treat
an extended loss of communication from a node as node failure. This can lead to reduced redundancy.
Recall that, to maintain data consistency, an NDB Cluster shuts down when the last node in a node
group fails. Thus, to avoid increasing the risk of a forced shutdown, breaks in communication between
nodes should be avoided wherever possible.

The failure of a data or API node results in the abort of all uncommitted transactions involving the
failed node. Data node recovery requires synchronization of the failed node's data from a surviving
data node, and re-establishment of disk-based redo and checkpoint logs, before the data node
returns to service. This recovery can take some time, during which the Cluster operates with reduced
redundancy.

Heartbeating relies on timely generation of heartbeat signals by all nodes. This may not be possible
if the node is overloaded, has insufficient machine CPU due to sharing with other programs, or is
experiencing delays due to swapping. If heartbeat generation is sufficiently delayed, other nodes treat
the node that is slow to respond as failed.

This treatment of a slow node as a failed one may or may not be desirable in some circumstances,
depending on the impact of the node's slowed operation on the rest of the cluster. When setting timeout
values such as HeartbeatIntervalDbDb and HeartbeatIntervalDbApi for NDB Cluster, care
must be taken care to achieve quick detection, failover, and return to service, while avoiding potentially
expensive false positives.

Where communication latencies between data nodes are expected to be higher than would be
expected in a LAN environment (on the order of 100 µs), timeout parameters must be increased to
ensure that any allowed periods of latency periods are well within configured timeouts. Increasing
timeouts in this way has a corresponding effect on the worst-case time to detect failure and therefore
time to service recovery.

LAN environments can typically be configured with stable low latency, and such that they can provide
redundancy with fast failover. Individual link failures can be recovered from with minimal and controlled
latency visible at the TCP level (where NDB Cluster normally operates). WAN environments may offer
a range of latencies, as well as redundancy with slower failover times. Individual link failures may
require route changes to propagate before end-to-end connectivity is restored. At the TCP level this
can appear as large latencies on individual channels. The worst-case observed TCP latency in these
scenarios is related to the worst-case time for the IP layer to reroute around the failures.

SCI support.  It is also possible to use the high-speed Scalable Coherent Interface (SCI) with NDB
Cluster, but this is not a requirement. See Section 18.3.4, “Using High-Speed Interconnects with NDB
Cluster”, for more about this protocol and its use with NDB Cluster.

18.1.4 What is New in MySQL NDB Cluster 7.2

In this section, we discuss changes in the implementation of NDB Cluster in MySQL NDB Cluster
7.2, as compared to NDB Cluster 7.1 and earlier releases. Changes and features most likely to be of
interest are shown in the following table:



What is New in MySQL NDB Cluster 7.2

2013

NDB Cluster 7.2

NDB Cluster 7.2 is based on MySQL 5.5. For more information about new features in MySQL Server
5.5, see Section 1.4, “What Is New in MySQL 5.5”.

Version 2 binary log row events, to provide support for improvements in NDB Cluster Replication
conflict detection (see next item). A given mysqld can be made to use Version 1 or Version 2 binary
logging row events with the --log-bin-use-v1-row-events option.

Two new “primary wins” conflict detection and resolution functions NDB$EPOCH() and NDB
$EPOCH_TRANS() for use in replication setups with 2 NDB Clusters. For more information, see
Section 18.6, “NDB Cluster Replication”.

Distribution of MySQL users and privileges across NDB Cluster SQL nodes is now supported—see
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”.

Improved support for distributed pushed-down joins, which greatly improve performance for many
joins that can be executed in parallel on the data nodes.

Default values for a number of data node configuration parameters such as
HeartbeatIntervalDbDb and ArbitrationTimeout have been improved.

Support for the Memcache API using the loadable ndbmemcache storage engine. See ndbmemcache
—Memcache API for NDB Cluster.

This section contains information about NDB Cluster 7.2 releases through 5.5.56-ndb-7.2.30, which is
a previous GA release but still supported, as is NDB Cluster 7.3. NDB Cluster 7.1, NDB Cluster 7.0,
and NDB Cluster 6.3 are previous GA release series which are no longer supported. We recommend
that new deployments use NDB Cluster 7.4 or NDB Cluster 7.5, both of which are available as General
Availability releases. NDB Cluster 7.6, currently under development, is available for evaluation and
testing as a Developer Preview release. For information about NDB Cluster 7.1 and previous releases,
see the MySQL 5.1 Reference Manual.

The following improvements to NDB Cluster have been made in NDB Cluster 7.2:

• Based on MySQL Server 5.5.  Previous NDB Cluster release series, including NDB Cluster
7.1, used MySQL 5.1 as a base. Beginning with NDB 7.2.1, NDB Cluster 7.2 is based on MySQL
Server 5.5, so that NDB Cluster users can benefit from MySQL 5.5's improvements in scalability
and performance monitoring. As with MySQL 5.5, NDB 7.2.1 and later use CMake for configuring
and building from source in place of GNU Autotools (used in MySQL 5.1 and NDB Cluster releases
based on MySQL 5.1). For more information about changes and improvements in MySQL 5.5, see
Section 1.4, “What Is New in MySQL 5.5”.

• Conflict detection using GCI Reflection.  NDB Cluster Replication implements a new “primary
wins” conflict detection and resolution mechanism. GCI Reflection applies in two-cluster circulation
“active-active” replication setups, tracking the order in which changes are applied on the NDB Cluster
designated as primary relative to changes originating on the other NDB Cluster (referred to as the
secondary). This relative ordering is used to determine whether changes originating on the slave are
concurrent with any changes that originate locally, and are therefore potentially in conflict. Two new
conflict detection functions are added: When using NDB$EPOCH(), rows that are out of sync on the
secondary are realigned with those on the primary; with NDB$EPOCH_TRANS(), this realignment is
applied to transactions. For more information, see Section 18.6.11, “NDB Cluster Replication Conflict
Resolution”.

• Version 2 binary log row events.  A new format for binary log row events, known as Version
2 binary log row events, provides support for improvements in NDB Cluster Replication conflict
detection (see previous item) and is intended to facilitate further improvements in MySQL
Replication. You can cause a given mysqld use Version 1 or Version 2 binary logging row events
with the --log-bin-use-v1-row-events option. For backward compatibility, Version 2 binary
log row events are also available in NDB Cluster 7.0 (7.0.27 and later) and NDB Cluster 7.1 (7.1.16
and later). However, NDB Cluster 7.0 and NDB Cluster 7.1 continue to use Version 1 binary log row
events as the default, whereas the default in NDB 7.2.1 and later is use Version 2 row events for
binary logging.

http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html


What is New in MySQL NDB Cluster 7.2

2014

• Distribution of MySQL users and privileges.  Automatic distribution of MySQL users and
privileges across all SQL nodes in a given NDB Cluster is now supported. To enable this support,
you must first import an SQL script share/mysql/ndb_dist_priv.sql that is included with the
NDB Cluster 7.2 distribution. This script creates several stored procedures which you can use to
enable privilege distribution and perform related tasks.

When a new MySQL Server joins an NDB Cluster where privilege distribution is in effect, it also
participates in the privilege distribution automatically.

Once privilege distribution is enabled, all changes to the grant tables made on any mysqld attached
to the cluster are immediately available on any other attached MySQL Servers. This is true whether
the changes are made using CREATE USER, GRANT, or any of the other statements described
elsewhere in this Manual (see Section 13.7.1, “Account Management Statements”.) This includes
privileges relating to stored routines and views; however, automatic distribution of the views or stored
routines themselves is not currently supported.

For more information, see Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”.

• Distributed pushed-down joins.  Many joins can now be pushed down to the NDB kernel for
processing on NDB Cluster data nodes. Previously, a join was handled in NDB Cluster by means
of repeated accesses of NDB by the SQL node; however, when pushed-down joins are enabled, a
pushable join is sent in its entirety to the data nodes, where it can be distributed among the data
nodes and executed in parallel on multiple copies of the data, with a single, merged result being
returned to mysqld. This can reduce greatly the number of round trips between an SQL node and
the data nodes required to handle such a join, leading to greatly improved performance of join
processing.

It is possible to determine when joins can be pushed down to the data nodes by examining the
join with EXPLAIN. A number of new system status variables (Ndb_pushed_queries_defined,
Ndb_pushed_queries_dropped, Ndb_pushed_queries_executed, and
Ndb_pushed_reads) and additions to the counters table (in the ndbinfo information database)
can also be helpful in determining when and how well joins are being pushed down.

More information and examples are available in the description of the ndb_join_pushdown
server system variable. See also the description of the status variables referenced in the previous
paragraph, as well as Section 18.5.10.7, “The ndbinfo counters Table”.

• Improved default values for data node configuration parameters.  In order to provide more
resiliency to environmental issues and better handling of some potential failure scenarios, and to
perform more reliably with increases in memory and other resource requirements brought about by
recent improvements in join handling by NDB, the default values for a number of NDB Cluster data
node configuration parameters have been changed. The parameters and changes are described in
the following list:

• HeartbeatIntervalDbDb: Default increased from 1500 ms to 5000 ms.

• ArbitrationTimeout: Default increased from 3000 ms to 7500 ms.

• TimeBetweenEpochsTimeout: Now effectively disabled by default (default changed from 4000
ms to 0).

• SharedGlobalMemory: Default increased from 20 MB to 128 MB.

• MaxParallelScansPerFragment: Default increased from 32 to 256.

• CrashOnCorruptedTuple changed from FALSE to TRUE.

• Beginning with NDB 7.2.10, DefaultOperationRedoProblemAction changed from ABORT to
QUEUE.



MySQL Server Using InnoDB Compared with NDB Cluster

2015

In addition, the value computed for MaxNoOfLocalScans when this parameter is not set in
config.ini has been increased by a factor of 4.

• Fail-fast data nodes.  Beginning with NDB 7.2.1, data nodes handle corrupted tuples in a fail-fast
manner by default. This is a change from previous versions of NDB Cluster where this behavior had
to be enabled explicitly by enabling the CrashOnCorruptedTuple configuration parameter. In NDB
7.2.1 and later, this parameter is enabled by default and must be explicitly disabled, in which case
data nodes merely log a warning whenever they detect a corrupted tuple.

• Memcache API support (ndbmemcache).  The Memcached server is a distributed in-memory
caching server that uses a simple text-based protocol. It is often employed with key-value stores.
The Memcache API for NDB Cluster, available beginning with NDB 7.2.2, is implemented as a
loadable storage engine for memcached version 1.6 and later. This API can be used to access
a persistent NDB Cluster data store employing the memcache protocol. It is also possible for the
memcached server to provide a strictly defined interface to existing NDB Cluster tables.

Each memcache server can both cache data locally and access data stored in NDB Cluster directly.
Caching policies are configurable. For more information, see ndbmemcache—Memcache API for
NDB Cluster, in the NDB Cluster API Developers Guide.

• Rows per partition limit removed.  Previously it was possible to store a maximum of 46137488
rows in a single NDB Cluster partition—that is, per data node. Beginning with NDB 7.2.9, this
limitation has been lifted, and there is no longer any practical upper limit to this number. (Bug
#13844405, Bug #14000373)

NDB Cluster 7.2 is also supported by MySQL Cluster Manager, which provides an advanced
command-line interface that can simplify many complex NDB Cluster management tasks. See
MySQL™ Cluster Manager 1.3.6 User Manual, for more information.

18.1.5 MySQL Server Using InnoDB Compared with NDB Cluster

MySQL Server offers a number of choices in storage engines. Since both NDB and InnoDB can serve
as transactional MySQL storage engines, users of MySQL Server sometimes become interested
in NDB Cluster. They see NDB as a possible alternative or upgrade to the default InnoDB storage
engine in MySQL 5.5. While NDB and InnoDB share common characteristics, there are differences
in architecture and implementation, so that some existing MySQL Server applications and usage
scenarios can be a good fit for NDB Cluster, but not all of them.

In this section, we discuss and compare some characteristics of the NDB storage engine used by NDB
Cluster 7.2 with InnoDB used in MySQL 5.5. The next few sections provide a technical comparison.
In many instances, decisions about when and where to use NDB Cluster must be made on a case-by-
case basis, taking all factors into consideration. While it is beyond the scope of this documentation to
provide specifics for every conceivable usage scenario, we also attempt to offer some very general
guidance on the relative suitability of some common types of applications for NDB as opposed to
InnoDB back ends.

Recent NDB Cluster 7.2 releases use a mysqld based on MySQL 5.5, including support for InnoDB
1.1. While it is possible to use InnoDB tables with NDB Cluster, such tables are not clustered. It is also
not possible to use programs or libraries from an NDB Cluster 7.2 distribution with MySQL Server 5.5,
or the reverse.

While it is also true that some types of common business applications can be run either on NDB
Cluster or on MySQL Server (most likely using the InnoDB storage engine), there are some important
architectural and implementation differences. Section 18.1.5.1, “Differences Between the NDB and
InnoDB Storage Engines”, provides a summary of the these differences. Due to the differences, some
usage scenarios are clearly more suitable for one engine or the other; see Section 18.1.5.2, “NDB
and InnoDB Workloads”. This in turn has an impact on the types of applications that better suited for
use with NDB or InnoDB. See Section 18.1.5.3, “NDB and InnoDB Feature Usage Summary”, for a
comparison of the relative suitability of each for use in common types of database applications.

http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
http://dev.mysql.com/doc/mysql-cluster-manager/1.3/en/


MySQL Server Using InnoDB Compared with NDB Cluster

2016

For information about the relative characteristics of the NDB and MEMORY storage engines, see When to
Use MEMORY or NDB Cluster.

See Chapter 15, Alternative Storage Engines, for additional information about MySQL storage engines.

18.1.5.1 Differences Between the NDB and InnoDB Storage Engines

The NDB storage engine is implemented using a distributed, shared-nothing architecture, which causes
it to behave differently from InnoDB in a number of ways. For those unaccustomed to working with
NDB, unexpected behaviors can arise due to its distributed nature with regard to transactions, foreign
keys, table limits, and other characteristics. These are shown in the following table:

Feature InnoDB 1.1 NDB 7.2

MySQL Server Version 5.5 5.5

InnoDB Version InnoDB 1.1 InnoDB 1.1

NDB Cluster Version N/A NDB 7.2.30

Storage Limits 64TB 3TB (Practical upper limit based
on 48 data nodes with 64GB
RAM each; can be increased
with disk-based data and
BLOBs)

Foreign Keys Yes Not in NDB 7.2, where they are
ignored as by MyISAM (Available
in NDB Cluster 7.3 and later=

Transactions All standard types READ COMMITTED

MVCC Yes No

Data Compression Yes No (NDB checkpoint and backup
files can be compressed)

Large Row Support (> 14K) Supported for VARBINARY,
VARCHAR, BLOB, and TEXT
columns

Supported for BLOB and
TEXT columns only (Using
these types to store very large
amounts of data can lower NDB
performance)

Replication Support Asynchronous and
semisynchronous replication
using MySQL Replication

Automatic synchronous
replication within an NDB
Cluster; asynchronous replication
between NDB Clusters, using
MySQL Replication

Scaleout for Read Operations Yes (MySQL Replication) Yes (Automatic partitioning
in NDB Cluster; NDB Cluster
Replication)

Scaleout for Write Operations Requires application-level
partitioning (sharding)

Yes (Automatic partitioning in
NDB Cluster is transparent to
applications)

High Availability (HA) Requires additional software Yes (Designed for 99.999%
uptime)

Node Failure Recovery and
Failover

Requires additional software Automatic (Key element in NDB
architecture)

Time for Node Failure Recovery 30 seconds or longer Typically < 1 second

Real-Time Performance No Yes

In-Memory Tables No Yes (Some data can optionally
be stored on disk; both in-



MySQL Server Using InnoDB Compared with NDB Cluster

2017

Feature InnoDB 1.1 NDB 7.2
memory and disk data storage
are durable)

NoSQL Access to Storage
Engine

Yes Yes (Multiple APIs, including
Memcached, Node.js/JavaScript,
Java, JPA, C++, and HTTP/
REST)

Concurrent and Parallel Writes Not supported Up to 48 writers, optimized for
concurrent writes

Conflict Detection and Resolution
(Multiple Replication Masters)

No Yes

Hash Indexes No Yes

Online Addition of Nodes Read-only replicas using MySQL
Replication

Yes (all node types)

Online Upgrades No Yes

Online Schema Modifications No Yes

18.1.5.2 NDB and InnoDB Workloads

NDB Cluster has a range of unique attributes that make it ideal to serve applications requiring high
availability, fast failover, high throughput, and low latency. Due to its distributed architecture and multi-
node implementation, NDB Cluster also has specific constraints that may keep some workloads from
performing well. A number of major differences in behavior between the NDB and InnoDB storage
engines with regard to some common types of database-driven application workloads are shown in the
following table::

Workload InnoDB NDB Cluster (NDB)

High-Volume OLTP Applications Yes Yes

DSS Applications (data marts,
analytics)

Yes Limited (Join operations across
OLTP datasets not exceeding
3TB in size)

Custom Applications Yes Yes

Packaged Applications Yes Limited (should be mostly
primary key access)

Note

NDB
Cluster
7.3 adds
support
for foreign
keys.

In-Network Telecoms
Applications (HLR, HSS, SDP)

No Yes

Session Management and
Caching

Yes Yes

E-Commerce Applications Yes Yes

User Profile Management, AAA
Protocol

Yes Yes

18.1.5.3 NDB and InnoDB Feature Usage Summary



Known Limitations of NDB Cluster

2018

When comparing application feature requirements to the capabilities of InnoDB with NDB, some are
clearly more compatible with one storage engine than the other.

The following table lists supported application features according to the storage engine to which each
feature is typically better suited.

Preferred application requirements for InnoDB Preferred application requirements for NDB

• Foreign keys

Note

NDB Cluster 7.3 adds
support support for
foreign keys.

• Full table scans

• Very large databases, rows, or transactions

• Transactions other than READ COMMITTED

• Write scaling

• 99.999% uptime

• Online addition of nodes and online schema
operations

• Multiple SQL and NoSQL APIs (see NDB
Cluster APIs: Overview and Concepts)

• Real-time performance

• Limited use of BLOB columns

18.1.6 Known Limitations of NDB Cluster

In the sections that follow, we discuss known limitations in current releases of NDB Cluster as
compared with the features available when using the MyISAM and InnoDB storage engines. If you
check the “Cluster” category in the MySQL bugs database at http://bugs.mysql.com, you can find
known bugs in the following categories under “MySQL Server:” in the MySQL bugs database at http://
bugs.mysql.com, which we intend to correct in upcoming releases of NDB Cluster:

• NDB Cluster

• Cluster Direct API (NDBAPI)

• Cluster Disk Data

• Cluster Replication

• ClusterJ

This information is intended to be complete with respect to the conditions just set forth. You can report
any discrepancies that you encounter to the MySQL bugs database using the instructions given in
Section 1.6, “How to Report Bugs or Problems”. If we do not plan to fix the problem in NDB Cluster 7.2,
we will add it to the list.

See Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x,
and NDB Cluster 7.x” for a list of issues in NDB Cluster in MySQL 5.1 that have been resolved in the
current version.

Note

Limitations and other issues specific to NDB Cluster Replication are described
in Section 18.6.3, “Known Issues in NDB Cluster Replication”.

18.1.6.1 Noncompliance with SQL Syntax in NDB Cluster

Some SQL statements relating to certain MySQL features produce errors when used with NDB tables,
as described in the following list:

• Temporary tables.  Temporary tables are not supported. Trying either to create a temporary table
that uses the NDB storage engine or to alter an existing temporary table to use NDB fails with the

http://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
http://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
http://bugs.mysql.com
http://bugs.mysql.com
http://bugs.mysql.com


Known Limitations of NDB Cluster

2019

error Table storage engine 'ndbcluster' does not support the create option
'TEMPORARY'.

• Indexes and keys in NDB tables.  Keys and indexes on NDB Cluster tables are subject to the
following limitations:

• Column width.  Attempting to create an index on an NDB table column whose width is greater
than 3072 bytes succeeds, but only the first 3072 bytes are actually used for the index. In such
cases, a warning Specified key was too long; max key length is 3072 bytes is
issued, and a SHOW CREATE TABLE statement shows the length of the index as 3072.

• TEXT and BLOB columns.  You cannot create indexes on NDB table columns that use any of
the TEXT or BLOB data types.

• FULLTEXT indexes.  The NDB storage engine does not support FULLTEXT indexes, which are
possible for MyISAM tables only.

However, you can create indexes on VARCHAR columns of NDB tables.

• USING HASH keys and NULL.  Using nullable columns in unique keys and primary keys
means that queries using these columns are handled as full table scans. To work around this
issue, make the column NOT NULL, or re-create the index without the USING HASH option.

• Prefixes.  There are no prefix indexes; only entire columns can be indexed. (The size of an NDB
column index is always the same as the width of the column in bytes, up to and including 3072
bytes, as described earlier in this section. Also see Section 18.1.6.6, “Unsupported or Missing
Features in NDB Cluster”, for additional information.)

• BIT columns.  A BIT column cannot be a primary key, unique key, or index, nor can it be part of
a composite primary key, unique key, or index.

• AUTO_INCREMENT columns.  Like other MySQL storage engines, the NDB storage engine
can handle a maximum of one AUTO_INCREMENT column per table, and this column must be
indexed. However, in the case of an NDB table with no explicit primary key, an AUTO_INCREMENT
column is automatically defined and used as a “hidden” primary key. For this reason, you cannot
create an NDB table having an AUTO_INCREMENT column and no explicit primary key.

• NDB Cluster and geometry data types. 
Geometry data types (WKT and WKB) are supported for NDB tables. However, spatial indexes are not
supported.

• Character sets and binary log files.  Currently, the ndb_apply_status and
ndb_binlog_index tables are created using the latin1 (ASCII) character set. Because names
of binary logs are recorded in this table, binary log files named using non-Latin characters are
not referenced correctly in these tables. This is a known issue, which we are working to fix. (Bug
#50226)

To work around this problem, use only Latin-1 characters when naming binary log files or setting any
the --basedir, --log-bin, or --log-bin-index options.

• Creating NDB tables with user-defined partitioning.     Support for user-defined partitioning
in NDB Cluster is restricted to [LINEAR] KEY partitioning. Using any other partitioning type with
ENGINE=NDB or ENGINE=NDBCLUSTER in a CREATE TABLE statement results in an error.

It is possible to override this restriction, but doing so is not supported for use in production settings.
For details, see User-defined partitioning and the NDB storage engine (NDB Cluster).

Default partitioning scheme.  All NDB Cluster tables are by default partitioned by KEY using
the table's primary key as the partitioning key. If no primary key is explicitly set for the table, the
“hidden” primary key automatically created by the NDB storage engine is used instead. For additional
discussion of these and related issues, see Section 19.2.5, “KEY Partitioning”.



Known Limitations of NDB Cluster

2020

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDBCLUSTER
table not to meet either or both of the following two requirements are not permitted, and fail with an
error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception.  If a user-partitioned NDBCLUSTER table is created using an empty column-list (that is,
using PARTITION BY [LINEAR] KEY()), then no explicit primary key is required.

Maximum number of partitions for NDBCLUSTER tables.  The maximum number of partitions
that can defined for a NDBCLUSTER table when employing user-defined partitioning is 8 per node
group. (See Section 18.1.2, “NDB Cluster Nodes, Node Groups, Replicas, and Partitions”, for more
information about NDB Cluster node groups.

DROP PARTITION not supported.  It is not possible to drop partitions from NDB tables using
ALTER TABLE ... DROP PARTITION. The other partitioning extensions to ALTER TABLE—ADD
PARTITION, REORGANIZE PARTITION, and COALESCE PARTITION—are supported for NDB
tables, but use copying and so are not optimized. See Section 19.3.1, “Management of RANGE and
LIST Partitions” and Section 13.1.7, “ALTER TABLE Syntax”.

• Row-based replication. 
When using row-based replication with NDB Cluster, binary logging cannot be disabled. That is, the
NDB storage engine ignores the value of sql_log_bin. (Bug #16680)

18.1.6.2 Limits and Differences of NDB Cluster from Standard MySQL Limits

In this section, we list limits found in NDB Cluster that either differ from limits found in, or that are not
found in, standard MySQL.

Memory usage and recovery.  Memory consumed when data is inserted into an NDB table is not
automatically recovered when deleted, as it is with other storage engines. Instead, the following rules
hold true:

• A DELETE statement on an NDB table makes the memory formerly used by the deleted rows
available for re-use by inserts on the same table only. However, this memory can be made available
for general re-use by performing OPTIMIZE TABLE.

A rolling restart of the cluster also frees any memory used by deleted rows. See Section 18.5.5,
“Performing a Rolling Restart of an NDB Cluster”.

• A DROP TABLE or TRUNCATE TABLE operation on an NDB table frees the memory that was used by
this table for re-use by any NDB table, either by the same table or by another NDB table.

Note

Recall that TRUNCATE TABLE drops and re-creates the table. See
Section 13.1.33, “TRUNCATE TABLE Syntax”.

• Limits imposed by the cluster's configuration. 
A number of hard limits exist which are configurable, but available main memory in the cluster
sets limits. See the complete list of configuration parameters in Section 18.3.3, “NDB Cluster
Configuration Files”. Most configuration parameters can be upgraded online. These hard limits
include:

• Database memory size and index memory size (DataMemory and IndexMemory, respectively).

DataMemory is allocated as 32KB pages. As each DataMemory page is used, it is assigned to a
specific table; once allocated, this memory cannot be freed except by dropping the table.



Known Limitations of NDB Cluster

2021

See Section 18.3.3.6, “Defining NDB Cluster Data Nodes”, for more information.

• The maximum number of operations that can be performed per transaction is set using the
configuration parameters MaxNoOfConcurrentOperations and MaxNoOfLocalOperations.

Note

Bulk loading, TRUNCATE TABLE, and ALTER TABLE are handled as
special cases by running multiple transactions, and so are not subject to
this limitation.

• Different limits related to tables and indexes. For example, the maximum number of ordered
indexes in the cluster is determined by MaxNoOfOrderedIndexes, and the maximum number of
ordered indexes per table is 16.

• Node and data object maximums.  The following limits apply to numbers of cluster nodes and
metadata objects:

• The maximum number of data nodes is 48.

A data node must have a node ID in the range of 1 to 48, inclusive. (Management and API nodes
may use node IDs in the range 1 to 255, inclusive.)

• The total maximum number of nodes in an NDB Cluster is 255. This number includes all SQL
nodes (MySQL Servers), API nodes (applications accessing the cluster other than MySQL
servers), data nodes, and management servers.

• The maximum number of metadata objects in current versions of NDB Cluster is 20320. This limit
is hard-coded.

See Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and
NDB Cluster 7.x”, for more information.

18.1.6.3 Limits Relating to Transaction Handling in NDB Cluster

A number of limitations exist in NDB Cluster with regard to the handling of transactions. These include
the following:

• Transaction isolation level.     The NDBCLUSTER storage engine supports only the READ
COMMITTED transaction isolation level. (InnoDB, for example, supports READ COMMITTED, READ
UNCOMMITTED, REPEATABLE READ, and SERIALIZABLE.) You should keep in mind that NDB
implements READ COMMITTED on a per-row basis; when a read request arrives at the data node
storing the row, what is returned is the last committed version of the row at that time.

Uncommitted data is never returned, but when a transaction modifying a number of rows commits
concurrently with a transaction reading the same rows, the transaction performing the read can
observe “before” values, “after” values, or both, for different rows among these, due to the fact that a
given row read request can be processed either before or after the commit of the other transaction.

To ensure that a given transaction reads only before or after values, you can impose row locks using
SELECT ... LOCK IN SHARE MODE. In such cases, the lock is held until the owning transaction is
committed. Using row locks can also cause the following issues:

• Increased frequency of lock wait timeout errors, and reduced concurrency

• Increased transaction processing overhead due to reads requiring a commit phase

• Possibility of exhausting the available number of concurrent locks, which is limited by
MaxNoOfConcurrentOperations



Known Limitations of NDB Cluster

2022

NDB uses READ COMMITTED for all reads unless a modifier such as LOCK IN SHARE MODE or FOR
UPDATE is used. LOCK IN SHARE MODE causes shared row locks to be used; FOR UPDATE causes
exclusive row locks to be used. Unique key reads have their locks upgraded automatically by NDB to
ensure a self-consistent read; BLOB reads also employ extra locking for consistency.

See Section 18.5.3.4, “NDB Cluster Backup Troubleshooting”, for information on how NDB Cluster's
implementation of transaction isolation level can affect backup and restoration of NDB databases.

• Transactions and BLOB or TEXT columns.  NDBCLUSTER stores only part of a column value
that uses any of MySQL's BLOB or TEXT data types in the table visible to MySQL; the remainder of
the BLOB or TEXT is stored in a separate internal table that is not accessible to MySQL. This gives
rise to two related issues of which you should be aware whenever executing SELECT statements on
tables that contain columns of these types:

1. For any SELECT from an NDB Cluster table: If the SELECT includes a BLOB or TEXT column, the
READ COMMITTED transaction isolation level is converted to a read with read lock. This is done
to guarantee consistency.

2. For any SELECT which uses a unique key lookup to retrieve any columns that use any of the
BLOB or TEXT data types and that is executed within a transaction, a shared read lock is held on
the table for the duration of the transaction—that is, until the transaction is either committed or
aborted.

This issue does not occur for queries that use index or table scans, even against NDB tables
having BLOB or TEXT columns.

For example, consider the table t defined by the following CREATE TABLE statement:

CREATE TABLE t (
    a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    b INT NOT NULL,
    c INT NOT NULL,
    d TEXT,
    INDEX i(b),
    UNIQUE KEY u(c)
) ENGINE = NDB,

Either of the following queries on t causes a shared read lock, because the first query uses a
primary key lookup and the second uses a unique key lookup:

SELECT * FROM t WHERE a = 1;

SELECT * FROM t WHERE c = 1;

However, none of the four queries shown here causes a shared read lock:

SELECT * FROM t WHERE b = 1;

SELECT * FROM t WHERE d = '1';

SELECT * FROM t;

SELECT b,c WHERE a = 1;

This is because, of these four queries, the first uses an index scan, the second and third use
table scans, and the fourth, while using a primary key lookup, does not retrieve the value of any
BLOB or TEXT columns.



Known Limitations of NDB Cluster

2023

You can help minimize issues with shared read locks by avoiding queries that use unique key
lookups that retrieve BLOB or TEXT columns, or, in cases where such queries are not avoidable,
by committing transactions as soon as possible afterward.

• Rollbacks.  There are no partial transactions, and no partial rollbacks of transactions. A duplicate
key or similar error causes the entire transaction to be rolled back.

This behavior differs from that of other transactional storage engines such as InnoDB that may roll
back individual statements.

• Transactions and memory usage. 
As noted elsewhere in this chapter, NDB Cluster does not handle large transactions well; it is better
to perform a number of small transactions with a few operations each than to attempt a single large
transaction containing a great many operations. Among other considerations, large transactions
require very large amounts of memory. Because of this, the transactional behavior of a number of
MySQL statements is affected as described in the following list:

• TRUNCATE TABLE is not transactional when used on NDB tables. If a TRUNCATE TABLE fails to
empty the table, then it must be re-run until it is successful.

• DELETE FROM (even with no WHERE clause) is transactional. For tables containing a great
many rows, you may find that performance is improved by using several DELETE FROM ...
LIMIT ... statements to “chunk” the delete operation. If your objective is to empty the table, then
you may wish to use TRUNCATE TABLE instead.

• LOAD DATA statements.  LOAD DATA INFILE is not transactional when used on NDB tables.

Important

When executing a LOAD DATA INFILE statement, the NDB engine
performs commits at irregular intervals that enable better utilization of the
communication network. It is not possible to know ahead of time when such
commits take place.

• ALTER TABLE and transactions.  When copying an NDB table as part of an ALTER TABLE,
the creation of the copy is nontransactional. (In any case, this operation is rolled back when the
copy is deleted.)

• Transactions and the COUNT() function.  When using NDB Cluster Replication, it is not possible
to guarantee the transactional consistency of the COUNT() function on the slave. In other words,
when performing on the master a series of statements (INSERT, DELETE, or both) that changes
the number of rows in a table within a single transaction, executing SELECT COUNT(*) FROM
table queries on the slave may yield intermediate results. This is due to the fact that SELECT
COUNT(...) may perform dirty reads, and is not a bug in the NDB storage engine. (See Bug #31321
for more information.)

18.1.6.4 NDB Cluster Error Handling

Starting, stopping, or restarting a node may give rise to temporary errors causing some transactions to
fail. These include the following cases:

• Temporary errors.  When first starting a node, it is possible that you may see Error 1204
Temporary failure, distribution changed and similar temporary errors.

• Errors due to node failure.  The stopping or failure of any data node can result in a number of
different node failure errors. (However, there should be no aborted transactions when performing a
planned shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application. This
should be done by retrying the transaction.



Known Limitations of NDB Cluster

2024

See also Section 18.1.6.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”.

18.1.6.5 Limits Associated with Database Objects in NDB Cluster

Some database objects such as tables and indexes have different limitations when using the
NDBCLUSTER storage engine:

• Database and table names.  When using the NDB storage engine, the maximum allowed length
both for database names and for table names is 63 characters.

• Number of database objects.  The maximum number of all NDB database objects in a single NDB
Cluster—including databases, tables, and indexes—is limited to 20320.

• Attributes per table.  The maximum number of attributes (that is, columns and indexes) that can
belong to a given table is 512.

• Attributes per key.  The maximum number of attributes per key is 32.

• Row size.  The maximum permitted size of any one row is 14000 bytes. Each BLOB or TEXT
column contributes 256 + 8 = 264 bytes to this total.

• BIT column storage per table.  The maximum combined width for all BIT columns used in a
given NDB table is 4096.

• FIXED column storage.  NDB Cluster supports a maximum of 16 GB per fragment of data in
FIXED columns.

18.1.6.6 Unsupported or Missing Features in NDB Cluster

A number of features supported by other storage engines are not supported for NDB tables. Trying to
use any of these features in NDB Cluster does not cause errors in or of itself; however, errors may
occur in applications that expects the features to be supported or enforced. Statements referencing
such features, even if effectively ignored by NDB, must be syntactically and otherwise valid.

• Foreign key constraints.  Prior to NDB Cluster 7.3, the foreign key construct is ignored, just as it
is by MyISAM tables. Foreign keys are supported in NDB Cluster 7.3 and later.

• Index prefixes.  Prefixes on indexes are not supported for NDB tables. If a prefix is used as part of
an index specification in a statement such as CREATE TABLE, ALTER TABLE, or CREATE INDEX,
the prefix is not created by NDB.

A statement containing an index prefix, and creating or modifying an NDB table, must still be
syntactically valid. For example, the following statement always fails with Error 1089 Incorrect
prefix key; the used key part isn't a string, the used length is longer
than the key part, or the storage engine doesn't support unique prefix
keys, regardless of storage engine:

CREATE TABLE t1 (
    c1 INT NOT NULL,
    c2 VARCHAR(100),
    INDEX i1 (c2(500))
);

This happens on account of the SQL syntax rule that no index may have a prefix larger than itself.

• Savepoints and rollbacks.  Savepoints and rollbacks to savepoints are ignored as in MyISAM.

• Durability of commits.  There are no durable commits on disk. Commits are replicated, but there
is no guarantee that logs are flushed to disk on commit.

• Replication.  Statement-based replication is not supported. Use --binlog-format=ROW (or
--binlog-format=MIXED) when setting up cluster replication. See Section 18.6, “NDB Cluster
Replication”, for more information.



Known Limitations of NDB Cluster

2025

Note

See Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”,
for more information relating to limitations on transaction handling in NDB.

18.1.6.7 Limitations Relating to Performance in NDB Cluster

The following performance issues are specific to or especially pronounced in NDB Cluster:

• Range scans.  There are query performance issues due to sequential access to the NDB storage
engine; it is also relatively more expensive to do many range scans than it is with either MyISAM or
InnoDB.

• Reliability of Records in range.  The Records in range statistic is available but is not
completely tested or officially supported. This may result in nonoptimal query plans in some cases.
If necessary, you can employ USE INDEX or FORCE INDEX to alter the execution plan. See
Section 8.9.3, “Index Hints”, for more information on how to do this.

• Unique hash indexes.  Unique hash indexes created with USING HASH cannot be used for
accessing a table if NULL is given as part of the key.

18.1.6.8 Issues Exclusive to NDB Cluster

The following are limitations specific to the NDB storage engine:

• Machine architecture.  All machines used in the cluster must have the same architecture. That is,
all machines hosting nodes must be either big-endian or little-endian, and you cannot use a mixture
of both. For example, you cannot have a management node running on a PowerPC which directs
a data node that is running on an x86 machine. This restriction does not apply to machines simply
running mysql or other clients that may be accessing the cluster's SQL nodes.

• Binary logging. 
NDB Cluster has the following limitations or restrictions with regard to binary logging:

• sql_log_bin has no effect on data operations; however, it is supported for schema operations.

• NDB Cluster cannot produce a binary log for tables having BLOB columns but no primary key.

• Only the following schema operations are logged in a cluster binary log which is not on the
mysqld executing the statement:

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

• CREATE DATABASE / CREATE SCHEMA

• DROP DATABASE / DROP SCHEMA

• CREATE TABLESPACE

• ALTER TABLESPACE

• DROP TABLESPACE

• CREATE LOGFILE GROUP

• ALTER LOGFILE GROUP

• DROP LOGFILE GROUP



Known Limitations of NDB Cluster

2026

• Schema operations (DDL statements) are rejected while any data node restarts.

• Number of replicas.  The number of replicas, as determined by the NoOfReplicas data node
configuration parameter, is the number of copies of all data stored by NDB Cluster. Setting this
parameter to 1 means there is only a single copy; in this case, no redundancy is provided, and the
loss of a data node entails loss of data. To guarantee redundancy, and thus preservation of data
even if a data node fails, set this parameter to 2, which is the default and recommended value in
production.

Setting NoOfReplicas to a value greater than 2 is possible (to a maximum of 4) but unnecessary to
guard against loss of data. In addition, values greater than 2 for this parameter are not supported in
production.

See also Section 18.1.6.10, “Limitations Relating to Multiple NDB Cluster Nodes”.

18.1.6.9 Limitations Relating to NDB Cluster Disk Data Storage

Disk Data object maximums and minimums.  Disk data objects are subject to the following
maximums and minimums:

• Maximum number of tablespaces: 232 (4294967296)

• Maximum number of data files per tablespace: 216 (65536)

• The minimum and maximum possible sizes of extents for tablespace data files are 32K and 2G,
respectively. See Section 13.1.18, “CREATE TABLESPACE Syntax”, for more information.

In addition, when working with NDB Disk Data tables, you should be aware of the following issues
regarding data files and extents:

• Data files use DataMemory. Usage is the same as for in-memory data.

• Data files use file descriptors. It is important to keep in mind that data files are always open, which
means the file descriptors are always in use and cannot be re-used for other system tasks.

• Extents require sufficient DiskPageBufferMemory; you must reserve enough for this parameter to
account for all memory used by all extents (number of extents times size of extents).

Disk Data tables and diskless mode.  Use of Disk Data tables is not supported when running the
cluster in diskless mode. Beginning with MySQL 5.1.12, it is prohibited altogether. (Bug #20008)

18.1.6.10 Limitations Relating to Multiple NDB Cluster Nodes

Multiple SQL nodes. 
The following are issues relating to the use of multiple MySQL servers as NDB Cluster SQL nodes, and
are specific to the NDBCLUSTER storage engine:

• No distributed table locks.  A LOCK TABLES works only for the SQL node on which the lock is
issued; no other SQL node in the cluster “sees” this lock. This is also true for a lock issued by any
statement that locks tables as part of its operations. (See next item for an example.)

• ALTER TABLE operations.  ALTER TABLE is not fully locking when running multiple MySQL
servers (SQL nodes). (As discussed in the previous item, NDB Cluster does not support distributed
table locks.)

Multiple management nodes. 
When using multiple management servers:

• If any of the management servers are running on the same host, you must give nodes explicit
IDs in connection strings because automatic allocation of node IDs does not work across multiple
management servers on the same host. This is not required if every management server resides on
a different host.



Known Limitations of NDB Cluster

2027

• When a management server starts, it first checks for any other management server in the same NDB
Cluster, and upon successful connection to the other management server uses its configuration data.
This means that the management server --reload and --initial startup options are ignored
unless the management server is the only one running. It also means that, when performing a rolling
restart of an NDB Cluster with multiple management nodes, the management server reads its own
configuration file if (and only if) it is the only management server running in this NDB Cluster. See
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”, for more information.

Multiple network addresses.  Multiple network addresses per data node are not supported.
Use of these is liable to cause problems: In the event of a data node failure, an SQL node waits for
confirmation that the data node went down but never receives it because another route to that data
node remains open. This can effectively make the cluster inoperable.

Note

It is possible to use multiple network hardware interfaces (such as Ethernet
cards) for a single data node, but these must be bound to the same address.
This also means that it not possible to use more than one [tcp] section per
connection in the config.ini file. See Section 18.3.3.9, “NDB Cluster TCP/IP
Connections”, for more information.

18.1.6.11 Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and
NDB Cluster 7.x

A number of limitations and related issues existing in earlier versions of NDB Cluster have been
resolved:

• Variable-length column support.  The NDBCLUSTER storage engine now supports variable-
length column types for in-memory tables.

Previously, for example, any Cluster table having one or more VARCHAR fields which contained
only relatively small values, much more memory and disk space were required when using the
NDBCLUSTER storage engine than would have been the case for the same table and data using the
MyISAM engine. In other words, in the case of a VARCHAR column, such a column required the same
amount of storage as a CHAR column of the same size. In MySQL 5.1, this is no longer the case for
in-memory tables, where storage requirements for variable-length column types such as VARCHAR
and BINARY are comparable to those for these column types when used in MyISAM tables (see
Section 11.7, “Data Type Storage Requirements”).

Important

For NDB Cluster Disk Data tables, the fixed-width limitation continues to
apply. See Section 18.5.12, “NDB Cluster Disk Data Tables”.

• Replication with NDB Cluster.   It is now possible to use MySQL replication with Cluster
databases. For details, see Section 18.6, “NDB Cluster Replication”.

Circular Replication.  Circular replication is also supported with NDB Cluster, beginning
with MySQL 5.1.18. See Section 18.6.10, “NDB Cluster Replication: Multi-Master and Circular
Replication”.

• auto_increment_increment and auto_increment_offset.  The auto_increment_increment
and auto_increment_offset server system variables are supported for NDB Cluster Replication.

• Backup and restore between architectures.  It is possible to perform a Cluster backup and
restore between different architectures. Previously—for example—you could not back up a cluster
running on a big-endian platform and then restore from that backup to a cluster running on a little-
endian system. (Bug #19255)



Known Limitations of NDB Cluster

2028

• Multiple data nodes, multi-threaded data nodes.   NDB Cluster 7.2 supports multiple data node
processes on a single host as well as multi-threaded data node processes. See Section 18.4.3,
“ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”, for more information.

• Identifiers.  Formerly (in MySQL 5.0 and earlier), database names, table names and attribute
names could not be as long for NDB tables as tables using other storage engines, because attribute
names were truncated internally. In MySQL 5.1 and later, names of NDB Cluster databases, tables,
and table columns follow the same rules regarding length as they do for any other storage engine.

• Length of CREATE TABLE statements.   CREATE TABLE statements may be no more than
4096 characters in length. This limitation affects MySQL 5.1.6, 5.1.7, and 5.1.8 only. (See Bug
#17813)

• IGNORE and REPLACE functionality.   In MySQL 5.1.7 and earlier, INSERT IGNORE, UPDATE
IGNORE, and REPLACE were supported only for primary keys, but not for unique keys. It was
possible to work around this issue by removing the constraint, then dropping the unique index,
performing any inserts, and then adding the unique index again.

This limitation was removed for INSERT IGNORE and REPLACE in MySQL 5.1.8. (See Bug #17431.)

• AUTO_INCREMENT columns.  In MySQL 5.1.10 and earlier versions, the maximum number of
tables having AUTO_INCREMENT columns—including those belonging to hidden primary keys—was
2048.

This limitation was lifted in MySQL 5.1.11.

• Maximum number of cluster nodes.  The total maximum number of nodes in an NDB Cluster is
255, including all SQL nodes (MySQL Servers), API nodes (applications accessing the cluster other
than MySQL servers), data nodes, and management servers. The total number of data nodes and
management nodes is 63, of which up to 48 can be data nodes.

Note

A data node cannot have a node ID greater than 49.

• Recovery of memory from deleted rows.  Memory can be reclaimed from an NDB table for reuse
with any NDB table by employing OPTIMIZE TABLE, subject to the following limitations:

• Only in-memory tables are supported; the OPTIMIZE TABLE statement has no effect on NDB
Cluster Disk Data tables.

• Only variable-length columns (such as those declared as VARCHAR, TEXT, or BLOB) are
supported.

However, you can force columns defined using fixed-length data types (such as CHAR) to be
dynamic using the ROW_FORMAT or COLUMN_FORMAT option with a CREATE TABLE or ALTER
TABLE statement.

See Section 13.1.17, “CREATE TABLE Syntax”, and Section 13.1.7, “ALTER TABLE Syntax”, for
information on these options.

You can regulate the effects of OPTIMIZE on performance by adjusting the value of the global
system variable ndb_optimization_delay, which sets the number of milliseconds to wait
between batches of rows being processed by OPTIMIZE. The default value is 10 milliseconds. It is
possible to set a lower value (to a minimum of 0), but not recommended. The maximum is 100000
milliseconds (that is, 100 seconds).

• Number of tables.  The maximum number of NDBCLUSTER tables in a single NDB Cluster
is included in the total maximum number of NDBCLUSTER database objects (20320). (See
Section 18.1.6.5, “Limits Associated with Database Objects in NDB Cluster”.)



Known Limitations of NDB Cluster

2029

• Adding and dropping of data nodes.  In NDB Cluster 7.2 (NDB Cluster 7.0 and later), it is
possible to add new data nodes to a running NDB Cluster by performing a rolling restart, so that the
cluster and the data stored in it remain available to applications.

When planning to increase the number of data nodes in the cluster online, you should be aware of
and take into account the following issues:

• New data nodes can be added online to an NDB Cluster only as part of a new node group.

• New data nodes can be added online, but cannot be dropped online. Reducing the number of data
nodes requires a system restart of the cluster.

• As in previous NDB Cluster releases, it is not possible to change online either the number of
replicas (NoOfReplicas configuration parameter) or the number of data nodes per node group.
These changes require a system restart.

• Redistribution of existing cluster data using the new data nodes is not automatic; however, this
can be accomplished using simple SQL statements in the mysql client or other MySQL client
application once the nodes have been added. During this procedure, it is not possible to perform
DDL operations, although DML operations can continue as normal.

The distribution of new cluster data (that is, data stored in the cluster after the new nodes have
been added) uses the new nodes without manual intervention.

For more information, see Section 18.5.13, “Adding NDB Cluster Data Nodes Online”.

• Native support for default column values.  Starting with NDB 7.1.0, default values for table
columns are stored by NDBCLUSTER, rather than by the MySQL server as was previously the case.
Because less data must be sent from an SQL node to the data nodes, inserts on tables having
column value defaults can be performed more efficiently than before.

Tables created using previous NDB Cluster releases can still be used in NDB 7.1.0 and later,
although they do not support native default values and continue to use defaults supplied by the
MySQL server until they are upgraded. This can be done by means of an offline ALTER TABLE
statement.

Important

You cannot set or change a table column's default value using an online
ALTER TABLE operation

• Distribution of MySQL users and privileges.  Previously, MySQL users and privileges created
on one SQL node were unique to that SQL node, due to the fact that the MySQL grant tables were
restricted to using the MyISAM storage engine. Beginning with NDB 7.2.0, it is possible, following
installation of the NDB Cluster software and setup of the desired users and privileges on one SQL
node, to convert the grant tables to use NDB and thus to distribute the users and privileges across
all SQL nodes connected to the cluster. You can do this by loading and making use of a set of
stored procedures defined in an SQL script supplied with the NDB Cluster distribution. For more
information, see Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”.

• Number of rows per partition.  Previously, a single NDB Cluster partition could hold a maximum
of 46137488 rows. This limitation was removed in NDB 7.2.9. (Bug #13844405, Bug #14000373)

If you are still using a previous NDB Cluster release, you can work around this limitation by taking
advantage of the fact that the number of partitions is the same as the number of data nodes in the
cluster (see Section 18.1.2, “NDB Cluster Nodes, Node Groups, Replicas, and Partitions”). This
means that, by increasing the number of data nodes, you can increase the available space for
storing data.



NDB Cluster Installation and Upgrades

2030

NDB Cluster 7.2 also supports increasing the number of data nodes in the cluster while the cluster
remains in operation. See Section 18.5.13, “Adding NDB Cluster Data Nodes Online”, for more
information.

It is also possible to increase the number of partitions for NDB tables by using explicit KEY or LINEAR
KEY partitioning (see Section 19.2.5, “KEY Partitioning”).

18.2 NDB Cluster Installation and Upgrades

This section describes the basics for planning, installing, configuring, and running an NDB Cluster.
Whereas the examples in Section 18.3, “Configuration of NDB Cluster” provide more in-depth
information on a variety of clustering options and configuration, the result of following the guidelines
and procedures outlined here should be a usable NDB Cluster which meets the minimum requirements
for availability and safeguarding of data.

For information about upgrading or downgrading an NDB Cluster between release versions, see
Section 18.2.7, “Upgrading and Downgrading NDB Cluster 7.2”.

This section covers hardware and software requirements; networking issues; installation of NDB
Cluster; configuration issues; starting, stopping, and restarting the cluster; loading of a sample
database; and performing queries.

Assumptions.  The following sections make a number of assumptions regarding the cluster's
physical and network configuration. These assumptions are discussed in the next few paragraphs.

Cluster nodes and host computers.  The cluster consists of four nodes, each on a separate host
computer, and each with a fixed network address on a typical Ethernet network as shown here:

Node IP Address

Management node (mgmd) 192.168.0.10

SQL node (mysqld) 192.168.0.20

Data node "A" (ndbd) 192.168.0.30

Data node "B" (ndbd) 192.168.0.40

This may be made clearer by the following diagram:

Figure 18.4 NDB Cluster Multi-Computer Setup



NDB Cluster Installation and Upgrades

2031

Network addressing.    In the interest of simplicity (and reliability), this How-To uses only numeric
IP addresses. However, if DNS resolution is available on your network, it is possible to use host names
in lieu of IP addresses in configuring Cluster. Alternatively, you can use the hosts file (typically /etc/
hosts for Linux and other Unix-like operating systems, C:\WINDOWS\system32\drivers\etc
\hosts on Windows, or your operating system's equivalent) for providing a means to do host lookup if
such is available.

Potential hosts file issues.  A common problem when trying to use host names for Cluster nodes
arises because of the way in which some operating systems (including some Linux distributions) set
up the system's own host name in the /etc/hosts during installation. Consider two machines with
the host names ndb1 and ndb2, both in the cluster network domain. Red Hat Linux (including some
derivatives such as CentOS and Fedora) places the following entries in these machines' /etc/hosts
files:

#  ndb1 /etc/hosts:
127.0.0.1   ndb1.cluster ndb1 localhost.localdomain localhost

#  ndb2 /etc/hosts:
127.0.0.1   ndb2.cluster ndb2 localhost.localdomain localhost

SUSE Linux (including OpenSUSE) places these entries in the machines' /etc/hosts files:

#  ndb1 /etc/hosts:
127.0.0.1       localhost
127.0.0.2       ndb1.cluster ndb1

#  ndb2 /etc/hosts:
127.0.0.1       localhost
127.0.0.2       ndb2.cluster ndb2

In both instances, ndb1 routes ndb1.cluster to a loopback IP address, but gets a public IP address
from DNS for ndb2.cluster, while ndb2 routes ndb2.cluster to a loopback address and obtains
a public address for ndb1.cluster. The result is that each data node connects to the management
server, but cannot tell when any other data nodes have connected, and so the data nodes appear to
hang while starting.

Caution

You cannot mix localhost and other host names or IP addresses in
config.ini. For these reasons, the solution in such cases (other than to use
IP addresses for all config.ini HostName entries) is to remove the fully
qualified host names from /etc/hosts and use these in config.ini for all
cluster hosts.

Host computer type.  Each host computer in our installation scenario is an Intel-based desktop
PC running a supported operating system installed to disk in a standard configuration, and running no
unnecessary services. The core operating system with standard TCP/IP networking capabilities should
be sufficient. Also for the sake of simplicity, we also assume that the file systems on all hosts are set up
identically. In the event that they are not, you should adapt these instructions accordingly.

Network hardware.  Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine,
along with the proper drivers for the cards, and that all four hosts are connected through a standard-
issue Ethernet networking appliance such as a switch. (All machines should use network cards with
the same throughput. That is, all four machines in the cluster should have 100 Mbps cards or all four
machines should have 1 Gbps cards.) NDB Cluster works in a 100 Mbps network; however, gigabit
Ethernet provides better performance.



Installing NDB Cluster on Linux

2032

Important

NDB Cluster is not intended for use in a network for which throughput is less
than 100 Mbps or which experiences a high degree of latency. For this reason
(among others), attempting to run an NDB Cluster over a wide area network
such as the Internet is not likely to be successful, and is not supported in
production.

Sample data.  We use the world database which is available for download from the MySQL Web
site (see http://dev.mysql.com/doc/index-other.html). We assume that each machine has sufficient
memory for running the operating system, required NDB Cluster processes, and (on the data nodes)
storing the database.

For general information about installing MySQL, see Chapter 2, Installing and Upgrading MySQL.
For information about installation of NDB Cluster on Linux and other Unix-like operating systems, see
Section 18.2.1, “Installing NDB Cluster on Linux”. For information about installation of NDB Cluster on
Windows operating systems, see Section 18.2.2, “Installing NDB Cluster on Windows”.

For general information about NDB Cluster hardware, software, and networking requirements, see
Section 18.1.3, “NDB Cluster Hardware, Software, and Networking Requirements”.

18.2.1 Installing NDB Cluster on Linux

This section covers installation of NDB Cluster on Linux and other Unix-like operating systems. While
the next few sections refer to a Linux operating system, the instructions and procedures given there
should be easily adaptable to other supported Unix-like platforms.

NDB Cluster 7.2 is also available for Windows operating systems; for installation and setup instructions
specific to Windows, see Section 18.2.2, “Installing NDB Cluster on Windows”.

Each NDB Cluster host computer must have the correct executable programs installed. A host running
an SQL node must have installed on it a MySQL Server binary (mysqld). Management nodes require
the management server daemon (ndb_mgmd); data nodes require the data node daemon (ndbd or
ndbmtd). It is not necessary to install the MySQL Server binary on management node hosts and
data node hosts. It is recommended that you also install the management client (ndb_mgm) on the
management server host.

Installation of NDB Cluster on Linux can be done using precompiled binaries from Oracle (downloaded
as a .tar.gz archive), with RPM packages (also available from Oracle), or from source code. All three of
these installation methods are described in the section that follow.

Regardless of the method used, it is still necessary following installation of the NDB Cluster binaries
to create configuration files for all cluster nodes, before you can start the cluster. See Section 18.2.3,
“Initial Configuration of NDB Cluster”.

18.2.1.1 Installing an NDB Cluster Binary Release on Linux

This section covers the steps necessary to install the correct executables for each type of Cluster node
from precompiled binaries supplied by Oracle.

For setting up a cluster using precompiled binaries, the first step in the installation process for
each cluster host is to download the latest NDB Cluster 7.2 binary archive (mysql-cluster-
gpl-7.2.30-linux-i686-glibc23.tar.gz) from the NDB Cluster downloads area. We assume
that you have placed this file in each machine's /var/tmp directory. (If you do require a custom
binary, see Section 2.9.3, “Installing MySQL Using a Development Source Tree”.)

Note

After completing the installation, do not yet start any of the binaries. We show
you how to do so following the configuration of the nodes (see Section 18.2.3,
“Initial Configuration of NDB Cluster”).

http://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/downloads/cluster/


Installing NDB Cluster on Linux

2033

SQL nodes.  On each of the machines designated to host SQL nodes, perform the following steps
as the system root user:

1. Check your /etc/passwd and /etc/group files (or use whatever tools are provided by your
operating system for managing users and groups) to see whether there is already a mysql group
and mysql user on the system. Some OS distributions create these as part of the operating system
installation process. If they are not already present, create a new mysql user group, and then add
a mysql user to this group:

shell> groupadd mysql
shell> useradd -g mysql -s /bin/false mysql

The syntax for useradd and groupadd may differ slightly on different versions of Unix, or they
may have different names such as adduser and addgroup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a
symbolic link named mysql to the mysql directory. Note that the actual file and directory names
vary according to the NDB Cluster version number.

shell> cd /var/tmp
shell> tar -C /usr/local -xzvf mysql-cluster-gpl-7.2.30-linux2.6.tar.gz
shell> ln -s /usr/local/mysql-cluster-gpl-7.2.30-linux2.6-i686 /usr/local/mysql

3. Change location to the mysql directory and run the supplied script for creating the system
databases:

shell> cd mysql
shell> scripts/mysql_install_db --user=mysql

4. Set the necessary permissions for the MySQL server and data directories:

shell> chown -R root .
shell> chown -R mysql data
shell> chgrp -R mysql .

5. Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start
when the operating system is booted up:

shell> cp support-files/mysql.server /etc/rc.d/init.d/
shell> chmod +x /etc/rc.d/init.d/mysql.server
shell> chkconfig --add mysql.server

(The startup scripts directory may vary depending on your operating system and version—for
example, in some Linux distributions, it is /etc/init.d.)

Here we use Red Hat's chkconfig for creating links to the startup scripts; use whatever means is
appropriate for this purpose on your platform, such as update-rc.d on Debian.

Remember that the preceding steps must be repeated on each machine where an SQL node is to
reside.

Data nodes.  Installation of the data nodes does not require the mysqld binary. Only the NDB
Cluster data node executable ndbd (single-threaded) or ndbmtd (multi-threaded) is required. These
binaries can also be found in the .tar.gz archive. Again, we assume that you have placed this
archive in /var/tmp.

As system root (that is, after using sudo, su root, or your system's equivalent for temporarily
assuming the system administrator account's privileges), perform the following steps to install the data
node binaries on the data node hosts:



Installing NDB Cluster on Linux

2034

1. Change location to the /var/tmp directory, and extract the ndbd and ndbmtd binaries from the
archive into a suitable directory such as /usr/local/bin:

shell> cd /var/tmp
shell> tar -zxvf mysql-5.5.56-ndb-7.2.30-linux-i686-glibc23.tar.gz
shell> cd mysql-5.5.56-ndb-7.2.30-linux-i686-glibc23
shell> cp bin/ndbd /usr/local/bin/ndbd
shell> cp bin/ndbmtd /usr/local/bin/ndbmtd

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

shell> cd /usr/local/bin
shell> chmod +x ndb*

The preceding steps should be repeated on each data node host.

Although only one of the data node executables is required to run an NDB Cluster data node, we have
shown you how to install both ndbd and ndbmtd in the preceding instructions. We recommend that
you do this when installing or upgrading NDB Cluster, even if you plan to use only one of them, since
this will save time and trouble in the event that you later decide to change from one to the other.

Note

The data directory on each machine hosting a data node is /usr/local/
mysql/data. This piece of information is essential when configuring the
management node. (See Section 18.2.3, “Initial Configuration of NDB Cluster”.)

Management nodes.  Installation of the management node does not require the mysqld binary.
Only the NDB Cluster management server (ndb_mgmd) is required; you most likely want to install the
management client (ndb_mgm) as well. Both of these binaries also be found in the .tar.gz archive.
Again, we assume that you have placed this archive in /var/tmp.

As system root, perform the following steps to install ndb_mgmd and ndb_mgm on the management
node host:

1. Change location to the /var/tmp directory, and extract the ndb_mgm and ndb_mgmd from the
archive into a suitable directory such as /usr/local/bin:

shell> cd /var/tmp
shell> tar -zxvf mysql-5.5.56-ndb-7.2.30-linux2.6-i686.tar.gz
shell> cd mysql-5.5.56-ndb-7.2.30-linux2.6-i686
shell> cp bin/ndb_mgm* /usr/local/bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

shell> cd /usr/local/bin
shell> chmod +x ndb_mgm*

In Section 18.2.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes
in our example NDB Cluster.



Installing NDB Cluster on Linux

2035

18.2.1.2 Installing NDB Cluster from RPM

This section covers the steps necessary to install the correct executables for each type of NDB Cluster
node using RPM packages supplied by Oracle.

RPMs are available for both 32-bit and 64-bit Linux platforms. The filenames for these RPMs use the
following pattern:

MySQL-Cluster-component-producttype-ndbversion.distribution.architecture.rpm

component:= {server | client [| other]}

producttype:= {gpl | advanced}

ndbversion:= major.minor.release

distribution:= {sles10 | rhel5 | el6}

architecture:= {i386 | x86_64}

The component can be server or client. (Other values are possible, but since only the server
and client components are required for a working NDB Cluster installation, we do not discuss them
here.) The producttype for Community RPMs downloaded from http://dev.mysql.com/downloads/
cluster/ is always gpl; advanced is used to indicate commercial releases. ndbversion represents
the three-part NDB storage engine version number in 7.2.x format. The distribution can be one of
sles11 (SUSE Enterprise Linux 11), rhel5 (Oracle Linux 5, Red Hat Enterprise Linux 4 and 5), or
el6 (Oracle Linux 6, Red Hat Enterprise Linux 6) The architecture is i386 for 32-bit RPMs and
x86_64 for 64-bit versions.

For an NDB Cluster, one and possibly two RPMs are required:

• The server RPM (for example, MySQL-Cluster-server-gpl-7.2.30-1.sles11.i386.rpm),
which supplies the core files needed to run a MySQL Server with NDBCLUSTER storage engine
support (that is, as an NDB Cluster SQL node) as well as all NDB Cluster executables, including
the management node, data node, and ndb_mgm client binaries. This RPM is always required for
installing NDB Cluster 7.2.

• If you do not have your own client application capable of administering a MySQL server, you
should also obtain and install the client RPM (for example, MySQL-Cluster-client-
gpl-7.2.30-1.sles11.i386.rpm), which supplies the mysql client

The NDB Cluster version number in the RPM file names (shown here as 7.2.30) can vary according
to the version which you are actually using. It is very important that all of the Cluster RPMs to be
installed have the same version number. The architecture designation should be appropriate to the
machine on which the RPM is to be installed; in particular, you should keep in mind that 64-bit RPMs
cannot be used with 32-bit operating systems.

Data nodes.  On a computer that is to host a cluster data node it is necessary to install only the
server RPM. To do so, copy this RPM to the data node host, and run the following command as
the system root user, replacing the name shown for the RPM as necessary to match that of the RPM
downloaded from the MySQL web site:

shell> rpm -Uhv MySQL-Cluster-server-gpl-7.2.30-1.sles11.i386.rpm

Although this installs all NDB Cluster binaries, only the program ndbd or ndbmtd (both in /usr/sbin)
is actually needed to run an NDB Cluster data node.

SQL nodes.  On each machine to be used for hosting a cluster SQL node, install the server RPM
by executing the following command as the system root user, replacing the name shown for the RPM
as necessary to match the name of the RPM downloaded from the MySQL web site:

shell> rpm -Uhv MySQL-Cluster-server-gpl-7.2.30-1.sles11.i386.rpm

http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/downloads/cluster/


Installing NDB Cluster on Linux

2036

This installs the MySQL server binary (mysqld) with NDB storage engine support in the /usr/sbin
directory, as well as all needed MySQL Server support files. It also installs the mysql.server and
mysqld_safe startup scripts (in /usr/share/mysql and /usr/bin, respectively). The RPM
installer should take care of general configuration issues (such as creating the mysql user and group,
if needed) automatically.

To administer the SQL node (MySQL server), you should also install the client RPM, as shown here:

shell> rpm -Uhv MySQL-Cluster-client-gpl-7.2.30-1.sles11.i386.rpm

This installs the mysql client program.

Management nodes.  To install the NDB Cluster management server, it is necessary only to use the
server RPM. Copy this RPM to the computer intended to host the management node, and then install
it by running the following command as the system root user (replace the name shown for the RPM as
necessary to match that of the server RPM downloaded from the MySQL web site):

shell> rpm -Uhv MySQL-Cluster-server-gpl-7.2.30-1.sles11.i386.rpm

Although this RPM installs many other files, only the management server binary ndb_mgmd (in the
/usr/sbin directory) is actually required for running a management node. The server RPM also
installs ndb_mgm, the NDB management client.

See Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”, for general information about
installing MySQL using RPMs supplied by Oracle.

After installing from RPM, you still need to configure the cluster as discussed in Section 18.2.3, “Initial
Configuration of NDB Cluster”.

Note

A number of RPMs used by NDB Cluster 7.1 were made obsolete and
discontinued in NDB Cluster 7.2. These include the former MySQL-Cluster-
clusterj, MySQL-Cluster-extra, MySQL-Cluster-management,
MySQL-Cluster-storage, and NDB Cluster-tools RPMs; all of these
have been merged into the MySQL-Cluster-server RPM. When upgrading
from an NDB Cluster 7.1 RPM installation to NDB 7.2.3 or an earlier NDB
Cluster 7.2 release, it was necessary to remove these packages manually
before installing the NDB Cluster 7.2 MySQL-Cluster-server RPM. This
issue is fixed in NDB 7.2.4 and later, where the MySQL-Cluster-server
package specifically obsoletes the discontinued packages (BUG #13545589).

18.2.1.3 Installing NDB Cluster Using .deb Files

The section provides information about installing NDB Cluster on Debian and related Linux distributions
such Ubuntu using the .deb files supplied by Oracle for this purpose.

Oracle provides .deb installer files for NDB Cluster 7.2 for 32-bit and 64-bit platforms. For a Debian-
based system, only a single installer file is necessary. This file is named using the pattern shown here,
according to the applicable NDB Cluster version, Debian version, and architecture:

mysql-cluster-gpl-ndbver-debiandebianver-arch.deb

Here, ndbver is the 3-part NDB engine version number, debianver is the major version of Debian (for
NDB Cluster 7.2, this is always 6.0), and arch is one of i686 or x86_64. In the examples that follow,
we assume you wish to install NDB 7.2.21 on a 64-bit Debian 6 system; in this case, the installer file is
named mysql-cluster-gpl-7.2.21-debian6.0-x86_64.deb.

Once you have downloaded the appropriate .deb file, you can install it from the command line using
dpkg, like this:



Installing NDB Cluster on Linux

2037

shell> dpkg -i mysql-cluster-gpl-7.2.21-debian6.0-i686.deb

You can also remove it using dpkg as shown here:

shell> dpkg -r mysql

The installer file should also be compatible with most graphical package managers that work with .deb
files, such as GDebi for the Gnome desktop.

The .deb file installs NDB Cluster under /opt/mysql/server-version/, where version is
the 2-part release series version for the included MySQL server. For NDB Cluster 7.2, this is always
5.5. The directory layout is the same as that for the generic Linux binary distribution (see Table 2.3,
“MySQL Installation Layout for Generic Unix/Linux Binary Package”), with the exception that startup
scripts and configuration files are found in support-files instead of share. All NDB Cluster
executables, such as ndb_mgm, ndbd, and ndb_mgmd, are placed in the bin directory.

18.2.1.4 Building NDB Cluster from Source on Linux

This section provides information about compiling NDB Cluster on Linux and other Unix-like platforms.
Building NDB Cluster from source is similar to building the standard MySQL Server, although it differs
in a few key respects discussed here. For general information about building MySQL from source, see
Section 2.9, “Installing MySQL from Source”. For information about compiling NDB Cluster on Windows
platforms, see Section 18.2.2.2, “Compiling and Installing NDB Cluster from Source on Windows”.

Building NDB Cluster requires using the NDB Cluster sources. These are available from the NDB
Cluster downloads page at http://dev.mysql.com/downloads/cluster/. The archived source file should
have a name similar to mysql-cluster-gpl-7.2.30.tar.gz. You can also obtain MySQL
development sources from launchpad.net. Attempting to build NDB Cluster from standard MySQL
Server 5.5 sources is not supported.

The WITH_NDBCLUSTER_STORAGE_ENGINE option for CMake causes the binaries for the
management nodes, data nodes, and other NDB Cluster programs to be built; it also causes mysqld to
be compiled with NDB storage engine support. This option (or its alias WITH_NDBCLUSTER) is required
when building NDB Cluster.

Important

Beginning with NDB 7.2.9, the WITH_NDB_JAVA option is enabled by default.
This means that, by default, if CMake cannot find the location of Java on your
system, the configuration process fails; if you do not wish to enable Java and
ClusterJ support, you must indicate this explicitly by configuring the build using
-DWITH_NDB_JAVA=OFF. (Bug #12379735) Use WITH_CLASSPATH to provide
the Java classpath if needed.

For more information about CMake options specific to building NDB Cluster, see Options for Compiling
NDB Cluster.

After you have run make && make install (or your system's equivalent), the result is similar to
what is obtained by unpacking a precompiled binary to the same location.

Management nodes.  When building from source and running the default make install, the
management server and management client binaries (ndb_mgmd and ndb_mgm) can be found in /
usr/local/mysql/bin. Only ndb_mgmd is required to be present on a management node host;
however, it is also a good idea to have ndb_mgm present on the same host machine. Neither of these
executables requires a specific location on the host machine's file system.

Data nodes.  The only executable required on a data node host is the data node binary ndbd or
ndbmtd. (mysqld, for example, does not have to be present on the host machine.) By default, when
building from source, this file is placed in the directory /usr/local/mysql/bin. For installing on
multiple data node hosts, only ndbd or ndbmtd need be copied to the other host machine or machines.

http://dev.mysql.com/downloads/cluster/
launchpad.net


Installing NDB Cluster on Windows

2038

(This assumes that all data node hosts use the same architecture and operating system; otherwise you
may need to compile separately for each different platform.) The data node binary need not be in any
particular location on the host's file system, as long as the location is known.

When compiling NDB Cluster from source, no special options are required for building multi-threaded
data node binaries. Configuring the build with NDB storage engine support causes ndbmtd to be built
automatically; make install places the ndbmtd binary in the installation bin directory along with
mysqld, ndbd, and ndb_mgm.

SQL nodes.  If you compile MySQL with clustering support, and perform the default installation
(using make install as the system root user), mysqld is placed in /usr/local/mysql/bin.
Follow the steps given in Section 2.9, “Installing MySQL from Source” to make mysqld ready for use.
If you want to run multiple SQL nodes, you can use a copy of the same mysqld executable and its
associated support files on several machines. The easiest way to do this is to copy the entire /usr/
local/mysql directory and all directories and files contained within it to the other SQL node host or
hosts, then repeat the steps from Section 2.9, “Installing MySQL from Source” on each machine. If you
configure the build with a nondefault PREFIX option, you must adjust the directory accordingly.

In Section 18.2.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes
in our example NDB Cluster.

18.2.2 Installing NDB Cluster on Windows

NDB Cluster 7.2 binaries for Windows can be obtained from http://dev.mysql.com/downloads/cluster/.
For information about installing NDB Cluster on Windows from a binary release provided by Oracle,
see Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”.

It is also possible to compile and install NDB Cluster from source on Windows using Microsoft Visual
Studio. For more information, see Section 18.2.2.2, “Compiling and Installing NDB Cluster from Source
on Windows”.

18.2.2.1 Installing NDB Cluster on Windows from a Binary Release

This section describes a basic installation of NDB Cluster on Windows using a binary no-install
NDB Cluster release provided by Oracle, using the same 4-node setup outlined in the beginning of this
section (see Section 18.2, “NDB Cluster Installation and Upgrades”), as shown in the following table:

Node IP Address

Management (MGMD) node 192.168.0.10

MySQL server (SQL) node 192.168.0.20

Data (NDBD) node "A" 192.168.0.30

Data (NDBD) node "B" 192.168.0.40

As on other platforms, the NDB Cluster host computer running an SQL node must have installed on
it a MySQL Server binary (mysqld.exe). You should also have the MySQL client (mysql.exe) on
this host. For management nodes and data nodes, it is not necessary to install the MySQL Server
binary; however, each management node requires the management server daemon (ndb_mgmd.exe);
each data node requires the data node daemon (ndbd.exe or ndbmtd.exe). For this example, we
refer to ndbd.exe as the data node executable, but you can install ndbmtd.exe, the multi-threaded
version of this program, instead, in exactly the same way. You should also install the management
client (ndb_mgm.exe) on the management server host. This section covers the steps necessary to
install the correct Windows binaries for each type of NDB Cluster node.

Note

As with other Windows programs, NDB Cluster executables are named with
the .exe file extension. However, it is not necessary to include the .exe
extension when invoking these programs from the command line. Therefore,

http://dev.mysql.com/downloads/cluster/


Installing NDB Cluster on Windows

2039

we often simply refer to these programs in this documentation as mysqld,
mysql, ndb_mgmd, and so on. You should understand that, whether we refer
(for example) to mysqld or mysqld.exe, either name means the same thing
(the MySQL Server program).

For setting up an NDB Cluster using Oracles's no-install binaries, the first step in the installation
process is to download the latest NDB Cluster Windows binary archive from http://dev.mysql.com/
downloads/cluster/. This archive has a filename of the form mysql-cluster-gpl-noinstall-ver-
winarch.zip, where ver is the NDB storage engine version (such as 7.2.1), and arch is the
architecture (32 for 32-bit binaries, and 64 for 64-bit binaries). For example, the NDB 7.2.1 no-
install archive for 32-bit Windows systems is named mysql-cluster-gpl-noinstall-7.2.1-
win32.zip.

You can run 32-bit NDB Cluster binaries on both 32-bit and 64-bit versions of Windows; however, 64-
bit NDB Cluster binaries can be used only on 64-bit versions of Windows. If you are using a 32-bit
version of Windows on a computer that has a 64-bit CPU, then you must use the 32-bit NDB Cluster
binaries.

To minimize the number of files that need to be downloaded from the Internet or copied between
machines, we start with the computer where you intend to run the SQL node.

SQL node.  We assume that you have placed a copy of the no-install archive in the directory
C:\Documents and Settings\username\My Documents\Downloads on the computer having
the IP address 192.168.0.20, where username is the name of the current user. (You can obtain this
name using ECHO %USERNAME% on the command line.) To install and run NDB Cluster executables as
Windows services, this user should be a member of the Administrators group.

Extract all the files from the archive. The Extraction Wizard integrated with Windows Explorer is
adequate for this task. (If you use a different archive program, be sure that it extracts all files and
directories from the archive, and that it preserves the archive's directory structure.) When you are
asked for a destination directory, enter C:\, which causes the Extraction Wizard to extract the archive
to the directory C:\mysql-cluster-gpl-noinstall-ver-winarch. Rename this directory to C:
\mysql.

It is possible to install the NDB Cluster binaries to directories other than C:\mysql\bin; however, if
you do so, you must modify the paths shown in this procedure accordingly. In particular, if the MySQL
Server (SQL node) binary is installed to a location other than C:\mysql or C:\Program Files
\MySQL\MySQL Server 5.5, or if the SQL node's data directory is in a location other than C:
\mysql\data or C:\Program Files\MySQL\MySQL Server 5.5\data, extra configuration
options must be used on the command line or added to the my.ini or my.cnf file when starting the
SQL node. For more information about configuring a MySQL Server to run in a nonstandard location,
see Section 2.3.7, “Installing MySQL on Microsoft Windows Using a noinstall Zip Archive”.

For a MySQL Server with NDB Cluster support to run as part of an NDB Cluster, it must be started with
the options --ndbcluster and --ndb-connectstring. While you can specify these options on the
command line, it is usually more convenient to place them in an option file. To do this, create a new
text file in Notepad or another text editor. Enter the following configuration information into this file:

[mysqld]
# Options for mysqld process:
ndbcluster                      # run NDB storage engine
ndb-connectstring=192.168.0.10  # location of management server

You can add other options used by this MySQL Server if desired (see Section 2.3.7.2, “Creating an
Option File”), but the file must contain the options shown, at a minimum. Save this file as C:\mysql
\my.ini. This completes the installation and setup for the SQL node.

Data nodes.  An NDB Cluster data node on a Windows host requires only a single executable, one
of either ndbd.exe or ndbmtd.exe. For this example, we assume that you are using ndbd.exe,
but the same instructions apply when using ndbmtd.exe. On each computer where you wish to run

http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/downloads/cluster/


Installing NDB Cluster on Windows

2040

a data node (the computers having the IP addresses 192.168.0.30 and 192.168.0.40), create the
directories C:\mysql, C:\mysql\bin, and C:\mysql\cluster-data; then, on the computer
where you downloaded and extracted the no-install archive, locate ndbd.exe in the C:\mysql
\bin directory. Copy this file to the C:\mysql\bin directory on each of the two data node hosts.

To function as part of an NDB Cluster, each data node must be given the address or hostname of
the management server. You can supply this information on the command line using the --ndb-
connectstring or -c option when starting each data node process. However, it is usually preferable
to put this information in an option file. To do this, create a new text file in Notepad or another text
editor and enter the following text:

[mysql_cluster]
# Options for data node process:
ndb-connectstring=192.168.0.10  # location of management server

Save this file as C:\mysql\my.ini on the data node host. Create another text file containing the
same information and save it on as C:mysql\my.ini on the other data node host, or copy the my.ini
file from the first data node host to the second one, making sure to place the copy in the second data
node's C:\mysql directory. Both data node hosts are now ready to be used in the NDB Cluster, which
leaves only the management node to be installed and configured.

Management node.  The only executable program required on a computer used for hosting an
NDB Cluster management node is the management server program ndb_mgmd.exe. However, in
order to administer the NDB Cluster once it has been started, you should also install the NDB Cluster
management client program ndb_mgm.exe on the same machine as the management server. Locate
these two programs on the machine where you downloaded and extracted the no-install archive;
this should be the directory C:\mysql\bin on the SQL node host. Create the directory C:\mysql
\bin on the computer having the IP address 192.168.0.10, then copy both programs to this directory.

You should now create two configuration files for use by ndb_mgmd.exe:

1. A local configuration file to supply configuration data specific to the management node itself.
Typically, this file needs only to supply the location of the NDB Cluster global configuration file (see
item 2).

To create this file, start a new text file in Notepad or another text editor, and enter the following
information:

[mysql_cluster]
# Options for management node process
config-file=C:/mysql/bin/config.ini

Save this file as the text file C:\mysql\bin\my.ini.

2. A global configuration file from which the management node can obtain configuration information
governing the NDB Cluster as a whole. At a minimum, this file must contain a section for each node
in the NDB Cluster, and the IP addresses or hostnames for the management node and all data
nodes (HostName configuration parameter). It is also advisable to include the following additional
information:

• The IP address or hostname of any SQL nodes

• The data memory and index memory allocated to each data node (DataMemory and
IndexMemory configuration parameters)

• The number of replicas, using the NoOfReplicas configuration parameter (see Section 18.1.2,
“NDB Cluster Nodes, Node Groups, Replicas, and Partitions”)

• The directory where each data node stores it data and log file, and the directory where the
management node keeps its log files (in both cases, the DataDir configuration parameter)



Installing NDB Cluster on Windows

2041

Create a new text file using a text editor such as Notepad, and input the following information:

[ndbd default]
# Options affecting ndbd processes on all data nodes:
NoOfReplicas=2                      # Number of replicas
DataDir=C:/mysql/cluster-data       # Directory for each data node's data files
                                    # Forward slashes used in directory path,
                                    # rather than backslashes. This is correct;
                                    # see Important note in text
DataMemory=80M    # Memory allocated to data storage
IndexMemory=18M   # Memory allocated to index storage
                  # For DataMemory and IndexMemory, we have used the
                  # default values. Since the "world" database takes up
                  # only about 500KB, this should be more than enough for
                  # this example Cluster setup.

[ndb_mgmd]
# Management process options:
HostName=192.168.0.10               # Hostname or IP address of management node
DataDir=C:/mysql/bin/cluster-logs   # Directory for management node log files

[ndbd]
# Options for data node "A":
                                # (one [ndbd] section per data node)
HostName=192.168.0.30           # Hostname or IP address

[ndbd]
# Options for data node "B":
HostName=192.168.0.40           # Hostname or IP address

[mysqld]
# SQL node options:
HostName=192.168.0.20           # Hostname or IP address

Save this file as the text file C:\mysql\bin\config.ini.

Important

A single backslash character (\) cannot be used when specifying directory
paths in program options or configuration files used by NDB Cluster on
Windows. Instead, you must either escape each backslash character with a
second backslash (\\), or replace the backslash with a forward slash character
(/). For example, the following line from the [ndb_mgmd] section of an NDB
Cluster config.ini file does not work:

DataDir=C:\mysql\bin\cluster-logs

Instead, you may use either of the following:

DataDir=C:\\mysql\\bin\\cluster-logs  # Escaped backslashes

DataDir=C:/mysql/bin/cluster-logs     # Forward slashes

For reasons of brevity and legibility, we recommend that you use forward
slashes in directory paths used in NDB Cluster program options and
configuration files on Windows.

18.2.2.2 Compiling and Installing NDB Cluster from Source on Windows

Oracle provides precompiled NDB Cluster binaries for Windows which should be adequate for most
users. However, if you wish, it is also possible to compile NDB Cluster for Windows from source code.
The procedure for doing this is almost identical to the procedure used to compile the standard MySQL
Server binaries for Windows, and uses the same tools. However, there are two major differences:



Installing NDB Cluster on Windows

2042

• To build NDB Cluster, you must use the NDB Cluster sources, which you can obtain from http://
dev.mysql.com/downloads/cluster/.

Attempting to build NDB Cluster from the source code for the standard MySQL Server is likely not to
be successful, and is not supported by Oracle.

• You must configure the build using the WITH_NDBCLUSTER_STORAGE_ENGINE or
WITH_NDBCLUSTER option in addition to any other build options you wish to use with CMake.
(WITH_NDBCLUSTER is supported as an alias for WITH_NDBCLUSTER_STORAGE_ENGINE, and
works in exactly the same way.)

Important

Beginning with NDB 7.2.9, the WITH_NDB_JAVA option is enabled by default.
This means that, by default, if CMake cannot find the location of Java on your
system, the configuration process fails; if you do not wish to enable Java and
ClusterJ support, you must indicate this explicitly by configuring the build using
-DWITH_NDB_JAVA=OFF. (Bug #12379735) Use WITH_CLASSPATH to provide
the Java classpath if needed.

For more information about CMake options specific to building NDB Cluster, see Options for Compiling
NDB Cluster.

Once the build process is complete, you can create a Zip archive containing the compiled binaries;
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution” provides the commands
needed to perform this task on Windows systems. The NDB Cluster binaries can be found in the bin
directory of the resulting archive, which is equivalent to the no-install archive, and which can be
installed and configured in the same manner. For more information, see Section 18.2.2.1, “Installing
NDB Cluster on Windows from a Binary Release”.

18.2.2.3 Initial Startup of NDB Cluster on Windows

Once the NDB Cluster executables and needed configuration files are in place, performing an initial
start of the cluster is simply a matter of starting the NDB Cluster executables for all nodes in the
cluster. Each cluster node process must be started separately, and on the host computer where it
resides. The management node should be started first, followed by the data nodes, and then finally by
any SQL nodes.

1. On the management node host, issue the following command from the command line to start the
management node process:

C:\mysql\bin> ndb_mgmd
2010-06-23 07:53:34 [MgmtSrvr] INFO -- NDB Cluster Management Server. mysql-5.5.56-ndb-7.2.30
2010-06-23 07:53:34 [MgmtSrvr] INFO -- Reading cluster configuration from 'config.ini'

The management node process continues to print logging output to the console. This is normal,
because the management node is not running as a Windows service. (If you have used NDB
Cluster on a Unix-like platform such as Linux, you may notice that the management node's default
behavior in this regard on Windows is effectively the opposite of its behavior on Unix systems,
where it runs by default as a Unix daemon process. This behavior is also true of NDB Cluster
data node processes running on Windows.) For this reason, do not close the window in which
ndb_mgmd.exe is running; doing so kills the management node process. (See Section 18.2.2.4,
“Installing NDB Cluster Processes as Windows Services”, where we show how to install and run
NDB Cluster processes as Windows services.)

The required -f option tells the management node where to find the global configuration file
(config.ini). The long form of this option is --config-file.

http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/downloads/cluster/


Installing NDB Cluster on Windows

2043

Important

An NDB Cluster management node caches the configuration data that
it reads from config.ini; once it has created a configuration cache, it
ignores the config.ini file on subsequent starts unless forced to do
otherwise. This means that, if the management node fails to start due
to an error in this file, you must make the management node re-read
config.ini after you have corrected any errors in it. You can do this by
starting ndb_mgmd.exe with the --reload or --initial option on the
command line. Either of these options works to refresh the configuration
cache.

It is not necessary or advisable to use either of these options in the
management node's my.ini file.

For additional information about options which can be used with ndb_mgmd, see Section 18.4.4,
“ndb_mgmd — The NDB Cluster Management Server Daemon”, as well as Section 18.4.27,
“Options Common to NDB Cluster Programs — Options Common to NDB Cluster Programs”.

2. On each of the data node hosts, run the command shown here to start the data node processes:

C:\mysql\bin> ndbd
2010-06-23 07:53:46 [ndbd] INFO -- Configuration fetched from 'localhost:1186', generation: 1

In each case, the first line of output from the data node process should resemble what is shown
in the preceding example, and is followed by additional lines of logging output. As with the
management node process, this is normal, because the data node is not running as a Windows
service. For this reason, do not close the console window in which the data node process is
running; doing so kills ndbd.exe. (For more information, see Section 18.2.2.4, “Installing NDB
Cluster Processes as Windows Services”.)

3. Do not start the SQL node yet; it cannot connect to the cluster until the data nodes have finished
starting, which may take some time. Instead, in a new console window on the management node
host, start the NDB Cluster management client ndb_mgm.exe, which should be in C:\mysql\bin
on the management node host. (Do not try to re-use the console window where ndb_mgmd.exe is
running by typing CTRL+C, as this kills the management node.) The resulting output should look
like this:

C:\mysql\bin> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm>

When the prompt ndb_mgm> appears, this indicates that the management client is ready to receive
NDB Cluster management commands. You can observe the status of the data nodes as they start
by entering ALL STATUS at the management client prompt. This command causes a running report
of the data nodes's startup sequence, which should look something like this:

ndb_mgm> ALL STATUS
Connected to Management Server at: localhost:1186
Node 2: starting (Last completed phase 3) (mysql-5.5.56-ndb-7.2.30)
Node 3: starting (Last completed phase 3) (mysql-5.5.56-ndb-7.2.30)

Node 2: starting (Last completed phase 4) (mysql-5.5.56-ndb-7.2.30)
Node 3: starting (Last completed phase 4) (mysql-5.5.56-ndb-7.2.30)

Node 2: Started (version 7.2.30)
Node 3: Started (version 7.2.30)

ndb_mgm>



Installing NDB Cluster on Windows

2044

Note

Commands issued in the management client are not case-sensitive; we
use uppercase as the canonical form of these commands, but you are not
required to observe this convention when inputting them into the ndb_mgm
client. For more information, see Section 18.5.2, “Commands in the NDB
Cluster Management Client”.

The output produced by ALL STATUS is likely to vary from what is shown here, according to the
speed at which the data nodes are able to start, the release version number of the NDB Cluster
software you are using, and other factors. What is significant is that, when you see that both data
nodes have started, you are ready to start the SQL node.

You can leave ndb_mgm.exe running; it has no negative impact on the performance of the NDB
Cluster, and we use it in the next step to verify that the SQL node is connected to the cluster after
you have started it.

4. On the computer designated as the SQL node host, open a console window and navigate to the
directory where you unpacked the NDB Cluster binaries (if you are following our example, this is C:
\mysql\bin).

Start the SQL node by invoking mysqld.exe from the command line, as shown here:

C:\mysql\bin> mysqld --console

The --console option causes logging information to be written to the console, which can
be helpful in the event of problems. (Once you are satisfied that the SQL node is running in a
satisfactory manner, you can stop it and restart it out without the --console option, so that logging
is performed normally.)

In the console window where the management client (ndb_mgm.exe) is running on the
management node host, enter the SHOW command, which should produce output similar to what is
shown here:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration
---------------------
[ndbd(NDB)]     2 node(s)
id=2    @192.168.0.30  (Version: 5.5.56-ndb-7.2.30, Nodegroup: 0, *)
id=3    @192.168.0.40  (Version: 5.5.56-ndb-7.2.30, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1    @192.168.0.10  (Version: 5.5.56-ndb-7.2.30)

[mysqld(API)]   1 node(s)
id=4    @192.168.0.20  (Version: 5.5.56-ndb-7.2.30)

You can also verify that the SQL node is connected to the NDB Cluster in the mysql client
(mysql.exe) using the SHOW ENGINE NDB STATUS statement.

You should now be ready to work with database objects and data using NDB Cluster's NDBCLUSTER
storage engine. See Section 18.2.5, “NDB Cluster Example with Tables and Data”, for more
information and examples.

You can also install ndb_mgmd.exe, ndbd.exe, and ndbmtd.exe as Windows services. For
information on how to do this, see Section 18.2.2.4, “Installing NDB Cluster Processes as Windows
Services”).



Installing NDB Cluster on Windows

2045

18.2.2.4 Installing NDB Cluster Processes as Windows Services

Once you are satisfied that NDB Cluster is running as desired, you can install the management nodes
and data nodes as Windows services, so that these processes are started and stopped automatically
whenever Windows is started or stopped. This also makes it possible to control these processes from
the command line with the appropriate NET START or NET STOP command, or using the Windows
graphical Services utility.

Installing programs as Windows services usually must be done using an account that has Administrator
rights on the system.

To install the management node as a service on Windows, invoke ndb_mgmd.exe from the command
line on the machine hosting the management node, using the --install option, as shown here:

C:\> C:\mysql\bin\ndb_mgmd.exe --install
Installing service 'NDB Cluster Management Server'
  as '"C:\mysql\bin\ndbd.exe" "--service=ndb_mgmd"'
Service successfully installed.

Important

When installing an NDB Cluster program as a Windows service, you should
always specify the complete path; otherwise the service installation may fail with
the error The system cannot find the file specified.

The --install option must be used first, ahead of any other options that might be specified for
ndb_mgmd.exe. However, it is preferable to specify such options in an options file instead. If your
options file is not in one of the default locations as shown in the output of ndb_mgmd.exe --help, you
can specify the location using the --config-file option.

Now you should be able to start and stop the management server like this:

C:\> NET START ndb_mgmd
The NDB Cluster Management Server service is starting.
The NDB Cluster Management Server service was started successfully.

C:\> NET STOP ndb_mgmd
The NDB Cluster Management Server service is stopping..
The NDB Cluster Management Server service was stopped successfully.

You can also start or stop the management server as a Windows service using the descriptive name,
as shown here:

C:\> NET START 'NDB Cluster Management Server'
The NDB Cluster Management Server service is starting.
The NDB Cluster Management Server service was started successfully.

C:\> NET STOP  'NDB Cluster Management Server'
The NDB Cluster Management Server service is stopping..
The NDB Cluster Management Server service was stopped successfully.

However, it is usually simpler to specify a short service name or to permit the default service name
to be used when installing the service, and then reference that name when starting or stopping the
service. To specify a service name other than ndb_mgmd, append it to the --install option, as
shown in this example:

C:\> C:\mysql\bin\ndb_mgmd.exe --install=mgmd1
Installing service 'NDB Cluster Management Server'
  as '"C:\mysql\bin\ndb_mgmd.exe" "--service=mgmd1"'
Service successfully installed.

Now you should be able to start or stop the service using the name you have specified, like this:



Installing NDB Cluster on Windows

2046

C:\> NET START mgmd1
The NDB Cluster Management Server service is starting.
The NDB Cluster Management Server service was started successfully.

C:\> NET STOP mgmd1
The NDB Cluster Management Server service is stopping..
The NDB Cluster Management Server service was stopped successfully.

To remove the management node service, invoke ndb_mgmd.exe with the --remove option, as
shown here:

C:\> C:\mysql\bin\ndb_mgmd.exe --remove
Removing service 'NDB Cluster Management Server'
Service successfully removed.

If you installed the service using a service name other than the default, you can remove the service by
passing this name as the value of the --remove option, like this:

C:\> C:\mysql\bin\ndb_mgmd.exe --remove=mgmd1
Removing service 'mgmd1'
Service successfully removed.

Installation of an NDB Cluster data node process as a Windows service can be done in a similar
fashion, using the --install option for ndbd.exe (or ndbmtd.exe), as shown here:

C:\> C:\mysql\bin\ndbd.exe --install
Installing service 'NDB Cluster Data Node Daemon' as '"C:\mysql\bin\ndbd.exe" "--service=ndbd"'
Service successfully installed.

Now you can start or stop the data node using either the default service name or the descriptive name
with net start or net stop, as shown in the following example:

C:\> NET START ndbd
The NDB Cluster Data Node Daemon service is starting.
The NDB Cluster Data Node Daemon service was started successfully.

C:\> NET STOP ndbd
The NDB Cluster Data Node Daemon service is stopping..
The NDB Cluster Data Node Daemon service was stopped successfully.

C:\> NET START 'NDB Cluster Data Node Daemon'
The NDB Cluster Data Node Daemon service is starting.
The NDB Cluster Data Node Daemon service was started successfully.

C:\> NET STOP 'NDB Cluster Data Node Daemon'
The NDB Cluster Data Node Daemon service is stopping..
The NDB Cluster Data Node Daemon service was stopped successfully.

To remove the data node service, invoke ndbd.exe with the --remove option, as shown here:

C:\> C:\mysql\bin\ndbd.exe --remove
Removing service 'NDB Cluster Data Node Daemon'
Service successfully removed.

As with ndb_mgmd.exe (and mysqld.exe), when installing ndbd.exe as a Windows service, you
can also specify a name for the service as the value of --install, and then use it when starting or
stopping the service, like this:

C:\> C:\mysql\bin\ndbd.exe --install=dnode1
Installing service 'dnode1' as '"C:\mysql\bin\ndbd.exe" "--service=dnode1"'
Service successfully installed.

C:\> NET START dnode1
The NDB Cluster Data Node Daemon service is starting.



Initial Configuration of NDB Cluster

2047

The NDB Cluster Data Node Daemon service was started successfully.

C:\> NET STOP dnode1
The NDB Cluster Data Node Daemon service is stopping..
The NDB Cluster Data Node Daemon service was stopped successfully.

If you specified a service name when installing the data node service, you can use this name when
removing it as well, by passing it as the value of the --remove option, as shown here:

C:\> C:\mysql\bin\ndbd.exe --remove=dnode1
Removing service 'dnode1'
Service successfully removed.

Installation of the SQL node as a Windows service, starting the service, stopping the service, and
removing the service are done in a similar fashion, using mysqld --install, NET START, NET
STOP, and mysqld --remove. For additional information, see Section 2.3.7.7, “Starting MySQL as a
Windows Service”.

18.2.3 Initial Configuration of NDB Cluster

For our four-node, four-host NDB Cluster, it is necessary to write four configuration files, one per node
host.

• Each data node or SQL node requires a my.cnf file that provides two pieces of information: a
connection string that tells the node where to find the management node, and a line telling the
MySQL server on this host (the machine hosting the data node) to enable the NDBCLUSTER storage
engine.

For more information on connection strings, see Section 18.3.3.3, “NDB Cluster Connection Strings”.

• The management node needs a config.ini file telling it how many replicas to maintain, how much
memory to allocate for data and indexes on each data node, where to find the data nodes, where to
save data to disk on each data node, and where to find any SQL nodes.

Configuring the data nodes and SQL nodes.  The my.cnf file needed for the data nodes is fairly
simple. The configuration file should be located in the /etc directory and can be edited using any text
editor. (Create the file if it does not exist.) For example:

shell> vi /etc/my.cnf

Note

We show vi being used here to create the file, but any text editor should work
just as well.

For each data node and SQL node in our example setup, my.cnf should look like this:

[mysqld]
# Options for mysqld process:
ndbcluster                      # run NDB storage engine

[mysql_cluster]
# Options for NDB Cluster processes:
ndb-connectstring=192.168.0.10  # location of management server

After entering the preceding information, save this file and exit the text editor. Do this for the machines
hosting data node “A”, data node “B”, and the SQL node.

Important

Once you have started a mysqld process with the ndbcluster and ndb-
connectstring parameters in the [mysqld] and [mysql_cluster]
sections of the my.cnf file as shown previously, you cannot execute any



Initial Configuration of NDB Cluster

2048

CREATE TABLE or ALTER TABLE statements without having actually started
the cluster. Otherwise, these statements will fail with an error. This is by design.

Configuring the management node.  The first step in configuring the management node is to
create the directory in which the configuration file can be found and then to create the file itself. For
example (running as root):

shell> mkdir /var/lib/mysql-cluster
shell> cd /var/lib/mysql-cluster
shell> vi config.ini

For our representative setup, the config.ini file should read as follows:

[ndbd default]
# Options affecting ndbd processes on all data nodes:
NoOfReplicas=2    # Number of replicas
DataMemory=80M    # How much memory to allocate for data storage
IndexMemory=18M   # How much memory to allocate for index storage
                  # For DataMemory and IndexMemory, we have used the
                  # default values. Since the "world" database takes up
                  # only about 500KB, this should be more than enough for
                  # this example Cluster setup.

[tcp default]
# TCP/IP options:
portnumber=2202   # This the default; however, you can use any
                  # port that is free for all the hosts in the cluster
                  # Note: It is recommended that you do not specify the port
                  # number at all and simply allow the default value to be used
                  # instead

[ndb_mgmd]
# Management process options:
hostname=192.168.0.10           # Hostname or IP address of MGM node
datadir=/var/lib/mysql-cluster  # Directory for MGM node log files

[ndbd]
# Options for data node "A":
                                # (one [ndbd] section per data node)
hostname=192.168.0.30           # Hostname or IP address
datadir=/usr/local/mysql/data   # Directory for this data node's data files

[ndbd]
# Options for data node "B":
hostname=192.168.0.40           # Hostname or IP address
datadir=/usr/local/mysql/data   # Directory for this data node's data files

[mysqld]
# SQL node options:
hostname=192.168.0.20           # Hostname or IP address
                                # (additional mysqld connections can be
                                # specified for this node for various
                                # purposes such as running ndb_restore)

Note

The world database can be downloaded from http://dev.mysql.com/doc/index-
other.html.

After all the configuration files have been created and these minimal options have been specified, you
are ready to proceed with starting the cluster and verifying that all processes are running. We discuss
how this is done in Section 18.2.4, “Initial Startup of NDB Cluster”.

For more detailed information about the available NDB Cluster configuration parameters and their
uses, see Section 18.3.3, “NDB Cluster Configuration Files”, and Section 18.3, “Configuration of
NDB Cluster”. For configuration of NDB Cluster as relates to making backups, see Section 18.5.3.3,
“Configuration for NDB Cluster Backups”.

http://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/doc/index-other.html


Initial Startup of NDB Cluster

2049

Note

The default port for Cluster management nodes is 1186; the default port for data
nodes is 2202. However, the cluster can automatically allocate ports for data
nodes from those that are already free.

18.2.4 Initial Startup of NDB Cluster

Starting the cluster is not very difficult after it has been configured. Each cluster node process must
be started separately, and on the host where it resides. The management node should be started first,
followed by the data nodes, and then finally by any SQL nodes:

1. On the management host, issue the following command from the system shell to start the
management node process:

shell> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

The first time that it is started, ndb_mgmd must be told where to find its configuration file, using the
-f or --config-file option. (See Section 18.4.4, “ndb_mgmd — The NDB Cluster Management
Server Daemon”, for details.)

For additional options which can be used with ndb_mgmd, see Section 18.4.27, “Options Common
to NDB Cluster Programs — Options Common to NDB Cluster Programs”.

2. On each of the data node hosts, run this command to start the ndbd process:

shell> ndbd

3. If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you can
(and should) use the supplied startup script to start the MySQL server process on the SQL node.

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational.
You can test this by invoking the ndb_mgm management node client. The output should look like that
shown here, although you might see some slight differences in the output depending upon the exact
version of MySQL that you are using:

shell> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration
---------------------
[ndbd(NDB)]     2 node(s)
id=2    @192.168.0.30  (Version: 5.5.56-ndb-7.2.30, Nodegroup: 0, *)
id=3    @192.168.0.40  (Version: 5.5.56-ndb-7.2.30, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1    @192.168.0.10  (Version: 5.5.56-ndb-7.2.30)

[mysqld(API)]   1 node(s)
id=4    @192.168.0.20  (Version: 5.5.56-ndb-7.2.30)

The SQL node is referenced here as [mysqld(API)], which reflects the fact that the mysqld process
is acting as an NDB Cluster API node.

Note

The IP address shown for a given NDB Cluster SQL or other API node in the
output of SHOW is the address used by the SQL or API node to connect to the
cluster data nodes, and not to any management node.



NDB Cluster Example with Tables and Data

2050

You should now be ready to work with databases, tables, and data in NDB Cluster. See Section 18.2.5,
“NDB Cluster Example with Tables and Data”, for a brief discussion.

18.2.5 NDB Cluster Example with Tables and Data

Note

The information in this section applies to NDB Cluster running on both Unix and
Windows platforms.

Working with database tables and data in NDB Cluster is not much different from doing so in standard
MySQL. There are two key points to keep in mind:

• For a table to be replicated in the cluster, it must use the NDBCLUSTER storage engine. To specify
this, use the ENGINE=NDBCLUSTER or ENGINE=NDB option when creating the table:

CREATE TABLE tbl_name (col_name column_definitions) ENGINE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to change
the table to use NDBCLUSTER:

ALTER TABLE tbl_name ENGINE=NDBCLUSTER;

• Every NDBCLUSTER table has a primary key. If no primary key is defined by the user when a table is
created, the NDBCLUSTER storage engine automatically generates a hidden one. Such a key takes
up space just as does any other table index. (It is not uncommon to encounter problems due to
insufficient memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysqldump, you can open
the SQL script in a text editor and add the ENGINE option to any table creation statements, or replace
any existing ENGINE options. Suppose that you have the world sample database on another MySQL
server that does not support NDB Cluster, and you want to export the City table:

shell> mysqldump --add-drop-table world City > city_table.sql

The resulting city_table.sql file will contain this table creation statement (and the INSERT
statements necessary to import the table data):

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
  `ID` int(11) NOT NULL auto_increment,
  `Name` char(35) NOT NULL default '',
  `CountryCode` char(3) NOT NULL default '',
  `District` char(20) NOT NULL default '',
  `Population` int(11) NOT NULL default '0',
  PRIMARY KEY  (`ID`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

You need to make sure that MySQL uses the NDBCLUSTER storage engine for this table. There are
two ways that this can be accomplished. One of these is to modify the table definition before importing
it into the Cluster database. Using the City table as an example, modify the ENGINE option of the
definition as follows:

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (



NDB Cluster Example with Tables and Data

2051

  `ID` int(11) NOT NULL auto_increment,
  `Name` char(35) NOT NULL default '',
  `CountryCode` char(3) NOT NULL default '',
  `District` char(20) NOT NULL default '',
  `Population` int(11) NOT NULL default '0',
  PRIMARY KEY  (`ID`)
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

This must be done for the definition of each table that is to be part of the clustered database. The
easiest way to accomplish this is to do a search-and-replace on the file that contains the definitions and
replace all instances of TYPE=engine_name or ENGINE=engine_name with ENGINE=NDBCLUSTER.
If you do not want to modify the file, you can use the unmodified file to create the tables, and then use
ALTER TABLE to change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named world on the SQL node of the cluster, you
can then use the mysql command-line client to read city_table.sql, and create and populate the
corresponding table in the usual manner:

shell> mysql world < city_table.sql

It is very important to keep in mind that the preceding command must be executed on the host where
the SQL node is running (in this case, on the machine with the IP address 192.168.0.20).

To create a copy of the entire world database on the SQL node, use mysqldump on the noncluster
server to export the database to a file named world.sql; for example, in the /tmp directory. Then
modify the table definitions as just described and import the file into the SQL node of the cluster like
this:

shell> mysql world < /tmp/world.sql

If you save the file to a different location, adjust the preceding instructions accordingly.

Running SELECT queries on the SQL node is no different from running them on any other instance of a
MySQL server. To run queries from the command line, you first need to log in to the MySQL Monitor in
the usual way (specify the root password at the Enter password: prompt):

shell> mysql -u root -p
Enter password:
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.5.56-ndb-7.2.30

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

We simply use the MySQL server's root account and assume that you have followed the standard
security precautions for installing a MySQL server, including setting a strong root password. For more
information, see Section 2.10.4, “Securing the Initial MySQL Accounts”.

It is worth taking into account that Cluster nodes do not make use of the MySQL privilege system when
accessing one another. Setting or changing MySQL user accounts (including the root account) effects
only applications that access the SQL node, not interaction between nodes. See Section 18.5.11.2,
“NDB Cluster and MySQL Privileges”, for more information.

If you did not modify the ENGINE clauses in the table definitions prior to importing the SQL script, you
should run the following statements at this point:



NDB Cluster Example with Tables and Data

2052

mysql> USE world;
mysql> ALTER TABLE city ENGINE=NDBCLUSTER;
mysql> ALTER TABLE country ENGINE=NDBCLUSTER;
mysql> ALTER TABLE countrylanguage ENGINE=NDBCLUSTER;

Selecting a database and running a SELECT query against a table in that database is also
accomplished in the usual manner, as is exiting the MySQL Monitor:

mysql> USE world;
mysql> SELECT Name, Population FROM city ORDER BY Population DESC LIMIT 5;
+-----------+------------+
| Name      | Population |
+-----------+------------+
| Bombay    |   10500000 |
| Seoul     |    9981619 |
| São Paulo |    9968485 |
| Shanghai  |    9696300 |
| Jakarta   |    9604900 |
+-----------+------------+
5 rows in set (0.34 sec)

mysql> \q
Bye

shell>

Applications that use MySQL can employ standard APIs to access NDB tables. It is important to
remember that your application must access the SQL node, and not the management or data nodes.
This brief example shows how we might execute the SELECT statement just shown by using the PHP
5.X mysqli extension running on a Web server elsewhere on the network:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
  "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
  <meta http-equiv="Content-Type"
           content="text/html; charset=iso-8859-1">
  <title>SIMPLE mysqli SELECT</title>
</head>
<body>
<?php
  # connect to SQL node:
  $link = new mysqli('192.168.0.20', 'root', 'root_password', 'world');
  # parameters for mysqli constructor are:
  #   host, user, password, database

  if( mysqli_connect_errno() )
    die("Connect failed: " . mysqli_connect_error());

  $query = "SELECT Name, Population
            FROM City
            ORDER BY Population DESC
            LIMIT 5";

  # if no errors...
  if( $result = $link->query($query) )
  {
?>
<table border="1" width="40%" cellpadding="4" cellspacing ="1">
  <tbody>
  <tr>
    <th width="10%">City</th>
    <th>Population</th>
  </tr>
<?
    # then display the results...
    while($row = $result->fetch_object())
      printf("<tr>\n  <td align=\"center\">%s</td><td>%d</td>\n</tr>\n",



Safe Shutdown and Restart of NDB Cluster

2053

              $row->Name, $row->Population);
?>
  </tbody
</table>
<?
  # ...and verify the number of rows that were retrieved
    printf("<p>Affected rows: %d</p>\n", $link->affected_rows);
  }
  else
    # otherwise, tell us what went wrong
    echo mysqli_error();

  # free the result set and the mysqli connection object
  $result->close();
  $link->close();
?>
</body>
</html>

We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL Connectors to
perform the tasks of data definition and manipulation just as you would normally with MySQL.

18.2.6 Safe Shutdown and Restart of NDB Cluster

To shut down the cluster, enter the following command in a shell on the machine hosting the
management node:

shell> ndb_mgm -e shutdown

The -e option here is used to pass a command to the ndb_mgm client from the shell. (See
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”, for more information about this option.) The command causes the ndb_mgm, ndb_mgmd,
and any ndbd or ndbmtd processes to terminate gracefully. Any SQL nodes can be terminated using
mysqladmin shutdown and other means. On Windows platforms, assuming that you have installed
the SQL node as a Windows service, you can use NET STOP MYSQL.

To restart the cluster on Unix platforms, run these commands:

• On the management host (192.168.0.10 in our example setup):

shell> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

• On each of the data node hosts (192.168.0.30 and 192.168.0.40):

shell> ndbd

• Use the ndb_mgm client to verify that both data nodes have started successfully.

• On the SQL host (192.168.0.20):

shell> mysqld_safe &

On Windows platforms, assuming that you have installed all NDB Cluster processes as Windows
services using the default service names (see Section 18.2.2.4, “Installing NDB Cluster Processes as
Windows Services”), you can restart the cluster as follows:

• On the management host (192.168.0.10 in our example setup), execute the following command:



Upgrading and Downgrading NDB Cluster 7.2

2054

C:\> NET START ndb_mgmd

• On each of the data node hosts (192.168.0.30 and 192.168.0.40), execute the following
command:

C:\> NET START ndbd

• On the management node host, use the ndb_mgm client to verify that the management node and
both data nodes have started successfully (see Section 18.2.2.3, “Initial Startup of NDB Cluster on
Windows”).

• On the SQL node host (192.168.0.20), execute the following command:

C:\> NET START mysql

In a production setting, it is usually not desirable to shut down the cluster completely. In many cases,
even when making configuration changes, or performing upgrades to the cluster hardware or software
(or both), which require shutting down individual host machines, it is possible to do so without shutting
down the cluster as a whole by performing a rolling restart of the cluster. For more information about
doing this, see Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”.

18.2.7 Upgrading and Downgrading NDB Cluster 7.2

This section provides information about NDB Cluster software and table file compatibility between
different NDB Cluster 7.2 releases with regard to performing upgrades and downgrades as well as
compatibility matrices and notes. You are expected already to be familiar with installing and configuring
an NDB Cluster prior to attempting an upgrade or downgrade. See Section 18.3, “Configuration of NDB
Cluster”.

For information regarding the rolling restart procedure used to perform an online upgrade, see
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”.

Important

Only compatibility between MySQL versions with regard to NDBCLUSTER
is taken into account in this section, and there are likely other issues to be
considered. As with any other MySQL software upgrade or downgrade, you
are strongly encouraged to review the relevant portions of the MySQL Manual
for the MySQL versions from which and to which you intend to migrate, before
attempting an upgrade or downgrade of the NDB Cluster software. This is
especially true when planning a migration from NDB Cluster 7.1 (or earlier)
to NDB Cluster 7.2, since the version of the underlying MySQL Server also
changes from MySQL 5.1 to MySQL 5.5. See Section 2.11.1, “Upgrading
MySQL”.

The table shown here provides information on NDB Cluster upgrade and downgrade compatibility
among different releases of NDB Cluster 7.2. Additional notes about upgrades and downgrades to,
from, or within the NDB Cluster 7.2 release series can be found immediately following the table.



Upgrading and Downgrading NDB Cluster 7.2

2055

Figure 18.5 NDB Cluster Upgrade and Downgrade Compatibility, NDB Cluster 7.2

Notes: NDB Cluster 7.2

Versions supported.  The following versions of NDB Cluster are supported for upgrades to NDB
Cluster 7.2 (7.2.4 and later):

• NDB Cluster 7.1 GA releases (7.1.3 and later)

• NDB Cluster 7.0 GA releases (7.0.5 and later)

• NDB Cluster 6.3 GA releases (6.3.8 and later) that can be upgraded to NDB Cluster 7.1

For information about upgrades to and downgrades from NDB Cluster 7.3, see Upgrading and
Downgrading NDB Cluster. For information about upgrades and downgrades in previous NDB Cluster
release series, see the MySQL 5.1 Reference Manual.

NDB API, ClusterJ, and other applications used with recent releases of NDB Cluster 6.3 and later
should continue to work with NDB 7.2.4 and later without rewriting or recompiling.

In NDB Cluster 7.2, the default values for a number of node configuration parameters have changed.
See Improved default values for data node configuration parameters, for a listing of these.

Other known issues include the following:

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-upgrade-downgrade.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-upgrade-downgrade.html
http://dev.mysql.com/doc/ndbapi/en/ndbapi.html
http://dev.mysql.com/doc/ndbapi/en/mccj.html


Configuration of NDB Cluster

2056

• In NDB 7.2.7 and later, the size of the hash map is 3840 LDM threads, an increase from 240 in
previous versions. When upgrading an NDB Cluster from NDB 7.2.6 and earlier to NDB 7.2.9 or
later, you can modify existing tables online to take advantage of the new size: following the upgrade,
increase the number of fragments by (for example) adding new data nodes to the cluster, and then
execute ALTER ONLINE TABLE ... REORGANIZE PARTITION on any tables that were created
in the older version. Following this, these tables can use the larger hash map size. (Bug #14645319)

Due to this change, it was not possible to downgrade online to NDB 7.2.6 or earlier. This issue was
resolved in NDB 7.2.11, where the size is made configurable using the DefaultHashMapSize
parameter. (Bug #14800539) See the description of this parameter for more information.

• It is not possible to downgrade online to NDB 7.2.13 or earlier from NDB 7.2.14 or later. Online
upgrades from NDB 7.2.13 to later NDB Cluster 7.2 releases are supported.

18.3 Configuration of NDB Cluster
A MySQL server that is part of an NDB Cluster differs in one chief respect from a normal (nonclustered)
MySQL server, in that it employs the NDB storage engine. This engine is also referred to sometimes as
NDBCLUSTER, although NDB is preferred.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage
engine disabled. To enable NDB, you must modify the server's my.cnf configuration file, or start the
server with the --ndbcluster option.

This MySQL server is a part of the cluster, so it also must know how to access a management node
to obtain the cluster configuration data. The default behavior is to look for the management node
on localhost. However, should you need to specify that its location is elsewhere, this can be
done in my.cnf, or with the mysql client. Before the NDB storage engine can be used, at least one
management node must be operational, as well as any desired data nodes.

For more information about --ndbcluster and other mysqld options specific to NDB Cluster, see
MySQL Server Options for NDB Cluster.

For information about installing NDB Cluster, see Section 18.2, “NDB Cluster Installation and
Upgrades”.

18.3.1 Quick Test Setup of NDB Cluster

To familiarize you with the basics, we will describe the simplest possible configuration for a functional
NDB Cluster. After this, you should be able to design your desired setup from the information provided
in the other relevant sections of this chapter.

First, you need to create a configuration directory such as /var/lib/mysql-cluster, by executing
the following command as the system root user:

shell> mkdir /var/lib/mysql-cluster

In this directory, create a file named config.ini that contains the following information. Substitute
appropriate values for HostName and DataDir as necessary for your system.

# file "config.ini" - showing minimal setup consisting of 1 data node,
# 1 management server, and 3 MySQL servers.
# The empty default sections are not required, and are shown only for
# the sake of completeness.
# Data nodes must provide a hostname but MySQL Servers are not required
# to do so.
# If you don't know the hostname for your machine, use localhost.
# The DataDir parameter also has a default value, but it is recommended to
# set it explicitly.
# Note: [db], [api], and [mgm] are aliases for [ndbd], [mysqld], and [ndb_mgmd],
# respectively. [db] is deprecated and should not be used in new installations.



Quick Test Setup of NDB Cluster

2057

[ndbd default]
NoOfReplicas= 1

[mysqld  default]
[ndb_mgmd default]
[tcp default]

[ndb_mgmd]
HostName= myhost.example.com

[ndbd]
HostName= myhost.example.com
DataDir= /var/lib/mysql-cluster

[mysqld]
[mysqld]
[mysqld]

You can now start the ndb_mgmd management server. By default, it attempts to read the config.ini
file in its current working directory, so change location into the directory where the file is located and
then invoke ndb_mgmd:

shell> cd /var/lib/mysql-cluster
shell> ndb_mgmd

Then start a single data node by running ndbd:

shell> ndbd

For command-line options which can be used when starting ndbd, see Section 18.4.27, “Options
Common to NDB Cluster Programs — Options Common to NDB Cluster Programs”.

By default, ndbd looks for the management server at localhost on port 1186.

Note

If you have installed MySQL from a binary tarball, you will need to specify the
path of the ndb_mgmd and ndbd servers explicitly. (Normally, these will be
found in /usr/local/mysql/bin.)

Finally, change location to the MySQL data directory (usually /var/lib/mysql or /usr/local/
mysql/data), and make sure that the my.cnf file contains the option necessary to enable the NDB
storage engine:

[mysqld]
ndbcluster

You can now start the MySQL server as usual:

shell> mysqld_safe --user=mysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice mysql
ended, check the server's .err file to find out what went wrong.

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the
NDBCLUSTER storage engine is enabled:

shell> mysql
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.5.58

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW ENGINES\G
...



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2058

*************************** 12. row ***************************
Engine: NDBCLUSTER
Support: YES
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************
Engine: NDB
Support: YES
Comment: Alias for NDBCLUSTER
...

The row numbers shown in the preceding example output may be different from those shown on your
system, depending upon how your server is configured.

Try to create an NDBCLUSTER table:

shell> mysql
mysql> USE test;
Database changed

mysql> CREATE TABLE ctest (i INT) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.09 sec)

mysql> SHOW CREATE TABLE ctest \G
*************************** 1. row ***************************
       Table: ctest
Create Table: CREATE TABLE `ctest` (
  `i` int(11) default NULL
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

To check that your nodes were set up properly, start the management client:

shell> ndb_mgm

Use the SHOW command from within the management client to obtain a report on the cluster's status:

ndb_mgm> SHOW
Cluster Configuration
---------------------
[ndbd(NDB)]     1 node(s)
id=2    @127.0.0.1  (Version: 5.5.56-ndb-7.2.30, Nodegroup: 0, *)

[ndb_mgmd(MGM)] 1 node(s)
id=1    @127.0.0.1  (Version: 5.5.56-ndb-7.2.30)

[mysqld(API)]   3 node(s)
id=3    @127.0.0.1  (Version: 5.5.56-ndb-7.2.30)
id=4 (not connected, accepting connect from any host)
id=5 (not connected, accepting connect from any host)

At this point, you have successfully set up a working NDB Cluster. You can now store data in the
cluster by using any table created with ENGINE=NDBCLUSTER or its alias ENGINE=NDB.

18.3.2 Overview of NDB Cluster Configuration Parameters, Options, and
Variables

The next several sections provide summary tables of NDB Cluster node configuration parameters used
in the config.ini file to govern various aspects of node behavior, as well as of options and variables
read by mysqld from a my.cnf file or from the command line when run as an NDB Cluster process.
Each of the node parameter tables lists the parameters for a given type (ndbd, ndb_mgmd, mysqld,
computer, tcp, shm, or sci). All tables include the data type for the parameter, option, or variable, as
well as its default, mimimum, and maximum values as applicable.

Considerations when restarting nodes.  For node parameters, these tables also indicate what
type of restart is required (node restart or system restart)—and whether the restart must be done with



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2059

--initial—to change the value of a given configuration parameter. When performing a node restart
or an initial node restart, all of the cluster's data nodes must be restarted in turn (also referred to as a
rolling restart). It is possible to update cluster configuration parameters marked as node online—that is,
without shutting down the cluster—in this fashion. An initial node restart requires restarting each ndbd
process with the --initial option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart
requires taking a backup of the cluster, wiping the cluster file system after shutdown, and then restoring
from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted for them to read the
updated configuration parameter values.

Important

Values for numeric cluster parameters can generally be increased without
any problems, although it is advisable to do so progressively, making such
adjustments in relatively small increments. Many of these can be increased
online, using a rolling restart.

However, decreasing the values of such parameters—whether this is
done using a node restart, node initial restart, or even a complete system
restart of the cluster—is not to be undertaken lightly; it is recommended
that you do so only after careful planning and testing. This is especially
true with regard to those parameters that relate to memory usage and
disk space, such as MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes. In addition, it is the generally the case that
configuration parameters relating to memory and disk usage can be raised
using a simple node restart, but they require an initial node restart to be
lowered.

Because some of these parameters can be used for configuring more than one type of cluster node,
they may appear in more than one of the tables.

Note

4294967039 often appears as a maximum value in these tables. This value
is defined in the NDBCLUSTER sources as MAX_INT_RNIL and is equal to
0xFFFFFEFF, or 232 − 28 − 1.

18.3.2.1 NDB Cluster Data Node Configuration Parameters

The summary table in this section provides information about parameters used in the [ndbd] or
[ndbd default] sections of a config.ini file for configuring NDB Cluster data nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 18.3.3.6,
“Defining NDB Cluster Data Nodes”.

These parameters also apply to ndbmtd, the multi-threaded version of ndbd. For more information,
see Section 18.4.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”.

Restart types.  Changes in NDB Cluster configuration parameters do not take effect until the cluster
is restarted. The type of restart required to change a given parameter is indicated in the summary table
as follows:

• N—Node restart: The parameter can be updated using a rolling restart (see Section 18.5.5,
“Performing a Rolling Restart of an NDB Cluster”).

• S—System restart: The cluster must be shut down completely, then restarted, to effect a change in
this parameter.

• I—Initial restart: Data nodes must be restarted using the --initial option.



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2060

For more information about restart types, see Section 18.3.2, “Overview of NDB Cluster Configuration
Parameters, Options, and Variables”.

NDB Cluster 7.2 supports the addition of new data node groups online, to a running cluster. For more
information, see Section 18.5.13, “Adding NDB Cluster Data Nodes Online”.

Table 18.1 Data Node Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

enumeration

Default
Arbitration Default,

Disabled,
WaitExternal

N NDB 7.2.0

milliseconds

7500
ArbitrationTimeout 10 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

bytes

16M
BackupDataBufferSize 512K /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

path

FileSystemPathBackupDataDir

...

IN NDB 7.2.0

bytes

16M
BackupLogBufferSize 2M /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

bytes

1M
BackupMaxWriteSize 2K /

4294967039
(0xFFFFFEFF)

N NDB 7.2.1

bytes

32M
BackupMemory 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

seconds
BackupReportFrequency

0
N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2061

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

0 /
4294967039
(0xFFFFFEFF)

bytes

256K
BackupWriteSize 32K /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

256BatchSizePerLocalScan

1 / 992

N NDB 7.2.1

numeric

0BuildIndexThreads

0 / 128

S NDB 7.2.0

boolean

falseCompressedBackup

true, false

N NDB 7.2.0

boolean

falseCompressedLCP

true, false

N NDB 7.2.0

milliseconds

0
ConnectCheckIntervalDelay 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.1

boolean

trueCrashOnCorruptedTuple

true, false

S NDB 7.2.1

path

.DataDir

...

IN NDB 7.2.0

bytes

80MDataMemory

1M / 1024G

N NDB 7.2.0

LDM threads

3840DefaultHashMapSize

0 / 3840

N
NDB

7.2.11

DictTrace bytes N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2062

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

undefined

0 / 100

bytes

10M
DiskCheckpointSpeed 1M /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

bytes

100M
DiskCheckpointSpeedInRestart 1M /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

threads

2
DiskIOThreadPool 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

true|false (1|0)

falseDiskless

true, false

IS NDB 7.2.0

32K pages

10DiskPageBufferEntries

1 / 1000

N
NDB

7.2.19

bytes

64MDiskPageBufferMemory

4M / 1T

N NDB 7.2.0

bytes

4M
DiskSyncSize 32K /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

name

[none]ExecuteOnComputer

...

S NDB 7.2.0

bytes

0ExtraSendBufferMemory

0 / 32G

N NDB 7.2.5

path
FileSystemPath

DataDir
IN NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2063

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

...

filename

[see text]FileSystemPathDataFiles

...

IN NDB 7.2.0

filename

FileSystemPathFileSystemPathDD

...

IN NDB 7.2.0

filename

[see text]FileSystemPathUndoFiles

...

IN NDB 7.2.0

bytes

16MFragmentLogFileSize

4M / 1G

IN NDB 7.2.0

milliseconds

1500
HeartbeatIntervalDbApi 100 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

milliseconds

5000
HeartbeatIntervalDbDb 10 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

numeric

0HeartbeatOrder

0 / 65535

S NDB 7.2.0

name or IP
address

localhost
HostName

...

N NDB 7.2.0

unsigned

[none]Id

1 / 48

IS NDB 7.2.0

bytes

18MIndexMemory

1M / 1T

N NDB 7.2.0

boolean
IndexStatAutoCreate

false
S NDB 7.2.1



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2064

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

false, true

boolean

falseIndexStatAutoUpdate

false, true

S NDB 7.2.1

percentage

100
IndexStatSaveScale 0 /

4294967039
(0xFFFFFEFF)

IN NDB 7.2.1

bytes

32768
IndexStatSaveSize 0 /

4294967039
(0xFFFFFEFF)

IN NDB 7.2.1

percentage

100
IndexStatTriggerPct 0 /

4294967039
(0xFFFFFEFF)

IN NDB 7.2.1

percentage

100
IndexStatTriggerScale 0 /

4294967039
(0xFFFFFEFF)

IN NDB 7.2.1

seconds

60
IndexStatUpdateDelay 0 /

4294967039
(0xFFFFFEFF)

IN NDB 7.2.1

[see values]

SPARSE
InitFragmentLogFiles

SPARSE,
FULL

IN NDB 7.2.0

string

[see text]InitialLogFileGroup

...

S NDB 7.2.0

files
InitialNoOfOpenFiles

27
N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2065

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

20 /
4294967039
(0xFFFFFEFF)

string

[see text]InitialTablespace

...

S NDB 7.2.0

numeric

1LateAlloc

0 / 1

N NDB 7.2.0

second

60
LcpScanProgressTimeout 0 /

4294967039
(0xFFFFFEFF)

N
NDB

7.2.14

set of CPU IDs

0LockExecuteThreadToCPU

...

N NDB 7.2.0

CPU ID

0LockMaintThreadsToCPU

0 / 64K

N NDB 7.2.0

numeric

0LockPagesInMainMemory

0 / 2

N NDB 7.2.0

log level

0LogLevelCheckpoint

0 / 15

N NDB 7.2.0

levelr

0LogLevelCongestion

0 / 15

N NDB 7.2.0

integer

0LogLevelConnection

0 / 15

N NDB 7.2.0

integer

0LogLevelError

0 / 15

N NDB 7.2.0

integer

0LogLevelInfo

0 / 15

N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2066

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

integer

0LogLevelNodeRestart

0 / 15

N NDB 7.2.0

integer

0LogLevelShutdown

0 / 15

N NDB 7.2.0

integer

1LogLevelStartup

0 / 15

N NDB 7.2.0

integer

0LogLevelStatistic

0 / 15

N NDB 7.2.0

bytes

64M
LongMessageBuffer 512K /

4294967039
(0xFFFFFEFF)

N
NDB

7.2.16

unsigned

32MMaxAllocate

1M / 1G

N NDB 7.2.0

epochs

100MaxBufferedEpochs

0 / 100000

N NDB 7.2.0

bytes

26214400

MaxBufferedEpochBytes 26214400
(0x01900000) /
4294967039
(0xFFFFFEFF)

N
NDB

7.2.13

operations
(DML)

4294967295MaxDMLOperationsPerTransaction

32 /
4294967295

N NDB 7.2.0

seconds

0MaxLCPStartDelay

0 / 600

N NDB 7.2.0

integer
MaxNoOfAttributes

1000
N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2067

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

32 /
4294967039
(0xFFFFFEFF)

integer

8K
MaxNoOfConcurrentIndexOperations 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

32K
MaxNoOfConcurrentOperations 32 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

256MaxNoOfConcurrentScans

2 / 500

N NDB 7.2.0

unsigned

256
MaxNoOfConcurrentSubOperations 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

4096
MaxNoOfConcurrentTransactions 32 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

4000
MaxNoOfFiredTriggers 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

UNDEFINED
MaxNoOfLocalOperations 32 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

[see text]
MaxNoOfLocalScans 32 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2068

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

unsigned

0
MaxNoOfOpenFiles 20 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

128
MaxNoOfOrderedIndexes 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

25
MaxNoOfSavedMessages 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

0
MaxNoOfSubscribers 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

0
MaxNoOfSubscriptions 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

128MaxNoOfTables

8 / 20320

N NDB 7.2.0

integer

768
MaxNoOfTriggers 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

integer

64
MaxNoOfUniqueHashIndexes 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

bytes
MaxParallelScansPerFragment

256
N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2069

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

1 /
4294967039
(0xFFFFFEFF)

unsigned

3
MaxStartFailRetries 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

0
MemReportFrequency 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

5MinFreePct

0 / 100

N NDB 7.2.3

 

[none]NodeGroup

0 / 65536

IS NDB 7.2.0

unsigned

[none]NodeId

1 / 48

IS NDB 7.2.0

integer

16
NoOfFragmentLogFiles 3 /

4294967039
(0xFFFFFEFF)

IN NDB 7.2.0

integer

2NoOfReplicas

1 / 4

IS NDB 7.2.0

integer

1Numa

0 - 1

N NDB 7.2.0

boolean

falseODirect

true, false

N NDB 7.2.0

boolean

falseRealtimeScheduler

true, false

N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2070

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

bytes

32M
RedoBuffer 1M /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

numeric

3
RedoOverCommitCounter 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

seconds

20
RedoOverCommitLimit 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

bytes

256K
ReservedSendBufferMemory 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

error code

2RestartOnErrorInsert

0 / 4

N NDB 7.2.0

µs

50SchedulerExecutionTimer

0 / 11000

N NDB 7.2.0

µs

0SchedulerSpinTimer

0 / 500

N NDB 7.2.0

unsigned

[none]ServerPort

1 / 64K

S NDB 7.2.0

bytes

128MSharedGlobalMemory

0 / 64T

N NDB 7.2.0

unsigned
StartFailRetryDelay

0
N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2071

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

0 /
4294967039
(0xFFFFFEFF)

milliseconds

0
StartFailureTimeout 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

milliseconds

15000
StartNoNodeGroupTimeout 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

milliseconds

30000
StartPartialTimeout 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

milliseconds

60000
StartPartitionedTimeout 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

seconds

0
StartupStatusReportFrequency 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

boolean

1StopOnError

0, 1

N NDB 7.2.0

% or bytes

25
StringMemory 0 /

4294967039
(0xFFFFFEFF)

S NDB 7.2.1

boolean

falseTcpBind_INADDR_ANY

true, false

N NDB 7.2.0

TimeBetweenEpochs milliseconds N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2072

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

100

0 / 32000

milliseconds

0TimeBetweenEpochsTimeout

0 / 256000

N NDB 7.2.0

milliseconds

2000TimeBetweenGlobalCheckpoints

20 / 32000

N NDB 7.2.0

milliseconds

120000
TimeBetweenGlobalCheckpointsTimeout 10 /

4294967039
(0xFFFFFEFF)

N
NDB

7.2.20

milliseconds

1000
TimeBetweenInactiveTransactionAbortCheck 1000 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

number of 4-
byte words,
as a base-2
logarithm

20

TimeBetweenLocalCheckpoints

0 / 31

N NDB 7.2.0

milliseconds

6000
TimeBetweenWatchDogCheck 70 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

milliseconds

6000
TimeBetweenWatchDogCheckInitial 70 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

bytes

0
TotalSendBufferMemory 256K /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

TransactionBufferMemory bytes N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2073

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

1M

1K /
4294967039
(0xFFFFFEFF)

milliseconds

1200
TransactionDeadlockDetectionTimeout 50 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

milliseconds

[see text]
TransactionInactiveTimeout 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

boolean

falseTwoPassInitialNodeRestartCopy

true, false

N NDB 7.2.0

unsigned

16M
UndoDataBuffer 1M /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

2M
UndoIndexBuffer 1M /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

Table 18.2 Multi-Threaded Data Node Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

integer

2MaxNoOfExecutionThreads

2 / 36

IS NDB 7.2.5

numeric

4NoOfFragmentLogParts

4, 8, 12, 16

IN NDB 7.2.5



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2074

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

string

''ThreadConfig

...

IS NDB 7.2.3

18.3.2.2 NDB Cluster Management Node Configuration Parameters

The summary table in this section provides information about parameters used in the [ndb_mgmd] or
[mgm] sections of a config.ini file for configuring NDB Cluster management nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 18.3.3.5,
“Defining an NDB Cluster Management Server”.

Restart types.  Changes in NDB Cluster configuration parameters do not take effect until the cluster
is restarted. The type of restart required to change a given parameter is indicated in the summary table
as follows:

• N—Node restart: The parameter can be updated using a rolling restart (see Section 18.5.5,
“Performing a Rolling Restart of an NDB Cluster”).

• S—System restart: The cluster must be shut down completely, then restarted, to effect a change in
this parameter.

• I—Initial restart: Data nodes must be restarted using the --initial option.

For more information about restart types, see Section 18.3.2, “Overview of NDB Cluster Configuration
Parameters, Options, and Variables”.

Table 18.3 Management Node Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

milliseconds

0
ArbitrationDelay 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

0-2

1ArbitrationRank

0 / 2

N NDB 7.2.0

path

.DataDir

...

N NDB 7.2.0

name
ExecuteOnComputer

[none]
S NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2075

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

...

bytes

0ExtraSendBufferMemory

0 / 32G

N
NDB

7.2.14

milliseconds

1500
HeartbeatIntervalMgmdMgmd 100 /

4294967039
(0xFFFFFEFF)

N
NDB

7.2.12

string

[none]HeartbeatThreadPriority

...

S NDB 7.2.0

name or IP
address

[none]
HostName

...

N NDB 7.2.0

unsigned

[none]Id

1 / 255

IS NDB 7.2.0

{CONSOLE|
SYSLOG|FILE}

[see text]
LogDestination

...

N NDB 7.2.0

unsigned

100
MaxNoOfSavedEvents 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

[none]NodeId

1 / 255

IS NDB 7.2.0

unsigned

1186PortNumber

0 / 64K

S NDB 7.2.0

unsigned

[none]PortNumberStats

0 / 64K

N NDB 7.2.0

TotalSendBufferMemory bytes N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2076

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

0

256K /
4294967039
(0xFFFFFEFF)

boolean

falsewan

true, false

N NDB 7.2.0

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.
See Section 18.3.3.5, “Defining an NDB Cluster Management Server”, for more
information.

To add new management servers to a running NDB Cluster, it is also necessary
perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using
multiple management nodes, see Section 18.1.6.10, “Limitations Relating to
Multiple NDB Cluster Nodes”.

18.3.2.3 NDB Cluster SQL Node and API Node Configuration Parameters

The summary table in this section provides information about parameters used in the [mysqld]
and [api] sections of a config.ini file for configuring NDB Cluster SQL nodes and API nodes.
For detailed descriptions and other additional information about each of these parameters, see
Section 18.3.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”.

Note

For a discussion of MySQL server options for NDB Cluster, see MySQL Server
Options for NDB Cluster; for information about MySQL server system variables
relating to NDB Cluster, see NDB Cluster System Variables.

Restart types.  Changes in NDB Cluster configuration parameters do not take effect until the cluster
is restarted. The type of restart required to change a given parameter is indicated in the summary table
as follows:

• N—Node restart: The parameter can be updated using a rolling restart (see Section 18.5.5,
“Performing a Rolling Restart of an NDB Cluster”).

• S—System restart: The cluster must be shut down completely, then restarted, to effect a change in
this parameter.

• I—Initial restart: Data nodes must be restarted using the --initial option.

For more information about restart types, see Section 18.3.2, “Overview of NDB Cluster Configuration
Parameters, Options, and Variables”.



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2077

Table 18.4 SQL Node / API Node Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

milliseconds

0
ArbitrationDelay 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

0-2

0ArbitrationRank

0 / 2

N NDB 7.2.0

boolean

falseAutoReconnect

true, false

N NDB 7.2.0

bytes

16KBatchByteSize

1K / 1M

N NDB 7.2.1

records

256BatchSize

1 / 992

N NDB 7.2.1

integer

0
ConnectBackoffMaxTime 0 /

4294967039
(0xFFFFFEFF)

N
NDB

7.2.18

string

[none]ConnectionMap

...

N NDB 7.2.0

buckets

3840DefaultHashMapSize

0 / 3840

N
NDB

7.2.11

enumeration

QUEUE
DefaultOperationRedoProblemAction

ABORT,
QUEUE

S
NDB

7.2.10

bytes

8192EventLogBufferSize

0 / 64K

S NDB 7.2.0

name
ExecuteOnComputer

[none]
S NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2078

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

...

bytes

0
ExtraSendBufferMemory 0 /

4294967039
(0xFFFFFEFF)

N
NDB

7.2.14

string

[none]HeartbeatThreadPriority

...

S NDB 7.2.0

name or IP
address

[none]
HostName

...

N NDB 7.2.0

unsigned

[none]Id

1 / 255

IS NDB 7.2.0

bytes

256KMaxScanBatchSize

32K / 16M

N NDB 7.2.0

unsigned

[none]NodeId

1 / 255

IS NDB 7.2.0

integer

1500
StartConnectBackoffMaxTime 0 /

4294967039
(0xFFFFFEFF)

N
NDB

7.2.18

bytes

0
TotalSendBufferMemory 256K /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

boolean

falsewan

true, false

N NDB 7.2.0

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2079

more than one management server). This must be done before the new SQL or
API nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes
can employ previously unused API slots in the cluster configuration to connect
to the cluster.

18.3.2.4 Other NDB Cluster Configuration Parameters

The summary tables in this section provide information about parameters used in the [computer],
[tcp], [shm], and [sci] sections of a config.ini file for configuring NDB Cluster management
nodes. For detailed descriptions and other additional information about individual parameters, see
Section 18.3.3.9, “NDB Cluster TCP/IP Connections”, Section 18.3.3.11, “NDB Cluster Shared-Memory
Connections”, or Section 18.3.3.12, “SCI Transport Connections in NDB Cluster”, as appropriate.

Restart types.  Changes in NDB Cluster configuration parameters do not take effect until the cluster
is restarted. The type of restart required to change a given parameter is indicated in the summary
tables as follows:

• N—Node restart: The parameter can be updated using a rolling restart (see Section 18.5.5,
“Performing a Rolling Restart of an NDB Cluster”).

• S—System restart: The cluster must be shut down completely, then restarted, to effect a change in
this parameter.

• I—Initial restart: Data nodes must be restarted using the --initial option.

For more information about restart types, see Section 18.3.2, “Overview of NDB Cluster Configuration
Parameters, Options, and Variables”.

Table 18.5 Computer Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

name or IP
address

[none]
HostName

...

N NDB 7.2.0

string

[none]Id

...

IS NDB 7.2.0

Table 18.6 TCP Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

boolean

falseChecksum

true, false

N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2080

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

unsigned

55Group

0 / 200

N NDB 7.2.0

numeric

[none]NodeId1

...

N NDB 7.2.0

numeric

[none]NodeId2

...

N NDB 7.2.0

numeric

[none]NodeIdServer

...

N NDB 7.2.0

bytes

0
OverloadLimit 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

[none]PortNumber

0 / 64K

S NDB 7.2.0

string

[none]Proxy

...

N NDB 7.2.0

bytes

2M
ReceiveBufferMemory 16K /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

2M
SendBufferMemory 256K /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

boolean

[see text]SendSignalId

true, false

N NDB 7.2.0

unsigned
TCP_MAXSEG_SIZE

0
N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2081

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

0 / 2G

unsigned

0TCP_RCV_BUF_SIZE

0 / 2G

N NDB 7.2.0

unsigned

0TCP_SND_BUF_SIZE

0 / 2G

N NDB 7.2.0

boolean

falseTcpBind_INADDR_ANY

true, false

N NDB 7.2.0

Table 18.7 Shared Memory Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

boolean

trueChecksum

true, false

N NDB 7.2.0

unsigned

35Group

0 / 200

N NDB 7.2.0

numeric

[none]NodeId1

...

N NDB 7.2.0

numeric

[none]NodeId2

...

N NDB 7.2.0

numeric

[none]NodeIdServer

...

N NDB 7.2.0

bytes

0
OverloadLimit 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

PortNumber unsigned S NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2082

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

[none]

0 / 64K

boolean

falseSendSignalId

true, false

N NDB 7.2.0

unsigned

[none]
ShmKey 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

bytes

1M
ShmSize 64K /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

[none]
Signum 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

Table 18.8 SCI Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

boolean

falseChecksum

true, false

N NDB 7.2.0

unsigned

15Group

0 / 200

N NDB 7.2.0

unsigned

[none]
Host1SciId0 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

Host1SciId1 unsigned N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2083

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

0

0 /
4294967039
(0xFFFFFEFF)

unsigned

[none]
Host2SciId0 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

0
Host2SciId1 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

numeric

[none]NodeId1

...

N NDB 7.2.0

numeric

[none]NodeId2

...

N NDB 7.2.0

numeric

[none]NodeIdServer

...

N NDB 7.2.0

bytes

0
OverloadLimit 0 /

4294967039
(0xFFFFFEFF)

N NDB 7.2.0

unsigned

[none]PortNumber

0 / 64K

S NDB 7.2.0

unsigned

8KSendLimit

128 / 32K

N NDB 7.2.0

boolean

trueSendSignalId

true, false

N NDB 7.2.0

unsigned
SharedBufferSize

10M
N NDB 7.2.0



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2084

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

64K /
4294967039
(0xFFFFFEFF)

18.3.2.5 NDB Cluster mysqld Option and Variable Reference

The following table provides a list of the command-line options, server and status variables applicable
within mysqld when it is running as an SQL node in an NDB Cluster. For a table showing all
command-line options, server and status variables available for use with mysqld, see Section 5.1.3,
“Server Option and Variable Reference”.

Table 18.9  MySQL Server Options and Variables for NDB Cluster: MySQL Cluster NDB 7.2

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Com_show_ndb_status

No No Yes

No Both No

DESCRIPTION: Count of SHOW NDB STATUS statements.

Handler_discover

No No Yes

No Both No

DESCRIPTION: Number of times that tables have been discovered.

have_ndbcluster

No Yes No

No Global No

DESCRIPTION: Whether mysqld supports NDB Cluster tables (set by --ndbcluster option).

ndb-batch-size

Yes Yes No

Yes Global No

DESCRIPTION: Size (in bytes) to use for NDB transaction batches.

ndb-blob-read-batch-bytes

Yes Yes No

Yes Both Yes

DESCRIPTION: Specifies size in bytes that large BLOB reads should be batched into. 0 = no limit..

ndb-blob-write-batch-bytes

Yes Yes No

Yes Both Yes

DESCRIPTION: Specifies size in bytes that large BLOB writes should be batched into. 0 = no limit..



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2085

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

ndb-cluster-connection-pool

Yes Yes Yes

Yes Global No

DESCRIPTION: Number of connections to the cluster used by MySQL.

ndb-connectstring

Yes No No

Yes No

DESCRIPTION: Point to the management server that distributes the cluster configuration.

ndb-deferred-constraints

Yes Yes No

Yes Both Yes

DESCRIPTION: Specifies that constraint checks on unique indexes (where these are supported)
should be deferred until commit time. Not normally needed or used; for testing purposes only..

ndb-distribution

Yes Yes No

Yes Global Yes

DESCRIPTION: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

ndb-log-apply-status

Yes Yes No

Yes Global No

DESCRIPTION: Cause a MySQL server acting as a slave to log mysql.ndb_apply_status updates
received from its immediate master in its own binary log, using its own server ID. Effective only if the
server is started with the --ndbcluster option..

ndb-log-empty-epochs

Yes Yes No

Yes Global Yes

DESCRIPTION: When enabled, causes epochs in which there were no changes to be written to the
ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled..

ndb-log-empty-update

Yes Yes No

Yes Global Yes

DESCRIPTION: When enabled, causes updates that produced no changes to be written to the
ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled..

ndb-log-orig

Yes Yes No

Yes Global No

DESCRIPTION: Log originating server id and epoch in mysql.ndb_binlog_index table.

ndb-log-transaction-id

Yes Yes No



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2086

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes Global No

DESCRIPTION: Write NDB transaction IDs in the binary log. Requires --log-bin-v1-events=OFF..

ndb-log-update-as-write

Yes Yes No

Yes Global Yes

DESCRIPTION: Toggles logging of updates on the master between updates (OFF) and writes (ON).

ndb-mgmd-host

Yes No No

Yes No

DESCRIPTION: Set the host (and port, if desired) for connecting to management server.

ndb-nodeid

Yes No Yes

Yes Global No

DESCRIPTION: NDB Cluster node ID for this MySQL server.

ndb-transid-mysql-connection-map

Yes No No

No No

DESCRIPTION: Enable or disable the ndb_transid_mysql_connection_map plugin; that is, enable or
disable the INFORMATION_SCHEMA table having that name.

ndb-wait-connected

Yes Yes No

Yes Global No

DESCRIPTION: Time (in seconds) for the MySQL server to wait for connection to cluster
management and data nodes before accepting MySQL client connections.

ndb-wait-setup

Yes Yes No

Yes Global No

DESCRIPTION: Time (in seconds) for the MySQL server to wait for NDB engine setup to complete.

Ndb_api_bytes_received_count

No No Yes

No Global No

DESCRIPTION: Amount of data (in bytes) received from the data nodes by this MySQL Server (SQL
node).

Ndb_api_bytes_received_count_session

No No Yes

No Session No

DESCRIPTION: Amount of data (in bytes) received from the data nodes in this client session.

Ndb_api_bytes_received_count_slave

No No Yes



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2087

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

No Global No

DESCRIPTION: Amount of data (in bytes) received from the data nodes by this slave.

Ndb_api_bytes_sent_count

No No Yes

No Global No

DESCRIPTION: Amount of data (in bytes) sent to the data nodes by this MySQL Server (SQL node).

Ndb_api_bytes_sent_count_session

No No Yes

No Session No

DESCRIPTION: Amount of data (in bytes) sent to the data nodes in this client session.

Ndb_api_bytes_sent_count_slave

No No Yes

No Global No

DESCRIPTION: Amount of data (in bytes) sent to the data nodes by this slave.

Ndb_api_event_bytes_count

No No Yes

No Global No

DESCRIPTION: Number of bytes of events received by this MySQL Server (SQL node).

Ndb_api_event_bytes_count_injector

No No Yes

No Global No

DESCRIPTION: Number of bytes of events received by the NDB binary log injector thread.

Ndb_api_event_data_count

No No Yes

No Global No

DESCRIPTION: Number of row change events received by this MySQL Server (SQL node).

Ndb_api_event_data_count_injector

No No Yes

No Global No

DESCRIPTION: Number of row change events received by the NDB binary log injector thread.

Ndb_api_event_nondata_count

No No Yes

No Global No

DESCRIPTION: Number of events received, other than row change events, by this MySQL Server
(SQL node).

Ndb_api_event_nondata_count_injector

No No Yes

No Global No



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2088

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Number of events received, other than row change events, by the NDB binary log
injector thread.

Ndb_api_pk_op_count

No No Yes

No Global No

DESCRIPTION: Number of operations based on or using primary keys by this MySQL Server (SQL
node).

Ndb_api_pk_op_count_session

No No Yes

No Session No

DESCRIPTION: Number of operations based on or using primary keys in this client session.

Ndb_api_pk_op_count_slave

No No Yes

No Global No

DESCRIPTION: Number of operations based on or using primary keys by this slave.

Ndb_api_pruned_scan_count

No No Yes

No Global No

DESCRIPTION: Number of scans that have been pruned to a single partition by this MySQL Server
(SQL node).

Ndb_api_pruned_scan_count_session

No No Yes

No Session No

DESCRIPTION: Number of scans that have been pruned to a single partition in this client session.

Ndb_api_pruned_scan_count_slave

No No Yes

No Global No

DESCRIPTION: Number of scans that have been pruned to a single partition by this slave.

Ndb_api_range_scan_count

No No Yes

No Global No

DESCRIPTION: Number of range scans that have been started by this MySQL Server (SQL node).

Ndb_api_range_scan_count_session

No No Yes

No Session No

DESCRIPTION: Number of range scans that have been started in this client session.

Ndb_api_range_scan_count_slave

No No Yes

No Global No



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2089

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Number of range scans that have been started by this slave.

Ndb_api_read_row_count

No No Yes

No Global No

DESCRIPTION: Total number of rows that have been read by this MySQL Server (SQL node).

Ndb_api_read_row_count_session

No No Yes

No Session No

DESCRIPTION: Total number of rows that have been read in this client session.

Ndb_api_read_row_count_slave

No No Yes

No Global No

DESCRIPTION: Total number of rows that have been read by this slave.

Ndb_api_scan_batch_count

No No Yes

No Global No

DESCRIPTION: Number of batches of rows received by this MySQL Server (SQL node).

Ndb_api_scan_batch_count_session

No No Yes

No Session No

DESCRIPTION: Number of batches of rows received in this client session.

Ndb_api_scan_batch_count_slave

No No Yes

No Global No

DESCRIPTION: Number of batches of rows received by this slave.

Ndb_api_table_scan_count

No No Yes

No Global No

DESCRIPTION: Number of table scans that have been started, including scans of internal tables, by
this MySQL Server (SQL node).

Ndb_api_table_scan_count_session

No No Yes

No Session No

DESCRIPTION: Number of table scans that have been started, including scans of internal tables, in
this client session.

Ndb_api_table_scan_count_slave

No No Yes

No Global No



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2090

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Number of table scans that have been started, including scans of internal tables, by
this slave.

Ndb_api_trans_abort_count

No No Yes

No Global No

DESCRIPTION: Number of transactions aborted by this MySQL Server (SQL node).

Ndb_api_trans_abort_count_session

No No Yes

No Session No

DESCRIPTION: Number of transactions aborted in this client session.

Ndb_api_trans_abort_count_slave

No No Yes

No Global No

DESCRIPTION: Number of transactions aborted by this slave.

Ndb_api_trans_close_count

No No Yes

No Global No

DESCRIPTION: Number of transactions aborted (may be greater than the sum of
TransCommitCount and TransAbortCount) by this MySQL Server (SQL node).

Ndb_api_trans_close_count_session

No No Yes

No Session No

DESCRIPTION: Number of transactions aborted (may be greater than the sum of
TransCommitCount and TransAbortCount) in this client session.

Ndb_api_trans_close_count_slave

No No Yes

No Global No

DESCRIPTION: Number of transactions aborted (may be greater than the sum of
TransCommitCount and TransAbortCount) by this slave.

Ndb_api_trans_commit_count

No No Yes

No Global No

DESCRIPTION: Number of transactions committed by this MySQL Server (SQL node).

Ndb_api_trans_commit_count_session

No No Yes

No Session No

DESCRIPTION: Number of transactions committed in this client session.

Ndb_api_trans_commit_count_slave

No No Yes



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2091

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

No Global No

DESCRIPTION: Number of transactions committed by this slave.

Ndb_api_trans_local_read_row_count

No No Yes

No Global No

DESCRIPTION: Total number of rows that have been read by this MySQL Server (SQL node).

Ndb_api_trans_local_read_row_count_session

No No Yes

No Session No

DESCRIPTION: Total number of rows that have been read in this client session.

Ndb_api_trans_local_read_row_count_slave

No No Yes

No Global No

DESCRIPTION: Total number of rows that have been read by this slave.

Ndb_api_trans_start_count

No No Yes

No Global No

DESCRIPTION: Number of transactions started by this MySQL Server (SQL node).

Ndb_api_trans_start_count_session

No No Yes

No Session No

DESCRIPTION: Number of transactions started in this client session.

Ndb_api_trans_start_count_slave

No No Yes

No Global No

DESCRIPTION: Number of transactions started by this slave.

Ndb_api_uk_op_count

No No Yes

No Global No

DESCRIPTION: Number of operations based on or using unique keys by this MySQL Server (SQL
node).

Ndb_api_uk_op_count_session

No No Yes

No Session No

DESCRIPTION: Number of operations based on or using unique keys in this client session.

Ndb_api_uk_op_count_slave

No No Yes

No Global No



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2092

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Number of operations based on or using unique keys by this slave.

Ndb_api_wait_exec_complete_count

No No Yes

No Global No

DESCRIPTION: Number of times thread has been blocked while waiting for execution of an
operation to complete by this MySQL Server (SQL node).

Ndb_api_wait_exec_complete_count_session

No No Yes

No Session No

DESCRIPTION: Number of times thread has been blocked while waiting for execution of an
operation to complete in this client session.

Ndb_api_wait_exec_complete_count_slave

No No Yes

No Global No

DESCRIPTION: Number of times thread has been blocked while waiting for execution of an
operation to complete by this slave.

Ndb_api_wait_meta_request_count

No No Yes

No Global No

DESCRIPTION: Number of times thread has been blocked waiting for a metadata-based signal by
this MySQL Server (SQL node).

Ndb_api_wait_meta_request_count_session

No No Yes

No Session No

DESCRIPTION: Number of times thread has been blocked waiting for a metadata-based signal in
this client session.

Ndb_api_wait_meta_request_count_slave

No No Yes

No Global No

DESCRIPTION: Number of times thread has been blocked waiting for a metadata-based signal by
this slave.

Ndb_api_wait_nanos_count

No No Yes

No Global No

DESCRIPTION: Total time (in nanoseconds) spent waiting for some type of signal from the data
nodes by this MySQL Server (SQL node).

Ndb_api_wait_nanos_count_session

No No Yes

No Session No



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2093

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Total time (in nanoseconds) spent waiting for some type of signal from the data
nodes in this client session.

Ndb_api_wait_nanos_count_slave

No No Yes

No Global No

DESCRIPTION: Total time (in nanoseconds) spent waiting for some type of signal from the data
nodes by this slave.

Ndb_api_wait_scan_result_count

No No Yes

No Global No

DESCRIPTION: Number of times thread has been blocked while waiting for a scan-based signal by
this MySQL Server (SQL node).

Ndb_api_wait_scan_result_count_session

No No Yes

No Session No

DESCRIPTION: Number of times thread has been blocked while waiting for a scan-based signal in
this client session.

Ndb_api_wait_scan_result_count_slave

No No Yes

No Global No

DESCRIPTION: Number of times thread has been blocked while waiting for a scan-based signal by
this slave.

ndb_autoincrement_prefetch_sz

Yes Yes No

Yes Both Yes

DESCRIPTION: NDB auto-increment prefetch size.

ndb_cache_check_time

Yes Yes No

Yes Global Yes

DESCRIPTION: Number of milliseconds between checks of cluster SQL nodes made by the MySQL
query cache.

Ndb_cluster_node_id

No No Yes

No Both No

DESCRIPTION: If the server is acting as an NDB Cluster node, then the value of this variable its
node ID in the cluster.

Ndb_config_from_host

No No Yes

No Both No



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2094

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: The host name or IP address of the Cluster management server Formerly
Ndb_connected_host.

Ndb_config_from_port

No No Yes

No Both No

DESCRIPTION: The port for connecting to Cluster management server. Formerly
Ndb_connected_port.

Ndb_conflict_fn_epoch

No No Yes

No Global No

DESCRIPTION: Number of rows that have been found in conflict by the NDB$EPOCH() conflict
detection function.

Ndb_conflict_fn_epoch_trans

No No Yes

No Global No

DESCRIPTION: Number of rows that have been found in conflict by the NDB$EPOCH_TRANS()
conflict detection function.

Ndb_conflict_fn_max

No No Yes

No Global No

DESCRIPTION: If the server is part of an NDB Cluster involved in cluster replication, the value of this
variable indicates the number of times that conflict resolution based on "greater timestamp wins" has
been applied.

Ndb_conflict_fn_old

No No Yes

No Global No

DESCRIPTION: If the server is part of an NDB Cluster involved in cluster replication, the value of
this variable indicates the number of times that "same timestamp wins" conflict resolution has been
applied.

Ndb_conflict_trans_conflict_commit_count

No No Yes

No Global No

DESCRIPTION: Number of epoch transactions committed after requiring transactional conflict
handling.

Ndb_conflict_trans_detect_iter_count

No No Yes

No Global No

DESCRIPTION: Number of internal iterations required to commit an epoch transaction. Should be
(slightly) greater than or equal to Ndb_conflict_trans_conflict_commit_count.

Ndb_conflict_trans_reject_count

No No Yes



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2095

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

No Global No

DESCRIPTION: Number of transactions rejected after being found in conflict by a transactional
conflict function.

Ndb_conflict_trans_row_reject_count

No No Yes

No Global No

DESCRIPTION: Total number of rows realigned after being found in conflict by a transactional
conflict function. Includes Ndb_conflict_trans_row_conflict_count and any rows included in or
dependent on conflicting transactions..

ndb_deferred_constraints

Yes Yes No

Yes Both Yes

DESCRIPTION: Specifies that constraint checks should be deferred (where these are supported).
Not normally needed or used; for testing purposes only..

ndb_distribution

Yes Yes No

Yes Global Yes

DESCRIPTION: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

ndb_eventbuffer_max_alloc

Yes Yes No

Yes Global Yes

DESCRIPTION: Maximum memory that can be allocated for buffering events by the NDB API.
Defaults to 0 (no limit)..

Ndb_execute_count

No No Yes

No Global No

DESCRIPTION: Provides the number of round trips to the NDB kernel made by operations.

ndb_extra_logging

Yes Yes No

Yes Global Yes

DESCRIPTION: Controls logging of NDB Cluster schema, connection, and data distribution events in
the MySQL error log.

ndb_force_send

Yes Yes No

Yes Both Yes

DESCRIPTION: Forces sending of buffers to NDB immediately, without waiting for other threads.

ndb_index_stat_cache_entries

Yes Yes No

Yes Both Yes



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2096

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Sets the granularity of the statistics by determining the number of starting and
ending keys.

ndb_index_stat_enable

Yes Yes No

Yes Both Yes

DESCRIPTION: Use NDB index statistics in query optimization.

ndb_index_stat_option

Yes Yes No

Yes Both Yes

DESCRIPTION: Comma-separated list of tunable options for NDB index statistics; the list should
contain no spaces.

ndb_index_stat_update_freq

Yes Yes No

Yes Both Yes

DESCRIPTION: How often to query data nodes instead of the statistics cache.

ndb_join_pushdown

No Yes No

No Both Yes

DESCRIPTION: Enables pushing down of joins to data nodes.

ndb_log_apply_status

Yes Yes No

Yes Global No

DESCRIPTION: Whether or not a MySQL server acting as a slave logs mysql.ndb_apply_status
updates received from its immediate master in its own binary log, using its own server ID.

ndb_log_bin

Yes Yes No

No Both Yes

DESCRIPTION: Write updates to NDB tables in the binary log. Effective only if binary logging is
enabled with --log-bin..

ndb_log_binlog_index

Yes Yes No

No Global Yes

DESCRIPTION: Insert mapping between epochs and binary log positions into the ndb_binlog_index
table. Defaults to ON. Effective only if binary logging is enabled on the server..

ndb_log_empty_epochs

Yes Yes No

Yes Global Yes

DESCRIPTION: When enabled, epochs in which there were no changes are written to the
ndb_apply_status and ndb_binlog_index tables, even when log_slave_updates is enabled.

ndb_log_empty_update



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2097

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes Yes No

Yes Global Yes

DESCRIPTION: When enabled, updates which produce no changes are written to the
ndb_apply_status and ndb_binlog_index tables, even when log_slave_updates is enabled.

ndb_log_orig

Yes Yes No

Yes Global No

DESCRIPTION: Whether the id and epoch of the originating server are recorded in the
mysql.ndb_binlog_index table. Set using the --ndb-log-orig option when starting mysqld..

ndb_log_transaction_id

No Yes No

No Global No

DESCRIPTION: Whether NDB transaction IDs are written into the binary log (Read-only.).

ndb_log_updated_only

Yes Yes No

Yes Global Yes

DESCRIPTION: Log complete rows (ON) or updates only (OFF).

Ndb_number_of_data_nodes

No No Yes

No Global No

DESCRIPTION: If the server is part of an NDB Cluster, the value of this variable is the number of
data nodes in the cluster.

ndb_optimization_delay

No Yes No

No Global Yes

DESCRIPTION: Sets the number of milliseconds to wait between processing sets of rows by
OPTIMIZE TABLE on NDB tables.

ndb_optimized_node_selection

Yes Yes No

Yes Global No

DESCRIPTION: Determines how an SQL node chooses a cluster data node to use as transaction
coordinator.

Ndb_pruned_scan_count

No No Yes

No Global No

DESCRIPTION: Number of scans executed by NDB since the cluster was last started where partition
pruning could be used.

Ndb_pushed_queries_defined

No No Yes

No Global No



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2098

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Number of joins that API nodes have attempted to push down to the data nodes.

Ndb_pushed_queries_dropped

No No Yes

No Global No

DESCRIPTION: Number of joins that API nodes have tried to push down, but failed.

Ndb_pushed_queries_executed

No No Yes

No Global No

DESCRIPTION: Number of joins successfully pushed down and executed on the data nodes.

Ndb_pushed_reads

No No Yes

No Global No

DESCRIPTION: Number of reads executed on the data nodes by pushed-down joins.

ndb_report_thresh_binlog_epoch_slip

Yes Yes No

Yes Global Yes

DESCRIPTION: NDB 7.5.4 and later: Threshold for number of epochs completely
buffered, but not yet consumed by binlog injector thread which when exceeded generates
BUFFERED_EPOCHS_OVER_THRESHOLD event buffer status message; prior to NDB 7.5.4:
Threshold for number of epochs to lag behind before reporting binary log status.

ndb_report_thresh_binlog_mem_usage

Yes Yes No

Yes Global Yes

DESCRIPTION: This is a threshold on the percentage of free memory remaining before reporting
binary log status.

Ndb_scan_count

No No Yes

No Global No

DESCRIPTION: The total number of scans executed by NDB since the cluster was last started.

ndb_table_no_logging

No Yes No

No Session Yes

DESCRIPTION: NDB tables created when this setting is enabled are not checkpointed to disk
(although table schema files are created). The setting in effect when the table is created with or
altered to use NDBCLUSTER persists for the lifetime of the table..

ndb_table_temporary

No Yes No

No Session Yes

DESCRIPTION: NDB tables are not persistent on disk: no schema files are created and the tables
are not logged.



Overview of NDB Cluster Configuration Parameters, Options, and Variables

2099

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

ndb_use_exact_count

No Yes No

No Both Yes

DESCRIPTION: Use exact row count when planning queries.

ndb_use_transactions

Yes Yes No

Yes Both Yes

DESCRIPTION: Forces NDB to use a count of records during SELECT COUNT(*) query planning to
speed up this type of query.

ndb_version

No Yes No

No Global No

DESCRIPTION: Shows build and NDB engine version as an integer.

ndb_version_string

No Yes No

No Global No

DESCRIPTION: Shows build information including NDB engine version in ndb-x.y.z format.

ndbcluster

Yes No No

Yes No

DESCRIPTION: Enable NDB Cluster (if this version of MySQL supports it).

Disabled by --skip-ndbcluster.

ndbinfo_database

No Yes No

No Global No

DESCRIPTION: The name used for the NDB information database; read only.

ndbinfo_max_bytes

Yes Yes No

No Both Yes

DESCRIPTION: Used for debugging only.

ndbinfo_max_rows

Yes Yes No

No Both Yes

DESCRIPTION: Used for debugging only.

ndbinfo_offline

No Yes No

No Global Yes



NDB Cluster Configuration Files

2100

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Put the ndbinfo database into offline mode, in which no rows are returned from
tables or views.

ndbinfo_show_hidden

Yes Yes No

No Both Yes

DESCRIPTION: Whether to show ndbinfo internal base tables in the mysql client. The default is
OFF..

ndbinfo_table_prefix

Yes Yes No

No Both Yes

DESCRIPTION: The prefix to use for naming ndbinfo internal base tables.

ndbinfo_version

No Yes No

No Global No

DESCRIPTION: The version of the ndbinfo engine; read only.

server-id-bits

Yes Yes No

Yes Global No

DESCRIPTION: Sets the number of least significant bits in the server_id actually used for identifying
the server, permitting NDB API applications to store application data in the most significant bits.
server_id must be less than 2 to the power of this value..

server_id_bits

Yes Yes No

Yes Global No

DESCRIPTION: The effective value of server_id if the server was started with the --server-id-bits
option set to a nondefault value.

slave_allow_batching

Yes Yes No

Yes Global Yes

DESCRIPTION: Turns update batching on and off for a replication slave.

transaction_allow_batching

No Yes No

No Session Yes

DESCRIPTION: Allows batching of statements within a transaction. Disable AUTOCOMMIT to use..

18.3.3 NDB Cluster Configuration Files

Configuring NDB Cluster requires working with two files:

• my.cnf: Specifies options for all NDB Cluster executables. This file, with which you should be
familiar with from previous work with MySQL, must be accessible by each executable running in the
cluster.



NDB Cluster Configuration Files

2101

• config.ini: This file, sometimes known as the global configuration file, is read only by the NDB
Cluster management server, which then distributes the information contained therein to all processes
participating in the cluster. config.ini contains a description of each node involved in the cluster.
This includes configuration parameters for data nodes and configuration parameters for connections
between all nodes in the cluster. For a quick reference to the sections that can appear in this file,
and what sorts of configuration parameters may be placed in each section, see Sections of the
config.ini File.

Caching of configuration data.  In NDB Cluster 7.2, NDB Cluster uses stateful configuration.
Rather than reading the global configuration file every time the management server is restarted, the
management server caches the configuration the first time it is started, and thereafter, the global
configuration file is read only when one of the following conditions is true:

• The management server is started using the --initial option.  When --initial is used, the
global configuration file is re-read, any existing cache files are deleted, and the management server
creates a new configuration cache.

• The management server is started using the --reload option.  The --reload option causes
the management server to compare its cache with the global configuration file. If they differ,
the management server creates a new configuration cache; any existing configuration cache is
preserved, but not used. If the management server's cache and the global configuration file contain
the same configuration data, then the existing cache is used, and no new cache is created.

• The management server is started using --config-cache=FALSE.  This disables --
config-cache (enabled by default), and can be used to force the management server to bypass
configuration caching altogether. In this case, the management server ignores any configuration files
that may be present, always reading its configuration data from the config.ini file instead.

• No configuration cache is found.  In this case, the management server reads the global
configuration file and creates a cache containing the same configuration data as found in the file.

Configuration cache files.  The management server by default creates configuration cache files
in a directory named mysql-cluster in the MySQL installation directory. (If you build NDB Cluster
from source on a Unix system, the default location is /usr/local/mysql-cluster.) This can be
overridden at runtime by starting the management server with the --configdir option. Configuration
cache files are binary files named according to the pattern ndb_node_id_config.bin.seq_id,
where node_id is the management server's node ID in the cluster, and seq_id is a cache idenitifer.
Cache files are numbered sequentially using seq_id, in the order in which they are created. The
management server uses the latest cache file as determined by the seq_id.

Note

It is possible to roll back to a previous configuration by deleting later
configuration cache files, or by renaming an earlier cache file so that it has a
higher seq_id. However, since configuration cache files are written in a binary
format, you should not attempt to edit their contents by hand.

For more information about the --configdir, --config-cache, --initial, and --reload
options for the NDB Cluster management server, see Section 18.4.4, “ndb_mgmd — The NDB Cluster
Management Server Daemon”.

We are continuously making improvements in Cluster configuration and attempting to simplify this
process. Although we strive to maintain backward compatibility, there may be times when introduce an
incompatible change. In such cases we will try to let Cluster users know in advance if a change is not
backward compatible. If you find such a change and we have not documented it, please report it in the
MySQL bugs database using the instructions given in Section 1.6, “How to Report Bugs or Problems”.

18.3.3.1 NDB Cluster Configuration: Basic Example

To support NDB Cluster, you will need to update my.cnf as shown in the following example. You may
also specify these parameters on the command line when invoking the executables.



NDB Cluster Configuration Files

2102

Note

The options shown here should not be confused with those that are used
in config.ini global configuration files. Global configuration options are
discussed later in this section.

# my.cnf
# example additions to my.cnf for NDB Cluster
# (valid in MySQL 5.5)

# enable ndbcluster storage engine, and provide connection string for
# management server host (default port is 1186)
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com

# provide connection string for management server host (default port: 1186)
[ndbd]
connect-string=ndb_mgmd.mysql.com

# provide connection string for management server host (default port: 1186)
[ndb_mgm]
connect-string=ndb_mgmd.mysql.com

# provide location of cluster configuration file
[ndb_mgmd]
config-file=/etc/config.ini

(For more information on connection strings, see Section 18.3.3.3, “NDB Cluster Connection Strings”.)

# my.cnf
# example additions to my.cnf for NDB Cluster
# (will work on all versions)

# enable ndbcluster storage engine, and provide connection string for management
# server host to the default port 1186
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com:1186

Important

Once you have started a mysqld process with the NDBCLUSTER and ndb-
connectstring parameters in the [mysqld] in the my.cnf file as shown
previously, you cannot execute any CREATE TABLE or ALTER TABLE
statements without having actually started the cluster. Otherwise, these
statements will fail with an error. This is by design.

You may also use a separate [mysql_cluster] section in the cluster my.cnf file for settings to be
read and used by all executables:

# cluster-specific settings
[mysql_cluster]
ndb-connectstring=ndb_mgmd.mysql.com:1186

For additional NDB variables that can be set in the my.cnf file, see NDB Cluster System Variables.

The NDB Cluster global configuration file is by convention named config.ini (but this is not
required). If needed, it is read by ndb_mgmd at startup and can be placed in any location that
can be read by it. The location and name of the configuration are specified using --config-
file=path_name with ndb_mgmd on the command line. This option has no default value, and is
ignored if ndb_mgmd uses the configuration cache.



NDB Cluster Configuration Files

2103

The global configuration file for NDB Cluster uses INI format, which consists of sections preceded
by section headings (surrounded by square brackets), followed by the appropriate parameter names
and values. One deviation from the standard INI format is that the parameter name and value can be
separated by a colon (:) as well as the equal sign (=); however, the equal sign is preferred. Another
deviation is that sections are not uniquely identified by section name. Instead, unique sections (such as
two different nodes of the same type) are identified by a unique ID specified as a parameter within the
section.

Default values are defined for most parameters, and can also be specified in config.ini. To create
a default value section, simply add the word default to the section name. For example, an [ndbd]
section contains parameters that apply to a particular data node, whereas an [ndbd default]
section contains parameters that apply to all data nodes. Suppose that all data nodes should use the
same data memory size. To configure them all, create an [ndbd default] section that contains a
DataMemory line to specify the data memory size.

Note

In some older releases of NDB Cluster, there was no default value for
NoOfReplicas, which always had to be specified explicitly in the [ndbd
default] section. Although this parameter now has a default value of 2,
which is the recommended setting in most common usage scenarios, it is still
recommended practice to set this parameter explicitly.

The global configuration file must define the computers and nodes involved in the cluster and on which
computers these nodes are located. An example of a simple configuration file for a cluster consisting of
one management server, two data nodes and two MySQL servers is shown here:

# file "config.ini" - 2 data nodes and 2 SQL nodes
# This file is placed in the startup directory of ndb_mgmd (the
# management server)
# The first MySQL Server can be started from any host. The second
# can be started only on the host mysqld_5.mysql.com

[ndbd default]
NoOfReplicas= 2
DataDir= /var/lib/mysql-cluster

[ndb_mgmd]
Hostname= ndb_mgmd.mysql.com
DataDir= /var/lib/mysql-cluster

[ndbd]
HostName= ndbd_2.mysql.com

[ndbd]
HostName= ndbd_3.mysql.com

[mysqld]
[mysqld]
HostName= mysqld_5.mysql.com

Note

The preceding example is intended as a minimal starting configuration for
purposes of familiarization with NDB Cluster, and is almost certain not to be
sufficient for production settings. See Section 18.3.3.2, “Recommended Starting
Configuration for NDB Cluster”, which provides a more complete example
starting configuration.

Each node has its own section in the config.ini file. For example, this cluster has two data nodes,
so the preceding configuration file contains two [ndbd] sections defining these nodes.



NDB Cluster Configuration Files

2104

Note

Do not place comments on the same line as a section heading in the
config.ini file; this causes the management server not to start because it
cannot parse the configuration file in such cases.

Sections of the config.ini File

There are six different sections that you can use in the config.ini configuration file, as described in
the following list:

• [computer]: Defines cluster hosts. This is not required to configure a viable NDB Cluster, but
be may used as a convenience when setting up a large cluster. See Section 18.3.3.4, “Defining
Computers in an NDB Cluster”, for more information.

• [ndbd]: Defines a cluster data node (ndbd process). See Section 18.3.3.6, “Defining NDB Cluster
Data Nodes”, for details.

• [mysqld]: Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a
discussion of SQL node configuration, see Section 18.3.3.7, “Defining SQL and Other API Nodes in
an NDB Cluster”.

• [mgm] or [ndb_mgmd]: Defines a cluster management server (MGM) node. For information
concerning the configuration of management nodes, see Section 18.3.3.5, “Defining an NDB Cluster
Management Server”.

• [tcp]: Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default
connection protocol. Normally, [tcp] or [tcp default] sections are not required to set up
an NDB Cluster, as the cluster handles this automatically; however, it may be necessary in some
situations to override the defaults provided by the cluster. See Section 18.3.3.9, “NDB Cluster
TCP/IP Connections”, for information about available TCP/IP configuration parameters and how to
use them. (You may also find Section 18.3.3.10, “NDB Cluster TCP/IP Connections Using Direct
Connections” to be of interest in some cases.)

• [shm]: Defines shared-memory connections between nodes. In MySQL 5.5, it is enabled by
default, but should still be considered experimental. For a discussion of SHM interconnects, see
Section 18.3.3.11, “NDB Cluster Shared-Memory Connections”.

• [sci]: Defines Scalable Coherent Interface connections between cluster data nodes. Not supported
in NDB 7.2 or later.

You can define default values for each section. All Cluster parameter names are case-insensitive,
which differs from parameters specified in my.cnf or my.ini files.

18.3.3.2 Recommended Starting Configuration for NDB Cluster

Achieving the best performance from an NDB Cluster depends on a number of factors including the
following:

• NDB Cluster software version

• Numbers of data nodes and SQL nodes

• Hardware

• Operating system

• Amount of data to be stored

• Size and type of load under which the cluster is to operate

Therefore, obtaining an optimum configuration is likely to be an iterative process, the outcome of
which can vary widely with the specifics of each NDB Cluster deployment. Changes in configuration



NDB Cluster Configuration Files

2105

are also likely to be indicated when changes are made in the platform on which the cluster is run, or
in applications that use the NDB Cluster's data. For these reasons, it is not possible to offer a single
configuration that is ideal for all usage scenarios. However, in this section, we provide a recommended
base configuration.

Starting config.ini file.  The following config.ini file is a recommended starting point for
configuring a cluster running NDB Cluster 7.2:

# TCP PARAMETERS

[tcp default]
SendBufferMemory=2M
ReceiveBufferMemory=2M

# Increasing the sizes of these 2 buffers beyond the default values
# helps prevent bottlenecks due to slow disk I/O.

# MANAGEMENT NODE PARAMETERS

[ndb_mgmd default]
DataDir=path/to/management/server/data/directory

# It is possible to use a different data directory for each management
# server, but for ease of administration it is preferable to be
# consistent.

[ndb_mgmd]
HostName=management-server-A-hostname
# NodeId=management-server-A-nodeid

[ndb_mgmd]
HostName=management-server-B-hostname
# NodeId=management-server-B-nodeid

# Using 2 management servers helps guarantee that there is always an
# arbitrator in the event of network partitioning, and so is
# recommended for high availability. Each management server must be
# identified by a HostName. You may for the sake of convenience specify
# a NodeId for any management server, although one will be allocated
# for it automatically; if you do so, it must be in the range 1-255
# inclusive and must be unique among all IDs specified for cluster
# nodes.

# DATA NODE PARAMETERS

[ndbd default]
NoOfReplicas=2

# Using 2 replicas is recommended to guarantee availability of data;
# using only 1 replica does not provide any redundancy, which means
# that the failure of a single data node causes the entire cluster to
# shut down. We do not recommend using more than 2 replicas, since 2 is
# sufficient to provide high availability, and we do not currently test
# with greater values for this parameter.

LockPagesInMainMemory=1

# On Linux and Solaris systems, setting this parameter locks data node
# processes into memory. Doing so prevents them from swapping to disk,
# which can severely degrade cluster performance.

DataMemory=3072M
IndexMemory=384M

# The values provided for DataMemory and IndexMemory assume 4 GB RAM
# per data node. However, for best results, you should first calculate
# the memory that would be used based on the data you actually plan to
# store (you may find the ndb_size.pl utility helpful in estimating
# this), then allow an extra 20% over the calculated values. Naturally,
# you should ensure that each data node host has at least as much



NDB Cluster Configuration Files

2106

# physical memory as the sum of these two values.

# ODirect=1

# Enabling this parameter causes NDBCLUSTER to try using O_DIRECT
# writes for local checkpoints and redo logs; this can reduce load on
# CPUs. We recommend doing so when using NDB Cluster on systems running
# Linux kernel 2.6 or later.

NoOfFragmentLogFiles=300
DataDir=path/to/data/node/data/directory
MaxNoOfConcurrentOperations=100000

SchedulerSpinTimer=400
SchedulerExecutionTimer=100
RealTimeScheduler=1
# Setting these parameters allows you to take advantage of real-time scheduling
# of NDB threads to achieve increased throughput when using ndbd. They
# are not needed when using ndbmtd; in particular, you should not set
# RealTimeScheduler for ndbmtd data nodes.

TimeBetweenGlobalCheckpoints=1000
TimeBetweenEpochs=200
DiskCheckpointSpeed=10M
DiskCheckpointSpeedInRestart=100M
RedoBuffer=32M

# CompressedLCP=1
# CompressedBackup=1
# Enabling CompressedLCP and CompressedBackup causes, respectively, local
checkpoint files and backup files to be compressed, which can result in a space
savings of up to 50% over noncompressed LCPs and backups.

# MaxNoOfLocalScans=64
MaxNoOfTables=1024
MaxNoOfOrderedIndexes=256

[ndbd]
HostName=data-node-A-hostname
# NodeId=data-node-A-nodeid

LockExecuteThreadToCPU=1
LockMaintThreadsToCPU=0
# On systems with multiple CPUs, these parameters can be used to lock NDBCLUSTER
# threads to specific CPUs

[ndbd]
HostName=data-node-B-hostname
# NodeId=data-node-B-nodeid

LockExecuteThreadToCPU=1
LockMaintThreadsToCPU=0

# You must have an [ndbd] section for every data node in the cluster;
# each of these sections must include a HostName. Each section may
# optionally include a NodeId for convenience, but in most cases, it is
# sufficient to allow the cluster to allocate node IDs dynamically. If
# you do specify the node ID for a data node, it must be in the range 1
# to 48 inclusive and must be unique among all IDs specified for
# cluster nodes.

# SQL NODE / API NODE PARAMETERS

[mysqld]
# HostName=sql-node-A-hostname
# NodeId=sql-node-A-nodeid

[mysqld]

[mysqld]

# Each API or SQL node that connects to the cluster requires a [mysqld]



NDB Cluster Configuration Files

2107

# or [api] section of its own. Each such section defines a connection
# “slot”; you should have at least as many of these sections in the
# config.ini file as the total number of API nodes and SQL nodes that
# you wish to have connected to the cluster at any given time. There is
# no performance or other penalty for having extra slots available in
# case you find later that you want or need more API or SQL nodes to
# connect to the cluster at the same time.
# If no HostName is specified for a given [mysqld] or [api] section,
# then any API or SQL node may use that slot to connect to the
# cluster. You may wish to use an explicit HostName for one connection slot
# to guarantee that an API or SQL node from that host can always
# connect to the cluster. If you wish to prevent API or SQL nodes from
# connecting from other than a desired host or hosts, then use a
# HostName for every [mysqld] or [api] section in the config.ini file.
# You can if you wish define a node ID (NodeId parameter) for any API or
# SQL node, but this is not necessary; if you do so, it must be in the
# range 1 to 255 inclusive and must be unique among all IDs specified
# for cluster nodes.

Recommended my.cnf options for SQL nodes.  MySQL Servers acting as NDB Cluster SQL
nodes must always be started with the --ndbcluster and --ndb-connectstring options, either
on the command line or in my.cnf. In addition, set the following options for all mysqld processes in
the cluster, unless your setup requires otherwise:

• --ndb-use-exact-count=0

• --ndb-index-stat-enable=0

• --ndb-force-send=1

• --engine-condition-pushdown=1

18.3.3.3 NDB Cluster Connection Strings

With the exception of the NDB Cluster management server (ndb_mgmd), each node that is part
of an NDB Cluster requires a connection string that points to the management server's location.
This connection string is used in establishing a connection to the management server as well as in
performing other tasks depending on the node's role in the cluster. The syntax for a connection string is
as follows:

[nodeid=node_id, ]host-definition[, host-definition[, ...]]

host-definition:
    host_name[:port_number]

node_id is an integer greater than or equal to 1 which identifies a node in config.ini. host_name
is a string representing a valid Internet host name or IP address. port_number is an integer referring
to a TCP/IP port number.

example 1 (long):    "nodeid=2,myhost1:1100,myhost2:1100,192.168.0.3:1200"
example 2 (short):   "myhost1"

localhost:1186 is used as the default connection string value if none is provided. If port_num is
omitted from the connection string, the default port is 1186. This port should always be available on the
network because it has been assigned by IANA for this purpose (see http://www.iana.org/assignments/
port-numbers for details).

By listing multiple host definitions, it is possible to designate several redundant management servers.
An NDB Cluster data or API node attempts to contact successive management servers on each host in
the order specified, until a successful connection has been established.

It is also possible to specify in a connection string one or more bind addresses to be used by nodes
having multiple network interfaces for connecting to management servers. A bind address consists of

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers


NDB Cluster Configuration Files

2108

a hostname or network address and an optional port number. This enhanced syntax for connection
strings is shown here:

[nodeid=node_id, ]
    [bind-address=host-definition, ]
    host-definition[; bind-address=host-definition]
    host-definition[; bind-address=host-definition]
    [, ...]]

host-definition:
    host_name[:port_number]

If a single bind address is used in the connection string prior to specifying any management hosts,
then this address is used as the default for connecting to any of them (unless overridden for a given
management server; see later in this section for an example). For example, the following connection
string causes the node to use 192.168.178.242 regardless of the management server to which it
connects:

bind-address=192.168.178.242, poseidon:1186, perch:1186

If a bind address is specified following a management host definition, then it is used only for connecting
to that management node. Consider the following connection string:

poseidon:1186;bind-address=localhost, perch:1186;bind-address=192.168.178.242

In this case, the node uses localhost to connect to the management server running on the host
named poseidon and 192.168.178.242 to connect to the management server running on the host
named perch.

You can specify a default bind address and then override this default for one or more specific
management hosts. In the following example, localhost is used for connecting to the management
server running on host poseidon; since 192.168.178.242 is specified first (before any
management server definitions), it is the default bind address and so is used for connecting to the
management servers on hosts perch and orca:

bind-address=192.168.178.242,poseidon:1186;bind-address=localhost,perch:1186,orca:2200

There are a number of different ways to specify the connection string:

• Each executable has its own command-line option which enables specifying the management server
at startup. (See the documentation for the respective executable.)

• It is also possible to set the connection string for all nodes in the cluster at once by placing it in a
[mysql_cluster] section in the management server's my.cnf file.

• For backward compatibility, two other options are available, using the same syntax:

1. Set the NDB_CONNECTSTRING environment variable to contain the connection string.

2. Write the connection string for each executable into a text file named Ndb.cfg and place this file
in the executable's startup directory.

However, these are now deprecated and should not be used for new installations.

The recommended method for specifying the connection string is to set it on the command line or in the
my.cnf file for each executable.

18.3.3.4 Defining Computers in an NDB Cluster

The [computer] section has no real significance other than serving as a way to avoid the need of
defining host names for each node in the system. All parameters mentioned here are required.



NDB Cluster Configuration Files

2109

• Id

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 string [none] ... IS

This is a unique identifier, used to refer to the host computer elsewhere in the configuration file.

Important

The computer ID is not the same as the node ID used for a management,
API, or data node. Unlike the case with node IDs, you cannot use NodeId in
place of Id in the [computer] section of the config.ini file.

• HostName

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name or IP
address

[none] ... N

This is the computer's hostname or IP address.

18.3.3.5 Defining an NDB Cluster Management Server

The [ndb_mgmd] section is used to configure the behavior of the management server. If multiple
management servers are employed, you can specify parameters common to all of them in an
[ndb_mgmd default] section. [mgm] and [mgm default] are older aliases for these, supported
for backward compatibility.

All parameters in the following list are optional and assume their default values if omitted.

Note

If neither the ExecuteOnComputer nor the HostName parameter is present,
the default value localhost will be assumed for both.

•  Id

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 1 - 255 IS

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255, inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of
node.

Note

Data node IDs must be less than 49. If you plan to deploy a large number of
data nodes, it is a good idea to limit the node IDs for management nodes (and
API nodes) to values greater than 48.

The use of the Id parameter for identifying management nodes is deprecated in favor of NodeId.
Although Id continues to be supported for backward compatibility, it now generates a warning and is
subject to removal in a future version of NDB Cluster.

•  NodeId

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 1 - 255 IS



NDB Cluster Configuration Files

2110

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255 inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of
node.

Note

Data node IDs must be less than 49. If you plan to deploy a large number of
data nodes, it is a good idea to limit the node IDs for management nodes (and
API nodes) to values greater than 48.

NodeId is the preferred parameter name to use when identifying management nodes. Although the
older Id continues to be supported for backward compatibility, it is now deprecated and generates a
warning when used; it is also subject to removal in a future NDB Cluster release.

•  ExecuteOnComputer

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name [none] ... S

This refers to the Id set for one of the computers defined in a [computer] section of the
config.ini file.

•  PortNumber

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 1186 0 - 64K S

This is the port number on which the management server listens for configuration requests and
management commands.

•  HostName

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name or IP
address

[none] ... N

Specifying this parameter defines the hostname of the computer on which the management
node is to reside. To specify a hostname other than localhost, either this parameter or
ExecuteOnComputer is required.

•  LogDestination

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 {CONSOLE|
SYSLOG|FILE}

[see text] ... N

This parameter specifies where to send cluster logging information. There are three options in this
regard—CONSOLE, SYSLOG, and FILE—with FILE being the default:

• CONSOLE outputs the log to stdout:

CONSOLE

• SYSLOG sends the log to a syslog facility, possible values being one of auth, authpriv,
cron, daemon, ftp, kern, lpr, mail, news, syslog, user, uucp, local0, local1, local2,
local3, local4, local5, local6, or local7.



NDB Cluster Configuration Files

2111

Note

Not every facility is necessarily supported by every operating system.

SYSLOG:facility=syslog

• FILE pipes the cluster log output to a regular file on the same machine. The following values can
be specified:

• filename: The name of the log file.

In NDB 7.2.6 and earlier, the log file's default name, used if FILE was specified without also
setting filename, was logger.log. Beginning with NDB 7.2.7, the default log file name used
in such cases is ndb_nodeid_cluster.log.

• maxsize: The maximum size (in bytes) to which the file can grow before logging rolls over to a
new file. When this occurs, the old log file is renamed by appending .N to the file name, where N
is the next number not yet used with this name.

• maxfiles: The maximum number of log files.

FILE:filename=cluster.log,maxsize=1000000,maxfiles=6

The default value for the FILE parameter is
FILE:filename=ndb_node_id_cluster.log,maxsize=1000000,maxfiles=6, where
node_id is the ID of the node.

It is possible to specify multiple log destinations separated by semicolons as shown here:

CONSOLE;SYSLOG:facility=local0;FILE:filename=/var/log/mgmd

•  ArbitrationRank

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 0-2 1 0 - 2 N

This parameter is used to define which nodes can act as arbitrators. Only management nodes and
SQL nodes can be arbitrators. ArbitrationRank can take one of the following values:

• 0: The node will never be used as an arbitrator.

• 1: The node has high priority; that is, it will be preferred as an arbitrator over low-priority nodes.

• 2: Indicates a low-priority node which be used as an arbitrator only if a node with a higher priority
is not available for that purpose.

Normally, the management server should be configured as an arbitrator by setting its
ArbitrationRank to 1 (the default for management nodes) and those for all SQL nodes to 0 (the
default for SQL nodes).

You can disable arbitration completely either by setting ArbitrationRank to 0 on all management
and SQL nodes, or by setting the Arbitration parameter in the [ndbd default] section
of the config.ini global configuration file. Setting Arbitration causes any settings for
ArbitrationRank to be disregarded.

•  ArbitrationDelay



NDB Cluster Configuration Files

2112

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 0 0 - 4294967039
(0xFFFFFEFF)

N

An integer value which causes the management server's responses to arbitration requests to be
delayed by that number of milliseconds. By default, this value is 0; it is normally not necessary to
change it.

•  DataDir

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 path . ... N

This specifies the directory where output files from the management server will be placed. These
files include cluster log files, process output files, and the daemon's process ID (PID) file. (For
log files, this location can be overridden by setting the FILE parameter for LogDestination as
discussed previously in this section.)

The default value for this parameter is the directory in which ndb_mgmd is located.

•  PortNumberStats

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 0 - 64K N

This parameter specifies the port number used to obtain statistical information from an NDB Cluster
management server. It has no default value.

•  Wan

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

Use WAN TCP setting as default.

•  HeartbeatThreadPriority

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 string [none] ... S

Set the scheduling policy and priority of heartbeat threads for management and API nodes.

The syntax for setting this parameter is shown here:

HeartbeatThreadPriority = policy[, priority]

policy:
  {FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FIFO (first in, first out) or RR
(round robin). The policy value is followed optionally by the priority (an integer).

•  ExtraSendBufferMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.14 bytes 0 0 - 32G N



NDB Cluster Configuration Files

2113

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any
that has been set using TotalSendBufferMemory, SendBufferMemory, or both.

This parameter was added in NDB 7.2.14. (Bug #14555359)

•  TotalSendBufferMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 0 256K -
4294967039
(0xFFFFFEFF)

N

This parameter is used to determine the total amount of memory to allocate on this node for shared
send buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has
not been set. For more detailed information, see Section 18.3.3.13, “Configuring NDB Cluster Send
Buffer Parameters”.

•  HeartbeatIntervalMgmdMgmd

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.12 milliseconds 1500 100 - 4294967039
(0xFFFFFEFF)

N

Specify the interval between heartbeat messages used to determine whether another management
node is on contact with this one. The management node waits after 3 of these intervals to declare the
connection dead; thus, the default setting of 1500 milliseconds causes the management node to wait
for approximately 1600 ms before timing out.

This parameter was added in NDB 7.2.12. (Bug #16426805, Bug #17807768)

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.

To add new management servers to a running NDB Cluster, it is also necessary
to perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using
multiple management nodes, see Section 18.1.6.10, “Limitations Relating to
Multiple NDB Cluster Nodes”.

18.3.3.6 Defining NDB Cluster Data Nodes

The [ndbd] and [ndbd default] sections are used to configure the behavior of the cluster's data
nodes.

[ndbd] and [ndbd default] are always used as the section names whether you are using ndbd or
ndbmtd binaries for the data node processes.

There are many parameters which control buffer sizes, pool sizes, timeouts, and so forth. The only
mandatory parameter is either one of ExecuteOnComputer or HostName; this must be defined in the
local [ndbd] section.

The parameter NoOfReplicas should be defined in the [ndbd default] section, as it is common to
all Cluster data nodes. It is not strictly necessary to set NoOfReplicas, but it is good practice to set it
explicitly.



NDB Cluster Configuration Files

2114

Most data node parameters are set in the [ndbd default] section. Only those parameters explicitly
stated as being able to set local values are permitted to be changed in the [ndbd] section. Where
present, HostName, NodeId and ExecuteOnComputer must be defined in the local [ndbd] section,
and not in any other section of config.ini. In other words, settings for these parameters are specific
to one data node.

For those parameters affecting memory usage or buffer sizes, it is possible to use K, M, or G as a suffix
to indicate units of 1024, 1024×1024, or 1024×1024×1024. (For example, 100K means 100 × 1024 =
102400.) Parameter names and values are currently case-sensitive.

Information about configuration parameters specific to NDB Cluster Disk Data tables can be found later
in this section (see Disk Data Configuration Parameters).

All of these parameters also apply to ndbmtd (the multi-threaded version of ndbd). Three additional
data node configuration parameters—MaxNoOfExecutionThreads, ThreadConfig, and
NoOfFragmentLogParts—apply to ndbmtd only; these have no effect when used with ndbd. For
more information, see Multi-Threading Configuration Parameters (ndbmtd). See also Section 18.4.3,
“ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”.

Identifying data nodes.  The NodeId or Id value (that is, the data node identifier) can be allocated
on the command line when the node is started or in the configuration file.

•  Id

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 1 - 48 IS

A unique node ID is used as the node's address for all cluster internal messages. For data nodes,
this is an integer in the range 1 to 48 inclusive. Each node in the cluster must have a unique
identifier.

NodeId is the preferred parameter name to use when identifying data nodes. Although the older Id
is still supported for backward compatibility, it is now deprecated, and generates a warning when
used. Id is also subject to removal in a future NDB Cluster release.

•  NodeId

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 1 - 48 IS

A unique node ID is used as the node's address for all cluster internal messages. For data nodes,
this is an integer in the range 1 to 48 inclusive. Each node in the cluster must have a unique
identifier.

NodeId is the preferred parameter name to use when identifying data nodes. Although Id continues
to be supported for backward compatibility, it is now deprecated, generates a warning when used,
and is subject to removal in a future version of NDB Cluster.

•  ExecuteOnComputer

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name [none] ... S

This refers to the Id set for one of the computers defined in a [computer] section.

•  HostName



NDB Cluster Configuration Files

2115

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name or IP
address

localhost ... N

Specifying this parameter defines the hostname of the computer on which the data node is to reside.
To specify a hostname other than localhost, either this parameter or ExecuteOnComputer is
required.

•  ServerPort

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 1 - 64K S

Each node in the cluster uses a port to connect to other nodes. By default, this port is allocated
dynamically in such a way as to ensure that no two nodes on the same host computer receive the
same port number, so it should normally not be necessary to specify a value for this parameter.

However, if you need to be able to open specific ports in a firewall to permit communication between
data nodes and API nodes (including SQL nodes), you can set this parameter to the number of
the desired port in an [ndbd] section or (if you need to do this for multiple data nodes) the [ndbd
default] section of the config.ini file, and then open the port having that number for incoming
connections from SQL nodes, API nodes, or both.

Note

Connections from data nodes to management nodes is done using the
ndb_mgmd management port (the management server's PortNumber; see
Section 18.3.3.5, “Defining an NDB Cluster Management Server”) so outgoing
connections to that port from any data nodes should always be permitted.

• TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

•  NodeGroup

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0  [none] 0 - 65536 IS

This parameter can be used to assign a data node to a specific node group. It is read only when the
cluster is started for the first time, and cannot be used to reassign a data node to a different node
group online. It is generally not desirable to use this parameter in the [ndbd default] section of
the config.ini file, and care must be taken not to assign nodes to node groups in such a way that
an invalid numbers of nodes are assigned to any node groups.

The NodeGroup parameter is chiefly intended for use in adding a new node group to a running NDB
Cluster without having to perform a rolling restart. For this purpose, you should set it to 65536 (the
maximum value). You are not required to set a NodeGroup value for all cluster data nodes, only for
those nodes which are to be started and added to the cluster as a new node group at a later time.
For more information, see Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed
Example”.

•  NoOfReplicas

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 2 1 - 4 IS



NDB Cluster Configuration Files

2116

This global parameter can be set only in the [ndbd default] section, and defines the number of
replicas for each table stored in the cluster. This parameter also specifies the size of node groups. A
node group is a set of nodes all storing the same information.

Node groups are formed implicitly. The first node group is formed by the set of data nodes with the
lowest node IDs, the next node group by the set of the next lowest node identities, and so on. By way
of example, assume that we have 4 data nodes and that NoOfReplicas is set to 2. The four data
nodes have node IDs 2, 3, 4 and 5. Then the first node group is formed from nodes 2 and 3, and the
second node group by nodes 4 and 5. It is important to configure the cluster in such a manner that
nodes in the same node groups are not placed on the same computer because a single hardware
failure would cause the entire cluster to fail.

If no node IDs are provided, the order of the data nodes will be the determining factor for the node
group. Whether or not explicit assignments are made, they can be viewed in the output of the
management client's SHOW command.

The default value for NoOfReplicas is 2. This is the recommended value for most production
environments.

Important

While the maximum possible value for this parameter is 4, setting
NoOfReplicas to a value greater than 2 is not supported in production.

Warning

Setting NoOfReplicas to 1 means that there is only a single copy of all
Cluster data; in this case, the loss of a single data node causes the cluster to
fail because there are no additional copies of the data stored by that node.

The value for this parameter must divide evenly into the number of data nodes in the cluster. For
example, if there are two data nodes, then NoOfReplicas must be equal to either 1 or 2, since 2/3
and 2/4 both yield fractional values; if there are four data nodes, then NoOfReplicas must be equal
to 1, 2, or 4.

•  DataDir

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 path . ... IN

This parameter specifies the directory where trace files, log files, pid files and error logs are placed.

The default is the data node process working directory.

•  FileSystemPath

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 path DataDir ... IN

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO logs
(for Disk Data tables), and data files are placed. The default is the directory specified by DataDir.

Note

This directory must exist before the ndbd process is initiated.



NDB Cluster Configuration Files

2117

The recommended directory hierarchy for NDB Cluster includes /var/lib/mysql-cluster, under
which a directory for the node's file system is created. The name of this subdirectory contains the
node ID. For example, if the node ID is 2, this subdirectory is named ndb_2_fs.

•  BackupDataDir

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 path [see text] ... IN

This parameter specifies the directory in which backups are placed.

Important

The string '/BACKUP' is always appended to this value. For example, if you
set the value of BackupDataDir to /var/lib/cluster-data, then
all backups are stored under /var/lib/cluster-data/BACKUP. This
also means that the effective default backup location is the directory named
BACKUP under the location specified by the FileSystemPath parameter.

Data Memory, Index Memory, and String Memory

DataMemory and IndexMemory are [ndbd] parameters specifying the size of memory segments
used to store the actual records and their indexes. In setting values for these, it is important to
understand how DataMemory and IndexMemory are used, as they usually need to be updated to
reflect actual usage by the cluster:

•  DataMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 80M 1M - 1024G N

This parameter defines the amount of space (in bytes) available for storing database records. The
entire amount specified by this value is allocated in memory, so it is extremely important that the
machine has sufficient physical memory to accommodate it.

The memory allocated by DataMemory is used to store both the actual records and indexes. There
is a 16-byte overhead on each record; an additional amount for each record is incurred because it
is stored in a 32KB page with 128 byte page overhead (see below). There is also a small amount
wasted per page due to the fact that each record is stored in only one page.

For variable-size table attributes, the data is stored on separate data pages, allocated from
DataMemory. Variable-length records use a fixed-size part with an extra overhead of 4 bytes to
reference the variable-size part. The variable-size part has 2 bytes overhead plus 2 bytes per
attribute.

The maximum record size is 14000 bytes.

The memory space defined by DataMemory is also used to store ordered indexes, which use about
10 bytes per record. Each table row is represented in the ordered index. A common error among
users is to assume that all indexes are stored in the memory allocated by IndexMemory, but this
is not the case: Only primary key and unique hash indexes use this memory; ordered indexes use
the memory allocated by DataMemory. However, creating a primary key or unique hash index
also creates an ordered index on the same keys, unless you specify USING HASH in the index
creation statement. This can be verified by running ndb_desc -d db_name table_name in the
management client.

NDB Cluster can use a maximum of 512 MB for hash indexes per partition, which means in some
cases it is possible to get Table is full errors in MySQL client applications even when ndb_mgm



NDB Cluster Configuration Files

2118

-e "ALL REPORT MEMORYUSAGE" shows significant free DataMemory. This can also pose a
problem with data node restarts on nodes that are heavily loaded with data. You can force NDB to
create extra partitions for NDB Cluster tables and thus have more memory available for hash indexes
by using the MAX_ROWS option for CREATE TABLE. In general, setting MAX_ROWS to twice the
number of rows that you expect to store in the table should be sufficient. In NDB 7.2.3 and later, you
can also use the MinFreePct configuration parameter to help avoid problems with node restarts.
(Bug #13436216)

The memory space allocated by DataMemory consists of 32KB pages, which are allocated to table
fragments. Each table is normally partitioned into the same number of fragments as there are data
nodes in the cluster. Thus, for each node, there are the same number of fragments as are set in
NoOfReplicas.

Once a page has been allocated, it is currently not possible to return it to the pool of free pages,
except by deleting the table. (This also means that DataMemory pages, once allocated to a given
table, cannot be used by other tables.) Performing a data node recovery also compresses the
partition because all records are inserted into empty partitions from other live nodes.

 The DataMemory memory space also contains UNDO information: For each update, a copy of
the unaltered record is allocated in the DataMemory. There is also a reference to each copy in
the ordered table indexes. Unique hash indexes are updated only when the unique index columns
are updated, in which case a new entry in the index table is inserted and the old entry is deleted
upon commit. For this reason, it is also necessary to allocate enough memory to handle the largest
transactions performed by applications using the cluster. In any case, performing a few large
transactions holds no advantage over using many smaller ones, for the following reasons:

• Large transactions are not any faster than smaller ones

• Large transactions increase the number of operations that are lost and must be repeated in event
of transaction failure

• Large transactions use more memory

The default value for DataMemory is 80MB; the minimum is 1MB. There is no maximum size, but in
reality the maximum size has to be adapted so that the process does not start swapping when the
limit is reached. This limit is determined by the amount of physical RAM available on the machine
and by the amount of memory that the operating system may commit to any one process. 32-bit
operating systems are generally limited to 2−4GB per process; 64-bit operating systems can use
more. For large databases, it may be preferable to use a 64-bit operating system for this reason.

•  IndexMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 18M 1M - 1T N

This parameter controls the amount of storage used for hash indexes in NDB Cluster. Hash indexes
are always used for primary key indexes, unique indexes, and unique constraints. When defining
a primary key or a unique index, two indexes are created, one of which is a hash index used for all
tuple accesses as well as lock handling. This index is also used to enforce unique constraints.

You can estimate the size of a hash index using this formula:

  size  = ( (fragments * 32K) + (rows * 18) )
          * replicas

          



NDB Cluster Configuration Files

2119

fragments is the number of fragments, replicas is the number of replicas (normally 2), and rows
is the number of rows. If a table has one million rows, 8 fragments, and 2 replicas, the expected
index memory usage is calculated as shown here:

          
  ((8 * 32K) + (1000000 * 18)) * 2 = ((8 * 32768) + (1000000 * 18)) * 2
  = (262144 + 18000000) * 2
  = 18262144 * 2 = 36524288 bytes = ~35MB

In NDB Cluster 7.2 and later, index statistics (when enabled) for ordered indexes are stored in the
mysql.ndb_index_stat_sample table. Since this table has a hash index, this adds to index
memory usage. An upper bound to the number of rows for a given ordered index can be calculated
as follows:

  sample_size= key_size + ((key_attributes + 1) * 4)

  sample_rows = IndexStatSaveSize
                * ((0.01 * IndexStatSaveScale * log2(rows * sample_size)) + 1)
                / sample_size

In the preceding formula, key_size is the size of the ordered index key in bytes, key_attributes
is the number ot attributes in the ordered index key, and rows is the number of rows in the base
table.

Assume that table t1 has 1 million rows and an ordered index named ix1 on two four-byte integers.
Assume in addition that IndexStatSaveSize and IndexStatSaveScale are set to their default
values (32K and 100, respectively). Using the previous 2 formulas, we can calculate as follows:

  sample_size = 8  + ((1 + 2) * 4) = 20 bytes

  sample_rows = 32K
                * ((0.01 * 100 * log2(1000000*20)) + 1)
                / 20
                = 32768 * ( (1 * ~16.811) +1) / 20
                = 32768 * ~17.811 / 20
                = ~29182 rows

The expected index memory usage is thus 2 * 18 * 29182 = ~1050550 bytes.

The default value for IndexMemory is 18MB. The minimum is 1MB.

•  StringMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 % or bytes 25 0 - 4294967039
(0xFFFFFEFF)

S

NDB 7.2.1 % or bytes 25 0 - 4294967039
(0xFFFFFEFF)

S

This parameter determines how much memory is allocated for strings such as table names, and
is specified in an [ndbd] or [ndbd default] section of the config.ini file. A value between
0 and 100 inclusive is interpreted as a percent of the maximum default value, which is calculated
based on a number of factors including the number of tables, maximum table name size, maximum
size of .FRM files, MaxNoOfTriggers, maximum column name size, and maximum default column
value.

A value greater than 100 is interpreted as a number of bytes.

The default value is 25—that is, 25 percent of the default maximum.



NDB Cluster Configuration Files

2120

Under most circumstances, the default value should be sufficient, but when you have a great many
Cluster tables (1000 or more), it is possible to get Error 773 Out of string memory, please
modify StringMemory config parameter: Permanent error: Schema error, in which
case you should increase this value. 25 (25 percent) is not excessive, and should prevent this error
from recurring in all but the most extreme conditions.

The following example illustrates how memory is used for a table. Consider this table definition:

CREATE TABLE example (
  a INT NOT NULL,
  b INT NOT NULL,
  c INT NOT NULL,
  PRIMARY KEY(a),
  UNIQUE(b)
) ENGINE=NDBCLUSTER;

For each record, there are 12 bytes of data plus 12 bytes overhead. Having no nullable columns saves
4 bytes of overhead. In addition, we have two ordered indexes on columns a and b consuming roughly
10 bytes each per record. There is a primary key hash index on the base table using roughly 29 bytes
per record. The unique constraint is implemented by a separate table with b as primary key and a as a
column. This other table consumes an additional 29 bytes of index memory per record in the example
table as well 8 bytes of record data plus 12 bytes of overhead.

Thus, for one million records, we need 58MB for index memory to handle the hash indexes for the
primary key and the unique constraint. We also need 64MB for the records of the base table and the
unique index table, plus the two ordered index tables.

You can see that hash indexes takes up a fair amount of memory space; however, they provide very
fast access to the data in return. They are also used in NDB Cluster to handle uniqueness constraints.

The only partitioning algorithm is hashing and ordered indexes are local to each node. Thus, ordered
indexes cannot be used to handle uniqueness constraints in the general case.

An important point for both IndexMemory and DataMemory is that the total database size is the
sum of all data memory and all index memory for each node group. Each node group is used to store
replicated information, so if there are four nodes with two replicas, there will be two node groups. Thus,
the total data memory available is 2 × DataMemory for each data node.

It is highly recommended that DataMemory and IndexMemory be set to the same values for all
nodes. Data distribution is even over all nodes in the cluster, so the maximum amount of space
available for any node can be no greater than that of the smallest node in the cluster.

DataMemory and IndexMemory can be changed, but decreasing either of these can be risky; doing
so can easily lead to a node or even an entire NDB Cluster that is unable to restart due to there being
insufficient memory space. Increasing these values should be acceptable, but it is recommended that
such upgrades are performed in the same manner as a software upgrade, beginning with an update of
the configuration file, and then restarting the management server followed by restarting each data node
in turn.

MinFreePct.   Beginning with NDB 7.2.3, a proportion (5% by default) of data node resources
including DataMemory and IndexMemory is kept in reserve to insure that the data node does not
exhaust its memory when performing a restart. This can be adjusted using the MinFreePct data node
configuration parameter (default 5) introduced in the same version of NDB Cluster.

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.3 unsigned 5 0 - 100 N

Updates do not increase the amount of index memory used. Inserts take effect immediately; however,
rows are not actually deleted until the transaction is committed.



NDB Cluster Configuration Files

2121

Transaction parameters.  The next few [ndbd] parameters that we discuss are important because
they affect the number of parallel transactions and the sizes of transactions that can be handled by the
system. MaxNoOfConcurrentTransactions sets the number of parallel transactions possible in a
node. MaxNoOfConcurrentOperations sets the number of records that can be in update phase or
locked simultaneously.

Both of these parameters (especially MaxNoOfConcurrentOperations) are likely targets for users
setting specific values and not using the default value. The default value is set for systems using small
transactions, to ensure that these do not use excessive memory.

MaxDMLOperationsPerTransaction sets the maximum number of DML operations that can be
performed in a given transaction.

•  MaxNoOfConcurrentTransactions

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 4096 32 - 4294967039
(0xFFFFFEFF)

N

Each cluster data node requires a transaction record for each active transaction in the cluster. The
task of coordinating transactions is distributed among all of the data nodes. The total number of
transaction records in the cluster is the number of transactions in any given node times the number
of nodes in the cluster.

Transaction records are allocated to individual MySQL servers. Each connection to a MySQL server
requires at least one transaction record, plus an additional transaction object per table accessed by
that connection. This means that a reasonable minimum for the total number of transactions in the
cluster can be expressed as

TotalNoOfConcurrentTransactions =
    (maximum number of tables accessed in any single transaction + 1)
    * number of cluster SQL nodes

Suppose that there are 10 SQL nodes using the cluster. A single join involving 10 tables requires
11 transaction records; if there are 10 such joins in a transaction, then 10 * 11 = 110 transaction
records are required for this transaction, per MySQL server, or 110 * 10 = 1100 transaction
records total. Each data node can be expected to handle TotalNoOfConcurrentTransactions /
number of data nodes. For an NDB Cluster having 4 data nodes, this would mean setting
MaxNoOfConcurrentTransactions on each data node to 1100 / 4 = 275. In addition, you should
provide for failure recovery by ensuring that a single node group can accommodate all concurrent
transactions; in other words, that each data node's MaxNoOfConcurrentTransactions is sufficient to
cover a number of transaction equal to TotalNoOfConcurrentTransactions / number of node groups.
If this cluster has a single node group, then MaxNoOfConcurrentTransactions should be set to
1100 (the same as the total number of concurrent transactions for the entire cluster).

In addition, each transaction involves at least one operation; for this reason, the value set
for MaxNoOfConcurrentTransactions should always be no more than the value of
MaxNoOfConcurrentOperations.

This parameter must be set to the same value for all cluster data nodes. This is due to the fact that,
when a data node fails, the oldest surviving node re-creates the transaction state of all transactions
that were ongoing in the failed node.

It is possible to change this value using a rolling restart, but the amount of traffic on the cluster must
be such that no more transactions occur than the lower of the old and new levels while this is taking
place.

The default value is 4096.

•  MaxNoOfConcurrentOperations



NDB Cluster Configuration Files

2122

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 32K 32 - 4294967039
(0xFFFFFEFF)

N

It is a good idea to adjust the value of this parameter according to the size and number of
transactions. When performing transactions which involve only a few operations and records, the
default value for this parameter is usually sufficient. Performing large transactions involving many
records usually requires that you increase its value.

Records are kept for each transaction updating cluster data, both in the transaction coordinator
and in the nodes where the actual updates are performed. These records contain state information
needed to find UNDO records for rollback, lock queues, and other purposes.

This parameter should be set at a minimum to the number of records to be updated simultaneously
in transactions, divided by the number of cluster data nodes. For example, in a cluster which has
four data nodes and which is expected to handle one million concurrent updates using transactions,
you should set this value to 1000000 / 4 = 250000. To help provide resiliency against failures, it is
suggested that you set this parameter to a value that is high enough to permit an individual data
node to handle the load for its node group. In other words, you should set the value equal to total
number of concurrent operations / number of node groups. (In the case where there
is a single node group, this is the same as the total number of concurrent operations for the entire
cluster.)

Because each transaction always involves at least one operation, the value of
MaxNoOfConcurrentOperations should always be greater than or equal to the value of
MaxNoOfConcurrentTransactions.

Read queries which set locks also cause operation records to be created. Some extra space is
allocated within individual nodes to accommodate cases where the distribution is not perfect over the
nodes.

When queries make use of the unique hash index, there are actually two operation records used
per record in the transaction. The first record represents the read in the index table and the second
handles the operation on the base table.

The default value is 32768.

This parameter actually handles two values that can be configured separately. The first of these
specifies how many operation records are to be placed with the transaction coordinator. The second
part specifies how many operation records are to be local to the database.

A very large transaction performed on an eight-node cluster requires as many operation records
in the transaction coordinator as there are reads, updates, and deletes involved in the transaction.
However, the operation records of the are spread over all eight nodes. Thus, if it is necessary to
configure the system for one very large transaction, it is a good idea to configure the two parts
separately. MaxNoOfConcurrentOperations will always be used to calculate the number of
operation records in the transaction coordinator portion of the node.

It is also important to have an idea of the memory requirements for operation records. These
consume about 1KB per record.

•  MaxNoOfLocalOperations

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer UNDEFINED 32 - 4294967039
(0xFFFFFEFF)

N



NDB Cluster Configuration Files

2123

By default, this parameter is calculated as 1.1 × MaxNoOfConcurrentOperations. This fits
systems with many simultaneous transactions, none of them being very large. If there is a need to
handle one very large transaction at a time and there are many nodes, it is a good idea to override
the default value by explicitly specifying this parameter.

•  MaxDMLOperationsPerTransaction

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 operations (DML) 4294967295 32 - 4294967295 N

This parameter limits the size of a transaction. The transaction is aborted if it requires more than
this many DML operations. The minimum number of operations per transaction is 32; however, you
can set MaxDMLOperationsPerTransaction to 0 to disable any limitation on the number of DML
operations per transaction. The maximum (and default) is 4294967295.

Transaction temporary storage.  The next set of [ndbd] parameters is used to determine
temporary storage when executing a statement that is part of a Cluster transaction. All records are
released when the statement is completed and the cluster is waiting for the commit or rollback.

The default values for these parameters are adequate for most situations. However, users with a need
to support transactions involving large numbers of rows or operations may need to increase these
values to enable better parallelism in the system, whereas users whose applications require relatively
small transactions can decrease the values to save memory.

•  MaxNoOfConcurrentIndexOperations

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 8K 0 - 4294967039
(0xFFFFFEFF)

N

For queries using a unique hash index, another temporary set of operation records is used during
a query's execution phase. This parameter sets the size of that pool of records. Thus, this record is
allocated only while executing a part of a query. As soon as this part has been executed, the record
is released. The state needed to handle aborts and commits is handled by the normal operation
records, where the pool size is set by the parameter MaxNoOfConcurrentOperations.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism using
unique hash indexes should it be necessary to increase this value. Using a smaller value is possible
and can save memory if the DBA is certain that a high degree of parallelism is not required for the
cluster.

•  MaxNoOfFiredTriggers

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 4000 0 - 4294967039
(0xFFFFFEFF)

N

The default value of MaxNoOfFiredTriggers is 4000, which is sufficient for most situations. In
some cases it can even be decreased if the DBA feels certain the need for parallelism in the cluster
is not high.

A record is created when an operation is performed that affects a unique hash index. Inserting or
deleting a record in a table with unique hash indexes or updating a column that is part of a unique
hash index fires an insert or a delete in the index table. The resulting record is used to represent this
index table operation while waiting for the original operation that fired it to complete. This operation is
short-lived but can still require a large number of records in its pool for situations with many parallel
write operations on a base table containing a set of unique hash indexes.



NDB Cluster Configuration Files

2124

•  TransactionBufferMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 1M 1K - 4294967039
(0xFFFFFEFF)

N

The memory affected by this parameter is used for tracking operations fired when updating index
tables and reading unique indexes. This memory is used to store the key and column information for
these operations. It is only very rarely that the value for this parameter needs to be altered from the
default.

The default value for TransactionBufferMemory is 1MB.

Normal read and write operations use a similar buffer, whose usage is even more short-lived.
The compile-time parameter ZATTRBUF_FILESIZE (found in ndb/src/kernel/blocks/
Dbtc/Dbtc.hpp) set to 4000 × 128 bytes (500KB). A similar buffer for key information,
ZDATABUF_FILESIZE (also in Dbtc.hpp) contains 4000 × 16 = 62.5KB of buffer space. Dbtc is
the module that handles transaction coordination.

Scans and buffering.  There are additional [ndbd] parameters in the Dblqh module (in
ndb/src/kernel/blocks/Dblqh/Dblqh.hpp) that affect reads and updates. These include
ZATTRINBUF_FILESIZE, set by default to 10000 × 128 bytes (1250KB) and ZDATABUF_FILE_SIZE,
set by default to 10000*16 bytes (roughly 156KB) of buffer space. To date, there have been neither any
reports from users nor any results from our own extensive tests suggesting that either of these compile-
time limits should be increased.

•  MaxNoOfConcurrentScans

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 256 2 - 500 N

This parameter is used to control the number of parallel scans that can be performed in the
cluster. Each transaction coordinator can handle the number of parallel scans defined for this
parameter. Each scan query is performed by scanning all partitions in parallel. Each partition
scan uses a scan record in the node where the partition is located, the number of records being
the value of this parameter times the number of nodes. The cluster should be able to sustain
MaxNoOfConcurrentScans scans concurrently from all nodes in the cluster.

Scans are actually performed in two cases. The first of these cases occurs when no hash or ordered
indexes exists to handle the query, in which case the query is executed by performing a full table
scan. The second case is encountered when there is no hash index to support the query but there is
an ordered index. Using the ordered index means executing a parallel range scan. The order is kept
on the local partitions only, so it is necessary to perform the index scan on all partitions.

The default value of MaxNoOfConcurrentScans is 256. The maximum value is 500.

•  MaxNoOfLocalScans

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer [see text] 32 - 4294967039
(0xFFFFFEFF)

N

Specifies the number of local scan records if many scans are not fully parallelized. In NDB 7.2.0 and
later, when the number of local scan records is not provided, it is calculated as shown here:

4 * MaxNoOfConcurrentScans * [# data nodes] + 2

The minimum value is 32.



NDB Cluster Configuration Files

2125

•  BatchSizePerLocalScan

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 64 1 - 992 N

NDB 7.2.1 integer 256 1 - 992 N

This parameter is used to calculate the number of lock records used to handle concurrent scan
operations.

BatchSizePerLocalScan has a strong connection to the BatchSize defined in the SQL nodes.

•  LongMessageBuffer

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 4M 512K -
4294967039
(0xFFFFFEFF)

N

NDB 7.2.16 bytes 64M 512K -
4294967039
(0xFFFFFEFF)

N

This is an internal buffer used for passing messages within individual nodes and between nodes. The
default is 64MB. (Prior to NDB 7.2.16, this was 4MB.)

This parameter seldom needs to be changed from the default.

•  MaxParallelScansPerFragment

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 256 1 - 4294967039
(0xFFFFFEFF)

N

It is possible to configure the maximum number of parallel scans (TUP scans and TUX scans) allowed
before they begin queuing for serial handling. You can increase this to take advantage of any unused
CPU when performing large number of scans in parallel and improve their performance.

Beginning with NDB 7.2.0, the default value for this parameter was increased from 32 to 256.

Memory Allocation

 MaxAllocate

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 32M 1M - 1G N

This is the maximum size of the memory unit to use when allocating memory for tables. In cases where
NDB gives Out of memory errors, but it is evident by examining the cluster logs or the output of DUMP
1000 that all available memory has not yet been used, you can increase the value of this parameter (or
MaxNoOfTables, or both) to cause NDB to make sufficient memory available.

Hash Map Size

 DefaultHashMapSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.11 LDM threads 3840 0 - 3840 N

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-dump-commands.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-dump-commands.html


NDB Cluster Configuration Files

2126

NDB 7.2.7 and later use a larger default table hash map size (3840) than in previous releases (240).
Beginning with NDB 7.2.11, the size of the table hash maps used by NDB is configurable using this
parameter; previously this value was hard-coded. DefaultHashMapSize can take any of three
possible values (0, 240, 3840). These values and their effects are described in the following table:

Value Description / Effect

0 Use the lowest value set, if any, for this parameter among all data nodes and API
nodes in the cluster; if it is not set on any data or API node, use the default value.

240 Original hash map size, used by default in all NDB Cluster releases prior to NDB
7.2.7.

3840 Larger hash map size as used by default in NDB 7.2.7 and later

The primary intended use for this parameter is to facilitate upgrades and especially downgrades
between NDB 7.2.7 and later NDB Cluster versions, in which the larger hash map size (3840) is the
default, and earlier releases (in which the default was 240), due to the fact that this change is not
otherwise backward compatible (Bug #14800539). By setting this parameter to 240 prior to performing
an upgrade from an older version where this value is in use, you can cause the cluster to continue
using the smaller size for table hash maps, in which case the tables remain compatible with earlier
versions following the upgrade. DefaultHashMapSize can be set for individual data nodes, API
nodes, or both, but setting it once only, in the [ndbd default] section of the config.ini file, is the
recommended practice.

After increasing this parameter, to have existing tables to take advantage of the new size, you can run
ALTER TABLE ... REORGANIZE PARTITION on them, after which they can use the larger hash
map size. This is in addition to performing a rolling restart, which makes the larger hash maps available
to new tables, but does not enable existing tables to use them.

Decreasing this parameter online after any tables have been created or modified with
DefaultHashMapSize equal to 3840 is not currently supported.

Logging and checkpointing.  The following [ndbd] parameters control log and checkpoint
behavior.

•  NoOfFragmentLogFiles

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 16 3 - 4294967039
(0xFFFFFEFF)

IN

This parameter sets the number of REDO log files for the node, and thus the amount of space
allocated to REDO logging. Because the REDO log files are organized in a ring, it is extremely
important that the first and last log files in the set (sometimes referred to as the “head” and “tail” log
files, respectively) do not meet. When these approach one another too closely, the node begins
aborting all transactions encompassing updates due to a lack of room for new log records.

A REDO log record is not removed until the required number of local checkpoints has been completed
since that log record was inserted. (In NDB Cluster 7.2, only 2 local checkpoints are necessary).
Checkpointing frequency is determined by its own set of configuration parameters discussed
elsewhere in this chapter.

The default parameter value is 16, which by default means 16 sets of 4 16MB files for a total of
1024MB. The size of the individual log files is configurable using the FragmentLogFileSize
parameter. In scenarios requiring a great many updates, the value for NoOfFragmentLogFiles
may need to be set as high as 300 or even higher to provide sufficient space for REDO logs.

If the checkpointing is slow and there are so many writes to the database that the log files are full
and the log tail cannot be cut without jeopardizing recovery, all updating transactions are aborted



NDB Cluster Configuration Files

2127

with internal error code 410 (Out of log file space temporarily). This condition prevails
until a checkpoint has completed and the log tail can be moved forward.

Important

This parameter cannot be changed “on the fly”; you must restart the node
using --initial. If you wish to change this value for all data nodes in a
running cluster, you can do so using a rolling node restart (using --initial
when starting each data node).

•  FragmentLogFileSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 16M 4M - 1G IN

Setting this parameter enables you to control directly the size of redo log files. This can be useful in
situations when NDB Cluster is operating under a high load and it is unable to close fragment log
files quickly enough before attempting to open new ones (only 2 fragment log files can be open at
one time); increasing the size of the fragment log files gives the cluster more time before having to
open each new fragment log file. The default value for this parameter is 16M.

For more information about fragment log files, see the description for NoOfFragmentLogFiles.

•  InitFragmentLogFiles

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 [see values] SPARSE SPARSE, FULL IN

By default, fragment log files are created sparsely when performing an initial start of a data
node—that is, depending on the operating system and file system in use, not all bytes are
necessarily written to disk. However, it is possible to override this behavior and force all bytes to
be written, regardless of the platform and file system type being used, by means of this parameter.
InitFragmentLogFiles takes either of two values:

• SPARSE. Fragment log files are created sparsely. This is the default value.

• FULL. Force all bytes of the fragment log file to be written to disk.

Depending on your operating system and file system, setting InitFragmentLogFiles=FULL may
help eliminate I/O errors on writes to the REDO log.

•  MaxNoOfOpenFiles

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 0 20 - 4294967039
(0xFFFFFEFF)

N

This parameter sets a ceiling on how many internal threads to allocate for open files. Any situation
requiring a change in this parameter should be reported as a bug.

The default value is 0. However, the minimum value to which this parameter can be set is 20.

•  InitialNoOfOpenFiles

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 files 27 20 - 4294967039
(0xFFFFFEFF)

N



NDB Cluster Configuration Files

2128

This parameter sets the initial number of internal threads to allocate for open files.

The default value is 27.

•  MaxNoOfSavedMessages

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 25 0 - 4294967039
(0xFFFFFEFF)

N

This parameter sets the maximum number of errors written in the error log as well as the maximum
number of trace files that are kept before overwriting the existing ones. Trace files are generated
when, for whatever reason, the node crashes.

The default is 25, which sets these maximums to 25 error messages and 25 trace files.

•  MaxLCPStartDelay

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 seconds 0 0 - 600 N

In parallel data node recovery, only table data is actually copied and synchronized in parallel;
synchronization of metadata such as dictionary and checkpoint information is done in a serial
fashion. In addition, recovery of dictionary and checkpoint information cannot be executed in parallel
with performing of local checkpoints. This means that, when starting or restarting many data nodes
concurrently, data nodes may be forced to wait while a local checkpoint is performed, which can
result in longer node recovery times.

It is possible to force a delay in the local checkpoint to permit more (and possibly all) data nodes to
complete metadata synchronization; once each data node's metadata synchronization is complete,
all of the data nodes can recover table data in parallel, even while the local checkpoint is being
executed. To force such a delay, set MaxLCPStartDelay, which determines the number of
seconds the cluster can wait to begin a local checkpoint while data nodes continue to synchronize
metadata. This parameter should be set in the [ndbd default] section of the config.ini file,
so that it is the same for all data nodes. The maximum value is 600; the default is 0.

•  LcpScanProgressTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.14 second 60 0 - 4294967039
(0xFFFFFEFF)

N

A local checkpoint fragment scan watchdog checks periodically for no progress in each fragment
scan performed as part of a local checkpoint, and shuts down the node if there is no progress after
a given amount of time has elapsed. Prior to NDB 7.2.14, this interval is always 60 seconds (Bug
#16630410). In NDB 7.2.14 and later, this interval can be set using the LcpScanProgressTimeout
data node configuration parameter, which sets the maximum time for which the local checkpoint can
be stalled before the LCP fragment scan watchdog shuts down the node.

The default value is 60 seconds (providing compatibility with previous releases). Setting this
parameter to 0 disables the LCP fragment scan watchdog altogether.

Metadata objects.  The next set of [ndbd] parameters defines pool sizes for metadata objects,
used to define the maximum number of attributes, tables, indexes, and trigger objects used by indexes,
events, and replication between clusters. Note that these act merely as “suggestions” to the cluster,
and any that are not specified revert to the default values shown.

•  MaxNoOfAttributes



NDB Cluster Configuration Files

2129

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 1000 32 - 4294967039
(0xFFFFFEFF)

N

This parameter sets a suggested maximum number of attributes that can be defined in the cluster;
like MaxNoOfTables, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create
more tables than could be replicated, and sometimes led to confusion when it was possible [or not
possible, depending on the circumstances] to create more than MaxNoOfAttributes attributes.)

The default value is 1000, with the minimum possible value being 32. The maximum is 4294967039.
Each attribute consumes around 200 bytes of storage per node due to the fact that all metadata is
fully replicated on the servers.

When setting MaxNoOfAttributes, it is important to prepare in advance for any ALTER
TABLE statements that you might want to perform in the future. This is due to the fact, during the
execution of ALTER TABLE on a Cluster table, 3 times the number of attributes as in the original
table are used, and a good practice is to permit double this amount. For example, if the NDB
Cluster table having the greatest number of attributes (greatest_number_of_attributes)
has 100 attributes, a good starting point for the value of MaxNoOfAttributes would be 6 *
greatest_number_of_attributes = 600.

You should also estimate the average number of attributes per table and multiply this by
MaxNoOfTables. If this value is larger than the value obtained in the previous paragraph, you
should use the larger value instead.

Assuming that you can create all desired tables without any problems, you should also verify that
this number is sufficient by trying an actual ALTER TABLE after configuring the parameter. If this is
not successful, increase MaxNoOfAttributes by another multiple of MaxNoOfTables and test it
again.

•  MaxNoOfTables

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 128 8 - 20320 N

A table object is allocated for each table and for each unique hash index in the cluster. This
parameter sets a suggested maximum number of table objects for the cluster as a whole; like
MaxNoOfAttributes, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create
more tables than could be replicated, and sometimes led to confusion when it was possible [or not
possible, depending on the circumstances] to create more than MaxNoOfTables tables.)

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB data.
These tables also must be taken into account when defining the total number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 20320. Each table
object consumes approximately 20KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).



NDB Cluster Configuration Files

2130

•  MaxNoOfOrderedIndexes

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 128 0 - 4294967039
(0xFFFFFEFF)

N

For each ordered index in the cluster, an object is allocated describing what is being indexed and
its storage segments. By default, each index so defined also defines an ordered index. Each unique
index and primary key has both an ordered index and a hash index. MaxNoOfOrderedIndexes
sets the total number of ordered indexes that can be in use in the system at any one time.

The default value of this parameter is 128. Each index object consumes approximately 10KB of data
per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

•  MaxNoOfUniqueHashIndexes

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 64 0 - 4294967039
(0xFFFFFEFF)

N

For each unique index that is not a primary key, a special table is allocated that maps the unique key
to the primary key of the indexed table. By default, an ordered index is also defined for each unique
index. To prevent this, you must specify the USING HASH option when defining the unique index.

The default value is 64. Each index consumes approximately 15KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

•  MaxNoOfTriggers

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 768 0 - 4294967039
(0xFFFFFEFF)

N

Internal update, insert, and delete triggers are allocated for each unique hash index. (This means
that three triggers are created for each unique hash index.) However, an ordered index requires only
a single trigger object. Backups also use three trigger objects for each normal table in the cluster.

Replication between clusters also makes use of internal triggers.

This parameter sets the maximum number of trigger objects in the cluster.

The default value is 768.

•  MaxNoOfIndexes

This parameter is deprecated and subject to removal in a future version of NDB Cluster. You should
use MaxNoOfOrderedIndexes and MaxNoOfUniqueHashIndexes instead.

This parameter is used only by unique hash indexes. There needs to be one record in this pool for
each unique hash index defined in the cluster.



NDB Cluster Configuration Files

2131

The default value of this parameter is 128.

•  MaxNoOfSubscriptions

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 0 0 - 4294967039
(0xFFFFFEFF)

N

Each NDB table in an NDB Cluster requires a subscription in the NDB kernel. For some NDB API
applications, it may be necessary or desirable to change this parameter. However, for normal usage
with MySQL servers acting as SQL nodes, there is not any need to do so.

The default value for MaxNoOfSubscriptions is 0, which is treated as equal to MaxNoOfTables.
Each subscription consumes 108 bytes.

•  MaxNoOfSubscribers

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 0 0 - 4294967039
(0xFFFFFEFF)

N

This parameter is of interest only when using NDB Cluster Replication. The default value is 0, which
is treated as 2 * MaxNoOfTables; that is, there is one subscription per NDB table for each of two
MySQL servers (one acting as the replication master and the other as the slave). Each subscriber
uses 16 bytes of memory.

When using circular replication, multi-master replication, and other replication setups involving more
than 2 MySQL servers, you should increase this parameter to the number of mysqld processes
included in replication (this is often, but not always, the same as the number of clusters). For
example, if you have a circular replication setup using three NDB Clusters, with one mysqld
attached to each cluster, and each of these mysqld processes acts as a master and as a slave, you
should set MaxNoOfSubscribers equal to 3 * MaxNoOfTables.

For more information, see Section 18.6, “NDB Cluster Replication”.

•  MaxNoOfConcurrentSubOperations

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 256 0 - 4294967039
(0xFFFFFEFF)

N

This parameter sets a ceiling on the number of operations that can be performed by all API nodes
in the cluster at one time. The default value (256) is sufficient for normal operations, and might need
to be adjusted only in scenarios where there are a great many API nodes each performing a high
volume of operations concurrently.

Boolean parameters.  The behavior of data nodes is also affected by a set of [ndbd] parameters
taking on boolean values. These parameters can each be specified as TRUE by setting them equal to 1
or Y, and as FALSE by setting them equal to 0 or N.

•  LateAlloc

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric 1 0 - 1 N

Allocate memory for this data node after a connection to the management server has been
established. Enabled by default.



NDB Cluster Configuration Files

2132

•  LockPagesInMainMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric 0 0 - 2 N

For a number of operating systems, including Solaris and Linux, it is possible to lock a process into
memory and so avoid any swapping to disk. This can be used to help guarantee the cluster's real-
time characteristics.

This parameter takes one of the integer values 0, 1, or 2, which act as shown in the following list:

• 0: Disables locking. This is the default value.

• 1: Performs the lock after allocating memory for the process.

• 2: Performs the lock before memory for the process is allocated.

If the operating system is not configured to permit unprivileged users to lock pages, then
the data node process making use of this parameter may have to be run as system root.
(LockPagesInMainMemory uses the mlockall function. From Linux kernel 2.6.9, unprivileged
users can lock memory as limited by max locked memory. For more information, see ulimit -l
and http://linux.die.net/man/2/mlock).

Note

In older NDB Cluster releases, this parameter was a Boolean. 0 or false
was the default setting, and disabled locking. 1 or true enabled locking of
the process after its memory was allocated. In NDB Cluster 7.2, using true
or false as the value of this parameter causes an error.

Important

Beginning with glibc 2.10, glibc uses per-thread arenas to reduce lock
contention on a shared pool, which consumes real memory. In general, a data
node process does not need per-thread arenas, since it does not perform any
memory allocation after startup. (This difference in allocators does not appear
to affect performance significantly.)

The glibc behavior is intended to be configurable via the
MALLOC_ARENA_MAX environment variable, but a bug in this mechanism
prior to glibc 2.16 meant that this variable could not be set to less than 8, so
that the wasted memory could not be reclaimed. (Bug #15907219; see also
http://sourceware.org/bugzilla/show_bug.cgi?id=13137 for more information
concerning this issue.)

One possible workaround for this problem is to use the LD_PRELOAD
environment variable to preload a jemalloc memory allocation library to
take the place of that supplied with glibc.

•  StopOnError

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean 1 0, 1 N

This parameter specifies whether a data node process should exit or perform an automatic restart
when an error condition is encountered.

This parameter's default value is 1; this means that, by default, an error causes the data node
process to halt.

http://linux.die.net/man/2/mlock
http://sourceware.org/bugzilla/show_bug.cgi?id=13137


NDB Cluster Configuration Files

2133

When an error is encountered and StopOnError is 0, the data node process is restarted.

Important

If the data node process exits in an uncontrolled fashion (due, for example,
to performing kill -9 on the data node process while performing a query,
or to a segmentation fault), and StopOnError is set to 0, the angel process
attempts to restart it in exactly the same way as it was started previously—
that is, using the same startup options that were employed the last time the
node was started. Thus, if the data node process was originally started using
the --initial option, it is also restarted with --initial. This means that,
in such cases, if the failure occurs on a sufficient number of data nodes in a
very short interval, the effect is the same as if you had performed an initial
restart of the entire cluster, leading to loss of all data. (Bug #24945638)

Users of MySQL Cluster Manager should note that, when StopOnError equals 1, this prevents the
MySQL Cluster Manager agent from restarting any data nodes after it has performed its own restart
and recovery. See Starting and Stopping the Agent on Linux, for more information.

•  CrashOnCorruptedTuple

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.1 boolean true true, false S

When this parameter is enabled, it forces a data node to shut down whenever it encounters a
corrupted tuple. In NDB 7.2.1 and later, it is enabled by default. This is a change from NDB Cluster
7.0 and NDB Cluster 7.1, where it was disabled by default.

•  Diskless

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 true|false (1|0) false true, false IS

It is possible to specify NDB Cluster tables as diskless, meaning that tables are not checkpointed
to disk and that no logging occurs. Such tables exist only in main memory. A consequence of using
diskless tables is that neither the tables nor the records in those tables survive a crash. However,
when operating in diskless mode, it is possible to run ndbd on a diskless computer.

Important

This feature causes the entire cluster to operate in diskless mode.

When this feature is enabled, Cluster online backup is disabled. In addition, a partial start of the
cluster is not possible.

Diskless is disabled by default.

•  ODirect

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

Enabling this parameter causes NDB to attempt using O_DIRECT writes for LCP, backups, and redo
logs, often lowering kswapd and CPU usage. When using NDB Cluster on Linux, enable ODirect if
you are using a 2.6 or later kernel.

ODirect is disabled by default.

http://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-using-start-stop-agent-linux.html


NDB Cluster Configuration Files

2134

•  RestartOnErrorInsert

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 error code 2 0 - 4 N

This feature is accessible only when building the debug version where it is possible to insert errors in
the execution of individual blocks of code as part of testing.

This feature is disabled by default.

•  CompressedBackup

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

Enabling this parameter causes backup files to be compressed. The compression used is equivalent
to gzip --fast, and can save 50% or more of the space required on the data node to store
uncompressed backup files. Compressed backups can be enabled for individual data nodes, or for
all data nodes (by setting this parameter in the [ndbd default] section of the config.ini file).

Important

You cannot restore a compressed backup to a cluster running a MySQL
version that does not support this feature.

The default value is 0 (disabled).

•  CompressedLCP

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

Setting this parameter to 1 causes local checkpoint files to be compressed. The compression used is
equivalent to gzip --fast, and can save 50% or more of the space required on the data node to
store uncompressed checkpoint files. Compressed LCPs can be enabled for individual data nodes,
or for all data nodes (by setting this parameter in the [ndbd default] section of the config.ini
file).

Important

You cannot restore a compressed local checkpoint to a cluster running a
MySQL version that does not support this feature.

The default value is 0 (disabled).

Controlling Timeouts, Intervals, and Disk Paging

There are a number of [ndbd] parameters specifying timeouts and intervals between various actions
in Cluster data nodes. Most of the timeout values are specified in milliseconds. Any exceptions to this
are mentioned where applicable.

•  TimeBetweenWatchDogCheck

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 6000 70 - 4294967039
(0xFFFFFEFF)

N



NDB Cluster Configuration Files

2135

To prevent the main thread from getting stuck in an endless loop at some point, a “watchdog” thread
checks the main thread. This parameter specifies the number of milliseconds between checks. If the
process remains in the same state after three checks, the watchdog thread terminates it.

This parameter can easily be changed for purposes of experimentation or to adapt to local
conditions. It can be specified on a per-node basis although there seems to be little reason for doing
so.

The default timeout is 6000 milliseconds (6 seconds).

•  TimeBetweenWatchDogCheckInitial

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 6000 70 - 4294967039
(0xFFFFFEFF)

N

This is similar to the TimeBetweenWatchDogCheck parameter, except that
TimeBetweenWatchDogCheckInitial controls the amount of time that passes between
execution checks inside a database node in the early start phases during which memory is allocated.

The default timeout is 6000 milliseconds (6 seconds).

•  StartPartialTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 30000 0 - 4294967039
(0xFFFFFEFF)

N

This parameter specifies how long the Cluster waits for all data nodes to come up before the cluster
initialization routine is invoked. This timeout is used to avoid a partial Cluster startup whenever
possible.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default value is 30000 milliseconds (30 seconds). 0 disables the timeout, in which case the
cluster may start only if all nodes are available.

•  StartPartitionedTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 60000 0 - 4294967039
(0xFFFFFEFF)

N

If the cluster is ready to start after waiting for StartPartialTimeout milliseconds but
is still possibly in a partitioned state, the cluster waits until this timeout has also passed. If
StartPartitionedTimeout is set to 0, the cluster waits indefinitely.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default timeout is 60000 milliseconds (60 seconds).

•  StartFailureTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 0 0 - 4294967039
(0xFFFFFEFF)

N



NDB Cluster Configuration Files

2136

If a data node has not completed its startup sequence within the time specified by this parameter, the
node startup fails. Setting this parameter to 0 (the default value) means that no data node timeout is
applied.

For nonzero values, this parameter is measured in milliseconds. For data nodes containing
extremely large amounts of data, this parameter should be increased. For example, in the case of a
data node containing several gigabytes of data, a period as long as 10−15 minutes (that is, 600000
to 1000000 milliseconds) might be required to perform a node restart.

•  StartNoNodeGroupTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 15000 0 - 4294967039
(0xFFFFFEFF)

N

When a data node is configured with Nodegroup = 65536, is regarded as not being assigned to
any node group. When that is done, the cluster waits StartNoNodegroupTimeout milliseconds,
then treats such nodes as though they had been added to the list passed to the --nowait-nodes
option, and starts. The default value is 15000 (that is, the management server waits 15 seconds).
Setting this parameter equal to 0 means that the cluster waits indefinitely.

StartNoNodegroupTimeout must be the same for all data nodes in the cluster; for this reason,
you should always set it in the [ndbd default] section of the config.ini file, rather than for
individual data nodes.

See Section 18.5.13, “Adding NDB Cluster Data Nodes Online”, for more information.

•  HeartbeatIntervalDbDb

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 5000 10 - 4294967039
(0xFFFFFEFF)

N

One of the primary methods of discovering failed nodes is by the use of heartbeats. This parameter
states how often heartbeat signals are sent and how often to expect to receive them. Heartbeats
cannot be disabled.

After missing four heartbeat intervals in a row, the node is declared dead. Thus, the maximum time
for discovering a failure through the heartbeat mechanism is five times the heartbeat interval.

In NDB 7.2.0 and later, the default heartbeat interval is 5000 milliseconds (5 seconds). (Previously,
the default was 1500 milliseconds [1.5 seconds]). This parameter must not be changed drastically
and should not vary widely between nodes. If one node uses 5000 milliseconds and the node
watching it uses 1000 milliseconds, obviously the node will be declared dead very quickly. This
parameter can be changed during an online software upgrade, but only in small increments.

See also Network communication and latency, as well as the description of the
ConnectCheckIntervalDelay configuration parameter.

•  HeartbeatIntervalDbApi

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 1500 100 - 4294967039
(0xFFFFFEFF)

N

Each data node sends heartbeat signals to each MySQL server (SQL node) to ensure that it remains
in contact. If a MySQL server fails to send a heartbeat in time it is declared “dead,” in which case all
ongoing transactions are completed and all resources released. The SQL node cannot reconnect



NDB Cluster Configuration Files

2137

until all activities initiated by the previous MySQL instance have been completed. The three-
heartbeat criteria for this determination are the same as described for HeartbeatIntervalDbDb.

The default interval is 1500 milliseconds (1.5 seconds). This interval can vary between individual
data nodes because each data node watches the MySQL servers connected to it, independently of
all other data nodes.

For more information, see Network communication and latency.

•  HeartbeatOrder

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric 0 0 - 65535 S

Data nodes send heartbeats to one another in a circular fashion whereby each data node monitors
the previous one. If a heartbeat is not detected by a given data node, this node declares the previous
data node in the circle “dead” (that is, no longer accessible by the cluster). The determination that a
data node is dead is done globally; in other words; once a data node is declared dead, it is regarded
as such by all nodes in the cluster.

It is possible for heartbeats between data nodes residing on different hosts to be too slow compared
to heartbeats between other pairs of nodes (for example, due to a very low heartbeat interval or
temporary connection problem), such that a data node is declared dead, even though the node can
still function as part of the cluster. .

In this type of situation, it may be that the order in which heartbeats are transmitted between data
nodes makes a difference as to whether or not a particular data node is declared dead. If this
declaration occurs unnecessarily, this can in turn lead to the unnecessary loss of a node group and
as thus to a failure of the cluster.

Consider a setup where there are 4 data nodes A, B, C, and D running on 2 host computers host1
and host2, and that these data nodes make up 2 node groups, as shown in the following table:

Node Group Nodes Running on host1 Nodes Running on host2

Node Group 0: Node A Node B

Node Group 1: Node C Node D

Suppose the heartbeats are transmitted in the order A->B->C->D->A. In this case, the loss of the
heartbeat between the hosts causes node B to declare node A dead and node C to declare node B
dead. This results in loss of Node Group 0, and so the cluster fails. On the other hand, if the order
of transmission is A->B->D->C->A (and all other conditions remain as previously stated), the loss of
the heartbeat causes nodes A and D to be declared dead; in this case, each node group has one
surviving node, and the cluster survives.

The HeartbeatOrder configuration parameter makes the order of heartbeat transmission user-
configurable. The default value for HeartbeatOrder is zero; allowing the default value to be
used on all data nodes causes the order of heartbeat transmission to be determined by NDB. If this
parameter is used, it must be set to a nonzero value (maximum 65535) for every data node in the
cluster, and this value must be unique for each data node; this causes the heartbeat transmission to
proceed from data node to data node in the order of their HeartbeatOrder values from lowest to
highest (and then directly from the data node having the highest HeartbeatOrder to the data node
having the lowest value, to complete the circle). The values need not be consecutive; for example, to
force the heartbeat transmission order A->B->D->C->A in the scenario outlined previously, you could
set the HeartbeatOrder values as shown here:

Node HeartbeatOrder

A 10



NDB Cluster Configuration Files

2138

Node HeartbeatOrder

B 20

C 30

D 25

To use this parameter to change the heartbeat transmission order in a running NDB Cluster,
you must first set HeartbeatOrder for each data node in the cluster in the global configuration
(config.ini) file (or files). To cause the change to take effect, you must perform either of the
following:

• A complete shutdown and restart of the entire cluster.

• 2 rolling restarts of the cluster in succession. All nodes must be restarted in the same order in both
rolling restarts.

You can use DUMP 908 to observe the effect of this parameter in the data node logs.

•  ConnectCheckIntervalDelay

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 1500 0 - 4294967039
(0xFFFFFEFF)

N

NDB 7.2.1 milliseconds 0 0 - 4294967039
(0xFFFFFEFF)

N

This parameter enables connection checking between data nodes after one of them has failed
heartbeat checks for 5 intervals of up to HeartbeatIntervalDbDb milliseconds.

Such a data node that further fails to respond within an interval of ConnectCheckIntervalDelay
milliseconds is considered suspect, and is considered dead after two such intervals. This can be
useful in setups with known latency issues.

The default value for this parameter is 0 (disabled); this represents a change from NDB Cluster 7.1.

•  TimeBetweenLocalCheckpoints

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 number of 4-byte
words, as a base-2
logarithm

20 0 - 31 N

This parameter is an exception in that it does not specify a time to wait before starting a new local
checkpoint; rather, it is used to ensure that local checkpoints are not performed in a cluster where
relatively few updates are taking place. In most clusters with high update rates, it is likely that a new
local checkpoint is started immediately after the previous one has been completed.

The size of all write operations executed since the start of the previous local checkpoints is added.
This parameter is also exceptional in that it is specified as the base-2 logarithm of the number of 4-
byte words, so that the default value 20 means 4MB (4 × 220) of write operations, 21 would mean
8MB, and so on up to a maximum value of 31, which equates to 8GB of write operations.

All the write operations in the cluster are added together. Setting
TimeBetweenLocalCheckpoints to 6 or less means that local checkpoints will be executed
continuously without pause, independent of the cluster's workload.

•  TimeBetweenGlobalCheckpoints

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-dump-commands.html


NDB Cluster Configuration Files

2139

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 2000 20 - 32000 N

When a transaction is committed, it is committed in main memory in all nodes on which the data
is mirrored. However, transaction log records are not flushed to disk as part of the commit. The
reasoning behind this behavior is that having the transaction safely committed on at least two
autonomous host machines should meet reasonable standards for durability.

It is also important to ensure that even the worst of cases—a complete crash of the cluster—is
handled properly. To guarantee that this happens, all transactions taking place within a given interval
are put into a global checkpoint, which can be thought of as a set of committed transactions that
has been flushed to disk. In other words, as part of the commit process, a transaction is placed in a
global checkpoint group. Later, this group's log records are flushed to disk, and then the entire group
of transactions is safely committed to disk on all computers in the cluster.

This parameter defines the interval between global checkpoints. The default is 2000 milliseconds.

•  TimeBetweenGlobalCheckpointsTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.20 milliseconds 120000 10 - 4294967039
(0xFFFFFEFF)

N

This parameter defines the minimum timeout between global checkpoints. The default is 120000
milliseconds.

This parameter was added in NDB 7.2.20. (Bug #20069617)

•  TimeBetweenEpochs

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 100 0 - 32000 N

This parameter defines the interval between synchronization epochs for NDB Cluster Replication.
The default value is 100 milliseconds.

TimeBetweenEpochs is part of the implementation of “micro-GCPs”, which can be used to improve
the performance of NDB Cluster Replication.

•  TimeBetweenEpochsTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 0 0 - 256000 N

This parameter defines a timeout for synchronization epochs for NDB Cluster Replication. If a node
fails to participate in a global checkpoint within the time determined by this parameter, the node is
shut down. In NDB 7.2.0 and later, the default value is 0; in other words, the timeout is disabled. This
represents a change from previous versions of NDB Cluster, in which the default value was 4000
milliseconds (4 seconds).

TimeBetweenEpochsTimeout is part of the implementation of “micro-GCPs”, which can be used to
improve the performance of NDB Cluster Replication.

The current value of this parameter and a warning are written to the cluster log whenever a GCP
save takes longer than 1 minute or a GCP commit takes longer than 10 seconds.



NDB Cluster Configuration Files

2140

Setting this parameter to zero has the effect of disabling GCP stops caused by save timeouts,
commit timeouts, or both. The maximum possible value for this parameter is 256000 milliseconds.

•  MaxBufferedEpochs

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 epochs 100 0 - 100000 N

The number of unprocessed epochs by which a subscribing node can lag behind. Exceeding this
number causes a lagging subscriber to be disconnected.

The default value of 100 is sufficient for most normal operations. If a subscribing node does lag
enough to cause disconnections, it is usually due to network or scheduling issues with regard to
processes or threads. (In rare circumstances, the problem may be due to a bug in the NDB client.) It
may be desirable to set the value lower than the default when epochs are longer.

Disconnection prevents client issues from affecting the data node service, running out of memory
to buffer data, and eventually shutting down. Instead, only the client is affected as a result of the
disconnect (by, for example gap events in the binary log), forcing the client to reconnect or restart the
process.

•  MaxBufferedEpochBytes

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.13 bytes 26214400 26214400
(0x01900000)
- 4294967039
(0xFFFFFEFF)

N

The total number of bytes allocated for buffering epochs by this node.

This parameter was introduced in NDB 7.2.13. (Bug #16203623)

•  TimeBetweenInactiveTransactionAbortCheck

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 1000 1000 -
4294967039
(0xFFFFFEFF)

N

Timeout handling is performed by checking a timer on each transaction once for every interval
specified by this parameter. Thus, if this parameter is set to 1000 milliseconds, every transaction will
be checked for timing out once per second.

The default value is 1000 milliseconds (1 second).

•  TransactionInactiveTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds [see text] 0 - 4294967039
(0xFFFFFEFF)

N

This parameter states the maximum time that is permitted to lapse between operations in the same
transaction before the transaction is aborted.



NDB Cluster Configuration Files

2141

The default for this parameter is 4G (also the maximum). For a real-time database that needs to
ensure that no transaction keeps locks for too long, this parameter should be set to a relatively small
value. Setting it to 0 means that the application never times out. The unit is milliseconds.

•  TransactionDeadlockDetectionTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 1200 50 - 4294967039
(0xFFFFFEFF)

N

When a node executes a query involving a transaction, the node waits for the other nodes in the
cluster to respond before continuing. This parameter sets the amount of time that the transaction can
spend executing within a data node, that is, the time that the transaction coordinator waits for each
data node participating in the transaction to execute a request.

A failure to respond can occur for any of the following reasons:

• The node is “dead”

• The operation has entered a lock queue

• The node requested to perform the action could be heavily overloaded.

This timeout parameter states how long the transaction coordinator waits for query execution by
another node before aborting the transaction, and is important for both node failure handling and
deadlock detection.

The default timeout value is 1200 milliseconds (1.2 seconds).

The minimum for this parameter is 50 milliseconds.

•  DiskSyncSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 4M 32K - 4294967039
(0xFFFFFEFF)

N

This is the maximum number of bytes to store before flushing data to a local checkpoint file. This is
done to prevent write buffering, which can impede performance significantly. This parameter is not
intended to take the place of TimeBetweenLocalCheckpoints.

Note

When ODirect is enabled, it is not necessary to set DiskSyncSize; in fact,
in such cases its value is simply ignored.

The default value is 4M (4 megabytes).

•  DiskCheckpointSpeed

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 10M 1M - 4294967039
(0xFFFFFEFF)

N

The amount of data,in bytes per second, that is sent to disk during a local checkpoint. This allocation
is shared by DML operations and backups (but not backup logging), which means that backups
started during times of intensive DML may be impaired by flooding of the redo log buffer and may fail
altogether if the contention is sufficiently severe.



NDB Cluster Configuration Files

2142

The default value is 10M (10 megabytes per second).

•  DiskCheckpointSpeedInRestart

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 100M 1M - 4294967039
(0xFFFFFEFF)

N

The amount of data,in bytes per second, that is sent to disk during a local checkpoint as part of a
restart operation.

The default value is 100M (100 megabytes per second).

•  NoOfDiskPagesToDiskAfterRestartTUP

This parameter is deprecated and subject to removal in a future version of NDB Cluster. Use
DiskCheckpointSpeedInRestart and DiskSyncSize instead.

•  NoOfDiskPagesToDiskAfterRestartACC

This parameter is deprecated and subject to removal in a future version of NDB Cluster. Use
DiskCheckpointSpeedInRestart and DiskSyncSize instead.

•  NoOfDiskPagesToDiskDuringRestartTUP (DEPRECATED)

This parameter is deprecated and subject to removal in a future version of NDB Cluster. Use
DiskCheckpointSpeedInRestart and DiskSyncSize instead.

•  NoOfDiskPagesToDiskDuringRestartACC (DEPRECATED)

This parameter is deprecated and subject to removal in a future version of NDB Cluster. Use
DiskCheckpointSpeedInRestart and DiskSyncSize instead.

•  ArbitrationTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 7500 10 - 4294967039
(0xFFFFFEFF)

N

This parameter specifies how long data nodes wait for a response from the arbitrator to an arbitration
message. If this is exceeded, the network is assumed to have split.

In NDB 7.2.0 and later, the default value is 7500 milliseconds (7.5 seconds). Previously, this was
3000 milliseconds (3 seconds).

•  Arbitration

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 enumeration Default Default, Disabled,
WaitExternal

N

The Arbitration parameter enables a choice of arbitration schemes, corresponding to one of 3
possible values for this parameter:

• Default.  This enables arbitration to proceed normally, as determined by the
ArbitrationRank settings for the management and API nodes. This is the default value.

• Disabled.  Setting Arbitration = Disabled in the [ndbd default] section of the
config.ini file to accomplishes the same task as setting ArbitrationRank to 0 on all



NDB Cluster Configuration Files

2143

management and API nodes. When Arbitration is set in this way, any ArbitrationRank
settings are ignored.

• WaitExternal.  The Arbitration parameter also makes it possible to configure arbitration
in such a way that the cluster waits until after the time determined by ArbitrationTimeout
has passed for an external cluster manager application to perform arbitration instead of handling
arbitration internally. This can be done by setting Arbitration = WaitExternal in the [ndbd
default] section of the config.ini file. For best results with the WaitExternal setting, it
is recommended that ArbitrationTimeout be 2 times as long as the interval required by the
external cluster manager to perform arbitration.

Important

This parameter should be used only in the [ndbd default] section of the
cluster configuration file. The behavior of the cluster is unspecified when
Arbitration is set to different values for individual data nodes.

•  RestartSubscriberConnectTimeout

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.17 ms 12000 0 - 4294967039
(0xFFFFFEFF)

S

This parameter determines the time that a data node waits for subscribing API nodes to connect.
Once this timeout expires, any “missing” API nodes are disconnected from the cluster. To disable
this timeout, set RestartSubscriberConnectTimeout to 0.

While this parameter is specified in milliseconds, the timeout itself is resolved to the next-greatest
whole second.

RestartSubscriberConnectTimeout was added in NDB 7.2.17.

Buffering and logging.  Several [ndbd] configuration parameters enable the advanced user to
have more control over the resources used by node processes and to adjust various buffer sizes at
need.

These buffers are used as front ends to the file system when writing log records to disk. If the node is
running in diskless mode, these parameters can be set to their minimum values without penalty due to
the fact that disk writes are “faked” by the NDB storage engine's file system abstraction layer.

•  UndoIndexBuffer

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 2M 1M - 4294967039
(0xFFFFFEFF)

N

The UNDO index buffer, whose size is set by this parameter, is used during local checkpoints. The
NDB storage engine uses a recovery scheme based on checkpoint consistency in conjunction with
an operational REDO log. To produce a consistent checkpoint without blocking the entire system for
writes, UNDO logging is done while performing the local checkpoint. UNDO logging is activated on
a single table fragment at a time. This optimization is possible because tables are stored entirely in
main memory.

The UNDO index buffer is used for the updates on the primary key hash index. Inserts and deletes
rearrange the hash index; the NDB storage engine writes UNDO log records that map all physical
changes to an index page so that they can be undone at system restart. It also logs all active insert
operations for each fragment at the start of a local checkpoint.



NDB Cluster Configuration Files

2144

Reads and updates set lock bits and update a header in the hash index entry. These changes are
handled by the page-writing algorithm to ensure that these operations need no UNDO logging.

This buffer is 2MB by default. The minimum value is 1MB, which is sufficient for most applications.
For applications doing extremely large or numerous inserts and deletes together with large
transactions and large primary keys, it may be necessary to increase the size of this buffer. If this
buffer is too small, the NDB storage engine issues internal error code 677 (Index UNDO buffers
overloaded).

Important

It is not safe to decrease the value of this parameter during a rolling restart.

•  UndoDataBuffer

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 16M 1M - 4294967039
(0xFFFFFEFF)

N

This parameter sets the size of the UNDO data buffer, which performs a function similar to that of
the UNDO index buffer, except the UNDO data buffer is used with regard to data memory rather
than index memory. This buffer is used during the local checkpoint phase of a fragment for inserts,
deletes, and updates.

Because UNDO log entries tend to grow larger as more operations are logged, this buffer is also
larger than its index memory counterpart, with a default value of 16MB.

This amount of memory may be unnecessarily large for some applications. In such cases, it is
possible to decrease this size to a minimum of 1MB.

It is rarely necessary to increase the size of this buffer. If there is such a need, it is a good idea to
check whether the disks can actually handle the load caused by database update activity. A lack of
sufficient disk space cannot be overcome by increasing the size of this buffer.

If this buffer is too small and gets congested, the NDB storage engine issues internal error code 891
(Data UNDO buffers overloaded).

Important

It is not safe to decrease the value of this parameter during a rolling restart.

•  RedoBuffer

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 32M 1M - 4294967039
(0xFFFFFEFF)

N

All update activities also need to be logged. The REDO log makes it possible to replay these updates
whenever the system is restarted. The NDB recovery algorithm uses a “fuzzy” checkpoint of the
data together with the UNDO log, and then applies the REDO log to play back all changes up to the
restoration point.

RedoBuffer sets the size of the buffer in which the REDO log is written. The default value is 32MB;
the minimum value is 1MB.



NDB Cluster Configuration Files

2145

If this buffer is too small, the NDB storage engine issues error code 1221 (REDO log buffers
overloaded). For this reason, you should exercise care if you attempt to decrease the value of
RedoBuffer as part of an online change in the cluster's configuration.

ndbmtd allocates a separate buffer for each LDM thread (see ThreadConfig). For example, with 4
LDM threads, an ndbmtd data node actually has 4 buffers and allocates RedoBuffer bytes to each
one, for a total of 4 * RedoBuffer bytes.

•  EventLogBufferSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 8192 0 - 64K S

Controls the size of the circular buffer used for NDB log events within data nodes.

Controlling log messages.  In managing the cluster, it is very important to be able to control the
number of log messages sent for various event types to stdout. For each event category, there are
16 possible event levels (numbered 0 through 15). Setting event reporting for a given event category
to level 15 means all event reports in that category are sent to stdout; setting it to 0 means that there
will be no event reports made in that category.

By default, only the startup message is sent to stdout, with the remaining event reporting level
defaults being set to 0. The reason for this is that these messages are also sent to the management
server's cluster log.

An analogous set of levels can be set for the management client to determine which event levels to
record in the cluster log.

•  LogLevelStartup

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 1 0 - 15 N

The reporting level for events generated during startup of the process.

The default level is 1.

•  LogLevelShutdown

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 0 0 - 15 N

The reporting level for events generated as part of graceful shutdown of a node.

The default level is 0.

•  LogLevelStatistic

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 0 0 - 15 N

The reporting level for statistical events such as number of primary key reads, number of updates,
number of inserts, information relating to buffer usage, and so on.

The default level is 0.

•  LogLevelCheckpoint



NDB Cluster Configuration Files

2146

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 log level 0 0 - 15 N

The reporting level for events generated by local and global checkpoints.

The default level is 0.

•  LogLevelNodeRestart

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 0 0 - 15 N

The reporting level for events generated during node restart.

The default level is 0.

•  LogLevelConnection

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 0 0 - 15 N

The reporting level for events generated by connections between cluster nodes.

The default level is 0.

•  LogLevelError

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 0 0 - 15 N

The reporting level for events generated by errors and warnings by the cluster as a whole. These
errors do not cause any node failure but are still considered worth reporting.

The default level is 0.

•  LogLevelCongestion

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 levelr 0 0 - 15 N

The reporting level for events generated by congestion. These errors do not cause node failure but
are still considered worth reporting.

The default level is 0.

•  LogLevelInfo

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 0 0 - 15 N

The reporting level for events generated for information about the general state of the cluster.

The default level is 0.

•  MemReportFrequency



NDB Cluster Configuration Files

2147

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 0 0 - 4294967039
(0xFFFFFEFF)

N

This parameter controls how often data node memory usage reports are recorded in the cluster log; it
is an integer value representing the number of seconds between reports.

Each data node's data memory and index memory usage is logged as both a percentage and
a number of 32 KB pages of the DataMemory and IndexMemory, respectively, set in the
config.ini file. For example, if DataMemory is equal to 100 MB, and a given data node is using
50 MB for data memory storage, the corresponding line in the cluster log might look like this:

2006-12-24 01:18:16 [MgmSrvr] INFO -- Node 2: Data usage is 50%(1280 32K pages of total 2560)

MemReportFrequency is not a required parameter. If used, it can be set for all cluster data nodes
in the [ndbd default] section of config.ini, and can also be set or overridden for individual
data nodes in the corresponding [ndbd] sections of the configuration file. The minimum value—
which is also the default value—is 0, in which case memory reports are logged only when memory
usage reaches certain percentages (80%, 90%, and 100%), as mentioned in the discussion of
statistics events in Section 18.5.6.2, “NDB Cluster Log Events”.

•  StartupStatusReportFrequency

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 seconds 0 0 - 4294967039
(0xFFFFFEFF)

N

When a data node is started with the --initial, it initializes the redo log file during Start Phase
4 (see Section 18.5.1, “Summary of NDB Cluster Start Phases”). When very large values are set
for NoOfFragmentLogFiles, FragmentLogFileSize, or both, this initialization can take a long
time.You can force reports on the progress of this process to be logged periodically, by means of
the StartupStatusReportFrequency configuration parameter. In this case, progress is reported
in the cluster log, in terms of both the number of files and the amount of space that have been
initialized, as shown here:

2009-06-20 16:39:23 [MgmSrvr] INFO -- Node 1: Local redo log file initialization status:
#Total files: 80, Completed: 60
#Total MBytes: 20480, Completed: 15557
2009-06-20 16:39:23 [MgmSrvr] INFO -- Node 2: Local redo log file initialization status:
#Total files: 80, Completed: 60
#Total MBytes: 20480, Completed: 15570

These reports are logged each StartupStatusReportFrequency seconds during Start Phase 4.
If StartupStatusReportFrequency is 0 (the default), then reports are written to the cluster log
only when at the beginning and at the completion of the redo log file initialization process.

Debugging Parameters.  In NDB Cluster 7.2, it is possible to cause logging of traces for events
generated by creating and dropping tables using DictTrace. This parameter is useful only in
debugging NDB kernel code. DictTrace takes an integer value; currently, 0 (default - no logging) and
1 (logging enabled) are the only supported values.

Backup parameters.  The [ndbd] parameters discussed in this section define memory buffers set
aside for execution of online backups.

•  BackupDataBufferSize



NDB Cluster Configuration Files

2148

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 16M 0 - 4294967039
(0xFFFFFEFF)

N

In creating a backup, there are two buffers used for sending data to the disk. The backup data
buffer is used to fill in data recorded by scanning a node's tables. Once this buffer has been filled to
the level specified as BackupWriteSize, the pages are sent to disk. While flushing data to disk,
the backup process can continue filling this buffer until it runs out of space. When this happens,
the backup process pauses the scan and waits until some disk writes have completed freeing up
memory so that scanning may continue.

The default value for this parameter is 16MB.

•  BackupLogBufferSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 16M 0 - 4294967039
(0xFFFFFEFF)

N

The backup log buffer fulfills a role similar to that played by the backup data buffer, except that
it is used for generating a log of all table writes made during execution of the backup. The same
principles apply for writing these pages as with the backup data buffer, except that when there is no
more space in the backup log buffer, the backup fails. For that reason, the size of the backup log
buffer must be large enough to handle the load caused by write activities while the backup is being
made. See Section 18.5.3.3, “Configuration for NDB Cluster Backups”.

The default value for this parameter should be sufficient for most applications. In fact, it is more likely
for a backup failure to be caused by insufficient disk write speed than it is for the backup log buffer
to become full. If the disk subsystem is not configured for the write load caused by applications, the
cluster is unlikely to be able to perform the desired operations.

It is preferable to configure cluster nodes in such a manner that the processor becomes the
bottleneck rather than the disks or the network connections.

The default value for this parameter is 16MB.

•  BackupMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 32M 0 - 4294967039
(0xFFFFFEFF)

N

This parameter is simply the sum of BackupDataBufferSize and BackupLogBufferSize.

The default value of this parameter in NDB Cluster 7.2 is 16MB + 16MB = 32MB.

Important

If BackupDataBufferSize and BackupLogBufferSize taken together
exceed the default value for BackupMemory, then this parameter must be set
explicitly in the config.ini file to their sum.

•  BackupReportFrequency

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 seconds 0 0 - 4294967039
(0xFFFFFEFF)

N



NDB Cluster Configuration Files

2149

This parameter controls how often backup status reports are issued in the management client during
a backup, as well as how often such reports are written to the cluster log (provided cluster event
logging is configured to permit it—see Logging and checkpointing). BackupReportFrequency
represents the time in seconds between backup status reports.

The default value is 0.

•  BackupWriteSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 256K 2K - 4294967039
(0xFFFFFEFF)

N

This parameter specifies the default size of messages written to disk by the backup log and backup
data buffers.

The default value for this parameter is 256KB.

•  BackupMaxWriteSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 1M 2K - 4294967039
(0xFFFFFEFF)

N

NDB 7.2.1 bytes 1M 2K - 4294967039
(0xFFFFFEFF)

N

This parameter specifies the maximum size of messages written to disk by the backup log and
backup data buffers.

The default value for this parameter is 1MB.

Note

The location of the backup files is determined by the BackupDataDir data
node configuration parameter.

Additional requirements.  When specifying these parameters, the following relationships must hold
true. Otherwise, the data node will be unable to start.

• BackupDataBufferSize >= BackupWriteSize + 188KB

• BackupLogBufferSize >= BackupWriteSize + 16KB

• BackupMaxWriteSize >= BackupWriteSize

NDB Cluster Realtime Performance Parameters

The [ndbd] parameters discussed in this section are used in scheduling and locking of threads to
specific CPUs on multiprocessor data node hosts.

Note

To make use of these parameters, the data node process must be run as
system root.

•  LockExecuteThreadToCPU

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 set of CPU IDs 0 ... N



NDB Cluster Configuration Files

2150

When used with ndbd, this parameter (now a string) specifies the ID of the CPU assigned to handle
the NDBCLUSTER execution thread. When used with ndbmtd, the value of this parameter is a
comma-separated list of CPU IDs assigned to handle execution threads. Each CPU ID in the list
should be an integer in the range 0 to 65535 (inclusive).

The number of IDs specified should match the number of execution threads determined by
MaxNoOfExecutionThreads. However, there is no guarantee that threads are assigned to CPUs
in any given order when using this parameter; beginning with in NDB 7.2.5, you can obtain more
finely-grained control of this type using ThreadConfig.

LockExecuteThreadToCPU has no default value.

•  LockMaintThreadsToCPU

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 CPU ID 0 0 - 64K N

This parameter specifies the ID of the CPU assigned to handle NDBCLUSTER maintenance threads.

The value of this parameter is an integer in the range 0 to 65535 (inclusive). In NDB Cluster 7.2,
there is no default value.

•  RealtimeScheduler

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

Setting this parameter to 1 enables real-time scheduling of data node threads.

Prior to NDB 7.2.14, this parameter did not work correctly with data nodes running ndbmtd. (Bug
#16961971)

The default is 0 (scheduling disabled).

•  SchedulerExecutionTimer

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 µs 50 0 - 11000 N

This parameter specifies the time in microseconds for threads to be executed in the scheduler
before being sent. Setting it to 0 minimizes the response time; to achieve higher throughput, you can
increase the value at the expense of longer response times.

The default is 50 μsec, which our testing shows to increase throughput slightly in high-load cases
without materially delaying requests.

•  SchedulerSpinTimer

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 µs 0 0 - 500 N

This parameter specifies the time in microseconds for threads to be executed in the scheduler before
sleeping.

The default value is 0.

•  BuildIndexThreads



NDB Cluster Configuration Files

2151

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric 0 0 - 128 S

This parameter determines the number of threads to create when rebuilding ordered indexes
during a system or node start, as well as when running ndb_restore --rebuild-indexes. It is
supported only when there is more than one fragment for the table per data node (for example, when
the MAX_ROWS option has been used with CREATE TABLE).

Setting this parameter to 0 (the default) disables multi-threaded building of ordered indexes.

This parameter is supported when using ndbd or ndbmtd.

You can enable multi-threaded builds during data node initial restarts by setting the
TwoPassInitialNodeRestartCopy data node configuration parameter to TRUE.

•  TwoPassInitialNodeRestartCopy

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

Multi-threaded building of ordered indexes can be enabled for initial restarts of data nodes by setting
this configuration parameter to TRUE, which enables two-pass copying of data during initial node
restarts.

You must also set BuildIndexThreads to a nonzero value.

•   Numa

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 1 0 - 1 N

This parameter determines whether Non-Uniform Memory Access (NUMA) is controlled by the
operating or by the data node process, whether the data node uses ndbd or ndbmtd. By default,
NDB attempts to use an interleaved NUMA memory allocation policy on any data node where the
host operating system provides NUMA support.

Setting Numa = 0 means that the datanode process does not itself attempt to set a policy for
memory allocation, and permits this behavior to be determined by the operating system, which
may be further guided by the separate numactl tool. That is, Numa = 0 yields the system default
behavior, which can be customised by numactl. For many Linux systems, the system default
behavior is to allocate socket-local memory to any given process at allocation time. This can be
problematic when using ndbmtd; this is because nbdmtd allocates all memory at startup, leading to
an imbalance, giving different access speeds for different sockets, especially when locking pages in
main memory.

Setting Numa = 1 means that the data node process uses libnuma to request interleaved memory
allocation. (This can also be accomplished manually, on the operating system level, using numactl.)
Using interleaved allocation in effect tells the data node process to ignore non-uniform memory
access but does not attempt to take any advantage of fast local memory; instead, the data node
process tries to avoid imbalances due to slow remote memory. If interleaved allocation is not desired,
set Numa to 0 so that the desired behavior can be determined on the operating system level.

The Numa configuration parameter is supported only on Linux systems where libnuma.so is
available.

Multi-Threading Configuration Parameters (ndbmtd).  ndbmtd runs by default as a single-
threaded process and must be configured to use multiple threads, using either of two methods, both
of which require setting configuration parameters in the config.ini file. The first method is simply to



NDB Cluster Configuration Files

2152

set an appropriate value for the MaxNoOfExecutionThreads configuration parameter. In NDB 7.2.3
and later, a second method is also supported, whereby it is possible to set up more complex rules for
ndbmtd multi-threading using ThreadConfig. The next few paragraphs provide information about
these parameters and their use with multi-threaded data nodes.

•     MaxNoOfExecutionThreads

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 integer 2 2 - 8 IS

NDB 7.2.5 integer 2 2 - 36 IS

Starting with NDB 7.2.5, this parameter directly controls the number of execution threads used by
ndbmtd, up to a maximum of 36. Although this parameter is set in [ndbd] or [ndbd default]
sections of the config.ini file, it is exclusive to ndbmtd and does not apply to ndbd.

Setting MaxNoOfExecutionThreads sets the number of threads by type as determined in the
following table:

MaxNoOfExecutionThreads Value LDM
Threads

TC
Threads

Send
Threads

Receive
Threads

0 .. 3 1 0 0 1

4 .. 6 2 0 0 1

7 .. 8 4 0 0 1

9 4 2 0 1

10 4 2 1 1

11 4 3 1 1

12 4 3 1 2

13 4 3 2 2

14 4 4 2 2

15 4 5 2 2

16 8 3 1 2

17 8 4 1 2

18 8 4 2 2

19 8 5 2 2

20 8 5 2 3

21 8 5 3 3

22 8 6 3 3

23 8 7 3 3

24 12 5 2 3

25 12 6 2 3

26 12 6 3 3

27 12 7 3 3

28 12 7 3 4

29 12 8 3 4

30 12 8 4 4

31 12 9 4 4

32 16 8 3 3



NDB Cluster Configuration Files

2153

MaxNoOfExecutionThreads Value LDM
Threads

TC
Threads

Send
Threads

Receive
Threads

33 16 8 3 4

34 16 8 4 4

35 16 9 4 4

36 16 10 4 4

NoOfFragmentLogParts should be set equal to the number of LDM threads used by ndbmtd as
determined by the setting for MaxNoOfExecutionThreads; see the description of this parameter
for more information.

There is always one SUMA (replication) thread. There was no separate send thread in NDB 7.2.4
and earlier, as well as no means of changing the number of TC threads.

The number of LDM threads also determines the number of partitions used by an NDB table that is
not explicitly partitioned; this is the number of LDM threads times the number of data nodes in the
cluster. (If ndbd is used on the data nodes rather than ndbmtd, then there is always a single LDM
thread; in this case, the number of partitions created automatically is simply equal to the number of
data nodes. See Section 18.1.2, “NDB Cluster Nodes, Node Groups, Replicas, and Partitions”, for
more information.

The thread types are described later in this section (see ThreadConfig).

Setting this parameter outside the permitted range of values causes the management server to abort
on startup with the error Error line number: Illegal value value for parameter
MaxNoOfExecutionThreads.

For MaxNoOfExecutionThreads, a value of 0 or 1 is rounded up internally by NDB to 2, so that 2 is
considered this parameter's default and minimum value.

MaxNoOfExecutionThreads is generally intended to be set equal to the number of CPU threads
available, and to allocate a number of threads of each type suitable to typical workloads. It does not
assign particular threads to specified CPUs. For cases where it is desirable to vary from the settings
provided, or to bind threads to CPUs, you should use ThreadConfig instead, which allows you to
allocate each thread directly to a desired type, CPU, or both.

In NDB 7.2.5 and later, the multi-threaded data node process always spawns, at a minimum, the
threads listed here:

• 1 local query handler (LDM) thread

• 1 receive thread

• 1 subscription manager (SUMA or replication) thread

For a MaxNoOfExecutionThreads value of 8 or less, no TC threads are created, and TC handling
is instead performed by the main thread.

Changing the number of LDM threads always requires a system restart, whether it is changed
using this parameter or ThreadConfig. If the cluster's IndexMemory usage is greater than 50%,
changing this requires an initial restart of the cluster. (A maximum of 30-35% IndexMemory usage
is recommended in such cases.) Otherwise, resource usage and LDM thread allocation cannot
be balanced between nodes, which can result in underutilized and overutilized LDM threads, and
ultimately data node failures.

In NDB 7.2.4 and earlier, there were only 4 thread types, with LDM threads being responsible for
their own sends. In addition, it was not possible to cause ndbmtd to use more than 1 TC thread.



NDB Cluster Configuration Files

2154

•   NoOfFragmentLogParts

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.5 numeric 4 4, 8, 12, 16 IN

Set the number of log file groups for redo logs belonging to this ndbmtd. The value must be an even
multiple of 4 between 4 and 16, inclusive.

NoOfFragmentLogParts should be set equal to four times the number of LDM threads used by
ndbmtd as determined by the setting for MaxNoOfExecutionThreads; see the description of this
parameter for more information.

•   ThreadConfig

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.3 string '' ... IS

This parameter is used with ndbmtd to assign threads of different types to different CPUs. Its value
is a string whose format has the following syntax:

ThreadConfig := entry[,entry[,...]]

entry := type={param[,param[,...]]}

type := ldm | main | recv | send | rep | io | tc | watchdog

param := count=number
  | cpubind=cpu_list
  | cpuset=cpu_list
  | spintime=number
  | realtime={0|1}

The curly braces ({...}) surrounding the list of parameters are required, even if there is only one
parameter in the list.

A param (parameter) specifies any or all of the following information:

• The number of threads of the given type (count).

• The set of CPUs to which the threads of the given type are to be nonexclusively bound. This is
determined by either one of cpubind or cpuset). cpubind causes each thread to be bound
(nonexclusively) to a CPU in the set; cpuset means that each thread is bound (nonexclusively) to
the set of CPUs specified.

Only one of cpubind or cpuset can be provided in a single configuration.

• spintime determines the wait time in microseconds the thread spins before going to sleep.

The default value for spintime is the value of the SchedulerSpinTimer data node
configuration parameter.

spintime does not apply to I/O threads or watchdog threads and so cannot be set for these
thread types.

• realtime can be set to 0 or 1. If it is set to 1, the threads run with real-time priority. This also
means that thread_prio cannot be set.

The realtime parameter is set by default to the value of the RealtimeScheduler data node
configuration parameter.



NDB Cluster Configuration Files

2155

The type attribute represents an NDB thread type. The thread types supported in NDB Cluster 7.2
and the range of permitted count values for each are provided in the following list:

• ldm: Local query handler (DBLQH kernel block) that handles data. The more LDM threads that are
used, the more highly partitioned the data becomes. Each LDM thread maintains its own sets of
data and index partitions, as well as its own redo log. The value set for ldm must be one of one of
the values 1, 2, 4, 6, 8, 12, or 16.

Important

Changing the number of LDM threads requires a system restart to be
effective and safe for cluster operations. (This is also true when this is
done using MaxNoOfExecutionThreads.) If IndexMemory usage is in
excess of 50%, an initial restart of the cluster is required; a maximum of
30-35% IndexMemory usage is recommended in such cases. Otherwise,
IndexMemory and DataMemory usage as well as the allocation of LDM
threads cannot be balanced between nodes, which can ultimately lead to
data node failures.

• tc: Transaction coordinator thread (DBTC kernel block) containing the state of an ongoing
transaction. In NDB 7.2.5 and later, the number of TC threads is configurable, with a total of 16
possible.

Optimally, every new transaction can be assigned to a new TC thread. In most cases 1 TC thread
per 2 LDM threads is sufficient to guarantee that this can happen. In cases where the number
of writes is relatively small when compared to the number of reads, it is possible that only 1 TC
thread per 4 LQH threads is required to maintain transaction states. Conversely, in applications
that perform a great many updates, it may be necessary for the ratio of TC threads to LDM threads
to approach 1 (for example, 3 TC threads to 4 LDM threads).

Range: (NDB 7.2.5 and later:) 0 - 16; (prior to NDB 7.2.5:) 1 (not settable).

• main: Data dictionary and transaction coordinator (DBDIH and DBTC kernel blocks), providing
schema management. This is always handled by a single dedicated thread.

Range: 1 only.

• recv: Receive thread (CMVMI kernel block). Each receive thread handles one or more sockets for
communicating with other nodes in an NDB Cluster, with one socket per node. Previously, this was
limited to a single thread, but NDB Cluster 7.2 implements multiple receive threads (up to 8).

Range: 1 - 8.

• send: Send thread (CMVMI kernel block). Added in NDB 7.2.5. To increase throughput, it is
possible in NDB 7.2.5 and later to perform sends from one or more separate, dedicated threads
(maximum 8).

Previously, all threads handled their own sending directly; this can still be made to happen by
setting the number of send threads to 0 (this also happens when MaxNoOfExecutionThreads is
set less than 10). While doing so can have an adeverse impact on throughput, it can also in some
cases provide decreased latency.

Range: 0 - 8.

• rep: Replication thread (SUMA kernel block). Asynchronous replication operations are always
handled by a single, dedicated thread.

Range: 1 only.



NDB Cluster Configuration Files

2156

• io: File system and other miscellaneous operations. These are not demanding tasks, and are
always handled as a group by a single, dedicated I/O thread.

Range: 1 only.

• watchdog: Settings to this parameter are actually applied to several threads of this type having
specific uses. These threads include the SocketServer thread which receives connection setups
from other nodes, the SocketClient thread which attempts to set up connections to other nodes,
and the thread watchdog thread that checks that threads are progressing.

Range: 1 only.

Simple examples:

# Example 1.

ThreadConfig=ldm={count=2,cpubind=1,2},main={cpubind=12},rep={cpubind=11}

# Example 2.

Threadconfig=main={cpubind=0},ldm={count=4,cpubind=1,2,5,6},io={cpubind=3}

It is usually desirable when configuring thread usage for a data node host to reserve one or more
number of CPUs for operating system and other tasks. Thus, for a host machine with 24 CPUs, you
might want to use 20 CPU threads (leaving 4 for other uses), with 8 LDM threads, 4 TC threads
(half the number of LDM threads), 3 send threads, 3 receive threads, and 1 thread each for schema
management, asynchronous replication, and I/O operations. (This is almost the same distribution of
threads used when MaxNoOfExecutionThreads is set equal to 20.) The following ThreadConfig
setting performs these assignments, additionally binding all of these threads to specific CPUs:

ThreadConfig=ldm{count=8,cpubind=1,2,3,4,5,6,7,8},main={cpubind=9},io={cpubind=9}, \
rep={cpubind=10},tc{count=4,cpubind=11,12,13,14},recv={count=3,cpubind=15,16,17}, \
send{count=3,cpubind=18,19,20}

It should be possible in most cases to bind the main (schema management) thread and the I/O thread
to the same CPU, as we have done in the example just shown.

In order to take advantage of the enhanced stability that the use of ThreadConfig offers, it is
necessary to insure that CPUs are isolated, and that they not subject to interrupts, or to being
scheduled for other tasks by the operating system. On many Linux systems, you can do this by setting
IRQBALANCE_BANNED_CPUS in /etc/sysconfig/irqbalance to 0xFFFFF0, and by using the
isolcpus boot option in grub.conf. For specific information, see your operating system or platform
documentation.

Disk Data Configuration Parameters.  Configuration parameters affecting Disk Data behavior
include the following:

•  DiskPageBufferEntries

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.19 32K pages 10 1 - 1000 N

This is the number of page entries (page references) to allocate. It is specified as a number of 32K
pages in DiskPageBufferMemory. The default is sufficient for most cases but you may need to
increase the value of this parameter if you encounter problems with very large transactions on Disk
Data tables. Each page entry requires approximately 100 bytes.

•  DiskPageBufferMemory



NDB Cluster Configuration Files

2157

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 64M 4M - 1T N

This determines the amount of space used for caching pages on disk, and is set in the [ndbd] or
[ndbd default] section of the config.ini file. It is measured in bytes. Each page takes up
32 KB. This means that NDB Cluster Disk Data storage always uses N * 32 KB memory where N is
some nonnegative integer.

The default value for this parameter is 64M (2000 pages of 32 KB each).

You can query the ndbinfo.diskpagebuffer table to help determine whether the value for this
parameter should be increased to minimize unnecessary disk seeks. See Section 18.5.10.8, “The
ndbinfo diskpagebuffer Table”, for more information.

•  SharedGlobalMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 128M 0 - 64T N

This parameter determines the amount of memory that is used for log buffers, disk operations (such
as page requests and wait queues), and metadata for tablespaces, log file groups, UNDO files, and
data files. The shared global memory pool also provides memory used for satisfying the memory
requirements of the UNDO_BUFFER_SIZE option used with CREATE LOGFILE GROUP and ALTER
LOGFILE GROUP statements, including any default value implied for this options by the setting of the
InitialLogFileGroup data node configuration parameter. SharedGlobalMemory can be set in
the [ndbd] or [ndbd default] section of the config.ini configuration file, and is measured in
bytes.

As of NDB 7.2.0, the default value is 128M. (Previously, this was 20M.)

•   DiskIOThreadPool

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 threads 2 0 - 4294967039
(0xFFFFFEFF)

N

This parameter determines the number of unbound threads used for Disk Data file access. Before
DiskIOThreadPool was introduced, exactly one thread was spawned for each Disk Data
file, which could lead to performance issues, particularly when using very large data files. With
DiskIOThreadPool, you can—for example—access a single large data file using several threads
working in parallel.

This parameter applies to Disk Data I/O threads only.

The optimum value for this parameter depends on your hardware and configuration, and includes
these factors:

• Physical distribution of Disk Data files.  You can obtain better performance by placing data
files, undo log files, and the data node file system on separate physical disks. If you do this with
some or all of these sets of files, then you can set DiskIOThreadPool higher to enable separate
threads to handle the files on each disk.

• Disk performance and types.  The number of threads that can be accommodated for Disk
Data file handling is also dependent on the speed and throughput of the disks. Faster disks and
higher throughput allow for more disk I/O threads. Our test results indicate that solid-state disk
drives can handle many more disk I/O threads than conventional disks, and thus higher values for
DiskIOThreadPool.



NDB Cluster Configuration Files

2158

In NDB Cluster 7.2, the default value for this parameter is 2.

• Disk Data file system parameters.  The parameters in the following list make it possible to place
NDB Cluster Disk Data files in specific directories without the need for using symbolic links.

•  FileSystemPathDD

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 filename [see text] ... IN

If this parameter is specified, then NDB Cluster Disk Data data files and undo log files are
placed in the indicated directory. This can be overridden for data files, undo log files, or both, by
specifying values for FileSystemPathDataFiles, FileSystemPathUndoFiles, or both,
as explained for these parameters. It can also be overridden for data files by specifying a path
in the ADD DATAFILE clause of a CREATE TABLESPACE or ALTER TABLESPACE statement,
and for undo log files by specifying a path in the ADD UNDOFILE clause of a CREATE LOGFILE
GROUP or ALTER LOGFILE GROUP statement. If FileSystemPathDD is not specified, then
FileSystemPath is used.

If a FileSystemPathDD directory is specified for a given data node (including the case where the
parameter is specified in the [ndbd default] section of the config.ini file), then starting that
data node with --initial causes all files in the directory to be deleted.

•  FileSystemPathDataFiles

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 filename [see text] ... IN

If this parameter is specified, then NDB Cluster Disk Data data files are placed in the indicated
directory. This overrides any value set for FileSystemPathDD. This parameter can be overridden
for a given data file by specifying a path in the ADD DATAFILE clause of a CREATE TABLESPACE
or ALTER TABLESPACE statement used to create that data file. If FileSystemPathDataFiles
is not specified, then FileSystemPathDD is used (or FileSystemPath, if FileSystemPathDD
has also not been set).

If a FileSystemPathDataFiles directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd default] section of the config.ini file), then
starting that data node with --initial causes all files in the directory to be deleted.

•  FileSystemPathUndoFiles

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 filename [see text] ... IN

If this parameter is specified, then NDB Cluster Disk Data undo log files are placed in the
indicated directory. This overrides any value set for FileSystemPathDD. This parameter
can be overridden for a given data file by specifying a path in the ADD UNDO clause of a
CREATE LOGFILE GROUP or ALTER LOGFILE GROUP statement used to create that data
file. If FileSystemPathUndoFiles is not specified, then FileSystemPathDD is used (or
FileSystemPath, if FileSystemPathDD has also not been set).

If a FileSystemPathUndoFiles directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd default] section of the config.ini file), then
starting that data node with --initial causes all files in the directory to be deleted.

For more information, see Section 18.5.12.1, “NDB Cluster Disk Data Objects”.



NDB Cluster Configuration Files

2159

• Disk Data object creation parameters.  The next two parameters enable you—when starting
the cluster for the first time—to cause a Disk Data log file group, tablespace, or both, to be created
without the use of SQL statements.

•  InitialLogFileGroup

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 string [see text] ... S

This parameter can be used to specify a log file group that is created when performing an initial
start of the cluster. InitialLogFileGroup is specified as shown here:

InitialLogFileGroup = [name=name;] [undo_buffer_size=size;] file-specification-list

file-specification-list:
    file-specification[; file-specification[; ...]]

file-specification:
    filename:size

The name of the log file group is optional and defaults to DEFAULT-LG. The undo_buffer_size
is also optional; if omitted, it defaults to 64M. Each file-specification corresponds to
an undo log file, and at least one must be specified in the file-specification-list.
Undo log files are placed according to any values that have been set for FileSystemPath,
FileSystemPathDD, and FileSystemPathUndoFiles, just as if they had been created as the
result of a CREATE LOGFILE GROUP or ALTER LOGFILE GROUP statement.

Consider the following:

InitialLogFileGroup = name=LG1; undo_buffer_size=128M; undo1.log:250M; undo2.log:150M

This is equivalent to the following SQL statements:

CREATE LOGFILE GROUP LG1
    ADD UNDOFILE 'undo1.log'
    INITIAL_SIZE 250M
    UNDO_BUFFER_SIZE 128M
    ENGINE NDBCLUSTER;

ALTER LOGFILE GROUP LG1
    ADD UNDOFILE 'undo2.log'
    INITIAL_SIZE 150M
    ENGINE NDBCLUSTER;

This logfile group is created when the data nodes are started with --initial.

Resources for the initial log file group are taken from the global memory pool whose size is
determined by the value of the SharedGlobalMemory data node configuration parameter; if this
parameter is set too low and the values set in InitialLogFileGroup for the logfile group's
initial size or undo buffer size are too high, the cluster may fail to create the default log file group
when starting, or fail to start altogether.

This parameter, if used, should always be set in the [ndbd default] section of the
config.ini file. The behavior of an NDB Cluster when different values are set on different data
nodes is not defined.

•  InitialTablespace

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 string [see text] ... S



NDB Cluster Configuration Files

2160

This parameter can be used to specify an NDB Cluster Disk Data tablespace that is created when
performing an initial start of the cluster. InitialTablespace is specified as shown here:

InitialTablespace = [name=name;] [extent_size=size;] file-specification-list

The name of the tablespace is optional and defaults to DEFAULT-TS. The extent_size
is also optional; it defaults to 1M. The file-specification-list uses the same syntax
as shown with the InitialLogfileGroup parameter, the only difference being that each
file-specification used with InitialTablespace corresponds to a data file. At
least one must be specified in the file-specification-list. Data files are placed
according to any values that have been set for FileSystemPath, FileSystemPathDD, and
FileSystemPathDataFiles, just as if they had been created as the result of a CREATE
TABLESPACE or ALTER TABLESPACE statement.

For example, consider the following line specifying InitialTablespace in the [ndbd
default] section of the config.ini file (as with InitialLogfileGroup, this parameter
should always be set in the [ndbd default] section, as the behavior of an NDB Cluster when
different values are set on different data nodes is not defined):

InitialTablespace = name=TS1; extent_size=8M; data1.dat:2G; data2.dat:4G

This is equivalent to the following SQL statements:

CREATE TABLESPACE TS1
    ADD DATAFILE 'data1.dat'
    EXTENT_SIZE 8M
    INITIAL_SIZE 2G
    ENGINE NDBCLUSTER;

ALTER TABLESPACE TS1
    ADD DATAFILE 'data2.dat'
    INITIAL_SIZE 4G
    ENGINE NDBCLUSTER;

This tablespace is created when the data nodes are started with --initial, and can be used
whenever creating NDB Cluster Disk Data tables thereafter.

Disk Data and GCP Stop errors.    Errors encountered when using Disk Data tables such as Node
nodeid killed this node because GCP stop was detected (error 2303) are often referred
to as “GCP stop errors”. Such errors occur when the redo log is not flushed to disk quickly enough; this
is usually due to slow disks and insufficient disk throughput.

You can help prevent these errors from occurring by using faster disks, and by placing
Disk Data files on a separate disk from the data node file system. Reducing the value of
TimeBetweenGlobalCheckpoints tends to decrease the amount of data to be written for each
global checkpoint, and so may provide some protection against redo log buffer overflows when trying
to write a global checkpoint; however, reducing this value also permits less time in which to write the
GCP, so this must be done with caution.

In addition to the considerations given for DiskPageBufferMemory as explained previously, it is
also very important that the DiskIOThreadPool configuration parameter be set correctly; having
DiskIOThreadPool set too high is very likely to cause GCP stop errors (Bug #37227).

GCP stops can be caused by save or commit timeouts; the TimeBetweenEpochsTimeout data node
configuration parameter determines the timeout for commits. However, it is possible to disable both
types of timeouts by setting this parameter to 0.

Parameters for configuring send buffer memory allocation.  Send buffer memory is allocated
dynamically from a memory pool shared between all transporters, which means that the size of the



NDB Cluster Configuration Files

2161

send buffer can be adjusted as necessary. (Previously, the NDB kernel used a fixed-size send buffer
for every node in the cluster, which was allocated when the node started and could not be changed
while the node was running.) The TotalSendBufferMemory and OverLoadLimit data node
configuration parameters permit the setting of limits on this memory allocation. For more information
about the use of these parameters (as well as SendBufferMemory), see Section 18.3.3.13,
“Configuring NDB Cluster Send Buffer Parameters”.

•  ExtraSendBufferMemory

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any
set using TotalSendBufferMemory, SendBufferMemory, or both.

This parameter was added in NDB 7.2.5. (Bug #11760629, Bug #53053)

•  TotalSendBufferMemory

This parameter is used to determine the total amount of memory to allocate on this node for shared
send buffer memory among all configured transporters.

Prior to NDB 7.2.5, this parameter did not work correctly with ndbmtd. (Bug #13633845)

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has
not been set. For more detailed information, see Section 18.3.3.13, “Configuring NDB Cluster Send
Buffer Parameters”.

•  ReservedSendBufferMemory

This parameter is present in NDBCLUSTER source code beginning with NDB 6.4.0. However, it is not
currently enabled.

As of NDB 7.2.5, this parameter is deprecated, and is subject to removal in a future release of NDB
Cluster (Bug #11760629, Bug #53053).

For more detailed information about the behavior and use of TotalSendBufferMemory and
ReservedSendBufferMemory, and about configuring send buffer memory parameters in NDB
Cluster, see Section 18.3.3.13, “Configuring NDB Cluster Send Buffer Parameters”.

See also Section 18.5.13, “Adding NDB Cluster Data Nodes Online”.

Redo log over-commit handling.  It is possible to control a data node's handling of operations
when too much time is taken flushing redo logs to disk. This occurs when a given redo log flush takes
longer than RedoOverCommitLimit seconds, more than RedoOverCommitCounter times, causing
any pending transactions to be aborted. When this happens, the API node that sent the transaction can
handle the operations that should have been committed either by queuing the operations and re-trying
them, or by aborting them, as determined by DefaultOperationRedoProblemAction. The data
node configuration parameters for setting the timeout and number of times it may be exceeded before
the API node takes this action are described in the following list:

•  RedoOverCommitCounter

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric 3 0 - 4294967039
(0xFFFFFEFF)

N

When RedoOverCommitLimit is exceeded when trying to write a given redo log to disk this many
times or more, any transactions that were not committed as a result are aborted, and an API node
where any of these transactions originated handles the operations making up those transactions
according to its value for DefaultOperationRedoProblemAction (by either queuing the
operations to be re-tried, or aborting them).

RedoOverCommitCounter defaults to 3. Set it to 0 to disable the limit.



NDB Cluster Configuration Files

2162

•  RedoOverCommitLimit

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 seconds 20 0 - 4294967039
(0xFFFFFEFF)

N

This parameter sets an upper limit in seconds for trying to write a given redo log to disk before
timing out. The number of times the data node tries to flush this redo log, but takes longer than
RedoOverCommitLimit, is kept and compared with RedoOverCommitCounter, and when
flushing takes too long more times than the value of that parameter, any transactions that were not
committed as a result of the flush timeout are aborted. When this occurs, the API node where any of
these transactions originated handles the operations making up those transactions according to its
DefaultOperationRedoProblemAction setting (it either queues the operations to be re-tried, or
aborts them).

By default, RedoOverCommitLimit is 20 seconds. Set to 0 to disable checking for redo log flush
timeouts. This parameter was added in NDB 7.1.10.

Controlling restart attempts.  It is possible to exercise finely-grained control over restart attempts
by data nodes when they fail to start using the MaxStartFailRetries and StartFailRetryDelay
data node configuration parameters.

MaxStartFailRetries limits the total number of retries made before giving up on starting the
data node, StartFailRetryDelay sets the number of seconds between retry attempts. These
parameters are listed here:

•  StartFailRetryDelay

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 0 0 - 4294967039
(0xFFFFFEFF)

N

Use this parameter to set the number of seconds between restart attempts by the data node in the
event on failure on startup. The default is 0 (no delay).

Both this parameter and MaxStartFailRetries are ignored unless StopOnError is equal to 0.

•  MaxStartFailRetries

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 3 0 - 4294967039
(0xFFFFFEFF)

N

Use this parameter to limit the number restart attempts made by the data node in the event that it
fails on startup. The default is 3 attempts.

Both this parameter and StartFailRetryDelay are ignored unless StopOnError is equal to 0.

NDB index statistics parameters.   The parameters in the following list relate to NDB index
statistics generation, which was introduced in NDB 7.2.1.

•  IndexStatAutoCreate

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.1 boolean false false, true S

Enable or disable automatic statistics collection when indexes are created. Disabled by default.

This parameter was added in NDB 7.2.1.



NDB Cluster Configuration Files

2163

•  IndexStatAutoUpdate

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.1 boolean false false, true S

Enable or disable monitoring of indexes for changes and trigger automatic statistics updates these
are detected. The amount and degree of change needed to trigger the updates are determined by
the settings for the IndexStatTriggerPct and IndexStatTriggerScale options.

This parameter was added in NDB 7.2.1.

•  IndexStatSaveSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.1 bytes 32768 0 - 4294967039
(0xFFFFFEFF)

IN

Maximum space in bytes allowed for the saved statistics of any given index in the NDB system tables
and in the mysqld memory cache. This consumes IndexMemory.

At least one sample is always produced, regardless of any size limit. Note that this size is scaled by
IndexStatSaveScale.

This parameter was added in NDB 7.2.1.

The size specified by IndexStatSaveSize is scaled by the value of IndexStatTriggerPct for a
large index, times 0.01. Note that this is further multiplied by the logarithm to the base 2 of the index
size. Setting IndexStatTriggerPct equal to 0 disables the scaling effect.

•  IndexStatSaveScale

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.1 percentage 100 0 - 4294967039
(0xFFFFFEFF)

IN

The size specified by IndexStatSaveSize is scaled by the value of IndexStatTriggerPct for a
large index, times 0.01. Note that this is further multiplied by the logarithm to the base 2 of the index
size. Setting IndexStatTriggerPct equal to 0 disables the scaling effect.

This parameter was added in NDB 7.2.1.

•  IndexStatTriggerPct

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.1 percentage 100 0 - 4294967039
(0xFFFFFEFF)

IN

Percentage change in updates that triggers an index statistics update. The value is
scaled by IndexStatTriggerScale. You can disable this trigger altogether by setting
IndexStatTriggerPct to 0.

This parameter was added in NDB 7.2.1.

•  IndexStatTriggerScale

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.1 percentage 100 0 - 4294967039
(0xFFFFFEFF)

IN



NDB Cluster Configuration Files

2164

Scale IndexStatTriggerPct by this amount times 0.01 for a large index. A value of 0 disables
scaling.

This parameter was added in NDB 7.2.1.

•  IndexStatUpdateDelay

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.1 seconds 60 0 - 4294967039
(0xFFFFFEFF)

IN

Minimum delay in seconds between automatic index statistics updates for a given index. Setting this
variable to 0 disables any delay. The default is 60 seconds.

This parameter was added in NDB 7.2.1.

18.3.3.7 Defining SQL and Other API Nodes in an NDB Cluster

The [mysqld] and [api] sections in the config.ini file define the behavior of the MySQL servers
(SQL nodes) and other applications (API nodes) used to access cluster data. None of the parameters
shown is required. If no computer or host name is provided, any host can use this SQL or API node.

Generally speaking, a [mysqld] section is used to indicate a MySQL server providing an SQL
interface to the cluster, and an [api] section is used for applications other than mysqld processes
accessing cluster data, but the two designations are actually synonymous; you can, for instance, list
parameters for a MySQL server acting as an SQL node in an [api] section.

Note

For a discussion of MySQL server options for NDB Cluster, see MySQL Server
Options for NDB Cluster; for information about MySQL server system variables
relating to NDB Cluster, see NDB Cluster System Variables.

•  Id

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 1 - 255 IS

The Id is an integer value used to identify the node in all cluster internal messages. The permitted
range of values is 1 to 255 inclusive. This value must be unique for each node in the cluster,
regardless of the type of node.

Note

Data node IDs must be less than 49, regardless of the NDB Cluster version
used. If you plan to deploy a large number of data nodes, it is a good idea to
limit the node IDs for API nodes (and management nodes) to values greater
than 48.

NodeId is the preferred parameter name to use when identifying API nodes. (Id continues to be
supported for backward compatibility, but is now deprecated and generates a warning when used. It
is also subject to future removal.)

•  ConnectionMap

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 string [none] ... N

Specifies which data nodes to connect.



NDB Cluster Configuration Files

2165

•  NodeId

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 1 - 255 IS

The NodeId is an integer value used to identify the node in all cluster internal messages. The
permitted range of values is 1 to 255 inclusive. This value must be unique for each node in the
cluster, regardless of the type of node.

Note

Data node IDs must be less than 49, regardless of the NDB Cluster version
used. If you plan to deploy a large number of data nodes, it is a good idea to
limit the node IDs for API nodes (and management nodes) to values greater
than 48.

NodeId is the preferred parameter name to use when identifying management nodes in NDB
Cluster 7.2 and later. Previously, Id was used for this purpose and this continues to be supported for
backward compatibility. Id is now deprecated and generates a warning when used; it is subject to
removal in a future release of NDB Cluster.

•  ExecuteOnComputer

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name [none] ... S

This refers to the Id set for one of the computers (hosts) defined in a [computer] section of the
configuration file.

•  HostName

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name or IP
address

[none] ... N

Specifying this parameter defines the hostname of the computer on which the SQL node (API node)
is to reside. To specify a hostname, either this parameter or ExecuteOnComputer is required.

If no HostName or ExecuteOnComputer is specified in a given [mysql] or [api] section of
the config.ini file, then an SQL or API node may connect using the corresponding “slot” from
any host which can establish a network connection to the management server host machine. This
differs from the default behavior for data nodes, where localhost is assumed for HostName unless
otherwise specified.

•  ArbitrationRank

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 0-2 0 0 - 2 N

This parameter defines which nodes can act as arbitrators. Both management nodes and SQL
nodes can be arbitrators. A value of 0 means that the given node is never used as an arbitrator, a
value of 1 gives the node high priority as an arbitrator, and a value of 2 gives it low priority. A normal
configuration uses the management server as arbitrator, setting its ArbitrationRank to 1 (the
default for management nodes) and those for all SQL nodes to 0 (the default for SQL nodes).

By setting ArbitrationRank to 0 on all management and SQL nodes, you can disable arbitration
completely. You can also control arbitration by overriding this parameter; to do so, set the



NDB Cluster Configuration Files

2166

Arbitration parameter in the [ndbd default] section of the config.ini global configuration
file.

•  ArbitrationDelay

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 milliseconds 0 0 - 4294967039
(0xFFFFFEFF)

N

Setting this parameter to any other value than 0 (the default) means that responses by the arbitrator
to arbitration requests will be delayed by the stated number of milliseconds. It is usually not
necessary to change this value.

•  BatchByteSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 32K 1K - 1M N

NDB 7.2.1 bytes 16K 1K - 1M N

For queries that are translated into full table scans or range scans on indexes, it is important for best
performance to fetch records in properly sized batches. It is possible to set the proper size both in
terms of number of records (BatchSize) and in terms of bytes (BatchByteSize). The actual batch
size is limited by both parameters.

The speed at which queries are performed can vary by more than 40% depending upon how this
parameter is set.

This parameter is measured in bytes. The default value prior to NDB 7.2.1 was 32K; in NDB 7.2.1
and later, the default is 16K.

•  BatchSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 records 64 1 - 992 N

NDB 7.2.1 records 256 1 - 992 N

This parameter is measured in number of records and is by default set to 256 (NDB 7.2.1 and later;
previously, the default was 64). The maximum size is 992.

•  ExtraSendBufferMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.14 bytes 0 0 - 4294967039
(0xFFFFFEFF)

N

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any
that has been set using TotalSendBufferMemory, SendBufferMemory, or both.

This parameter was added in NDB 7.2.14. (Bug #14555359)

•  HeartbeatThreadPriority

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 string [none] ... S

Use this parameter to set the scheduling policy and priority of heartbeat threads for management and
API nodes. The syntax for setting this parameter is shown here:



NDB Cluster Configuration Files

2167

HeartbeatThreadPriority = policy[, priority]

policy:
  {FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FIFO (first in, first in) or RR
(round robin). This followed optionally by the priority (an integer).

•  MaxScanBatchSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 256K 32K - 16M N

The batch size is the size of each batch sent from each data node. Most scans are performed in
parallel to protect the MySQL Server from receiving too much data from many nodes in parallel; this
parameter sets a limit to the total batch size over all nodes.

The default value of this parameter is set to 256KB. Its maximum size is 16MB.

•  TotalSendBufferMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 0 256K -
4294967039
(0xFFFFFEFF)

N

This parameter is available beginning with NDB 6.4.0. It is used to determine the total amount of
memory to allocate on this node for shared send buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has
not been set. For more detailed information, see Section 18.3.3.13, “Configuring NDB Cluster Send
Buffer Parameters”.

•  AutoReconnect

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

This parameter is false by default. This forces disconnected API nodes (including MySQL Servers
acting as SQL nodes) to use a new connection to the cluster rather than attempting to re-use an
existing one, as re-use of connections can cause problems when using dynamically-allocated node
IDs. (Bug #45921)

Note

This parameter can be overridden using the NDB API. For more
information, see Ndb_cluster_connection::set_auto_reconnect(), and
Ndb_cluster_connection::get_auto_reconnect().

•  DefaultOperationRedoProblemAction

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 enumeration ABORT ABORT, QUEUE S

NDB 7.2.1 enumeration ABORT ABORT, QUEUE S

NDB 7.2.10 enumeration QUEUE ABORT, QUEUE S

http://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection-set-auto-reconnect.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection-get-auto-reconnect.html


NDB Cluster Configuration Files

2168

This parameter (along with RedoOverCommitLimit and RedoOverCommitCounter) controls
the data node's handling of operations when too much time is taken flushing redo logs to disk. This
occurs when a given redo log flush takes longer than RedoOverCommitLimit seconds, more than
RedoOverCommitCounter times, causing any pending transactions to be aborted.

When this happens, the node can respond in either of two ways, according to the value of
DefaultOperationRedoProblemAction, listed here:

• ABORT: Any pending operations from aborted transactions are also aborted.

• QUEUE: Pending operations from transactions that were aborted are queued up to be re-tried.
This the default in NDB Cluster 7.2 and later. In NDB 7.2.21 and later, pending operations are still
aborted when the redo log runs out of space—that is, when P_TAIL_PROBLEM errors occur. (Bug
#20782580)

Prior to NDB 7.2.10, setting this parameter did not have any effect. (Bug #15855588)

•  DefaultHashMapSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.11 buckets 3840 0 - 3840 N

NDB 7.2.7 and later use a larger default table hash map size (3840) than in previous releases (240).
Beginning with NDB 7.2.11, the size of the table hash maps used by NDB is configurable using this
parameter; previously this value was hard-coded. DefaultHashMapSize can take any of three
possible values (0, 240, 3840). These values and their effects are described in the following table.

Value Description / Effect

0 Use the lowest value set, if any, for this parameter among all data nodes and
API nodes in the cluster; if it is not set on any data or API node, use the default
value.

240 Original hash map size, used by default in all NDB Cluster releases prior to
NDB 7.2.7.

3840 Larger hash map size as used by default in NDB 7.2.7 and later

The primary intended use for this parameter is to facilitate upgrades and especially downgrades
between NDB 7.2.7 and later NDB Cluster versions, in which the larger hash map size (3840) is
the default, and earlier releases (in which the default was 240), due to the fact that this change
is not otherwise backward compatible (Bug #14800539). By setting this parameter to 240 prior to
performing an upgrade from an older version where this value is in use, you can cause the cluster to
continue using the smaller size for table hash maps, in which case the tables remain compatible with
earlier versions following the upgrade. DefaultHashMapSize can be set for individual data nodes,
API nodes, or both, but setting it once only, in the [ndbd default] section of the config.ini
file, is the recommended practice.

After increasing this parameter, to have existing tables to take advantage of the new size, you can
run ALTER TABLE ... REORGANIZE PARTITION on them, after which they can use the larger
hash map size. This is in addition to performing a rolling restart, which makes the larger hash maps
available to new tables, but does not enable existing tables to use them.

Decreasing this parameter online after any tables have been created or modified with
DefaultHashMapSize equal to 3840 is not currently supported.

•  Wan



NDB Cluster Configuration Files

2169

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

Use WAN TCP setting as default.

•  ConnectBackoffMaxTime

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.18 integer 0 0 - 4294967039
(0xFFFFFEFF)

N

Starting with NDB 7.2.18, in an NDB Cluster with many unstarted data nodes, the value of this
parameter can be raised to circumvent connection attempts to data nodes which have not yet begun
to function in the cluster, as well as moderate high traffic to management nodes. As long as the API
node is not connected to any new data nodes, the value of the StartConnectBackoffMaxTime
parameter is applied; otherwise, ConnectBackoffMaxTime is used to determine the length of time
in milliseconds to wait between connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
ConnectBackoffMaxTime milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message)
that it has connected to other data nodes, connection attempts to those data nodes are no longer
affected by this parameter, and are made every 100 ms thereafter until connected. Note that, once
a data node has started, it can take up HeartbeatIntervalDbApi for the API node to be notified
that this has occurred.

•  StartConnectBackoffMaxTime

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.18 integer 1500 0 - 4294967039
(0xFFFFFEFF)

N

Starting with NDB 7.2.18, in an NDB Cluster with many unstarted data nodes, the value of this
parameter can be raised to circumvent connection attempts to data nodes which have not yet begun
to function in the cluster, as well as moderate high traffic to management nodes. As long as the API
node is not connected to any new data nodes, the value of the StartConnectBackoffMaxTime
parameter is applied; otherwise, ConnectBackoffMaxTime is used to determine the length of time
in milliseconds to wait between connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
StartConnectBackoffMaxTime milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message)
that it has connected to other data nodes, connection attempts to those data nodes are no longer
affected by this parameter, and are made every 100 ms thereafter until connected. Note that, once
a data node has started, it can take up HeartbeatIntervalDbApi for the API node to be notified
that this has occurred.

You can also obtain information from a MySQL server running as an NDB Cluster SQL node using
SHOW STATUS in the mysql client, as shown here:

mysql> SHOW STATUS LIKE 'ndb%';



NDB Cluster Configuration Files

2170

+-----------------------------+---------------+
| Variable_name               | Value         |
+-----------------------------+---------------+
| Ndb_cluster_node_id         | 5             |
| Ndb_config_from_host        | 192.168.0.112 |
| Ndb_config_from_port        | 1186          |
| Ndb_number_of_storage_nodes | 4             |
+-----------------------------+---------------+
4 rows in set (0.02 sec)

For information about the status variables appearing in the output from this statement, see NDB Cluster
Status Variables.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or
API nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes
can employ previously unused API slots in the cluster configuration to connect
to the cluster.

18.3.3.8 MySQL Server Options and Variables for NDB Cluster

This section provides information about MySQL server options, server and status variables that are
specific to NDB Cluster. For general information on using these, and for other options and variables not
specific to NDB Cluster, see Section 5.1, “The MySQL Server”.

For NDB Cluster configuration parameters used in the cluster configuration file (usually named
config.ini), see Section 18.3, “Configuration of NDB Cluster”.

MySQL Server Options for NDB Cluster

This section provides descriptions of mysqld server options relating to NDB Cluster. For information
about mysqld options not specific to NDB Cluster, and for general information about the use of options
with mysqld, see Section 5.1.4, “Server Command Options”.

For information about command-line options used with other NDB Cluster processes (ndbd,
ndb_mgmd, and ndb_mgm), see Section 18.4.27, “Options Common to NDB Cluster Programs —
Options Common to NDB Cluster Programs”. For information about command-line options used with
NDB utility programs (such as ndb_desc, ndb_size.pl, and ndb_show_tables), see Section 18.4,
“NDB Cluster Programs”.

•   --ndbcluster

Table 18.10  Type and value information for ndbcluster

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndbcluster

Yes No No

Yes No

NDB 7.2 boolean FALSE



NDB Cluster Configuration Files

2171

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

DESCRIPTION: Enable NDB Cluster (if this version of MySQL supports it).

Disabled by --skip-ndbcluster

The NDBCLUSTER storage engine is necessary for using NDB Cluster. If a mysqld binary includes
support for the NDBCLUSTER storage engine, the engine is disabled by default. Use the --
ndbcluster option to enable it. Use --skip-ndbcluster to explicitly disable the engine.

•   --ndb-batch-size=#

Table 18.11  Type and value information for ndb-batch-size

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-batch-size

Yes Yes No

Yes Global No

NDB 7.2 integer 32768 / 0 - 31536000

DESCRIPTION: Size (in bytes) to use for NDB transaction batches.

This sets the size in bytes that is used for NDB transaction batches.

•   --ndb-cluster-connection-pool=#

Table 18.12  Type and value information for ndb-cluster-connection-pool

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-cluster-connection-pool

Yes Yes Yes

Yes Global No

NDB 7.2 integer 1 / 1 - 63

DESCRIPTION: Number of connections to the cluster used by MySQL.

By setting this option to a value greater than 1 (the default), a mysqld process can use multiple
connections to the cluster, effectively mimicking several SQL nodes. Each connection requires its
own [api] or [mysqld] section in the cluster configuration (config.ini) file, and counts against
the maximum number of API connections supported by the cluster.

Suppose that you have 2 cluster host computers, each running an SQL node whose mysqld
process was started with --ndb-cluster-connection-pool=4; this means that the cluster must
have 8 API slots available for these connections (instead of 2). All of these connections are set up
when the SQL node connects to the cluster, and are allocated to threads in a round-robin fashion.



NDB Cluster Configuration Files

2172

This option is useful only when running mysqld on host machines having multiple CPUs, multiple
cores, or both. For best results, the value should be smaller than the total number of cores available
on the host machine. Setting it to a value greater than this is likely to degrade performance severely.

Important

Because each SQL node using connection pooling occupies multiple API
node slots—each slot having its own node ID in the cluster—you must not
use a node ID as part of the cluster connection string when starting any
mysqld process that employs connection pooling.

Setting a node ID in the connection string when using the --ndb-cluster-
connection-pool option causes node ID allocation errors when the SQL
node attempts to connect to the cluster.

Note

In some older releases of NDB Cluster prior to NDB Cluster 7.2, there
was also a separate status variable corresponding to this option; however,
the status variable was removed as redundant as of these versions. (Bug
#60119)

•   --ndb-blob-read-batch-bytes=bytes

Table 18.13  Type and value information for ndb-blob-read-batch-bytes

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-blob-read-batch-bytes

Yes Yes No

Yes Both Yes

NDB 7.2 integer 65536 / 0 - 4294967295

DESCRIPTION: Specifies size in bytes that large BLOB reads should be batched into. 0 = no limit..

This option can be used to set the size (in bytes) for batching of BLOB data reads in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be read within the
current transaction, any pending BLOB read operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect
of disabling BLOB read batching.

Note

In NDB API applications, you can control BLOB write
batching with the setMaxPendingBlobReadBytes() and
getMaxPendingBlobReadBytes() methods.

•   --ndb-blob-write-batch-bytes=bytes

http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-setmaxpendingblobreadbytes.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-getmaxpendingblobreadbytes.html


NDB Cluster Configuration Files

2173

Table 18.14  Type and value information for ndb-blob-write-batch-bytes

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-blob-write-batch-bytes

Yes Yes No

Yes Both Yes

NDB 7.2 integer 65536 / 0 - 4294967295

DESCRIPTION: Specifies size in bytes that large BLOB writes should be batched into. 0 = no limit..

This option can be used to set the size (in bytes) for batching of BLOB data writes in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be written within the
current transaction, any pending BLOB write operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect
of disabling BLOB write batching.

Note

In NDB API applications, you can control BLOB write
batching with the setMaxPendingBlobWriteBytes() and
getMaxPendingBlobWriteBytes() methods.

•   --ndb-connectstring=connection_string

Table 18.15  Type and value information for ndb-connectstring

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-connectstring

Yes No No

Yes No

NDB 7.2 string

DESCRIPTION: Point to the management server that distributes the cluster configuration.

When using the NDBCLUSTER storage engine, this option specifies the management server that
distributes cluster configuration data. See Section 18.3.3.3, “NDB Cluster Connection Strings”, for
syntax.

•  --ndb-deferred-constraints=[0|1]

http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-setmaxpendingblobwritebytes.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-getmaxpendingblobwritebytes.html


NDB Cluster Configuration Files

2174

Table 18.16  Type and value information for ndb-deferred-constraints

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-deferred-constraints

Yes Yes No

Yes Both Yes

NDB 7.2 integer 0 / 0 - 1

DESCRIPTION: Specifies that constraint checks on unique indexes (where these are supported)
should be deferred until commit time. Not normally needed or used; for testing purposes only..

Controls whether or not constraint checks on unique indexes are deferred until commit time, where
such checks are supported. 0 is the default.

This option is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

•  --ndb-distribution=[KEYHASH|LINHASH]

Table 18.17  Type and value information for ndb-distribution

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-distribution

Yes Yes No

Yes Global Yes

NDB 7.2 enumeration KEYHASH / LINHASH,
KEYHASH

DESCRIPTION: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key
hashing) or LINHASH (linear hashing). KEYHASH is the default.

•   --ndb-log-apply-status

Table 18.18  Type and value information for ndb-log-apply-status

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-log-apply-status

Yes Yes No

Yes Global No



NDB Cluster Configuration Files

2175

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

NDB 7.2 boolean OFF

DESCRIPTION: Cause a MySQL server acting as a slave to log mysql.ndb_apply_status updates
received from its immediate master in its own binary log, using its own server ID. Effective only if
the server is started with the --ndbcluster option..

Causes a slave mysqld to log any updates received from its immediate master to the
mysql.ndb_apply_status table in its own binary log using its own server ID rather than the
server ID of the master. In a circular or chain replication setting, this allows such updates to
propagate to the mysql.ndb_apply_status tables of any MySQL servers configured as slaves of
the current mysqld.

In a chain replication setup, using this option allows downstream (slave) clusters to be aware of their
positions relative to all of their upstream contributors (masters).

In a circular replication setup, this option causes changes to ndb_apply_status tables to
complete the entire circuit, eventually propagating back to the originating NDB Cluster. This also
allows a cluster acting as a master to see when its changes (epochs) have been applied to the other
clusters in the circle.

This option has no effect unless the MySQL server is started with the --ndbcluster option.

•   --ndb-log-empty-epochs=[ON|OFF]

Table 18.19  Type and value information for ndb-log-empty-epochs

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-log-empty-epochs

Yes Yes No

Yes Global Yes

NDB 7.2 boolean OFF

DESCRIPTION: When enabled, causes epochs in which there were no changes to be written to
the ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled..

Causes epochs during which there were no changes to be written to the ndb_apply_status and
ndb_binlog_index tables, even when --log-slave-updates is enabled.

By default this option is disabled. Disabling --ndb-log-empty-epochs causes epoch transactions
with no changes not to be written to the binary log, although a row is still written even for an empty
epoch in ndb_binlog_index.

Because --ndb-log-empty-epochs=1 causes the size of the ndb_binlog_index table to
increase independently of the size of the binary log, users should be prepared to manage the growth
of this table, even if they expect the cluster to be idle a large part of the time.

•   --ndb-log-empty-update=[ON|OFF]



NDB Cluster Configuration Files

2176

Table 18.20  Type and value information for ndb-log-empty-update

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-log-empty-update

Yes Yes No

Yes Global Yes

NDB 7.2 boolean OFF

DESCRIPTION: When enabled, causes updates that produced no changes to be written to the
ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled..

Causes updates that produced no changes to be written to the ndb_apply_status and
ndb_binlog_index tables, even when --log-slave-updates is enabled.

By default this option is disabled (OFF). Disabling --ndb-log-empty-update causes updates with
no changes not to be written to the binary log.

•   --ndb-log-orig

Table 18.21  Type and value information for ndb-log-orig

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-log-orig

Yes Yes No

Yes Global No

NDB 7.2 boolean OFF

DESCRIPTION: Log originating server id and epoch in mysql.ndb_binlog_index table.

Log the originating server ID and epoch in the ndb_binlog_index table.

Note that this makes it possible for a given epoch to have multiple rows in ndb_binlog_index, one
for each originating epoch.

For more information, see Section 18.6.4, “NDB Cluster Replication Schema and Tables”.

•   --ndb-log-transaction-id

Table 18.22  Type and value information for ndb-log-transaction-id

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-log-transaction-id

Yes Yes No



NDB Cluster Configuration Files

2177

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

Yes Global No

NDB 7.2 boolean OFF

DESCRIPTION: Write NDB transaction IDs in the binary log. Requires --log-bin-v1-events=OFF..

Causes a slave mysqld to write the NDB transaction ID in each row of the binary log. Such logging
requires the use of the Version 2 event format for the binary log; thus, --log-bin-use-v1-row-
events must be set to FALSE in order to use this option.

This option is available beginning with NDB 7.2.1 (and is not supported in mainline MySQL Server
5.5). It is required to enable NDB Cluster Replication conflict detection and resolution using the NDB
$EPOCH_TRANS() function introduced in the same NDB Cluster release.

The default value is FALSE.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

•  --ndb-mgmd-host=host[:port]

Table 18.23  Type and value information for ndb-mgmd-host

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-mgmd-host

Yes No No

Yes No

NDB 7.2 string localhost:1186

DESCRIPTION: Set the host (and port, if desired) for connecting to management server.

Can be used to set the host and port number of a single management server for the program to
connect to. If the program requires node IDs or references to multiple management servers (or both)
in its connection information, use the --ndb-connectstring option instead.

•   --ndb-nodeid=#

Table 18.24  Type and value information for ndb-nodeid

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-nodeid

Yes No Yes

Yes Global No

5.0.45 integer / 1 - 63



NDB Cluster Configuration Files

2178

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

5.1.5 integer / 1 - 255

DESCRIPTION: NDB Cluster node ID for this MySQL server.

Set this MySQL server's node ID in an NDB Cluster.

The --ndb-nodeid option overrides any node ID set with --ndb-connectstring, regardless of
the order in which the two options are used.

In addition, if --ndb-nodeid is used, then either a matching node ID must be found in a [mysqld]
or [api] section of config.ini, or there must be an “open” [mysqld] or [api] section in the
file (that is, a section without a NodeId or Id parameter specified). This is also true if the node ID is
specified as part of the connection string.

Regardless of how the node ID is determined, its is shown as the value of the global status variable
Ndb_cluster_node_id in the output of SHOW STATUS, and as cluster_node_id in the
connection row of the output of SHOW ENGINE NDBCLUSTER STATUS.

For more information about node IDs for NDB Cluster SQL nodes, see Section 18.3.3.7, “Defining
SQL and Other API Nodes in an NDB Cluster”.

• --ndb_optimization_delay=milliseconds

Table 18.25  Type and value information for ndb_optimization_delay

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_optimization_delay

No Yes No

No Global Yes

NDB 7.2 integer 10 / 0 - 100000

DESCRIPTION: Sets the number of milliseconds to wait between processing sets of rows by
OPTIMIZE TABLE on NDB tables.

Set the number of milliseconds to wait between sets of rows by OPTIMIZE TABLE statements on
NDB tables. The default is 10.

• ndb-transid-mysql-connection-map=state

Table 18.26  Type and value information for ndb-transid-mysql-connection-map

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-transid-mysql-connection-map

Yes No No



NDB Cluster Configuration Files

2179

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

No No

NDB 7.2 enumeration ON / ON, OFF, FORCE

DESCRIPTION: Enable or disable the ndb_transid_mysql_connection_map plugin; that is, enable
or disable the INFORMATION_SCHEMA table having that name.

Enables or disables the plugin that handles the ndb_transid_mysql_connection_map
table in the INFORMATION_SCHEMA database. Takes one of the values ON, OFF, or
FORCE. ON (the default) enables the plugin. OFF disables the plugin, which makes
ndb_transid_mysql_connection_map inaccessible. FORCE keeps the MySQL Server from
starting if the plugin fails to load and start.

You can see whether the ndb_transid_mysql_connection_map table plugin is running by
checking the output of SHOW PLUGINS.

This option was added in NDB 7.2.2.

• --ndb-wait-connected=seconds

Table 18.27  Type and value information for ndb-wait-connected

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-wait-connected

Yes Yes No

Yes Global No

NDB 7.2 integer 0 / 0 - 31536000

5.1.56-ndb-7.0.27 integer 30 / 0 - 31536000

NDB 7.2 integer 0 / 0 - 31536000

5.1.56-ndb-7.1.16 integer 30 / 0 - 31536000

DESCRIPTION: Time (in seconds) for the MySQL server to wait for connection to cluster
management and data nodes before accepting MySQL client connections.

This option sets the period of time that the MySQL server waits for connections to NDB Cluster
management and data nodes to be established before accepting MySQL client connections. The
time is specified in seconds. The default value is 30.

• --ndb-wait-setup=seconds



NDB Cluster Configuration Files

2180

Table 18.28  Type and value information for ndb-wait-setup

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-wait-setup

Yes Yes No

Yes Global No

5.1.39-ndb-6.2.19 integer 15 / 0 - 31536000

5.1.39-ndb-6.3.28 integer 15 / 0 - 31536000

5.1.39-ndb-7.0.9 integer 15 / 0 - 31536000

5.1.56-ndb-7.0.27 integer 30 / 0 - 31536000

5.1.39-ndb-7.1.0 integer 15 / 0 - 31536000

5.1.56-ndb-7.1.16 integer 30 / 0 - 31536000

DESCRIPTION: Time (in seconds) for the MySQL server to wait for NDB engine setup to
complete.

This variable shows the period of time that the MySQL server waits for the NDB storage engine to
complete setup before timing out and treating NDB as unavailable. The time is specified in seconds.
The default value is 30.

•   --server-id-bits=#

Table 18.29  Type and value information for server-id-bits

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

server-id-bits

Yes Yes No

Yes Global No

NDB 7.2 integer 32 / 7 - 32

DESCRIPTION: Sets the number of least significant bits in the server_id actually used for
identifying the server, permitting NDB API applications to store application data in the most
significant bits. server_id must be less than 2 to the power of this value..

This option indicates the number of least significant bits within the 32-bit server_id which
actually identify the server. Indicating that the server is actually identified by fewer than 32 bits
makes it possible for some of the remaining bits to be used for other purposes, such as storing
user data generated by applications using the NDB API's Event API within the AnyValue of an
OperationOptions structure (NDB Cluster uses the AnyValue to store the server ID).

When extracting the effective server ID from server_id for purposes such as detection of
replication loops, the server ignores the remaining bits. The --server-id-bits option is used to
mask out any irrelevant bits of server_id in the IO and SQL threads when deciding whether an
event should be ignored based on the server ID.

http://dev.mysql.com/doc/ndbapi/en/ndb-operationoptions.html


NDB Cluster Configuration Files

2181

This data can be read from the binary log by mysqlbinlog, provided that it is run with its own --
server-id-bits option set to 32 (the default).

The value of server_id must be less than 2 ^ server_id_bits; otherwise, mysqld refuses to
start.

This system variable is supported only by NDB Cluster. It is not supported in the standard MySQL
5.5 Server.

•   --skip-ndbcluster

Table 18.30  Type and value information for skip-ndbcluster

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

skip-ndbcluster

Yes No No

Yes No

DESCRIPTION: Disable the NDB Cluster storage engine.

Disable the NDBCLUSTER storage engine. This is the default for binaries that were built with
NDBCLUSTER storage engine support; the server allocates memory and other resources for this
storage engine only if the --ndbcluster option is given explicitly. See Section 18.3.1, “Quick Test
Setup of NDB Cluster”, for an example.

NDB Cluster System Variables

This section provides detailed information about MySQL server system variables that are specific
to NDB Cluster and the NDB storage engine. For system variables not specific to NDB Cluster, see
Section 5.1.5, “Server System Variables”. For general information on using system variables, see
Section 5.1.6, “Using System Variables”.

• have_ndbcluster

Table 18.31  Type and value information for have_ndbcluster

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

have_ndbcluster

No Yes No

No Global No

NDB 7.2 boolean

DESCRIPTION: Whether mysqld supports NDB Cluster tables (set by --ndbcluster option).

YES if mysqld supports NDBCLUSTER tables. DISABLED if --skip-ndbcluster is used.

This variable is deprecated and is removed in MySQL 5.6. Use SHOW ENGINES instead.

• ndb_autoincrement_prefetch_sz



NDB Cluster Configuration Files

2182

Table 18.32  Type and value information for ndb_autoincrement_prefetch_sz

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_autoincrement_prefetch_sz

Yes Yes No

Yes Both Yes

NDB 7.2 integer 32 / 1 - 256

5.0.56 integer 1 / 1 - 256

5.1.1 integer 32 / 1 - 256

5.1.23 integer 1 / 1 - 256

5.1.16-ndb-6.2.0 integer 32 / 1 - 256

5.1.23-ndb-6.2.10 integer 1 / 1 - 256

5.1.19-ndb-6.3.0 integer 32 / 1 - 256

5.1.23-ndb-6.3.7 integer 1 / 1 - 256

5.1.41-ndb-6.3.31 integer 1 / 1 - 65536

5.1.30-ndb-6.4.0 integer 32 / 1 - 256

5.1.41-ndb-7.0.11 integer 1 / 1 - 65536

5.5.15-ndb-7.2.1 integer 1 / 1 - 65536

DESCRIPTION: NDB auto-increment prefetch size.

Determines the probability of gaps in an autoincremented column. Set it to 1 to minimize this. Setting
it to a high value for optimization makes inserts faster, but decreases the likelihood that consecutive
autoincrement numbers will be used in a batch of inserts. The mininum and default value is 1. The
maximum value for ndb_autoincrement_prefetch_sz is 65536.

This variable affects only the number of AUTO_INCREMENT IDs that are fetched between statements;
within a given statement, at least 32 IDs are obtained at a time. The default value is 1.

Important

This variable does not affect inserts performed using INSERT ... SELECT.

• ndb_cache_check_time

Table 18.33  Type and value information for ndb_cache_check_time

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_cache_check_time

Yes Yes No

Yes Global Yes

NDB 7.2 integer 0 / -



NDB Cluster Configuration Files

2183

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

DESCRIPTION: Number of milliseconds between checks of cluster SQL nodes made by the
MySQL query cache.

The number of milliseconds that elapse between checks of NDB Cluster SQL nodes by the MySQL
query cache. Setting this to 0 (the default and minimum value) means that the query cache checks
for validation on every query.

The recommended maximum value for this variable is 1000, which means that the check is
performed once per second. A larger value means that the check is performed and possibly
invalidated due to updates on different SQL nodes less often. It is generally not desirable to set this
to a value greater than 2000.

• ndb_deferred_constraints

Table 18.34  Type and value information for ndb_deferred_constraints

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_deferred_constraints

Yes Yes No

Yes Both Yes

NDB 7.2 integer 0 / 0 - 1

DESCRIPTION: Specifies that constraint checks should be deferred (where these are supported).
Not normally needed or used; for testing purposes only..

Controls whether or not constraint checks are deferred, where these are supported. 0 is the default.

This variable is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

• ndb_distribution

Table 18.35  Type and value information for ndb_distribution

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_distribution

Yes Yes No

Yes Global Yes

NDB 7.2 enumeration KEYHASH / LINHASH,
KEYHASH

DESCRIPTION: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).



NDB Cluster Configuration Files

2184

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key
hashing) or LINHASH (linear hashing). KEYHASH is the default.

• ndb_eventbuffer_max_alloc

Table 18.36  Type and value information for ndb_eventbuffer_max_alloc

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_eventbuffer_max_alloc

Yes Yes No

Yes Global Yes

NDB 7.2 integer 0 / 0 - 4294967295

DESCRIPTION: Maximum memory that can be allocated for buffering events by the NDB API.
Defaults to 0 (no limit)..

Sets the maximum amount memory (in bytes) that can be allocated for buffering events by the NDB
API. 0 means that no limit is imposed, and is the default.

This variable was added in NDB 7.2.14.

• ndb_extra_logging

Table 18.37  Type and value information for ndb_extra_logging

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_extra_logging

Yes Yes No

Yes Global Yes

NDB 7.2 integer 0 / -

5.1.19-ndb-6.3.0 integer 1 / -

DESCRIPTION: Controls logging of NDB Cluster schema, connection, and data distribution events
in the MySQL error log.

This variable enables recording in the MySQL error log of information specific to the NDB storage
engine.

When this variable is set to 0, the only information specific to NDB that is written to the MySQL error
log relates to transaction handling. If it set to a value greater than 0 but less than 10, NDB table
schema and connection events are also logged, as well as whether or not conflict resolution is in
use, and other NDB errors and information. If the value is set to 10 or more, information about NDB
internals, such as the progress of data distribution among cluster nodes, is also written to the MySQL
error log. The default is 1.

• ndb_force_send



NDB Cluster Configuration Files

2185

Table 18.38  Type and value information for ndb_force_send

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_force_send

Yes Yes No

Yes Both Yes

NDB 7.2 boolean TRUE

DESCRIPTION: Forces sending of buffers to NDB immediately, without waiting for other threads.

Forces sending of buffers to NDB immediately, without waiting for other threads. Defaults to ON.

• ndb_index_stat_cache_entries

Table 18.39  Type and value information for ndb_index_stat_cache_entries

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_index_stat_cache_entries

Yes Yes No

Yes Both Yes

NDB 7.2 integer 32 / 0 - 4294967295

DESCRIPTION: Sets the granularity of the statistics by determining the number of starting and
ending keys.

Sets the granularity of the statistics by determining the number of starting and ending keys to store
in the statistics memory cache. Zero means no caching takes place; in this case, the data nodes are
always queried directly. Default value: 32.

Note

If ndb_index_stat_enable is OFF, then setting this variable has no effect.

This variable was deprecated in MySQL 5.1, and is removed from NDB 7.2.16 and later.

• ndb_index_stat_enable

Table 18.40  Type and value information for ndb_index_stat_enable

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_index_stat_enable

Yes Yes No



NDB Cluster Configuration Files

2186

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

Yes Both Yes

NDB 7.2 boolean OFF

5.5.15-ndb-7.2.1 boolean ON

DESCRIPTION: Use NDB index statistics in query optimization.

Use NDB index statistics in query optimization. ON is the default in NDB Cluster 7.2 and later.

• ndb_index_stat_option

Table 18.41  Type and value information for ndb_index_stat_option

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_index_stat_option

Yes Yes No

Yes Both Yes

NDB 7.2 string loop_enable=1000ms,loop_idle=1000ms,loop_busy=100ms,
update_batch=1,read_batch=4,idle_batch=32,check_batch=8,
check_delay=10m,delete_batch=8,
clean_delay=1m,error_batch=4,
error_delay=1m,evict_batch=8,evict_delay=1m,cache_limit=32M,
cache_lowpct=90,zero_total=0

5.1.56-ndb-7.1.17 string loop_checkon=1000ms,loop_idle=1000ms,loop_busy=100ms,
update_batch=1,read_batch=4,idle_batch=32,check_batch=32,
check_delay=1m,delete_batch=8,clean_delay=0,error_batch=4,
error_delay=1m,evict_batch=8,evict_delay=1m,cache_limit=32M,
cache_lowpct=90

DESCRIPTION: Comma-separated list of tunable options for NDB index statistics; the list should
contain no spaces.

This variable is used for providing tuning options for NDB index statistics generation. The list consist
of comma-separated name-value pairs of option names and values. Note that this list must not
contain any space characters.

Options not used when setting ndb_index_stat_option are not changed from
their default values. For example, you can set ndb_index_stat_option =
'loop_idle=1000ms,cache_limit=32M'.

Time values can be optionally suffixed with h (hours), m (minutes), or s (seconds). Millisecond values
can optionally be specified using ms; millisecond values cannot be specified using h, m, or s.) Integer
values can be suffixed with K, M, or G.

The names of the options that can be set using this variable are shown in the table that follows. The
table also provides brief descriptions of the options, their default values, and (where applicable) their
minimum and maximum values.



NDB Cluster Configuration Files

2187

Name Description Default/Units Minimum/Maximum

loop_enable  1000 ms 0/4G

loop_idle Time to sleep when idle 1000 ms 0/4G

loop_busy Time to sleep when
more work is waiting

100 ms 0/4G

update_batch  1 0/4G

read_batch  4 1/4G

idle_batch  32 1/4G

check_batch  8 1/4G

check_delay How often to check for
new statistics

10 m 1/4G

delete_batch  8 0/4G

clean_delay  1 m 0/4G

error_batch  4 1/4G

error_delay  1 m 1/4G

evict_batch  8 1/4G

evict_delay Clean LRU cache, from
read time

1 m 0/4G

cache_limit Maximum amount
of memory in bytes
used for cached
index statistics by this
mysqld; clean up the
cache when this is
exceeded.

32 M 0/4G

cache_lowpct  90 0/100

zero_total Setting this to 1 causes
all accumulating
counters in
ndb_index_stat_status
to be reset to 0. Note
that the option value
is also reset to 0 when
this is done.

0 0/1

ndb_index_stat_option was added in NDB 7.2.1.

• ndb_index_stat_update_freq

Table 18.42  Type and value information for ndb_index_stat_update_freq

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_index_stat_update_freq

Yes Yes No

Yes Both Yes



NDB Cluster Configuration Files

2188

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

NDB 7.2 integer 20 / 0 - 4294967295

DESCRIPTION: How often to query data nodes instead of the statistics cache.

How often to query data nodes instead of the statistics cache. For example, a value of 20 (the
default) means to direct every 20th query to the data nodes.

Note

If ndb_index_stat_cache_entries is 0, then setting this variable has no
effect; in this case, every query is sent directly to the data nodes.

This variable was deprecated in MySQL 5.1, and is removed from NDB 7.2.16 and later.

• ndb_join_pushdown

Table 18.43  Type and value information for ndb_join_pushdown

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_join_pushdown

No Yes No

No Both Yes

5.1.51-ndb-7.2.0 boolean TRUE

DESCRIPTION: Enables pushing down of joins to data nodes.

Added in NDB 7.2.0, this variable controls whether joins on NDB tables are pushed down to the NDB
kernel (data nodes). Previously, a join was handled using multiple accesses of NDB by the SQL
node; however, when ndb_join_pushdown is enabled, a pushable join is sent in its entirety to the
data nodes, where it can be distributed among the data nodes and executed in parallel on multiple
copies of the data, with a single, merged result being returned to mysqld. This can reduce greatly
the number of round trips between an SQL node and the data nodes required to handle such a join.

By default, ndb_join_pushdown is enabled.

Conditions for NDB pushdown joins.  In order for a join to be pushable, it must meet the
following conditions:

1. Only columns can be compared, and all columns to be joined must use exactly the same data
type.

This means that expressions such as t1.a = t2.a + constant cannot be pushed down, and
that (for example) a join on an INT column and a BIGINT column also cannot be pushed down.

2. Queries referencing BLOB or TEXT columns are not supported.

3. Explicit locking is not supported; however, the NDB storage engine's characteristic implicit row-
based locking is enforced.



NDB Cluster Configuration Files

2189

This means that a join using FOR UPDATE cannot be pushed down.

4. In order for a join to be pushed down, child tables in the join must be accessed using one of the
ref, eq_ref, or  const access methods, or some combination of these methods.

Outer joined child tables can only be pushed using eq_ref.

If the root of the pushed join is an eq_ref or const, only child tables joined by eq_ref can be
appended. (A table joined by ref is likely to become the root of another pushed join.)

If the query optimizer decides on Using join cache for a candidate child table, that table
cannot be pushed as a child. However, it may be the root of another set of pushed tables.

5. Joins referencing tables explicitly partitioned by [LINEAR] HASH, LIST, or RANGE currently
cannot be pushed down.

You can see whether a given join can be pushed down by checking it with EXPLAIN; when the join
can be pushed down, you can see references to the pushed join in the Extra column of the
output, as shown in this example:

mysql> EXPLAIN
    ->     SELECT e.first_name, e.last_name, t.title, d.dept_name
    ->         FROM employees e
    ->         JOIN dept_emp de ON e.emp_no=de.emp_no
    ->         JOIN departments d ON d.dept_no=de.dept_no
    ->         JOIN titles t ON e.emp_no=t.emp_no\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: d
         type: ALL
possible_keys: PRIMARY
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 9
        Extra: Parent of 4 pushed join@1
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: de
         type: ref
possible_keys: PRIMARY,emp_no,dept_no
          key: dept_no
      key_len: 4
          ref: employees.d.dept_no
         rows: 5305
        Extra: Child of 'd' in pushed join@1
*************************** 3. row ***************************
           id: 1
  select_type: SIMPLE
        table: e
         type: eq_ref
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: employees.de.emp_no
         rows: 1
        Extra: Child of 'de' in pushed join@1
*************************** 4. row ***************************
           id: 1
  select_type: SIMPLE
        table: t
         type: ref
possible_keys: PRIMARY,emp_no
          key: emp_no
      key_len: 4



NDB Cluster Configuration Files

2190

          ref: employees.de.emp_no
         rows: 19
        Extra: Child of 'e' in pushed join@1
4 rows in set (0.00 sec)

Note

If inner joined child tables are joined by ref, and the result is ordered or
grouped by a sorted index, this index cannot provide sorted rows, which
forces writing to a sorted tempfile.

Two additional sources of information about pushed join performance are available:

1. The status variables Ndb_pushed_queries_defined, Ndb_pushed_queries_dropped,
Ndb_pushed_queries_executed, and Ndb_pushed_reads (all introduced in NDB 7.2.0).

2. The counters in the ndbinfo.counters table that belong to the DBSPJ kernel block. (These
counters and the DBSPJ block were also introduced in NDB 7.2.0). See Section 18.5.10.7, “The
ndbinfo counters Table”, for information about these counters. See also The DBSPJ Block, in the
NDB Cluster API Developer Guide.

• ndb_log_apply_status

Table 18.44  Type and value information for ndb_log_apply_status

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_log_apply_status

Yes Yes No

Yes Global No

NDB 7.2 boolean OFF

DESCRIPTION: Whether or not a MySQL server acting as a slave logs mysql.ndb_apply_status
updates received from its immediate master in its own binary log, using its own server ID.

A read-only variable which shows whether the server was started with the --ndb-log-apply-
status option.

• ndb_log_bin

Table 18.45  Type and value information for ndb_log_bin

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_log_bin

Yes Yes No

No Both Yes

NDB 7.2 boolean ON

DESCRIPTION: Write updates to NDB tables in the binary log. Effective only if binary logging is
enabled with --log-bin..

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html


NDB Cluster Configuration Files

2191

Causes updates to NDB tables to be written to the binary log. Setting this variable has no effect if
binary logging is not already enabled for the server using log_bin. ndb_log_bin defaults to 1
(ON); normally, there is never any need to change this value in a production environment.

• ndb_log_binlog_index

Table 18.46  Type and value information for ndb_log_binlog_index

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_log_binlog_index

Yes Yes No

No Global Yes

NDB 7.2 boolean ON

DESCRIPTION: Insert mapping between epochs and binary log positions into the
ndb_binlog_index table. Defaults to ON. Effective only if binary logging is enabled on the server..

Causes a mapping of epochs to positions in the binary log to be inserted into the
ndb_binlog_index table. Setting this variable has no effect if binary logging is not already
enabled for the server using log_bin. (In addition, ndb_log_bin must not be disabled.)
ndb_log_binlog_index defaults to 1 (ON); normally, there is never any need to change this value
in a production environment.

•   ndb_log_empty_epochs

Table 18.47  Type and value information for ndb_log_empty_epochs

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_log_empty_epochs

Yes Yes No

Yes Global Yes

NDB 7.2 boolean OFF

DESCRIPTION: When enabled, epochs in which there were no changes are written to the
ndb_apply_status and ndb_binlog_index tables, even when log_slave_updates is enabled.

When this variable is set to 0, epoch transactions with no changes are not written to the binary log,
although a row is still written even for an empty epoch in ndb_binlog_index.

•   ndb_log_empty_update



NDB Cluster Configuration Files

2192

Table 18.48  Type and value information for ndb_log_empty_update

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_log_empty_update

Yes Yes No

Yes Global Yes

NDB 7.2 boolean OFF

DESCRIPTION: When enabled, updates which produce no changes are written to the
ndb_apply_status and ndb_binlog_index tables, even when log_slave_updates is enabled.

When this variable is set to ON (1), update transactions with no changes are written to the binary log,
even when --log-slave-updates is enabled.

•   ndb_log_orig

Table 18.49  Type and value information for ndb_log_orig

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_log_orig

Yes Yes No

Yes Global No

NDB 7.2 boolean OFF

DESCRIPTION: Whether the id and epoch of the originating server are recorded in the
mysql.ndb_binlog_index table. Set using the --ndb-log-orig option when starting mysqld..

Shows whether the originating server ID and epoch are logged in the ndb_binlog_index table.
Set using the --ndb-log-orig server option.

•   ndb_log_transaction_id

Table 18.50  Type and value information for ndb_log_transaction_id

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_log_transaction_id

No Yes No

No Global No

NDB 7.2 boolean OFF

DESCRIPTION: Whether NDB transaction IDs are written into the binary log (Read-only.).



NDB Cluster Configuration Files

2193

This read-only, Boolean system variable shows whether a slave mysqld writes NDB transaction IDs
in the binary log (required to use “active-active” NDB Cluster Replication with NDB$EPOCH_TRANS()
conflict detection). To change the setting, use the --ndb-log-transaction-id option.

ndb_log_transaction_id is available in NDB 7.2.1 and later. It is not supported in mainline
MySQL Server 5.5.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

• ndb_optimized_node_selection

Table 18.51  Type and value information for ndb_optimized_node_selection

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_optimized_node_selection

Yes Yes No

Yes Global No

NDB 7.2 boolean ON

5.1.22-ndb-6.3.4 integer 3 / 0 - 3

DESCRIPTION: Determines how an SQL node chooses a cluster data node to use as transaction
coordinator.

There are two forms of optimized node selection, described here:

1. The SQL node uses promixity to determine the transaction coordinator; that is, the “closest” data
node to the SQL node is chosen as the transaction coordinator. For this purpose, a data node
having a shared memory connection with the SQL node is considered to be “closest” to the SQL
node; the next closest (in order of decreasing proximity) are: TCP connection to localhost; SCI
connection; TCP connection from a host other than localhost.

2. The SQL thread uses distribution awareness to select the data node. That is, the data node
housing the cluster partition accessed by the first statement of a given transaction is used as the
transaction coordinator for the entire transaction. (This is effective only if the first statement of the
transaction accesses no more than one cluster partition.)

This option takes one of the integer values 0, 1, 2, or 3. 3 is the default. These values affect node
selection as follows:

• 0: Node selection is not optimized. Each data node is employed as the transaction coordinator 8
times before the SQL thread proceeds to the next data node.

• 1: Proximity to the SQL node is used to determine the transaction coordinator.

• 2: Distribution awareness is used to select the transaction coordinator. However, if the first
statement of the transaction accesses more than one cluster partition, the SQL node reverts to the
round-robin behavior seen when this option is set to 0.

• 3: If distribution awareness can be employed to determine the transaction coordinator, then it
is used; otherwise proximity is used to select the transaction coordinator. (This is the default
behavior.)

Proximity is determined as follows:



NDB Cluster Configuration Files

2194

1. Start with the value set for the Group parameter (default 55).

2. For an API node sharing the same host with other API nodes, decrement the value by 1.
Assuming the default value for Group, the effective value for data nodes on same host as the
API node is 54, and for remote data nodes 55.

• ndb_report_thresh_binlog_epoch_slip

Table 18.52  Type and value information for ndb_report_thresh_binlog_epoch_slip

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_report_thresh_binlog_epoch_slip

Yes Yes No

Yes Global Yes

NDB 7.2 integer 3 / 0 - 256

DESCRIPTION: NDB 7.5.4 and later: Threshold for number of epochs completely
buffered, but not yet consumed by binlog injector thread which when exceeded generates
BUFFERED_EPOCHS_OVER_THRESHOLD event buffer status message; prior to NDB 7.5.4:
Threshold for number of epochs to lag behind before reporting binary log status.

This is a threshold on the number of epochs to be behind before reporting binary log status. For
example, a value of 3 (the default) means that if the difference between which epoch has been
received from the storage nodes and which epoch has been applied to the binary log is 3 or more, a
status message is sent to the cluster log.

• ndb_report_thresh_binlog_mem_usage

Table 18.53  Type and value information for ndb_report_thresh_binlog_mem_usage

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_report_thresh_binlog_mem_usage

Yes Yes No

Yes Global Yes

NDB 7.2 integer 10 / 0 - 10

DESCRIPTION: This is a threshold on the percentage of free memory remaining before reporting
binary log status.

This is a threshold on the percentage of free memory remaining before reporting binary log status.
For example, a value of 10 (the default) means that if the amount of available memory for receiving
binary log data from the data nodes falls below 10%, a status message is sent to the cluster log.

• ndb_table_no_logging



NDB Cluster Configuration Files

2195

Table 18.54  Type and value information for ndb_table_no_logging

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_table_no_logging

No Yes No

No Session Yes

NDB 7.2 boolean FALSE

DESCRIPTION: NDB tables created when this setting is enabled are not checkpointed to disk
(although table schema files are created). The setting in effect when the table is created with or
altered to use NDBCLUSTER persists for the lifetime of the table..

When this variable is set to ON or 1, it causes NDB tables not to be checkpointed to disk. More
specifically, this setting applies to tables which are created or altered using ENGINE NDB when
ndb_table_no_logging is enabled, and continues to apply for the lifetime of the table, even if
ndb_table_no_logging is later changed. Suppose that A, B, C, and D are tables that we create
(and perhaps also alter), and that we also change the setting for ndb_table_no_logging as
shown here:

SET @@ndb_table_no_logging = 1;

CREATE TABLE A ... ENGINE NDB;

CREATE TABLE B ... ENGINE MYISAM;
CREATE TABLE C ... ENGINE MYISAM;

ALTER TABLE B ENGINE NDB;

SET @@ndb_table_no_logging = 0;

CREATE TABLE D ... ENGINE NDB;
ALTER TABLE C ENGINE NDB;

SET @@ndb_table_no_logging = 1;

After the previous sequence of events, tables A and B are not checkpointed; A was created with
ENGINE NDB and B was altered to use NDB, both while ndb_table_no_logging was enabled.
However, tables C and D are logged; C was altered to use NDB and D was created using ENGINE
NDB, both while ndb_table_no_logging was disabled. Setting ndb_table_no_logging back to
1 or ON does not cause table C or D to be checkpointed.

Note

ndb_table_no_logging has no effect on the creation of NDB table schema
files; to suppress these, use ndb_table_temporary instead.

• ndb_table_temporary



NDB Cluster Configuration Files

2196

Table 18.55  Type and value information for ndb_table_temporary

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_table_temporary

No Yes No

No Session Yes

NDB 7.2 boolean FALSE

DESCRIPTION: NDB tables are not persistent on disk: no schema files are created and the tables
are not logged.

When set to ON or 1, this variable causes NDB tables not to be written to disk: This means that no
table schema files are created, and that the tables are not logged.

Note

Setting this variable currently has no effect in NDB Cluster 7.0 and later. This
is a known issue; see Bug #34036.

• ndb_use_copying_alter_table

Table 18.56  Type and value information for ndb_use_copying_alter_table

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_use_copying_alter_table

No Yes No

No Both No

DESCRIPTION: Use copying ALTER TABLE operations in NDB Cluster.

Forces NDB to use copying of tables in the event of problems with online ALTER TABLE operations.
The default value is OFF.

• ndb_use_exact_count

Table 18.57  Type and value information for ndb_use_exact_count

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_use_exact_count

No Yes No

No Both Yes

NDB 7.2 boolean ON



NDB Cluster Configuration Files

2197

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

5.1.47-ndb-7.1.8 boolean OFF

DESCRIPTION: Use exact row count when planning queries.

Forces NDB to use a count of records during SELECT COUNT(*) query planning to speed up this
type of query. The default value is OFF, which allows for faster queries overall.

• ndb_use_transactions

Table 18.58  Type and value information for ndb_use_transactions

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_use_transactions

Yes Yes No

Yes Both Yes

NDB 7.2 boolean ON

DESCRIPTION: Forces NDB to use a count of records during SELECT COUNT(*) query planning
to speed up this type of query.

You can disable NDB transaction support by setting this variable's values to OFF (not recommended).
The default is ON.

• ndb_version

Table 18.59  Type and value information for ndb_version

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_version

No Yes No

No Global No

NDB 7.2 string

DESCRIPTION: Shows build and NDB engine version as an integer.

NDB engine version, as a composite integer.

• ndb_version_string



NDB Cluster Configuration Files

2198

Table 18.60  Type and value information for ndb_version_string

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_version_string

No Yes No

No Global No

NDB 7.2 string

DESCRIPTION: Shows build information including NDB engine version in ndb-x.y.z format.

NDB engine version in ndb-x.y.z format.

•   server_id_bits

Table 18.61  Type and value information for server_id_bits

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

server_id_bits

Yes Yes No

Yes Global No

NDB 7.2 integer 32 / 7 - 32

DESCRIPTION: The effective value of server_id if the server was started with the --server-id-bits
option set to a nondefault value.

The effective value of server_id if the server was started with the --server-id-bits option set
to a nondefault value.

If the value of server_id greater than or equal to 2 to the power of server_id_bits, mysqld
refuses to start.

This system variable is supported only by NDB Cluster. server_id_bits is not supported by the
standard MySQL Server.

• slave_allow_batching

Table 18.62  Type and value information for slave_allow_batching

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

slave_allow_batching

Yes Yes No

Yes Global Yes



NDB Cluster Configuration Files

2199

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

NDB 7.2 boolean off

DESCRIPTION: Turns update batching on and off for a replication slave.

Whether or not batched updates are enabled on NDB Cluster replication slaves.

This variable is available for mysqld only as supplied with NDB Cluster or built from the NDB
Cluster sources. For more information, see Section 18.6.6, “Starting NDB Cluster Replication (Single
Replication Channel)”.

Setting this variable had no effect in NDB Cluster 7.2 prior to NDB 7.2.10. (Bug #15953730)

•   transaction_allow_batching

Table 18.63  Type and value information for transaction_allow_batching

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

transaction_allow_batching

No Yes No

No Session Yes

NDB 7.2 boolean FALSE

DESCRIPTION: Allows batching of statements within a transaction. Disable AUTOCOMMIT to
use..

When set to 1 or ON, this variable enables batching of statements within the same transaction. To
use this variable, autocommit must first be disabled by setting it to 0 or OFF; otherwise, setting
transaction_allow_batching has no effect.

It is safe to use this variable with transactions that performs writes only, as having it enabled
can lead to reads from the “before” image. You should ensure that any pending transactions are
committed (using an explicit COMMIT if desired) before issuing a SELECT.

Important

transaction_allow_batching should not be used whenever there is the
possibility that the effects of a given statement depend on the outcome of a
previous statement within the same transaction.

This variable is currently supported for NDB Cluster only.

Important

Due an issue in the NDB Cluster 7.2 codebase (Bug #64697) prior to General
Availability, this variable is not available prior to NDB 7.2.6.

The system variables in the following list all relate to the ndbinfo information database.

• ndbinfo_database



NDB Cluster Configuration Files

2200

Table 18.64  Type and value information for ndbinfo_database

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndbinfo_database

No Yes No

No Global No

NDB 7.2 string ndbinfo

DESCRIPTION: The name used for the NDB information database; read only.

Shows the name used for the NDB information database; the default is ndbinfo. This is a read-
only variable whose value is determined at compile time; you can set it by starting the server using
--ndbinfo-database=name, which sets the value shown for this variable but does not actually
change the name used for the NDB information database.

• ndbinfo_max_bytes

Table 18.65  Type and value information for ndbinfo_max_bytes

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndbinfo_max_bytes

Yes Yes No

No Both Yes

NDB 7.2 integer 0 / -

DESCRIPTION: Used for debugging only.

Used in testing and debugging only.

• ndbinfo_max_rows

Table 18.66  Type and value information for ndbinfo_max_rows

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndbinfo_max_rows

Yes Yes No

No Both Yes

NDB 7.2 integer 10 / -

DESCRIPTION: Used for debugging only.

Used in testing and debugging only.



NDB Cluster Configuration Files

2201

• ndbinfo_offline

Table 18.67  Type and value information for ndbinfo_offline

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndbinfo_offline

No Yes No

No Global Yes

NDB 7.2 boolean OFF

DESCRIPTION: Put the ndbinfo database into offline mode, in which no rows are returned from
tables or views.

Place the ndbinfo database into offline mode, in which tables and views can be opened even
when they do not actually exist, or when they exist but have different definitions in NDB. No rows are
returned from such tables (or views).

• ndbinfo_show_hidden

Table 18.68  Type and value information for ndbinfo_show_hidden

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndbinfo_show_hidden

Yes Yes No

No Both Yes

NDB 7.2 boolean OFF

DESCRIPTION: Whether to show ndbinfo internal base tables in the mysql client. The default is
OFF..

Whether or not the ndbinfo database's underlying internal tables are shown in the mysql client.
The default is OFF.

• ndbinfo_table_prefix

Table 18.69  Type and value information for ndbinfo_table_prefix

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndbinfo_table_prefix

Yes Yes No

No Both Yes

NDB 7.2 string ndb$



NDB Cluster Configuration Files

2202

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

DESCRIPTION: The prefix to use for naming ndbinfo internal base tables.

The prefix used in naming the ndbinfo database's base tables (normally hidden, unless exposed by
setting ndbinfo_show_hidden). This is a read-only variable whose default value is ndb$. You can
start the server with the --ndbinfo-table-prefix option, but this merely sets the variable and
does not change the actual prefix used to name the hidden base tables; the prefix itself is determined
at compile time.

• ndbinfo_version

Table 18.70  Type and value information for ndbinfo_version

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndbinfo_version

No Yes No

No Global No

NDB 7.2 string

DESCRIPTION: The version of the ndbinfo engine; read only.

Shows the version of the ndbinfo engine in use; read-only.

NDB Cluster Status Variables

This section provides detailed information about MySQL server status variables that relate to NDB
Cluster and the NDB storage engine. For status variables not specific to NDB Cluster, and for general
information on using status variables, see Section 5.1.7, “Server Status Variables”.

• Handler_discover

The MySQL server can ask the NDBCLUSTER storage engine if it knows about a table with a given
name. This is called discovery. Handler_discover indicates the number of times that tables have
been discovered using this mechanism.

• Ndb_api_bytes_sent_count_session

Amount of data (in bytes) sent to the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count_slave

Amount of data (in bytes) sent to the data nodes by this slave.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.



NDB Cluster Configuration Files

2203

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count

Amount of data (in bytes) sent to the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_session

Amount of data (in bytes) received from the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_slave

Amount of data (in bytes) received from the data nodes by this slave.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count

Amount of data (in bytes) received from the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_data_count_injector

The number of row change events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_data_count

The number of row change events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_nondata_count_injector

The number of events received, other than row change events, by the NDB binary log injector thread.



NDB Cluster Configuration Files

2204

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_nondata_count

The number of events received, other than row change events, by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_bytes_count_injector

The number of bytes of events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_bytes_count

The number of bytes of events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_session

The number of operations in this client session based on or using primary keys. This includes
operations on blob tables, implicit unlock operations, and auto-increment operations, as well as user-
visible primary key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_slave

The number of operations by this slave based on or using primary keys. This includes operations on
blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary
key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count

The number of operations by this MySQL Server (SQL node) based on or using primary keys. This
includes operations on blob tables, implicit unlock operations, and auto-increment operations, as well
as user-visible primary key operations.



NDB Cluster Configuration Files

2205

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_session

The number of scans in this client session that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_slave

The number of scans by this slave that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count

The number of scans by this MySQL Server (SQL node) that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_session

The number of range scans that have been started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_slave

The number of range scans that have been started by this slave.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count

The number of range scans that have been started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count_session



NDB Cluster Configuration Files

2206

The total number of rows that have been read in this client session. This includes all rows read by
any primary key, unique key, or scan operation made in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count_slave

The total number of rows that have been read by this slave. This includes all rows read by any
primary key, unique key, or scan operation made by this slave.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all
rows read by any primary key, unique key, or scan operation made by this MySQL Server (SQL
node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count_session

The number of batches of rows received in this client session. 1 batch is defined as 1 set of scan
results from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count_slave

The number of batches of rows received by this slave. 1 batch is defined as 1 set of scan results
from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count

The number of batches of rows received by this MySQL Server (SQL node). 1 batch is defined as 1
set of scan results from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_session



NDB Cluster Configuration Files

2207

The number of table scans that have been started in this client session, including scans of internal
tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_slave

The number of table scans that have been started by this slave, including scans of internal tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count

The number of table scans that have been started by this MySQL Server (SQL node), including
scans of internal tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_session

The number of transactions aborted in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_slave

The number of transactions aborted by this slave.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count

The number of transactions aborted by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_session

The number of transactions closed in this client session. This value may be greater than the sum of
Ndb_api_trans_commit_count_session and Ndb_api_trans_abort_count_session,
since some transactions may have been rolled back.



NDB Cluster Configuration Files

2208

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_slave

The number of transactions closed by this slave. This value may be greater than the sum of
Ndb_api_trans_commit_count_slave and Ndb_api_trans_abort_count_slave, since
some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count

The number of transactions closed by this MySQL Server (SQL node). This value may be greater
than the sum of Ndb_api_trans_commit_count and Ndb_api_trans_abort_count, since
some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count_session

The number of transactions committed in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count_slave

The number of transactions committed by this slave.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count

The number of transactions committed by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_session

The total number of rows that have been read in this client session. This includes all rows read by
any primary key, unique key, or scan operation made in this client session.



NDB Cluster Configuration Files

2209

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_slave

The total number of rows that have been read by this slave. This includes all rows read by any
primary key, unique key, or scan operation made by this slave.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all
rows read by any primary key, unique key, or scan operation made by this MySQL Server (SQL
node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count_session

The number of transactions started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count_slave

The number of transactions started by this slave.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count

The number of transactions started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count_session

The number of operations in this client session based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.



NDB Cluster Configuration Files

2210

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count_slave

The number of operations by this slave based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count

The number of operations by this MySQL Server (SQL node) based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_session

The number of times a thread has been blocked in this client session while waiting for execution of
an operation to complete. This includes all execute() calls as well as implicit implicit executes for
blob and auto-increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_slave

The number of times a thread has been blocked by this slave while waiting for execution of an
operation to complete. This includes all execute() calls as well as implicit implicit executes for blob
and auto-increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count

The number of times a thread has been blocked by this MySQL Server (SQL node) while waiting for
execution of an operation to complete. This includes all execute() calls as well as implicit implicit
executes for blob and auto-increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_session

The number of times a thread has been blocked in this client session waiting for a metadata-based
signal, such as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-execute.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-execute.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-execute.html


NDB Cluster Configuration Files

2211

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_slave

The number of times a thread has been blocked by this slave waiting for a metadata-based signal,
such as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count

The number of times a thread has been blocked by this MySQL Server (SQL node) waiting for
a metadata-based signal, such as is expected for DDL requests, new epochs, and seizure of
transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_session

Total time (in nanoseconds) spent in this client session waiting for any type of signal from the data
nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_slave

Total time (in nanoseconds) spent by this slave waiting for any type of signal from the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count

Total time (in nanoseconds) spent by this MySQL Server (SQL node) waiting for any type of signal
from the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_session

The number of times a thread has been blocked in this client session while waiting for a scan-based
signal, such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.



NDB Cluster Configuration Files

2212

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_slave

The number of times a thread has been blocked by this slave while waiting for a scan-based signal,
such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replication slave, or
does not use NDB tables, this value is always 0.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count

The number of times a thread has been blocked by this MySQL Server (SQL node) while waiting for
a scan-based signal, such as when waiting for more results from a scan, or when waiting for a scan
to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 18.5.15, “NDB API Statistics Counters and Variables”.

• Ndb_cluster_node_id

If the server is acting as an NDB Cluster node, then the value of this variable its node ID in the
cluster.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_config_from_host

If the server is part of an NDB Cluster, the value of this variable is the host name or IP address of the
Cluster management server from which it gets its configuration data.

If the server is not part of an NDB Cluster, then the value of this variable is an empty string.

• Ndb_config_from_port

If the server is part of an NDB Cluster, the value of this variable is the number of the port through
which it is connected to the Cluster management server from which it gets its configuration data.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_conflict_fn_max

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a
row was not applied on the current SQL node due to “greatest timestamp wins” conflict resolution
since the last time that this mysqld was started.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_old

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a
row was not applied as the result of “same timestamp wins” conflict resolution on a given mysqld
since the last time it was restarted.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_epoch



NDB Cluster Configuration Files

2213

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found
to be in conflict using NDB$EPOCH() conflict resolution on a given mysqld since the last time it was
restarted.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_epoch_trans

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to
be in conflict using NDB$EPOCH_TRANS() conflict resolution on a given mysqld since the last time it
was restarted.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_row_conflict_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the number of rows
found to be directly in-conflict by a transactional conflict function on a given mysqld since the last
time it was restarted.

Currently, the only transactional conflict detection function supported by NDB
Cluster is NDB$EPOCH_TRANS(), so this status variable is effectively the same as
Ndb_conflict_fn_epoch_trans.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_row_reject_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the total number of
rows realigned due to being determined as conflicting by a transactional conflict detection function.
This includes not only Ndb_conflict_trans_row_conflict_count, but any rows in or
dependent on conflicting transactions.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_reject_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the number of
transactions found to be in conflict by a transactional conflict detection function.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_detect_iter_count

Used in NDB Cluster Replication conflict resolution, this shows the number of internal
iterations required to commit an epoch transaction. Should be (slightly) greater than or equal to
Ndb_conflict_trans_conflict_commit_count.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_conflict_commit_count

Used in NDB Cluster Replication conflict resolution, this shows the number of epoch transactions
committed after they required transactional conflict handling.

For more information, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_execute_count

Provides the number of round trips to the NDB kernel made by operations.

• Ndb_number_of_data_nodes



NDB Cluster Configuration Files

2214

If the server is part of an NDB Cluster, the value of this variable is the number of data nodes in the
cluster.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_pushed_queries_defined

The total number of joins pushed down to the NDB kernel for distributed handling on the data nodes.
Note that joins tested using EXPLAIN that can be pushed down contribute to this number. Added in
NDB 7.2.0.

• Ndb_pushed_queries_dropped

The number of joins that were pushed down to the NDB kernel but that could not be handled there.
Added in NDB 7.2.0.

• Ndb_pushed_queries_executed

The number of joins successfully pushed down to NDB and executed there. Added in NDB 7.2.0.

• Ndb_pushed_reads

The number of rows returned to mysqld from the NDB kernel by joins that were pushed down. Note
that executing EXPLAIN on joins that can be pushed down to NDB does not add to this number.
Added in NDB 7.2.0.

• Ndb_pruned_scan_count

This variable holds a count of the number of scans executed by NDBCLUSTER since the NDB Cluster
was last started where NDBCLUSTER was able to use partition pruning.

Using this variable together with Ndb_scan_count can be helpful in schema design to maximize
the ability of the server to prune scans to a single table partition, thereby involving only a single data
node.

• Ndb_scan_count

This variable holds a count of the total number of scans executed by NDBCLUSTER since the NDB
Cluster was last started.

18.3.3.9 NDB Cluster TCP/IP Connections

TCP/IP is the default transport mechanism for all connections between nodes in an NDB Cluster.
Normally it is not necessary to define TCP/IP connections; NDB Cluster automatically sets up such
connections for all data nodes, management nodes, and SQL or API nodes.

Note

For an exception to this rule, see Section 18.3.3.10, “NDB Cluster TCP/IP
Connections Using Direct Connections”.

To override the default connection parameters, it is necessary to define a connection using one
or more [tcp] sections in the config.ini file. Each [tcp] section explicitly defines a TCP/IP
connection between two NDB Cluster nodes, and must contain at a minimum the parameters NodeId1
and NodeId2, as well as any connection parameters to override.

It is also possible to change the default values for these parameters by setting them in the [tcp
default] section.



NDB Cluster Configuration Files

2215

Important

Any [tcp] sections in the config.ini file should be listed last, following all
other sections in the file. However, this is not required for a [tcp default]
section. This requirement is a known issue with the way in which the
config.ini file is read by the NDB Cluster management server.

Connection parameters which can be set in [tcp] and [tcp default] sections of the config.ini
file are listed here:

•  NodeId1

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric [none] ... N

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique
Id values for each of these nodes as described in Section 18.3.3.7, “Defining SQL and Other API
Nodes in an NDB Cluster”.

•  NodeId2

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric [none] ... N

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique
Id values for each of these nodes as described in Section 18.3.3.7, “Defining SQL and Other API
Nodes in an NDB Cluster”.

•  HostName1

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name or IP
address

[none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to
be used for a given TCP connection between two nodes. The values used for these parameters can
be host names or IP addresses.

•  HostName2

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name or IP
address

[none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to
be used for a given TCP connection between two nodes. The values used for these parameters can
be host names or IP addresses.

•  OverloadLimit

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 0 0 - 4294967039
(0xFFFFFEFF)

N

When more than this many unsent bytes are in the send buffer, the connection is considered
overloaded.



NDB Cluster Configuration Files

2216

This parameter can be used to determine the amount of unsent data that must be present in the
send buffer before the connection is considered overloaded. See Section 18.3.3.13, “Configuring
NDB Cluster Send Buffer Parameters”, and Section 18.5.10.19, “The ndbinfo transporters Table”, for
more information.

In some older releases, the effective value of this parameter was limited by the size of
SendBufferMemory; in NDB Cluster 7.2, the actual value for OverloadLimit (up to the stated
maximum of 4G) is used instead.

•  SendBufferMemory

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 2M 256K -
4294967039
(0xFFFFFEFF)

N

TCP transporters use a buffer to store all messages before performing the send call to the operating
system. When this buffer reaches 64KB its contents are sent; these are also sent when a round of
messages have been executed. To handle temporary overload situations it is also possible to define
a bigger send buffer.

If this parameter is set explicitly, then the memory is not dedicated to each transporter; instead,
the value used denotes the hard limit for how much memory (out of the total available memory
—that is, TotalSendBufferMemory) that may be used by a single transporter. For more
information about configuring dynamic transporter send buffer memory allocation in NDB Cluster,
see Section 18.3.3.13, “Configuring NDB Cluster Send Buffer Parameters”.

The default size of the send buffer in NDB Cluster 7.2 is 2MB, which is the size recommended in
most situations. The minimum size is 64 KB; the theoretical maximum is 4 GB.

•  SendSignalId

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean [see text] true, false N

To be able to retrace a distributed message datagram, it is necessary to identify each message.
When this parameter is set to Y, message IDs are transported over the network. This feature is
disabled by default in production builds, and enabled in -debug builds.

•  Checksum

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

This parameter is a boolean parameter (enabled by setting it to Y or 1, disabled by setting it to N or
0). It is disabled by default. When it is enabled, checksums for all messages are calculated before
they placed in the send buffer. This feature ensures that messages are not corrupted while waiting in
the send buffer, or by the transport mechanism.

•  PortNumber (OBSOLETE)

This formerly specified the port number to be used for listening for connections from other nodes.
This parameter is deprecated and should no longer be used; use the ServerPort data node
configuration parameter for this purpose instead.

•  ReceiveBufferMemory



NDB Cluster Configuration Files

2217

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 2M 16K - 4294967039
(0xFFFFFEFF)

N

Specifies the size of the buffer used when receiving data from the TCP/IP socket.

The default value of this parameter is 2MB. The minimum possible value is 16KB; the theoretical
maximum is 4GB.

•  TCP_RCV_BUF_SIZE

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 70080 1 - 2G N

Determines the size of the receive buffer set during TCP transporter initialization. The default is
recommended for most common usage cases.

•  TCP_SND_BUF_SIZE

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 71540 1 - 2G N

Determines the size of the send buffer set during TCP transporter initialization. The default is
recommended for most common usage cases.

•  TCP_MAXSEG_SIZE

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 0 0 - 2G N

Determines the size of the memory set during TCP transporter initialization. The default is
recommended for most common usage cases.

• TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

• Group

When ndb_optimized_node_selection is enabled, node proximity is used in some cases to
select which node to connect to. This parameter can be used to influence proximity by setting it to
a lower value, which is interpreted as “closer”. See the description of the system variable for more
information.

18.3.3.10 NDB Cluster TCP/IP Connections Using Direct Connections

Setting up a cluster using direct connections between data nodes requires specifying explicitly
the crossover IP addresses of the data nodes so connected in the [tcp] section of the cluster
config.ini file.

In the following example, we envision a cluster with at least four hosts, one each for a management
server, an SQL node, and two data nodes. The cluster as a whole resides on the 172.23.72.*
subnet of a LAN. In addition to the usual network connections, the two data nodes are connected
directly using a standard crossover cable, and communicate with one another directly using IP
addresses in the 1.1.0.* address range as shown:

# Management Server



NDB Cluster Configuration Files

2218

[ndb_mgmd]
Id=1
HostName=172.23.72.20

# SQL Node
[mysqld]
Id=2
HostName=172.23.72.21

# Data Nodes
[ndbd]
Id=3
HostName=172.23.72.22

[ndbd]
Id=4
HostName=172.23.72.23

# TCP/IP Connections
[tcp]
NodeId1=3
NodeId2=4
HostName1=1.1.0.1
HostName2=1.1.0.2

The HostName1 and HostName2 parameters are used only when specifying direct connections.

The use of direct TCP connections between data nodes can improve the cluster's overall efficiency
by enabling the data nodes to bypass an Ethernet device such as a switch, hub, or router, thus
cutting down on the cluster's latency. It is important to note that to take the best advantage of direct
connections in this fashion with more than two data nodes, you must have a direct connection between
each data node and every other data node in the same node group.

18.3.3.11 NDB Cluster Shared-Memory Connections

NDB Cluster attempts to use the shared memory transporter and configure it automatically where
possible. [shm] sections in the config.ini file explicitly define shared-memory connections
between nodes in the cluster. When explicitly defining shared memory as the connection method, it
is necessary to define at least NodeId1, NodeId2, and ShmKey. All other parameters have default
values that should work well in most cases.

Important

SHM functionality is considered experimental only. It is not officially supported
in any current NDB Cluster release, and testing results indicate that SHM
performance is not appreciably greater than when using TCP/IP for the
transporter.

For these reasons, you must determine for yourself or by using our free
resources (forums, mailing lists) whether SHM can be made to work correctly in
your specific case.

•   NodeId1

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric [none] ... N

To identify a connection between two nodes it is necessary to provide node identifiers for each of
them, as NodeId1 and NodeId2.

•   NodeId2

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric [none] ... N



NDB Cluster Configuration Files

2219

To identify a connection between two nodes it is necessary to provide node identifiers for each of
them, as NodeId1 and NodeId2.

•  HostName1

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name or IP
address

[none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to
be used for a given SHM connection between two nodes. The values used for these parameters can
be host names or IP addresses.

•  HostName2

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name or IP
address

[none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to
be used for a given SHM connection between two nodes. The values used for these parameters can
be host names or IP addresses.

•  OverloadLimit

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 0 0 - 4294967039
(0xFFFFFEFF)

N

When more than this many unsent bytes are in the send buffer, the connection is considered
overloaded.

This parameter can be used to determine the amount of unsent data that must be present in the
send buffer before the connection is considered overloaded. See Section 18.3.3.13, “Configuring
NDB Cluster Send Buffer Parameters”, for more information.

In some older releases, the effective value of this parameter was limited by the size of
SendBufferMemory; in NDB Cluster 7.2, the actual value for OverloadLimit (up to the stated
maximum of 4G) is used instead.

•  ShmKey

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 0 - 4294967039
(0xFFFFFEFF)

N

When setting up shared memory segments, a node ID, expressed as an integer, is used to identify
uniquely the shared memory segment to use for the communication. There is no default value.

•  ShmSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 1M 64K - 4294967039
(0xFFFFFEFF)

N



NDB Cluster Configuration Files

2220

Each SHM connection has a shared memory segment where messages between nodes are placed
by the sender and read by the reader. The size of this segment is defined by ShmSize. The default
value is 1MB.

•  SendSignalId

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

To retrace the path of a distributed message, it is necessary to provide each message with a unique
identifier. Setting this parameter to Y causes these message IDs to be transported over the network
as well. This feature is disabled by default in production builds, and enabled in -debug builds.

•  Checksum

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean true true, false N

This parameter is a boolean (Y/N) parameter which is disabled by default. When it is enabled,
checksums for all messages are calculated before being placed in the send buffer.

This feature prevents messages from being corrupted while waiting in the send buffer. It also serves
as a check against data being corrupted during transport.

•  SigNum

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 0 - 4294967039
(0xFFFFFEFF)

N

When using the shared memory transporter, a process sends an operating system signal to the other
process when there is new data available in the shared memory. Should that signal conflict with an
existing signal, this parameter can be used to change it. This is a possibility when using SHM due to
the fact that different operating systems use different signal numbers.

The default value of SigNum is 0; therefore, it must be set to avoid errors in the cluster log when
using the shared memory transporter. Typically, this parameter is set to 10 in the [shm default]
section of the config.ini file.

18.3.3.12 SCI Transport Connections in NDB Cluster

[sci] sections in the config.ini file explicitly define SCI (Scalable Coherent Interface) connections
between cluster nodes. Using SCI transporters in NDB Cluster requires specialized hardware as well
as specially-built MySQL binaries; compiling such binaries is not supported using an NDB 7.2 or later
distribution.

The following parameters are present in NDB source code as well as the output of ndb_config and
other NDB programs, but are nonfunctional in NDB 7.2 and later.

•   NodeId1

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric [none] ... N

To identify a connection between two nodes it is necessary to provide node identifiers for each of
them, as NodeId1 and NodeId2.

•   NodeId2



NDB Cluster Configuration Files

2221

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 numeric [none] ... N

To identify a connection between two nodes it is necessary to provide node identifiers for each of
them, as NodeId1 and NodeId2.

•  Host1SciId0

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 0 - 4294967039
(0xFFFFFEFF)

N

This identifies the SCI node ID on the first Cluster node (identified by NodeId1).

• Host1SciId1

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 0 0 - 4294967039
(0xFFFFFEFF)

N

It is possible to set up SCI Transporters for failover between two SCI cards which then should use
separate networks between the nodes. This identifies the node ID and the second SCI card to be
used on the first node.

• Host2SciId0

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned [none] 0 - 4294967039
(0xFFFFFEFF)

N

This identifies the SCI node ID on the second Cluster node (identified by NodeId2).

• Host2SciId1

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 0 0 - 4294967039
(0xFFFFFEFF)

N

When using two SCI cards to provide failover, this parameter identifies the second SCI card to be
used on the second node.

•  HostName1

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name or IP
address

[none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to
be used for a given SCI connection between two nodes. The values used for these parameters can
be host names or IP addresses.

•  HostName2

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 name or IP
address

[none] ... N



NDB Cluster Configuration Files

2222

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to
be used for a given SCI connection between two nodes. The values used for these parameters can
be host names or IP addresses.

•  SharedBufferSize

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 10M 64K - 4294967039
(0xFFFFFEFF)

N

Each SCI transporter has a shared memory segment used for communication between the two
nodes. Setting the size of this segment to the default value of 1MB should be sufficient for most
applications. Using a smaller value can lead to problems when performing many parallel inserts; if
the shared buffer is too small, this can also result in a crash of the ndbd process.

• SendLimit 

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 unsigned 8K 128 - 32K N

A small buffer in front of the SCI media stores messages before transmitting them over the SCI
network. By default, this is set to 8KB. Our benchmarks show that performance is best at 64KB
but 16KB reaches within a few percent of this, and there was little if any advantage to increasing it
beyond 8KB.

•  SendSignalId

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean true true, false N

To trace a distributed message it is necessary to identify each message uniquely. When this
parameter is set to Y, message IDs are transported over the network. This feature is disabled by
default in production builds, and enabled in -debug builds.

•  Checksum

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 boolean false true, false N

This parameter is a boolean value, and is disabled by default. When Checksum is enabled,
checksums are calculated for all messages before they are placed in the send buffer. This feature
prevents messages from being corrupted while waiting in the send buffer. It also serves as a check
against data being corrupted during transport.

•  OverloadLimit

Effective Version Type/Units Default Range/Values Restart Type

NDB 7.2.0 bytes 0 0 - 4294967039
(0xFFFFFEFF)

N

When more than this many unsent bytes are in the send buffer, the connection is considered
overloaded. See Section 18.3.3.13, “Configuring NDB Cluster Send Buffer Parameters”, for more
information.



NDB Cluster Configuration Files

2223

18.3.3.13 Configuring NDB Cluster Send Buffer Parameters

Formerly, the NDB kernel employed a send buffer whose size was fixed at 2MB for each node in the
cluster, this buffer being allocated when the node started. Because the size of this buffer could not
be changed after the cluster was started, it was necessary to make it large enough in advance to
accommodate the maximum possible load on any transporter socket. However, this was an inefficient
use of memory, since much of it often went unused, and could result in large amounts of resources
being wasted when scaling up to many API nodes.

This problem was eventually solved (in NDB Cluster 7.0) by employing a unified send buffer whose
memory is allocated dynamically from a pool shared by all transporters. This means that the size of the
send buffer can be adjusted as necessary. Configuration of the unified send buffer can accomplished
by setting the following parameters:

• TotalSendBufferMemory.  This parameter can be set for all types of NDB Cluster nodes—that
is, it can be set in the [ndbd], [mgm], and [api] (or [mysql]) sections of the config.ini file. It
represents the total amount of memory (in bytes) to be allocated by each node for which it is set for
use among all configured transporters. If set, its minimum is 256KB; the maximum is 4294967039.

To be backward-compatible with existing configurations, this parameter takes as its default value the
sum of the maximum send buffer sizes of all configured transporters, plus an additional 32KB (one
page) per transporter. The maximum depends on the type of transporter, as shown in the following
table:

Transporter Maximum Send Buffer Size (bytes)

TCP SendBufferMemory (default = 2M)

SCI SendLimit (default = 8K) plus 16K

SHM 20K

This enables existing configurations to function in close to the same way as they did with NDB
Cluster 6.3 and earlier, with the same amount of memory and send buffer space available to
each transporter. However, memory that is unused by one transporter is not available to other
transporters.

• OverloadLimit.  This parameter is used in the config.ini file [tcp] section, and denotes
the amount of unsent data (in bytes) that must be present in the send buffer before the connection
is considered overloaded. When such an overload condition occurs, transactions that affect the
overloaded connection fail with NDB API Error 1218 (Send Buffers overloaded in NDB
kernel) until the overload status passes. The default value is 0, in which case the effective overload
limit is calculated as SendBufferMemory * 0.8 for a given connection. The maximum value for
this parameter is 4G.

• SendBufferMemory.  This value denotes a hard limit for the amount of memory that may
be used by a single transporter out of the entire pool specified by TotalSendBufferMemory.
However, the sum of SendBufferMemory for all configured transporters may be greater than the
TotalSendBufferMemory that is set for a given node. This is a way to save memory when many
nodes are in use, as long as the maximum amount of memory is never required by all transporters at
the same time.

• ReservedSendBufferMemory.  This optional data node parameter, if set, gives an amount of
memory (in bytes) that is reserved for connections between data nodes; this memory is not allocated
to send buffers used for communications with management servers or API nodes. This provides a
way to protect the cluster against misbehaving API nodes that use excess send memory and thus
cause failures in communications internally in the NDB kernel. If set, its the minimum permitted value
for this parameters is 256KB; the maximum is 4294967039.

You can use the ndbinfo.transporters table to monitor send buffer memory usage, and to detect
slowdown and overload conditions that can adversely affect performance.



Using High-Speed Interconnects with NDB Cluster

2224

18.3.4 Using High-Speed Interconnects with NDB Cluster

Even before design of NDBCLUSTER began in 1996, it was evident that one of the major problems to be
encountered in building parallel databases would be communication between the nodes in the network.
For this reason, NDBCLUSTER was designed from the very beginning to permit the use of a number of
different data transport mechanisms. In this Manual, we use the term transporter for these.

The NDB Cluster codebase provides for four different transporters:

• TCP/IP using 100 Mbps or gigabit Ethernet, as discussed in Section 18.3.3.9, “NDB Cluster TCP/IP
Connections”.

• Direct (machine-to-machine) TCP/IP; although this transporter uses the same TCP/IP protocol as
mentioned in the previous item, it requires setting up the hardware differently and is configured
differently as well. For this reason, it is considered a separate transport mechanism for NDB Cluster.
See Section 18.3.3.10, “NDB Cluster TCP/IP Connections Using Direct Connections”, for details.

• Shared memory (SHM). For more information about SHM, see Section 18.3.3.11, “NDB Cluster
Shared-Memory Connections”.

Note

SHM is considered experimental only, and is not officially supported.

• Scalable Coherent Interface (SCI). For more information about SHM, see Section 18.3.3.12, “SCI
Transport Connections in NDB Cluster”.

Note

Using SCI transporters in NDB Cluster requires specialized hardware,
software, and MySQL binaries not available using an NDB 7.2 or later
distribution.

Most users today employ TCP/IP over Ethernet because it is ubiquitous. TCP/IP is also by far the best-
tested transporter for use with NDB Cluster.

We are working to make sure that communication with the ndbd process is made in “chunks” that are
as large as possible because this benefits all types of data transmission.

18.4 NDB Cluster Programs

Using and managing an NDB Cluster requires several specialized programs, which we describe in this
chapter. We discuss the purposes of these programs in an NDB Cluster, how to use the programs, and
what startup options are available for each of them.

These programs include the NDB Cluster data, management, and SQL node processes (ndbd,
ndbmtd, ndb_mgmd, and mysqld) and the management client (ndb_mgm).

For information about using mysqld as an NDB Cluster process, see Section 18.5.4, “MySQL Server
Usage for NDB Cluster”.

Other NDB utility, diagnostic, and example programs are included with the NDB Cluster distribution.
These include ndb_restore, ndb_show_tables, and ndb_config. These programs are also
covered in this section.

The final portion of this section contains tables of options that are common to all the various NDB
Cluster programs.

18.4.1 ndbd — The NDB Cluster Data Node Daemon



ndbd — The NDB Cluster Data Node Daemon

2225

ndbd is the process that is used to handle all the data in tables using the NDB Cluster storage engine.
This is the process that empowers a data node to accomplish distributed transaction handling, node
recovery, checkpointing to disk, online backup, and related tasks.

In an NDB Cluster, a set of ndbd processes cooperate in handling data. These processes can execute
on the same computer (host) or on different computers. The correspondences between data nodes and
Cluster hosts is completely configurable.

The following table includes command options specific to the NDB Cluster data node program ndbd.
Additional descriptions follow the table. For options common to most NDB Cluster programs (including
ndbd), see Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB
Cluster Programs”.

Table 18.71  This table describes command-line options for the ndbd program

Format Description Added or Removed

--initial Perform initial start of ndbd,
including cleaning the
file system. Consult the
documentation before using this
option

All MySQL 5.5 based releases

--nostart,

-n

Don't start ndbd immediately;
ndbd waits for command to start
from ndb_mgmd

All MySQL 5.5 based releases

--daemon,

-d

Start ndbd as daemon (default);
override with --nodaemon

All MySQL 5.5 based releases

--nodaemon Do not start ndbd as daemon;
provided for testing purposes

All MySQL 5.5 based releases

--foreground Run ndbd in foreground,
provided for debugging purposes
(implies --nodaemon)

All MySQL 5.5 based releases

--nowait-nodes=list Do not wait for these data nodes
to start (takes comma-separated
list of node IDs). Also requires --
ndb-nodeid to be used.

All MySQL 5.5 based releases

--initial-start Perform partial initial start
(requires --nowait-nodes)

All MySQL 5.5 based releases

--bind-address=name Local bind address All MySQL 5.5 based releases

--install[=name] Used to install the data node
process as a Windows service.
Does not apply on non-Windows
platforms.

All MySQL 5.5 based releases

--remove[=name] Used to remove a data node
process that was previously
installed as a Windows service.
Does not apply on non-Windows
platforms.

All MySQL 5.5 based releases

--connect-retries=# Set the number of times to retry
a connection before giving up;
0 means 1 attempt only (and no
retries)

ADDED: NDB 7.2.9

--connect-delay=# Time to wait between attempts
to contact a management server,

ADDED: NDB 7.2.9



ndbd — The NDB Cluster Data Node Daemon

2226

Format Description Added or Removed
in seconds; 0 means do not wait
between attempts

Note

All of these options also apply to the multi-threaded version of this program
(ndbmtd) and you may substitute “ndbmtd” for “ndbd” wherever the latter
occurs in this section.

• --bind-address

Command-Line Format --bind-address=name

Type stringPermitted Values

Default

Causes ndbd to bind to a specific network interface (host name or IP address). This option has no
default value.

• --daemon, -d

Command-Line Format --daemon

Type booleanPermitted Values

Default TRUE

Instructs ndbd or ndbmtd to execute as a daemon process. This is the default behavior. --
nodaemon can be used to prevent the process from running as a daemon.

This option has no effect when running ndbd or ndbmtd on Windows platforms.

• --nodaemon

Command-Line Format --nodaemon

Type booleanPermitted Values

Default FALSE

Prevents ndbd or ndbmtd from executing as a daemon process. This option overrides the --
daemon option. This is useful for redirecting output to the screen when debugging the binary.

The default behavior for ndbd and ndbmtd on Windows is to run in the foreground, making this
option unnecessary on Windows platforms, where it has no effect.

• --foreground

Command-Line Format --foreground

Type booleanPermitted Values

Default FALSE

Causes ndbd or ndbmtd to execute as a foreground process, primarily for debugging purposes. This
option implies the --nodaemon option.

This option has no effect when running ndbd or ndbmtd on Windows platforms.

•   --initial

Command-Line Format --initial



ndbd — The NDB Cluster Data Node Daemon

2227

Type booleanPermitted Values

Default FALSE

Instructs ndbd to perform an initial start. An initial start erases any files created for recovery
purposes by earlier instances of ndbd. It also re-creates recovery log files. Note that on some
operating systems this process can take a substantial amount of time.

An --initial start is to be used only when starting the ndbd process under very special
circumstances; this is because this option causes all files to be removed from the NDB Cluster file
system and all redo log files to be re-created. These circumstances are listed here:

• When performing a software upgrade which has changed the contents of any files.

• When restarting the node with a new version of ndbd.

• As a measure of last resort when for some reason the node restart or system restart repeatedly
fails. In this case, be aware that this node can no longer be used to restore data due to the
destruction of the data files.

Warning

To avoid the possibility of eventual data loss, it is recommended that you not
use the --initial option together with StopOnError = 0. Instead, set
StopOnError to 0 in config.ini only after the cluster has been started,
then restart the data nodes normally—that is, without the --initial option.
See the description of the StopOnError parameter for a detailed explanation
of this issue. (Bug #24945638)

Use of this option prevents the StartPartialTimeout and StartPartitionedTimeout
configuration parameters from having any effect.

Important

This option does not affect either of the following types of files:

• Backup files that have already been created by the affected node

• NDB Cluster Disk Data files (see Section 18.5.12, “NDB Cluster Disk Data
Tables”).

This option also has no effect on recovery of data by a data node that is just
starting (or restarting) from data nodes that are already running. This recovery
of data occurs automatically, and requires no user intervention in an NDB
Cluster that is running normally.

It is permissible to use this option when starting the cluster for the very first time (that is, before any
data node files have been created); however, it is not necessary to do so.

•   --initial-start

Command-Line Format --initial-start

Type booleanPermitted Values

Default FALSE

This option is used when performing a partial initial start of the cluster. Each node should be started
with this option, as well as --nowait-nodes.

Suppose that you have a 4-node cluster whose data nodes have the IDs 2, 3, 4, and 5, and you wish
to perform a partial initial start using only nodes 2, 4, and 5—that is, omitting node 3:



ndbd — The NDB Cluster Data Node Daemon

2228

shell> ndbd --ndb-nodeid=2 --nowait-nodes=3 --initial-start
shell> ndbd --ndb-nodeid=4 --nowait-nodes=3 --initial-start
shell> ndbd --ndb-nodeid=5 --nowait-nodes=3 --initial-start

When using this option, you must also specify the node ID for the data node being started with the
--ndb-nodeid option.

Important

Do not confuse this option with the --nowait-nodes option for ndb_mgmd,
which can be used to enable a cluster configured with multiple management
servers to be started without all management servers being online.

•   --nowait-nodes=node_id_1[, node_id_2[, ...]]

Command-Line Format --nowait-nodes=list

Type stringPermitted Values

Default

This option takes a list of data nodes which for which the cluster will not wait for before starting.

This can be used to start the cluster in a partitioned state. For example, to start the cluster with only
half of the data nodes (nodes 2, 3, 4, and 5) running in a 4-node cluster, you can start each ndbd
process with --nowait-nodes=3,5. In this case, the cluster starts as soon as nodes 2 and 4
connect, and does not wait StartPartitionedTimeout milliseconds for nodes 3 and 5 to connect
as it would otherwise.

If you wanted to start up the same cluster as in the previous example without one ndbd (say, for
example, that the host machine for node 3 has suffered a hardware failure) then start nodes 2, 4, and
5 with --nowait-nodes=3. Then the cluster will start as soon as nodes 2, 4, and 5 connect and will
not wait for node 3 to start.

•     --nostart, -n

Command-Line Format --nostart

Type booleanPermitted Values

Default FALSE

Instructs ndbd not to start automatically. When this option is used, ndbd connects to the
management server, obtains configuration data from it, and initializes communication objects.
However, it does not actually start the execution engine until specifically requested to do so by
the management server. This can be accomplished by issuing the proper START command in the
management client (see Section 18.5.2, “Commands in the NDB Cluster Management Client”).

•   --install[=name]

Command-Line Format --install[=name]

Platform Specific Windows

Type stringPermitted Values

Default ndbd

Causes ndbd to be installed as a Windows service. Optionally, you can specify a name for the
service; if not set, the service name defaults to ndbd. Although it is preferable to specify other ndbd
program options in a my.ini or my.cnf configuration file, it is possible to use together with --
install. However, in such cases, the --install option must be specified first, before any other
options are given, for the Windows service installation to succeed.



ndbd — The NDB Cluster Data Node Daemon

2229

It is generally not advisable to use this option together with the --initial option, since this causes
the data node file system to be wiped and rebuilt every time the service is stopped and started.
Extreme care should also be taken if you intend to use any of the other ndbd options that affect
the starting of data nodes—including --initial-start, --nostart, and --nowait-nodes—
together with --install, and you should make absolutely certain you fully understand and allow for
any possible consequences of doing so.

The --install option has no effect on non-Windows platforms.

•   --remove[=name]

Command-Line Format --remove[=name]

Platform Specific Windows

Type stringPermitted Values

Default ndbd

Causes an ndbd process that was previously installed as a Windows service to be removed.
Optionally, you can specify a name for the service to be uninstalled; if not set, the service name
defaults to ndbd.

The --remove option has no effect on non-Windows platforms.

•   --connect-retries=#

Introduced 5.5.28-ndb-7.2.9

Command-Line Format --connect-retries=#

Type numeric

Default 12

Min
Value

0

Permitted Values

Max
Value

65535

Determines the number of times that the data node attempts to contact a management server when
starting. Setting this option to -1 causes the data node to keep trying to make contact indefinitely.
The default is 12 attempts. The time to wait between attempts is controlled by the --connect-
delay option.

This option was added in NDB 7.2.9.

•   --connect-delay=#

Introduced 5.5.28-ndb-7.2.9

Command-Line Format --connect-delay=#

Type numeric

Default 5

Min
Value

0

Permitted Values

Max
Value

3600

Determines the time to wait between attempts to contact a management server when starting (the
time between attempts is controlled by the --connect-retries option). The default is 5 attempts.



ndbd — The NDB Cluster Data Node Daemon

2230

This option was added in NDB 7.2.9.

ndbd generates a set of log files which are placed in the directory specified by DataDir in the
config.ini configuration file.

These log files are listed below. node_id is the node's unique identifier. Note that node_id represents
the node's unique identifier. For example, ndb_2_error.log is the error log generated by the data
node whose node ID is 2.

•   ndb_node_id_error.log is a file containing records of all crashes which the referenced ndbd
process has encountered. Each record in this file contains a brief error string and a reference to a
trace file for this crash. A typical entry in this file might appear as shown here:

Date/Time: Saturday 30 July 2004 - 00:20:01
Type of error: error
Message: Internal program error (failed ndbrequire)
Fault ID: 2341
Problem data: DbtupFixAlloc.cpp
Object of reference: DBTUP (Line: 173)
ProgramName: NDB Kernel
ProcessID: 14909
TraceFile: ndb_2_trace.log.2
***EOM***

Listings of possible ndbd exit codes and messages generated when a data node process shuts
down prematurely can be found in Data Node Error Messages.

Important

The last entry in the error log file is not necessarily the newest one (nor is
it likely to be). Entries in the error log are not listed in chronological order;
rather, they correspond to the order of the trace files as determined in the
ndb_node_id_trace.log.next file (see below). Error log entries are thus
overwritten in a cyclical and not sequential fashion.

•   ndb_node_id_trace.log.trace_id is a trace file describing exactly what happened just
before the error occurred. This information is useful for analysis by the NDB Cluster development
team.

It is possible to configure the number of these trace files that will be created before old files are
overwritten. trace_id is a number which is incremented for each successive trace file.

• ndb_node_id_trace.log.next is the file that keeps track of the next trace file number to be
assigned.

• ndb_node_id_out.log is a file containing any data output by the ndbd process. This file is
created only if ndbd is started as a daemon, which is the default behavior.

• ndb_node_id.pid is a file containing the process ID of the ndbd process when started as a
daemon. It also functions as a lock file to avoid the starting of nodes with the same identifier.

• ndb_node_id_signal.log is a file used only in debug versions of ndbd, where it is possible to
trace all incoming, outgoing, and internal messages with their data in the ndbd process.

It is recommended not to use a directory mounted through NFS because in some environments this
can cause problems whereby the lock on the .pid file remains in effect even after the process has
terminated.

To start ndbd, it may also be necessary to specify the host name of the management server and the
port on which it is listening. Optionally, one may also specify the node ID that the process is to use.

http://dev.mysql.com/doc/ndb-internals/en/ndb-node-error-messages.html


ndbinfo_select_all — Select From ndbinfo Tables

2231

shell> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

See Section 18.3.3.3, “NDB Cluster Connection Strings”, for additional information about this issue.
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”, describes other command-line options which can be used with ndbd. For information about
data node configuration parameters, see Section 18.3.3.6, “Defining NDB Cluster Data Nodes”.

When ndbd starts, it actually initiates two processes. The first of these is called the “angel process”; its
only job is to discover when the execution process has been completed, and then to restart the ndbd
process if it is configured to do so. Thus, if you attempt to kill ndbd using the Unix kill command,
it is necessary to kill both processes, beginning with the angel process. The preferred method of
terminating an ndbd process is to use the management client and stop the process from there.

The execution process uses one thread for reading, writing, and scanning data, as well as all other
activities. This thread is implemented asynchronously so that it can easily handle thousands of
concurrent actions. In addition, a watch-dog thread supervises the execution thread to make sure that
it does not hang in an endless loop. A pool of threads handles file I/O, with each thread able to handle
one open file. Threads can also be used for transporter connections by the transporters in the ndbd
process. In a multi-processor system performing a large number of operations (including updates), the
ndbd process can consume up to 2 CPUs if permitted to do so.

For a machine with many CPUs it is possible to use several ndbd processes which belong to different
node groups; however, such a configuration is still considered experimental and is not supported for
MySQL 5.5 in a production setting. See Section 18.1.6, “Known Limitations of NDB Cluster”.

18.4.2 ndbinfo_select_all — Select From ndbinfo Tables

ndbinfo_select_all is a client program that selects all rows and columns from one or more tables
in the ndbinfo database. It is included with the NDB Cluster distribution beginning with NDB 7.2.2.

Not all ndbinfo tables available in the mysql client can be read by this program. In addition,
ndbinfo_select_all can show information about some tables internal to ndbinfo which cannot be
accessed using SQL, including the tables and columns metadata tables.

To select from one or more ndbinfo tables using ndbinfo_select_all, it is necessary to supply
the names of the tables when invoking the program as shown here:

shell> ndbinfo_select_all table_name1  [table_name2] [...]

For example:

shell> ndbinfo_select_all logbuffers logspaces
== logbuffers ==
node_id log_type        log_id  log_part        total   used    high
5       0       0       0       33554432        262144  0
6       0       0       0       33554432        262144  0
7       0       0       0       33554432        262144  0
8       0       0       0       33554432        262144  0
== logspaces ==
node_id log_type        log_id  log_part        total   used    high
5       0       0       0       268435456       0       0
5       0       0       1       268435456       0       0
5       0       0       2       268435456       0       0
5       0       0       3       268435456       0       0
6       0       0       0       268435456       0       0
6       0       0       1       268435456       0       0
6       0       0       2       268435456       0       0
6       0       0       3       268435456       0       0
7       0       0       0       268435456       0       0
7       0       0       1       268435456       0       0
7       0       0       2       268435456       0       0
7       0       0       3       268435456       0       0
8       0       0       0       268435456       0       0



ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)

2232

8       0       0       1       268435456       0       0
8       0       0       2       268435456       0       0
8       0       0       3       268435456       0       0
shell>                     

The following table includes options that are specific to ndbinfo_select_all. Additional
descriptions follow the table. For options common to most NDB Cluster programs (including
ndbinfo_select_all), see Section 18.4.27, “Options Common to NDB Cluster Programs —
Options Common to NDB Cluster Programs”.

Table 18.72  This table describes command-line options for the ndbinfo_select_all program

Format Description Added or Removed

--delay=# Set the delay in seconds
between loops. Default is 5.

All MySQL 5.5 based releases

--loops=#,

-l

Set the number of times to
perform the select. Default is 1.

All MySQL 5.5 based releases

--database=db_name,

-d

Name of the database where the
table located.

All MySQL 5.5 based releases

--parallelism=#,

-p

Set the degree of parallelism. All MySQL 5.5 based releases

•  --delay=seconds

Command-Line Format --delay=#

Type numeric

Default 5

Min
Value

0

Permitted Values

Max
Value

MAX_INT

This option sets the number of seconds to wait between executing loops. Has no effect if --loops is
set to 0 or 1.

•   --loops=number, -l number

Command-Line Format --loops=#

Type numeric

Default 1

Min
Value

0

Permitted Values

Max
Value

MAX_INT

This option sets the number of times to execute the select. Use --delay to set the time between
loops.

18.4.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)

ndbmtd is a multi-threaded version of ndbd, the process that is used to handle all the data in tables
using the NDBCLUSTER storage engine. ndbmtd is intended for use on host computers having multiple
CPU cores. Except where otherwise noted, ndbmtd functions in the same way as ndbd; therefore, in



ndb_mgmd — The NDB Cluster Management Server Daemon

2233

this section, we concentrate on the ways in which ndbmtd differs from ndbd, and you should consult
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”, for additional information about
running NDB Cluster data nodes that apply to both the single-threaded and multi-threaded versions of
the data node process.

Command-line options and configuration parameters used with ndbd also apply to ndbmtd. For more
information about these options and parameters, see Section 18.4.1, “ndbd — The NDB Cluster Data
Node Daemon”, and Section 18.3.3.6, “Defining NDB Cluster Data Nodes”, respectively.

ndbmtd is also file system-compatible with ndbd. In other words, a data node running ndbd can be
stopped, the binary replaced with ndbmtd, and then restarted without any loss of data. (However,
when doing this, you must make sure that MaxNoOfExecutionThreads is set to an apppriate value
before restarting the node if you wish for ndbmtd to run in multi-threaded fashion.) Similarly, an
ndbmtd binary can be replaced with ndbd simply by stopping the node and then starting ndbd in place
of the multi-threaded binary. It is not necessary when switching between the two to start the data node
binary using --initial.

Using ndbmtd differs from using ndbd in two key respects:

1. Because ndbmtd runs by default in single-threaded mode (that is, it behaves like ndbd), you
must configure it to use multiple threads. This can be done by setting an appropriate value in the
config.ini file for the MaxNoOfExecutionThreads configuration parameter or (in NDB 7.2.3
and later) the ThreadConfig configuration parameter. Using MaxNoOfExecutionThreads is
simpler, but ThreadConfig offers more flexibility. For more information about these configuration
parameters and their use, see Multi-Threading Configuration Parameters (ndbmtd).

2. Trace files are generated by critical errors in ndbmtd processes in a somewhat different fashion
from how these are generated by ndbd failures. These differences are discussed in more detail in
the next few paragraphs.

Like ndbd, ndbmtd generates a set of log files which are placed in the directory specified by DataDir
in the config.ini configuration file. Except for trace files, these are generated in the same way and
have the same names as those generated by ndbd.

In the event of a critical error, ndbmtd generates trace files describing what happened just prior to the
error' occurrence. These files, which can be found in the data node's DataDir, are useful for analysis
of problems by the NDB Cluster Development and Support teams. One trace file is generated for each
ndbmtd thread. The names of these files have the following pattern:

        
ndb_node_id_trace.log.trace_id_tthread_id,

In this pattern, node_id stands for the data node's unique node ID in the cluster, trace_id
is a trace sequence number, and thread_id is the thread ID. For example, in the event of
the failure of an ndbmtd process running as an NDB Cluster data node having the node ID 3
and with MaxNoOfExecutionThreads equal to 4, four trace files are generated in the data
node's data directory. If the is the first time this node has failed, then these files are named
ndb_3_trace.log.1_t1, ndb_3_trace.log.1_t2, ndb_3_trace.log.1_t3, and
ndb_3_trace.log.1_t4. Internally, these trace files follow the same format as ndbd trace files.

The ndbd exit codes and messages that are generated when a data node process shuts down
prematurely are also used by ndbmtd. See Data Node Error Messages, for a listing of these.

Note

It is possible to use ndbd and ndbmtd concurrently on different data nodes
in the same NDB Cluster. However, such configurations have not been tested
extensively; thus, we cannot recommend doing so in a production setting at this
time.

18.4.4 ndb_mgmd — The NDB Cluster Management Server Daemon

http://dev.mysql.com/doc/ndb-internals/en/ndb-node-error-messages.html


ndb_mgmd — The NDB Cluster Management Server Daemon

2234

The management server is the process that reads the cluster configuration file and distributes this
information to all nodes in the cluster that request it. It also maintains a log of cluster activities.
Management clients can connect to the management server and check the cluster's status.

The following table includes options that are specific to the NDB Cluster management server program
ndb_mgmd. Additional descriptions follow the table. For options common to most NDB Cluster
programs (including ndb_mgmd), see Section 18.4.27, “Options Common to NDB Cluster Programs —
Options Common to NDB Cluster Programs”.

Table 18.73  This table describes command-line options for the ndb_mgmd program

Format Description Added or Removed

--config-file=file,

-f

Specify the cluster configuration
file; in NDB-6.4.0 and later,
needs --reload or --initial to
override configuration cache if
present

All MySQL 5.5 based releases

--configdir=directory,

--config-dir=directory

Specify the cluster management
server's configuration cache
directory

All MySQL 5.5 based releases

--bind-address=host Local bind address All MySQL 5.5 based releases

--print-full-config,

-P

Print full configuration and exit All MySQL 5.5 based releases

--daemon,

-d

Run ndb_mgmd in daemon
mode (default)

All MySQL 5.5 based releases

--nodaemon Do not run ndb_mgmd as a
daemon

All MySQL 5.5 based releases

--interactive Run ndb_mgmd in interactive
mode (not officially supported in
production; for testing purposes
only)

All MySQL 5.5 based releases

--log-name=name A name to use when writing
messages applying to this node
in the cluster log.

All MySQL 5.5 based releases

--no-nodeid-checks Do not provide any node id
checks

All MySQL 5.5 based releases

--mycnf Read cluster configuration data
from the my.cnf file

All MySQL 5.5 based releases

--reload Causes the management server
to compare the configuration file
with its configuration cache

All MySQL 5.5 based releases

--initial Causes the management server
reload its configuration data from
the configuration file, bypassing
the configuration cache

All MySQL 5.5 based releases

--nowait-nodes=list Do not wait for these
management nodes when
starting this management server.
Also requires --ndb-nodeid to be
used.

All MySQL 5.5 based releases

--config-cache[=TRUE|
FALSE]

Enable the management server
configuration cache; TRUE by
default.

All MySQL 5.5 based releases



ndb_mgmd — The NDB Cluster Management Server Daemon

2235

Format Description Added or Removed

--install[=name] Used to install the management
server process as a Windows
service. Does not apply on non-
Windows platforms.

All MySQL 5.5 based releases

--remove[=name] Used to remove a management
server process that was
previously installed as a
Windows service, optionally
specifying the name of the
service to be removed. Does
not apply on non-Windows
platforms.

All MySQL 5.5 based releases

•  --bind-address=host

Command-Line Format --bind-address=host

Type stringPermitted Values

Default [none]

Causes the management server to bind to a specific network interface (host name or IP address).
This option has no default value.

•  --no-nodeid-checks

Command-Line Format --no-nodeid-checks

Type booleanPermitted Values

Default FALSE

Do not perform any checks of node IDs.

•  --configdir=dir_name

Command-Line Format --configdir=directory

 --config-dir=directory

Type file namePermitted Values

Default $INSTALLDIR/mysql-cluster

Specifies the cluster management server's configuration cache directory. --config-dir is an alias
for this option.

•  --config-cache

Command-Line Format --config-cache[=TRUE|FALSE]

Type booleanPermitted Values

Default TRUE

This option, whose default value is 1 (or TRUE, or ON), can be used to disable the management
server's configuration cache, so that it reads its configuration from config.ini every time it starts
(see Section 18.3.3, “NDB Cluster Configuration Files”). You can do this by starting the ndb_mgmd
process with any one of the following options:

• --config-cache=0

• --config-cache=FALSE



ndb_mgmd — The NDB Cluster Management Server Daemon

2236

• --config-cache=OFF

• --skip-config-cache

Using one of the options just listed is effective only if the management server has no stored
configuration at the time it is started. If the management server finds any configuration cache files,
then the --config-cache option or the --skip-config-cache option is ignored. Therefore, to
disable configuration caching, the option should be used the first time that the management server
is started. Otherwise—that is, if you wish to disable configuration caching for a management server
that has already created a configuration cache—you must stop the management server, delete
any existing configuration cache files manually, then restart the management server with --skip-
config-cache (or with --config-cache set equal to 0, OFF, or FALSE).

Configuration cache files are normally created in a directory named mysql-cluster under the
installation directory (unless this location has been overridden using the --configdir option). Each
time the management server updates its configuration data, it writes a new cache file. The files are
named sequentially in order of creation using the following format:

ndb_node-id_config.bin.seq-number

node-id is the management server's node ID; seq-number is a sequence number, beginning with
1. For example, if the management server's node ID is 5, then the first three configuration cache files
would, when they are created, be named ndb_5_config.bin.1, ndb_5_config.bin.2, and
ndb_5_config.bin.3.

If your intent is to purge or reload the configuration cache without actually disabling caching, you
should start ndb_mgmd with one of the options --reload or --initial instead of --skip-
config-cache.

To re-enable the configuration cache, simply restart the management server, but without the
--config-cache or --skip-config-cache option that was used previously to disable the
configuration cache.

Beginning with NDB 7.2.5, ndb_mgmd no longer checks for the configuration directory (--
configdir) or attempts to create one when --skip-config-cache is used. (Bug #13428853)

•    --config-file=filename, -f filename

Command-Line Format --config-file=file

Type file namePermitted Values

Default [none]

Instructs the management server as to which file it should use for its configuration file. By default,
the management server looks for a file named config.ini in the same directory as the ndb_mgmd
executable; otherwise the file name and location must be specified explicitly.

This option has no default value, and is ignored unless the management server is forced to read
the configuration file, either because ndb_mgmd was started with the --reload or --initial
option, or because the management server could not find any configuration cache. This option is
also read if ndb_mgmd was started with --config-cache=OFF. See Section 18.3.3, “NDB Cluster
Configuration Files”, for more information.

Formerly, using this option together with --initial caused removal of the configuration cache
even if the file was not found. This issue was resolved in NDB 7.2.13. (Bug #1299289)

•   --mycnf

Command-Line Format --mycnf



ndb_mgmd — The NDB Cluster Management Server Daemon

2237

Type booleanPermitted Values

Default FALSE

Read configuration data from the my.cnf file.

•   --daemon, -d

Command-Line Format --daemon

Type booleanPermitted Values

Default TRUE

Instructs ndb_mgmd to start as a daemon process. This is the default behavior.

This option has no effect when running ndb_mgmd on Windows platforms.

•  --interactive

Command-Line Format --interactive

Type booleanPermitted Values

Default FALSE

Starts ndb_mgmd in interactive mode; that is, an ndb_mgm client session is started as soon as the
management server is running. This option does not start any other NDB Cluster nodes.

•  --initial

Command-Line Format --initial

Type booleanPermitted Values

Default FALSE

Configuration data is cached internally, rather than being read from the cluster global configuration
file each time the management server is started (see Section 18.3.3, “NDB Cluster Configuration
Files”). Using the --initial option overrides this behavior, by forcing the management server
to delete any existing cache files, and then to re-read the configuration data from the cluster
configuration file and to build a new cache.

This differs in two ways from the --reload option. First, --reload forces the server to check the
configuration file against the cache and reload its data only if the contents of the file are different
from the cache. Second, --reload does not delete any existing cache files.

If ndb_mgmd is invoked with --initial but cannot find a global configuration file, the management
server cannot start.

When a management server starts, it checks for another management server in the same NDB
Cluster and tries to use the other management server's configuration data; ndb_mgmd ignores --
initial unless it is the only management server running. This behavior also has implications when
performing a rolling restart of an NDB Cluster with multiple management nodes. See Section 18.5.5,
“Performing a Rolling Restart of an NDB Cluster”, for more information.

Formerly, using this option together with the --config-file option caused removal of the
configuration cache even if the file was not found. Starting with NDB 7.2.13, the cache is cleared in
such cases only if the configuration file is actually found. (Bug #1299289)

•  --log-name=name

Command-Line Format --log-name=name



ndb_mgmd — The NDB Cluster Management Server Daemon

2238

Type stringPermitted Values

Default MgmtSrvr

Provides a name to be used for this node in the cluster log.

•  --nodaemon

Command-Line Format --nodaemon

Type booleanPermitted Values

Default FALSE

Instructs ndb_mgmd not to start as a daemon process.

The default behavior for ndb_mgmd on Windows is to run in the foreground, making this option
unnecessary on Windows platforms.

•   --print-full-config, -P

Command-Line Format --print-full-config

Type booleanPermitted Values

Default FALSE

Shows extended information regarding the configuration of the cluster. With this option on the
command line the ndb_mgmd process prints information about the cluster setup including an
extensive list of the cluster configuration sections as well as parameters and their values. Normally
used together with the --config-file (-f) option.

•  --reload

Command-Line Format --reload

Type booleanPermitted Values

Default FALSE

In NDB Cluster 7.2, configuration data is stored internally rather than being read from the cluster
global configuration file each time the management server is started (see Section 18.3.3, “NDB
Cluster Configuration Files”). Using this option forces the management server to check its internal
data store against the cluster configuration file and to reload the configuration if it finds that the
configuration file does not match the cache. Existing configuration cache files are preserved, but not
used.

This differs in two ways from the --initial option. First, --initial causes all cache files to be
deleted. Second, --initial forces the management server to re-read the global configuration file
and construct a new cache.

If the management server cannot find a global configuration file, then the --reload option is
ignored.

When a management server starts, it checks for another management server in the same NDB
Cluster and tries to use the other management server's configuration data; ndb_mgmd ignores --
reload unless it is the only management server running. This behavior also has implications when
performing a rolling restart of an NDB Cluster with multiple management nodes. See Section 18.5.5,
“Performing a Rolling Restart of an NDB Cluster”, for more information.

•  --nowait-nodes

Command-Line Format --nowait-nodes=list



ndb_mgmd — The NDB Cluster Management Server Daemon

2239

Type numeric

Default

Min
Value

1

Permitted Values

Max
Value

255

When starting an NDB Cluster is configured with two management nodes, each management server
normally checks to see whether the other ndb_mgmd is also operational and whether the other
management server's configuration is identical to its own. However, it is sometimes desirable to start
the cluster with only one management node (and perhaps to allow the other ndb_mgmd to be started
later). This option causes the management node to bypass any checks for any other management
nodes whose node IDs are passed to this option, permitting the cluster to start as though configured
to use only the management node that was started.

For purposes of illustration, consider the following portion of a config.ini file (where we have
omitted most of the configuration parameters that are not relevant to this example):

[ndbd]
NodeId = 1
HostName = 192.168.0.101

[ndbd]
NodeId = 2
HostName = 192.168.0.102

[ndbd]
NodeId = 3
HostName = 192.168.0.103

[ndbd]
NodeId = 4
HostName = 192.168.0.104

[ndb_mgmd]
NodeId = 10
HostName = 192.168.0.150

[ndb_mgmd]
NodeId = 11
HostName = 192.168.0.151

[api]
NodeId = 20
HostName = 192.168.0.200

[api]
NodeId = 21
HostName = 192.168.0.201

Assume that you wish to start this cluster using only the management server having node ID 10
and running on the host having the IP address 192.168.0.150. (Suppose, for example, that the host
computer on which you intend to the other management server is temporarily unavailable due to
a hardware failure, and you are waiting for it to be repaired.) To start the cluster in this way, use a
command line on the machine at 192.168.0.150 to enter the following command:

shell> ndb_mgmd --ndb-nodeid=10 --nowait-nodes=11

As shown in the preceding example, when using --nowait-nodes, you must also use the --ndb-
nodeid option to specify the node ID of this ndb_mgmd process.



ndb_mgmd — The NDB Cluster Management Server Daemon

2240

You can then start each of the cluster's data nodes in the usual way. If you wish to start and use
the second management server in addition to the first management server at a later time without
restarting the data nodes, you must start each data node with a connection string that references
both management servers, like this:

shell> ndbd -c 192.168.0.150,192.168.0.151

The same is true with regard to the connection string used with any mysqld processes that you wish
to start as NDB Cluster SQL nodes connected to this cluster. See Section 18.3.3.3, “NDB Cluster
Connection Strings”, for more information.

When used with ndb_mgmd, this option affects the behavior of the management node with regard to
other management nodes only. Do not confuse it with the --nowait-nodes option used with ndbd
or ndbmtd to permit a cluster to start with fewer than its full complement of data nodes; when used
with data nodes, this option affects their behavior only with regard to other data nodes.

Multiple management node IDs may be passed to this option as a comma-separated list. Each node
ID must be no less than 1 and no greater than 255. In practice, it is quite rare to use more than two
management servers for the same NDB Cluster (or to have any need for doing so); in most cases
you need to pass to this option only the single node ID for the one management server that you do
not wish to use when starting the cluster.

Note

When you later start the “missing” management server, its configuration
must match that of the management server that is already in use by the
cluster. Otherwise, it fails the configuration check performed by the existing
management server, and does not start.

It is not strictly necessary to specify a connection string when starting the management server.
However, if you are using more than one management server, a connection string should be provided
and each node in the cluster should specify its node ID explicitly.

See Section 18.3.3.3, “NDB Cluster Connection Strings”, for information about using connection
strings. Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, describes
other options for ndb_mgmd.

The following files are created or used by ndb_mgmd in its starting directory, and are placed in the
DataDir as specified in the config.ini configuration file. In the list that follows, node_id is the
unique node identifier.

•    config.ini is the configuration file for the cluster as a whole. This file is created by the user and
read by the management server. Section 18.3, “Configuration of NDB Cluster”, discusses how to set
up this file.

• ndb_node_id_cluster.log is the cluster events log file. Examples of such events include
checkpoint startup and completion, node startup events, node failures, and levels of memory usage.
A complete listing of cluster events with descriptions may be found in Section 18.5, “Management of
NDB Cluster”.

By default, when the size of the cluster log reaches one million bytes, the file is renamed to
ndb_node_id_cluster.log.seq_id, where seq_id is the sequence number of the cluster log
file. (For example: If files with the sequence numbers 1, 2, and 3 already exist, the next log file is
named using the number 4.) You can change the size and number of files, and other characteristics
of the cluster log, using the LogDestination configuration parameter.

• ndb_node_id_out.log is the file used for stdout and stderr when running the management
server as a daemon.

• ndb_node_id.pid is the process ID file used when running the management server as a daemon.



ndb_mgm — The NDB Cluster Management Client

2241

•  --install[=name]

Command-Line Format --install[=name]

Platform Specific Windows

Type stringPermitted Values

Default ndb_mgmd

Causes ndb_mgmd to be installed as a Windows service. Optionally, you can specify a name for the
service; if not set, the service name defaults to ndb_mgmd. Although it is preferable to specify other
ndb_mgmd program options in a my.ini or my.cnf configuration file, it is possible to use them
together with --install. However, in such cases, the --install option must be specified first,
before any other options are given, for the Windows service installation to succeed.

It is generally not advisable to use this option together with the --initial option, since this causes
the configuration cache to be wiped and rebuilt every time the service is stopped and started. Care
should also be taken if you intend to use any other ndb_mgmd options that affect the starting of the
management server, and you should make absolutely certain you fully understand and allow for any
possible consequences of doing so.

The --install option has no effect on non-Windows platforms.

•  --remove[=name]

Command-Line Format --remove[=name]

Platform Specific Windows

Type stringPermitted Values

Default ndb_mgmd

Causes an ndb_mgmd process that was previously installed as a Windows service to be removed.
Optionally, you can specify a name for the service to be uninstalled; if not set, the service name
defaults to ndb_mgmd.

The --remove option has no effect on non-Windows platforms.

18.4.5 ndb_mgm — The NDB Cluster Management Client

The ndb_mgm management client process is actually not needed to run the cluster. Its value lies in
providing a set of commands for checking the cluster's status, starting backups, and performing other
administrative functions. The management client accesses the management server using a C API.
Advanced users can also employ this API for programming dedicated management processes to
perform tasks similar to those performed by ndb_mgm.

To start the management client, it is necessary to supply the host name and port number of the
management server:

shell> ndb_mgm [host_name [port_num]]

For example:

shell> ndb_mgm ndb_mgmd.mysql.com 1186

The default host name and port number are localhost and 1186, respectively.

The following table includes options that are specific to the NDB Cluster management client program
ndb_mgm. Additional descriptions follow the table. For options common to most NDB Cluster programs
(including ndb_mgm), see Section 18.4.27, “Options Common to NDB Cluster Programs — Options
Common to NDB Cluster Programs”.



ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

2242

Table 18.74  This table describes command-line options for the ndb_mgm program

Format Description Added or Removed

--try-reconnect=#,

-t

Set the number of times to retry
a connection before giving up;
synonym for --connect-retries

All MySQL 5.5 based releases

--execute=name,

-e

Execute command and exit All MySQL 5.5 based releases

•   --execute=command, -e command

Command-Line Format --execute=name

This option can be used to send a command to the NDB Cluster management client from the system
shell. For example, either of the following is equivalent to executing SHOW in the management client:

shell> ndb_mgm -e "SHOW"

shell> ndb_mgm --execute="SHOW"

This is analogous to how the --execute or -e option works with the mysql command-line client.
See Section 4.2.4, “Using Options on the Command Line”.

Note

If the management client command to be passed using this option contains
any space characters, then the command must be enclosed in quotation
marks. Either single or double quotation marks may be used. If the
management client command contains no space characters, the quotation
marks are optional.

• --try-reconnect=number

Command-Line Format --try-reconnect=#

Type integer

Default 3

Min
Value

0

Permitted Values

Max
Value

4294967295

If the connection to the management server is broken, the node tries to reconnect to it every 5
seconds until it succeeds. By using this option, it is possible to limit the number of attempts to
number before giving up and reporting an error instead.

Additional information about using ndb_mgm can be found in Section 18.5.2, “Commands in the NDB
Cluster Management Client”.

18.4.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of
NDB Cluster Tables

This tool can be used to check for and remove orphaned BLOB column parts from NDB tables, as well
as to generate a file listing any orphaned parts. It is sometimes useful in diagnosing and repairing
corrupted or damaged NDB tables containing BLOB or TEXT columns.

The basic syntax for ndb_blob_tool is shown here:



ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

2243

ndb_blob_tool [options] table [column, ...]

Unless you use the --help option, you must specify an action to be performed by including one or
more of the options --check-orphans, --delete-orphans, or --dump-file. These options
cause ndb_blob_tool to check for orphaned BLOB parts, remove any orphaned BLOB parts, and
generate a dump file listing orphaned BLOB parts, respectively, and are described in more detail later
in this section.

You must also specify the name of a table when invoking ndb_blob_tool. In addition, you can
optionally follow the table name with the (comma-separated) names of one or more BLOB or TEXT
columns from that table. If no columns are listed, the tool works on all of the table's BLOB and TEXT
columns. If you need to specify a database, use the --database (-d) option.

The --verbose option provides additional information in the output about the tool's progress.

The following table includes options that are specific to ndb_blob_tool. Additional descriptions
follow the table. For options common to most NDB Cluster programs (including ndb_blob_tool),
see Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”.

Table 18.75  This table describes command-line options for the ndb_blob_tool program

Format Description Added or Removed

--check-orphans Check for orphan blob parts All MySQL 5.5 based releases

--database=db_name,

-d

Database to find the table in. All MySQL 5.5 based releases

--delete-orphans Delete orphan blob parts All MySQL 5.5 based releases

--dump-file=file Write orphan keys to specified
file

All MySQL 5.5 based releases

--verbose,

-v

Verbose output All MySQL 5.5 based releases

•   --check-orphans

Command-Line Format --check-orphans

Type booleanPermitted Values

Default FALSE

Check for orphaned BLOB parts in NDB Cluster tables.

•   --database=db_name, -d

Command-Line Format --database=db_name

Type stringPermitted Values

Default [none]

Specify the database to find the table in.

•   --delete-orphans

Command-Line Format --delete-orphans

Type booleanPermitted Values

Default FALSE



ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

2244

Remove orphaned BLOB parts from NDB Cluster tables.

•   --dump-file=file

Command-Line Format --dump-file=file

Type file namePermitted Values

Default [none]

Writes a list of orphaned BLOB column parts to file. The information written to the file includes the
table key and BLOB part number for each orphaned BLOB part.

•   --verbose

Command-Line Format --verbose

Type booleanPermitted Values

Default FALSE

Provide extra information in the tool's output regarding its progress.

Example

First we create an NDB table in the test database, using the CREATE TABLE statement shown here:

USE test;

CREATE TABLE btest (
    c0 BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
    c1 TEXT,
    c2 BLOB
)   ENGINE=NDB;

Then we insert a few rows into this table, using a series of statements similar to this one:

INSERT INTO btest VALUES (NULL, 'x', REPEAT('x', 1000));

When run with --check-orphans against this table, ndb_blob_tool generates the following output:

shell> ndb_blob_tool --check-orphans --verbose -d test btest
connected
processing 2 blobs
processing blob #0 c1 NDB$BLOB_19_1
NDB$BLOB_19_1: nextResult: res=1
total parts: 0
orphan parts: 0
processing blob #1 c2 NDB$BLOB_19_2
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=1
total parts: 10
orphan parts: 0
disconnected

NDBT_ProgramExit: 0 - OK



ndb_config — Extract NDB Cluster Configuration Information

2245

The tool reports that there are no NDB BLOB column parts associated with column c1, even though
c1 is a TEXT column. This is due to the fact that, in an NDB table, only the first 256 bytes of a BLOB or
TEXT column value are stored inline, and only the excess, if any, is stored separately; thus, if there are
no values using more than 256 bytes in a given column of one of these types, no BLOB column parts
are created by NDB for this column. See Section 11.7, “Data Type Storage Requirements”, for more
information.

18.4.7 ndb_config — Extract NDB Cluster Configuration Information

This tool extracts current configuration information for data nodes, SQL nodes, and API nodes from
one of a number of sources: an NDB Cluster management node, or its config.ini or my.cnf file. By
default, the management node is the source for the configuration data; to override the default, execute
ndb_config with the --config-file or --mycnf option. It is also possible to use a data node as the
source by specifying its node ID with --config_from_node=node_id.

ndb_config can also provide an offline dump of all configuration parameters which can be used,
along with their default, maximum, and minimum values and other information. The dump can be
produced in either text or XML format; for more information, see the discussion of the --configinfo
and --xml options later in this section).

You can filter the results by section (DB, SYSTEM, or CONNECTIONS) using one of the options --
nodes, --system, or --connections.

The following table includes options that are specific to ndb_config. Additional descriptions
follow the table. For options common to most NDB Cluster programs (including ndb_config), see
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”.

Table 18.76  This table describes command-line options for the ndb_config program

Format Description Added or Removed

--config-file=file_name Set the path to config.ini file All MySQL 5.5 based releases

--config_from_node=# Obtain configuration data from
the node having this ID (must be
a data node).

All MySQL 5.5 based releases

--configinfo Dumps information about all
NDB configuration parameters
in text format with default,
maximum, and minimum values.
Use with --xml to obtain XML
output.

All MySQL 5.5 based releases

--connections Print connections information
([tcp], [tcp default], [sci], [sci
default], [shm], or [shm default]
sections of cluster configuration
file) only. Cannot be used with --
system or --nodes.

All MySQL 5.5 based releases

--fields=string,

-f

Field separator All MySQL 5.5 based releases

--host=name Specify host All MySQL 5.5 based releases

--mycnf Read configuration data from
my.cnf file

All MySQL 5.5 based releases

--nodeid,

--id

Get configuration of node with
this ID

All MySQL 5.5 based releases



ndb_config — Extract NDB Cluster Configuration Information

2246

Format Description Added or Removed

--nodes Print node information ([ndbd] or
[ndbd default] section of cluster
configuration file) only. Cannot
be used with --system or --
connections.

All MySQL 5.5 based releases

-c Short form for --ndb-
connectstring

All MySQL 5.5 based releases

--query=string,

-q

One or more query options
(attributes)

All MySQL 5.5 based releases

--query-all,

-a

Dumps all parameters and
values to a single comma-
delimited string.

All MySQL 5.5 based releases

--rows=string,

-r

Row separator All MySQL 5.5 based releases

--system Print SYSTEM section
information only (see ndb_config
--configinfo output). Cannot
be used with --nodes or --
connections.

All MySQL 5.5 based releases

--type=name Specify node type All MySQL 5.5 based releases

--configinfo --xml Use --xml with --configinfo
to obtain a dump of all NDB
configuration parameters in XML
format with default, maximum,
and minimum values.

All MySQL 5.5 based releases

•   --configinfo

The --configinfo option causes ndb_config to dump a list of each NDB Cluster configuration
parameter supported by the NDB Cluster distribution of which ndb_config is a part, including the
following information:

• A brief description of each parameter's purpose, effects, and usage

• The section of the config.ini file where the parameter may be used

• The parameter's data type or unit of measurement

• Where applicable, the parameter's default, minimum, and maximum values

• NDB Cluster release version and build information

By default, this output is in text format. Part of this output is shown here:

shell> ndb_config --configinfo

****** SYSTEM ******

Name (String)
Name of system (NDB Cluster)
MANDATORY

PrimaryMGMNode (Non-negative Integer)
Node id of Primary ndb_mgmd(MGM) node
Default: 0 (Min: 0, Max: 4294967039)

http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_query-all
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_query-all


ndb_config — Extract NDB Cluster Configuration Information

2247

ConfigGenerationNumber (Non-negative Integer)
Configuration generation number
Default: 0 (Min: 0, Max: 4294967039)

****** DB ******

MaxNoOfSubscriptions (Non-negative Integer)
Max no of subscriptions (default 0 == MaxNoOfTables)
Default: 0 (Min: 0, Max: 4294967039)

MaxNoOfSubscribers (Non-negative Integer)
Max no of subscribers (default 0 == 2 * MaxNoOfTables)
Default: 0 (Min: 0, Max: 4294967039)

…

Use this option together with the --xml option to obtain output in XML format.

•   --config-file=path-to-file

Command-Line Format --config-file=file_name

Type file namePermitted Values

Default

Gives the path to the management server's configuration file (config.ini). This may be a relative
or absolute path. If the management node resides on a different host from the one on which
ndb_config is invoked, then an absolute path must be used.

•   --config_from_node=#

Command-Line Format --config-from-node=#

Type numeric

Default none

Min
Value

1

Permitted Values

Max
Value

48

Obtain the cluster's configuration data from the data node that has this ID.

If the node having this ID is not a data node, ndb_config fails with an error. (To obtain
configuration data from the management node instead, simply omit this option.)

•   --connections

Command-Line Format --connections

Type booleanPermitted Values

Default FALSE

Tells ndb_config to print CONNECTIONS information only—that is, information about parameters
found in the [tcp], [tcp default], [sci], [sci default], [shm], or [shm default]
sections of the cluster configuration file (see Section 18.3.3.9, “NDB Cluster TCP/IP Connections”,
Section 18.3.3.12, “SCI Transport Connections in NDB Cluster”, and Section 18.3.3.11, “NDB Cluster
Shared-Memory Connections”, for more information).

This option is mutually exclusive with --nodes and --system; only one of these 3 options can be
used.



ndb_config — Extract NDB Cluster Configuration Information

2248

•   --fields=delimiter, -f delimiter

Command-Line Format --fields=string

Type stringPermitted Values

Default

Specifies a delimiter string used to separate the fields in the result. The default is , (the comma
character).

Note

If the delimiter contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

•   --host=hostname

Command-Line Format --host=name

Type stringPermitted Values

Default

Specifies the host name of the node for which configuration information is to be obtained.

Note

While the hostname localhost usually resolves to the IP address
127.0.0.1, this may not necessarily be true for all operating platforms and
configurations. This means that it is possible, when localhost is used in
config.ini, for ndb_config --host=localhost to fail if ndb_config
is run on a different host where localhost resolves to a different address
(for example, on some versions of SUSE Linux, this is 127.0.0.2). In
general, for best results, you should use numeric IP addresses for all NDB
Cluster configuration values relating to hosts, or verify that all NDB Cluster
hosts handle localhost in the same fashion.

•   --ndb-connectstring=connection_string, -c connection_string

Command-Line Format --ndb-connectstring=connectstring

 --connect-string=connectstring

Type stringPermitted Values

Default localhost:1186

Specifies the connection string to use in connecting to the management server. The format for the
connection string is the same as described in Section 18.3.3.3, “NDB Cluster Connection Strings”,
and defaults to localhost:1186.

•   --mycnf

Command-Line Format --mycnf

Type booleanPermitted Values

Default FALSE

Read configuration data from the my.cnf file.

•   --nodeid=node_id, --id=node_id

Command-Line Format --ndb-nodeid=#



ndb_config — Extract NDB Cluster Configuration Information

2249

Type numericPermitted Values

Default 0

Specify the node ID of the node for which configuration information is to be obtained. --nodeid is
the preferred form.

•   --nodes

Command-Line Format --nodes

Type booleanPermitted Values

Default FALSE

Tells ndb_config to print information relating only to parameters defined in an [ndbd] or [ndbd
default] section of the cluster configuration file (see Section 18.3.3.6, “Defining NDB Cluster Data
Nodes”).

This option is mutually exclusive with --connections and --system; only one of these 3 options
can be used.

•   --rows=separator, -r separator

Command-Line Format --rows=string

Type stringPermitted Values

Default

Specifies a separator string used to separate the rows in the result. The default is a space
character.

Note

If the separator contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

•   --query=query-options, -q query-options

Command-Line Format --query=string

Type stringPermitted Values

Default

This is a comma-delimited list of query options—that is, a list of one or more node attributes to be
returned. These include id (node ID), type (node type—that is, ndbd, mysqld, or ndb_mgmd), and
any configuration parameters whose values are to be obtained.

For example,   --query=id,type,indexmemory,datamemory returns the node ID, node type,
DataMemory, and IndexMemory for each node.

Note

If a given parameter is not applicable to a certain type of node, than an empty
string is returned for the corresponding value. See the examples later in this
section for more information.

•   --system

Command-Line Format --system

Permitted Values Type boolean



ndb_config — Extract NDB Cluster Configuration Information

2250

Default FALSE

Tells ndb_config to print SYSTEM information only. This consists of system variables that cannot
be changed at run time; thus, there is no corresponding section of the cluster configuration file for
them. They can be seen (prefixed with ****** SYSTEM ******) in the output of ndb_config --
configinfo.

This option is mutually exclusive with --nodes and --connections; only one of these 3 options
can be used.

•   --type=node_type

Command-Line Format --type=name

Type enumeration

Default [none]

ndbd

mysqld

Permitted Values

Valid
Values

ndb_mgmd

Filters results so that only configuration values applying to nodes of the specified node_type (ndbd,
mysqld, or ndb_mgmd) are returned.

•   --usage, --help, or -?

Command-Line Format --help

 --usage

Causes ndb_config to print a list of available options, and then exit.

•   --version, -V

Command-Line Format --version

Causes ndb_config to print a version information string, and then exit.

•   --configinfo --xml

Command-Line Format --configinfo --xml

Type booleanPermitted Values

Default false

Cause ndb_config --configinfo to provide output as XML by adding this option. A portion of
such output is shown in this example:

shell> ndb_config --configinfo --xml

<configvariables protocolversion="1" ndbversionstring="5.5.56-ndb-7.2.30"
                    ndbversion="458758" ndbversionmajor="7" ndbversionminor="0"
                    ndbversionbuild="6">
  <section name="SYSTEM">
    <param name="Name" comment="Name of system (NDB Cluster)" type="string"
              mandatory="true"/>
    <param name="PrimaryMGMNode" comment="Node id of Primary ndb_mgmd(MGM) node"
              type="unsigned" default="0" min="0" max="4294967039"/>
    <param name="ConfigGenerationNumber" comment="Configuration generation number"
              type="unsigned" default="0" min="0" max="4294967039"/>
  </section>
  <section name="NDBD">



ndb_config — Extract NDB Cluster Configuration Information

2251

    <param name="MaxNoOfSubscriptions"
              comment="Max no of subscriptions (default 0 == MaxNoOfTables)"
              type="unsigned" default="0" min="0" max="4294967039"/>
    <param name="MaxNoOfSubscribers"
              comment="Max no of subscribers (default 0 == 2 * MaxNoOfTables)"
              type="unsigned" default="0" min="0" max="4294967039"/>

    …

  </section>

  …

</configvariables>

Note

Normally, the XML output produced by ndb_config --configinfo --xml
is formatted using one line per element; we have added extra whitespace in
the previous example, as well as the next one, for reasons of legibility. This
should not make any difference to applications using this output, since most
XML processors either ignore nonessential whitespace as a matter of course,
or can be instructed to do so.

The XML output also indicates when changing a given parameter requires that data nodes be
restarted using the --initial option. This is shown by the presence of an initial="true"
attribute in the corresponding <param> element. In addition, the restart type (system or node)
is also shown; if a given parameter requires a system restart, this is indicated by the presence of
a restart="system" attribute in the corresponding <param> element. For example, changing
the value set for the Diskless parameter requires a system initial restart, as shown here (with the
restart and initial attributes highlighted for visibility):

<param name="Diskless" comment="Run wo/ disk" type="bool" default="false"
          restart="system" initial="true"/>

Currently, no initial attribute is included in the XML output for <param> elements corresponding
to parameters which do not require initial restarts; in other words, initial="false" is the default,
and the value false should be assumed if the attribute is not present. Similarly, the default restart
type is node (that is, an online or “rolling” restart of the cluster), but the restart attribute is included
only if the restart type is system (meaning that all cluster nodes must be shut down at the same
time, then restarted).

Important

The --xml option can be used only with the --configinfo option. Using
--xml without --configinfo fails with an error.

Unlike the options used with this program to obtain current configuration data, --configinfo and
--xml use information obtained from the NDB Cluster sources when ndb_config was compiled.
For this reason, no connection to a running NDB Cluster or access to a config.ini or my.cnf file
is required for these two options.

Combining other ndb_config options (such as --query or --type) with --configinfo (with
or without the --xml option) is not supported. Currently, if you attempt to do so, the usual result is
that all other options besides --configinfo or --xml are simply ignored. However, this behavior
is not guaranteed and is subject to change at any time. In addition, since ndb_config, when used
with the --configinfo option, does not access the NDB Cluster or read any files, trying to specify
additional options such as --ndb-connectstring or --config-file with --configinfo serves
no purpose.



ndb_cpcd — Automate Testing for NDB Development

2252

Examples

1. To obtain the node ID and type of each node in the cluster:

shell> ./ndb_config --query=id,type --fields=':' --rows='\n'
1:ndbd
2:ndbd
3:ndbd
4:ndbd
5:ndb_mgmd
6:mysqld
7:mysqld
8:mysqld
9:mysqld

In this example, we used the --fields options to separate the ID and type of each node with a
colon character (:), and the --rows options to place the values for each node on a new line in the
output.

2. To produce a connection string that can be used by data, SQL, and API nodes to connect to the
management server:

shell> ./ndb_config --config-file=usr/local/mysql/cluster-data/config.ini \
--query=hostname,portnumber --fields=: --rows=, --type=ndb_mgmd
192.168.0.179:1186

3. This invocation of ndb_config checks only data nodes (using the --type option), and shows
the values for each node's ID and host name, as well as the values set for its DataMemory,
IndexMemory, and DataDir parameters:

shell> ./ndb_config --type=ndbd --query=id,host,datamemory,indexmemory,datadir -f ' : ' -r '\n'
1 : 192.168.0.193 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
2 : 192.168.0.112 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
3 : 192.168.0.176 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
4 : 192.168.0.119 : 83886080 : 18874368 : /usr/local/mysql/cluster-data

In this example, we used the short options -f and -r for setting the field delimiter and row
separator, respectively.

4. To exclude results from any host except one in particular, use the --host option:

shell> ./ndb_config --host=192.168.0.176 -f : -r '\n' -q id,type
3:ndbd
5:ndb_mgmd

In this example, we also used the short form -q to determine the attributes to be queried.

Similarly, you can limit results to a node with a specific ID using the --nodeid option.

18.4.8 ndb_cpcd — Automate Testing for NDB Development

A utility having this name was formerly part of an internal automated test framework used in testing
and debugging NDB Cluster. It was deprecated in NDB Cluster 7.0, and removed from NDB Cluster
distributions provided by Oracle beginning with NDB 7.2.1.

18.4.9 ndb_delete_all — Delete All Rows from an NDB Table

ndb_delete_all deletes all rows from the given NDB table. In some cases, this can be much faster
than DELETE or even TRUNCATE TABLE.



ndb_desc — Describe NDB Tables

2253

Usage

ndb_delete_all -c connection_string tbl_name -d db_name

This deletes all rows from the table named tbl_name in the database named db_name. It is exactly
equivalent to executing TRUNCATE db_name.tbl_name in MySQL.

The following table includes options that are specific to ndb_delete_all. Additional descriptions
follow the table. For options common to most NDB Cluster programs (including ndb_delete_all),
see Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”.

Table 18.77  This table describes command-line options for the ndb_delete_all program

Format Description Added or Removed

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.5 based releases

--transactional,

-t

Perform the delete in a single
transaction (may run out of
operations)

All MySQL 5.5 based releases

--tupscan Run tup scan All MySQL 5.5 based releases

--diskscan Run disk scan All MySQL 5.5 based releases

•   --transactional, -t

Use of this option causes the delete operation to be performed as a single transaction.

Warning

With very large tables, using this option may cause the number of operations
available to the cluster to be exceeded.

18.4.10 ndb_desc — Describe NDB Tables

ndb_desc provides a detailed description of one or more NDB tables.

Usage

ndb_desc -c connection_string tbl_name -d db_name [options]

(NDB 7.2.9 and later:)

ndb_desc -c connection_string index_name -d db_name -t tbl_name

Additional options that can be used with ndb_desc are listed later in this section.

Sample Output

MySQL table creation and population statements:

USE test;

CREATE TABLE fish (
    id INT(11) NOT NULL AUTO_INCREMENT,
    name VARCHAR(20) NOT NULL,



ndb_desc — Describe NDB Tables

2254

    length_mm INT(11) NOT NULL,
    weight_gm INT(11) NOT NULL,

    PRIMARY KEY pk (id),
    UNIQUE KEY uk (name)
) ENGINE=NDB;

INSERT INTO fish VALUES
    ('','guppy', 35, 2), ('','tuna', 2500, 150000),
    ('','shark', 3000, 110000), ('','manta ray', 1500, 50000),
    ('','grouper', 900, 125000), ('','puffer', 250, 2500);

Output from ndb_desc:

shell> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 2
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 311
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
TableStatus: Retrieved
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
length_mm Int NOT NULL AT=FIXED ST=MEMORY
weight_gm Int NOT NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk$unique(name) - UniqueHashIndex
uk(name) - OrderedIndex

-- Per partition info --
Partition  Row count  Commit count  Frag fixed memory ...
0          2          2             32768             ...
1          4          4             32768             ...

... Frag varsized memory  Extent_space  Free extent_space

... 32768                 0             0

... 32768                 0             0

NDBT_ProgramExit: 0 - OK

Information about multiple tables can be obtained in a single invocation of ndb_desc by using their
names, separated by spaces. All of the tables must be in the same database.

Beginning with NDB 7.2.9, it is possible to obtain additional information about a specific index using the
--table (short form: -t) option introduced in this version and supplying the name of the index as the
first argument to ndb_desc, as shown here:

shell> ./ndb_desc uk -d test -t fish
-- uk --
Version: 3
Base table: fish
Number of attributes: 1
Logging: 0
Index type: OrderedIndex
Index status: Retrieved



ndb_desc — Describe NDB Tables

2255

-- Attributes --
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
-- IndexTable 10/uk --
Version: 3
Fragment type: FragUndefined
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: yes
Number of attributes: 2
Number of primary keys: 1
Length of frm data: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 2
ForceVarPart: 0
FragmentCount: 4
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
-- Attributes --
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
NDB$TNODE Unsigned [64] PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
-- Indexes --
PRIMARY KEY(NDB$TNODE) - UniqueHashIndex

NDBT_ProgramExit: 0 - OK

When an index is specified in this way, the --extra-partition-info and --extra-node-info
options have no effect.

The Version column in the output contains the table's schema object version. For information about
interpreting this value, see NDB Schema Object Versions.

The Extent_space and Free extent_space columns are applicable only to NDB tables having
columns on disk; for tables having only in-memory columns, these columns always contain the value 0.

To illustrate their use, we modify the previous example. First, we must create the necessary Disk Data
objects, as shown here:

CREATE LOGFILE GROUP lg_1
    ADD UNDOFILE 'undo_1.log'
    INITIAL_SIZE 16M
    UNDO_BUFFER_SIZE 2M
    ENGINE NDB;

ALTER LOGFILE GROUP lg_1
    ADD UNDOFILE 'undo_2.log'
    INITIAL_SIZE 12M
    ENGINE NDB;

CREATE TABLESPACE ts_1
    ADD DATAFILE 'data_1.dat'
    USE LOGFILE GROUP lg_1
    INITIAL_SIZE 32M
    ENGINE NDB;

ALTER TABLESPACE ts_1
    ADD DATAFILE 'data_2.dat'
    INITIAL_SIZE 48M
    ENGINE NDB;

(For more information on the statements just shown and the objects created by them, see
Section 18.5.12.1, “NDB Cluster Disk Data Objects”, as well as Section 13.1.14, “CREATE LOGFILE
GROUP Syntax”, and Section 13.1.18, “CREATE TABLESPACE Syntax”.)

Now we can create and populate a version of the fish table that stores 2 of its columns on disk
(deleting the previous version of the table first, if it already exists):

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html


ndb_desc — Describe NDB Tables

2256

CREATE TABLE fish (
    id INT(11) NOT NULL AUTO_INCREMENT,
    name VARCHAR(20) NOT NULL,
    length_mm INT(11) NOT NULL,
    weight_gm INT(11) NOT NULL,

    PRIMARY KEY pk (id),
    UNIQUE KEY uk (name)
) TABLESPACE ts_1 STORAGE DISK
ENGINE=NDB;

INSERT INTO fish VALUES
    ('','guppy', 35, 2), ('','tuna', 2500, 150000),
    ('','shark', 3000, 110000), ('','manta ray', 1500, 50000),
    ('','grouper', 900, 125000), ('','puffer', 250, 2500);

When run against this version of the table, ndb_desc displays the following output:

shell> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 3
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 321
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
TableStatus: Retrieved
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
length_mm Int NOT NULL AT=FIXED ST=DISK
weight_gm Int NOT NULL AT=FIXED ST=DISK

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk$unique(name) - UniqueHashIndex
uk(name) - OrderedIndex
-- Per partition info --
Partition  Row count  Commit count  Frag fixed memory ...
0          2          2             32768             ...
1          4          4             32768             ...

... Frag varsized memory  Extent_space  Free extent_space

... 32768                 0             0

... 32768                 0             0

NDBT_ProgramExit: 0 - OK

This means that 1048576 bytes are allocated from the tablespace for this table on each partition,
of which 1044440 bytes remain free for additional storage. In other words, 1048576 - 1044440
= 4136 bytes per partition is currently being used to store the data from this table's disk-based
columns. The number of bytes shown as Free extent_space is available for storing on-disk
column data from the fish table only; for this reason, it is not visible when selecting from the
INFORMATION_SCHEMA.FILES table.

The following table includes options that are specific to ndb_desc. Additional descriptions follow the
table. For options common to most NDB Cluster programs (including ndb_desc), see Section 18.4.27,
“Options Common to NDB Cluster Programs — Options Common to NDB Cluster Programs”.



ndb_desc — Describe NDB Tables

2257

Table 18.78  This table describes command-line options for the ndb_desc program

Format Description Added or Removed

--blob-info,

-b

Include partition information for
BLOB tables in output. Requires
that the -p option also be used

All MySQL 5.5 based releases

--database=dbname,

-d

Name of database containing
table

All MySQL 5.5 based releases

--extra-node-info,

-n

Include partition-to-data-node
mappings in output. Requires
that the -p option also be used

All MySQL 5.5 based releases

--extra-partition-info,

-p

Display information about
partitions

All MySQL 5.5 based releases

--retries=#,

-r

Number of times to retry the
connection (once per second)

All MySQL 5.5 based releases

--table=tbl_name,

-t

Specify the table in which to find
an index. When this option is
used, -p and -n have no effect
and are ignored.

ADDED: NDB 7.2.9

--unqualified,

-u

Use unqualified table names All MySQL 5.5 based releases

•   --blob-info, -b

Include information about subordinate BLOB and TEXT columns.

Use of this option also requires the use of the --extra-partition-info (-p) option.

•   --database=db_name, -d

Specify the database in which the table should be found.

•   --extra-node-info, -n

Include information about the mappings between table partitions and the data nodes upon which
they reside. This information can be useful for verifying distribution awareness mechanisms and
supporting more efficient application access to the data stored in NDB Cluster.

Use of this option also requires the use of the --extra-partition-info (-p) option.

•   --extra-partition-info, -p

Print additional information about the table's partitions.

•   --retries=#, -r

Try to connect this many times before giving up. One connect attempt is made per second.

•   --table=tbl_name, -t

Specify the table in which to look for an index.

This option was added in NDB 7.2.9.

•   --unqualified, -u



ndb_drop_index — Drop Index from an NDB Table

2258

Use unqualified table names.

18.4.11 ndb_drop_index — Drop Index from an NDB Table

ndb_drop_index drops the specified index from an NDB table. It is recommended that you use this
utility only as an example for writing NDB API applications—see the Warning later in this section for
details.

Usage

ndb_drop_index -c connection_string table_name index -d db_name

The statement shown above drops the index named index from the table in the database.

The following table includes options that are specific to ndb_drop_index. Additional descriptions
follow the table. For options common to most NDB Cluster programs (including ndb_drop_index),
see Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”.

Table 18.79  This table describes command-line options for the ndb_drop_index program

Format Description Added or Removed

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.5 based releases

Warning

Operations performed on Cluster table indexes using the NDB API are not
visible to MySQL and make the table unusable by a MySQL server. If you use
this program to drop an index, then try to access the table from an SQL node,
an error results, as shown here:

shell> ./ndb_drop_index -c localhost dogs ix -d ctest1
Dropping index dogs/idx...OK

NDBT_ProgramExit: 0 - OK

shell> ./mysql -u jon -p ctest1
Enter password: *******
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 5.5.56-ndb-7.2.30

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW TABLES;
+------------------+
| Tables_in_ctest1 |
+------------------+
| a                |
| bt1              |
| bt2              |
| dogs             |
| employees        |
| fish             |
+------------------+
6 rows in set (0.00 sec)

mysql> SELECT * FROM dogs;
ERROR 1296 (HY000): Got error 4243 'Index not found' from NDBCLUSTER



ndb_drop_table — Drop an NDB Table

2259

In such a case, your only option for making the table available to MySQL again is to drop the table and
re-create it. You can use either the SQL statementDROP TABLE or the ndb_drop_table utility (see
Section 18.4.12, “ndb_drop_table — Drop an NDB Table”) to drop the table.

18.4.12 ndb_drop_table — Drop an NDB Table

ndb_drop_table drops the specified NDB table. (If you try to use this on a table created with a
storage engine other than NDB, the attempt fails with the error 723: No such table exists.) This
operation is extremely fast; in some cases, it can be an order of magnitude faster than using a MySQL
DROP TABLE statement on an NDB table.

Usage

ndb_drop_table -c connection_string tbl_name -d db_name

The following table includes options that are specific to ndb_drop_table. Additional descriptions
follow the table. For options common to most NDB Cluster programs (including ndb_drop_table),
see Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”.

Table 18.80  This table describes command-line options for the ndb_drop_table program

Format Description Added or Removed

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.5 based releases

18.4.13 ndb_error_reporter — NDB Error-Reporting Utility

ndb_error_reporter creates an archive from data node and management node log files that can be
used to help diagnose bugs or other problems with a cluster. It is highly recommended that you make
use of this utility when filing reports of bugs in NDB Cluster.

The following table includes command options specific to the NDB Cluster program
ndb_error_reporter. Additional descriptions follow the table. For options common to most NDB
Cluster programs (including ndb_error_reporter), see Section 18.4.27, “Options Common to NDB
Cluster Programs — Options Common to NDB Cluster Programs”.

ndb_error_reporter did not support the --help option prior to NDB 7.2.14 (Bug #11756666, Bug
#48606). The --connection-timeout --dry-scp, and --skip-nodegroup options were also
added in this release (Bug #16602002).

Table 18.81  This table describes command-line options for the ndb_error_reporter program

Format Description Added or Removed

--connection-
timeout=timeout

Number of seconds to wait when
connecting to nodes before
timing out.

ADDED: NDB 7.2.14

--dry-scp Disable scp with remote hosts;
used only for testing.

ADDED: NDB 7.2.14

--fs Include file system data in error
report; can use a large amount
of disk space

All MySQL 5.5 based releases

--skip-
nodegroup=nodegroup_id

Skip all nodes in the node group
having this ID.

ADDED: NDB 7.2.14

Usage



ndb_index_stat — NDB Index Statistics Utility

2260

ndb_error_reporter path/to/config-file [username] [options]

This utility is intended for use on a management node host, and requires the path to the management
host configuration file (usually named config.ini). Optionally, you can supply the name of a
user that is able to access the cluster's data nodes using SSH, to copy the data node log files.
ndb_error_reporter then includes all of these files in archive that is created in the same directory
in which it is run. The archive is named ndb_error_report_YYYYMMDDHHMMSS.tar.bz2, where
YYYYMMDDHHMMSS is a datetime string.

 ndb_error_reporter also accepts the options listed here:

•  --connection-timeout=timeout

Introduced 5.5.34-ndb-7.2.14

Command-Line Format --connection-timeout=timeout

Type integerPermitted Values

Default 0

Wait this many seconds when trying to connect to nodes before timing out.

•  --dry-scp

Introduced 5.5.34-ndb-7.2.14

Command-Line Format --dry-scp

Type booleanPermitted Values

Default TRUE

Run ndb_error_reporter without using scp from remote hosts. Used for testing only.

•  --fs

Command-Line Format --fs

Type booleanPermitted Values

Default FALSE

Copy the data node file systems to the management host and include them in the archive.

Because data node file systems can be extremely large, even after being compressed, we ask that
you please do not send archives created using this option to Oracle unless you are specifically
requested to do so.

•  --skip-nodegroup=nodegroup_id

Introduced 5.5.34-ndb-7.2.14

Command-Line Format --connection-timeout=timeout

Type integerPermitted Values

Default 0

Skip all nodes belong to the node group having the supplied node group ID.

18.4.14 ndb_index_stat — NDB Index Statistics Utility

ndb_index_stat provides per-fragment statistical information about indexes on NDB tables. This
includes cache version and age, number of index entries per partition, and memory consumption by
indexes.



ndb_index_stat — NDB Index Statistics Utility

2261

Usage

To obtain basic index statistics about a given NDB table, invoke ndb_index_stat as shown here, with
the name of the table as the first argument and the name of the database containing this table specified
immediately following it, using the --database (-d) option:

ndb_index_stat table -d database

In this example, we use ndb_index_stat to obtain such information about an NDB table named
mytable in the test database:

shell> ndb_index_stat -d test mytable
table:City index:PRIMARY fragCount:2
sampleVersion:3 loadTime:1399585986 sampleCount:1994 keyBytes:7976
query cache: valid:1 sampleCount:1994 totalBytes:27916
times in ms: save: 7.133 sort: 1.974 sort per sample: 0.000

NDBT_ProgramExit: 0 - OK

sampleVersion is the version number of the cache from which the statistics data is taken. Running
ndb_index_stat with the --update option causes sampleVersion to be incremented.

loadTime shows when the cache was last updated. This is expressed as seconds since the Unix
Epoch.

sampleCount is the number of index entries found per partition. You can estimate the total number of
entries by multiplying this by the number of fragments (shown as fragCount).

sampleCount can be compared with the cardinality of SHOW INDEX or
INFORMATION_SCHEMA.STATISTICS, although the latter two provide a view of the table as a whole,
while ndb_index_stat provides a per-fragment average.

keyBytes is the number of bytes used by the index. In this example, the primary key is an integer,
which requires four bytes for each index, so keyBytes can be calculated in this case as shown here:

    keyBytes = sampleCount * (4 bytes per index) = 1994 * 4 = 7976

This information can also be obtained using the corresponding column definitions from
INFORMATION_SCHEMA.COLUMNS (this requires a MySQL Server and a MySQL client application).

totalBytes is the total memory consumed by all indexes on the table, in bytes.

Timings shown in the preceding examples are specific to each invocation of ndb_index_stat.

The --verbose option provides some additional output, as shown here:

shell> ndb_index_stat -d test mytable --verbose
random seed 1337010518
connected
loop 1 of 1
table:mytable index:PRIMARY fragCount:4
sampleVersion:2 loadTime:1336751773 sampleCount:0 keyBytes:0
read stats
query cache created
query cache: valid:1 sampleCount:0 totalBytes:0
times in ms: save: 20.766 sort: 0.001
disconnected

NDBT_ProgramExit: 0 - OK



ndb_index_stat — NDB Index Statistics Utility

2262

shell>

Options

The following table includes options that are specific to the NDB Cluster ndb_index_stat utility.
Additional descriptions are listed following the table. For options common to most NDB Cluster
programs (including ndb_index_stat), see Section 18.4.27, “Options Common to NDB Cluster
Programs — Options Common to NDB Cluster Programs”.

Table 18.82  This table describes command-line options for the ndb_index_stat program

Format Description Added or Removed

--database=name,

-d

Name of the database
containing the table.

All MySQL 5.5 based releases

--delete Delete index statistics for the
given table, stopping any auto-
update previously configured.

All MySQL 5.5 based releases

--update Update index statistics for the
given table, restarting any auto-
update previously configured.

All MySQL 5.5 based releases

--dump Print the query cache. All MySQL 5.5 based releases

--query=# Perform a number of random
range queries on first key attr
(must be int unsigned).

All MySQL 5.5 based releases

--sys-drop Drop any statistics tables
and events in NDB kernel (all
statistics are lost)

All MySQL 5.5 based releases

--sys-create Create all statistics tables and
events in NDB kernel, if none of
them already exist

All MySQL 5.5 based releases

--sys-create-if-not-
exist

Create any statistics tables and
events in NDB kernel that do not
already exist.

All MySQL 5.5 based releases

--sys-create-if-not-
valid

Create any statistics tables or
events that do not already exist
in the NDB kernel. after dropping
any that are invalid.

All MySQL 5.5 based releases

--sys-check Verify that NDB system index
statistics and event tables exist.

All MySQL 5.5 based releases

--sys-skip-tables Do not apply sys-* options to
tables.

All MySQL 5.5 based releases

--sys-skip-events Do not apply sys-* options to
events.

All MySQL 5.5 based releases

--verbose,

-v

Turn on verbose output All MySQL 5.5 based releases

--loops=# Set the number of times to
perform a given command.
Default is 0.

All MySQL 5.5 based releases

ndb_index_stat statistics options.  The following options are used to generate index statistics.
They work with a given table and database. They cannot be mixed with system options (see
ndb_index_stat system options).



ndb_index_stat — NDB Index Statistics Utility

2263

•   --database=name, -d name

Command-Line Format --database=name

Type string

Default [none]

Min
Value

Permitted Values

Max
Value

The name of the database that contains the table being queried.

•  --delete

Command-Line Format --delete

Type boolean

Default false

Min
Value

Permitted Values

Max
Value

Delete the index statistics for the given table, stopping any auto-update that was previously
configured.

•  --update

Command-Line Format --update

Type boolean

Default false

Min
Value

Permitted Values

Max
Value

Update the index statistics for the given table, and restart any auto-update that was previously
configured.

•  --dump

Command-Line Format --dump

Type boolean

Default false

Min
Value

Permitted Values

Max
Value

Dump the contents of the query cache.

•  --query=#

Command-Line Format --query=#



ndb_index_stat — NDB Index Statistics Utility

2264

Type numeric

Default 0

Min
Value

0

Permitted Values

Max
Value

MAX_INT

Perform random range queries on first key attribute (must be int unsigned).

ndb_index_stat system options.  The following options are used to generate and update the
statistics tables in the NDB kernel. None of these options can be mixed with statistics options (see
ndb_index_stat statistics options).

•  --sys-drop

Command-Line Format --sys-drop

Type boolean

Default false

Min
Value

Permitted Values

Max
Value

Drop all statistics tables and events in the NDB kernel. This causes all statistics to be lost.

•  --sys-create

Command-Line Format --sys-create

Type boolean

Default false

Min
Value

Permitted Values

Max
Value

Create all statistics tables and events in the NDB kernel. This works only if none of them exist
previously.

•  sys-create-if-not-exist

Command-Line Format --sys-create-if-not-exist

Type boolean

Default false

Min
Value

Permitted Values

Max
Value

Create any NDB system statistics tables or events (or both) that do not already exist when the
program is invoked.

•  --sys-create-if-not-valid



ndb_index_stat — NDB Index Statistics Utility

2265

Command-Line Format --sys-create-if-not-valid

Type boolean

Default false

Min
Value

Permitted Values

Max
Value

Create any NDB system statistics tables or events that do not already exist, after dropping any that
are invalid.

•  --sys-check

Command-Line Format --sys-check

Type boolean

Default false

Min
Value

Permitted Values

Max
Value

Verify that all required system statistics tables and events exist in the NDB kernel.

•  --sys-skip-tables

Command-Line Format --sys-skip-tables

Type boolean

Default false

Min
Value

Permitted Values

Max
Value

Do not apply any --sys-* options to any statistics tables.

•  --sys-skip-events

Command-Line Format --sys-skip-events

Type boolean

Default false

Min
Value

Permitted Values

Max
Value

Do not apply any --sys-* options to any events.

•  --verbose

Command-Line Format --verbose

Permitted Values Type boolean



ndb_move_data — NDB Data Copy Utility

2266

Default false

Min
Value

Max
Value

Turn on verbose output.

•  --loops=#

Command-Line Format --loops=#

Type numeric

Default 0

Min
Value

0

Permitted Values

Max
Value

MAX_INT

Repeat commands this number of times (for use in testing).

18.4.15 ndb_move_data — NDB Data Copy Utility

ndb_move_data copies data from one NDB table to another.

Usage

The program is invoked with the names of the source and target tables; either or both of these may be
qualified optionally with the database name. Both tables must use the NDB storage engine.

ndb_move_data options source target

The following table includes options that are specific to ndb_move_data. Additional descriptions
follow the table. For options common to most NDB Cluster programs (including ndb_move_data),
see Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”.

Table 18.83  This table describes command-line options for the ndb_move_data program

Format Description Added or Removed

--abort-on-error Dump core on permanent error
(debug option)

All MySQL 5.5 based releases

--character-sets-
dir=name

Directory where character sets
are

All MySQL 5.5 based releases

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.5 based releases

--drop-source Drop source table after all rows
have been moved

All MySQL 5.5 based releases

--error-insert Insert random temporary errors
(testing option)

All MySQL 5.5 based releases

--exclude-missing-
columns

Ignore extra columns in source
or target table

All MySQL 5.5 based releases

--lossy-conversions,

-l

Allow attribute data to be
truncated when converted to a
smaller type

All MySQL 5.5 based releases



ndb_move_data — NDB Data Copy Utility

2267

Format Description Added or Removed

--promote-attributes,

-A

Allow attribute data to be
converted to a larger type

All MySQL 5.5 based releases

--staging-
tries=x[,y[,z]]

Specify tries on temporary
errors. Format is x[,y[,z]] where
x=max tries (0=no limit), y=min
delay (ms), z=max delay (ms)

All MySQL 5.5 based releases

--verbose Enable verbose messages All MySQL 5.5 based releases

•   --abort-on-error

Command-Line Format --abort-on-error

Type booleanPermitted Values

Default FALSE

Dump core on permanent error (debug option).

•   --character-sets-dir=name

Command-Line Format --character-sets-dir=name

Type stringPermitted Values

Default [none]

Directory where character sets are.

•   --database=dbname, -d

Command-Line Format --database=dbname

Type stringPermitted Values

Default TEST_DB

Name of the database in which the table is found.

•   --drop-source

Command-Line Format --drop-source

Type booleanPermitted Values

Default FALSE

Drop source table after all rows have been moved.

•   --error-insert

Command-Line Format --error-insert

Type booleanPermitted Values

Default FALSE

Insert random temporary errors (testing option).

•   --exclude-missing-columns

Command-Line Format --exclude-missing-columns

Permitted Values Type boolean



ndb_print_backup_file — Print NDB Backup File Contents

2268

Default FALSE

Ignore extra columns in source or target table.

•   --lossy-conversions, -l

Command-Line Format --lossy-conversions

Type booleanPermitted Values

Default FALSE

Allow attribute data to be truncated when converted to a smaller type.

•   --promote-attributes, -A

Command-Line Format --promote-attributes

Type booleanPermitted Values

Default FALSE

Allow attribute data to be converted to a larger type.

•   --staging-tries=x[,y[,z]]

Command-Line Format --staging-tries=x[,y[,z]]

Type stringPermitted Values

Default 0,1000,60000

Specify tries on temporary errors. Format is x[,y[,z]] where x=max tries (0=no limit), y=min delay
(ms), z=max delay (ms).

•   --verbose

Command-Line Format --verbose

Type booleanPermitted Values

Default FALSE

Enable verbose messages.

18.4.16 ndb_print_backup_file — Print NDB Backup File Contents

ndb_print_backup_file obtains diagnostic information from a cluster backup file.

Usage

ndb_print_backup_file file_name

file_name is the name of a cluster backup file. This can be any of the files (.Data, .ctl, or .log
file) found in a cluster backup directory. These files are found in the data node's backup directory under
the subdirectory BACKUP-#, where # is the sequence number for the backup. For more information
about cluster backup files and their contents, see Section 18.5.3.1, “NDB Cluster Backup Concepts”.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management
server) ndb_print_backup_file must be run on a cluster data node, since it accesses the data
node file system directly. Because it does not make use of the management server, this utility can be
used when the management server is not running, and even when the cluster has been completely
shut down.



ndb_print_file — Print NDB Disk Data File Contents

2269

Additional Options

None.

18.4.17 ndb_print_file — Print NDB Disk Data File Contents

ndb_print_file obtains information from an NDB Cluster Disk Data file.

Usage

ndb_print_file [-v] [-q] file_name+

file_name is the name of an NDB Cluster Disk Data file. Multiple filenames are accepted, separated
by spaces.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management
server) ndb_print_file must be run on an NDB Cluster data node, since it accesses the data node
file system directly. Because it does not make use of the management server, this utility can be used
when the management server is not running, and even when the cluster has been completely shut
down.

Additional Options

ndb_print_file supports the following options:

• -v: Make output verbose.

• -q: Suppress output (quiet mode).

• --help, -h, -?: Print help message.

This option did not work correctly prior to NDB 7.2.18. (Bug #17069285)

For more information, see Section 18.5.12, “NDB Cluster Disk Data Tables”.

18.4.18 ndb_print_schema_file — Print NDB Schema File Contents

ndb_print_schema_file obtains diagnostic information from a cluster schema file.

Usage

ndb_print_schema_file file_name

file_name is the name of a cluster schema file. For more information about cluster schema files, see
NDB Cluster Data Node File System Directory Files.

Like ndb_print_backup_file and ndb_print_sys_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management
server) ndb_print_schema_file must be run on a cluster data node, since it accesses the data
node file system directly. Because it does not make use of the management server, this utility can be
used when the management server is not running, and even when the cluster has been completely
shut down.

Additional Options

None.

18.4.19 ndb_print_sys_file — Print NDB System File Contents

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html


ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

2270

ndb_print_sys_file obtains diagnostic information from an NDB Cluster system file.

Usage

ndb_print_sys_file file_name

file_name is the name of a cluster system file (sysfile). Cluster system files are located in a data
node's data directory (DataDir); the path under this directory to system files matches the pattern
ndb_#_fs/D#/DBDIH/P#.sysfile. In each case, the # represents a number (not necessarily the
same number). For more information, see NDB Cluster Data Node File System Directory Files.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management
server) ndb_print_backup_file must be run on a cluster data node, since it accesses the data
node file system directly. Because it does not make use of the management server, this utility can be
used when the management server is not running, and even when the cluster has been completely
shut down.

Additional Options

None.

18.4.20 ndb_redo_log_reader — Check and Print Content of Cluster Redo
Log

Reads a redo log file, checking it for errors, printing its contents in a human-readable format, or both.
ndb_redo_log_reader is intended for use primarily by NDB Cluster developers and Support
personnel in debugging and diagnosing problems.

This utility remains under development, and its syntax and behavior are subject to change in future
NDB Cluster releases.

Note

Prior to NDB 7.2, this utility was named ndbd_redo_log_reader.

The C++ source files for ndb_redo_log_reader can be found in the directory /storage/ndb/src/
kernel/blocks/dblqh/redoLogReader.

The following table includes options that are specific to the NDB Cluster program
ndb_redo_log_reader. Additional descriptions follow the table. For options common to most NDB
Cluster programs (including ndb_redo_log_reader), see Section 18.4.27, “Options Common to
NDB Cluster Programs — Options Common to NDB Cluster Programs”.

Table 18.84  This table describes command-line options for the ndb_redo_log_reader program

Format Description Added or Removed

-dump Print dump info All MySQL 5.5 based releases

-filedescriptors Print file descriptors only All MySQL 5.5 based releases

--help Print usage information ADDED: NDB 7.2.15

-lap Provide lap info, with max GCI
started and completed

All MySQL 5.5 based releases

-mbyte # Starting megabyte All MySQL 5.5 based releases

-mbyteheaders Show only the first page header
of every megabyte in the file

All MySQL 5.5 based releases

-nocheck Do not check records for errors All MySQL 5.5 based releases

-noprint Do not print records All MySQL 5.5 based releases

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html


ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

2271

Format Description Added or Removed

-page # Start with this page All MySQL 5.5 based releases

-pageheaders Show page headers only All MySQL 5.5 based releases

-pageindex # Start with this page index All MySQL 5.5 based releases

-twiddle Bit-shifted dump All MySQL 5.5 based releases

Usage

ndb_redo_log_reader file_name [options]

file_name is the name of a cluster redo log file. redo log files are located in the numbered directories
under the data node's data directory (DataDir); the path under this directory to the redo log files
matches the pattern ndb_nodeid_fs/D#/DBLQH/S#.FragLog. nodeid is the data node's node
ID. The two instances of # each represent a number (not necessarily the same number); the number
following D is in the range 8-39 inclusive; the range of the number following S varies according to the
value of the NoOfFragmentLogFiles configuration parameter, whose default value is 16; thus, the
default range of the number in the file name is 0-15 inclusive. For more information, see NDB Cluster
Data Node File System Directory Files.

The name of the file to be read may be followed by one or more of the options listed here:

•   -dump

Command-Line Format -dump

Type booleanPermitted Values

Default FALSE

Print dump info.

• Command-Line Format -filedescriptors

Type booleanPermitted Values

Default FALSE

-filedescriptors: Print file descriptors only.

• Introduced 5.5.35-ndb-7.2.15

Command-Line Format --help

--help: Print usage information.

Added in NDB 7.2.15. (Bug #11749591, Bug #36805)

•   -lap

Command-Line Format -lap

Type booleanPermitted Values

Default FALSE

Provide lap info, with max GCI started and completed.

• Command-Line Format -mbyte #

Type numericPermitted Values

Default 0

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html


ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

2272

Min
Value

0

Max
Value

15

-mbyte #: Starting megabyte.

# is an integer in the range 0 to 15, inclusive.

• Command-Line Format -mbyteheaders

Type booleanPermitted Values

Default FALSE

-mbyteheaders: Show only the first page header of every megabyte in the file.

• Command-Line Format -noprint

Type booleanPermitted Values

Default FALSE

-noprint: Do not print the contents of the log file.

• Command-Line Format -nocheck

Type booleanPermitted Values

Default FALSE

-nocheck: Do not check the log file for errors.

• Command-Line Format -page #

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

31

-page #: Start at this page.

# is an integer in the range 0 to 31, inclusive.

• Command-Line Format -pageheaders

Type booleanPermitted Values

Default FALSE

-pageheaders: Show page headers only.

• Command-Line Format -pageindex #

Type integer

Default 12

Min
Value

12

Permitted Values

Max
Value

8191



ndb_restore — Restore an NDB Cluster Backup

2273

-pageindex #: Start at this page index.

# is an integer between 12 and 8191, inclusive.

•   -twiddle

Command-Line Format -twiddle

Type booleanPermitted Values

Default FALSE

Bit-shifted dump.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_redo_log_reader must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when
the management server is not running, and even when the cluster has been completely shut down.

18.4.21 ndb_restore — Restore an NDB Cluster Backup

The cluster restoration program is implemented as a separate command-line utility ndb_restore,
which can normally be found in the MySQL bin directory. This program reads the files created as a
result of the backup and inserts the stored information into the database.

ndb_restore must be executed once for each of the backup files that were created by the START
BACKUP command used to create the backup (see Section 18.5.3.2, “Using The NDB Cluster
Management Client to Create a Backup”). This is equal to the number of data nodes in the cluster at
the time that the backup was created.

Note

Before using ndb_restore, it is recommended that the cluster be running in
single user mode, unless you are restoring multiple data nodes in parallel. See
Section 18.5.8, “NDB Cluster Single User Mode”, for more information.

The following table includes options that are specific to the NDB Cluster native backup restoration
program ndb_restore. Additional descriptions follow the table. For options common to most NDB
Cluster programs (including ndb_restore), see Section 18.4.27, “Options Common to NDB Cluster
Programs — Options Common to NDB Cluster Programs”.

Table 18.85  This table describes command-line options for the ndb_restore program

Format Description Added or Removed

--append Append data to a tab-delimited
file

All MySQL 5.5 based releases

--backup_path=dir_name Path to backup files directory All MySQL 5.5 based releases

--backupid=#,

-b

Restore from the backup with
the given ID

All MySQL 5.5 based releases

--connect,

-c

Alias for --connectstring. All MySQL 5.5 based releases

--disable-indexes Causes indexes from a backup
to be ignored; may decrease
time needed to restore data.

All MySQL 5.5 based releases



ndb_restore — Restore an NDB Cluster Backup

2274

Format Description Added or Removed

--dont_ignore_systab_0,

-f

Do not ignore system table
during restore. Experimental
only; not for production use

All MySQL 5.5 based releases

--exclude-databases=db-
list

List of one or more databases
to exclude (includes those not
named)

All MySQL 5.5 based releases

--exclude-intermediate-
sql-tables[=TRUE|FALSE]

If TRUE (the default), do not
restore any intermediate tables
(having names prefixed with
'#sql-') that were left over
from copying ALTER TABLE
operations.

ADDED: NDB 7.2.17

--exclude-missing-
columns

Causes columns from the
backup version of a table that
are missing from the version of
the table in the database to be
ignored.

All MySQL 5.5 based releases

--exclude-missing-tables Causes tables from the backup
that are missing from the
database to be ignored.

ADDED: NDB 7.2.18

--exclude-tables=table-
list

List of one or more tables to
exclude (includes those in the
same database that are not
named); each table reference
must include the database name

All MySQL 5.5 based releases

--fields-enclosed-
by=char

Fields are enclosed with the
indicated character

All MySQL 5.5 based releases

--fields-optionally-
enclosed-by

Fields are optionally enclosed
with the indicated character

All MySQL 5.5 based releases

--fields-terminated-
by=char

Fields are terminated by the
indicated character

All MySQL 5.5 based releases

--hex Print binary types in
hexadecimal format

All MySQL 5.5 based releases

--include-databases=db-
list

List of one or more databases
to restore (excludes those not
named)

All MySQL 5.5 based releases

--include-tables=table-
list

List of one or more tables to
restore (excludes those in same
database that are not named);
each table reference must
include the database name

All MySQL 5.5 based releases

--lines-terminated-
by=char

Lines are terminated by the
indicated character

All MySQL 5.5 based releases

--lossy-conversions,

-L

Allow lossy conversions of
column values (type demotions
or changes in sign) when
restoring data from backup

All MySQL 5.5 based releases

--no-binlog If a mysqld is connected and
using binary logging, do not log
the restored data

All MySQL 5.5 based releases



ndb_restore — Restore an NDB Cluster Backup

2275

Format Description Added or Removed

--no-restore-disk-
objects,

-d

Do not restore objects relating to
Disk Data

All MySQL 5.5 based releases

--no-upgrade,

-u

Do not upgrade array type for
varsize attributes which do not
already resize VAR data, and do
not change column attributes

All MySQL 5.5 based releases

--ndb-nodegroup-map=map,

-z

Nodegroup map for
NDBCLUSTER storage
engine. Syntax: list of
(source_nodegroup,
destination_nodegroup)

All MySQL 5.5 based releases

--nodeid=#,

-n

ID of node where backup was
taken

All MySQL 5.5 based releases

--parallelism=#,

-p

Number of parallel transactions
to use while restoring data

All MySQL 5.5 based releases

--preserve-trailing-
spaces,

-P

Allow preservation of trailing
spaces (including padding) when
promoting fixed-width string
types to variable-width types

All MySQL 5.5 based releases

--print Print metadata, data and
log to stdout (equivalent to
--print_meta --print_data --
print_log)

All MySQL 5.5 based releases

--print_data Print data to stdout All MySQL 5.5 based releases

--print_log Print to stdout All MySQL 5.5 based releases

--print_meta Print metadata to stdout All MySQL 5.5 based releases

--progress-frequency=# Print status of restoration each
given number of seconds

All MySQL 5.5 based releases

--promote-attributes,

-A

Allow attributes to be promoted
when restoring data from backup

All MySQL 5.5 based releases

--rebuild-indexes Causes multi-threaded
rebuilding of ordered indexes
found in the backup. Number
of threads used is determined
by setting BuildIndexThreads
parameter.

All MySQL 5.5 based releases

--restore_data,

-r

Restore table data and logs into
NDB Cluster using the NDB API

All MySQL 5.5 based releases

--restore_epoch,

-e

Restore epoch info into the
status table. Convenient on a
MySQL Cluster replication slave
for starting replication. The row
in mysql.ndb_apply_status with
id 0 will be updated/inserted.

All MySQL 5.5 based releases

--restore_meta, Restore metadata to NDB
Cluster using the NDB API

All MySQL 5.5 based releases



ndb_restore — Restore an NDB Cluster Backup

2276

Format Description Added or Removed
-m

--restore-privilege-
tables

Restore MySQL privilege tables
that were previously moved to
NDB.

All MySQL 5.5 based releases

--rewrite-
database=olddb,newdb

Restores to a database with a
different name than the original

All MySQL 5.5 based releases

--skip-broken-objects Causes missing blob tables in
the backup file to be ignored.

All MySQL 5.5 based releases

--skip-table-check,

-s

Skip table structure check during
restoring of data

All MySQL 5.5 based releases

--skip-unknown-objects Causes schema objects not
recognized by ndb_restore to
be ignored when restoring a
backup made from a newer
MySQL Cluster version to an
older version.

All MySQL 5.5 based releases

--tab=dir_name,

-T dir_name

Creates a tab-separated .txt file
for each table in the given path

All MySQL 5.5 based releases

--verbose=# Level of verbosity in output All MySQL 5.5 based releases

Typical options for this utility are shown here:

ndb_restore [-c connection_string] -n node_id -b backup_id \
      [-m] -r --backup_path=/path/to/backup/files

Normally, when restoring from an NDB Cluster backup, ndb_restore requires at a minimum the --
nodeid (short form: -n), --backupid (short form: -b), and --backup_path options.

 The -c option is used to specify a connection string which tells ndb_restore where to locate the
cluster management server. (See Section 18.3.3.3, “NDB Cluster Connection Strings”, for information
on connection strings.) If this option is not used, then ndb_restore attempts to connect to a
management server on localhost:1186. This utility acts as a cluster API node, and so requires a
free connection “slot” to connect to the cluster management server. This means that there must be at
least one [api] or [mysqld] section that can be used by it in the cluster config.ini file. It is a
good idea to keep at least one empty [api] or [mysqld] section in config.ini that is not being
used for a MySQL server or other application for this reason (see Section 18.3.3.7, “Defining SQL and
Other API Nodes in an NDB Cluster”).

You can verify that ndb_restore is connected to the cluster by using the SHOW command in the
ndb_mgm management client. You can also accomplish this from a system shell, as shown here:

shell> ndb_mgm -e "SHOW"

 The --nodeid or -n is used to specify the node ID of the data node on which the backup was taken.

When restoring to a cluster with different number of data nodes from that where the backup was taken,
this information helps identify the correct set or sets of files to be restored to a given node. (In such
cases, multiple files usually need to be restored to a single data node.) The next few paragraphs
provide an example.

Restore to a different number of data nodes.  You can restore to a cluster having fewer data
nodes than the original provided that the larger number of nodes is an even multiple of the smaller



ndb_restore — Restore an NDB Cluster Backup

2277

number. In the following example, we use a backup taken on a cluster having four data nodes to a
cluster having two data nodes.

1. The management server for the original cluster is on host host10. The original cluster has four
data nodes, with the node IDs and host names shown in the following extract from the management
server's config.ini file:

[ndbd]
NodeId=2
HostName=host2

[ndbd]
NodeId=4
HostName=host4

[ndbd]
NodeId=6
HostName=host6

[ndbd]
NodeId=8
HostName=host8

We assume that each data node was originally started with ndbmtd --ndb-
connectstring=host10 or the equivalent.

2. Perform a backup in the normal manner. See Section 18.5.3.2, “Using The NDB Cluster
Management Client to Create a Backup”, for information about how to do this.

3. The files created by the backup on each data node are listed here, where N is the node ID and B is
the backup ID.

• BACKUP-B-0.N.Data

• BACKUP-B.N.ctl

• BACKUP-B.N.log

These files are found under BackupDataDir/BACKUP/BACKUP-B, on each data node. For the
rest of this example, we assume that the backup ID is 1.

Have all of these files available for later copying to the new data nodes (where they can be
accessed on the data node's local file system by ndb_restore). It is simplest to copy them all to a
single location; we assume that this is what you have done.

4. The management server for the target cluster is on host host20, and the target has two data
nodes, with the node IDs and host names shown, from the management server config.ini file
on host20:

[ndbd]
NodeId=3
hostname=host3

[ndbd]
NodeId=5
hostname=host5

Each of the data node processes on host3 and host5 should be started with ndbmtd -c host20
--initial or the equivalent, so that the new (target) cluster starts with clean data node file
systems.

5. Copy two different sets of two backup files to each of the target data nodes. For this example, copy
the backup files from nodes 2 and 6 from the original cluster to node 3 in the target cluster. These
files are listed here:



ndb_restore — Restore an NDB Cluster Backup

2278

• BACKUP-1-0.2.Data

• BACKUP-1.2.ctl

• BACKUP-1.2.log

• BACKUP-1-0.6.Data

• BACKUP-1.6.ctl

• BACKUP-1.6.log

Then copy the backup files from nodes 4 and 8 to node 5; these files are shown in the following list:

• BACKUP-1-0.4.Data

• BACKUP-1.4.ctl

• BACKUP-1.4.log

• BACKUP-1-0.8.Data

• BACKUP-1.8.ctl

• BACKUP-1.8.log

For the remainder of this example, we assume that the respective backup files have been saved to
the directory /BACKUP-1 on each of nodes 3 and 5.

6. On each of the two target data nodes, you must restore from both sets of backups. First, restore the
backups from nodes 2 and 6 to node 3 by invoking ndb_restore on host3 as shown here:

shell> ndb_restore -c host20 --nodeid=2 --backupid=1 --restore_data --backup_path=/BACKUP-1

shell> ndb_restore -c host20 --nodeid=4 --backupid=1 --restore_data --backup_path=/BACKUP-1

Then restore the backups from nodes 4 and 8 to node 5 by invoking ndb_restore on host5, like
this:

shell> ndb_restore -c host20 --nodeid=6 --backupid=1 --restore_data --backup_path=/BACKUP-1

shell> ndb_restore -c host20 --nodeid=8 --backupid=1 --restore_data --backup_path=/BACKUP-1

 It is possible to restore data without restoring table metadata. The default behavior when doing this
is for ndb_restore to fail with an error if table data do not match the table schema; this can be
overridden using the --skip-table-check or -s option.

Some of the restrictions on mismatches in column definitions when restoring data using ndb_restore
are relaxed; when one of these types of mismatches is encountered, ndb_restore does not stop
with an error as it did previously, but rather accepts the data and inserts it into the target table while
issuing a warning to the user that this is being done. This behavior occurs whether or not either of the
options --skip-table-check or --promote-attributes is in use. These differences in column
definitions are of the following types:

• Different COLUMN_FORMAT settings (FIXED, DYNAMIC, DEFAULT)

• Different STORAGE settings (MEMORY, DISK)

• Different default values

• Different distribution key settings



ndb_restore — Restore an NDB Cluster Backup

2279

   ndb_restore supports limited attribute promotion in much the same way that it is supported by
MySQL replication; that is, data backed up from a column of a given type can generally be restored to
a column using a “larger, similar” type. For example, data from a CHAR(20) column can be restored to
a column declared as VARCHAR(20), VARCHAR(30), or CHAR(30); data from a MEDIUMINT column
can be restored to a column of type INT or BIGINT. See Replication of Columns Having Different Data
Types, for a table of type conversions currently supported by attribute promotion.

Attribute promotion by ndb_restore must be enabled explicitly, as follows:

1. Prepare the table to which the backup is to be restored. ndb_restore cannot be used to re-create
the table with a different definition from the original; this means that you must either create the table
manually, or alter the columns which you wish to promote using ALTER TABLE after restoring the
table metadata but before restoring the data.

2. Invoke ndb_restore with the --promote-attributes option (short form -A) when restoring
the table data. Attribute promotion does not occur if this option is not used; instead, the restore
operation fails with an error.

Prior to NDB 7.2.14, conversions between character data types and TEXT or BLOB were not handled
correctly (Bug #17325051).

Prior to NDB 7.2.18, demotion of TEXT to TINYTEXT was not handled correctly (Bug #18875137).

When converting between character data types and TEXT or BLOB, only conversions between
character types (CHAR and VARCHAR) and binary types (BINARY and VARBINARY) can be performed
at the same time. For example, you cannot promote an INT column to BIGINT while promoting a
VARCHAR column to TEXT in the same invocation of ndb_restore.

Converting between TEXT columns using different character sets is not supported. Beginning with NDB
7.2.18, it is expressly disallowed (Bug #18875137).

When performing conversions of character or binary types to TEXT or BLOB with ndb_restore, you
may notice that it creates and uses one or more staging tables named table_name$STnode_id.
These tables are not needed afterwards, and are normally deleted by ndb_restore following a
successful restoration.

  --lossy-conversions, -L

Command-Line Format --lossy-conversions

Type booleanPermitted Values

Default FALSE

This option is intended to complement the --promote-attributes option. Using --lossy-
conversions allows lossy conversions of column values (type demotions or changes in sign) when
restoring data from backup. With some exceptions, the rules governing demotion are the same as for
MySQL replication; see Replication of Columns Having Different Data Types, for information about
specific type conversions currently supported by attribute demotion.

ndb_restore reports any truncation of data that it performs during lossy conversions once per
attribute and column.

 The --preserve-trailing-spaces option (short form -R) causes trailing spaces to be preserved
when promoting a fixed-width character data type to its variable-width equivalent—that is, when
promoting a CHAR column value to VARCHAR or a BINARY column value to VARBINARY. Otherwise,
any trailing spaces are dropped from such column values when they are inserted into the new columns.

Note

Although you can promote CHAR columns to VARCHAR and BINARY columns to
VARBINARY, you cannot promote VARCHAR columns to CHAR or VARBINARY
columns to BINARY.



ndb_restore — Restore an NDB Cluster Backup

2280

 The -b option is used to specify the ID or sequence number of the backup, and is the same number
shown by the management client in the Backup backup_id completed message displayed upon
completion of a backup. (See Section 18.5.3.2, “Using The NDB Cluster Management Client to Create
a Backup”.)

Important

When restoring cluster backups, you must be sure to restore all data nodes
from backups having the same backup ID. Using files from different backups
will at best result in restoring the cluster to an inconsistent state, and may fail
altogether.

 --restore_epoch (short form: -e) adds (or restores) epoch information to the cluster replication
status table. This is useful for starting replication on an NDB Cluster replication slave. When this option
is used, the row in the mysql.ndb_apply_status having 0 in the id column is updated if it already
exists; such a row is inserted if it does not already exist. (See Section 18.6.9, “NDB Cluster Backups
With NDB Cluster Replication”.)

 --restore_data

This option causes ndb_restore to output NDB table data and logs.

 --restore_meta

This option causes ndb_restore to print NDB table metadata.

The first time you run the ndb_restore restoration program, you also need to restore the metadata.
In other words, you must re-create the database tables—this can be done by running it with the --
restore_meta (-m) option. Restoring the metadata need be done only on a single data node; this is
sufficient to restore it to the entire cluster.

Note

The cluster should have an empty database when starting to restore a backup.
(In other words, you should start ndbd with --initial prior to performing the
restore.)

  --restore-privilege-tables

ndb_restore does not by default restore distributed MySQL privilege tables (NDB 7.2.0 and later).
This option causes ndb_restore to restore the privilege tables.

This works only if the privilege tables were converted to NDB before the backup was taken. For more
information, see Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”.

  --backup_path

The path to the backup directory is required; this is supplied to ndb_restore using the --
backup_path option, and must include the subdirectory corresponding to the ID backup of the backup
to be restored. For example, if the data node's DataDir is /var/lib/mysql-cluster, then the
backup directory is /var/lib/mysql-cluster/BACKUP, and the backup files for the backup
with the ID 3 can be found in /var/lib/mysql-cluster/BACKUP/BACKUP-3. The path may be
absolute or relative to the directory in which the ndb_restore executable is located, and may be
optionally prefixed with backup_path=.

It is possible to restore a backup to a database with a different configuration than it was created from.
For example, suppose that a backup with backup ID 12, created in a cluster with two database nodes
having the node IDs 2 and 3, is to be restored to a cluster with four nodes. Then ndb_restore must
be run twice—once for each database node in the cluster where the backup was taken. However,
ndb_restore cannot always restore backups made from a cluster running one version of MySQL to



ndb_restore — Restore an NDB Cluster Backup

2281

a cluster running a different MySQL version. See Section 18.2.7, “Upgrading and Downgrading NDB
Cluster 7.2”, for more information.

Important

It is not possible to restore a backup made from a newer version of NDB Cluster
using an older version of ndb_restore. You can restore a backup made from
a newer version of MySQL to an older cluster, but you must use a copy of
ndb_restore from the newer NDB Cluster version to do so.

For example, to restore a cluster backup taken from a cluster running NDB 7.2.5
to a cluster running NDB 7.1.21, you must use the ndb_restore that comes
with the NDB 7.2.5 distribution.

For more rapid restoration, the data may be restored in parallel, provided that there is a sufficient
number of cluster connections available. That is, when restoring to multiple nodes in parallel, you must
have an [api] or [mysqld] section in the cluster config.ini file available for each concurrent
ndb_restore process. However, the data files must always be applied before the logs.

  --no-upgrade

When using ndb_restore to restore a backup, VARCHAR columns created using the old fixed format
are resized and recreated using the variable-width format now employed. This behavior can be
overridden using the --no-upgrade option (short form: -u) when running ndb_restore.

  --print_data

The --print_data option causes ndb_restore to direct its output to stdout.

TEXT and BLOB column values are always truncated. In NDB 7.2.18 and earlier, such values are
truncated to the first 240 bytes in the output; in NDB 7.2.19 and later, they are truncated to 256 bytes.
(Bug #14571512, Bug #65467) This cannot currently be overridden when using --print_data.

Several additional options are available for use with the --print_data option in generating data
dumps, either to stdout, or to a file. These are similar to some of the options used with mysqldump,
and are shown in the following list:

•   --tab, -T

Command-Line Format --tab=dir_name

Permitted Values Type directory name

This option causes --print_data to create dump files, one per table, each named
tbl_name.txt. It requires as its argument the path to the directory where the files should be saved;
use . for the current directory.

•   --fields-enclosed-by=string

Command-Line Format --fields-enclosed-by=char

Type stringPermitted Values

Default

Each column values are enclosed by the string passed to this option (regardless of data type; see
next item).

•   --fields-optionally-enclosed-by=string

Command-Line Format --fields-optionally-enclosed-by

Permitted Values Type string



ndb_restore — Restore an NDB Cluster Backup

2282

Default

The string passed to this option is used to enclose column values containing character data (such as
CHAR, VARCHAR, BINARY, TEXT, or ENUM).

•   --fields-terminated-by=string

Command-Line Format --fields-terminated-by=char

Type stringPermitted Values

Default \t (tab)

The string passed to this option is used to separate column values. The default value is a tab
character (\t).

•   --hex

Command-Line Format --hex

If this option is used, all binary values are output in hexadecimal format.

•   --fields-terminated-by=string

Command-Line Format --fields-terminated-by=char

Type stringPermitted Values

Default \t (tab)

This option specifies the string used to end each line of output. The default is a linefeed character
(\n).

•   --append

Command-Line Format --append

When used with the --tab and --print_data options, this causes the data to be appended to any
existing files having the same names.

Note

If a table has no explicit primary key, then the output generated when using the
--print_data option includes the table's hidden primary key.

  --print_meta

This option causes ndb_restore to print all metadata to stdout.

  --print_log

The --print_log option causes ndb_restore to output its log to stdout.

  --print

Causes ndb_restore to print all data, metadata, and logs to stdout. Equivalent to using the --
print_data, --print_meta, and --print_log options together.

Note

Use of --print or any of the --print_* options is in effect performing a dry
run. Including one or more of these options causes any output to be redirected



ndb_restore — Restore an NDB Cluster Backup

2283

to stdout; in such cases, ndb_restore makes no attempt to restore data or
metadata to an NDB Cluster.

  --dont_ignore_systab_0

Normally, when restoring table data and metadata, ndb_restore ignores the copy of the NDB system
table that is present in the backup. --dont_ignore_systab_0 causes the system table to be
restored. This option is intended for experimental and development use only, and is not recommended
in a production environment.

  --ndb-nodegroup-map, -z

This option can be used to restore a backup taken from one node group to a different node group. Its
argument is a list of the form source_node_group, target_node_group.

  --no-binlog

This option prevents any connected SQL nodes from writing data restored by ndb_restore to their
binary logs.

  --no-restore-disk-objects, -d

This option stops ndb_restore from restoring any NDB Cluster Disk Data objects, such as
tablespaces and log file groups; see Section 18.5.12, “NDB Cluster Disk Data Tables”, for more
information about these.

  --parallelism=#, -p

ndb_restore uses single-row transactions to apply many rows concurrently. This parameter
determines the number of parallel transactions (concurrent rows) that an instance of ndb_restore
tries to use. By default, this is 128; the minimum is 1, and the maximum is 1024.

The work of performing the inserts is parallelized across the threads in the data nodes involved. This
mechanism is employed for restoring bulk data from the .Data file—that is, the fuzzy snapshot of the
data; it is not used for building or rebuilding indexes. The change log is applied serially; index drops
and builds are DDL operations and handled separately. There is no thread-level parallelism on the
client side of the restore.

  --progress-frequency=N

Print a status report each N seconds while the backup is in progress. 0 (the default) causes no status
reports to be printed. The maximum is 65535.

  --verbose=#

Sets the level for the verbosity of the output. The minimum is 0; the maximum is 255. The default value
is 1.

It is possible to restore only selected databases, or selected tables from a single database, using the
syntax shown here:

ndb_restore other_options db_name,[db_name[,...] | tbl_name[,tbl_name][,...]]

In other words, you can specify either of the following to be restored:

• All tables from one or more databases

• One or more tables from a single database

  --include-databases=db_name[,db_name][,...]



ndb_restore — Restore an NDB Cluster Backup

2284

Command-Line Format --include-databases=db-list

Type stringPermitted Values

Default

  --include-tables=db_name.tbl_name[,db_name.tbl_name][,...]

Command-Line Format --include-tables=table-list

Type stringPermitted Values

Default

Use the --include-databases option or the --include-tables option for restoring only specific
databases or tables, respectively. --include-databases takes a comma-delimited list of databases
to be restored. --include-tables takes a comma-delimited list of tables (in database.table
format) to be restored.

When --include-databases or --include-tables is used, only those databases or tables
named by the option are restored; all other databases and tables are excluded by ndb_restore, and
are not restored.

The following table shows several invocations of ndb_restore using --include-* options (other
options possibly required have been omitted for clarity), and the effects these have on restoring from
an NDB Cluster backup:

Option Used Result

--include-databases=db1 Only tables in database db1 are restored; all
tables in all other databases are ignored

--include-databases=db1,db2 (or --
include-databases=db1 --include-
databases=db2)

Only tables in databases db1 and db2 are
restored; all tables in all other databases are
ignored

--include-tables=db1.t1 Only table t1 in database db1 is restored; no
other tables in db1 or in any other database are
restored

--include-tables=db1.t2,db2.t1 (or
--include-tables=db1.t2 --include-
tables=db2.t1)

Only the table t2 in database db1 and the table
t1 in database db2 are restored; no other tables
in db1, db2, or any other database are restored

You can also use these two options together. For example, the following causes all tables in databases
db1 and db2, together with the tables t1 and t2 in database db3, to be restored (and no other
databases or tables):

shell> ndb_restore [...] --include-databases=db1,db2 --include-tables=db3.t1,db3.t2

(Again we have omitted other, possibly required, options in the example just shown.)

  --exclude-databases=db_name[,db_name][,...]

Command-Line Format --exclude-databases=db-list

Type stringPermitted Values

Default

  --exclude-tables=db_name.tbl_name[,db_name.tbl_name][,...]

Command-Line Format --exclude-tables=table-list



ndb_restore — Restore an NDB Cluster Backup

2285

Type stringPermitted Values

Default

It is possible to prevent one or more databases or tables from being restored using the ndb_restore
options --exclude-databases and --exclude-tables. --exclude-databases takes a
comma-delimited list of one or more databases which should not be restored. --exclude-tables
takes a comma-delimited list of one or more tables (using database.table format) which should not
be restored.

When --exclude-databases or --exclude-tables is used, only those databases or tables
named by the option are excluded; all other databases and tables are restored by ndb_restore.

This table shows several invocations of ndb_restore usng --exclude-* options (other options
possibly required have been omitted for clarity), and the effects these options have on restoring from
an NDB Cluster backup:

Option Used Result

--exclude-databases=db1 All tables in all databases except db1 are
restored; no tables in db1 are restored

--exclude-databases=db1,db2 (or --
exclude-databases=db1 --exclude-
databases=db2)

All tables in all databases except db1 and db2 are
restored; no tables in db1 or db2 are restored

--exclude-tables=db1.t1 All tables except t1 in database db1 are restored;
all other tables in db1 are restored; all tables in all
other databases are restored

--exclude-tables=db1.t2,db2.t1 (or
--exclude-tables=db1.t2 --exclude-
tables=db2.t1)

All tables in database db1 except for t2 and
all tables in database db2 except for table t1
are restored; no other tables in db1 or db2 are
restored; all tables in all other databases are
restored

You can use these two options together. For example, the following causes all tables in all databases
except for databases db1 and db2, and tables t1 and t2 in database db3, to be restored:

shell> ndb_restore [...] --exclude-databases=db1,db2 --exclude-tables=db3.t1,db3.t2

(Again, we have omitted other possibly necessary options in the interest of clarity and brevity from the
example just shown.)

You can use --include-* and --exclude-* options together, subject to the following rules:

• The actions of all --include-* and --exclude-* options are cumulative.

• All --include-* and --exclude-* options are evaluated in the order passed to ndb_restore,
from right to left.

• In the event of conflicting options, the first (rightmost) option takes precedence. In other words, the
first option (going from right to left) that matches against a given database or table “wins”.

For example, the following set of options causes ndb_restore to restore all tables from database db1
except db1.t1, while restoring no other tables from any other databases:

        
--include-databases=db1 --exclude-tables=db1.t1

However, reversing the order of the options just given simply causes all tables from database db1 to
be restored (including db1.t1, but no tables from any other database), because the --include-



ndb_restore — Restore an NDB Cluster Backup

2286

databases option, being farthest to the right, is the first match against database db1 and thus takes
precedence over any other option that matches db1 or any tables in db1:

        
--exclude-tables=db1.t1 --include-databases=db1

  --exclude-missing-columns

Command-Line Format --exclude-missing-columns

It is also possible to restore only selected table columns using the --exclude-missing-columns
option. When this option is used, ndb_restore ignores any columns missing from tables being
restored as compared to the versions of those tables found in the backup. This option applies to all
tables being restored. If you wish to apply this option only to selected tables or databases, you can use
it in combination with one or more of the options described in the previous paragraph to do so, then
restore data to the remaining tables using a complementary set of these options.

  --exclude-missing-tables

Introduced 5.5.40-ndb-7.2.18

Command-Line Format --exclude-missing-tables

Beginning with NDB 7.2.17, it is also possible to restore only selected tables columns using this option,
which causes ndb_restore to ignore any tables from the backup that are not found in the target
database.

  --disable-indexes

Command-Line Format --disable-indexes

Disable restoration of indexes during restoration of the data from a native NDB backup. Afterwards, you
can restore indexes for all tables at once with multi-threaded building of indexes using --rebuild-
indexes, which should be faster than rebuilding indexes concurrently for very large tables.

  --rebuild-indexes

Command-Line Format --rebuild-indexes

You can use this option with ndb_restore to cause multi-threaded rebuilding of the ordered indexes
while restoring a native NDB backup. The number of threads used for building ordered indexes by
ndb_restore with this option is controlled by the BuildIndexThreads data node configuration
parameter (NDB 6.3.30 and later; NDB 7.0.11 and later).

It is necessary to use this option only for the first run of ndb_restore; this causes all ordered indexes
to be rebuilt without using --rebuild-indexes again when restoring subsequent nodes. You should
use this option prior to inserting new rows into the database; otherwise, it is possible for a row to be
inserted that later causes a unique constraint violation when trying to rebuild the indexes.

Building of ordered indices is parallelized with the number of LDMs by default. Offline index builds
performed during node and system restarts can be made faster using the BuildIndexThreads data
node configuration parameter; this parameter has no effect on dropping and rebuilding of indexes by
ndb_restore, which is performed online.

Rebuilding of unique indexes uses disk write bandwidth for redo logging and local checkpointing. An
insufficient amount of this bandwith can lead to redo buffer overload or log overload errors. In such
cases you can run ndb_restore --rebuild-indexes again; the process resumes at the point
where the error occurred. You can also do this when you have encountered temporary errors. You can



ndb_restore — Restore an NDB Cluster Backup

2287

repeat execution of ndb_restore --rebuild-indexes indefinitely; you may be able to stop such
errors by reducing the value of DiskCheckpointSpeed to provide additional disk bandwidth to redo
logging, or reducing the --parallelism. If the problem is insufficient space, you can increase the
size of the redo log (FragmentLogFileSize node configuration parameter), or you can increase the
speed at which LCPs are performed (DiskCheckpointSpeed), in order to free space more quickly.

  --skip-broken-objects

Command-Line Format --skip-broken-objects

This option causes ndb_restore to ignore corrupt tables while reading a native NDB backup, and to
continue restoring any remaining tables (that are not also corrupted). Currently, the --skip-broken-
objects option works only in the case of missing blob parts tables.

  --skip-unknown-objects

Command-Line Format --skip-unknown-objects

This option causes ndb_restore to ignore any schema objects it does not recognize while reading a
native NDB backup. This can be used for restoring a backup made from a cluster running NDB Cluster
7.2 to a cluster running NDB Cluster 7.1.

  --rewrite-database=old_dbname,new_dbname

Command-Line Format --rewrite-database=olddb,newdb

Type stringPermitted Values

Default none

This option makes it possible to restore to a database having a different name from that used in the
backup. For example, if a backup is made of a database named products, you can restore the data it
contains to a database named inventory, use this option as shown here (omitting any other options
that might be required):

shell> ndb_restore --rewrite-database=product,inventory

The option can be employed multiple times in a single invocation of ndb_restore. Thus it is
possible to restore simultaneously from a database named db1 to a database named db2 and from
a database named db3 to one named db4 using --rewrite-database=db1,db2 --rewrite-
database=db3,db4. Other ndb_restore options may be used between multiple occurrences of --
rewrite-database.

In the event of conflicts between multiple --rewrite-database options, the last --rewrite-
database option used, reading from left to right, is the one that takes effect. For example, if --
rewrite-database=db1,db2 --rewrite-database=db1,db3 is used, only --rewrite-
database=db1,db3 is honored, and --rewrite-database=db1,db2 is ignored. It is also possible
to restore from multiple databases to a single database, so that --rewrite-database=db1,db3
--rewrite-database=db2,db3 restores all tables and data from databases db1 and db2 into
database db3.

Important

When restoring from multiple backup databases into a single target database
using --rewrite-database, no check is made for collisions between table or
other object names, and the order in which rows are restored is not guaranteed.
This means that it is possible in such cases for rows to be overwritten and
updates to be lost.



ndb_select_all — Print Rows from an NDB Table

2288

  --exclude-intermediate-sql-tables[=TRUE|FALSE]

Introduced 5.5.37-ndb-7.2.17

Command-Line Format --exclude-intermediate-sql-tables[=TRUE|FALSE]

Type booleanPermitted Values

Default TRUE

When performing copying ALTER TABLE operations, mysqld creates intermediate tables (whose
names are prefixed with #sql-). When TRUE, the --exclude-intermediate-sql-tables option
keeps ndb_restore from restoring such tables that may have been left over from such operations.
This option is TRUE by default.

The --exclude-intermediate-sql-tables option was introduced in NDB 7.2.17. (Bug
#17882305)

Error reporting. 
ndb_restore reports both temporary and permanent errors. In the case of temporary errors, it may
able to recover from them, and reports Restore successful, but encountered temporary
error, please look at configuration in such cases.

Important

After using ndb_restore to initialize an NDB Cluster for use in circular
replication, binary logs on the SQL node acting as the replication slave are not
automatically created, and you must cause them to be created manually. To
cause the binary logs to be created, issue a SHOW TABLES statement on that
SQL node before running START SLAVE. This is a known issue in NDB Cluster.

18.4.22 ndb_select_all — Print Rows from an NDB Table

ndb_select_all prints all rows from an NDB table to stdout.

Usage

ndb_select_all -c connection_string tbl_name -d db_name [> file_name]

The following table includes options that are specific to the NDB Cluster native backup restoration
program ndb_select_all. Additional descriptions follow the table. For options common to most
NDB Cluster programs (including ndb_select_all), see Section 18.4.27, “Options Common to NDB
Cluster Programs — Options Common to NDB Cluster Programs”.

Table 18.86  This table describes command-line options for the ndb_select_all program

Format Description Added or Removed

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.5 based releases

--parallelism=#,

-p

Degree of parallelism All MySQL 5.5 based releases

--lock=#,

-l

Lock type All MySQL 5.5 based releases

--order=index,

-o

Sort resultset according to index
whose name is supplied

All MySQL 5.5 based releases



ndb_select_all — Print Rows from an NDB Table

2289

Format Description Added or Removed

--descending,

-z

Sort resultset in descending
order (requires order flag)

All MySQL 5.5 based releases

--header,

-h

Print header (set to 0|FALSE to
disable headers in output)

All MySQL 5.5 based releases

--useHexFormat,

-x

Output numbers in hexadecimal
format

All MySQL 5.5 based releases

--delimiter=char,

-D

Set a column delimiter All MySQL 5.5 based releases

--disk Print disk references (useful
only for Disk Data tables having
nonindexed columns)

All MySQL 5.5 based releases

--rowid Print rowid All MySQL 5.5 based releases

--gci Include GCI in output All MySQL 5.5 based releases

--gci64 Include GCI and row epoch in
output

All MySQL 5.5 based releases

--tupscan,

-t

Scan in tup order All MySQL 5.5 based releases

--nodata Do not print table column data All MySQL 5.5 based releases

•  --database=dbname, -d dbname

Name of the database in which the table is found. The default value is TEST_DB.

•  parallelism=#, -p #

Specifies the degree of parallelism.

•   --lock=lock_type, -l lock_type

Employs a lock when reading the table. Possible values for lock_type are:

• 0: Read lock

• 1: Read lock with hold

• 2: Exclusive read lock

There is no default value for this option.

•   --order=index_name, -o index_name

Orders the output according to the index named index_name. Note that this is the name of an
index, not of a column, and that the index must have been explicitly named when created.

•   --descending, -z

Sorts the output in descending order. This option can be used only in conjunction with the -o (--
order) option.

•   --header=FALSE

Excludes column headers from the output.



ndb_select_all — Print Rows from an NDB Table

2290

•   --useHexFormat -x

Causes all numeric values to be displayed in hexadecimal format. This does not affect the output of
numerals contained in strings or datetime values.

•   --delimiter=character, -D character

Causes the character to be used as a column delimiter. Only table data columns are separated by
this delimiter.

The default delimiter is the tab character.

•   --disk

Adds a disk reference column to the output. The column is nonempty only for Disk Data tables
having nonindexed columns.

•   --rowid

Adds a ROWID column providing information about the fragments in which rows are stored.

•   --gci

Adds a GCI column to the output showing the global checkpoint at which each row was last updated.
See Section 18.1, “NDB Cluster Overview”, and Section 18.5.6.2, “NDB Cluster Log Events”, for
more information about checkpoints.

•   --gci64

Adds a ROW$GCI64 column to the output showing the global checkpoint at which each row was last
updated, as well as the number of the epoch in which this update occurred.

•   --tupscan, -t

Scan the table in the order of the tuples.

•   --nodata

Causes any table data to be omitted.

Sample Output

Output from a MySQL SELECT statement:

mysql> SELECT * FROM ctest1.fish;
+----+-----------+
| id | name      |
+----+-----------+
|  3 | shark     |
|  6 | puffer    |
|  2 | tuna      |
|  4 | manta ray |
|  5 | grouper   |
|  1 | guppy     |
+----+-----------+
6 rows in set (0.04 sec)

Output from the equivalent invocation of ndb_select_all:

shell> ./ndb_select_all -c localhost fish -d ctest1
id      name
3       [shark]
6       [puffer]



ndb_select_count — Print Row Counts for NDB Tables

2291

2       [tuna]
4       [manta ray]
5       [grouper]
1       [guppy]
6 rows returned

NDBT_ProgramExit: 0 - OK

Note that all string values are enclosed by square brackets ([...]) in the output of ndb_select_all.
For a further example, consider the table created and populated as shown here:

CREATE TABLE dogs (
    id INT(11) NOT NULL AUTO_INCREMENT,
    name VARCHAR(25) NOT NULL,
    breed VARCHAR(50) NOT NULL,
    PRIMARY KEY pk (id),
    KEY ix (name)
)
TABLESPACE ts STORAGE DISK
ENGINE=NDBCLUSTER;

INSERT INTO dogs VALUES
    ('', 'Lassie', 'collie'),
    ('', 'Scooby-Doo', 'Great Dane'),
    ('', 'Rin-Tin-Tin', 'Alsatian'),
    ('', 'Rosscoe', 'Mutt');

This demonstrates the use of several additional ndb_select_all options:

shell> ./ndb_select_all -d ctest1 dogs -o ix -z --gci --disk
GCI     id name          breed        DISK_REF
834461  2  [Scooby-Doo]  [Great Dane] [ m_file_no: 0 m_page: 98 m_page_idx: 0 ]
834878  4  [Rosscoe]     [Mutt]       [ m_file_no: 0 m_page: 98 m_page_idx: 16 ]
834463  3  [Rin-Tin-Tin] [Alsatian]   [ m_file_no: 0 m_page: 34 m_page_idx: 0 ]
835657  1  [Lassie]      [Collie]     [ m_file_no: 0 m_page: 66 m_page_idx: 0 ]
4 rows returned

NDBT_ProgramExit: 0 - OK

18.4.23 ndb_select_count — Print Row Counts for NDB Tables

ndb_select_count prints the number of rows in one or more NDB tables. With a single table,
the result is equivalent to that obtained by using the MySQL statement SELECT COUNT(*) FROM
tbl_name.

Usage

ndb_select_count [-c connection_string] -ddb_name tbl_name[, tbl_name2[, ...]]

The following table includes options that are specific to the NDB Cluster native backup restoration
program ndb_select_count. Additional descriptions follow the table. For options common to most
NDB Cluster programs (including ndb_select_count), see Section 18.4.27, “Options Common to
NDB Cluster Programs — Options Common to NDB Cluster Programs”.

Table 18.87  This table describes command-line options for the ndb_select_count program

Format Description Added or Removed

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.5 based releases

--parallelism=#,

-p

Degree of parallelism All MySQL 5.5 based releases



ndb_show_tables — Display List of NDB Tables

2292

Format Description Added or Removed

--lock=#,

-l

Lock type All MySQL 5.5 based releases

You can obtain row counts from multiple tables in the same database by listing the table names
separated by spaces when invoking this command, as shown under Sample Output.

Sample Output

shell> ./ndb_select_count -c localhost -d ctest1 fish dogs
6 records in table fish
4 records in table dogs

NDBT_ProgramExit: 0 - OK

18.4.24 ndb_show_tables — Display List of NDB Tables

ndb_show_tables displays a list of all NDB database objects in the cluster. By default, this includes
not only both user-created tables and NDB system tables, but NDB-specific indexes, internal triggers,
and NDB Cluster Disk Data objects as well.

The following table includes options that are specific to the NDB Cluster native backup restoration
program ndb_show_tables. Additional descriptions follow the table. For options common to most
NDB Cluster programs (including ndb_show_tables), see Section 18.4.27, “Options Common to
NDB Cluster Programs — Options Common to NDB Cluster Programs”.

Table 18.88  This table describes command-line options for the ndb_show_tables program

Format Description Added or Removed

--database=string,

-d

Specifies the database in which
the table is found

All MySQL 5.5 based releases

--loops=#,

-l

Number of times to repeat output All MySQL 5.5 based releases

--parsable,

-p

Return output suitable for
MySQL LOAD DATA INFILE
statement

All MySQL 5.5 based releases

--show-temp-status Show table temporary flag All MySQL 5.5 based releases

--type=#,

-t

Limit output to objects of this
type

All MySQL 5.5 based releases

--unqualified,

-u

Do not qualify table names All MySQL 5.5 based releases

Usage

ndb_show_tables [-c connection_string]

•   --database, -d

Specifies the name of the database in which the tables are found.

•   --loops, -l



ndb_size.pl — NDBCLUSTER Size Requirement Estimator

2293

Specifies the number of times the utility should execute. This is 1 when this option is not specified,
but if you do use the option, you must supply an integer argument for it.

•   --parsable, -p

Using this option causes the output to be in a format suitable for use with LOAD DATA INFILE.

•   --show-temp-status

If specified, this causes temporary tables to be displayed.

•   --type, -t

Can be used to restrict the output to one type of object, specified by an integer type code as shown
here:

• 1: System table

• 2: User-created table

• 3: Unique hash index

Any other value causes all NDB database objects to be listed (the default).

•   --unqualified, -u

If specified, this causes unqualified object names to be displayed.

Note

Only user-created NDB Cluster tables may be accessed from MySQL; system
tables such as SYSTAB_0 are not visible to mysqld. However, you can
examine the contents of system tables using NDB API applications such as
ndb_select_all (see Section 18.4.22, “ndb_select_all — Print Rows
from an NDB Table”).

18.4.25 ndb_size.pl — NDBCLUSTER Size Requirement Estimator

This is a Perl script that can be used to estimate the amount of space that would be required by a
MySQL database if it were converted to use the NDBCLUSTER storage engine. Unlike the other utilities
discussed in this section, it does not require access to an NDB Cluster (in fact, there is no reason for
it to do so). However, it does need to access the MySQL server on which the database to be tested
resides.

Requirements

• A running MySQL server. The server instance does not have to provide support for NDB Cluster.

• A working installation of Perl.

• The DBI module, which can be obtained from CPAN if it is not already part of your Perl installation.
(Many Linux and other operating system distributions provide their own packages for this library.)

• A MySQL user account having the necessary privileges. If you do not wish to use an existing
account, then creating one using GRANT USAGE ON db_name.*—where db_name is the name of
the database to be examined—is sufficient for this purpose.

ndb_size.pl can also be found in the MySQL sources in storage/ndb/tools.

The following table includes options that are specific to the NDB Cluster program ndb_size.pl.
Additional descriptions follow the table. For options common to most NDB Cluster programs (including



ndb_size.pl — NDBCLUSTER Size Requirement Estimator

2294

ndb_size.pl), see Section 18.4.27, “Options Common to NDB Cluster Programs — Options
Common to NDB Cluster Programs”.

Table 18.89  This table describes command-line options for the ndb_size.pl program

Format Description Added or Removed

--database=dbname The database or databases to
examine; accepts a comma-
delimited list; the default is ALL
(use all databases found on the
server)

All MySQL 5.5 based releases

--hostname[:port] Specify host and optional port as
host[:port]

All MySQL 5.5 based releases

--socket=file_name Specify a socket to connect to All MySQL 5.5 based releases

--user=string Specify a MySQL user name All MySQL 5.5 based releases

--password=string Specify a MySQL user password All MySQL 5.5 based releases

--format=string Set output format (text or HTML) All MySQL 5.5 based releases

--excludetables=tbl_list Skip any tables in a comma-
separated list of tables

All MySQL 5.5 based releases

--excludedbs=db_list Skip any databases in a comma-
separated list of databases

All MySQL 5.5 based releases

--savequeries=file Saves all queries to the
database into the file specified

All MySQL 5.5 based releases

--loadqueries=file Loads all queries from the file
specified; does not connect to a
database

All MySQL 5.5 based releases

--real_table_name=table Designates a table to handle
unique index size calculations

All MySQL 5.5 based releases

Usage

perl ndb_size.pl [--database={db_name|ALL}] [--hostname=host[:port]] [--socket=socket] \
      [--user=user] [--password=password]  \
      [--help|-h] [--format={html|text}] \
      [--loadqueries=file_name] [--savequeries=file_name]

By default, this utility attempts to analyze all databases on the server. You can specify a single
database using the --database option; the default behavior can be made explicit by using ALL for
the name of the database. You can also exclude one or more databases by using the --excludedbs
option with a comma-separated list of the names of the databases to be skipped. Similarly, you
can cause specific tables to be skipped by listing their names, separated by commas, following the
optional --excludetables option. A host name can be specified using --hostname; the default is
localhost. In NDB 7.2.6 and later, you can specify a port in addition to the host using host:port
format for the value of --hostname. The default port number is 3306. If necessary, you can also
specify a socket; the default is /var/lib/mysql.sock. A MySQL user name and password can be
specified the corresponding options shown. It also possible to control the format of the output using
the --format option; this can take either of the values html or text, with text being the default. An
example of the text output is shown here:

shell> ndb_size.pl --database=test --socket=/tmp/mysql.sock
ndb_size.pl report for database: 'test' (1 tables)
--------------------------------------------------
Connected to: DBI:mysql:host=localhost;mysql_socket=/tmp/mysql.sock

Including information for versions: 4.1, 5.0, 5.1



ndb_size.pl — NDBCLUSTER Size Requirement Estimator

2295

test.t1
-------

DataMemory for Columns (* means varsized DataMemory):
         Column Name            Type  Varsized   Key  4.1  5.0   5.1
     HIDDEN_NDB_PKEY          bigint             PRI    8    8     8
                  c2     varchar(50)         Y         52   52    4*
                  c1         int(11)                    4    4     4
                                                       --   --    --
Fixed Size Columns DM/Row                              64   64    12
   Varsize Columns DM/Row                               0    0     4

DataMemory for Indexes:
   Index Name                 Type        4.1        5.0        5.1
      PRIMARY                BTREE         16         16         16
                                           --         --         --
       Total Index DM/Row                  16         16         16

IndexMemory for Indexes:
               Index Name        4.1        5.0        5.1
                  PRIMARY         33         16         16
                                  --         --         --
           Indexes IM/Row         33         16         16

Summary (for THIS table):
                                 4.1        5.0        5.1
    Fixed Overhead DM/Row         12         12         16
           NULL Bytes/Row          4          4          4
           DataMemory/Row         96         96         48
                    (Includes overhead, bitmap and indexes)

  Varsize Overhead DM/Row          0          0          8
   Varsize NULL Bytes/Row          0          0          4
       Avg Varside DM/Row          0          0         16

                 No. Rows          0          0          0

        Rows/32kb DM Page        340        340        680
Fixedsize DataMemory (KB)          0          0          0

Rows/32kb Varsize DM Page          0          0       2040
  Varsize DataMemory (KB)          0          0          0

         Rows/8kb IM Page        248        512        512
         IndexMemory (KB)          0          0          0

Parameter Minimum Requirements
------------------------------
* indicates greater than default

                Parameter     Default        4.1         5.0         5.1
          DataMemory (KB)       81920          0           0           0
       NoOfOrderedIndexes         128          1           1           1
               NoOfTables         128          1           1           1
         IndexMemory (KB)       18432          0           0           0
    NoOfUniqueHashIndexes          64          0           0           0
           NoOfAttributes        1000          3           3           3
             NoOfTriggers         768          5           5           5

For debugging purposes, the Perl arrays containing the queries run by this script can be read from the
file specified using can be saved to a file using --savequeries; a file containing such arrays to be
read in during script execution can be specified using --loadqueries. Neither of these options has a
default value.

To produce output in HTML format, use the --format option and redirect the output to a file, as
shown here:

shell> ndb_size.pl --database=test --socket=/tmp/mysql.sock --format=html > ndb_size.html

(Without the redirection, the output is sent to stdout.)



ndb_waiter — Wait for NDB Cluster to Reach a Given Status

2296

The output from this script includes the following information:

• Minimum values for the DataMemory, IndexMemory, MaxNoOfTables, MaxNoOfAttributes,
MaxNoOfOrderedIndexes, MaxNoOfUniqueHashIndexes, and MaxNoOfTriggers
configuration parameters required to accommodate the tables analyzed.

• Memory requirements for all of the tables, attributes, ordered indexes, and unique hash indexes
defined in the database.

• The IndexMemory and DataMemory required per table and table row.

18.4.26 ndb_waiter — Wait for NDB Cluster to Reach a Given Status

ndb_waiter repeatedly (each 100 milliseconds) prints out the status of all cluster data nodes until
either the cluster reaches a given status or the --timeout limit is exceeded, then exits. By default, it
waits for the cluster to achieve STARTED status, in which all nodes have started and connected to the
cluster. This can be overridden using the --no-contact and --not-started options.

The node states reported by this utility are as follows:

• NO_CONTACT: The node cannot be contacted.

• UNKNOWN: The node can be contacted, but its status is not yet known. Usually, this means that the
node has received a START or RESTART command from the management server, but has not yet
acted on it.

• NOT_STARTED: The node has stopped, but remains in contact with the cluster. This is seen when
restarting the node using the management client's RESTART command.

• STARTING: The node's ndbd process has started, but the node has not yet joined the cluster.

• STARTED: The node is operational, and has joined the cluster.

• SHUTTING_DOWN: The node is shutting down.

• SINGLE USER MODE: This is shown for all cluster data nodes when the cluster is in single user
mode.

The following table includes options that are specific to the NDB Cluster native backup restoration
program ndb_waiter. Additional descriptions follow the table. For options common to most NDB
Cluster programs (including ndb_waiter), see Section 18.4.27, “Options Common to NDB Cluster
Programs — Options Common to NDB Cluster Programs”.

Table 18.90  This table describes command-line options for the ndb_waiter program

Format Description Added or Removed

--no-contact,

-n

Wait for cluster to reach NO
CONTACT state

All MySQL 5.5 based releases

--not-started Wait for cluster to reach NOT
STARTED state

All MySQL 5.5 based releases

--single-user Wait for cluster to enter single
user mode

All MySQL 5.5 based releases

--timeout=#,

-t

Wait this many seconds, then
exit whether or not cluster has
reached desired state; default is
2 minutes (120 seconds)

All MySQL 5.5 based releases

--nowait-nodes=list List of nodes not to be waited
for.

All MySQL 5.5 based releases

--wait-nodes=list, List of nodes to be waited for. All MySQL 5.5 based releases



ndb_waiter — Wait for NDB Cluster to Reach a Given Status

2297

Format Description Added or Removed
-w

Usage

ndb_waiter [-c connection_string]

Additional Options

•   --no-contact, -n

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NO_CONTACT status before exiting.

•   --not-started

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NOT_STARTED status before exiting.

•   --timeout=seconds, -t seconds

Time to wait. The program exits if the desired state is not achieved within this number of seconds.
The default is 120 seconds (1200 reporting cycles).

•   --single-user

The program waits for the cluster to enter single user mode.

•   --nowait-nodes=list

When this option is used, ndb_waiter does not wait for the nodes whose IDs are listed. The list is
comma-delimited; ranges can be indicated by dashes, as shown here:

shell> ndb_waiter --nowait-nodes=1,3,7-9

Important

Do not use this option together with the --wait-nodes option.

•   --wait-nodes=list, -w list

When this option is used, ndb_waiter waits only for the nodes whose IDs are listed. The list is
comma-delimited; ranges can be indicated by dashes, as shown here:

shell> ndb_waiter --wait-nodes=2,4-6,10

Important

Do not use this option together with the --nowait-nodes option.

Sample Output.  Shown here is the output from ndb_waiter when run against a 4-node cluster in
which two nodes have been shut down and then started again manually. Duplicate reports (indicated
by ...) are omitted.

shell> ./ndb_waiter -c localhost

Connecting to mgmsrv at (localhost)
State node 1 STARTED



Options Common to NDB Cluster Programs — Options Common to NDB Cluster Programs

2298

State node 2 NO_CONTACT
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 UNKNOWN
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 UNKNOWN
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTED
Waiting for cluster enter state STARTED

NDBT_ProgramExit: 0 - OK

Note

If no connection string is specified, then ndb_waiter tries to connect to a
management on localhost, and reports Connecting to mgmsrv at
(null).

18.4.27 Options Common to NDB Cluster Programs — Options Common to
NDB Cluster Programs

All NDB Cluster programs accept the options described in this section, with the following exceptions:

• mysqld

• ndb_print_backup_file



Options Common to NDB Cluster Programs — Options Common to NDB Cluster Programs

2299

• ndb_print_schema_file

• ndb_print_sys_file

Users of earlier NDB Cluster versions should note that some of these options have been changed
to make them consistent with one another as well as with mysqld. You can use the --help
option with any NDB Cluster program—with the exception of ndb_print_backup_file,
ndb_print_schema_file, and ndb_print_sys_file—to view a list of the options which the
program supports.

The options in the following table are common to all NDB Cluster executables (except those noted
previously in this section).

Table 18.91  This table describes command-line options common to all MySQL NDB Cluster
programs

Format Description Added or Removed

--character-sets-
dir=dir_name

Directory where character sets
are installed

All MySQL 5.5 based releases

--core-file Write core on errors (defaults to
TRUE in debug builds)

All MySQL 5.5 based releases

--debug=options Enable output from debug calls.
Can be used only for versions
compiled with debugging
enabled

All MySQL 5.5 based releases

--defaults-extra-
file=filename

Read this file after global option
files are read

All MySQL 5.5 based releases

--defaults-file=filename Read default options from this
file

All MySQL 5.5 based releases

--help,

--usage,

-?

Display help message and exit All MySQL 5.5 based releases

--ndb-
connectstring=connectstring,

--connect-
string=connectstring,

-c

Set connection string for
connecting to ndb_mgmd.
Syntax: [nodeid=<id>;]
[host=]<hostname>[:<port>].
Overrides entries specified in
NDB_CONNECTSTRING or
my.cnf.

All MySQL 5.5 based releases

--ndb-mgmd-
host=host[:port]

Set the host (and port, if desired)
for connecting to management
server

All MySQL 5.5 based releases

--ndb-nodeid=# Set node id for this node All MySQL 5.5 based releases

--ndb-optimized-node-
selection

Select nodes for transactions in
a more optimal way

All MySQL 5.5 based releases

--no-defaults Do not read default options from
any option file other than login
file

All MySQL 5.5 based releases

--print-defaults Print the program argument list
and exit

All MySQL 5.5 based releases

--version,

-V

Output version information and
exit

All MySQL 5.5 based releases



Options Common to NDB Cluster Programs — Options Common to NDB Cluster Programs

2300

For options specific to individual NDB Cluster programs, see Section 18.4, “NDB Cluster Programs”.

See MySQL Server Options for NDB Cluster, for mysqld options relating to NDB Cluster.

•   --character-sets-dir=name

Command-Line Format --character-sets-dir=dir_name

Type directory namePermitted Values

Default

Tells the program where to find character set information.

•  --core-file

Command-Line Format --core-file

Type booleanPermitted Values

Default FALSE

Write a core file if the program dies. The name and location of the core file are system-dependent.
(For NDB Cluster programs nodes running on Linux, the default location is the program's working
directory—for a data node, this is the node's DataDir.) For some systems, there may be restrictions
or limitations; for example, it might be necessary to execute ulimit -c unlimited before starting
the server. Consult your system documentation for detailed information.

If NDB Cluster was built using the --debug option for configure, then --core-file is enabled
by default. For regular builds, --core-file is disabled by default.

•  --debug[=options]

Command-Line Format --debug=options

Type stringPermitted Values

Default d:t:O,/tmp/ndb_restore.trace

This option can be used only for versions compiled with debugging enabled. It is used to enable
output from debug calls in the same manner as for the mysqld process.

•   --defaults-extra-file=filename

Command-Line Format --defaults-extra-file=filename

Type stringPermitted Values

Default [none]

Read this file after global option files are read.

•   --defaults-file=filename

Command-Line Format --defaults-file=filename

Type stringPermitted Values

Default [none]

Read default options from this file.

•    --help, --usage, -?

Command-Line Format --help

 --usage



Options Common to NDB Cluster Programs — Options Common to NDB Cluster Programs

2301

Prints a short list with descriptions of the available command options.

•    --ndb-connectstring=connection_string, --connect-string=connection_string,
-c connection_string

Command-Line Format --ndb-connectstring=connectstring

 --connect-string=connectstring

Type stringPermitted Values

Default localhost:1186

This option takes an NDB Cluster connection string that specifies the management server for the
application to connect to, as shown here:

shell> ndbd --ndb-connectstring="nodeid=2;host=ndb_mgmd.mysql.com:1186"

For more information, see Section 18.3.3.3, “NDB Cluster Connection Strings”.

•  --ndb-mgmd-host=host[:port]

Command-Line Format --ndb-mgmd-host=host[:port]

Type stringPermitted Values

Default localhost:1186

Can be used to set the host and port number of a single management server for the program to
connect to. If the program requires node IDs or references to multiple management servers (or both)
in its connection information, use the --ndb-connectstring option instead.

•  --ndb-nodeid=#

Command-Line Format --ndb-nodeid=#

Type numericPermitted Values

Default 0

Sets this node's NDB Cluster node ID. The range of permitted values depends on the node's type
(data, management, or API) and the NDB Cluster software version. See Section 18.1.6.2, “Limits and
Differences of NDB Cluster from Standard MySQL Limits”, for more information.

•   --no-defaults

Command-Line Format --no-defaults

Type booleanPermitted Values

Default TRUE

Do not read default options from any option file other than login file.

•  --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Type booleanPermitted Values

Default TRUE

Optimize selection of nodes for transactions. Enabled by default.

•   --print-defaults



Management of NDB Cluster

2302

Command-Line Format --print-defaults

Type booleanPermitted Values

Default TRUE

Print the program argument list and exit.

•   --version, -V

Command-Line Format --version

Prints the NDB Cluster version number of the executable. The version number is relevant because
not all versions can be used together, and the NDB Cluster startup process verifies that the versions
of the binaries being used can co-exist in the same cluster. This is also important when performing
an online (rolling) software upgrade or downgrade of NDB Cluster.

See Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”), for more information.

18.5 Management of NDB Cluster
Managing an NDB Cluster involves a number of tasks, the first of which is to configure and start NDB
Cluster. This is covered in Section 18.3, “Configuration of NDB Cluster”, and Section 18.4, “NDB
Cluster Programs”.

The next few sections cover the management of a running NDB Cluster.

For information about security issues relating to management and deployment of an NDB Cluster, see
Section 18.5.11, “NDB Cluster Security Issues”.

There are essentially two methods of actively managing a running NDB Cluster. The first of these
is through the use of commands entered into the management client whereby cluster status can be
checked, log levels changed, backups started and stopped, and nodes stopped and started. The
second method involves studying the contents of the cluster log ndb_node_id_cluster.log; this is
usually found in the management server's DataDir directory, but this location can be overridden using
the LogDestination option. (Recall that node_id represents the unique identifier of the node whose
activity is being logged.) The cluster log contains event reports generated by ndbd. It is also possible to
send cluster log entries to a Unix system log.

Some aspects of the cluster's operation can be also be monitored from an SQL node using the SHOW
ENGINE NDB STATUS statement.

More detailed information about NDB Cluster operations is available in real time through an SQL
interface using the ndbinfo database. For more information, see Section 18.5.10, “ndbinfo: The NDB
Cluster Information Database”.

NDB statistics counters provide improved monitoring using the mysql client. These counters,
implemented in the NDB kernel, relate to operations performed by or affecting Ndb objects, such as
starting, closing, and aborting transactions; primary key and unique key operations; table, range, and
pruned scans; blocked threads waiting for various operations to complete; and data and events sent
and received by NDB Cluster. The counters are incremented by the NDB kernel whenever NDB API
calls are made or data is sent to or received by the data nodes.

mysqld exposes the NDB API statistics counters as system status variables, which can be identified
from the prefix common to all of their names (Ndb_api_). The values of these variables can be
read in the mysql client from the output of a SHOW STATUS statement, or by querying either the
SESSION_STATUS table or the GLOBAL_STATUS table (in the INFORMATION_SCHEMA database). By
comparing the values of the status variables before and after the execution of an SQL statement that
acts on NDB tables, you can observe the actions taken on the NDB API level that correspond to this
statement, which can be beneficial for monitoring and performance tuning of NDB Cluster.

http://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html


Summary of NDB Cluster Start Phases

2303

MySQL Cluster Manager provides an advanced command-line interface that simplifies many otherwise
complex NDB Cluster management tasks, such as starting, stopping, or restarting an NDB Cluster
with a large number of nodes. The MySQL Cluster Manager client also supports commands for getting
and setting the values of most node configuration parameters as well as mysqld server options
and variables relating to NDB Cluster. See MySQL™ Cluster Manager 1.3.6 User Manual, for more
information.

18.5.1 Summary of NDB Cluster Start Phases

This section provides a simplified outline of the steps involved when NDB Cluster data nodes are
started. More complete information can be found in NDB Cluster Start Phases, in the NDB Internals
Guide.

These phases are the same as those reported in the output from the node_id STATUS command
in the management client (see Section 18.5.2, “Commands in the NDB Cluster Management Client”).
These start phases are also reported in the start_phase column of the ndbinfo.nodes table.

Start types.  There are several different startup types and modes, as shown in the following list:

• Initial start.  The cluster starts with a clean file system on all data nodes. This occurs either when
the cluster started for the very first time, or when all data nodes are restarted using the --initial
option.

Note

Disk Data files are not removed when restarting a node using --initial.

• System restart.  The cluster starts and reads data stored in the data nodes. This occurs when
the cluster has been shut down after having been in use, when it is desired for the cluster to resume
operations from the point where it left off.

• Node restart.  This is the online restart of a cluster node while the cluster itself is running.

• Initial node restart.  This is the same as a node restart, except that the node is reinitialized and
started with a clean file system.

Setup and initialization (phase -1).  Prior to startup, each data node (ndbd process) must be
initialized. Initialization consists of the following steps:

1. Obtain a node ID

2. Fetch configuration data

3. Allocate ports to be used for inter-node communications

4. Allocate memory according to settings obtained from the configuration file

When a data node or SQL node first connects to the management node, it reserves a cluster node
ID. To make sure that no other node allocates the same node ID, this ID is retained until the node has
managed to connect to the cluster and at least one ndbd reports that this node is connected. This
retention of the node ID is guarded by the connection between the node in question and ndb_mgmd.

After each data node has been initialized, the cluster startup process can proceed. The stages which
the cluster goes through during this process are listed here:

• Phase 0.  The NDBFS and NDBCNTR blocks start (see NDB Kernel Blocks). Data node file systems
are cleared on those data nodes that were started with --initial option.

• Phase 1.  In this stage, all remaining NDB kernel blocks are started. NDB Cluster connections are
set up, inter-block communications are established, and heartbeats are started. In the case of a node
restart, API node connections are also checked.

http://dev.mysql.com/doc/mysql-cluster-manager/1.3/en/
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html


Commands in the NDB Cluster Management Client

2304

Note

When one or more nodes hang in Phase 1 while the remaining node or
nodes hang in Phase 2, this often indicates network problems. One possible
cause of such issues is one or more cluster hosts having multiple network
interfaces. Another common source of problems causing this condition is the
blocking of TCP/IP ports needed for communications between cluster nodes.
In the latter case, this is often due to a misconfigured firewall.

• Phase 2.  The NDBCNTR kernel block checks the states of all existing nodes. The master node is
chosen, and the cluster schema file is initialized.

• Phase 3.  The DBLQH and DBTC kernel blocks set up communications between them. The startup
type is determined; if this is a restart, the DBDIH block obtains permission to perform the restart.

• Phase 4.  For an initial start or initial node restart, the redo log files are created. The number of
these files is equal to NoOfFragmentLogFiles.

For a system restart:

• Read schema or schemas.

• Read data from the local checkpoint.

• Apply all redo information until the latest restorable global checkpoint has been reached.

For a node restart, find the tail of the redo log.

• Phase 5.  Most of the database-related portion of a data node start is performed during this phase.
For an initial start or system restart, a local checkpoint is executed, followed by a global checkpoint.
Periodic checks of memory usage begin during this phase, and any required node takeovers are
performed.

• Phase 6.  In this phase, node groups are defined and set up.

• Phase 7.  The arbitrator node is selected and begins to function. The next backup ID is set, as
is the backup disk write speed. Nodes reaching this start phase are marked as Started. It is now
possible for API nodes (including SQL nodes) to connect to the cluster.

• Phase 8.  If this is a system restart, all indexes are rebuilt (by DBDIH).

• Phase 9.  The node internal startup variables are reset.

• Phase 100 (OBSOLETE).  Formerly, it was at this point during a node restart or initial node restart
that API nodes could connect to the node and begin to receive events. Currently, this phase is
empty.

• Phase 101.  At this point in a node restart or initial node restart, event delivery is handed over to
the node joining the cluster. The newly-joined node takes over responsibility for delivering its primary
data to subscribers. This phase is also referred to as SUMA handover phase.

After this process is completed for an initial start or system restart, transaction handling is enabled. For
a node restart or initial node restart, completion of the startup process means that the node may now
act as a transaction coordinator.

18.5.2 Commands in the NDB Cluster Management Client

In addition to the central configuration file, a cluster may also be controlled through a command-
line interface available through the management client ndb_mgm. This is the primary administrative
interface to a running cluster.



Commands in the NDB Cluster Management Client

2305

Commands for the event logs are given in Section 18.5.6, “Event Reports Generated in NDB Cluster”;
commands for creating backups and restoring from them are provided in Section 18.5.3, “Online
Backup of NDB Cluster”.

Using ndb_mgm with MySQL Cluster Manager.    MySQL Cluster Manager handles starting
and stopping processes and tracks their states internally, so it is not necessary to use ndb_mgm for
these tasks for an NDB Cluster that is under MySQL Cluster Manager control. it is recommended
not to use the ndb_mgm command-line client that comes with the NDB Cluster distribution to perform
operations that involve starting or stopping nodes. These include but are not limited to the START,
STOP, RESTART, and SHUTDOWN commands. For more information, see MySQL Cluster Manager
Process Commands.

The management client has the following basic commands. In the listing that follows, node_id denotes
either a database node ID or the keyword ALL, which indicates that the command should be applied to
all of the cluster's data nodes.

•   HELP

Displays information on all available commands.

•   CONNECT connection-string

Connects to the management server indicated by the connection string. If the client is already
connected to this server, the client reconnects.

•   SHOW

Displays information on the cluster's status. Possible node status values include UNKNOWN,
NO_CONTACT, NOT_STARTED, STARTING, STARTED, SHUTTING_DOWN, and RESTARTING. The
output from this command also indicates when the cluster is in single user mode (status SINGLE
USER MODE).

•   node_id START

Brings online the data node identified by node_id (or all data nodes).

ALL START works on all data nodes only, and does not affect management nodes.

Important

To use this command to bring a data node online, the data node must have
been started using --nostart or -n.

•   node_id STOP [-a] [-f]

Stops the data or management node identified by node_id.

Note

ALL STOP works to stop all data nodes only, and does not affect
management nodes.

A node affected by this command disconnects from the cluster, and its associated ndbd or
ndb_mgmd process terminates.

The -a option causes the node to be stopped immediately, without waiting for the completion of any
pending transactions.

Normally, STOP fails if the result would cause an incomplete cluster. The -f option forces the node
to shut down without checking for this. If this option is used and the result is an incomplete cluster,
the cluster immediately shuts down.

http://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-process-commands.html
http://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-process-commands.html


Commands in the NDB Cluster Management Client

2306

Warning

Use of the -a option also disables the safety check otherwise performed
when STOP is invoked to insure that stopping the node does not cause an
incomplete cluster. In other words, you should exercise extreme care when
using the -a option with the STOP command, due to the fact that this option
makes it possible for the cluster to undergo a forced shutdown because it no
longer has a complete copy of all data stored in NDB.

•   node_id RESTART [-n] [-i] [-a] [-f]

Restarts the data node identified by node_id (or all data nodes).

Using the -i option with RESTART causes the data node to perform an initial restart; that is, the
node's file system is deleted and recreated. The effect is the same as that obtained from stopping the
data node process and then starting it again using ndbd --initial from the system shell.

Note

Backup files and Disk Data files are not removed when this option is used.

Using the -n option causes the data node process to be restarted, but the data node is not actually
brought online until the appropriate START command is issued. The effect of this option is the same
as that obtained from stopping the data node and then starting it again using ndbd --nostart or
ndbd -n from the system shell.

Using the -a causes all current transactions relying on this node to be aborted. No GCP check is
done when the node rejoins the cluster.

Normally, RESTART fails if taking the node offline would result in an incomplete cluster. The -f
option forces the node to restart without checking for this. If this option is used and the result is an
incomplete cluster, the entire cluster is restarted.

•   node_id STATUS

Displays status information for the data node identified by node_id (or for all data nodes).

The output from this command also indicates when the cluster is in single user mode.

•   node_id REPORT report-type

Displays a report of type report-type for the data node identified by node_id, or for all data
nodes using ALL.

Currently, there are three accepted values for report-type:

• BackupStatus provides a status report on a cluster backup in progress

• MemoryUsage displays how much data memory and index memory is being used by each data
node as shown in this example:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(177 32K pages of total 3200)
Node 1: Index usage is 0%(108 8K pages of total 12832)
Node 2: Data usage is 5%(177 32K pages of total 3200)
Node 2: Index usage is 0%(108 8K pages of total 12832)

This information is also available from the ndbinfo.memoryusage table.



Commands in the NDB Cluster Management Client

2307

• EventLog reports events from the event log buffers of one or more data nodes.

report-type is case-insensitive and “fuzzy”; for MemoryUsage, you can use MEMORY (as shown in
the prior example), memory, or even simply MEM (or mem). You can abbreviate BackupStatus in a
similar fashion.

Prior to NDB 7.2.10, ALL REPORT BackupStatus did not work correctly with multi-threaded data
nodes. (Bug #15908907)

•     ENTER SINGLE USER MODE node_id

Enters single user mode, whereby only the MySQL server identified by the node ID node_id is
permitted to access the database.

Currently, it is not possible for data nodes to join an NDB Cluster while it is running in single user
mode. (Bug #20395)

•   EXIT SINGLE USER MODE

Exits single user mode, enabling all SQL nodes (that is, all running mysqld processes) to access the
database.

Note

It is possible to use EXIT SINGLE USER MODE even when not in single user
mode, although the command has no effect in this case.

•     QUIT, EXIT

Terminates the management client.

This command does not affect any nodes connected to the cluster.

•   SHUTDOWN

Shuts down all cluster data nodes and management nodes. To exit the management client after this
has been done, use EXIT or QUIT.

This command does not shut down any SQL nodes or API nodes that are connected to the cluster.

•   CREATE NODEGROUP nodeid[, nodeid, ...]

Creates a new NDB Cluster node group and causes data nodes to join it.

This command is used after adding new data nodes online to an NDB Cluster, and causes them to
join a new node group and thus to begin participating fully in the cluster. The command takes as its
sole parameter a comma-separated list of node IDs—these are the IDs of the nodes just added and
started that are to join the new node group. The number of nodes must be the same as the number
of nodes in each node group that is already part of the cluster (each NDB Cluster node group must
have the same number of nodes). In other words, if the NDB Cluster has 2 node groups of 2 data
nodes each, then the new node group must also have 2 data nodes.

The node group ID of the new node group created by this command is determined automatically, and
always the next highest unused node group ID in the cluster; it is not possible to set it manually.

For more information, see Section 18.5.13, “Adding NDB Cluster Data Nodes Online”.

•   DROP NODEGROUP nodegroup_id

Drops the NDB Cluster node group with the given nodegroup_id.



Online Backup of NDB Cluster

2308

This command can be used to drop a node group from an NDB Cluster. DROP NODEGROUP takes as
its sole argument the node group ID of the node group to be dropped.

DROP NODEGROUP acts only to remove the data nodes in the effected node group from that node
group. It does not stop data nodes, assign them to a different node group, or remove them from the
cluster's configuration. A data node that does not belong to a node group is indicated in the output of
the management client SHOW command with no nodegroup in place of the node group ID, like this
(indicated using bold text):

id=3    @10.100.2.67  (5.5.56-ndb-7.2.30, no nodegroup)

Prior to NDB 7.0.4, the SHOW output was not updated correctly following DROP NODEGROUP. (Bug
#43413)

DROP NODEGROUP works only when all data nodes in the node group to be dropped are completely
empty of any table data and table definitions. Since there is currently no way using ndb_mgm or
the mysql client to remove all data from a specific data node or node group, this means that the
command succeeds only in the two following cases:

1. After issuing CREATE NODEGROUP in the ndb_mgm client, but before issuing any ALTER ONLINE
TABLE ... REORGANIZE PARTITION statements in the mysql client.

2. After dropping all NDBCLUSTER tables using DROP TABLE.

TRUNCATE TABLE does not work for this purpose because this removes only the table data; the
data nodes continue to store an NDBCLUSTER table's definition until a DROP TABLE statement is
issued that causes the table metadata to be dropped.

For more information about DROP NODEGROUP, see Section 18.5.13, “Adding NDB Cluster Data
Nodes Online”.

Additional commands.  A number of other commands available in the ndb_mgm client are
described elsewhere, as shown in the following list:

• START BACKUP is used to perform an online backup in the ndb_mgm client; the ABORT BACKUP
command is used to cancel a backup already in progress. For more information, see Section 18.5.3,
“Online Backup of NDB Cluster”.

• The CLUSTERLOG command is used to perform various logging functions. See Section 18.5.6, “Event
Reports Generated in NDB Cluster”, for more information and examples.

• For testing and diagnostics work, the client also supports a DUMP command which can be used to
execute internal commands on the cluster. It should never be used in a production setting unless
directed to do so by MySQL Support. For more information, see MySQL NDB Cluster Internals
Manual.

18.5.3 Online Backup of NDB Cluster

The next few sections describe how to prepare for and then to create an NDB Cluster backup using
the functionality for this purpose found in the ndb_mgm management client. To distinguish this type
of backup from a backup made using mysqldump, we sometimes refer to it as a “native” NDB
Cluster backup. (For information about the creation of backups with mysqldump, see Section 4.5.4,
“mysqldump — A Database Backup Program”.) Restoration of NDB Cluster backups is done using the
ndb_restore utility provided with the NDB Cluster distribution; for information about ndb_restore
and its use in restoring NDB Cluster backups, see Section 18.4.21, “ndb_restore — Restore an NDB
Cluster Backup”.

18.5.3.1 NDB Cluster Backup Concepts

A backup is a snapshot of the database at a given time. The backup consists of three main parts:

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-dump-commands.html
http://dev.mysql.com/doc/ndb-internals/en/
http://dev.mysql.com/doc/ndb-internals/en/


Online Backup of NDB Cluster

2309

• Metadata.  The names and definitions of all database tables

• Table records.  The data actually stored in the database tables at the time that the backup was
made

• Transaction log.  A sequential record telling how and when data was stored in the database

Each of these parts is saved on all nodes participating in the backup. During backup, each node saves
these three parts into three files on disk:

• BACKUP-backup_id.node_id.ctl

A control file containing control information and metadata. Each node saves the same table
definitions (for all tables in the cluster) to its own version of this file.

• BACKUP-backup_id-0.node_id.data

A data file containing the table records, which are saved on a per-fragment basis. That is, different
nodes save different fragments during the backup. The file saved by each node starts with a header
that states the tables to which the records belong. Following the list of records there is a footer
containing a checksum for all records.

• BACKUP-backup_id.node_id.log

A log file containing records of committed transactions. Only transactions on tables stored in the
backup are stored in the log. Nodes involved in the backup save different records because different
nodes host different database fragments.

In the listing just shown, backup_id stands for the backup identifier and node_id is the unique
identifier for the node creating the file.

The location of the backup files is determined by the BackupDataDir parameter.

18.5.3.2 Using The NDB Cluster Management Client to Create a Backup

Before starting a backup, make sure that the cluster is properly configured for performing one. (See
Section 18.5.3.3, “Configuration for NDB Cluster Backups”.)

The START BACKUP command is used to create a backup:

START BACKUP [backup_id] [wait_option] [snapshot_option]

wait_option:
WAIT {STARTED | COMPLETED} | NOWAIT

snapshot_option:
SNAPSHOTSTART | SNAPSHOTEND

Successive backups are automatically identified sequentially, so the backup_id, an integer greater
than or equal to 1, is optional; if it is omitted, the next available value is used. If an existing backup_id
value is used, the backup fails with the error Backup failed: file already exists. If used, the
backup_id must follow START BACKUP immediately, before any other options are used.

The wait_option can be used to determine when control is returned to the management client after
a START BACKUP command is issued, as shown in the following list:

•   If NOWAIT is specified, the management client displays a prompt immediately, as seen here:

ndb_mgm> START BACKUP NOWAIT
ndb_mgm>

In this case, the management client can be used even while it prints progress information from the
backup process.



Online Backup of NDB Cluster

2310

•   With WAIT STARTED the management client waits until the backup has started before returning
control to the user, as shown here:

ndb_mgm> START BACKUP WAIT STARTED
Waiting for started, this may take several minutes
Node 2: Backup 3 started from node 1
ndb_mgm>

•   WAIT COMPLETED causes the management client to wait until the backup process is complete
before returning control to the user.

WAIT COMPLETED is the default.

    A snapshot_option can be used to determine whether the backup matches the state of the
cluster when START BACKUP was issued, or when it was completed. SNAPSHOTSTART causes the
backup to match the state of the cluster when the backup began; SNAPSHOTEND causes the backup
to reflect the state of the cluster when the backup was finished. SNAPSHOTEND is the default, and
matches the behavior found in previous NDB Cluster releases.

Note

If you use the SNAPSHOTSTART option with START BACKUP, and the
CompressedBackup parameter is enabled, only the data and control files are
compressed—the log file is not compressed.

If both a wait_option and a snapshot_option are used, they may be specified in either order. For
example, all of the following commands are valid, assuming that there is no existing backup having 4
as its ID:

START BACKUP WAIT STARTED SNAPSHOTSTART
START BACKUP SNAPSHOTSTART WAIT STARTED
START BACKUP 4 WAIT COMPLETED SNAPSHOTSTART
START BACKUP SNAPSHOTEND WAIT COMPLETED
START BACKUP 4 NOWAIT SNAPSHOTSTART

The procedure for creating a backup consists of the following steps:

1. Start the management client (ndb_mgm), if it not running already.

2. Execute the START BACKUP command. This produces several lines of output indicating the
progress of the backup, as shown here:

ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 2: Backup 1 started from node 1
Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes
ndb_mgm>

3.   When the backup has started the management client displays this message:

Backup backup_id started from node node_id

backup_id is the unique identifier for this particular backup. This identifier is saved in the cluster
log, if it has not been configured otherwise. node_id is the identifier of the management server
that is coordinating the backup with the data nodes. At this point in the backup process the cluster
has received and processed the backup request. It does not mean that the backup has finished. An
example of this statement is shown here:



Online Backup of NDB Cluster

2311

Node 2: Backup 1 started from node 1

4. The management client indicates with a message like this one that the backup has started:

Backup backup_id started from node node_id completed

As is the case for the notification that the backup has started, backup_id is the unique identifier
for this particular backup, and node_id is the node ID of the management server that is
coordinating the backup with the data nodes. This output is accompanied by additional information
including relevant global checkpoints, the number of records backed up, and the size of the data, as
shown here:

Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes

It is also possible to perform a backup from the system shell by invoking ndb_mgm with the -e or --
execute option, as shown in this example:

shell> ndb_mgm -e "START BACKUP 6 WAIT COMPLETED SNAPSHOTSTART"

When using START BACKUP in this way, you must specify the backup ID.

Cluster backups are created by default in the BACKUP subdirectory of the DataDir on each data node.
This can be overridden for one or more data nodes individually, or for all cluster data nodes in the
config.ini file using the BackupDataDir configuration parameter. The backup files created for
a backup with a given backup_id are stored in a subdirectory named BACKUP-backup_id in the
backup directory.

Cancelling backups.  To cancel or abort a backup that is already in progress, perform the following
steps:

1. Start the management client.

2. Execute this command:

ndb_mgm> ABORT BACKUP backup_id

The number backup_id is the identifier of the backup that was included in the response of the
management client when the backup was started (in the message Backup backup_id started
from node management_node_id).

3. The management client will acknowledge the abort request with Abort of backup backup_id
ordered.

Note

At this point, the management client has not yet received a response from
the cluster data nodes to this request, and the backup has not yet actually
been aborted.

4. After the backup has been aborted, the management client will report this fact in a manner similar
to what is shown here:

Node 1: Backup 3 started from 5 has been aborted.
  Error: 1321 - Backup aborted by user request: Permanent error: User defined error
Node 3: Backup 3 started from 5 has been aborted.
  Error: 1323 - 1323: Permanent error: Internal error
Node 2: Backup 3 started from 5 has been aborted.



Online Backup of NDB Cluster

2312

  Error: 1323 - 1323: Permanent error: Internal error
Node 4: Backup 3 started from 5 has been aborted.
  Error: 1323 - 1323: Permanent error: Internal error

In this example, we have shown sample output for a cluster with 4 data nodes, where the
sequence number of the backup to be aborted is 3, and the management node to which the cluster
management client is connected has the node ID 5. The first node to complete its part in aborting
the backup reports that the reason for the abort was due to a request by the user. (The remaining
nodes report that the backup was aborted due to an unspecified internal error.)

Note

There is no guarantee that the cluster nodes respond to an ABORT BACKUP
command in any particular order.

The Backup backup_id started from node management_node_id has been aborted
messages mean that the backup has been terminated and that all files relating to this backup have
been removed from the cluster file system.

It is also possible to abort a backup in progress from a system shell using this command:

shell> ndb_mgm -e "ABORT BACKUP backup_id"

Note

If there is no backup having the ID backup_id running when an ABORT
BACKUP is issued, the management client makes no response, nor is it indicated
in the cluster log that an invalid abort command was sent.

18.5.3.3 Configuration for NDB Cluster Backups

Five configuration parameters are essential for backup:

•  BackupDataBufferSize

The amount of memory used to buffer data before it is written to disk.

•  BackupLogBufferSize

The amount of memory used to buffer log records before these are written to disk.

•  BackupMemory

The total memory allocated in a data node for backups. This should be the sum of the memory
allocated for the backup data buffer and the backup log buffer.

•  BackupWriteSize

The default size of blocks written to disk. This applies for both the backup data buffer and the backup
log buffer.

•  BackupMaxWriteSize

The maximum size of blocks written to disk. This applies for both the backup data buffer and the
backup log buffer.

More detailed information about these parameters can be found in Backup Parameters.

You can also set a location for the backup files using the BackupDataDir configuration parameter.
The default is FileSystemPath/BACKUP/BACKUP-backup_id.

18.5.3.4 NDB Cluster Backup Troubleshooting



MySQL Server Usage for NDB Cluster

2313

If an error code is returned when issuing a backup request, the most likely cause is insufficient memory
or disk space. You should check that there is enough memory allocated for the backup.

Important

If you have set BackupDataBufferSize and BackupLogBufferSize and
their sum is greater than 4MB, then you must also set BackupMemory as well.

You should also make sure that there is sufficient space on the hard drive partition of the backup
target.

NDB does not support repeatable reads, which can cause problems with the restoration process.
Although the backup process is “hot”, restoring an NDB Cluster from backup is not a 100% “hot”
process. This is due to the fact that, for the duration of the restore process, running transactions get
nonrepeatable reads from the restored data. This means that the state of the data is inconsistent while
the restore is in progress.

18.5.4 MySQL Server Usage for NDB Cluster

mysqld is the traditional MySQL server process. To be used with NDB Cluster, mysqld needs to
be built with support for the NDB storage engine, as it is in the precompiled binaries available from
http://dev.mysql.com/downloads/. If you build MySQL from source, you must invoke CMake with the -
DWITH_NDBCLUSTER=1 option to include support for NDB.

For more information about compiling NDB Cluster from source, see Section 18.2.1.4, “Building NDB
Cluster from Source on Linux”, and Section 18.2.2.2, “Compiling and Installing NDB Cluster from
Source on Windows”.

(For information about mysqld options and variables, in addition to those discussed in this section,
which are relevant to NDB Cluster, see Section 18.3.3.8, “MySQL Server Options and Variables for
NDB Cluster”.)

If the mysqld binary has been built with Cluster support, the NDBCLUSTER storage engine is still
disabled by default. You can use either of two possible options to enable this engine:

• Use --ndbcluster as a startup option on the command line when starting mysqld.

• Insert a line containing ndbcluster in the [mysqld] section of your my.cnf file.

An easy way to verify that your server is running with the NDBCLUSTER storage engine enabled is to
issue the SHOW ENGINES statement in the MySQL Monitor (mysql). You should see the value YES
as the Support value in the row for NDBCLUSTER. If you see NO in this row or if there is no such row
displayed in the output, you are not running an NDB-enabled version of MySQL. If you see DISABLED
in this row, you need to enable it in either one of the two ways just described.

To read cluster configuration data, the MySQL server requires at a minimum three pieces of
information:

• The MySQL server's own cluster node ID

• The host name or IP address for the management server (MGM node)

• The number of the TCP/IP port on which it can connect to the management server

Node IDs can be allocated dynamically, so it is not strictly necessary to specify them explicitly.

The mysqld parameter ndb-connectstring is used to specify the connection string either on the
command line when starting mysqld or in my.cnf. The connection string contains the host name or IP
address where the management server can be found, as well as the TCP/IP port it uses.

In the following example, ndb_mgmd.mysql.com is the host where the management server resides,
and the management server listens for cluster messages on port 1186:

http://dev.mysql.com/downloads/


Performing a Rolling Restart of an NDB Cluster

2314

shell> mysqld --ndbcluster --ndb-connectstring=ndb_mgmd.mysql.com:1186

See Section 18.3.3.3, “NDB Cluster Connection Strings”, for more information on connection strings.

Given this information, the MySQL server will be a full participant in the cluster. (We often refer to a
mysqld process running in this manner as an SQL node.) It will be fully aware of all cluster data nodes
as well as their status, and will establish connections to all data nodes. In this case, it is able to use any
data node as a transaction coordinator and to read and update node data.

You can see in the mysql client whether a MySQL server is connected to the cluster using SHOW
PROCESSLIST. If the MySQL server is connected to the cluster, and you have the PROCESS privilege,
then the first row of the output is as shown here:

mysql> SHOW PROCESSLIST \G
*************************** 1. row ***************************
     Id: 1
   User: system user
   Host:
     db:
Command: Daemon
   Time: 1
  State: Waiting for event from ndbcluster
   Info: NULL

Important

To participate in an NDB Cluster, the mysqld process must be started with both
the options --ndbcluster and --ndb-connectstring (or their equivalents
in my.cnf). If mysqld is started with only the --ndbcluster option, or if it
is unable to contact the cluster, it is not possible to work with NDB tables, nor
is it possible to create any new tables regardless of storage engine. The latter
restriction is a safety measure intended to prevent the creation of tables having
the same names as NDB tables while the SQL node is not connected to the
cluster. If you wish to create tables using a different storage engine while the
mysqld process is not participating in an NDB Cluster, you must restart the
server without the --ndbcluster option.

18.5.5 Performing a Rolling Restart of an NDB Cluster

This section discusses how to perform a rolling restart of an NDB Cluster installation, so called
because it involves stopping and starting (or restarting) each node in turn, so that the cluster itself
remains operational. This is often done as part of a rolling upgrade or rolling downgrade, where high
availability of the cluster is mandatory and no downtime of the cluster as a whole is permissible. Where
we refer to upgrades, the information provided here also generally applies to downgrades as well.

There are a number of reasons why a rolling restart might be desirable. These are described in the
next few paragraphs.

Configuration change. 
To make a change in the cluster's configuration, such as adding an SQL node to the cluster, or setting
a configuration parameter to a new value.

NDB Cluster software upgrade or downgrade.  To upgrade the cluster to a newer version of the
NDB Cluster software (or to downgrade it to an older version). This is usually referred to as a “rolling
upgrade” (or “rolling downgrade”, when reverting to an older version of NDB Cluster).

Change on node host.  To make changes in the hardware or operating system on which one or
more NDB Cluster node processes are running.

System reset (cluster reset). 



Performing a Rolling Restart of an NDB Cluster

2315

To reset the cluster because it has reached an undesirable state. In such cases it is often desirable to
reload the data and metadata of one or more data nodes. This can be done in any of three ways:

• Start each data node process (ndbd or possibly ndbmtd) with the --initial option, which forces
the data node to clear its file system and to reload all NDB Cluster data and metadata from the other
data nodes.

• Create a backup using the ndb_mgm client START BACKUP command prior to performing the restart.
Following the upgrade, restore the node or nodes using ndb_restore.

See Section 18.5.3, “Online Backup of NDB Cluster”, and Section 18.4.21, “ndb_restore —
Restore an NDB Cluster Backup”, for more information.

• Use mysqldump to create a backup prior to the upgrade; afterward, restore the dump using LOAD
DATA INFILE.

Resource Recovery. 
To free memory previously allocated to a table by successive INSERT and DELETE operations, for re-
use by other NDB Cluster tables.

The process for performing a rolling restart may be generalized as follows:

1. Stop all cluster management nodes (ndb_mgmd processes), reconfigure them, then restart them.
(See Rolling restarts with multiple management servers.)

2. Stop, reconfigure, then restart each cluster data node (ndbd process) in turn.

3. Stop, reconfigure, then restart each cluster SQL node (mysqld process) in turn.

The specifics for implementing a given rolling upgrade depend upon the changes being made. A more
detailed view of the process is presented here:

Figure 18.6 NDB Cluster Rolling Restarts By Type



Event Reports Generated in NDB Cluster

2316

In the previous diagram, the Stop and Start steps indicate that the process must be stopped
completely using a shell command (such as kill on most Unix systems) or the management client
STOP command, then started again from a system shell by invoking the ndbd or ndb_mgmd executable
as appropriate. On Windows, you can also use the system NET START and NET STOP commands or
the Windows Service Manager to start and stop nodes which have been installed as Windows services
(see Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”).

Restart indicates that the process may be restarted using the ndb_mgm management client RESTART
command.

NDB Cluster supports a flexible order for upgrading nodes. When upgrading an NDB Cluster, you may
upgrade API nodes (including SQL nodes) before upgrading the management nodes, data nodes, or
both. In other words, you are permitted to upgrade the API and SQL nodes in any order. This is subject
to the following provisions:

• This functionality is intended for use as part of an online upgrade only. A mix of node binaries from
different NDB Cluster releases is neither intended nor supported for continuous, long-term use in a
production setting.

• All management nodes must be upgraded before any data nodes are upgraded. This remains true
regardless of the order in which you upgrade the cluster's API and SQL nodes.

• Features specific to the “new” version must not be used until all management nodes and data nodes
have been upgraded.

This also applies to any MySQL Server version change that may apply, in addition to the NDB engine
version change, so do not forget to take this into account when planning the upgrade. (This is true for
online upgrades of NDB Cluster in general.)

See also Bug #48528 and Bug #49163.

Note

It is not possible for any API node to perform schema operations (such as data
definition statements) during a node restart.

Rolling restarts with multiple management servers.    When performing a rolling restart of an
NDB Cluster with multiple management nodes, you should keep in mind that ndb_mgmd checks to see
if any other management node is running, and, if so, tries to use that node's configuration data. To
keep this from occurring, and to force ndb_mgmd to reread its configuration file, perform the following
steps:

1. Stop all NDB Cluster ndb_mgmd processes.

2. Update all config.ini files.

3. Start a single ndb_mgmd with --reload, --initial, or both options as desired.

4. If you started the first ndb_mgmd with the --initial option, you must also start any remaining
ndb_mgmd processes using --initial.

Regardless of any other options used when starting the first ndb_mgmd, you should not start any
remaining ndb_mgmd processes after the first one using --reload.

5. Complete the rolling restarts of the data nodes and API nodes as normal.

When performing a rolling restart to update the cluster's configuration, you can use the
config_generation column of the ndbinfo.nodes table to keep track of which data nodes have
been successfully restarted with the new configuration. See Section 18.5.10.13, “The ndbinfo nodes
Table”.

18.5.6 Event Reports Generated in NDB Cluster



Event Reports Generated in NDB Cluster

2317

In this section, we discuss the types of event logs provided by NDB Cluster, and the types of events
that are logged.

NDB Cluster provides two types of event log:

• The cluster log, which includes events generated by all cluster nodes. The cluster log is the log
recommended for most uses because it provides logging information for an entire cluster in a single
location.

By default, the cluster log is saved to a file named ndb_node_id_cluster.log, (where node_id
is the node ID of the management server) in the management server's DataDir.

Cluster logging information can also be sent to stdout or a syslog facility in addition to or instead
of being saved to a file, as determined by the values set for the DataDir and LogDestination
configuration parameters. See Section 18.3.3.5, “Defining an NDB Cluster Management Server”, for
more information about these parameters.

• Node logs are local to each node.

Output generated by node event logging is written to the file ndb_node_id_out.log (where
node_id is the node's node ID) in the node's DataDir. Node event logs are generated for both
management nodes and data nodes.

Node logs are intended to be used only during application development, or for debugging application
code.

Both types of event logs can be set to log different subsets of events.

Each reportable event can be distinguished according to three different criteria:

• Category: This can be any one of the following values: STARTUP, SHUTDOWN, STATISTICS,
CHECKPOINT, NODERESTART, CONNECTION, ERROR, or INFO.

• Priority: This is represented by one of the numbers from 0 to 15 inclusive, where 0 indicates “most
important” and 15 “least important.”

• Severity Level: This can be any one of the following values: ALERT, CRITICAL, ERROR, WARNING,
INFO, or DEBUG.

Both the cluster log and the node log can be filtered on these properties.

The format used in the cluster log is as shown here:

2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 1: Data usage is 2%(60 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 1: Index usage is 1%(24 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 1: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 2: Data usage is 2%(76 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 2: Index usage is 1%(24 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 2: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 3: Data usage is 2%(58 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 3: Index usage is 1%(25 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 3: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 4: Data usage is 2%(74 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 4: Index usage is 1%(25 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO     -- Node 4: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:39:42 [MgmSrvr] INFO     -- Node 4: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO     -- Node 1: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO     -- Node 1: Node 9: API 5.5.56-ndb-7.2.30
2007-01-26 19:39:42 [MgmSrvr] INFO     -- Node 2: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO     -- Node 2: Node 9: API 5.5.56-ndb-7.2.30
2007-01-26 19:39:42 [MgmSrvr] INFO     -- Node 3: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO     -- Node 3: Node 9: API 5.5.56-ndb-7.2.30
2007-01-26 19:39:42 [MgmSrvr] INFO     -- Node 4: Node 9: API 5.5.56-ndb-7.2.30
2007-01-26 19:59:22 [MgmSrvr] ALERT    -- Node 2: Node 7 Disconnected



Event Reports Generated in NDB Cluster

2318

2007-01-26 19:59:22 [MgmSrvr] ALERT    -- Node 2: Node 7 Disconnected

Each line in the cluster log contains the following information:

• A timestamp in YYYY-MM-DD HH:MM:SS format.

• The type of node which is performing the logging. In the cluster log, this is always [MgmSrvr].

• The severity of the event.

• The ID of the node reporting the event.

• A description of the event. The most common types of events to appear in the log are connections
and disconnections between different nodes in the cluster, and when checkpoints occur. In some
cases, the description may contain status information.

18.5.6.1 NDB Cluster Logging Management Commands

ndb_mgm supports a number of management commands related to the cluster log. In the listing that
follows, node_id denotes either a database node ID or the keyword ALL, which indicates that the
command should be applied to all of the cluster's data nodes.

• CLUSTERLOG ON

Turns the cluster log on.

• CLUSTERLOG OFF

Turns the cluster log off.

• CLUSTERLOG INFO

Provides information about cluster log settings.

• node_id CLUSTERLOG category=threshold

Logs category events with priority less than or equal to threshold in the cluster log.

• CLUSTERLOG FILTER severity_level

Toggles cluster logging of events of the specified severity_level.

The following table describes the default setting (for all data nodes) of the cluster log category
threshold. If an event has a priority with a value lower than or equal to the priority threshold, it is
reported in the cluster log.

Note

Events are reported per data node, and that the threshold can be set to different
values on different nodes.

Category Default threshold (All data nodes)

STARTUP 7

SHUTDOWN 7

STATISTICS 7

CHECKPOINT 7

NODERESTART 7

CONNECTION 7

ERROR 15



Event Reports Generated in NDB Cluster

2319

Category Default threshold (All data nodes)

INFO 7

The STATISTICS category can provide a great deal of useful data. See Section 18.5.6.3, “Using
CLUSTERLOG STATISTICS in the NDB Cluster Management Client”, for more information.

Thresholds are used to filter events within each category. For example, a STARTUP event with a priority
of 3 is not logged unless the threshold for STARTUP is set to 3 or higher. Only events with priority 3 or
lower are sent if the threshold is 3.

The following table shows the event severity levels.

Note

These correspond to Unix syslog levels, except for LOG_EMERG and
LOG_NOTICE, which are not used or mapped.

Severity Level
Value

Severity Description

1 ALERT A condition that should be corrected immediately, such as a
corrupted system database

2 CRITICAL Critical conditions, such as device errors or insufficient
resources

3 ERROR Conditions that should be corrected, such as configuration
errors

4 WARNING Conditions that are not errors, but that might require special
handling

5 INFO Informational messages

6 DEBUG Debugging messages used for NDBCLUSTER development

Event severity levels can be turned on or off (using CLUSTERLOG FILTER—see above). If a severity
level is turned on, then all events with a priority less than or equal to the category thresholds are
logged. If the severity level is turned off then no events belonging to that severity level are logged.

Important

Cluster log levels are set on a per ndb_mgmd, per subscriber basis. This
means that, in an NDB Cluster with multiple management servers, using
a CLUSTERLOG command in an instance of ndb_mgm connected to one
management server affects only logs generated by that management server but
not by any of the others. This also means that, should one of the management
servers be restarted, only logs generated by that management server are
affected by the resetting of log levels caused by the restart.

18.5.6.2 NDB Cluster Log Events

An event report reported in the event logs has the following format:

datetime [string] severity -- message

For example:

09:19:30 2005-07-24 [NDB] INFO -- Node 4 Start phase 4 completed

This section discusses all reportable events, ordered by category and severity level within each
category.



Event Reports Generated in NDB Cluster

2320

In the event descriptions, GCP and LCP mean “Global Checkpoint” and “Local Checkpoint”,
respectively.

CONNECTION Events

These events are associated with connections between Cluster nodes.

Event Priority Severity
Level

Description

Connected 8 INFO Data nodes connected

Disconnected 8 ALERT Data nodes disconnected

CommunicationClosed 8 INFO SQL node or data node connection closed

CommunicationOpened 8 INFO SQL node or data node connection open

ConnectedApiVersion 8 INFO Connection using API version

CHECKPOINT Events

The logging messages shown here are associated with checkpoints.

Event Priority Severity
Level

Description

GlobalCheckpointStarted 9 INFO Start of GCP: REDO log is written to disk

GlobalCheckpointCompleted 10 INFO GCP finished

LocalCheckpointStarted 7 INFO Start of LCP: data written to disk

LocalCheckpointCompleted 7 INFO LCP completed normally

LCPStoppedInCalcKeepGci 0 ALERT LCP stopped

LCPFragmentCompleted 11 INFO LCP on a fragment has been completed

UndoLogBlocked 7 INFO UNDO logging blocked; buffer near overflow

RedoStatus 7 INFO Redo status

STARTUP Events

The following events are generated in response to the startup of a node or of the cluster and of its
success or failure. They also provide information relating to the progress of the startup process,
including information concerning logging activities.

Event Priority Severity
Level

Description

NDBStartStarted 1 INFO Data node start phases initiated (all nodes
starting)

NDBStartCompleted 1 INFO Start phases completed, all data nodes

STTORRYRecieved 15 INFO Blocks received after completion of restart

StartPhaseCompleted 4 INFO Data node start phase X completed

CM_REGCONF 3 INFO Node has been successfully included into
the cluster; shows the node, managing node,
and dynamic ID

CM_REGREF 8 INFO Node has been refused for inclusion in the
cluster; cannot be included in cluster due
to misconfiguration, inability to establish
communication, or other problem

FIND_NEIGHBOURS 8 INFO Shows neighboring data nodes



Event Reports Generated in NDB Cluster

2321

Event Priority Severity
Level

Description

NDBStopStarted 1 INFO Data node shutdown initiated

NDBStopCompleted 1 INFO Data node shutdown complete

NDBStopForced 1 ALERT Forced shutdown of data node

NDBStopAborted 1 INFO Unable to shut down data node normally

StartREDOLog 4 INFO New redo log started; GCI keep X, newest
restorable GCI Y

StartLog 10 INFO New log started; log part X, start MB Y, stop
MB Z

UNDORecordsExecuted 15 INFO Undo records executed

StartReport 4 INFO Report started

LogFileInitStatus 7 INFO Log file initialization status

LogFileInitCompStatus 7 INFO Log file completion status

StartReadLCP 10 INFO Start read for local checkpoint

ReadLCPComplete 10 INFO Read for local checkpoint completed

RunRedo 8 INFO Running the redo log

RebuildIndex 10 INFO Rebuilding indexes

NODERESTART Events

The following events are generated when restarting a node and relate to the success or failure of the
node restart process.

Event Priority Severity
Level

Description

NR_CopyDict 7 INFO Completed copying of dictionary information

NR_CopyDistr 7 INFO Completed copying distribution information

NR_CopyFragsStarted 7 INFO Starting to copy fragments

NR_CopyFragDone 10 INFO Completed copying a fragment

NR_CopyFragsCompleted 7 INFO Completed copying all fragments

NodeFailCompleted 8 ALERT Node failure phase completed

NODE_FAILREP 8 ALERT Reports that a node has failed

ArbitState 6 INFO Report whether an arbitrator is found or not;
there are seven different possible outcomes
when seeking an arbitrator, listed here:

• Management server restarts arbitration
thread [state=X]

• Prepare arbitrator node X [ticket=Y]

• Receive arbitrator node X [ticket=Y]

• Started arbitrator node X [ticket=Y]

• Lost arbitrator node X - process failure
[state=Y]

• Lost arbitrator node X - process exit
[state=Y]



Event Reports Generated in NDB Cluster

2322

Event Priority Severity
Level

Description

• Lost arbitrator node X <error msg>
[state=Y]

ArbitResult 2 ALERT Report arbitrator results; there are eight
different possible results for arbitration
attempts, listed here:

• Arbitration check failed: less than 1/2
nodes left

• Arbitration check succeeded: node group
majority

• Arbitration check failed: missing node
group

• Network partitioning: arbitration required

• Arbitration succeeded: affirmative
response from node X

• Arbitration failed: negative response from
node X

• Network partitioning: no arbitrator available

• Network partitioning: no arbitrator
configured

GCP_TakeoverStarted 7 INFO GCP takeover started

GCP_TakeoverCompleted 7 INFO GCP takeover complete

LCP_TakeoverStarted 7 INFO LCP takeover started

LCP_TakeoverCompleted 7 INFO LCP takeover complete (state = X)

ConnectCheckStarted 6 INFO Connection check started

ConnectCheckCompleted 6 INFO Connection check completed

NodeFailRejected 6 ALERT Node failure phase failed

STATISTICS Events

The following events are of a statistical nature. They provide information such as numbers of
transactions and other operations, amount of data sent or received by individual nodes, and memory
usage.

Event Priority Severity
Level

Description

TransReportCounters 8 INFO Report transaction statistics, including
numbers of transactions, commits, reads,
simple reads, writes, concurrent operations,
attribute information, and aborts

OperationReportCounters 8 INFO Number of operations

TableCreated 7 INFO Report number of tables created

JobStatistic 9 INFO Mean internal job scheduling statistics

ThreadConfigLoop 9 INFO Number of thread configuration loops

SendBytesStatistic 9 INFO Mean number of bytes sent to node X



Event Reports Generated in NDB Cluster

2323

Event Priority Severity
Level

Description

ReceiveBytesStatistic 9 INFO Mean number of bytes received from node X

MemoryUsage 5 INFO Data and index memory usage (80%, 90%,
and 100%)

MTSignalStatistics 9 INFO Multi-threaded signals

SCHEMA Events

These events relate to NDB Cluster schema operations.

Event Priority Severity Description

CreateSchemaObject 8 INFO Schema objected created

AlterSchemaObject 8 INFO Schema object updated

DropSchemaObject 8 INFO Schema object dropped

ERROR Events

These events relate to Cluster errors and warnings. The presence of one or more of these generally
indicates that a major malfunction or failure has occurred.

Event Priority Severity Description

TransporterError 2 ERROR Transporter error

TransporterWarning 8 WARNING Transporter warning

MissedHeartbeat 8 WARNING Node X missed heartbeat number Y

DeadDueToHeartbeat 8 ALERT Node X declared “dead” due to missed
heartbeat

WarningEvent 2 WARNING General warning event

SubscriptionStatus 4 WARNING Change in subscription status

INFO Events

These events provide general information about the state of the cluster and activities associated with
Cluster maintenance, such as logging and heartbeat transmission.

Event Priority Severity Description

SentHeartbeat 12 INFO Sent heartbeat

CreateLogBytes 11 INFO Create log: Log part, log file, size in MB

InfoEvent 2 INFO General informational event

EventBufferStatus 7 INFO Event buffer status

Note

SentHeartbeat events are available only if NDB Cluster was compiled with
VM_TRACE enabled.

SINGLEUSER Events

These events are associated with entering and exiting single user mode.

Event Priority Severity Description

SingleUser 7 INFO Entering or exiting single user mode

BACKUP Events



Event Reports Generated in NDB Cluster

2324

These events provide information about backups being created or restored.

Event Priority Severity Description

BackupStarted 7 INFO Backup started

BackupStatus 7 INFO Backup status

BackupCompleted 7 INFO Backup completed

BackupFailedToStart 7 ALERT Backup failed to start

BackupAborted 7 ALERT Backup aborted by user

RestoreStarted 7 INFO Started restoring from backup

RestoreMetaData 7 INFO Restoring metadata

RestoreData 7 INFO Restoring data

RestoreLog 7 INFO Restoring log files

RestoreCompleted 7 INFO Completed restoring from backup

SavedEvent 7 INFO Event saved

18.5.6.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

The NDB management client's CLUSTERLOG STATISTICS command can provide a number of useful
statistics in its output. Counters providing information about the state of the cluster are updated at 5-
second reporting intervals by the transaction coordinator (TC) and the local query handler (LQH), and
written to the cluster log.

Transaction coordinator statistics.  Each transaction has one transaction coordinator, which is
chosen by one of the following methods:

• In a round-robin fashion

• By communication proximity

• By supplying a data placement hint when the transaction is started

Note

You can determine which TC selection method is used for transactions started
from a given SQL node using the ndb_optimized_node_selection system
variable.

All operations within the same transaction use the same transaction coordinator, which reports the
following statistics:

• Trans count.  This is the number transactions started in the last interval using this TC as the
transaction coordinator. Any of these transactions may have committed, have been aborted, or
remain uncommitted at the end of the reporting interval.

Note

Transactions do not migrate between TCs.

• Commit count.  This is the number of transactions using this TC as the transaction coordinator
that were committed in the last reporting interval. Because some transactions committed in this
reporting interval may have started in a previous reporting interval, it is possible for Commit count
to be greater than Trans count.

• Read count.  This is the number of primary key read operations using this TC as the transaction
coordinator that were started in the last reporting interval, including simple reads. This count



Event Reports Generated in NDB Cluster

2325

also includes reads performed as part of unique index operations. A unique index read operation
generates 2 primary key read operations—1 for the hidden unique index table, and 1 for the table on
which the read takes place.

• Simple read count.  This is the number of simple read operations using this TC as the transaction
coordinator that were started in the last reporting interval.

• Write count.  This is the number of primary key write operations using this TC as the transaction
coordinator that were started in the last reporting interval. This includes all inserts, updates, writes
and deletes, as well as writes performed as part of unique index operations.

Note

A unique index update operation can generate multiple PK read and write
operations on the index table and on the base table.

• AttrInfoCount.  This is the number of 32-bit data words received in the last reporting interval for
primary key operations using this TC as the transaction coordinator. For reads, this is proportional
to the number of columns requested. For inserts and updates, this is proportional to the number of
columns written, and the size of their data. For delete operations, this is usually zero.

Unique index operations generate multiple PK operations and so increase this count. However, data
words sent to describe the PK operation itself, and the key information sent, are not counted here.
Attribute information sent to describe columns to read for scans, or to describe ScanFilters, is also
not counted in AttrInfoCount.

• Concurrent Operations.  This is the number of primary key or scan operations using this TC
as the transaction coordinator that were started during the last reporting interval but that were not
completed. Operations increment this counter when they are started and decrement it when they
are completed; this occurs after the transaction commits. Dirty reads and writes—as well as failed
operations—decrement this counter.

The maximum value that Concurrent Operations can have is the maximum
number of operations that a TC block can support; currently, this is (2 *
MaxNoOfConcurrentOperations) + 16 + MaxNoOfConcurrentTransactions. (For
more information about these configuration parameters, see the Transaction Parameters section of
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”.)

• Abort count.  This is the number of transactions using this TC as the transaction coordinator
that were aborted during the last reporting interval. Because some transactions that were aborted
in the last reporting interval may have started in a previous reporting interval, Abort count can
sometimes be greater than Trans count.

• Scans.  This is the number of table scans using this TC as the transaction coordinator that were
started during the last reporting interval. This does not include range scans (that is, ordered index
scans).

• Range scans.  This is the number of ordered index scans using this TC as the transaction
coordinator that were started in the last reporting interval.

• Local reads.  This is the number of primary-key read operations performed using a transaction
coordinator on a node that also holds the primary replica of the record. This count can also be
obtained from the LOCAL_READS counter in the ndbinfo.counters table.

• Local writes.  This contains the number of primary-key read operations that were performed using
a transaction coordinator on a node that also holds the primary replica of the record. This count can
also be obtained from the LOCAL_WRITES counter in the ndbinfo.counters table.

Local query handler statistics (Operations).  There is 1 cluster event per local query handler
block (that is, 1 per data node process). Operations are recorded in the LQH where the data they are
operating on resides.



NDB Cluster Log Messages

2326

Note

A single transaction may operate on data stored in multiple LQH blocks.

The Operations statistic provides the number of local operations performed by this LQH block in the
last reporting interval, and includes all types of read and write operations (insert, update, write, and
delete operations). This also includes operations used to replicate writes. For example, in a 2-replica
cluster, the write to the primary replica is recorded in the primary LQH, and the write to the backup
will be recorded in the backup LQH. Unique key operations may result in multiple local operations;
however, this does not include local operations generated as a result of a table scan or ordered index
scan, which are not counted.

Process scheduler statistics.   In addition to the statistics reported by the transaction coordinator
and local query handler, each ndbd process has a scheduler which also provides useful metrics
relating to the performance of an NDB Cluster. This scheduler runs in an infinite loop; during each loop
the scheduler performs the following tasks:

1. Read any incoming messages from sockets into a job buffer.

2. Check whether there are any timed messages to be executed; if so, put these into the job buffer as
well.

3. Execute (in a loop) any messages in the job buffer.

4. Send any distributed messages that were generated by executing the messages in the job buffer.

5. Wait for any new incoming messages.

Process scheduler statistics include the following:

• Mean Loop Counter.  This is the number of loops executed in the third step from the preceding
list. This statistic increases in size as the utilization of the TCP/IP buffer improves. You can use this
to monitor changes in performance as you add new data node processes.

• Mean send size and Mean receive size.  These statistics enable you to gauge the efficiency of,
respectively writes and reads between nodes. The values are given in bytes. Higher values mean a
lower cost per byte sent or received; the maximum value is 64K.

To cause all cluster log statistics to be logged, you can use the following command in the NDB
management client:

ndb_mgm> ALL CLUSTERLOG STATISTICS=15

Note

Setting the threshold for STATISTICS to 15 causes the cluster log to become
very verbose, and to grow quite rapidly in size, in direct proportion to the
number of cluster nodes and the amount of activity in the NDB Cluster.

For more information about NDB Cluster management client commands relating to logging and
reporting, see Section 18.5.6.1, “NDB Cluster Logging Management Commands”.

18.5.7 NDB Cluster Log Messages

This section contains information about the messages written to the cluster log in response to different
cluster log events. It provides additional, more specific information on NDB transporter errors.

18.5.7.1 NDB Cluster: Messages in the Cluster Log

The following table lists the most common NDB cluster log messages. For information about the cluster
log, log events, and event types, see Section 18.5.6, “Event Reports Generated in NDB Cluster”. These



NDB Cluster Log Messages

2327

log messages also correspond to log event types in the MGM API; see The Ndb_logevent_type Type,
for related information of interest to Cluster API developers.

Log Message Description Event Name Event Type Priority Severity

Node
mgm_node_id:
Node
data_node_id
Connected

The data node
having node ID
node_id has
connected to the
management
server (node
mgm_node_id).

Connected Connection 8 INFO

Node
mgm_node_id:
Node
data_node_id
Disconnected

The data node
having node ID
data_node_id
has disconnected
from the
management
server (node
mgm_node_id).

Disconnected Connection 8 ALERT

Node
data_node_id:
Communication
to Node
api_node_id
closed

The API node
or SQL node
having node ID
api_node_id
is no longer
communicating
with data node
data_node_id.

CommunicationClosedConnection 8 INFO

Node
data_node_id:
Communication
to Node
api_node_id
opened

The API node
or SQL node
having node ID
api_node_id
is now
communicating
with data node
data_node_id.

CommunicationOpenedConnection 8 INFO

Node
mgm_node_id:
Node
api_node_id:
API version

The API node
having node ID
api_node_id
has connected to
management node
mgm_node_id
using NDB API
version version
(generally the
same as the
MySQL version
number).

ConnectedApiVersionConnection 8 INFO

Node node_id:
Global
checkpoint gci
started

A global checkpoint
with the ID gci has
been started; node
node_id is the
master responsible
for this global
checkpoint.

GlobalCheckpointStartedCheckpoint 9 INFO

http://dev.mysql.com/doc/ndbapi/en/mgm-ndb-logevent-type.html


NDB Cluster Log Messages

2328

Log Message Description Event Name Event Type Priority Severity

Node node_id:
Global
checkpoint gci
completed

The global
checkpoint having
the ID gci has
been completed;
node node_id
was the master
responsible for this
global checkpoint.

GlobalCheckpointCompletedCheckpoint 10 INFO

Node node_id:
Local
checkpoint
lcp started.
Keep GCI =
current_gci
oldest
restorable GCI
= old_gci

The local
checkpoint having
sequence ID lcp
has been started
on node node_id.
The most recent
GCI that can be
used has the index
current_gci,
and the oldest
GCI from which
the cluster can be
restored has the
index old_gci.

LocalCheckpointStartedCheckpoint 7 INFO

Node node_id:
Local
checkpoint lcp
completed

The local
checkpoint having
sequence ID
lcp on node
node_id has been
completed.

LocalCheckpointCompletedCheckpoint 8 INFO

Node node_id:
Local
Checkpoint
stopped in
CALCULATED_KEEP_GCI

The node
was unable to
determine the most
recent usable GCI.

LCPStoppedInCalcKeepGciCheckpoint 0 ALERT

Node node_id:
Table ID =
table_id,
fragment ID
= fragment_id
has completed
LCP on Node
node_id
maxGciStarted:
started_gci
maxGciCompleted:
completed_gci

A table fragment
has been
checkpointed
to disk on node
node_id. The
GCI in progress
has the index
started_gci,
and the most
recent GCI to have
been completed
has the index
completed_gci.

LCPFragmentCompletedCheckpoint 11 INFO

Node node_id:
ACC Blocked
num_1 and TUP
Blocked num_2
times last
second

Undo logging
is blocked
because the log
buffer is close to
overflowing.

UndoLogBlocked Checkpoint 7 INFO

Node node_id:
Start

Data node
node_id, running

NDBStartStarted StartUp 1 INFO



NDB Cluster Log Messages

2329

Log Message Description Event Name Event Type Priority Severity
initiated
version

NDB version
version, is
beginning its
startup process.

Node node_id:
Started
version

Data node
node_id,
running NDB
version version,
has started
successfully.

NDBStartCompleted StartUp 1 INFO

Node node_id:
STTORRY
received
after restart
finished

The node has
received a signal
indicating that a
cluster restart has
completed.

STTORRYRecieved StartUp 15 INFO

Node node_id:
Start
phase phase
completed
(type)

The node has
completed start
phase phase
of a type start.
For a listing of
start phases, see
Section 18.5.1,
“Summary of
NDB Cluster Start
Phases”. (type is
one of initial,
system, node,
initial node, or
<Unknown>.)

StartPhaseCompletedStartUp 4 INFO

Node node_id:
CM_REGCONF
president =
president_id,
own Node =
own_id, our
dynamic id =
dynamic_id

Node
president_id
has been selected
as “president”.
own_id and
dynamic_id
should always be
the same as the ID
(node_id) of the
reporting node.

CM_REGCONF StartUp 3 INFO

Node node_id:
CM_REGREF
from Node
president_id
to our Node
node_id. Cause
= cause

The reporting node
(ID node_id)
was unable to
accept node
president_id
as president. The
cause of the
problem is given
as one of Busy,
Election with
wait = false,
Not president,
Election
without
selecting new

CM_REGREF StartUp 8 INFO



NDB Cluster Log Messages

2330

Log Message Description Event Name Event Type Priority Severity
candidate, or No
such cause.

Node node_id:
We are Node
own_id with
dynamic ID
dynamic_id,
our left
neighbor is
Node id_1, our
right is Node
id_2

The node has
discovered its
neighboring nodes
in the cluster (node
id_1 and node
id_2). node_id,
own_id, and
dynamic_id
should always
be the same; if
they are not, this
indicates a serious
misconfiguration of
the cluster nodes.

FIND_NEIGHBOURS StartUp 8 INFO

Node node_id:
type shutdown
initiated

The node has
received a
shutdown signal.
The type of
shutdown is either
Cluster or Node.

NDBStopStarted StartUp 1 INFO

Node node_id:
Node shutdown
completed
[, action]
[Initiated by
signal signal.]

The node has been
shut down. This
report may include
an action, which
if present is one
of restarting,
no start, or
initial. The
report may also
include a reference
to an NDB Protocol
signal; for
possible signals,
refer to Operations
and Signals.

NDBStopCompleted StartUp 1 INFO

Node node_id:
Forced node
shutdown
completed
[, action].
[Occured during
startphase
start_phase.]
[ Initiated by
signal.] [Caused
by error
error_code:
'error_message(error_classification).
error_status'.
[(extra info
extra_code)]]

The node has been
forcibly shut down.
The action (one
of restarting,
no start,
or initial)
subsequently being
taken, if any, is
also reported. If the
shutdown occurred
while the node
was starting, the
report includes the
start_phase
during which the
node failed. If this
was a result of
a signal sent

NDBStopForced StartUp 1 ALERT

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html


NDB Cluster Log Messages

2331

Log Message Description Event Name Event Type Priority Severity
to the node, this
information is also
provided (see
Operations and
Signals, for more
information). If
the error causing
the failure is
known, this is
also included; for
more information
about NDB error
messages and
classifications, see
NDB Cluster API
Errors.

Node node_id:
Node shutdown
aborted

The node
shutdown process
was aborted by the
user.

NDBStopAborted StartUp 1 INFO

Node node_id:
StartLog: [GCI
Keep: keep_pos
LastCompleted:
last_pos
NewestRestorable:
restore_pos]

This reports global
checkpoints
referenced during
a node start. The
redo log prior
to keep_pos
is dropped.
last_pos is
the last global
checkpoint in
which data node
the participated;
restore_pos
is the global
checkpoint which
is actually used
to restore all data
nodes.

StartREDOLog StartUp 4 INFO

startup_message
[Listed separately;
see below.]

There are a
number of possible
startup messages
that can be logged
under different
circumstances.
These are listed
separately; see
Section 18.5.7.2,
“NDB Cluster Log
Startup Messages”.

StartReport StartUp 4 INFO

Node node_id:
Node restart
completed copy
of dictionary
information

Copying of
data dictionary
information to the
restarted node has
been completed.

NR_CopyDict NodeRestart 8 INFO

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html


NDB Cluster Log Messages

2332

Log Message Description Event Name Event Type Priority Severity

Node node_id:
Node restart
completed
copy of
distribution
information

Copying of data
distribution
information to the
restarted node has
been completed.

NR_CopyDistr NodeRestart 8 INFO

Node node_id:
Node restart
starting
to copy the
fragments to
Node node_id

Copy of fragments
to starting data
node node_id has
begun

NR_CopyFragsStartedNodeRestart 8 INFO

Node node_id:
Table ID =
table_id,
fragment ID
= fragment_id
have been
copied to Node
node_id

Fragment
fragment_id
from table
table_id has
been copied
to data node
node_id

NR_CopyFragDone NodeRestart 10 INFO

Node node_id:
Node restart
completed
copying the
fragments to
Node node_id

Copying of all
table fragments
to restarting data
node node_id has
been completed

NR_CopyFragsCompletedNodeRestart 8 INFO

Node node_id:
Node node1_id
completed
failure of
Node node2_id

Data node
node1_id has
detected the failure
of data node
node2_id

NodeFailCompleted NodeRestart 8 ALERT

All nodes
completed
failure of
Node node_id

All (remaining)
data nodes have
detected the failure
of data node
node_id

NodeFailCompleted NodeRestart 8 ALERT

Node
failure of
node_idblock
completed

The failure of data
node node_id
has been detected
in the blockNDB
kernel block, where
block is 1 of DBTC,
DBDICT, DBDIH,
or DBLQH; for more
information, see
NDB Kernel Blocks

NodeFailCompleted NodeRestart 8 ALERT

Node
mgm_node_id:
Node
data_node_id
has failed.
The Node state

A data node has
failed. Its state at
the time of failure
is described by
an arbitration
state code
state_code:

NODE_FAILREP NodeRestart 8 ALERT

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html


NDB Cluster Log Messages

2333

Log Message Description Event Name Event Type Priority Severity
at failure was
state_code

possible state
code values can
be found in the
file include/
kernel/
signaldata/
ArbitSignalData.hpp.

President
restarts
arbitration
thread
[state=state_code]
or Prepare
arbitrator
node node_id
[ticket=ticket_id]
or Receive
arbitrator
node node_id
[ticket=ticket_id]
or Started
arbitrator
node node_id
[ticket=ticket_id]
or Lost
arbitrator
node node_id
- process
failure
[state=state_code]
or Lost
arbitrator
node node_id
- process exit
[state=state_code]
or Lost
arbitrator
node node_id -
error_message
[state=state_code]

This is a report on
the current state
and progress of
arbitration in the
cluster. node_id
is the node ID of
the management
node or SQL
node selected
as the arbitrator.
state_code is
an arbitration state
code, as found
in include/
kernel/
signaldata/
ArbitSignalData.hpp.
When an error
has occurred, an
error_message,
also defined in
ArbitSignalData.hpp,
is provided.
ticket_id is a
unique identifier
handed out by the
arbitrator when
it is selected to
all the nodes
that participated
in its selection;
this is used to
ensure that each
node requesting
arbitration was one
of the nodes that
took part in the
selection process.

ArbitState NodeRestart 6 INFO

Arbitration
check lost -
less than 1/2
nodes left or
Arbitration
check won
- all node
groups and
more than 1/2
nodes left or
Arbitration

This message
reports on the
result of arbitration.
In the event
of arbitration
failure, an
error_message
and an arbitration
state_code
are provided;
definitions for

ArbitResult NodeRestart 2 ALERT



NDB Cluster Log Messages

2334

Log Message Description Event Name Event Type Priority Severity
check won -
node group
majority or
Arbitration
check lost -
missing node
group or Network
partitioning
- arbitration
required or
Arbitration
won - positive
reply from
node node_id
or Arbitration
lost -
negative
reply from
node node_id
or Network
partitioning -
no arbitrator
available
or Network
partitioning -
no arbitrator
configured or
Arbitration
failure -
error_message
[state=state_code]

both of these are
found in include/
kernel/
signaldata/
ArbitSignalData.hpp.

Node node_id:
GCP Take over
started

This node is
attempting
to assume
responsibility for
the next global
checkpoint (that is,
it is becoming the
master node)

GCP_TakeoverStartedNodeRestart 7 INFO

Node node_id:
GCP Take over
completed

This node has
become the
master, and
has assumed
responsibility for
the next global
checkpoint

GCP_TakeoverCompletedNodeRestart 7 INFO

Node node_id:
LCP Take over
started

This node is
attempting
to assume
responsibility for
the next set of local
checkpoints (that
is, it is becoming
the master node)

LCP_TakeoverStartedNodeRestart 7 INFO



NDB Cluster Log Messages

2335

Log Message Description Event Name Event Type Priority Severity

Node node_id:
LCP Take over
completed

This node has
become the
master, and
has assumed
responsibility for
the next set of local
checkpoints

LCP_TakeoverCompletedNodeRestart 7 INFO

Node node_id:
Trans. Count =
transactions,
Commit Count
= commits,
Read Count =
reads, Simple
Read Count =
simple_reads,
Write Count
= writes,
AttrInfo
Count =
AttrInfo_objects,
Concurrent
Operations =
concurrent_operations,
Abort Count
= aborts,
Scans = scans,
Range scans =
range_scans

This report of
transaction
activity is given
approximately once
every 10 seconds

TransReportCountersStatistic 8 INFO

Node node_id:
Operations=operations

Number of
operations
performed by this
node, provided
approximately once
every 10 seconds

OperationReportCountersStatistic 8 INFO

Node node_id:
Table with
ID = table_id
created

A table having the
table ID shown has
been created

TableCreated Statistic 7 INFO

Node node_id:
Mean loop
Counter in
doJob last
8192 times =
count

 JobStatistic Statistic 9 INFO

Mean send size
to Node =
node_id last
4096 sends =
bytes bytes

This node is
sending an
average of bytes
bytes per send to
node node_id

SendBytesStatistic Statistic 9 INFO

Mean receive
size to Node
= node_id last

This node is
receiving an
average of bytes
of data each time it

ReceiveBytesStatisticStatistic 9 INFO



NDB Cluster Log Messages

2336

Log Message Description Event Name Event Type Priority Severity
4096 sends =
bytes bytes

receives data from
node node_id

Node node_id:
Data usage is
data_memory_percentage%
(data_pages_used
32K pages
of total
data_pages_total)
/ Node node_id:
Index usage is
index_memory_percentage%
(index_pages_used
8K pages
of total
index_pages_total)

This report is
generated when
a DUMP 1000
command is issued
in the cluster
management
client; for more
information, see
DUMP 1000,
in MySQL NDB
Cluster Internals
Manual

MemoryUsage Statistic 5 INFO

Node node1_id:
Transporter to
node node2_id
reported error
error_code:
error_message

A transporter error
occurred while
communicating
with node
node2_id;
for a listing
of transporter
error codes and
messages, see
NDB Transporter
Errors, in MySQL
NDB Cluster
Internals Manual

TransporterError Error 2 ERROR

Node node1_id:
Transporter to
node node2_id
reported error
error_code:
error_message

A warning of
a potential
transporter
problem while
communicating
with node
node2_id;
for a listing
of transporter
error codes and
messages, see
NDB Transporter
Errors, for more
information

TransporterWarning Error 8 WARNING

Node node1_id:
Node node2_id
missed
heartbeat
heartbeat_id

This node missed
a heartbeat from
node node2_id

MissedHeartbeat Error 8 WARNING

Node node1_id:
Node node2_id
declared dead
due to missed
heartbeat

This node has
missed at least 3
heartbeats from
node node2_id,
and so has

DeadDueToHeartbeat Error 8 ALERT

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-dump-commands.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-dump-command-1000.html
http://dev.mysql.com/doc/ndb-internals/en/
http://dev.mysql.com/doc/ndb-internals/en/
http://dev.mysql.com/doc/ndb-internals/en/
http://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
http://dev.mysql.com/doc/ndb-internals/en/
http://dev.mysql.com/doc/ndb-internals/en/
http://dev.mysql.com/doc/ndb-internals/en/
http://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html


NDB Cluster Log Messages

2337

Log Message Description Event Name Event Type Priority Severity
declared that node
“dead”

Node node1_id:
Node Sent
Heartbeat
to node =
node2_id

This node has sent
a heartbeat to node
node2_id

SentHeartbeat Info 12 INFO

Node node_id:
Event buffer
status:
used=bytes_used
(percent_used%)
alloc=bytes_allocated
(percent_available%)
max=bytes_available
apply_epoch=latest_restorable_epoch
latest_epoch=latest_epoch

This report is seen
during heavy event
buffer usage, for
example, when
many updates are
being applied in
a relatively short
period of time; the
report shows the
number of bytes
and the percentage
of event buffer
memory used, the
bytes allocated and
percentage still
available, and the
latest and latest
restorable epochs

EventBufferStatus Info 7 INFO

Node node_id:
Entering
single user
mode, Node
node_id:
Entered single
user mode Node
API_node_id
has exclusive
access, Node
node_id:
Entering
single user
mode

These reports
are written to
the cluster log
when entering
and exiting single
user mode;
API_node_id is
the node ID of the
API or SQL having
exclusive access
to the cluster (for
more information,
see Section 18.5.8,
“NDB Cluster
Single User
Mode”); the
message
Unknown single
user report
API_node_id
indicates an error
has taken place
and should never
be seen in normal
operation

SingleUser Info 7 INFO

Node node_id:
Backup
backup_id
started

A backup has
been started using
the management
node having
mgm_node_id;

BackupStarted Backup 7 INFO



NDB Cluster Log Messages

2338

Log Message Description Event Name Event Type Priority Severity
from node
mgm_node_id

this message is
also displayed
in the cluster
management client
when the START
BACKUP command
is issued; for more
information, see
Section 18.5.3.2,
“Using The
NDB Cluster
Management
Client to Create a
Backup”

Node node_id:
Backup
backup_id
started
from node
mgm_node_id
completed.
StartGCP:
start_gcp
StopGCP:
stop_gcp
#Records:
records
#LogRecords:
log_records
Data:
data_bytes
bytes Log:
log_bytes
bytes

The backup
having the ID
backup_id has
been completed;
for more
information, see
Section 18.5.3.2,
“Using The
NDB Cluster
Management
Client to Create a
Backup”

BackupCompleted Backup 7 INFO

Node node_id:
Backup
request from
mgm_node_id
failed to
start. Error:
error_code

The backup failed
to start; for error
codes, see MGM
API Errors

BackupFailedToStartBackup 7 ALERT

Node node_id:
Backup
backup_id
started from
mgm_node_id
has been
aborted.
Error:
error_code

The backup
was terminated
after starting,
possibly due to
user intervention

BackupAborted Backup 7 ALERT

18.5.7.2 NDB Cluster Log Startup Messages

Possible startup messages with descriptions are provided in the following list:

http://dev.mysql.com/doc/ndbapi/en/mgm-errors.html
http://dev.mysql.com/doc/ndbapi/en/mgm-errors.html


NDB Cluster Log Messages

2339

• Initial start, waiting for %s to connect, nodes [ all: %s connected: %s
no-wait: %s ]

• Waiting until nodes: %s connects, nodes [ all: %s connected: %s no-wait:
%s ]

• Waiting %u sec for nodes %s to connect, nodes [ all: %s connected: %s no-
wait: %s ]

• Waiting for non partitioned start, nodes [ all: %s connected: %s missing:
%s no-wait: %s ]

• Waiting %u sec for non partitioned start, nodes [ all: %s connected: %s
missing: %s no-wait: %s ]

• Initial start with nodes %s [ missing: %s no-wait: %s ]

• Start with all nodes %s

• Start with nodes %s [ missing: %s no-wait: %s ]

• Start potentially partitioned with nodes %s [ missing: %s no-wait: %s ]

• Unknown startreport: 0x%x [ %s %s %s %s ]

18.5.7.3 NDB Cluster: NDB Transporter Errors

This section lists error codes, names, and messages that are written to the cluster log in the event of
transporter errors.

Error
Code

Error Name Error Text

0x00 TE_NO_ERROR No error

0x01 TE_ERROR_CLOSING_SOCKET Error found during
closing of socket

0x02 TE_ERROR_IN_SELECT_BEFORE_ACCEPT Error found
before accept. The
transporter will retry

0x03 TE_INVALID_MESSAGE_LENGTH Error found in message
(invalid message
length)

0x04 TE_INVALID_CHECKSUM Error found in message
(checksum)

0x05 TE_COULD_NOT_CREATE_SOCKET Error found while
creating socket(can't
create socket)

0x06 TE_COULD_NOT_BIND_SOCKET Error found while
binding server socket

0x07 TE_LISTEN_FAILED Error found while
listening to server
socket

0x08 TE_ACCEPT_RETURN_ERROR Error found during
accept(accept return
error)

0x0b TE_SHM_DISCONNECT The remote node has
disconnected



NDB Cluster Log Messages

2340

Error
Code

Error Name Error Text

0x0c TE_SHM_IPC_STAT Unable to check shm
segment

0x0d TE_SHM_UNABLE_TO_CREATE_SEGMENT Unable to create shm
segment

0x0e TE_SHM_UNABLE_TO_ATTACH_SEGMENT Unable to attach shm
segment

0x0f TE_SHM_UNABLE_TO_REMOVE_SEGMENT Unable to remove shm
segment

0x10 TE_TOO_SMALL_SIGID Sig ID too small

0x11 TE_TOO_LARGE_SIGID Sig ID too large

0x12 TE_WAIT_STACK_FULL Wait stack was full

0x13 TE_RECEIVE_BUFFER_FULL Receive buffer was
full

0x14 TE_SIGNAL_LOST_SEND_BUFFER_FULL Send buffer was
full,and trying to
force send fails

0x15 TE_SIGNAL_LOST Send failed for
unknown reason(signal
lost)

0x16 TE_SEND_BUFFER_FULL The send buffer was
full, but sleeping for
a while solved

0x0017 TE_SCI_LINK_ERROR There is no link from
this node to the
switch

0x18 TE_SCI_UNABLE_TO_START_SEQUENCE Could not start a
sequence, because
system resources are
exumed or no sequence
has been created

0x19 TE_SCI_UNABLE_TO_REMOVE_SEQUENCE Could not remove a
sequence

0x1a TE_SCI_UNABLE_TO_CREATE_SEQUENCE Could not create a
sequence, because
system resources are
exempted. Must reboot

0x1b TE_SCI_UNRECOVERABLE_DATA_TFX_ERROR Tried to send data on
redundant link but
failed

0x1c TE_SCI_CANNOT_INIT_LOCALSEGMENT Cannot initialize
local segment

0x1d TE_SCI_CANNOT_MAP_REMOTESEGMENT Cannot map remote
segment

0x1e TE_SCI_UNABLE_TO_UNMAP_SEGMENT Cannot free the
resources used by this
segment (step 1)



NDB Cluster Single User Mode

2341

Error
Code

Error Name Error Text

0x1f TE_SCI_UNABLE_TO_REMOVE_SEGMENT Cannot free the
resources used by this
segment (step 2)

0x20 TE_SCI_UNABLE_TO_DISCONNECT_SEGMENT Cannot disconnect from
a remote segment

0x21 TE_SHM_IPC_PERMANENT Shm ipc Permanent
error

0x22 TE_SCI_UNABLE_TO_CLOSE_CHANNEL Unable to close the
sci channel and the
resources allocated

18.5.8 NDB Cluster Single User Mode

Single user mode enables the database administrator to restrict access to the database system to a
single API node, such as a MySQL server (SQL node) or an instance of ndb_restore. When entering
single user mode, connections to all other API nodes are closed gracefully and all running transactions
are aborted. No new transactions are permitted to start.

Once the cluster has entered single user mode, only the designated API node is granted access to the
database.

You can use the ALL STATUS command in the ndb_mgm client to see when the cluster has entered
single user mode. You can also check the status column of the ndbinfo.nodes table (see
Section 18.5.10.13, “The ndbinfo nodes Table”, for more information).

Example:

ndb_mgm> ENTER SINGLE USER MODE 5

After this command has executed and the cluster has entered single user mode, the API node whose
node ID is 5 becomes the cluster's only permitted user.

The node specified in the preceding command must be an API node; attempting to specify any other
type of node will be rejected.

Note

When the preceding command is invoked, all transactions running on the
designated node are aborted, the connection is closed, and the server must be
restarted.

The command EXIT SINGLE USER MODE changes the state of the cluster's data nodes from single
user mode to normal mode. API nodes—such as MySQL Servers—waiting for a connection (that is,
waiting for the cluster to become ready and available), are again permitted to connect. The API node
denoted as the single-user node continues to run (if still connected) during and after the state change.

Example:

ndb_mgm> EXIT SINGLE USER MODE

There are two recommended ways to handle a node failure when running in single user mode:

• Method 1:

1. Finish all single user mode transactions

2. Issue the EXIT SINGLE USER MODE command



Quick Reference: NDB Cluster SQL Statements

2342

3. Restart the cluster's data nodes

• Method 2:

Restart database nodes prior to entering single user mode.

18.5.9 Quick Reference: NDB Cluster SQL Statements

This section discusses several SQL statements that can prove useful in managing and monitoring a
MySQL server that is connected to an NDB Cluster, and in some cases provide information about the
cluster itself.

• SHOW ENGINE NDB STATUS, SHOW ENGINE NDBCLUSTER STATUS

The output of this statement contains information about the server's connection to the cluster,
creation and usage of NDB Cluster objects, and binary logging for NDB Cluster replication.

See Section 13.7.5.16, “SHOW ENGINE Syntax”, for a usage example and more detailed
information.

•  SHOW ENGINES

This statement can be used to determine whether or not clustering support is enabled in the MySQL
server, and if so, whether it is active.

See Section 13.7.5.17, “SHOW ENGINES Syntax”, for more detailed information.

Note

In MySQL 5.1 and later, this statement does not support a LIKE
clause. However, you can use LIKE to filter queries against the
INFORMATION_SCHEMA.ENGINES table, as discussed in the next item.

•  SELECT * FROM INFORMATION_SCHEMA.ENGINES [WHERE ENGINE LIKE 'NDB%']

This is the equivalent of SHOW ENGINES, but uses the ENGINES table of the
INFORMATION_SCHEMA database. Unlike the case with the SHOW ENGINES statement, it is possible
to filter the results using a LIKE clause, and to select specific columns to obtain information that may
be of use in scripts. For example, the following query shows whether the server was built with NDB
support and, if so, whether it is enabled:

mysql> SELECT SUPPORT FROM INFORMATION_SCHEMA.ENGINES
    ->   WHERE ENGINE LIKE 'NDB%';
+---------+
| support |
+---------+
| ENABLED |
+---------+

See Section 21.6, “The INFORMATION_SCHEMA ENGINES Table”, for more information.

•  SHOW VARIABLES LIKE 'NDB%'

This statement provides a list of most server system variables relating to the NDB storage engine,
and their values, as shown here:

mysql> SHOW VARIABLES LIKE 'NDB%';
+-------------------------------------+-------+
| Variable_name                       | Value |
+-------------------------------------+-------+
| ndb_autoincrement_prefetch_sz       | 32    |
| ndb_cache_check_time                | 0     |



Quick Reference: NDB Cluster SQL Statements

2343

| ndb_extra_logging                   | 0     |
| ndb_force_send                      | ON    |
| ndb_index_stat_cache_entries        | 32    |
| ndb_index_stat_enable               | OFF   |
| ndb_index_stat_update_freq          | 20    |
| ndb_report_thresh_binlog_epoch_slip | 3     |
| ndb_report_thresh_binlog_mem_usage  | 10    |
| ndb_use_copying_alter_table         | OFF   |
| ndb_use_exact_count                 | ON    |
| ndb_use_transactions                | ON    |
+-------------------------------------+-------+

See Section 5.1.5, “Server System Variables”, for more information.

•  SELECT * FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES WHERE VARIABLE_NAME LIKE
'NDB%';

This statement is the equivalent of the SHOW command described in the previous item, and provides
almost identical output, as shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES
    ->   WHERE VARIABLE_NAME LIKE 'NDB%';
+-------------------------------------+----------------+
| VARIABLE_NAME                       | VARIABLE_VALUE |
+-------------------------------------+----------------+
| NDB_AUTOINCREMENT_PREFETCH_SZ       | 32             |
| NDB_CACHE_CHECK_TIME                | 0              |
| NDB_EXTRA_LOGGING                   | 0              |
| NDB_FORCE_SEND                      | ON             |
| NDB_INDEX_STAT_CACHE_ENTRIES        | 32             |
| NDB_INDEX_STAT_ENABLE               | OFF            |
| NDB_INDEX_STAT_UPDATE_FREQ          | 20             |
| NDB_REPORT_THRESH_BINLOG_EPOCH_SLIP | 3              |
| NDB_REPORT_THRESH_BINLOG_MEM_USAGE  | 10             |
| NDB_USE_COPYING_ALTER_TABLE         | OFF            |
| NDB_USE_EXACT_COUNT                 | ON             |
| NDB_USE_TRANSACTIONS                | ON             |
+-------------------------------------+----------------+

Unlike the case with the SHOW command, it is possible to select individual columns. For example:

mysql> SELECT VARIABLE_VALUE 
    ->   FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES
    ->   WHERE VARIABLE_NAME = 'ndb_force_send';
+----------------+
| VARIABLE_VALUE |
+----------------+
| ON             |
+----------------+

See Section 21.9, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and
SESSION_VARIABLES Tables”, and Section 5.1.5, “Server System Variables”, for more information.

•  SHOW STATUS LIKE 'NDB%'

This statement shows at a glance whether or not the MySQL server is acting as a cluster SQL node,
and if so, it provides the MySQL server's cluster node ID, the host name and port for the cluster
management server to which it is connected, and the number of data nodes in the cluster, as shown
here:

mysql> SHOW STATUS LIKE 'NDB%';
+--------------------------+---------------+
| Variable_name            | Value         |
+--------------------------+---------------+
| Ndb_cluster_node_id      | 10            |
| Ndb_config_from_host     | 192.168.0.103 |



ndbinfo: The NDB Cluster Information Database

2344

| Ndb_config_from_port     | 1186          |
| Ndb_number_of_data_nodes | 4             |
+--------------------------+---------------+

If the MySQL server was built with clustering support, but it is not connected to a cluster, all rows in
the output of this statement contain a zero or an empty string:

mysql> SHOW STATUS LIKE 'NDB%';
+--------------------------+-------+
| Variable_name            | Value |
+--------------------------+-------+
| Ndb_cluster_node_id      | 0     |
| Ndb_config_from_host     |       |
| Ndb_config_from_port     | 0     |
| Ndb_number_of_data_nodes | 0     |
+--------------------------+-------+

See also Section 13.7.5.36, “SHOW STATUS Syntax”.

•  SELECT * FROM INFORMATION_SCHEMA.GLOBAL_STATUS WHERE VARIABLE_NAME LIKE
'NDB%';

This statement provides similar output to the SHOW command discussed in the previous item.
However, unlike the case with SHOW STATUS, it is possible using the SELECT to extract values in
SQL for use in scripts for monitoring and automation purposes.

See Section 21.8, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS
Tables”, for more information.

You can also query the tables in the ndbinfo information database for real-time data about many NDB
Cluster operations. See Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”.

18.5.10 ndbinfo: The NDB Cluster Information Database

ndbinfo is a database containing information specific to NDB Cluster.

This database contains a number of tables, each providing a different sort of data about NDB Cluster
node status, resource usage, and operations. You can find more detailed information about each of
these tables in the next several sections.

ndbinfo is included with NDB Cluster support in the MySQL Server; no special compilation or
configuration steps are required; the tables are created by the MySQL Server when it connects to the
cluster. You can verify that ndbinfo support is active in a given MySQL Server instance using SHOW
PLUGINS; if ndbinfo support is enabled, you should see a row containing ndbinfo in the Name
column and ACTIVE in the Status column, as shown here (emphasized text):

mysql> SHOW PLUGINS;
+----------------------------------+--------+--------------------+---------+---------+
| Name                             | Status | Type               | Library | License |
+----------------------------------+--------+--------------------+---------+---------+
| binlog                           | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| mysql_native_password            | ACTIVE | AUTHENTICATION     | NULL    | GPL     |
| mysql_old_password               | ACTIVE | AUTHENTICATION     | NULL    | GPL     |
| CSV                              | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| MEMORY                           | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| MRG_MYISAM                       | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| MyISAM                           | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| PERFORMANCE_SCHEMA               | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| BLACKHOLE                        | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| ARCHIVE                          | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| ndbcluster                       | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| ndbinfo                          | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| ndb_transid_mysql_connection_map | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| InnoDB                           | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |



ndbinfo: The NDB Cluster Information Database

2345

| INNODB_TRX                       | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_LOCKS                     | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_LOCK_WAITS                | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_CMP                       | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_CMP_RESET                 | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_CMPMEM                    | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_CMPMEM_RESET              | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| partition                        | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
+----------------------------------+--------+--------------------+---------+---------+
22 rows in set (0.00 sec)

You can also do this by checking the output of SHOW ENGINES for a line including ndbinfo in the
Engine column and YES in the Support column, as shown here (emphasized text):

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
      Engine: ndbcluster
     Support: YES
     Comment: Clustered, fault-tolerant tables
Transactions: YES
          XA: NO
  Savepoints: NO
*************************** 2. row ***************************
      Engine: MRG_MYISAM
     Support: YES
     Comment: Collection of identical MyISAM tables
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 3. row ***************************
      Engine: ndbinfo
     Support: YES
     Comment: NDB Cluster system information storage engine
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 4. row ***************************
      Engine: CSV
     Support: YES
     Comment: CSV storage engine
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 5. row ***************************
      Engine: MEMORY
     Support: YES
     Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 6. row ***************************
      Engine: FEDERATED
     Support: NO
     Comment: Federated MySQL storage engine
Transactions: NULL
          XA: NULL
  Savepoints: NULL
*************************** 7. row ***************************
      Engine: ARCHIVE
     Support: YES
     Comment: Archive storage engine
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 8. row ***************************
      Engine: InnoDB
     Support: YES
     Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
          XA: YES
  Savepoints: YES



ndbinfo: The NDB Cluster Information Database

2346

*************************** 9. row ***************************
      Engine: MyISAM
     Support: DEFAULT
     Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 10. row ***************************
      Engine: BLACKHOLE
     Support: YES
     Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
          XA: NO
  Savepoints: NO
10 rows in set (0.00 sec)

If ndbinfo support is enabled, then you can access ndbinfo using SQL statements in mysql or
another MySQL client. For example, you can see ndbinfo listed in the output of SHOW DATABASES,
as shown here (emphasized text):

mysql> SHOW DATABASES;
+--------------------+
| Database           |
+--------------------+
| information_schema |
| mysql              |
| ndbinfo            |
| test               |
+--------------------+
4 rows in set (0.00 sec)

If the mysqld process was not started with the --ndbcluster option, ndbinfo is not available and
is not displayed by SHOW DATABASES. If mysqld was formerly connected to an NDB Cluster but the
cluster becomes unavailable (due to events such as cluster shutdown, loss of network connectivity,
and so forth), ndbinfo and its tables remain visible, but an attempt to access any tables (other than
blocks or config_params) fails with Got error 157 'Connection to NDB failed' from
NDBINFO.

With the exception of the blocks and config_params tables, what we refer to as ndbinfo “tables”
are actually views generated from internal NDB tables not normally visible to the MySQL Server.

All ndbinfo tables are read-only, and are generated on demand when queried. Because many of
them are generated in parallel by the data nodes while other are specific to a given SQL node, they are
not guaranteed to provide a consistent snapshot.

In addition, pushing down of joins is not supported on ndbinfo tables; so joining large ndbinfo tables
can require transfer of a large amount of data to the requesting API node, even when the query makes
use of a WHERE clause.

ndbinfo tables are not included in the query cache. (Bug #59831)

You can select the ndbinfo database with a USE statement, and then issue a SHOW TABLES
statement to obtain a list of tables, just as for any other database, like this:

mysql> USE ndbinfo;
Database changed

mysql> SHOW TABLES;
+-----------------------------+
| Tables_in_ndbinfo           |
+-----------------------------+
| arbitrator_validity_detail  |
| arbitrator_validity_summary |
| blocks                      |
| cluster_operations          |
| cluster_transactions        |



ndbinfo: The NDB Cluster Information Database

2347

| config_params               |
| counters                    |
| diskpagebuffer              |
| logbuffers                  |
| logspaces                   |
| membership                  |
| memoryusage                 |
| nodes                       |
| resources                   |
| server_operations           |
| server_transactions         |
| threadblocks                |
| threadstat                  |
| transporters                |
+-----------------------------+
19 rows in set (0.03 sec)

The cluster_operations, cluster_transactions, server_operations,
server_transactions, threadblocks, and threadstat tables were added in NDB 7.2.2. The
arbitrator_validity_detail, arbitrator_validity_summary, and membership tables
were added in NDB 7.2.10.

You can execute SELECT statements against these tables, just as you would normally expect:

mysql> SELECT * FROM memoryusage;
+---------+---------------------+--------+------------+------------+-------------+
| node_id | memory_type         | used   | used_pages | total      | total_pages |
+---------+---------------------+--------+------------+------------+-------------+
|       5 | Data memory         | 753664 |         23 | 1073741824 |       32768 |
|       5 | Index memory        | 163840 |         20 | 1074003968 |      131104 |
|       5 | Long message buffer |   2304 |          9 |   67108864 |      262144 |
|       6 | Data memory         | 753664 |         23 | 1073741824 |       32768 |
|       6 | Index memory        | 163840 |         20 | 1074003968 |      131104 |
|       6 | Long message buffer |   2304 |          9 |   67108864 |      262144 |
+---------+---------------------+--------+------------+------------+-------------+
6 rows in set (0.02 sec)

More complex queries, such as the two following SELECT statements using the memoryusage table,
are possible:

mysql> SELECT SUM(used) as 'Data Memory Used, All Nodes'
     >     FROM memoryusage
     >     WHERE memory_type = 'Data memory';
+-----------------------------+
| Data Memory Used, All Nodes |
+-----------------------------+
|                        6460 |
+-----------------------------+
1 row in set (0.37 sec)

mysql> SELECT SUM(max) as 'Total IndexMemory Available'
     >     FROM memoryusage
     >     WHERE memory_type = 'Index memory';
+-----------------------------+
| Total IndexMemory Available |
+-----------------------------+
|                       25664 |
+-----------------------------+
1 row in set (0.33 sec)

ndbinfo table and column names are case sensitive (as is the name of the ndbinfo database itself).
These identifiers are in lowercase. Trying to use the wrong lettercase results in an error, as shown in
this example:

mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+
| node_id | uptime | status  | start_phase |



ndbinfo: The NDB Cluster Information Database

2348

+---------+--------+---------+-------------+
|       1 |  13602 | STARTED |           0 |
|       2 |     16 | STARTED |           0 |
+---------+--------+---------+-------------+
2 rows in set (0.04 sec)

mysql> SELECT * FROM Nodes;
ERROR 1146 (42S02): Table 'ndbinfo.Nodes' doesn't exist

mysqldump ignores the ndbinfo database entirely, and excludes it from any output. This is true even
when using the --databases or --all-databases option.

NDB Cluster also maintains tables in the INFORMATION_SCHEMA information database, including the
FILES table which contains information about files used for NDB Cluster Disk Data storage. For more
information, see Section 21.29, “NDB Cluster INFORMATION_SCHEMA Tables”.

18.5.10.1 The ndbinfo arbitrator_validity_detail Table

The arbitrator_validity_detail table shows the view that each data node in the cluster has of
the arbitrator. It is a subset of the membership table.

The following table provides information about the columns in the arbitrator_validity_detail
table. For each column, the table shows the name, data type, and a brief description. Additional
information can be found in the notes following the table.

Column Name Type Description

node_id integer This node's node ID

arbitrator integer Node ID of arbitrator

arb_ticket string Internal identifier used to track arbitration

arb_connected Yes or No Whether this node is connected to the
arbitrator

arb_state Enumeration (see text) Arbitration state

The node ID is the same as that reported by ndb_mgm -e "SHOW".

All nodes should show the same arbitrator and arb_ticket values as well as the same
arb_state value. Possible arb_state values are ARBIT_NULL, ARBIT_INIT, ARBIT_FIND,
ARBIT_PREP1, ARBIT_PREP2, ARBIT_START, ARBIT_RUN, ARBIT_CHOOSE, ARBIT_CRASH, and
UNKNOWN.

arb_connected shows whether the current node is connected to the arbitrator.

Like the membership and arbitrator_validity_summary tables, this table was added in NDB
7.2.10.

18.5.10.2 The ndbinfo arbitrator_validity_summary Table

The arbitrator_validity_summary table provides a composite view of the arbitrator with regard
to the cluster's data nodes.

The following table provides information about the columns in the arbitrator_validity_summary
table. For each column, the table shows the name, data type, and a brief description. Additional
information can be found in the notes following the table.

Column Name Type Description

arbitrator integer Node ID of arbitrator

arb_ticket string Internal identifier used to track arbitration

arb_connected Yes or No Whether this arbitrator is connected to the
cluster



ndbinfo: The NDB Cluster Information Database

2349

Column Name Type Description

consensus_count integer Number of data nodes that see this node as
arbitrator

In normal operations, this table should have only 1 row for any appreciable length of time. If it has more
than 1 row for longer than a few moments, then either not all nodes are connected to the arbitrator, or
all nodes are connected, but do not agree on the same arbitrator.

The arbitrator column shows the arbitrator's node ID.

arb_ticket is the internal identifier used by this arbitrator.

arb_connected shows whether this node is connected to the cluster as an arbitrator.

Like the membership and arbitrator_validity_detail tables, this table was added in NDB
7.2.10.

18.5.10.3 The ndbinfo blocks Table

The blocks table is a static table which simply contains the names and internal IDs of all NDB kernel
blocks (see NDB Kernel Blocks). It is for use by the other ndbinfo tables (most of which are actually
views) in mapping block numbers to block names for producing human-readable output.

The following table provides information about the columns in the blocks table. For each column, the
table shows the name, data type, and a brief description. Additional information can be found in the
notes following the table.

Column Name Type Description

block_number integer Block number

block_name string Block name

To obtain a list of all block names, simply execute SELECT block_name FROM ndbinfo.blocks.
Although this is a static table, its content can vary between different NDB Cluster releases.

18.5.10.4 The ndbinfo cluster_operations Table

The cluster_operations table provides a per-operation (stateful primary key op) view of all activity
in the NDB Cluster from the point of view of the local data management (LQH) blocks (see The DBLQH
Block).

The following table provides information about the columns in the cluster_operations table. For
each column, the table shows the name, data type, and a brief description. Additional information can
be found in the notes following the table.

Column Name Type Description

node_id integer Node ID of reporting LQH block

block_instance integer LQH block instance

transid integer Transaction ID

operation_type string Operation type (see text for possible values)

state string Operation state (see text for possible values)

tableid integer Table ID

fragmentid integer Fragment ID

client_node_id integer Client node ID

client_block_ref integer Client block reference

tc_node_id integer Transaction coordinator node ID

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html


ndbinfo: The NDB Cluster Information Database

2350

Column Name Type Description

tc_block_no integer Transaction coordinator block number

tc_block_instance integer Transaction coordinator block instance

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API
transaction ID of an ongoing transaction.)

The operation_type column can take any one of the values READ, READ-SH, READ-EX, INSERT,
UPDATE, DELETE, WRITE, UNLOCK, REFRESH, SCAN, SCAN-SH, SCAN-EX, or <unknown>.

The state column can have any one of the values ABORT_QUEUED, ABORT_STOPPED,
COMMITTED, COMMIT_QUEUED, COMMIT_STOPPED, COPY_CLOSE_STOPPED,
COPY_FIRST_STOPPED, COPY_STOPPED, COPY_TUPKEY, IDLE, LOG_ABORT_QUEUED,
LOG_COMMIT_QUEUED, LOG_COMMIT_QUEUED_WAIT_SIGNAL, LOG_COMMIT_WRITTEN,
LOG_COMMIT_WRITTEN_WAIT_SIGNAL, LOG_QUEUED, PREPARED, PREPARED_RECEIVED_COMMIT,
SCAN_CHECK_STOPPED, SCAN_CLOSE_STOPPED, SCAN_FIRST_STOPPED,
SCAN_RELEASE_STOPPED, SCAN_STATE_USED, SCAN_STOPPED, SCAN_TUPKEY, STOPPED,
TC_NOT_CONNECTED, WAIT_ACC, WAIT_ACC_ABORT, WAIT_AI_AFTER_ABORT, WAIT_ATTR,
WAIT_SCAN_AI, WAIT_TUP, WAIT_TUPKEYINFO, WAIT_TUP_COMMIT, or WAIT_TUP_TO_ABORT. (If
the MySQL Server is running with ndbinfo_show_hidden enabled, you can view this list of states by
selecting from the ndb$dblqh_tcconnect_state table, which is normally hidden.)

You can obtain the name of an NDB table from its table ID by checking the output of
ndb_show_tables.

The fragid is the same as the partition number seen in the output of ndb_desc --extra-
partition-info (short form -p).

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node
(that is, an NDB API client or a MySQL Server attached to the cluster).

This table was added in NDB 7.2.2.

18.5.10.5 The ndbinfo cluster_transactions Table

The cluster_transactions table shows information about all ongoing transactions in an NDB
Cluster.

The following table provides information about the columns in the cluster_transactions table. For
each column, the table shows the name, data type, and a brief description. Additional information can
be found in the notes following the table.

Column Name Type Description

node_id integer Node ID of transaction coordinator

block_instance integer TC block instance

transid integer Transaction ID

state string Operation state (see text for possible values)

count_operations integer Number of stateful primary key operations
in transaction (includes reads with locks, as
well as DML operations)

outstanding_operations integer Operations still being executed in local data
management blocks

inactive_seconds integer Time spent waiting for API

client_node_id integer Client node ID

client_block_ref integer Client block reference

http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-gettransactionid.html


ndbinfo: The NDB Cluster Information Database

2351

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API
transaction ID of an ongoing transaction.)

The state column can have any one of the values CS_ABORTING, CS_COMMITTING,
CS_COMMIT_SENT, CS_COMPLETE_SENT, CS_COMPLETING, CS_CONNECTED, CS_DISCONNECTED,
CS_FAIL_ABORTED, CS_FAIL_ABORTING, CS_FAIL_COMMITTED, CS_FAIL_COMMITTING,
CS_FAIL_COMPLETED, CS_FAIL_PREPARED, CS_PREPARE_TO_COMMIT, CS_RECEIVING,
CS_REC_COMMITTING, CS_RESTART, CS_SEND_FIRE_TRIG_REQ, CS_STARTED,
CS_START_COMMITTING, CS_START_SCAN, CS_WAIT_ABORT_CONF, CS_WAIT_COMMIT_CONF,
CS_WAIT_COMPLETE_CONF, CS_WAIT_FIRE_TRIG_REQ. (If the MySQL Server is running with
ndbinfo_show_hidden enabled, you can view this list of states by selecting from the ndb
$dbtc_apiconnect_state table, which is normally hidden.)

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node
(that is, an NDB API client or a MySQL Server attached to the cluster).

This table was added in NDB 7.2.2.

18.5.10.6 The ndbinfo config_params Table

The config_params table is a static table which provides the names and internal ID numbers of and
other information about NDB Cluster configuration parameters.

The following table provides information about the columns in the config_params table. For each
column, the table shows the name, data type, and a brief description. Additional information can be
found in the notes following the table.

Column Name Type Description

param_number integer The parameter's internal ID number

param_name string The name of the parameter

Although this is a static table, its content can vary between NDB Cluster installations, since supported
parameters can vary due to differences between software releases, cluster hardware configurations,
and other factors.

18.5.10.7 The ndbinfo counters Table

The counters table provides running totals of events such as reads and writes for specific kernel
blocks and data nodes. Counts are kept from the most recent node start or restart; a node start or
restart resets all counters on that node. Not all kernel blocks have all types of counters.

The following table provides information about the columns in the counters table. For each column,
the table shows the name, data type, and a brief description. Additional information can be found in the
notes following the table.

Column Name Type Description

node_id integer The data node ID

block_name string Name of the associated NDB kernel block
(see NDB Kernel Blocks).

block_instance integer Block instance

counter_id integer The counter's internal ID number; normally
an integer between 1 and 10, inclusive.

counter_name string The name of the counter. See text for names
of individual counters and the NDB kernel
block with which each counter is associated.

val integer The counter's value

http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-gettransactionid.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html


ndbinfo: The NDB Cluster Information Database

2352

Each counter is associated with a particular NDB kernel block. Prior to NDB 7.2.0, this was limited to
either the DBLQH kernel block or the DBTC kernel block. In NDB 7.2.0 and later, a number of counters
relating to the DBSPJ kernel block are also available; these counters are described later in this section.

The OPERATIONS counter is associated with the DBLQH (local query handler) kernel block (see The
DBLQH Block). A primary-key read counts as one operation, as does a primary-key update. For reads,
there is one operation in DBLQH per operation in DBTC. For writes, there is one operation counted per
replica.

The ATTRINFO, TRANSACTIONS, COMMITS, READS, LOCAL_READS, SIMPLE_READS, WRITES,
LOCAL_WRITES, ABORTS, TABLE_SCANS, and RANGE_SCANS counters are associated with the DBTC
(transaction co-ordinator) kernel block (see The DBTC Block).

LOCAL_WRITES and LOCAL_READS are primary-key operations using a transaction coordinator in a
node that also holds the primary replica of the record.

The READS counter includes all reads. LOCAL_READS includes only those reads of the primary replica
on the same node as this transaction coordinator. SIMPLE_READS includes only those reads in which
the read operation is the beginning and ending operation for a given transaction. Simple reads do
not hold locks but are part of a transaction, in that they observe uncommitted changes made by the
transaction containing them but not of any other uncommitted transactions. Such reads are “simple”
from the point of view of the TC block; since they hold no locks they are not durable, and once DBTC
has routed them to the relevant LQH block, it holds no state for them.

ATTRINFO keeps a count of the number of times an interpreted program is sent to the data node. See
NDB Protocol Messages, for more information about ATTRINFO messages in the NDB kernel.

NDB 7.2.0, as part of its implementation of distributed pushed-down joins, adds the
LOCAL_TABLE_SCANS_SENT, READS_RECEIVED, PRUNED_RANGE_SCANS_RECEIVED,
RANGE_SCANS_RECEIVED, LOCAL_READS_SENT, CONST_PRUNED_RANGE_SCANS_RECEIVED,
LOCAL_RANGE_SCANS_SENT, REMOTE_READS_SENT, REMOTE_RANGE_SCANS_SENT,
READS_NOT_FOUND, SCAN_BATCHES_RETURNED, TABLE_SCANS_RECEIVED, and
SCAN_ROWS_RETURNED counters. These counters are associated with the DBSPJ (select push-down
join) kernel block (see The DBSPJ Block).

A number of counters increasing the visibility of transporter overload and send buffer sizing when
troubleshooting such issues were added in NDB 7.2.10. (Bug #15935206) For each LQH instance,
there is one instance of each counter in the following list:

• LQHKEY_OVERLOAD: Number of primary key requests rejected at the LQH block instance due to
transporter overload

• LQHKEY_OVERLOAD_TC: Count of instances of LQHKEY_OVERLOAD where the TC node transporter
was overloaded

• LQHKEY_OVERLOAD_READER: Count of instances of LQHKEY_OVERLOAD where the API reader
(reads only) node was overloaded.

• LQHKEY_OVERLOAD_NODE_PEER: Count of instances of LQHKEY_OVERLOAD where the next backup
data node (writes only) was overloaded

• LQHKEY_OVERLOAD_SUBSCRIBER: Count of instances of LQHKEY_OVERLOAD where a event
subscriber (writes only) was overloaded.

• LQHSCAN_SLOWDOWNS: Count of instances where a fragment scan batch size was reduced due to
scanning API transporter overload.

18.5.10.8 The ndbinfo diskpagebuffer Table

The diskpagebuffer table provides statistics about disk page buffer usage by NDB Cluster Disk
Data tables.

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-messages.html
http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html


ndbinfo: The NDB Cluster Information Database

2353

The following table provides information about the columns in the diskpagebuffer table. For each
column, the table shows the name, data type, and a brief description. Additional information can be
found in the notes following the table.

Column Name Type Description

node_id integer The data node ID

block_instance integer Block instance

pages_written integer Number of pages written to disk.

pages_written_lcp integer Number of pages written by local
checkpoints.

pages_read integer Number of pages read from disk

log_waits integer Number of page writes waiting for log to
be written to disk

page_requests_direct_return integer Number of requests for pages that were
available in buffer

page_requests_wait_queue integer Number of requests that had to wait for
pages to become available in buffer

page_requests_wait_io integer Number of requests that had to be
read from pages on disk (pages were
unavailable in buffer)

You can use this table with NDB Cluster Disk Data tables to determine whether
DiskPageBufferMemory is sufficiently large to allow data to be read from the buffer rather from disk;
minimizing disk seeks can help improve performance of such tables.

You can determine the proportion of reads from DiskPageBufferMemory to the total number of
reads using a query such as this one, which obtains this ratio as a percentage:

SELECT
  node_id,
  100 * page_requests_direct_return /
    (page_requests_direct_return + page_requests_wait_io)
      AS hit_ratio
FROM ndbinfo.diskpagebuffer;

The result from this query should be similar to what is shown here, with one row for each data node in
the cluster (in this example, the cluster has 4 data nodes):

+---------+-----------+
| node_id | hit_ratio |
+---------+-----------+
|       5 |   97.6744 |
|       6 |   97.6879 |
|       7 |   98.1776 |
|       8 |   98.1343 |
+---------+-----------+
4 rows in set (0.00 sec)

hit_ratio values approaching 100% indicate that only a very small number of reads are being made
from disk rather than from the buffer, which means that Disk Data read performance is approaching
an optimum level. If any of these values are less than 95%, this is a strong indicator that the setting for
DiskPageBufferMemory needs to be increased in the config.ini file.

Note

A change in DiskPageBufferMemory requires a rolling restart of all of the
cluster's data nodes before it takes effect.



ndbinfo: The NDB Cluster Information Database

2354

18.5.10.9 The ndbinfo logbuffers Table

The logbuffer table provides information on NDB Cluster log buffer usage.

The following table provides information about the columns in the logbuffers table. For each
column, the table shows the name, data type, and a brief description.

Column Name Type Description

node_id integer The ID of this data node.

log_type string Type of log; one of: REDO or DD-UNDO.

log_id integer The log ID.

log_part integer The log part number.

total integer Total space available for this log.

used integer Space used by this log.

18.5.10.10 The ndbinfo logspaces Table

This table provides information about NDB Cluster log space usage.

The following table provides information about the columns in the logspaces table. For each column,
the table shows the name, data type, and a brief description.

Column Name Type Description

node_id integer The ID of this data node.

log_type string Type of log; one of: REDO or DD-UNDO.

log_id integer The log ID.

log_part integer The log part number.

total integer Total space available for this log.

used integer Space used by this log.

18.5.10.11 The ndbinfo membership Table

The membership table describes the view that each data node has of all the others in the cluster,
including node group membership, president node, arbitrator, arbitrator successor, arbitrator
connection states, and other information.

The following table provides information about the columns in the membership table. For each
column, the table shows the name, data type, and a brief description. Additional information can be
found in the notes following the table.

Column Name Type Description

node_id integer This node's node ID

group_id integer Node group to which this node belongs

left node integer Node ID of the previous node

right_node integer Node ID of the next node

president integer President's node ID

successor integer Node ID of successor to president

succession_order integer Order in which this node succeeds to
presidency

Conf_HB_order integer -

arbitrator integer Node ID of arbitrator



ndbinfo: The NDB Cluster Information Database

2355

Column Name Type Description

arb_ticket string Internal identifier used to track arbitration

arb_state Enumeration (see text) Arbitration state

arb_connected Yes or No Whether this node is connected to the
arbitrator

connected_rank1_arbs List of node IDs Connected arbitrators of rank 1

connected_rank2_arbs List of node IDs Connected arbitrators of rank 1

The node ID and node group ID are the same as reported by ndb_mgm -e "SHOW".

left_node and right_node are defined in terms of a model that connects all data nodes in a circle,
in order of their node IDs, similar to the ordering of the numbers on a clock dial, as shown here:

Figure 18.7 Circular Arrangement of NDB Cluster Nodes

In this example, we have 8 data nodes, numbered 5, 6, 7, 8, 12, 13, 14, and 15, ordered clockwise in
a circle. We determine “left” and “right” from the interior of the circle. The node to the left of node 5 is
node 15, and the node to the right of node 5 is node 6. You can see all these relationships by running
the following query and observing the output:

mysql> SELECT node_id,left_node,right_node
    -> FROM ndbinfo.membership;
+---------+-----------+------------+
| node_id | left_node | right_node |
+---------+-----------+------------+
|       5 |        15 |          6 |
|       6 |         5 |          7 |
|       7 |         6 |          8 |
|       8 |         7 |         12 |
|      12 |         8 |         13 |
|      13 |        12 |         14 |
|      14 |        13 |         15 |
|      15 |        14 |          5 |
+---------+-----------+------------+
8 rows in set (0.00 sec)

The designations “left” and “right” are used in the event log in the same way.

The president node is the node viewed by the current node as responsible for setting an arbitrator
(see NDB Cluster Start Phases). If the president fails or becomes disconnected, the current node
expects the node whose ID is shown in the successor column to become the new president. The
succession_order column shows the place in the succession queue that the current node views
itself as having.

In a normal NDB Cluster, all data nodes should see the same node as president, and the same
node (other than the president) as its successor. In addition, the current president should see itself as
1 in the order of succession, the successor node should see itself as 2, and so on.

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html


ndbinfo: The NDB Cluster Information Database

2356

All nodes should show the same arb_ticket values as well as the same arb_state values.
Possible arb_state values are ARBIT_NULL, ARBIT_INIT, ARBIT_FIND, ARBIT_PREP1,
ARBIT_PREP2, ARBIT_START, ARBIT_RUN, ARBIT_CHOOSE, ARBIT_CRASH, and UNKNOWN.

arb_connected shows whether this node is connected to the node shown as this node's
arbitrator.

The connected_rank1_arbs and connected_rank2_arbs columns each display a list of 0 or
more arbitrators having an ArbitrationRank equal to 1, or to 2, respectively.

Note

Both management nodes and API nodes are eligible to become arbitrators.

Like the arbitrator_validity_detail and arbitrator_validity_summary tables, this table
was added in NDB 7.2.10.

18.5.10.12 The ndbinfo memoryusage Table

Querying this table provides information similar to that provided by the ALL REPORT MemoryUsage
command in the ndb_mgm client, or logged by ALL DUMP 1000.

The following table provides information about the columns in the memoryusage table. For each
column, the table shows the name, data type, and a brief description. Additional information can be
found in the notes following the table.

Column Name Type Description

node_id integer The node ID of this data node.

memory_type string One of Data memory or Index memory,
or (NDB 7.2.16 and later) Long message
buffer.

used integer Number of bytes currently used for data
memory or index memory by this data node.

used_pages integer Number of pages currently used for data
memory or index memory by this data node;
see text.

total integer Total number of bytes of data memory or
index memory available for this data node;
see text.

total_pages integer Total number of memory pages available for
data memory or index memory on this data
node; see text.

The total column represents the total amount of memory in bytes available for the given resource
(data memory or index memory) on a particular data node. This number should be approximately equal
to the setting of the corresponding configuration parameter in the config.ini file.

Suppose that the cluster has 2 data nodes having node IDs 5 and 6, and the config.ini file contains
the following:

[ndbd default]
DataMemory = 1G
IndexMemory = 1G

Suppose also that the value of the LongMessageBuffer configuration parameter is allowed to
assume its default (64 MB in NDB 7.2.16 and later).

The following query shows approximately the same values:

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-dump-commands.html


ndbinfo: The NDB Cluster Information Database

2357

mysql> SELECT node_id, memory_type, total
     > FROM ndbinfo.memoryusage;
+---------+---------------------+------------+
| node_id | memory_type         | total      |
+---------+---------------------+------------+
|       5 | Data memory         | 1073741824 |
|       5 | Index memory        | 1074003968 |
|       5 | Long message buffer |   67108864 |
|       6 | Data memory         | 1073741824 |
|       6 | Index memory        | 1074003968 |
|       6 | Long message buffer |   67108864 |
+---------+---------------------+------------+
6 rows in set (0.00 sec)

In this case, the total column values for index memory are slightly higher than the value set of
IndexMemory due to internal rounding.

For the used_pages and total_pages columns, resources are measured in pages, which are 32K
in size for DataMemory and 8K for IndexMemory. For long message buffer memory, the page size is
256 bytes.

Long message buffer information can be found in this table beginning with NDB 7.2.16; in earlier
versions of NDB Cluster 7.2, only data memory and index memory were included.

18.5.10.13 The ndbinfo nodes Table

This table contains information on the status of data nodes. For each data node that is running in the
cluster, a corresponding row in this table provides the node's node ID, status, and uptime. For nodes
that are starting, it also shows the current start phase.

The following table provides information about the columns in the nodes table. For each column, the
table shows the name, data type, and a brief description. Additional information can be found in the
notes following the table.

Column Name Type Description

node_id integer The data node's unique node ID in the
cluster.

uptime integer Time since the node was last started, in
seconds.

status string Current status of the data node; see text for
possible values.

start_phase integer If the data node is starting, the current start
phase.

config_generation integer The version of the cluster configuration file in
use on this data node.

The uptime column shows the time in seconds that this node has been running since it was last
started or restarted. This is a BIGINT value. This figure includes the time actually needed to start the
node; in other words, this counter starts running the moment that ndbd or ndbmtd is first invoked; thus,
even for a node that has not yet finished starting, uptime may show a non-zero value.

The status column shows the node's current status. This is one of: NOTHING, CMVMI, STARTING,
STARTED, SINGLEUSER, STOPPING_1, STOPPING_2, STOPPING_3, or STOPPING_4. When the
status is STARTING, you can see the current start phase in the start_phase column (see later in
this section). SINGLEUSER is displayed in the status column for all data nodes when the cluster is in
single user mode (see Section 18.5.8, “NDB Cluster Single User Mode”). Seeing one of the STOPPING
states does not necessarily mean that the node is shutting down but can mean rather that it is entering
a new state; for example, if you put the cluster in single user mode, you can sometimes see data nodes
report their state briefly as STOPPING_2 before the status changes to SINGLEUSER.



ndbinfo: The NDB Cluster Information Database

2358

The start_phase column uses the same range of values as those used in the output of the ndb_mgm
client node_id STATUS command (see Section 18.5.2, “Commands in the NDB Cluster Management
Client”). If the node is not currently starting, then this column shows 0. For a listing of NDB Cluster start
phases with descriptions, see Section 18.5.1, “Summary of NDB Cluster Start Phases”.

The config_generation column shows which version of the cluster configuration is in effect on
each data node. This can be useful when performing a rolling restart of the cluster in order to make
changes in configuration parameters. For example, from the output of the following SELECT statement,
you can see that node 3 is not yet using the latest version of the cluster configuration (6) although
nodes 1, 2, and 4 are doing so:

mysql> USE ndbinfo;
Database changed
mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status  | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
|       1 |  10462 | STARTED |           0 |                 6 |
|       2 |  10460 | STARTED |           0 |                 6 |
|       3 |  10457 | STARTED |           0 |                 5 |
|       4 |  10455 | STARTED |           0 |                 6 |
+---------+--------+---------+-------------+-------------------+
2 rows in set (0.04 sec)

Therefore, for the case just shown, you should restart node 3 to complete the rolling restart of the
cluster.

Nodes that are stopped are not accounted for in this table. Suppose that you have an NDB Cluster with
4 data nodes (node IDs 1, 2, 3 and 4), and all nodes are running normally, then this table contains 4
rows, 1 for each data node:

mysql> USE ndbinfo;
Database changed
mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status  | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
|       1 |  11776 | STARTED |           0 |                 6 |
|       2 |  11774 | STARTED |           0 |                 6 |
|       3 |  11771 | STARTED |           0 |                 6 |
|       4 |  11769 | STARTED |           0 |                 6 |
+---------+--------+---------+-------------+-------------------+
4 rows in set (0.04 sec)

If you shut down one of the nodes, only the nodes that are still running are represented in the output of
this SELECT statement, as shown here:

ndb_mgm> 2 STOP
Node 2: Node shutdown initiated
Node 2: Node shutdown completed.
Node 2 has shutdown.

mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status  | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
|       1 |  11807 | STARTED |           0 |                 6 |
|       3 |  11802 | STARTED |           0 |                 6 |
|       4 |  11800 | STARTED |           0 |                 6 |
+---------+--------+---------+-------------+-------------------+
3 rows in set (0.02 sec)

18.5.10.14 The ndbinfo resources Table



ndbinfo: The NDB Cluster Information Database

2359

This table provides information about data node resource availability and usage.

These resources are sometimes known as super-pools.

The following table provides information about the columns in the resources table. For each column,
the table shows the name, data type, and a brief description. Additional information can be found in the
notes following the table.

Column Name Type Description

node_id integer The unique node ID of this data node.

resource_name string Name of the resource; see text.

reserved integer The amount reserved for this resource.

used integer The amount actually used by this resource.

max integer The maximum amount of this resource used,
since the node was last started.

The resource_name can be one of the names shown in the following table:

Resource name Description

RESERVED Reserved by the system; cannot be overridden.

DISK_OPERATIONS If a log file group is allocated, the size of the undo log buffer is used to set
the size of this resource. This resource is used only to allocate the undo
log buffer for an undo log file group; there can only be one such group.
Overallocation occurs as needed by CREATE LOGFILE GROUP.

DISK_RECORDS Records allocated for Disk Data operations.

DATA_MEMORY Used for main memory tuples, indexes, and hash indexes. Sum
of DataMemory and IndexMemory, plus 8 pages of 32 KB each if
IndexMemory has been set. Cannot be overallocated.

JOBBUFFER Used for allocating job buffers by the NDB scheduler; cannot be
overallocated. This is approximately 2 MB per thread plus a 1 MB
buffer in both directions for all threads that can communicate. For large
configurations this consume several GB.

FILE_BUFFERS Used by the redo log handler in the DBLQH kernel block; cannot be
overallocated. Size is NoOfFragmentLogParts * RedoBuffer, plus 1 MB
per log file part.

TRANSPORTER_BUFFERSUsed for send buffers by ndbmtd; the sum of TotalSendBufferMemory
and ExtraSendBufferMemory. This resource that can be overallocated
by up to 25 percent. TotalSendBufferMemory is calculated by summing
the send buffer memory per node, the default value of which is 2 MB. Thus,
in a system having four data nodes and eight API nodes, the data nodes
have 12 * 2 MB send buffer memory. ExtraSendBufferMemory is used
by ndbmtd and amounts to 2 MB extra memory per thread. Thus, with
4 LDM threads, 2 TC threads, 1 main thread, 1 replication thread, and 2
receive threads, ExtraSendBufferMemory is 10 * 2 MB. Overallocation of
this resource can be performed by setting the SharedGlobalMemory data
node configuration parameter.

DISK_PAGE_BUFFER Used for the disk page buffer; determined by the DiskPageBufferMemory
configuration parameter. Cannot be overallocated.

QUERY_MEMORY Used by the DBSPJ kernel block.

SCHEMA_TRANS_MEMORYMinimum is 2 MB; can be overallocated to use any remaining available
memory.

18.5.10.15 The ndbinfo server_operations Table



ndbinfo: The NDB Cluster Information Database

2360

The server_operations table contains entries for all ongoing NDB operations that the current SQL
node (MySQL Server) is currently involved in. It effectively is a subset of the cluster_operations
table, in which operations for other SQL and API nodes are not shown.

The following table provides information about the columns in the server_operations table. For
each column, the table shows the name, data type, and a brief description. Additional information can
be found in the notes following the table.

Column Name Type Description

mysql_connection_id integer MySQL Server connection ID

node_id integer Node ID

block_instance integer Block instance

transid integer Transaction ID

operation_type string Operation type (see text for possible values)

state string Operation state (see text for possible values)

tableid integer Table ID

fragmentid integer Fragment ID

client_node_id integer Client node ID

client_block_ref integer Client block reference

tc_node_id integer Transaction coordinator node ID

tc_block_no integer Transaction coordinator block number

tc_block_instance integer Transaction coordinator block instance

The mysql_connection_id is the same as the connection or session ID shown in the
output of SHOW PROCESSLIST. It is obtained from the INFORMATION_SCHEMA table
NDB_TRANSID_MYSQL_CONNECTION_MAP.

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API
transaction ID of an ongoing transaction.)

The operation_type column can take any one of the values READ, READ-SH, READ-EX, INSERT,
UPDATE, DELETE, WRITE, UNLOCK, REFRESH, SCAN, SCAN-SH, SCAN-EX, or <unknown>.

The state column can have any one of the values ABORT_QUEUED, ABORT_STOPPED,
COMMITTED, COMMIT_QUEUED, COMMIT_STOPPED, COPY_CLOSE_STOPPED,
COPY_FIRST_STOPPED, COPY_STOPPED, COPY_TUPKEY, IDLE, LOG_ABORT_QUEUED,
LOG_COMMIT_QUEUED, LOG_COMMIT_QUEUED_WAIT_SIGNAL, LOG_COMMIT_WRITTEN,
LOG_COMMIT_WRITTEN_WAIT_SIGNAL, LOG_QUEUED, PREPARED, PREPARED_RECEIVED_COMMIT,
SCAN_CHECK_STOPPED, SCAN_CLOSE_STOPPED, SCAN_FIRST_STOPPED,
SCAN_RELEASE_STOPPED, SCAN_STATE_USED, SCAN_STOPPED, SCAN_TUPKEY, STOPPED,
TC_NOT_CONNECTED, WAIT_ACC, WAIT_ACC_ABORT, WAIT_AI_AFTER_ABORT, WAIT_ATTR,
WAIT_SCAN_AI, WAIT_TUP, WAIT_TUPKEYINFO, WAIT_TUP_COMMIT, or WAIT_TUP_TO_ABORT. (If
the MySQL Server is running with ndbinfo_show_hidden enabled, you can view this list of states by
selecting from the ndb$dblqh_tcconnect_state table, which is normally hidden.)

You can obtain the name of an NDB table from its table ID by checking the output of
ndb_show_tables.

The fragid is the same as the partition number seen in the output of ndb_desc --extra-
partition-info (short form -p).

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node
(that is, an NDB API client or a MySQL Server attached to the cluster).

This table was added in NDB 7.2.2.

http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-gettransactionid.html


ndbinfo: The NDB Cluster Information Database

2361

18.5.10.16 The ndbinfo server_transactions Table

The server_transactions table is subset of the cluster_transactions table, but includes only
those transactions in which the current SQL node (MySQL Server) is a participant, while including the
relevant connection IDs.

The following table provides information about the columns in the server_transactions table. For
each column, the table shows the name, data type, and a brief description. Additional information can
be found in the notes following the table.

Column Name Type Description

mysql_connection_id integer MySQL Server connection ID

node_id integer Transaction coordinator node ID

block_instance integer Transaction coordinator block instance

transid integer Transaction ID

state string Operation state (see text for possible values)

count_operations integer Number of stateful operations in the
transaction

outstanding_operations integer Operations still being executed by local data
management layer (LQH blocks)

inactive_seconds integer Time spent waiting for API

client_node_id integer Client node ID

client_block_ref integer Client block reference

The mysql_connection_id is the same as the connection or session ID shown in the
output of SHOW PROCESSLIST. It is obtained from the INFORMATION_SCHEMA table
NDB_TRANSID_MYSQL_CONNECTION_MAP.

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API
transaction ID of an ongoing transaction.)

The state column can have any one of the values CS_ABORTING, CS_COMMITTING,
CS_COMMIT_SENT, CS_COMPLETE_SENT, CS_COMPLETING, CS_CONNECTED, CS_DISCONNECTED,
CS_FAIL_ABORTED, CS_FAIL_ABORTING, CS_FAIL_COMMITTED, CS_FAIL_COMMITTING,
CS_FAIL_COMPLETED, CS_FAIL_PREPARED, CS_PREPARE_TO_COMMIT, CS_RECEIVING,
CS_REC_COMMITTING, CS_RESTART, CS_SEND_FIRE_TRIG_REQ, CS_STARTED,
CS_START_COMMITTING, CS_START_SCAN, CS_WAIT_ABORT_CONF, CS_WAIT_COMMIT_CONF,
CS_WAIT_COMPLETE_CONF, CS_WAIT_FIRE_TRIG_REQ. (If the MySQL Server is running with
ndbinfo_show_hidden enabled, you can view this list of states by selecting from the ndb
$dbtc_apiconnect_state table, which is normally hidden.)

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node
(that is, an NDB API client or a MySQL Server attached to the cluster).

This table was added in NDB 7.2.2.

18.5.10.17 The ndbinfo threadblocks Table

The threadblocks table associates data nodes, threads, and instances of NDB kernel blocks.

The following table provides information about the columns in the threadblocks table. For each
column, the table shows the name, data type, and a brief description. Additional information can be
found in the notes following the table.

Column Name Type Description

node_id integer Node ID

http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-gettransactionid.html


ndbinfo: The NDB Cluster Information Database

2362

Column Name Type Description

thr_no integer Thread ID

block_name string Block name

block_instance integer Block instance number

The block_name is one of the values found in the block_name column when selecting from the
ndbinfo.blocks table. Although the list of possible values is static for a given NDB Cluster release,
the list may vary between releases.

This table was added in NDB 7.2.2.

18.5.10.18 The ndbinfo threadstat Table

The threadstat table provides a rough snapshot of statistics for threads running in the NDB kernel.

The following table provides information about the columns in the threadstat table. For each
column, the table shows the name, data type, and a brief description. Additional information can be
found in the notes following the table.

Column Name Type Description

node_id integer Node ID

thr_no integer Thread ID

thr_nm string Thread name

c_loop string Number of loops in main loop

c_exec string Number of signals executed

c_wait string Number of times waiting for additional input

c_l_sent_prioa integer Number of priority A signals sent to own
node

c_l_sent_priob integer Number of priority B signals sent to own
node

c_r_sent_prioa integer Number of priority A signals sent to remote
node

c_r_sent_priob integer Number of priority B signals sent to remote
node

os_tid integer OS thread ID

os_now integer OS time (ms)

os_ru_utime integer OS user CPU time (µs)

os_ru_stime integer OS system CPU time (µs)

os_ru_minflt integer OS page reclaims (soft page faults)

os_ru_majflt integer OS page faults (hard page faults)

os_ru_nvcsw integer OS voluntary context switches

os_ru_nivcsw integer OS involuntary context switches

os_time uses the system gettimeofday() call.

The values of the os_ru_utime, os_ru_stime, os_ru_minflt, os_ru_majflt, os_ru_nvcsw,
and os_ru_nivcsw columns are obtained using the system getrusage() call, or the equivalent.

Since this table contains counts taken at a given point in time, for best results it is necessary to
query this table periodically and store the results in an intermediate table or tables. The MySQL
Server's Event Scheduler can be employed to automate such monitoring. For more information, see
Section 20.4, “Using the Event Scheduler”.



ndbinfo: The NDB Cluster Information Database

2363

This table was added in NDB 7.2.2.

18.5.10.19 The ndbinfo transporters Table

This table contains information about NDB transporters.

The following table provides information about the columns in the transporters table. For each
column, the table shows the name, data type, and a brief description. Additional information can be
found in the notes following the table.

Column Name Type Description

node_id integer This data node's unique node ID in the
cluster

remote_node_id integer The remote data node's node ID

status string Status of the connection

remote_address string Name or IP address of the remote host

bytes_sent integer Number of bytes sent using this connection

bytes_received integer Number of bytes received using this
connection

connect_count integer Number of times connection established on
this transporter

overloaded boolean (0 or 1) 1 if this transporter is currently overloaded,
otherwise 0

overload_count integer Number of times this transporter has entered
overload state since connecting

slowdown boolean (0 or 1) 1 if this transporter is in slowdown state,
otherwise 0

slowdown_count integer Number of times this transporter has entered
slowdown state since connecting

For each running data node in the cluster, the transporters table displays a row showing the status
of each of that node's connections with all nodes in the cluster, including itself. This information is
shown in the table's status column, which can have any one of the following values: CONNECTING,
CONNECTED, DISCONNECTING, or DISCONNECTED.

Connections to API and management nodes which are configured but not currently connected to the
cluster are shown with status DISCONNECTED. Rows where the node_id is that of a data node which
is not currently connected are not shown in this table. (This is similar omission of disconnected nodes
in the ndbinfo.nodes table.

The remote_address, bytes_sent, and bytes_received columns were added in NDB
7.2.9. The remote_address is the host name or address for the node whose ID is shown in the
remote_node_id column. The bytes_sent from this node and bytes_received by this node
are the numbers, respectively, of bytes sent and received by the node using this connection since it
was established. For nodes whose status is CONNECTING or DISCONNECTED, these columns always
display 0.

Assume you have a 5-node cluster consisting of 2 data nodes, 2 SQL nodes, and 1 management node,
as shown in the output of the SHOW command in the ndb_mgm client:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration
---------------------
[ndbd(NDB)]     2 node(s)
id=1    @10.100.10.1  (5.5.56-ndb-7.2.30, Nodegroup: 0, *)



ndbinfo: The NDB Cluster Information Database

2364

id=2    @10.100.10.2  (5.5.56-ndb-7.2.30, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=10   @10.100.10.10  (5.5.56-ndb-7.2.30)

[mysqld(API)]   2 node(s)
id=20   @10.100.10.20  (5.5.56-ndb-7.2.30)
id=21   @10.100.10.21  (5.5.56-ndb-7.2.30)

There are 10 rows in the transporters table—5 for the first data node, and 5 for the second—
assuming that all data nodes are running, as shown here:

mysql> SELECT node_id, remote_node_id, status
    ->   FROM ndbinfo.transporters;
+---------+----------------+---------------+
| node_id | remote_node_id | status        |
+---------+----------------+---------------+
|       1 |              1 | DISCONNECTED  |
|       1 |              2 | CONNECTED     |
|       1 |             10 | CONNECTED     |
|       1 |             20 | CONNECTED     |
|       1 |             21 | CONNECTED     |
|       2 |              1 | CONNECTED     |
|       2 |              2 | DISCONNECTED  |
|       2 |             10 | CONNECTED     |
|       2 |             20 | CONNECTED     |
|       2 |             21 | CONNECTED     |
+---------+----------------+---------------+
10 rows in set (0.04 sec)

If you shut down one of the data nodes in this cluster using the command 2 STOP in the ndb_mgm
client, then repeat the previous query (again using the mysql client), this table now shows only 5 rows
—1 row for each connection from the remaining management node to another node, including both
itself and the data node that is currently offline—and displays CONNECTING for the status of each
remaining connection to the data node that is currently offline, as shown here:

mysql> SELECT node_id, remote_node_id, status
    ->   FROM ndbinfo.transporters;
+---------+----------------+---------------+
| node_id | remote_node_id | status        |
+---------+----------------+---------------+
|       1 |              1 | DISCONNECTED  |
|       1 |              2 | CONNECTING    |
|       1 |             10 | CONNECTED     |
|       1 |             20 | CONNECTED     |
|       1 |             21 | CONNECTED     |
+---------+----------------+---------------+
5 rows in set (0.02 sec)

The connect_count, overloaded, overload_count ,slowdown, and slowdown_count columns
were added in NDB 7.2.10. These counters are reset on connection, and retain their values after the
remote node disconnects. Also beginning with NDB 7.2.10, the bytes_send and bytes_received
counters are reset on connection as well, and so retain their values following disconnection.
(Previously, the values in these columns were reset on disconnection.) (Bug #15935206)

The overload state referred to by the overloaded and overload_count columns occurs
when this transporter's send buffer contains more than OVerloadLimit bytes (default is 80% of
SendBufferMemory, that is, 0.8 * 2097152 = 1677721 bytes). When a given transporter is in a state
of overload, any new transaction that tries to use this transporter fails with Error 1218 (Send Buffers
overloaded in NDB kernel). This affects both scans and primary key operations.

The slowdown state referenced by the slowdown and slowdown_count columns of this table
occurs when the transporter's send buffer contains more than 60% of the overload limit (equal to 0.6 *
2097152 = 1258291 bytes by default). In this state, any new scan using this transporter has its batch
size reduced to minimize the load on the transporter.



NDB Cluster Security Issues

2365

Common causes of send buffer slowdown or overloading include the following:

• Data size, in particular the quantity of data stored in TEXT columns or BLOB columns (or both types
of columns)

• Having a data node (ndbd or ndbmtd) on the same host as an SQL node that is engaged in binary
logging

• Large number of rows per transaction or transaction batch

• Configuration issues such as insufficient SendBufferMemory

• Hardware issues such as insufficient RAM or poor network connectivity

See also Section 18.3.3.13, “Configuring NDB Cluster Send Buffer Parameters”.

18.5.11 NDB Cluster Security Issues

This section discusses security considerations to take into account when setting up and running NDB
Cluster.

Topics covered in this section include the following:

• NDB Cluster and network security issues

• Configuration issues relating to running NDB Cluster securely

• NDB Cluster and the MySQL privilege system

• MySQL standard security procedures as applicable to NDB Cluster

18.5.11.1 NDB Cluster Security and Networking Issues

In this section, we discuss basic network security issues as they relate to NDB Cluster. It is extremely
important to remember that NDB Cluster “out of the box” is not secure; you or your network
administrator must take the proper steps to ensure that your cluster cannot be compromised over the
network.

Cluster communication protocols are inherently insecure, and no encryption or similar security
measures are used in communications between nodes in the cluster. Because network speed and
latency have a direct impact on the cluster's efficiency, it is also not advisable to employ SSL or
other encryption to network connections between nodes, as such schemes will effectively slow
communications.

It is also true that no authentication is used for controlling API node access to an NDB Cluster. As with
encryption, the overhead of imposing authentication requirements would have an adverse impact on
Cluster performance.

In addition, there is no checking of the source IP address for either of the following when accessing the
cluster:

• SQL or API nodes using “free slots” created by empty [mysqld] or [api] sections in the
config.ini file

This means that, if there are any empty [mysqld] or [api] sections in the config.ini file, then
any API nodes (including SQL nodes) that know the management server's host name (or IP address)
and port can connect to the cluster and access its data without restriction. (See Section 18.5.11.2,
“NDB Cluster and MySQL Privileges”, for more information about this and related issues.)

Note

   You can exercise some control over SQL and API node access to the
cluster by specifying a HostName parameter for all [mysqld] and [api]
sections in the config.ini file. However, this also means that, should you



NDB Cluster Security Issues

2366

wish to connect an API node to the cluster from a previously unused host, you
need to add an [api] section containing its host name to the config.ini
file.

More information is available elsewhere in this chapter about the HostName
parameter. Also see Section 18.3.1, “Quick Test Setup of NDB Cluster”, for
configuration examples using HostName with API nodes.

• Any ndb_mgm client

This means that any cluster management client that is given the management server's host name
(or IP address) and port (if not the standard port) can connect to the cluster and execute any
management client command. This includes commands such as ALL STOP and SHUTDOWN.

  For these reasons, it is necessary to protect the cluster on the network level. The safest network
configuration for Cluster is one which isolates connections between Cluster nodes from any other
network communications. This can be accomplished by any of the following methods:

1. Keeping Cluster nodes on a network that is physically separate from any public networks. This
option is the most dependable; however, it is the most expensive to implement.

We show an example of an NDB Cluster setup using such a physically segregated network here:

Figure 18.8 NDB Cluster with Hardware Firewall

This setup has two networks, one private (solid box) for the Cluster management servers and
data nodes, and one public (dotted box) where the SQL nodes reside. (We show the management
and data nodes connected using a gigabit switch since this provides the best performance.) Both
networks are protected from the outside by a hardware firewall, sometimes also known as a
network-based firewall.

This network setup is safest because no packets can reach the cluster's management or data
nodes from outside the network—and none of the cluster's internal communications can reach
the outside—without going through the SQL nodes, as long as the SQL nodes do not permit any
packets to be forwarded. This means, of course, that all SQL nodes must be secured against
hacking attempts.

Important

With regard to potential security vulnerabilities, an SQL node is no different
from any other MySQL server. See Section 6.1.3, “Making MySQL Secure
Against Attackers”, for a description of techniques you can use to secure
MySQL servers.



NDB Cluster Security Issues

2367

2.   Using one or more software firewalls (also known as host-based firewalls) to control which packets
pass through to the cluster from portions of the network that do not require access to it. In this type
of setup, a software firewall must be installed on every host in the cluster which might otherwise be
accessible from outside the local network.

The host-based option is the least expensive to implement, but relies purely on software to provide
protection and so is the most difficult to keep secure.

This type of network setup for NDB Cluster is illustrated here:

Figure 18.9 NDB Cluster with Software Firewalls

Using this type of network setup means that there are two zones of NDB Cluster hosts. Each
cluster host must be able to communicate with all of the other machines in the cluster, but only
those hosting SQL nodes (dotted box) can be permitted to have any contact with the outside, while
those in the zone containing the data nodes and management nodes (solid box) must be isolated
from any machines that are not part of the cluster. Applications using the cluster and user of those
applications must not be permitted to have direct access to the management and data node hosts.

To accomplish this, you must set up software firewalls that limit the traffic to the type or types
shown in the following table, according to the type of node that is running on each cluster host
computer:

Type of Node to be
Accessed

Traffic to Permit

SQL or API node • It originates from the IP address of a management or data node (using
any TCP or UDP port).

• It originates from within the network in which the cluster resides and is
on the port that your application is using.

Data node or
Management node

• It originates from the IP address of a management or data node (using
any TCP or UDP port).

• It originates from the IP address of an SQL or API node.



NDB Cluster Security Issues

2368

Any traffic other than that shown in the table for a given node type should be denied.

The specifics of configuring a firewall vary from firewall application to firewall application, and are
beyond the scope of this Manual. iptables is a very common and reliable firewall application,
which is often used with APF as a front end to make configuration easier. You can (and should)
consult the documentation for the software firewall that you employ, should you choose to
implement an NDB Cluster network setup of this type, or of a “mixed” type as discussed under the
next item.

3.   It is also possible to employ a combination of the first two methods, using both hardware and
software to secure the cluster—that is, using both network-based and host-based firewalls. This is
between the first two schemes in terms of both security level and cost. This type of network setup
keeps the cluster behind the hardware firewall, but permits incoming packets to travel beyond the
router connecting all cluster hosts to reach the SQL nodes.

One possible network deployment of an NDB Cluster using hardware and software firewalls in
combination is shown here:

Figure 18.10 NDB Cluster with a Combination of Hardware and Software Firewalls

In this case, you can set the rules in the hardware firewall to deny any external traffic except to SQL
nodes and API nodes, and then permit traffic to them only on the ports required by your application.

Whatever network configuration you use, remember that your objective from the viewpoint of keeping
the cluster secure remains the same—to prevent any unessential traffic from reaching the cluster while
ensuring the most efficient communication between the nodes in the cluster.

  Because NDB Cluster requires large numbers of ports to be open for communications between
nodes, the recommended option is to use a segregated network. This represents the simplest way to
prevent unwanted traffic from reaching the cluster.

Note

  If you wish to administer an NDB Cluster remotely (that is, from outside the
local network), the recommended way to do this is to use ssh or another secure
login shell to access an SQL node host. From this host, you can then run the
management client to access the management server safely, from within the
Cluster's own local network.



NDB Cluster Security Issues

2369

Even though it is possible to do so in theory, it is not recommended to use
ndb_mgm to manage a Cluster directly from outside the local network on which
the Cluster is running. Since neither authentication nor encryption takes place
between the management client and the management server, this represents an
extremely insecure means of managing the cluster, and is almost certain to be
compromised sooner or later.

18.5.11.2 NDB Cluster and MySQL Privileges

In this section, we discuss how the MySQL privilege system works in relation to NDB Cluster and the
implications of this for keeping an NDB Cluster secure.

 Standard MySQL privileges apply to NDB Cluster tables. This includes all MySQL privilege types
(SELECT privilege, UPDATE privilege, DELETE privilege, and so on) granted on the database, table, and
column level. As with any other MySQL Server, user and privilege information is stored in the mysql
system database. The SQL statements used to grant and revoke privileges on NDB tables, databases
containing such tables, and columns within such tables are identical in all respects with the GRANT and
REVOKE statements used in connection with database objects involving any (other) MySQL storage
engine. The same thing is true with respect to the CREATE USER and DROP USER statements.

 It is important to keep in mind that, by default, the MySQL grant tables use the MyISAM storage
engine. Because of this, those tables are not normally duplicated or shared among MySQL servers
acting as SQL nodes in an NDB Cluster. In other words, changes in users and their privileges do
not automatically propagate between SQL nodes by default. In NDB Cluster 7.2 (and later), you can
enable automatic distribution of MySQL users and privileges across NDB Cluster SQL nodes; see
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”, for details.

  Conversely, because there is no way in MySQL to deny privileges (privileges can either be revoked
or not granted in the first place, but not denied as such), there is no special protection for NDB tables
on one SQL node from users that have privileges on another SQL node; (This is true even if you are
not using automatic distribution of user privileges. The definitive example of this is the MySQL root
account, which can perform any action on any database object. In combination with empty [mysqld]
or [api] sections of the config.ini file, this account can be especially dangerous. To understand
why, consider the following scenario:

• The config.ini file contains at least one empty [mysqld] or [api] section. This means that the
NDB Cluster management server performs no checking of the host from which a MySQL Server (or
other API node) accesses the NDB Cluster.

• There is no firewall, or the firewall fails to protect against access to the NDB Cluster from hosts
external to the network.

• The host name or IP address of the NDB Cluster management server is known or can be determined
from outside the network.

If these conditions are true, then anyone, anywhere can start a MySQL Server with --ndbcluster
--ndb-connectstring=management_host and access this NDB Cluster. Using the MySQL root
account, this person can then perform the following actions:

• Execute metadata statements such as SHOW DATABASES statement (to obtain a list of all NDB
databases on the server) or SHOW TABLES FROM some_ndb_database statement to obtain a list
of all NDB tables in a given database

•   Run any legal MySQL statements on any of the discovered tables, such as:

• SELECT * FROM some_table to read all the data from any table

• DELETE FROM some_table to delete all the data from a table

• DESCRIBE some_table or SHOW CREATE TABLE some_table to determine the table schema



NDB Cluster Security Issues

2370

• UPDATE some_table SET column1 = some_value to fill a table column with “garbage” data;
this could actually cause much greater damage than simply deleting all the data

More insidious variations might include statements like these:

UPDATE some_table SET an_int_column = an_int_column + 1

or

UPDATE some_table SET a_varchar_column = REVERSE(a_varchar_column)

Such malicious statements are limited only by the imagination of the attacker.

The only tables that would be safe from this sort of mayhem would be those tables that were created
using storage engines other than NDB, and so not visible to a “rogue” SQL node.

  A user who can log in as root can also access the INFORMATION_SCHEMA database and its
tables, and so obtain information about databases, tables, stored routines, scheduled events, and
any other database objects for which metadata is stored in INFORMATION_SCHEMA.

It is also a very good idea to use different passwords for the root accounts on different NDB Cluster
SQL nodes unless you are using distributed privileges.

In sum, you cannot have a safe NDB Cluster if it is directly accessible from outside your local network.

Important

Never leave the MySQL root account password empty. This is just as true
when running MySQL as an NDB Cluster SQL node as it is when running it as
a standalone (non-Cluster) MySQL Server, and should be done as part of the
MySQL installation process before configuring the MySQL Server as an SQL
node in an NDB Cluster.

Prior to NDB Cluster 7.2, you should never convert the system tables in the mysql database to use the
NDB storage engine. There are a number of reasons why you should not do this, but the most important
reason is this: Many of the SQL statements that affect mysql tables storing information about user
privileges, stored routines, scheduled events, and other database objects cease to function if these
tables are changed to use any storage engine other than MyISAM. This is a consequence of various
MySQL Server internals. Beginning with NDB Cluster 7.2, you can use a stored procedure provided
for this purpose (see Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”), but you are
strongly advised not to attempt convert the system tables manually.

Otherwise, if you need to synchronize mysql system tables between SQL nodes, you can use
standard MySQL replication to do so, or employ a script to copy table entries between the MySQL
servers.

Summary.  The most important points to remember regarding the MySQL privilege system with
regard to NDB Cluster are listed here:

1. Users and privileges established on one SQL node do not automatically exist or take effect on other
SQL nodes in the cluster. Conversely, removing a user or privilege on one SQL node in the cluster
does not remove the user or privilege from any other SQL nodes.

2. You can distribute MySQL users and privileges among SQL nodes using the SQL script, and the
stored procedures it contains, that are supplied for this purpose in the NDB Cluster distribution.

3. Once a MySQL user is granted privileges on an NDB table from one SQL node in an NDB Cluster,
that user can “see” any data in that table regardless of the SQL node from which the data
originated, even if you are not using privilege distribution.



NDB Cluster Security Issues

2371

18.5.11.3 NDB Cluster and MySQL Security Procedures

In this section, we discuss MySQL standard security procedures as they apply to running NDB Cluster.

In general, any standard procedure for running MySQL securely also applies to running a MySQL
Server as part of an NDB Cluster. First and foremost, you should always run a MySQL Server as the
mysql system user; this is no different from running MySQL in a standard (non-Cluster) environment.
The mysql system account should be uniquely and clearly defined. Fortunately, this is the default
behavior for a new MySQL installation. You can verify that the mysqld process is running as the
system user mysql by using the system command such as the one shown here:

shell> ps aux | grep mysql
root     10467  0.0  0.1   3616  1380 pts/3    S    11:53   0:00 \
  /bin/sh ./mysqld_safe --ndbcluster --ndb-connectstring=localhost:1186
mysql    10512  0.2  2.5  58528 26636 pts/3    Sl   11:53   0:00 \
  /usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql \
  --datadir=/usr/local/mysql/var --user=mysql --ndbcluster \
  --ndb-connectstring=localhost:1186 --pid-file=/usr/local/mysql/var/mothra.pid \
  --log-error=/usr/local/mysql/var/mothra.err
jon      10579  0.0  0.0   2736   688 pts/0    S+   11:54   0:00 grep mysql

If the mysqld process is running as any other user than mysql, you should immediately shut it down
and restart it as the mysql user. If this user does not exist on the system, the mysql user account
should be created, and this user should be part of the mysql user group; in this case, you should
also make sure that the MySQL data directory on this system (as set using the --datadir option for
mysqld) is owned by the mysql user, and that the SQL node's my.cnf file includes user=mysql in
the [mysqld] section. Alternatively, you can start the MySQL server process with --user=mysql
on the command line, but it is preferable to use the my.cnf option, since you might forget to use the
command-line option and so have mysqld running as another user unintentionally. The mysqld_safe
startup script forces MySQL to run as the mysql user.

Important

Never run mysqld as the system root user. Doing so means that potentially
any file on the system can be read by MySQL, and thus—should MySQL be
compromised—by an attacker.

 As mentioned in the previous section (see Section 18.5.11.2, “NDB Cluster and MySQL Privileges”),
you should always set a root password for the MySQL Server as soon as you have it running. You
should also delete the anonymous user account that is installed by default. You can accomplish these
tasks using the following statements:

shell> mysql -u root

mysql> UPDATE mysql.user
    ->     SET Password=PASSWORD('secure_password')
    ->     WHERE User='root';

mysql> DELETE FROM mysql.user
    ->     WHERE User='';

mysql> FLUSH PRIVILEGES;

Be very careful when executing the DELETE statement not to omit the WHERE clause, or you risk
deleting all MySQL users. Be sure to run the FLUSH PRIVILEGES statement as soon as you
have modified the mysql.user table, so that the changes take immediate effect. Without FLUSH
PRIVILEGES, the changes do not take effect until the next time that the server is restarted.

Note

  Many of the NDB Cluster utilities such as ndb_show_tables, ndb_desc,
and ndb_select_all also work without authentication and can reveal table
names, schemas, and data. By default these are installed on Unix-style systems



NDB Cluster Disk Data Tables

2372

with the permissions wxr-xr-x (755), which means they can be executed by
any user that can access the mysql/bin directory.

See Section 18.4, “NDB Cluster Programs”, for more information about these
utilities.

18.5.12 NDB Cluster Disk Data Tables

It is possible to store the nonindexed columns of NDB tables on disk, rather than in RAM.

As part of implementing NDB Cluster Disk Data work, a number of improvements were made in NDB
Cluster for the efficient handling of very large amounts (terabytes) of data during node recovery and
restart. These include a “no-steal” algorithm for synchronizing a starting node with very large data
sets. For more information, see the paper Recovery Principles of NDB Cluster 5.1, by NDB Cluster
developers Mikael Ronström and Jonas Oreland.

NDB Cluster Disk Data performance can be influenced by a number of configuration parameters.
For information about these parameters and their effects, see NDB Cluster Disk Data configuration
parameters and NDB Cluster Disk Data storage and GCP Stop errors

The performance of an NDB Cluster that uses Disk Data storage can also be greatly improved by
separating data node file systems from undo log files and tablespace data files, which can be done
using symbolic links. For more information, see Section 18.5.12.2, “Using Symbolic Links with Disk
Data Objects”.

18.5.12.1 NDB Cluster Disk Data Objects

NDB Cluster Disk Data storage is implemented using a number of Disk Data objects. These include the
following:

• Tablespaces act as containers for other Disk Data objects.

• Undo log files undo information required for rolling back transactions.

• One or more undo log files are assigned to a log file group, which is then assigned to a tablespace.

• Data files store Disk Data table data. A data file is assigned directly to a tablespace.

Undo log files and data files are actual files in the file system of each data node; by default they are
placed in ndb_node_id_fs in the DataDir specified in the NDB Cluster config.ini file, and where
node_id is the data node's node ID. It is possible to place these elsewhere by specifying either an
absolute or relative path as part of the filename when creating the undo log or data file. Statements that
create these files are shown later in this section.

NDB Cluster tablespaces and log file groups are not implemented as files.

Important

Although not all Disk Data objects are implemented as files, they all share the
same namespace. This means that each Disk Data object must be uniquely
named (and not merely each Disk Data object of a given type). For example,
you cannot have a tablespace and a log file group both named dd1.

Assuming that you have already set up an NDB Cluster with all nodes (including management and SQL
nodes), the basic steps for creating an NDB Cluster table on disk are as follows:

1. Create a log file group, and assign one or more undo log files to it (an undo log file is also
sometimes referred to as an undofile).

Note

Undo log files are necessary only for Disk Data tables; they are not used for
NDBCLUSTER tables that are stored only in memory.

http://www.vldb2005.org/program/paper/wed/p1108-ronstrom.pdf


NDB Cluster Disk Data Tables

2373

2. Create a tablespace; assign the log file group, as well as one or more data files, to the tablespace.

3. Create a Disk Data table that uses this tablespace for data storage.

Each of these tasks can be accomplished using SQL statements in the mysql client or other MySQL
client application, as shown in the example that follows.

1.  We create a log file group named lg_1 using CREATE LOGFILE GROUP. This log file group is to
be made up of two undo log files, which we name undo_1.log and undo_2.log, whose initial
sizes are 16 MB and 12 MB, respectively. (The default initial size for an undo log file is 128 MB.)
Optionally, you can also specify a size for the log file group's undo buffer, or permit it to assume
the default value of 8 MB. In this example, we set the UNDO buffer's size at 2 MB. A log file group
must be created with an undo log file; so we add undo_1.log to lg_1 in this CREATE LOGFILE
GROUP statement:

CREATE LOGFILE GROUP lg_1
    ADD UNDOFILE 'undo_1.log'
    INITIAL_SIZE 16M
    UNDO_BUFFER_SIZE 2M
    ENGINE NDBCLUSTER;

To add undo_2.log to the log file group, use the following ALTER LOGFILE GROUP statement:

ALTER LOGFILE GROUP lg_1
    ADD UNDOFILE 'undo_2.log'
    INITIAL_SIZE 12M
    ENGINE NDBCLUSTER;

Some items of note:

• The .log file extension used here is not required. We use it merely to make the log files easily
recognisable.

• Every CREATE LOGFILE GROUP and ALTER LOGFILE GROUP statement must include an
ENGINE option. The only permitted values for this option are NDBCLUSTER and NDB.

Important

There can exist at most one log file group in the same NDB Cluster at any
given time.

• When you add an undo log file to a log file group using ADD UNDOFILE 'filename', a file with
the name filename is created in the ndb_node_id_fs directory within the DataDir of each
data node in the cluster, where node_id is the node ID of the data node. Each undo log file is of
the size specified in the SQL statement. For example, if an NDB Cluster has 4 data nodes, then
the ALTER LOGFILE GROUP statement just shown creates 4 undo log files, 1 each on in the
data directory of each of the 4 data nodes; each of these files is named undo_2.log and each
file is 12 MB in size.

• UNDO_BUFFER_SIZE is limited by the amount of system memory available.

• For more information about the CREATE LOGFILE GROUP statement, see Section 13.1.14,
“CREATE LOGFILE GROUP Syntax”. For more information about ALTER LOGFILE GROUP, see
Section 13.1.4, “ALTER LOGFILE GROUP Syntax”.

2.  Now we can create a tablespace, which contains files to be used by NDB Cluster Disk Data tables
for storing their data. A tablespace is also associated with a particular log file group. When creating
a new tablespace, you must specify the log file group which it is to use for undo logging; you must
also specify a data file. You can add more data files to the tablespace after the tablespace is
created; it is also possible to drop data files from a tablespace (an example of dropping data files is
provided later in this section).



NDB Cluster Disk Data Tables

2374

Assume that we wish to create a tablespace named ts_1 which uses lg_1 as its log file group.
This tablespace is to contain two data files named data_1.dat and data_2.dat, whose initial
sizes are 32 MB and 48 MB, respectively. (The default value for INITIAL_SIZE is 128 MB.) We
can do this using two SQL statements, as shown here:

CREATE TABLESPACE ts_1
    ADD DATAFILE 'data_1.dat'
    USE LOGFILE GROUP lg_1
    INITIAL_SIZE 32M
    ENGINE NDBCLUSTER;

ALTER TABLESPACE ts_1
    ADD DATAFILE 'data_2.dat'
    INITIAL_SIZE 48M
    ENGINE NDBCLUSTER;

The CREATE TABLESPACE statement creates a tablespace ts_1 with the data file data_1.dat,
and associates ts_1 with log file group lg_1. The ALTER TABLESPACE adds the second data file
(data_2.dat).

Some items of note:

• As is the case with the .log file extension used in this example for undo log files, there is no
special significance for the .dat file extension; it is used merely for easy recognition of data files.

• When you add a data file to a tablespace using ADD DATAFILE 'filename', a file with the
name filename is created in the ndb_node_id_fs directory within the DataDir of each data
node in the cluster, where node_id is the node ID of the data node. Each data file is of the
size specified in the SQL statement. For example, if an NDB Cluster has 4 data nodes, then the
ALTER TABLESPACE statement just shown creates 4 data files, 1 each in the data directory of
each of the 4 data nodes; each of these files is named data_2.dat and each file is 48 MB in
size.

• All CREATE TABLESPACE and ALTER TABLESPACE statements must contain an ENGINE
clause; only tables using the same storage engine as the tablespace can be created in
the tablespace. In MySQL NDB Cluster 7.2, the only permitted values for this clause are
NDBCLUSTER and NDB.

• For more information about the CREATE TABLESPACE and ALTER TABLESPACE statements,
see Section 13.1.18, “CREATE TABLESPACE Syntax”, and Section 13.1.8, “ALTER
TABLESPACE Syntax”.

3.  Now it is possible to create a table whose nonindexed columns are stored on disk in the
tablespace ts_1:

CREATE TABLE dt_1 (
    member_id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
    last_name VARCHAR(50) NOT NULL,
    first_name VARCHAR(50) NOT NULL,
    dob DATE NOT NULL,
    joined DATE NOT NULL,
    INDEX(last_name, first_name)
    )
    TABLESPACE ts_1 STORAGE DISK
    ENGINE NDBCLUSTER;

The TABLESPACE ... STORAGE DISK option tells the NDBCLUSTER storage engine to use
tablespace ts_1 for disk data storage.



NDB Cluster Disk Data Tables

2375

Note

It is also possible to specify whether an individual column is stored on disk
or in memory by using a STORAGE clause as part of the column's definition
in a CREATE TABLE or ALTER TABLE statement. STORAGE DISK causes
the column to be stored on disk, and STORAGE MEMORY causes in-memory
storage to be used. See Section 13.1.17, “CREATE TABLE Syntax”, for
more information.

Once table ts_1 has been created as shown, you can perform INSERT, SELECT, UPDATE, and
DELETE statements on it just as you would with any other MySQL table.

For table dt_1 as it has been defined here, only the dob and joined columns are stored on disk.
This is because there are indexes on the id, last_name, and first_name columns, and so
data belonging to these columns is stored in RAM. Only nonindexed columns can be held on disk;
indexes and indexed column data continue to be stored in memory. This tradeoff between the use
of indexes and conservation of RAM is something you must keep in mind as you design Disk Data
tables.

Performance note.  The performance of a cluster using Disk Data storage is greatly improved if Disk
Data files are kept on a separate physical disk from the data node file system. This must be done for
each data node in the cluster to derive any noticeable benefit.

You may use absolute and relative file system paths with ADD UNDOFILE and ADD DATAFILE.
Relative paths are calculated relative to the data node's data directory. You may also use symbolic
links; see Section 18.5.12.2, “Using Symbolic Links with Disk Data Objects”, for more information and
examples.

A log file group, a tablespace, and any Disk Data tables using these must be created in a particular
order. The same is true for dropping any of these objects:

• A log file group cannot be dropped as long as any tablespaces are using it.

• A tablespace cannot be dropped as long as it contains any data files.

• You cannot drop any data files from a tablespace as long as there remain any tables which are using
the tablespace.

• It is not possible to drop files created in association with a different tablespace than the one with
which the files were created. (Bug #20053)

For example, to drop all the objects created so far in this section, you would use the following
statements:

mysql> DROP TABLE dt_1;

mysql> ALTER TABLESPACE ts_1
    -> DROP DATAFILE 'data_2.dat'
    -> ENGINE NDBCLUSTER;

mysql> ALTER TABLESPACE ts_1
    -> DROP DATAFILE 'data_1.dat'
    -> ENGINE NDBCLUSTER;

mysql> DROP TABLESPACE ts_1
    -> ENGINE NDBCLUSTER;

mysql> DROP LOGFILE GROUP lg_1
    -> ENGINE NDBCLUSTER;

These statements must be performed in the order shown, except that the two ALTER
TABLESPACE ... DROP DATAFILE statements may be executed in either order.



NDB Cluster Disk Data Tables

2376

You can obtain information about data files used by Disk Data tables by querying the FILES table in
the INFORMATION_SCHEMA database. An extra “NULL row” provides additional information about undo
log files. For more information and examples, see Section 21.29.1, “The INFORMATION_SCHEMA
FILES Table”.

It is also possible to view information about allocated and free disk space for each Disk Data table or
table partition using the ndb_desc utility. For more information, see Section 18.4.10, “ndb_desc —
Describe NDB Tables”.

18.5.12.2 Using Symbolic Links with Disk Data Objects

The performance of an NDB Cluster that uses Disk Data storage can be greatly improved by
separating data node file systems from undo log files and tablespace data files and placing these
on different disks. In early versions of NDB Cluster, there was no direct support for this in NDB
Cluster, but it was possible to achieve this separation using symbolic links as described in this
section. NDB Cluster 7.2 supports the data node configuration parameters FileSystemPathDD,
FileSystemPathDataFiles, and FileSystemPathUndoFiles, which make the use of symbolic
links for this purpose unnecessary. For more information about these parameters, see Disk Data file
system parameters.

Each data node in the cluster creates a file system in the directory named ndb_node_id_fs under the
data node's DataDir as defined in the config.ini file. In this example, we assume that each data
node host has 3 disks, aliased as /data0, /data1, and /data2, and that the cluster's config.ini
includes the following:

[ndbd default]
DataDir= /data0

Our objective is to place all Disk Data log files in /data1, and all Disk Data data files in /data2, on
each data node host.

Note

In this example, we assume that the cluster's data node hosts are all using
Linux operating systems. For other platforms, you may need to substitute you
operating system's commands for those shown here.

To accomplish this, perform the following steps:

• Under the data node file system create symbolic links pointing to the other drives:

shell> cd /data0/ndb_2_fs
shell> ls
D1  D10  D11  D2  D8  D9  LCP
shell> ln -s /data0 dnlogs
shell> ln -s /data1 dndata

You should now have two symbolic links:

shell> ls -l --hide=D*
lrwxrwxrwx 1 user group   30 2007-03-19 13:58 dndata -> /data1
lrwxrwxrwx 1 user group   30 2007-03-19 13:59 dnlogs -> /data2

We show this only for the data node with node ID 2; however, you must do this for each data node.

• Now, in the mysql client, create a log file group and tablespace using the symbolic links, as shown
here:

mysql> CREATE LOGFILE GROUP lg1
    ->    ADD UNDOFILE 'dnlogs/undo1.log'
    ->    INITIAL_SIZE 150M



NDB Cluster Disk Data Tables

2377

    ->    UNDO_BUFFER_SIZE = 1M
    ->    ENGINE=NDBCLUSTER;

mysql> CREATE TABLESPACE ts1
    ->    ADD DATAFILE 'dndata/data1.log'
    ->    USE LOGFILE GROUP lg1
    ->    INITIAL_SIZE 1G
    ->    ENGINE=NDBCLUSTER;

Verify that the files were created and placed correctly as shown here:

shell> cd /data1
shell> ls -l
total 2099304
-rw-rw-r--  1 user group 157286400 2007-03-19 14:02 undo1.dat

shell> cd /data2
shell> ls -l
total 2099304
-rw-rw-r--  1 user group 1073741824 2007-03-19 14:02 data1.dat

• If you are running multiple data nodes on one host, you must take care to avoid having them try to
use the same space for Disk Data files. You can make this easier by creating a symbolic link in each
data node file system. Suppose you are using /data0 for both data node file systems, but you wish
to have the Disk Data files for both nodes on /data1. In this case, you can do something similar to
what is shown here:

shell> cd /data0
shell> ln -s /data1/dn2 ndb_2_fs/dd
shell> ln -s /data1/dn3 ndb_3_fs/dd
shell> ls -l --hide=D* ndb_2_fs
lrwxrwxrwx 1 user group   30 2007-03-19 14:22 dd -> /data1/dn2
shell> ls -l --hide=D* ndb_3_fs
lrwxrwxrwx 1 user group   30 2007-03-19 14:22 dd -> /data1/dn3

• Now you can create a logfile group and tablespace using the symbolic link, like this:

mysql> CREATE LOGFILE GROUP lg1
    ->    ADD UNDOFILE 'dd/undo1.log'
    ->    INITIAL_SIZE 150M
    ->    UNDO_BUFFER_SIZE = 1M
    ->    ENGINE=NDBCLUSTER;

mysql> CREATE TABLESPACE ts1
    ->    ADD DATAFILE 'dd/data1.log'
    ->    USE LOGFILE GROUP lg1
    ->    INITIAL_SIZE 1G
    ->    ENGINE=NDBCLUSTER;

Verify that the files were created and placed correctly as shown here:

shell> cd /data1
shell> ls
dn2        dn3
shell> ls dn2
undo1.log        data1.log
shell> ls dn3
undo1.log        data1.log

18.5.12.3 NDB Cluster Disk Data Storage Requirements

 The following items apply to Disk Data storage requirements:

• Variable-length columns of Disk Data tables take up a fixed amount of space. For each row, this is
equal to the space required to store the largest possible value for that column.



Adding NDB Cluster Data Nodes Online

2378

For general information about calculating these values, see Section 11.7, “Data Type Storage
Requirements”.

You can obtain an estimate the amount of space available in data files and undo log files by querying
the INFORMATION_SCHEMA.FILES table. For more information and examples, see Section 21.29.1,
“The INFORMATION_SCHEMA FILES Table”.

Note

The OPTIMIZE TABLE statement does not have any effect on Disk Data
tables.

• In a Disk Data table, the first 256 bytes of a TEXT or BLOB column are stored in memory; only the
remainder is stored on disk.

• Each row in a Disk Data table uses 8 bytes in memory to point to the data stored on disk. This
means that, in some cases, converting an in-memory column to the disk-based format can actually
result in greater memory usage. For example, converting a CHAR(4) column from memory-based to
disk-based format increases the amount of DataMemory used per row from 4 to 8 bytes.

Important

Starting the cluster with the --initial option does not remove Disk Data files.
You must remove these manually prior to performing an initial restart of the
cluster.

Performance of Disk Data tables can be improved by minimizing the number of disk seeks by making
sure that DiskPageBufferMemory is of sufficient size. You can query the diskpagebuffer table to
help determine whether the value for this parameter needs to be increased.

18.5.13 Adding NDB Cluster Data Nodes Online

This section describes how to add NDB Cluster data nodes “online”—that is, without needing to shut
down the cluster completely and restart it as part of the process.

Important

Currently, you must add new data nodes to an NDB Cluster as part of a new
node group. In addition, it is not possible to change the number of replicas (or
the number of nodes per node group) online.

18.5.13.1 Adding NDB Cluster Data Nodes Online: General Issues

This section provides general information about the behavior of and current limitations in adding NDB
Cluster nodes online.

Redistribution of Data.  The ability to add new nodes online includes a means to reorganize
NDBCLUSTER table data and indexes so that they are distributed across all data nodes, including the
new ones, by means of the ALTER ONLINE TABLE ... REORGANIZE PARTITION statement.
Table reorganization of both in-memory and Disk Data tables is supported. This redistribution does not
currently include unique indexes (only ordered indexes are redistributed). Prior to NDB 7.2.14, BLOB
table data is also not redistributed using this method (Bug #13714148).

The redistribution for NDBCLUSTER tables already existing before the new data nodes were added is
not automatic, but can be accomplished using simple SQL statements in mysql or another MySQL
client application. However, all data and indexes added to tables created after a new node group has
been added are distributed automatically among all cluster data nodes, including those added as part
of the new node group.



Adding NDB Cluster Data Nodes Online

2379

Partial starts.  It is possible to add a new node group without all of the new data nodes being
started. It is also possible to add a new node group to a degraded cluster—that is, a cluster that is only
partially started, or where one or more data nodes are not running. In the latter case, the cluster must
have enough nodes running to be viable before the new node group can be added.

Effects on ongoing operations.  Normal DML operations using NDB Cluster data are not prevented
by the creation or addition of a new node group, or by table reorganization. However, it is not possible
to perform DDL concurrently with table reorganization—that is, no other DDL statements can be issued
while an ALTER TABLE ... REORGANIZE PARTITION statement is executing. In addition, during
the execution of ALTER TABLE ... REORGANIZE PARTITION (or the execution of any other DDL
statement), it is not possible to restart cluster data nodes.

Failure handling.  Failures of data nodes during node group creation and table reorganization are
handled as hown in the following table:

Failure occurs in:Failure occurs during:

“Old” data nodes “New” data nodes System

Node group creation • If a node other than
the master fails: 
The creation of the
node group is always
rolled forward.

• If the master fails: 

• If the internal
commit point has
been reached: 
The creation of the
node group is rolled
forward.

• If the internal
commit point
has not yet been
reached.  The
creation of the node
group is rolled back

• If a node other than
the master fails: 
The creation of the
node group is always
rolled forward.

• If the master fails: 

• If the internal
commit point has
been reached: 
The creation of the
node group is rolled
forward.

• If the internal
commit point
has not yet been
reached.  The
creation of the node
group is rolled back

• If the execution
of CREATE
NODEGROUP has
reached the internal
commit point: 
When restarted, the
cluster includes the
new node group.
Otherwise it without.

• If the execution
of CREATE
NODEGROUP has
not yet reached the
internal commit
point:  When
restarted, the cluster
does not include the
new node group.

Table reorganization • If a node other
than the master
fails:  The table
reorganization is
always rolled forward.

• If the master fails: 

• If the internal
commit point
has been
reached:  The
table reorganization
is rolled forward.

• If the internal
commit point
has not yet been
reached.  The

• If a node other
than the master
fails:  The table
reorganization is
always rolled forward.

• If the master fails: 

• If the internal
commit point
has been
reached:  The
table reorganization
is rolled forward.

• If the internal
commit point
has not yet been
reached.  The

• If the execution
of an ALTER
ONLINE TABLE
table REORGANIZE
PARTITION
statement has
reached the internal
commit point: 
When the cluster
is restarted, the
data and indexes
belonging to table
are distributed using
the “new” data nodes.

• If the execution
of an ALTER
ONLINE TABLE
table REORGANIZE
PARTITION



Adding NDB Cluster Data Nodes Online

2380

Failure occurs in:Failure occurs during:

“Old” data nodes “New” data nodes System
table reorganization
is rolled back.

table reorganization
is rolled back.

statement has not
yet reached the
internal commit
point:  When the
cluster is restarted,
the data and indexes
belonging to table
are distributed using
only the “old” data
nodes.

Dropping node groups.  The ndb_mgm client supports a DROP NODEGROUP command, but it is
possible to drop a node group only when no data nodes in the node group contain any data. Since
there is currently no way to “empty” a specific data node or node group, this command works only the
following two cases:

1. After issuing CREATE NODEGROUP in the ndb_mgm client, but before issuing any ALTER ONLINE
TABLE ... REORGANIZE PARTITION statements in the mysql client.

2. After dropping all NDBCLUSTER tables using DROP TABLE.

TRUNCATE TABLE does not work for this purpose because the data nodes continue to store the
table definitions.

18.5.13.2 Adding NDB Cluster Data Nodes Online: Basic procedure

In this section, we list the basic steps required to add new data nodes to an NDB Cluster. This
procedure applies whether you are using ndbd or ndbmtd binaries for the data node processes. For
a more detailed example, see Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed
Example”.

Assuming that you already have a running NDB Cluster, adding data nodes online requires the
following steps:

1. Edit the cluster configuration config.ini file, adding new [ndbd] sections corresponding to
the nodes to be added. In the case where the cluster uses multiple management servers, these
changes need to be made to all config.ini files used by the management servers.

You must be careful that node IDs for any new data nodes added in the config.ini file do not
overlap node IDs used by existing nodes. In the event that you have API nodes using dynamically
allocated node IDs and these IDs match node IDs that you want to use for new data nodes, it is
possible to force any such API nodes to “migrate”, as described later in this procedure.

2. Perform a rolling restart of all NDB Cluster management servers.

Important

All management servers must be restarted with the --reload or --
initial option to force the reading of the new configuration.

3. Perform a rolling restart of all existing NDB Cluster data nodes. It is not necessary (or usually even
desirable) to use --initial when restarting the existing data nodes.

If you are using API nodes with dynamically allocated IDs matching any node IDs that you wish to
assign to new data nodes, you must restart all API nodes (including SQL nodes) before restarting
any of the data nodes processes in this step. This causes any API nodes with node IDs that were
previously not explicitly assigned to relinquish those node IDs and acquire new ones.



Adding NDB Cluster Data Nodes Online

2381

4. Perform a rolling restart of any SQL or API nodes connected to the NDB Cluster.

5. Start the new data nodes.

The new data nodes may be started in any order. They can also be started concurrently, as long as
they are started after the rolling restarts of all existing data nodes have been completed, and before
proceeding to the next step.

6. Execute one or more CREATE NODEGROUP commands in the NDB Cluster management client to
create the new node group or node groups to which the new data nodes will belong.

7. Redistribute the cluster's data among all data nodes, including the new ones. Normally this is done
by issuing an ALTER ONLINE TABLE ... REORGANIZE PARTITION statement in the mysql
client for each NDBCLUSTER table. Exception: For tables created using the MAX_ROWS option,
this statement does not work; instead, use ALTER ONLINE TABLE ... MAX_ROWS=... to
reorganize such tables.

Note

This needs to be done only for tables already existing at the time the new
node group is added. Data in tables created after the new node group is
added is distributed automatically; however, data added to any given table
tbl that existed before the new nodes were added is not distributed using
the new nodes until that table has been reorganized.

8. Reclaim the space freed on the “old” nodes by issuing, for each NDBCLUSTER table, an OPTIMIZE
TABLE statement in the mysql client.

You can add all the nodes desired, then issue several CREATE NODEGROUP commands in succession
to add the new node groups to the cluster.

18.5.13.3 Adding NDB Cluster Data Nodes Online: Detailed Example

In this section we provide a detailed example illustrating how to add new NDB Cluster data nodes
online, starting with an NDB Cluster having 2 data nodes in a single node group and concluding with a
cluster having 4 data nodes in 2 node groups.

Starting configuration.  For purposes of illustration, we assume a minimal configuration, and that
the cluster uses a config.ini file containing only the following information:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 192.168.0.1

[ndbd]
Id = 2
HostName = 192.168.0.2

[mgm]
HostName = 192.168.0.10
Id = 10

[api]
Id=20
HostName = 192.168.0.20

[api]
Id=21
HostName = 192.168.0.21



Adding NDB Cluster Data Nodes Online

2382

Note

We have left a gap in the sequence between data node IDs and other nodes.
This make it easier later to assign node IDs that are not already in use to data
nodes which are newly added.

We also assume that you have already started the cluster using the appropriate command line or
my.cnf options, and that running SHOW in the management client produces output similar to what is
shown here:

-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 192.168.0.10:1186
Cluster Configuration
---------------------
[ndbd(NDB)]     2 node(s)
id=1    @192.168.0.1  (5.5.56-ndb-7.2.30, Nodegroup: 0, *)
id=2    @192.168.0.2  (5.5.56-ndb-7.2.30, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=10   @192.168.0.10  (5.5.56-ndb-7.2.30)

[mysqld(API)]   2 node(s)
id=20   @192.168.0.20  (5.5.56-ndb-7.2.30)
id=21   @192.168.0.21  (5.5.56-ndb-7.2.30)

Finally, we assume that the cluster contains a single NDBCLUSTER table created as shown here:

USE n;

CREATE TABLE ips (
    id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    country_code CHAR(2) NOT NULL,
    type CHAR(4) NOT NULL,
    ip_address varchar(15) NOT NULL,
    addresses BIGINT UNSIGNED DEFAULT NULL,
    date BIGINT UNSIGNED DEFAULT NULL
)   ENGINE NDBCLUSTER;

The memory usage and related information shown later in this section was generated after inserting
approximately 50000 rows into this table.

Note

In this example, we show the single-threaded ndbd being used for the data
node processes. However—beginning with NDB 7.0.4—you can also apply this
example, if you are using the multi-threaded ndbmtd by substituting ndbmtd for
ndbd wherever it appears in the steps that follow. (Bug #43108)

Step 1: Update configuration file.  Open the cluster global configuration file in a text editor and
add [ndbd] sections corresponding to the 2 new data nodes. (We give these data nodes IDs 3 and
4, and assume that they are to be run on host machines at addresses 192.168.0.3 and 192.168.0.4,
respectively.) After you have added the new sections, the contents of the config.ini file should look
like what is shown here, where the additions to the file are shown in bold type:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 192.168.0.1



Adding NDB Cluster Data Nodes Online

2383

[ndbd]
Id = 2
HostName = 192.168.0.2

[ndbd]
Id = 3
HostName = 192.168.0.3

[ndbd]
Id = 4
HostName = 192.168.0.4

[mgm]
HostName = 192.168.0.10
Id = 10

[api]
Id=20
HostName = 192.168.0.20

[api]
Id=21
HostName = 192.168.0.21

Once you have made the necessary changes, save the file.

Step 2: Restart the management server.  Restarting the cluster management server requires that
you issue separate commands to stop the management server and then to start it again, as follows:

1. Stop the management server using the management client STOP command, as shown here:

ndb_mgm> 10 STOP
Node 10 has shut down.
Disconnecting to allow Management Server to shutdown

shell>

2. Because shutting down the management server causes the management client to terminate,
you must start the management server from the system shell. For simplicity, we assume that
config.ini is in the same directory as the management server binary, but in practice, you must
supply the correct path to the configuration file. You must also supply the --reload or --initial
option so that the management server reads the new configuration from the file rather than its
configuration cache. If your shell's current directory is also the same as the directory where the
management server binary is located, then you can invoke the management server as shown here:

shell> ndb_mgmd -f config.ini --reload
2008-12-08 17:29:23 [MgmSrvr] INFO     -- NDB Cluster Management Server. 5.5.56-ndb-7.2.30
2008-12-08 17:29:23 [MgmSrvr] INFO     -- Reading cluster configuration from 'config.ini'

If you check the output of SHOW in the management client after restarting the ndb_mgm process, you
should now see something like this:

-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 192.168.0.10:1186
Cluster Configuration
---------------------
[ndbd(NDB)]     2 node(s)
id=1    @192.168.0.1  (5.5.56-ndb-7.2.30, Nodegroup: 0, *)
id=2    @192.168.0.2  (5.5.56-ndb-7.2.30, Nodegroup: 0)
id=3 (not connected, accepting connect from 192.168.0.3)
id=4 (not connected, accepting connect from 192.168.0.4)

[ndb_mgmd(MGM)] 1 node(s)
id=10   @192.168.0.10  (5.5.56-ndb-7.2.30)

[mysqld(API)]   2 node(s)



Adding NDB Cluster Data Nodes Online

2384

id=20   @192.168.0.20  (5.5.56-ndb-7.2.30)
id=21   @192.168.0.21  (5.5.56-ndb-7.2.30)

Step 3: Perform a rolling restart of the existing data nodes.  This step can be accomplished
entirely within the cluster management client using the RESTART command, as shown here:

ndb_mgm> 1 RESTART
Node 1: Node shutdown initiated
Node 1: Node shutdown completed, restarting, no start.
Node 1 is being restarted

ndb_mgm> Node 1: Start initiated (version 7.2.30)
Node 1: Started (version 7.2.30)

ndb_mgm> 2 RESTART
Node 2: Node shutdown initiated
Node 2: Node shutdown completed, restarting, no start.
Node 2 is being restarted

ndb_mgm> Node 2: Start initiated (version 7.2.30)

ndb_mgm> Node 2: Started (version 7.2.30)

Important

After issuing each X RESTART command, wait until the management client
reports Node X: Started (version ...) before proceeding any further.

You can verify that all existing data nodes were restarted using the updated configuration by checking
the ndbinfo.nodes table in the mysql client.

Step 4: Perform a rolling restart of all cluster API nodes.  Shut down and restart each MySQL
server acting as an SQL node in the cluster using mysqladmin shutdown followed by mysqld_safe
(or another startup script). This should be similar to what is shown here, where password is the
MySQL root password for a given MySQL server instance:

shell> mysqladmin -uroot -ppassword shutdown
081208 20:19:56 mysqld_safe mysqld from pid file
/usr/local/mysql/var/tonfisk.pid ended
shell> mysqld_safe --ndbcluster --ndb-connectstring=192.168.0.10 &
081208 20:20:06 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
081208 20:20:06 mysqld_safe Starting mysqld daemon with databases
from /usr/local/mysql/var

Of course, the exact input and output depend on how and where MySQL is installed on the system,
as well as which options you choose to start it (and whether or not some or all of these options are
specified in a my.cnf file).

Step 5: Perform an initial start of the new data nodes.  From a system shell on each of the hosts
for the new data nodes, start the data nodes as shown here, using the --initial option:

shell> ndbd -c 192.168.0.10 --initial

Note

Unlike the case with restarting the existing data nodes, you can start the new
data nodes concurrently; you do not need to wait for one to finish starting before
starting the other.

Wait until both of the new data nodes have started before proceeding with the next step. Once the new
data nodes have started, you can see in the output of the management client SHOW command that they
do not yet belong to any node group (as indicated with bold type here):

ndb_mgm> SHOW



Adding NDB Cluster Data Nodes Online

2385

Connected to Management Server at: 192.168.0.10:1186
Cluster Configuration
---------------------
[ndbd(NDB)]     2 node(s)
id=1    @192.168.0.1  (5.5.56-ndb-7.2.30, Nodegroup: 0, *)
id=2    @192.168.0.2  (5.5.56-ndb-7.2.30, Nodegroup: 0)
id=3    @192.168.0.3  (5.5.56-ndb-7.2.30, no nodegroup)
id=4    @192.168.0.4  (5.5.56-ndb-7.2.30, no nodegroup)

[ndb_mgmd(MGM)] 1 node(s)
id=10   @192.168.0.10  (5.5.56-ndb-7.2.30)

[mysqld(API)]   2 node(s)
id=20   @192.168.0.20  (5.5.56-ndb-7.2.30)
id=21   @192.168.0.21  (5.5.56-ndb-7.2.30)

Step 6: Create a new node group.  You can do this by issuing a CREATE NODEGROUP command
in the cluster management client. This command takes as its argument a comma-separated list of the
node IDs of the data nodes to be included in the new node group, as shown here:

ndb_mgm> CREATE NODEGROUP 3,4
Nodegroup 1 created

By issuing SHOW again, you can verify that data nodes 3 and 4 have joined the new node group (again
indicated in bold type):

ndb_mgm> SHOW
Connected to Management Server at: 192.168.0.10:1186
Cluster Configuration
---------------------
[ndbd(NDB)]     2 node(s)
id=1    @192.168.0.1  (5.5.56-ndb-7.2.30, Nodegroup: 0, *)
id=2    @192.168.0.2  (5.5.56-ndb-7.2.30, Nodegroup: 0)
id=3    @192.168.0.3  (5.5.56-ndb-7.2.30, Nodegroup: 1)
id=4    @192.168.0.4  (5.5.56-ndb-7.2.30, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)
id=10   @192.168.0.10  (5.5.56-ndb-7.2.30)

[mysqld(API)]   2 node(s)
id=20   @192.168.0.20  (5.5.56-ndb-7.2.30)
id=21   @192.168.0.21  (5.5.56-ndb-7.2.30)

Step 7: Redistribute cluster data.  When a node group is created, existing data and indexes
are not automatically distributed to the new node group's data nodes, as you can see by issuing the
appropriate REPORT command in the management client:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(177 32K pages of total 3200)
Node 1: Index usage is 0%(108 8K pages of total 12832)
Node 2: Data usage is 5%(177 32K pages of total 3200)
Node 2: Index usage is 0%(108 8K pages of total 12832)
Node 3: Data usage is 0%(0 32K pages of total 3200)
Node 3: Index usage is 0%(0 8K pages of total 12832)
Node 4: Data usage is 0%(0 32K pages of total 3200)
Node 4: Index usage is 0%(0 8K pages of total 12832)

By using ndb_desc with the -p option, which causes the output to include partitioning information, you
can see that the table still uses only 2 partitions (in the Per partition info section of the output,
shown here in bold text):

shell> ndb_desc -c 192.168.0.10 -d n ips -p
-- ips --
Version: 1
Fragment type: 9



Adding NDB Cluster Data Nodes Online

2386

K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 6
Number of primary keys: 1
Length of frm data: 340
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
TableStatus: Retrieved
-- Attributes --
id Bigint PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
country_code Char(2;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
type Char(4;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
ip_address Varchar(15;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
addresses Bigunsigned NULL AT=FIXED ST=MEMORY
date Bigunsigned NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex

-- Per partition info --
Partition   Row count   Commit count  Frag fixed memory   Frag varsized memory
0           26086       26086         1572864             557056
1           26329       26329         1605632             557056

NDBT_ProgramExit: 0 - OK

You can cause the data to be redistributed among all of the data nodes by performing, for each NDB
table, an ALTER ONLINE TABLE ... REORGANIZE PARTITION statement in the mysql client.

Important

ALTER ONLINE TABLE ... REORGANIZE PARTITION does not work
on tables that were created with the MAX_ROWS option. Instead, use ALTER
ONLINE TABLE ... MAX_ROWS=... to reorganize such tables.

After issuing the statement ALTER ONLINE TABLE ips REORGANIZE PARTITION, you can see
using ndb_desc that the data for this table is now stored using 4 partitions, as shown here (with the
relevant portions of the output in bold type):

shell> ndb_desc -c 192.168.0.10 -d n ips -p
-- ips --
Version: 16777217
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 6
Number of primary keys: 1
Length of frm data: 341
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 4
TableStatus: Retrieved
-- Attributes --
id Bigint PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
country_code Char(2;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
type Char(4;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
ip_address Varchar(15;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
addresses Bigunsigned NULL AT=FIXED ST=MEMORY
date Bigunsigned NULL AT=FIXED ST=MEMORY



Adding NDB Cluster Data Nodes Online

2387

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex

-- Per partition info --
Partition   Row count   Commit count  Frag fixed memory   Frag varsized memory
0           12981       52296         1572864             557056
1           13236       52515         1605632             557056
2           13105       13105         819200              294912
3           13093       13093         819200              294912

NDBT_ProgramExit: 0 - OK

Note

Normally, ALTER [ONLINE] TABLE table_name REORGANIZE
PARTITION is used with a list of partition identifiers and a set of partition
definitions to create a new partitioning scheme for a table that has already been
explicitly partitioned. Its use here to redistribute data onto a new NDB Cluster
node group is an exception in this regard; when used in this way, only the name
of the table is used following the TABLE keyword, and no other keywords or
identifiers follow REORGANIZE PARTITION.

For more information, see Section 13.1.7, “ALTER TABLE Syntax”.

In addition, for each table, the ALTER ONLINE TABLE statement should be followed by an OPTIMIZE
TABLE to reclaim wasted space. You can obtain a list of all NDBCLUSTER tables using the following
query against the INFORMATION_SCHEMA.TABLES table:

SELECT TABLE_SCHEMA, TABLE_NAME
    FROM INFORMATION_SCHEMA.TABLES
    WHERE ENGINE = 'NDBCLUSTER';

Note

The INFORMATION_SCHEMA.TABLES.ENGINE value for an NDB Cluster table
is always NDBCLUSTER, regardless of whether the CREATE TABLE statement
used to create the table (or ALTER TABLE statement used to convert an
existing table from a different storage engine) used NDB or NDBCLUSTER in its
ENGINE option.

You can see after performing these statements in the output of ALL REPORT MEMORY that the data
and indexes are now redistributed between all cluster data nodes, as shown here:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(176 32K pages of total 3200)
Node 1: Index usage is 0%(76 8K pages of total 12832)
Node 2: Data usage is 5%(176 32K pages of total 3200)
Node 2: Index usage is 0%(76 8K pages of total 12832)
Node 3: Data usage is 2%(80 32K pages of total 3200)
Node 3: Index usage is 0%(51 8K pages of total 12832)
Node 4: Data usage is 2%(80 32K pages of total 3200)
Node 4: Index usage is 0%(50 8K pages of total 12832)

Note

Since only one DDL operation on NDBCLUSTER tables can be executed at
a time, you must wait for each ALTER ONLINE TABLE ... REORGANIZE
PARTITION statement to finish before issuing the next one.

It is not necessary to issue ALTER ONLINE TABLE ... REORGANIZE PARTITION statements for
NDBCLUSTER tables created after the new data nodes have been added; data added to such tables is



Adding NDB Cluster Data Nodes Online

2388

distributed among all data nodes automatically. However, in NDBCLUSTER tables that existed prior to
the addition of the new nodes, neither existing nor new data is distributed using the new nodes until
these tables have been reorganized using ALTER ONLINE TABLE ... REORGANIZE PARTITION.

Alternative procedure, without rolling restart.  It is possible to avoid the need for a rolling restart
by configuring the extra data nodes, but not starting them, when first starting the cluster. We assume,
as before, that you wish to start with two data nodes—nodes 1 and 2—in one node group and later to
expand the cluster to four data nodes, by adding a second node group consisting of nodes 3 and 4:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 192.168.0.1

[ndbd]
Id = 2
HostName = 192.168.0.2

[ndbd]
Id = 3
HostName = 192.168.0.3
Nodegroup = 65536 

[ndbd]
Id = 4
HostName = 192.168.0.4
Nodegroup = 65536 

[mgm]
HostName = 192.168.0.10
Id = 10

[api]
Id=20
HostName = 192.168.0.20

[api]
Id=21
HostName = 192.168.0.21

Note

In NDB Cluster 7.2, it is no longer necessary to perform the initial start of the
cluster using --nowait-nodes option with ndbd or ndbmtd as it was in some
earlier versions of NDB Cluster.

The data nodes to be brought online at a later time (nodes 3 and 4) can be configured with NodeGroup
= 65536, in which case nodes 1 and 2 can each be started as shown here:

shell> ndbd -c 192.168.0.10 --initial

The data nodes configured with NodeGroup = 65536 are treated by the management server as
though you had started nodes 1 and 2 using --nowait-nodes=3,4 after waiting for a period of time
determined by the setting for the StartNoNodeGroupTimeout data node configuration parameter. By
default, this is 15 seconds (15000 milliseconds).

Note

StartNoNodegroupTimeout must be the same for all data nodes in the
cluster; for this reason, you should always set it in the [ndbd default]
section of the config.ini file, rather than for individual data nodes.



Distributed MySQL Privileges for NDB Cluster

2389

When you are ready to add the second node group, you need only perform the following additional
steps:

1. Start data nodes 3 and 4, invoking the data node process once for each new node:

shell> ndbd -c 192.168.0.10 --initial

2. Issue the appropriate CREATE NODEGROUP command in the management client:

ndb_mgm> CREATE NODEGROUP 3,4

3. In the mysql client, issue ALTER ONLINE TABLE ... REORGANIZE PARTITION and
OPTIMIZE TABLE statements for each existing NDBCLUSTER table. (As noted elsewhere in this
section, existing NDB Cluster tables cannot use the new nodes for data distribution until this has
been done.)

18.5.14 Distributed MySQL Privileges for NDB Cluster

NDB Cluster 7.2 introduces support for distributing MySQL users and privileges across all SQL nodes
in an NDB Cluster. This support is not enabled by default; you should follow the procedure outlined in
this section in order to do so.

Normally, each MySQL server's user privilege tables in the mysql database must use the MyISAM
storage engine, which means that a user account and its associated privileges created on one SQL
node are not available on the cluster's other SQL nodes. In NDB Cluster 7.2 and later, an SQL file
ndb_dist_priv.sql is provided with the NDB Cluster distribution. This file can be found in the
share directory in the MySQL installation directory.

The first step in enabling distributed privileges is to load this script into a MySQL Server that functions
as an SQL node (which we refer to after this as the target SQL node or MySQL Server). You can do
this by executing the following command from the system shell on the target SQL node after changing
to its MySQL installation directory (where options stands for any additional options needed to
connect to this SQL node):

shell> mysql options -uroot < share/ndb_dist_priv.sql

Importing ndb_dist_priv.sql creates a number of stored routines (six stored procedures and one
stored function) in the mysql database on the target SQL node. After connecting to the SQL node in
the mysql client (as the MySQL root user), you can verify that these were created as shown here:

mysql> SELECT ROUTINE_NAME, ROUTINE_SCHEMA, ROUTINE_TYPE
    ->     FROM INFORMATION_SCHEMA.ROUTINES
    ->     WHERE ROUTINE_NAME LIKE 'mysql_cluster%'
    ->     ORDER BY ROUTINE_TYPE;
+---------------------------------------------+----------------+--------------+
| ROUTINE_NAME                                | ROUTINE_SCHEMA | ROUTINE_TYPE |
+---------------------------------------------+----------------+--------------+
| mysql_cluster_privileges_are_distributed    | mysql          | FUNCTION     |
| mysql_cluster_backup_privileges             | mysql          | PROCEDURE    |
| mysql_cluster_move_grant_tables             | mysql          | PROCEDURE    |
| mysql_cluster_move_privileges               | mysql          | PROCEDURE    |
| mysql_cluster_restore_local_privileges      | mysql          | PROCEDURE    |
| mysql_cluster_restore_privileges            | mysql          | PROCEDURE    |
| mysql_cluster_restore_privileges_from_local | mysql          | PROCEDURE    |
+---------------------------------------------+----------------+--------------+

7 rows in set (0.01 sec)

The stored procedure named mysql_cluster_move_privileges creates backup copies of the
existing privilege tables, then converts them to NDB.



Distributed MySQL Privileges for NDB Cluster

2390

mysql_cluster_move_privileges performs the backup and conversion in two steps. The first
step is to call mysql_cluster_backup_privileges, which creates two sets of copies in the mysql
database:

• A set of local copies that use the MyISAM storage engine. Their names are generated by adding the
suffix _backup to the original privilege table names.

• A set of distributed copies that use the NDBCLUSTER storage engine. These tables are named by
prefixing ndb_ and appending _backup to the names of the original tables.

After the copies are created, mysql_cluster_move_privileges invokes
mysql_cluster_move_grant_tables, which contains the ALTER TABLE ... ENGINE = NDB
statements that convert the mysql system tables to NDB.

Normally, you should not invoke either mysql_cluster_backup_privileges or
mysql_cluster_move_grant_tables manually; these stored procedures are intended only for use
by mysql_cluster_move_privileges.

Although the original privilege tables are backed up automatically, it is always a good idea to create
backups manually of the existing privilege tables on all affected SQL nodes before proceeding. You
can do this using mysqldump in a manner similar to what is shown here:

shell> mysqldump options -uroot \
    mysql host user db tables_priv columns_priv procs_priv proxies_priv > backup_file

To perform the conversion, you must be connected to the target SQL node using the mysql client
(again, as the MySQL root user). Invoke the stored procedure like this:

mysql> CALL mysql.mysql_cluster_move_privileges();
Query OK, 0 rows affected (22.32 sec)

Depending on the number of rows in the privilege tables, this procedure may take some time to
execute. If some of the privilege tables are empty, you may see one or more No data - zero rows
fetched, selected, or processed warnings when mysql_cluster_move_privileges
returns. In such cases, the warnings may be safely ignored. To verify that the conversion was
successful, you can use the stored function mysql_cluster_privileges_are_distributed as
shown here:

mysql> SELECT CONCAT(
    ->    'Conversion ',
    ->    IF(mysql.mysql_cluster_privileges_are_distributed(), 'succeeded', 'failed'),
    ->    '.')
    ->    AS Result;
+-----------------------+
| Result                |
+-----------------------+
| Conversion succeeded. |
+-----------------------+
1 row in set (0.00 sec)

mysql_cluster_privileges_are_distributed checks for the existence of the distributed
privilege tables and returns 1 if all of the privilege tables are distributed; otherwise, it returns 0.

You can verify that the backups have been created using a query such as this one:

mysql> SELECT TABLE_NAME, ENGINE FROM INFORMATION_SCHEMA.TABLES
    ->     WHERE TABLE_SCHEMA = 'mysql' AND TABLE_NAME LIKE '%backup'
    ->     ORDER BY ENGINE;
+-------------------------+------------+
| TABLE_NAME              | ENGINE     |
+-------------------------+------------+



Distributed MySQL Privileges for NDB Cluster

2391

| host_backup             | MyISAM     |
| db_backup               | MyISAM     |
| columns_priv_backup     | MyISAM     |
| user_backup             | MyISAM     |
| tables_priv_backup      | MyISAM     |
| proxies_priv_backup     | MyISAM     |
| procs_priv_backup       | MyISAM     |
| ndb_user_backup         | ndbcluster |
| ndb_tables_priv_backup  | ndbcluster |
| ndb_proxies_priv_backup | ndbcluster |
| ndb_procs_priv_backup   | ndbcluster |
| ndb_host_backup         | ndbcluster |
| ndb_db_backup           | ndbcluster |
| ndb_columns_priv_backup | ndbcluster |
+-------------------------+------------+
14 rows in set (0.00 sec)

Once the conversion to distributed privileges has been made, any time a MySQL user account is
created, dropped, or has its privileges updated on any SQL node, the changes take effect immediately
on all other MySQL servers attached to the cluster. Once privileges are distributed, any new MySQL
Servers that connect to the cluster automatically participate in the distribution.

Note

For clients connected to SQL nodes at the time that
mysql_cluster_move_privileges is executed, you may need to execute
FLUSH PRIVILEGES on those SQL nodes, or to disconnect and then reconnect
the clients, in order for those clients to be able to see the changes in privileges.

All MySQL user privileges are distributed across all connected MySQL Servers. This includes any
privileges associated with views and stored routines, even though distribution of views and stored
routines themselves is not currently supported.

In the event that an SQL node becomes disconnected from the cluster while
mysql_cluster_move_privileges is running, you must drop its privilege tables after reconnecting
to the cluster, using a statement such as DROP TABLE IF EXISTS mysql.user mysql.db
mysql.tables_priv mysql.columns_priv mysql.procs_priv. This causes the SQL node
to use the shared privilege tables rather than its own local versions of them. This is not needed when
connecting a new SQL node to the cluster for the first time.

In the event of an initial restart of the entire cluster (all data nodes shut down, then started again with
--initial), the shared privilege tables are lost. If this happens, you can restore them using the
original target SQL node either from the backups made by mysql_cluster_move_privileges
or from a dump file created with mysqldump. If you need to use a new MySQL Server to perform
the restoration, you should start it with --skip-grant-tables when connecting to the cluster for
the first time; after this, you can restore the privilege tables locally, then distribute them again using
mysql_cluster_move_privileges. After restoring and distributing the tables, you should restart
this MySQL Server without the --skip-grant-tables option.

You can also restore the distributed tables using ndb_restore --restore-privilege-tables
from a backup made using START BACKUP in the ndb_mgm client. (The MyISAM tables created
by mysql_cluster_move_privileges are not backed up by the START BACKUP command.)
ndb_restore does not restore the privilege tables by default; the --restore-privilege-tables
option causes it to do so.

You can restore the SQL node's local privileges using either of two procedures.
mysql_cluster_restore_privileges works as follows:

1. If copies of the mysql.ndb_*_backup tables are available, attempt to restore the system tables
from these.

2. Otherwise, attempt to restore the system tables from the local backups named *_backup (without
the ndb_ prefix).



NDB API Statistics Counters and Variables

2392

The other procedure, named mysql_cluster_restore_local_privileges, restores the system
tables from the local backups only, without checking the ndb_* backups.

The system tables re-created by mysql_cluster_restore_privileges or
mysql_cluster_restore_local_privileges use the MySQL server default storage engine; they
are not shared or distributed in any way, and do not use NDB Cluster's NDB storage engine.

The additional stored procedure mysql_cluster_restore_privileges_from_local
is intended for the use of mysql_cluster_restore_privileges and
mysql_cluster_restore_local_privileges. It should not be invoked directly.

Important

Applications that access NDB Cluster data directly, including NDB API and
ClusterJ applications, are not subject to the MySQL privilege system. This
means that, once you have distributed the grant tables, they can be freely
accessed by such applications, just as they can any other NDB tables. In
particular, you should keep in mind that NDB API and ClusterJ applications
can read and write user names, host names, password hashes, and any other
contents of the distributed grant tables without any restrictions.

18.5.15 NDB API Statistics Counters and Variables

A number of types of statistical counters relating to actions performed by or affecting Ndb objects are
available. Such actions include starting and closing (or aborting) transactions; primary key and unique
key operations; table, range, and pruned scans; threads blocked while waiting for the completion
of various operations; and data and events sent and received by NDBCLUSTER. The counters are
incremented inside the NDB kernel whenever NDB API calls are made or data is sent to or received
by the data nodes. mysqld exposes these counters as system status variables; their values can be
read in the output of SHOW STATUS, or by querying the INFORMATION_SCHEMA.SESSION_STATUS or
INFORMATION_SCHEMA.GLOBAL_STATUS table. By comparing the values before and after statements
operating on NDB tables, you can observe the corresponding actions taken on the API level, and thus
the cost of performing the statement.

You can list all of these status variables using the following SHOW STATUS statement:

mysql> SHOW STATUS LIKE 'ndb_api%';
+--------------------------------------------+----------+
| Variable_name                              | Value    |
+--------------------------------------------+----------+
| Ndb_api_wait_exec_complete_count_session   | 0        |
| Ndb_api_wait_scan_result_count_session     | 0        |
| Ndb_api_wait_meta_request_count_session    | 0        |
| Ndb_api_wait_nanos_count_session           | 0        |
| Ndb_api_bytes_sent_count_session           | 0        |
| Ndb_api_bytes_received_count_session       | 0        |
| Ndb_api_trans_start_count_session          | 0        |
| Ndb_api_trans_commit_count_session         | 0        |
| Ndb_api_trans_abort_count_session          | 0        |
| Ndb_api_trans_close_count_session          | 0        |
| Ndb_api_pk_op_count_session                | 0        |
| Ndb_api_uk_op_count_session                | 0        |
| Ndb_api_table_scan_count_session           | 0        |
| Ndb_api_range_scan_count_session           | 0        |
| Ndb_api_pruned_scan_count_session          | 0        |
| Ndb_api_scan_batch_count_session           | 0        |
| Ndb_api_read_row_count_session             | 0        |
| Ndb_api_trans_local_read_row_count_session | 0        |
| Ndb_api_event_data_count_injector          | 0        |
| Ndb_api_event_nondata_count_injector       | 0        |
| Ndb_api_event_bytes_count_injector         | 0        |
| Ndb_api_wait_exec_complete_count_slave     | 0        |
| Ndb_api_wait_scan_result_count_slave       | 0        |
| Ndb_api_wait_meta_request_count_slave      | 0        |
| Ndb_api_wait_nanos_count_slave             | 0        |

http://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html


NDB API Statistics Counters and Variables

2393

| Ndb_api_bytes_sent_count_slave             | 0        |
| Ndb_api_bytes_received_count_slave         | 0        |
| Ndb_api_trans_start_count_slave            | 0        |
| Ndb_api_trans_commit_count_slave           | 0        |
| Ndb_api_trans_abort_count_slave            | 0        |
| Ndb_api_trans_close_count_slave            | 0        |
| Ndb_api_pk_op_count_slave                  | 0        |
| Ndb_api_uk_op_count_slave                  | 0        |
| Ndb_api_table_scan_count_slave             | 0        |
| Ndb_api_range_scan_count_slave             | 0        |
| Ndb_api_pruned_scan_count_slave            | 0        |
| Ndb_api_scan_batch_count_slave             | 0        |
| Ndb_api_read_row_count_slave               | 0        |
| Ndb_api_trans_local_read_row_count_slave   | 0        |
| Ndb_api_wait_exec_complete_count           | 2        |
| Ndb_api_wait_scan_result_count             | 3        |
| Ndb_api_wait_meta_request_count            | 27       |
| Ndb_api_wait_nanos_count                   | 45612023 |
| Ndb_api_bytes_sent_count                   | 992      |
| Ndb_api_bytes_received_count               | 9640     |
| Ndb_api_trans_start_count                  | 2        |
| Ndb_api_trans_commit_count                 | 1        |
| Ndb_api_trans_abort_count                  | 0        |
| Ndb_api_trans_close_count                  | 2        |
| Ndb_api_pk_op_count                        | 1        |
| Ndb_api_uk_op_count                        | 0        |
| Ndb_api_table_scan_count                   | 1        |
| Ndb_api_range_scan_count                   | 0        |
| Ndb_api_pruned_scan_count                  | 0        |
| Ndb_api_scan_batch_count                   | 0        |
| Ndb_api_read_row_count                     | 1        |
| Ndb_api_trans_local_read_row_count         | 1        |
| Ndb_api_event_data_count                   | 0        |
| Ndb_api_event_nondata_count                | 0        |
| Ndb_api_event_bytes_count                  | 0        |
+--------------------------------------------+----------+
60 rows in set (0.02 sec)

These status variables are also available from the SESSION_STATUS and GLOBAL_STATUS tables of
the INFORMATION_SCHEMA database, as shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.SESSION_STATUS 
    ->   WHERE VARIABLE_NAME LIKE 'ndb_api%';
+--------------------------------------------+----------------+
| VARIABLE_NAME                              | VARIABLE_VALUE |
+--------------------------------------------+----------------+
| NDB_API_WAIT_EXEC_COMPLETE_COUNT_SESSION   | 2              |
| NDB_API_WAIT_SCAN_RESULT_COUNT_SESSION     | 0              |
| NDB_API_WAIT_META_REQUEST_COUNT_SESSION    | 1              |
| NDB_API_WAIT_NANOS_COUNT_SESSION           | 8144375        |
| NDB_API_BYTES_SENT_COUNT_SESSION           | 68             |
| NDB_API_BYTES_RECEIVED_COUNT_SESSION       | 84             |
| NDB_API_TRANS_START_COUNT_SESSION          | 1              |
| NDB_API_TRANS_COMMIT_COUNT_SESSION         | 1              |
| NDB_API_TRANS_ABORT_COUNT_SESSION          | 0              |
| NDB_API_TRANS_CLOSE_COUNT_SESSION          | 1              |
| NDB_API_PK_OP_COUNT_SESSION                | 1              |
| NDB_API_UK_OP_COUNT_SESSION                | 0              |
| NDB_API_TABLE_SCAN_COUNT_SESSION           | 0              |
| NDB_API_RANGE_SCAN_COUNT_SESSION           | 0              |
| NDB_API_PRUNED_SCAN_COUNT_SESSION          | 0              |
| NDB_API_SCAN_BATCH_COUNT_SESSION           | 0              |
| NDB_API_READ_ROW_COUNT_SESSION             | 1              |
| NDB_API_TRANS_LOCAL_READ_ROW_COUNT_SESSION | 1              |
| NDB_API_EVENT_DATA_COUNT_INJECTOR          | 0              |
| NDB_API_EVENT_NONDATA_COUNT_INJECTOR       | 0              |
| NDB_API_EVENT_BYTES_COUNT_INJECTOR         | 0              |
| NDB_API_WAIT_EXEC_COMPLETE_COUNT_SLAVE     | 0              |
| NDB_API_WAIT_SCAN_RESULT_COUNT_SLAVE       | 0              |
| NDB_API_WAIT_META_REQUEST_COUNT_SLAVE      | 0              |
| NDB_API_WAIT_NANOS_COUNT_SLAVE             | 0              |



NDB API Statistics Counters and Variables

2394

| NDB_API_BYTES_SENT_COUNT_SLAVE             | 0              |
| NDB_API_BYTES_RECEIVED_COUNT_SLAVE         | 0              |
| NDB_API_TRANS_START_COUNT_SLAVE            | 0              |
| NDB_API_TRANS_COMMIT_COUNT_SLAVE           | 0              |
| NDB_API_TRANS_ABORT_COUNT_SLAVE            | 0              |
| NDB_API_TRANS_CLOSE_COUNT_SLAVE            | 0              |
| NDB_API_PK_OP_COUNT_SLAVE                  | 0              |
| NDB_API_UK_OP_COUNT_SLAVE                  | 0              |
| NDB_API_TABLE_SCAN_COUNT_SLAVE             | 0              |
| NDB_API_RANGE_SCAN_COUNT_SLAVE             | 0              |
| NDB_API_PRUNED_SCAN_COUNT_SLAVE            | 0              |
| NDB_API_SCAN_BATCH_COUNT_SLAVE             | 0              |
| NDB_API_READ_ROW_COUNT_SLAVE               | 0              |
| NDB_API_TRANS_LOCAL_READ_ROW_COUNT_SLAVE   | 0              |
| NDB_API_WAIT_EXEC_COMPLETE_COUNT           | 4              |
| NDB_API_WAIT_SCAN_RESULT_COUNT             | 3              |
| NDB_API_WAIT_META_REQUEST_COUNT            | 28             |
| NDB_API_WAIT_NANOS_COUNT                   | 53756398       |
| NDB_API_BYTES_SENT_COUNT                   | 1060           |
| NDB_API_BYTES_RECEIVED_COUNT               | 9724           |
| NDB_API_TRANS_START_COUNT                  | 3              |
| NDB_API_TRANS_COMMIT_COUNT                 | 2              |
| NDB_API_TRANS_ABORT_COUNT                  | 0              |
| NDB_API_TRANS_CLOSE_COUNT                  | 3              |
| NDB_API_PK_OP_COUNT                        | 2              |
| NDB_API_UK_OP_COUNT                        | 0              |
| NDB_API_TABLE_SCAN_COUNT                   | 1              |
| NDB_API_RANGE_SCAN_COUNT                   | 0              |
| NDB_API_PRUNED_SCAN_COUNT                  | 0              |
| NDB_API_SCAN_BATCH_COUNT                   | 0              |
| NDB_API_READ_ROW_COUNT                     | 2              |
| NDB_API_TRANS_LOCAL_READ_ROW_COUNT         | 2              |
| NDB_API_EVENT_DATA_COUNT                   | 0              |
| NDB_API_EVENT_NONDATA_COUNT                | 0              |
| NDB_API_EVENT_BYTES_COUNT                  | 0              |
+--------------------------------------------+----------------+
60 rows in set (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.GLOBAL_STATUS
    ->     WHERE VARIABLE_NAME LIKE 'ndb_api%';
+--------------------------------------------+----------------+
| VARIABLE_NAME                              | VARIABLE_VALUE |
+--------------------------------------------+----------------+
| NDB_API_WAIT_EXEC_COMPLETE_COUNT_SESSION   | 2              |
| NDB_API_WAIT_SCAN_RESULT_COUNT_SESSION     | 0              |
| NDB_API_WAIT_META_REQUEST_COUNT_SESSION    | 1              |
| NDB_API_WAIT_NANOS_COUNT_SESSION           | 8144375        |
| NDB_API_BYTES_SENT_COUNT_SESSION           | 68             |
| NDB_API_BYTES_RECEIVED_COUNT_SESSION       | 84             |
| NDB_API_TRANS_START_COUNT_SESSION          | 1              |
| NDB_API_TRANS_COMMIT_COUNT_SESSION         | 1              |
| NDB_API_TRANS_ABORT_COUNT_SESSION          | 0              |
| NDB_API_TRANS_CLOSE_COUNT_SESSION          | 1              |
| NDB_API_PK_OP_COUNT_SESSION                | 1              |
| NDB_API_UK_OP_COUNT_SESSION                | 0              |
| NDB_API_TABLE_SCAN_COUNT_SESSION           | 0              |
| NDB_API_RANGE_SCAN_COUNT_SESSION           | 0              |
| NDB_API_PRUNED_SCAN_COUNT_SESSION          | 0              |
| NDB_API_SCAN_BATCH_COUNT_SESSION           | 0              |
| NDB_API_READ_ROW_COUNT_SESSION             | 1              |
| NDB_API_TRANS_LOCAL_READ_ROW_COUNT_SESSION | 1              |
| NDB_API_EVENT_DATA_COUNT_INJECTOR          | 0              |
| NDB_API_EVENT_NONDATA_COUNT_INJECTOR       | 0              |
| NDB_API_EVENT_BYTES_COUNT_INJECTOR         | 0              |
| NDB_API_WAIT_EXEC_COMPLETE_COUNT_SLAVE     | 0              |
| NDB_API_WAIT_SCAN_RESULT_COUNT_SLAVE       | 0              |
| NDB_API_WAIT_META_REQUEST_COUNT_SLAVE      | 0              |
| NDB_API_WAIT_NANOS_COUNT_SLAVE             | 0              |
| NDB_API_BYTES_SENT_COUNT_SLAVE             | 0              |
| NDB_API_BYTES_RECEIVED_COUNT_SLAVE         | 0              |
| NDB_API_TRANS_START_COUNT_SLAVE            | 0              |
| NDB_API_TRANS_COMMIT_COUNT_SLAVE           | 0              |



NDB API Statistics Counters and Variables

2395

| NDB_API_TRANS_ABORT_COUNT_SLAVE            | 0              |
| NDB_API_TRANS_CLOSE_COUNT_SLAVE            | 0              |
| NDB_API_PK_OP_COUNT_SLAVE                  | 0              |
| NDB_API_UK_OP_COUNT_SLAVE                  | 0              |
| NDB_API_TABLE_SCAN_COUNT_SLAVE             | 0              |
| NDB_API_RANGE_SCAN_COUNT_SLAVE             | 0              |
| NDB_API_PRUNED_SCAN_COUNT_SLAVE            | 0              |
| NDB_API_SCAN_BATCH_COUNT_SLAVE             | 0              |
| NDB_API_READ_ROW_COUNT_SLAVE               | 0              |
| NDB_API_TRANS_LOCAL_READ_ROW_COUNT_SLAVE   | 0              |
| NDB_API_WAIT_EXEC_COMPLETE_COUNT           | 4              |
| NDB_API_WAIT_SCAN_RESULT_COUNT             | 3              |
| NDB_API_WAIT_META_REQUEST_COUNT            | 28             |
| NDB_API_WAIT_NANOS_COUNT                   | 53756398       |
| NDB_API_BYTES_SENT_COUNT                   | 1060           |
| NDB_API_BYTES_RECEIVED_COUNT               | 9724           |
| NDB_API_TRANS_START_COUNT                  | 3              |
| NDB_API_TRANS_COMMIT_COUNT                 | 2              |
| NDB_API_TRANS_ABORT_COUNT                  | 0              |
| NDB_API_TRANS_CLOSE_COUNT                  | 3              |
| NDB_API_PK_OP_COUNT                        | 2              |
| NDB_API_UK_OP_COUNT                        | 0              |
| NDB_API_TABLE_SCAN_COUNT                   | 1              |
| NDB_API_RANGE_SCAN_COUNT                   | 0              |
| NDB_API_PRUNED_SCAN_COUNT                  | 0              |
| NDB_API_SCAN_BATCH_COUNT                   | 0              |
| NDB_API_READ_ROW_COUNT                     | 2              |
| NDB_API_TRANS_LOCAL_READ_ROW_COUNT         | 2              |
| NDB_API_EVENT_DATA_COUNT                   | 0              |
| NDB_API_EVENT_NONDATA_COUNT                | 0              |
| NDB_API_EVENT_BYTES_COUNT                  | 0              |
+--------------------------------------------+----------------+
60 rows in set (0.00 sec)

Each Ndb object has its own counters. NDB API applications can read the values of the counters
for use in optimization or monitoring. For multi-threaded clients which use more than one Ndb object
concurrently, it is also possible to obtain a summed view of counters from all Ndb objects belonging to
a given Ndb_cluster_connection.

Four sets of these counters are exposed. One set applies to the current session only; the other 3 are
global. This is in spite of the fact that their values can be obtained as either session or global status
variables in the mysql client. This means that specifying the SESSION or GLOBAL keyword with SHOW
STATUS has no effect on the values reported for NDB API statistics status variables, and the value for
each of these variables is the same whether the value is obtained from the equivalent column of the
SESSION_STATUS or the GLOBAL_STATUS table.

• Session counters (session specific)

Session counters relate to the Ndb objects in use by (only) the current session. Use of such objects
by other MySQL clients does not influence these counts.

In order to minimize confusion with standard MySQL session variables, we refer to the variables that
correspond to these NDB API session counters as “_session variables”, with a leading underscore.

• Slave counters (global)

This set of counters relates to the Ndb objects used by the replication slave SQL thread, if any. If this
mysqld does not act as a replication slave, or does not use NDB tables, then all of these counts are
0.

We refer to the related status variables as “_slave variables” (with a leading underscore).

• Injector counters (global)

http://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html


NDB API Statistics Counters and Variables

2396

Injector counters relate to the Ndb object used to listen to cluster events by the binary log injector
thread. Even when not writing a binary log, mysqld processes attached to an NDB Cluster continue
to listen for some events, such as schema changes.

We refer to the status variables that correspond to NDB API injector counters as “_injector
variables” (with a leading underscore).

• Server (Global) counters (global)

This set of counters relates to all Ndb objects currently used by this mysqld. This includes all
MySQL client applications, the slave SQL thread (if any), the binlog injector, and the NDB utility
thread.

We refer to the status variables that correspond to these counters as “global variables” or “mysqld-
level variables”.

You can obtain values for a particular set of variables by additionally filtering for the substring
session, slave, or injector in the variable name (along with the common prefix Ndb_api). For
_session variables, this can be done as shown here:

mysql> SHOW STATUS LIKE 'ndb_api%session';
+--------------------------------------------+---------+
| Variable_name                              | Value   |
+--------------------------------------------+---------+
| Ndb_api_wait_exec_complete_count_session   | 2       |
| Ndb_api_wait_scan_result_count_session     | 0       |
| Ndb_api_wait_meta_request_count_session    | 1       |
| Ndb_api_wait_nanos_count_session           | 8144375 |
| Ndb_api_bytes_sent_count_session           | 68      |
| Ndb_api_bytes_received_count_session       | 84      |
| Ndb_api_trans_start_count_session          | 1       |
| Ndb_api_trans_commit_count_session         | 1       |
| Ndb_api_trans_abort_count_session          | 0       |
| Ndb_api_trans_close_count_session          | 1       |
| Ndb_api_pk_op_count_session                | 1       |
| Ndb_api_uk_op_count_session                | 0       |
| Ndb_api_table_scan_count_session           | 0       |
| Ndb_api_range_scan_count_session           | 0       |
| Ndb_api_pruned_scan_count_session          | 0       |
| Ndb_api_scan_batch_count_session           | 0       |
| Ndb_api_read_row_count_session             | 1       |
| Ndb_api_trans_local_read_row_count_session | 1       |
+--------------------------------------------+---------+
18 rows in set (0.50 sec)

To obtain a listing of the NDB API mysqld-level status variables, filter for variable names beginning
with ndb_api and ending in _count, like this:

mysql> SELECT * FROM INFORMATION_SCHEMA.SESSION_STATUS
    ->     WHERE VARIABLE_NAME LIKE 'ndb_api%count';
+------------------------------------+----------------+
| VARIABLE_NAME                      | VARIABLE_VALUE |
+------------------------------------+----------------+
| NDB_API_WAIT_EXEC_COMPLETE_COUNT   | 4              |
| NDB_API_WAIT_SCAN_RESULT_COUNT     | 3              |
| NDB_API_WAIT_META_REQUEST_COUNT    | 28             |
| NDB_API_WAIT_NANOS_COUNT           | 53756398       |
| NDB_API_BYTES_SENT_COUNT           | 1060           |
| NDB_API_BYTES_RECEIVED_COUNT       | 9724           |
| NDB_API_TRANS_START_COUNT          | 3              |
| NDB_API_TRANS_COMMIT_COUNT         | 2              |
| NDB_API_TRANS_ABORT_COUNT          | 0              |
| NDB_API_TRANS_CLOSE_COUNT          | 3              |
| NDB_API_PK_OP_COUNT                | 2              |
| NDB_API_UK_OP_COUNT                | 0              |
| NDB_API_TABLE_SCAN_COUNT           | 1              |

http://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
http://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html


NDB API Statistics Counters and Variables

2397

| NDB_API_RANGE_SCAN_COUNT           | 0              |
| NDB_API_PRUNED_SCAN_COUNT          | 0              |
| NDB_API_SCAN_BATCH_COUNT           | 0              |
| NDB_API_READ_ROW_COUNT             | 2              |
| NDB_API_TRANS_LOCAL_READ_ROW_COUNT | 2              |
| NDB_API_EVENT_DATA_COUNT           | 0              |
| NDB_API_EVENT_NONDATA_COUNT        | 0              |
| NDB_API_EVENT_BYTES_COUNT          | 0              |
+------------------------------------+----------------+
21 rows in set (0.09 sec)

Not all counters are reflected in all 4 sets of status variables. For the event counters
DataEventsRecvdCount, NondataEventsRecvdCount, and EventBytesRecvdCount, only
_injector and mysqld-level NDB API status variables are available:

mysql> SHOW STATUS LIKE 'ndb_api%event%';
+--------------------------------------+-------+
| Variable_name                        | Value |
+--------------------------------------+-------+
| Ndb_api_event_data_count_injector    | 0     |
| Ndb_api_event_nondata_count_injector | 0     |
| Ndb_api_event_bytes_count_injector   | 0     |
| Ndb_api_event_data_count             | 0     |
| Ndb_api_event_nondata_count          | 0     |
| Ndb_api_event_bytes_count            | 0     |
+--------------------------------------+-------+
6 rows in set (0.00 sec)

_injector status variables are not implemented for any other NDB API counters, as shown here:

mysql> SHOW STATUS LIKE 'ndb_api%injector%';
+--------------------------------------+-------+
| Variable_name                        | Value |
+--------------------------------------+-------+
| Ndb_api_event_data_count_injector    | 0     |
| Ndb_api_event_nondata_count_injector | 0     |
| Ndb_api_event_bytes_count_injector   | 0     |
+--------------------------------------+-------+
3 rows in set (0.00 sec)

The names of the status variables can easily be associated with the names of the corresponding
counters. Each NDB API statistics counter is listed in the following table with a description as well as
the names of any MySQL server status variables corresponding to this counter.

Description

Counter Name

Status Variables (by statistic type):

• Session

• Slave

• Injector

• Server

Number of times thread has been blocked while waiting for
execution of an operation to complete. Includes all execute()
calls as well as implicit executes for blob operations and auto-
increment not visible to clients.

WaitExecCompleteCount • Ndb_api_wait_exec_complete_count_session

• Ndb_api_wait_exec_complete_count_slave

• [none]

http://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction-execute.html


NDB API Statistics Counters and Variables

2398

Description

Counter Name

Status Variables (by statistic type):

• Session

• Slave

• Injector

• Server
• Ndb_api_wait_exec_complete_count

Number of times thread has been blocked while waiting for a
scan-based signal, such waiting for additional results, or for a
scan to close.

WaitScanResultCount
• Ndb_api_wait_scan_result_count_session

• Ndb_api_wait_scan_result_count_slave

• [none]

• Ndb_api_wait_scan_result_count

Number of times thread has been blocked waiting for a metadata-
based signal; this can occur when waiting for a DDL operation or
for an epoch to be started (or ended).

WaitMetaRequestCount
• Ndb_api_wait_meta_request_count_session

• Ndb_api_wait_meta_request_count_slave

• [none]

• Ndb_api_wait_meta_request_count

Total time (in nanoseconds) spent waiting for some type of signal
from the data nodes.

WaitNanosCount

• Ndb_api_wait_nanos_count_session

• Ndb_api_wait_nanos_count_slave

• [none]

• Ndb_api_wait_nanos_count

Amount of data (in bytes) sent to the data nodes

BytesSentCount

• Ndb_api_bytes_sent_count_session

• Ndb_api_bytes_sent_count_slave

• [none]

• Ndb_api_bytes_sent_count

Amount of data (in bytes) received from the data nodes

BytesRecvdCount

• Ndb_api_bytes_received_count_session

• Ndb_api_bytes_received_count_slave

• [none]

• Ndb_api_bytes_received_count



NDB API Statistics Counters and Variables

2399

Description

Counter Name

Status Variables (by statistic type):

• Session

• Slave

• Injector

• Server

Number of transactions started.

TransStartCount

• Ndb_api_trans_start_count_session

• Ndb_api_trans_start_count_slave

• [none]

• Ndb_api_trans_start_count

Number of transactions committed.

TransCommitCount

• Ndb_api_trans_commit_count_session

• Ndb_api_trans_commit_count_slave

• [none]

• Ndb_api_trans_commit_count

Number of transactions aborted.

TransAbortCount

• Ndb_api_trans_abort_count_session

• Ndb_api_trans_abort_count_slave

• [none]

• Ndb_api_trans_abort_count

Number of transactions aborted. (This value may be greater than
the sum of TransCommitCount and TransAbortCount.)

TransCloseCount

• Ndb_api_trans_close_count_session

• Ndb_api_trans_close_count_slave

• [none]

• Ndb_api_trans_close_count

Number of operations based on or using primary keys. This count
includes blob-part table operations, implicit unlocking operations,
and auto-increment operations, as well as primary key operations
normally visible to MySQL clients.

PkOpCount
• Ndb_api_pk_op_count_session

• Ndb_api_pk_op_count_slave

• [none]

• Ndb_api_pk_op_count

Number of operations based on or using unique keys.
UkOpCount

• Ndb_api_uk_op_count_session



NDB API Statistics Counters and Variables

2400

Description

Counter Name

Status Variables (by statistic type):

• Session

• Slave

• Injector

• Server
• Ndb_api_uk_op_count_slave

• [none]

• Ndb_api_uk_op_count

Number of table scans that have been started. This includes
scans of internal tables.

TableScanCount

• Ndb_api_table_scan_count_session

• Ndb_api_table_scan_count_slave

• [none]

• Ndb_api_table_scan_count

Number of range scans that have been started.

RangeScanCount

• Ndb_api_range_scan_count_session

• Ndb_api_range_scan_count_slave

• [none]

• Ndb_api_range_scan_count

Number of scans that have been pruned to a single partition.

PrunedScanCount

• Ndb_api_pruned_scan_count_session

• Ndb_api_pruned_scan_count_slave

• [none]

• Ndb_api_pruned_scan_count

Number of batches of rows received. (A batch in this context is a
set of scan results from a single fragment.)

ScanBatchCount

• Ndb_api_scan_batch_count_session

• Ndb_api_scan_batch_count_slave

• [none]

• Ndb_api_scan_batch_count

Total number of rows that have been read. Includes rows read
using primary key, unique key, and scan operations.

ReadRowCount
• Ndb_api_read_row_count_session

• Ndb_api_read_row_count_slave

• [none]



NDB API Statistics Counters and Variables

2401

Description

Counter Name

Status Variables (by statistic type):

• Session

• Slave

• Injector

• Server
• Ndb_api_read_row_count

Number of rows read from the data same node on which the
transaction was being run.

TransLocalReadRowCount

• Ndb_api_trans_local_read_row_count_session

• Ndb_api_trans_local_read_row_count_slave

• [none]

• Ndb_api_trans_local_read_row_count

Number of row change events received.

DataEventsRecvdCount

• [none]

• [none]

• Ndb_api_event_data_count_injector

• Ndb_api_event_data_count

Number of events received, other than row change events.

NondataEventsRecvdCount

• [none]

• [none]

• Ndb_api_event_nondata_count_injector

• Ndb_api_event_nondata_count

Number of bytes of events received.

EventBytesRecvdCount

• [none]

• [none]

• Ndb_api_event_bytes_count_injector

• Ndb_api_event_bytes_count

To see all counts of committed transactions—that is, all TransCommitCount counter status variables
—you can filter the results of SHOW STATUS for the substring trans_commit_count, like this:

mysql> SHOW STATUS LIKE '%trans_commit_count%';
+------------------------------------+-------+
| Variable_name                      | Value |
+------------------------------------+-------+
| Ndb_api_trans_commit_count_session | 1     |
| Ndb_api_trans_commit_count_slave   | 0     |
| Ndb_api_trans_commit_count         | 2     |
+------------------------------------+-------+
3 rows in set (0.00 sec)



NDB API Statistics Counters and Variables

2402

From this you can determine that 1 transaction has been committed in the current mysql client
session, and 2 transactions have been committed on this mysqld since it was last restarted.

You can see how various NDB API counters are incremented by a given SQL statement by comparing
the values of the corresponding _session status variables immediately before and after performing
the statement. In this example, after getting the initial values from SHOW STATUS, we create in the
test database an NDB table, named t, that has a single column:

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--------------------------------------------+--------+
| Variable_name                              | Value  |
+--------------------------------------------+--------+
| Ndb_api_wait_exec_complete_count_session   | 2      |
| Ndb_api_wait_scan_result_count_session     | 0      |
| Ndb_api_wait_meta_request_count_session    | 3      |
| Ndb_api_wait_nanos_count_session           | 820705 |
| Ndb_api_bytes_sent_count_session           | 132    |
| Ndb_api_bytes_received_count_session       | 372    |
| Ndb_api_trans_start_count_session          | 1      |
| Ndb_api_trans_commit_count_session         | 1      |
| Ndb_api_trans_abort_count_session          | 0      |
| Ndb_api_trans_close_count_session          | 1      |
| Ndb_api_pk_op_count_session                | 1      |
| Ndb_api_uk_op_count_session                | 0      |
| Ndb_api_table_scan_count_session           | 0      |
| Ndb_api_range_scan_count_session           | 0      |
| Ndb_api_pruned_scan_count_session          | 0      |
| Ndb_api_scan_batch_count_session           | 0      |
| Ndb_api_read_row_count_session             | 1      |
| Ndb_api_trans_local_read_row_count_session | 1      |
+--------------------------------------------+--------+
18 rows in set (0.00 sec)

mysql> USE test;
Database changed
mysql> CREATE TABLE t (c INT) ENGINE NDBCLUSTER;
Query OK, 0 rows affected (0.85 sec)

Now you can execute a new SHOW STATUS statement and observe the changes, as shown here (with
the changed rows highlighted in the output):

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--------------------------------------------+-----------+
| Variable_name                              | Value     |
+--------------------------------------------+-----------+
| Ndb_api_wait_exec_complete_count_session   | 8         |
| Ndb_api_wait_scan_result_count_session     | 0         |
| Ndb_api_wait_meta_request_count_session    | 17        |
| Ndb_api_wait_nanos_count_session           | 706871709 |
| Ndb_api_bytes_sent_count_session           | 2376      |
| Ndb_api_bytes_received_count_session       | 3844      |
| Ndb_api_trans_start_count_session          | 4         |
| Ndb_api_trans_commit_count_session         | 4         |
| Ndb_api_trans_abort_count_session          | 0         |
| Ndb_api_trans_close_count_session          | 4         |
| Ndb_api_pk_op_count_session                | 6         |
| Ndb_api_uk_op_count_session                | 0         |
| Ndb_api_table_scan_count_session           | 0         |
| Ndb_api_range_scan_count_session           | 0         |
| Ndb_api_pruned_scan_count_session          | 0         |
| Ndb_api_scan_batch_count_session           | 0         |
| Ndb_api_read_row_count_session             | 2         |
| Ndb_api_trans_local_read_row_count_session | 1         |
+--------------------------------------------+-----------+
18 rows in set (0.00 sec)



NDB Cluster Replication

2403

Similarly, you can see the changes in the NDB API statistics counters caused by inserting a row into t:
Insert the row, then run the same SHOW STATUS statement used in the previous example, as shown
here:

mysql> INSERT INTO t VALUES (100);
Query OK, 1 row affected (0.00 sec)

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--------------------------------------------+-----------+
| Variable_name                              | Value     |
+--------------------------------------------+-----------+
| Ndb_api_wait_exec_complete_count_session   | 11        |
| Ndb_api_wait_scan_result_count_session     | 6         |
| Ndb_api_wait_meta_request_count_session    | 20        |
| Ndb_api_wait_nanos_count_session           | 707370418 |
| Ndb_api_bytes_sent_count_session           | 2724      |
| Ndb_api_bytes_received_count_session       | 4116      |
| Ndb_api_trans_start_count_session          | 7         |
| Ndb_api_trans_commit_count_session         | 6         |
| Ndb_api_trans_abort_count_session          | 0         |
| Ndb_api_trans_close_count_session          | 7         |
| Ndb_api_pk_op_count_session                | 8         |
| Ndb_api_uk_op_count_session                | 0         |
| Ndb_api_table_scan_count_session           | 1         |
| Ndb_api_range_scan_count_session           | 0         |
| Ndb_api_pruned_scan_count_session          | 0         |
| Ndb_api_scan_batch_count_session           | 0         |
| Ndb_api_read_row_count_session             | 3         |
| Ndb_api_trans_local_read_row_count_session | 2         |
+--------------------------------------------+-----------+
18 rows in set (0.00 sec)

We can make a number of observations from these results:

• Although we created t with no explicit primary key, 5 primary key operations were performed in
doing so (the difference in the “before” and “after” values of Ndb_api_pk_op_count_session, or
6 minus 1). This reflects the creation of the hidden primary key that is a feature of all tables using the
NDB storage engine.

• By comparing successive values for Ndb_api_wait_nanos_count_session, we can see that the
NDB API operations implementing the CREATE TABLE statement waited much longer (706871709
- 820705 = 706051004 nanoseconds, or approximately 0.7 second) for responses from the data
nodes than those executed by the INSERT (707370418 - 706871709 = 498709 ns or roughly .0005
second). The execution times reported for these statements in the mysql client correlate roughly
with these figures.

On platforms without sufficient (nanosecond) time resolution, small changes in the value of
the WaitNanosCount NDB API counter due to SQL statements that execute very quickly
may not always be visible in the values of Ndb_api_wait_nanos_count_session,
Ndb_api_wait_nanos_count_slave, or Ndb_api_wait_nanos_count.

• The INSERT statement incremented both the ReadRowCount and
TransLocalReadRowCount NDB API statistics counters, as reflected
by the increased values of Ndb_api_read_row_count_session and
Ndb_api_trans_local_read_row_count_session.

18.6 NDB Cluster Replication

NDB Cluster supports asynchronous replication, more usually referred to simply as “replication”.
This section explains how to set up and manage a configuration in which one group of computers
operating as an NDB Cluster replicates to a second computer or group of computers. We assume
some familiarity on the part of the reader with standard MySQL replication as discussed elsewhere in
this Manual. (See Chapter 17, Replication).



NDB Cluster Replication: Abbreviations and Symbols

2404

Normal (non-clustered) replication involves a “master” server and a “slave” server, the master being
the source of the operations and data to be replicated and the slave being the recipient of these. In
NDB Cluster, replication is conceptually very similar but can be more complex in practice, as it may
be extended to cover a number of different configurations including replicating between two complete
clusters. Although an NDB Cluster itself depends on the NDB storage engine for clustering functionality,
it is not necessary to use NDB as the storage engine for the slave's copies of the replicated tables (see
Replication from NDB to other storage engines). However, for maximum availability, it is possible (and
preferable) to replicate from one NDB Cluster to another, and it is this scenario that we discuss, as
shown in the following figure:

Figure 18.11 NDB Cluster-to-Cluster Replication Layout

In this scenario, the replication process is one in which successive states of a master cluster are
logged and saved to a slave cluster. This process is accomplished by a special thread known as
the NDB binary log injector thread, which runs on each MySQL server and produces a binary log
(binlog). This thread ensures that all changes in the cluster producing the binary log—and not just
those changes that are effected through the MySQL Server—are inserted into the binary log with the
correct serialization order. We refer to the MySQL replication master and replication slave servers as
replication servers or replication nodes, and the data flow or line of communication between them as a
replication channel.

For information about performing point-in-time recovery with NDB Cluster and NDB Cluster Replication,
see Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”.

NDB API _slave status variables.  NDB API counters can provide enhanced monitoring capabilities
on NDB Cluster replication slaves. These are implemented as NDB statistics _slave status variables,
as seen in the output of SHOW STATUS, or in the results of queries against the SESSION_STATUS or
GLOBAL_STATUS table in a mysql client session connected to a MySQL Server that is acting as a
slave in NDB Cluster Replication. By comparing the values of these status variables before and after
the execution of statements affecting replicated NDB tables, you can observe the corresponding actions
taken on the NDB API level by the slave, which can be useful when monitoring or troubleshooting NDB
Cluster Replication. Section 18.5.15, “NDB API Statistics Counters and Variables”, provides additional
information.

Replication from NDB to non-NDB tables.  It is possible to replicate NDB tables from an NDB
Cluster acting as the master to tables using other MySQL storage engines such as InnoDB or MyISAM
on a slave mysqld. This is subject to a number of conditions; see Replication from NDB to other
storage engines, and Replication from NDB to a nontransactional storage engine, for more information.

18.6.1 NDB Cluster Replication: Abbreviations and Symbols



General Requirements for NDB Cluster Replication

2405

Throughout this section, we use the following abbreviations or symbols for referring to the master and
slave clusters, and to processes and commands run on the clusters or cluster nodes:

Symbol or
Abbreviation

Description (Refers to...)

M The cluster serving as the (primary) replication master

S The cluster acting as the (primary) replication slave

shellM> Shell command to be issued on the master cluster

mysqlM> MySQL client command issued on a single MySQL server running as an
SQL node on the master cluster

mysqlM*> MySQL client command to be issued on all SQL nodes participating in the
replication master cluster

shellS> Shell command to be issued on the slave cluster

mysqlS> MySQL client command issued on a single MySQL server running as an
SQL node on the slave cluster

mysqlS*> MySQL client command to be issued on all SQL nodes participating in the
replication slave cluster

C Primary replication channel

C' Secondary replication channel

M' Secondary replication master

S' Secondary replication slave

18.6.2 General Requirements for NDB Cluster Replication

A replication channel requires two MySQL servers acting as replication servers (one each for the
master and slave). For example, this means that in the case of a replication setup with two replication
channels (to provide an extra channel for redundancy), there will be a total of four replication nodes,
two per cluster.

Replication of an NDB Cluster as described in this section and those following is dependent on row-
based replication. This means that the replication master MySQL server must be running with --
binlog-format=ROW or --binlog-format=MIXED, as described in Section 18.6.6, “Starting NDB
Cluster Replication (Single Replication Channel)”. For general information about row-based replication,
see Section 17.1.2, “Replication Formats”.

Important

If you attempt to use NDB Cluster Replication with --binlog-
format=STATEMENT, replication fails to work properly because the
ndb_binlog_index table on the master and the epoch column of the
ndb_apply_status table on the slave are not updated (see Section 18.6.4,
“NDB Cluster Replication Schema and Tables”). Instead, only updates on the
MySQL server acting as the replication master propagate to the slave, and no
updates from any other SQL nodes on the master cluster are replicated.

Beginning with NDB 7.2.13, the default value for the --binlog-format option
is MIXED. (Bug #16417224)

In NDB 7.2.12 and earlier NDB Cluster 7.2 releases, the default for --binlog-
format was STATEMENT; this meant that you were required to change the
binary logging format to ROW (or MIXED) manually on all MySQL Servers on the
master NDB Cluster, prior to starting NDB Cluster replication. If necessary, you
can do this on startup using the --binlog-format option, or at runtime by



Known Issues in NDB Cluster Replication

2406

setting the global binlog_format system variable. Using the startup option is
preferred in such cases.

Each MySQL server used for replication in either cluster must be uniquely identified among all the
MySQL replication servers participating in either cluster (you cannot have replication servers on both
the master and slave clusters sharing the same ID). This can be done by starting each SQL node using
the --server-id=id option, where id is a unique integer. Although it is not strictly necessary, we will
assume for purposes of this discussion that all NDB Cluster binaries are of the same release version.

It is generally true in MySQL Replication that both MySQL servers (mysqld processes) involved must
be compatible with one another with respect to both the version of the replication protocol used and the
SQL feature sets which they support (see Section 17.4.2, “Replication Compatibility Between MySQL
Versions”). It is due to such differences between the binaries in the NDB Cluster and MySQL Server
5.5 distributions that NDB Cluster Replication has the additional requirement that both mysqld binaries
come from an NDB Cluster distribution. The simplest and easiest way to assure that the mysqld
servers are compatible is to use the same NDB Cluster distribution for all master and slave mysqld
binaries.

We assume that the slave server or cluster is dedicated to replication of the master, and that no other
data is being stored on it.

All NDB tables being replicated must be created using a MySQL server and client. Tables and other
database objects created using the NDB API (with, for example, Dictionary::createTable()) are
not visible to a MySQL server and so are not replicated. Updates by NDB API applications to existing
tables that were created using a MySQL server can be replicated.

Note

It is possible to replicate an NDB Cluster using statement-based replication.
However, in this case, the following restrictions apply:

• All updates to data rows on the cluster acting as the master must be directed
to a single MySQL server.

• It is not possible to replicate a cluster using multiple simultaneous MySQL
replication processes.

• Only changes made at the SQL level are replicated.

These are in addition to the other limitations of statement-based replication
as opposed to row-based replication; see Section 17.1.2.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”, for more
specific information concerning the differences between the two replication
formats.

18.6.3 Known Issues in NDB Cluster Replication

This section discusses known problems or issues when using replication with NDB Cluster 7.2.

Loss of master-slave connection.   A loss of connection can occur either between the replication
master SQL node and the replication slave SQL node, or between the replication master SQL node
and the data nodes in the master cluster. In the latter case, this can occur not only as a result of loss of
physical connection (for example, a broken network cable), but due to the overflow of data node event
buffers; if the SQL node is too slow to respond, it may be dropped by the cluster (this is controllable
to some degree by adjusting the MaxBufferedEpochs and TimeBetweenEpochs configuration
parameters). If this occurs, it is entirely possible for new data to be inserted into the master cluster
without being recorded in the replication master's binary log. For this reason, to guarantee high
availability, it is extremely important to maintain a backup replication channel, to monitor the primary
channel, and to fail over to the secondary replication channel when necessary to keep the slave cluster

http://dev.mysql.com/doc/ndbapi/en/ndb-dictionary-createtable.html


Known Issues in NDB Cluster Replication

2407

synchronized with the master. NDB Cluster is not designed to perform such monitoring on its own; for
this, an external application is required.

  The replication master issues a “gap” event when connecting or reconnecting to the master cluster. (A
gap event is a type of “incident event,” which indicates an incident that occurs that affects the contents
of the database but that cannot easily be represented as a set of changes. Examples of incidents are
server crashes, database resynchronization, (some) software updates, and (some) hardware changes.)
When the slave encounters a gap in the replication log, it stops with an error message. This message
is available in the output of SHOW SLAVE STATUS, and indicates that the SQL thread has stopped
due to an incident registered in the replication stream, and that manual intervention is required. See
Section 18.6.8, “Implementing Failover with NDB Cluster Replication”, for more information about what
to do in such circumstances.

Important

Because NDB Cluster is not designed on its own to monitor replication status
or provide failover, if high availability is a requirement for the slave server or
cluster, then you must set up multiple replication lines, monitor the master
mysqld on the primary replication line, and be prepared fail over to a secondary
line if and as necessary. This must be done manually, or possibly by means
of a third-party application. For information about implementing this type of
setup, see Section 18.6.7, “Using Two Replication Channels for NDB Cluster
Replication”, and Section 18.6.8, “Implementing Failover with NDB Cluster
Replication”.

However, if you are replicating from a standalone MySQL server to an NDB
Cluster, one channel is usually sufficient.

Circular replication.     NDB Cluster Replication supports circular replication, as shown in the next
example. The replication setup involves three NDB Clusters numbered 1, 2, and 3, in which Cluster
1 acts as the replication master for Cluster 2, Cluster 2 acts as the master for Cluster 3, and Cluster
3 acts as the master for Cluster 1, thus completing the circle. Each NDB Cluster has two SQL nodes,
with SQL nodes A and B belonging to Cluster 1, SQL nodes C and D belonging to Cluster 2, and SQL
nodes E and F belonging to Cluster 3.

Circular replication using these clusters is supported as long as the following conditions are met:

• The SQL nodes on all masters and slaves are the same

• All SQL nodes acting as replication masters and slaves are started using the --log-slave-
updates option

This type of circular replication setup is shown in the following diagram:



Known Issues in NDB Cluster Replication

2408

Figure 18.12 NDB Cluster Circular Replication With All Masters As Slaves

In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates
to SQL node E in Cluster 3; SQL node E replicates to SQL node A. In other words, the replication
line (indicated by the red arrows in the diagram) directly connects all SQL nodes used as replication
masters and slaves.

It should also be possible to set up circular replication in which not all master SQL nodes are also
slaves, as shown here:



Known Issues in NDB Cluster Replication

2409

Figure 18.13 NDB Cluster Circular Replication Where Not All Masters Are Slaves

In this case, different SQL nodes in each cluster are used as replication masters and slaves. However,
you must not start any of the SQL nodes using --log-slave-updates. This type of circular
replication scheme for NDB Cluster, in which the line of replication (again indicated by the red arrows
in the diagram) is discontinuous, should be possible, but it should be noted that it has not yet been
thoroughly tested and must therefore still be considered experimental.

Note

The NDB storage engine uses idempotent execution mode, which suppresses
duplicate-key and other errors that otherwise break circular replication of
NDB Cluster. This is equivalent to setting the global slave_exec_mode
system variable to IDEMPOTENT, although this is not necessary in NDB Cluster
replication, since NDB Cluster sets this variable automatically and ignores any
attempts to set it explicitly.

NDB Cluster replication and primary keys.   In the event of a node failure, errors in replication of
NDB tables without primary keys can still occur, due to the possibility of duplicate rows being inserted in
such cases. For this reason, it is highly recommended that all NDB tables being replicated have primary
keys.

NDB Cluster Replication and Unique Keys.   In older versions of NDB Cluster, operations
that updated values of unique key columns of NDB tables could result in duplicate-key errors when
replicated. This issue is solved for replication between NDB tables by deferring unique key checks until
after all table row updates have been performed.



Known Issues in NDB Cluster Replication

2410

Deferring constraints in this way is currently supported only by NDB. Thus, updates of unique keys
when replicating from NDB to a different storage engine such as MyISAM or InnoDB are still not
supported.

The problem encountered when replicating without deferred checking of unique key updates can be
illustrated using NDB table such as t, is created and populated on the master (and replicated to a slave
that does not support deferred unique key updates) as shown here:

CREATE TABLE t (
    p INT PRIMARY KEY,
    c INT,
    UNIQUE KEY u (c)
)   ENGINE NDB;

INSERT INTO t
    VALUES (1,1), (2,2), (3,3), (4,4), (5,5);

The following UPDATE statement on t succeeded on the master, since the rows affected are processed
in the order determined by the ORDER BY option, performed over the entire table:

UPDATE t SET c = c - 1 ORDER BY p;

However, the same statement failed with a duplicate key error or other constraint violation on the slave,
because the ordering of the row updates was done for one partition at a time, rather than for the table
as a whole.

Note

Every NDB table is implicitly partitioned by key when it is created. See
Section 19.2.5, “KEY Partitioning”, for more information.

Restarting with --initial.   Restarting the cluster with the --initial option causes the sequence of
GCI and epoch numbers to start over from 0. (This is generally true of NDB Cluster and not limited to
replication scenarios involving Cluster.) The MySQL servers involved in replication should in this case
be restarted. After this, you should use the RESET MASTER and RESET SLAVE statements to clear the
invalid ndb_binlog_index and ndb_apply_status tables, respectively.

Replication from NDB to other storage engines.  It is possible to replicate an NDB table on the
master to a table using a different storage engine on the slave, taking into account the restrictions listed
here:

• Multi-master and circular replication are not supported (tables on both the master and the slave must
use the NDB storage engine for this to work).

• Using a storage engine which does not perform binary logging for slave tables requires special
handling.

• Use of a nontransactional storage engine for slave tables also requires special handling.

• The master mysqld must be started with --ndb-log-update-as-write=0 or --ndb-log-
update-as-write=OFF.

The next few paragraphs provide additional information about each of the issues just described.

Multiple masters not supported when replicating NDB to other storage engines.  For replication
from NDB to a different storage engine, the relationship between the two databases must be a simple
master-slave one. This means that circular or master-master replication is not supported between NDB
Cluster and other storage engines.

In addition, it is not possible to configure more than one replication channel when replicating between
NDB and a different storage engine. (However, an NDB Cluster database can simultaneously replicate



Known Issues in NDB Cluster Replication

2411

to multiple slave NDB Cluster databases.) If the master uses NDB tables, it is still possible to have more
than one MySQL Server maintain a binary log of all changes; however, for the slave to change masters
(fail over), the new master-slave relationship must be explicitly defined on the slave.

Replicating NDB to a slave storage engine that does not perform binary logging.   If you
attempt to replicate from an NDB Cluster to a slave that uses a storage engine that does not
handle its own binary logging, the replication process aborts with the error Binary logging not
possible ... Statement cannot be written atomically since more than one
engine involved and at least one engine is self-logging (Error 1595). It is possible
to work around this issue in one of the following ways:

• Turn off binary logging on the slave.  This can be accomplished by setting sql_log_bin = 0.

• Change the storage engine used for the mysql.ndb_apply_status table.  Causing this
table to use an engine that does not handle its own binary logging can also eliminate the conflict.
This can be done by issuing a statement such as ALTER TABLE mysql.ndb_apply_status
ENGINE=MyISAM on the slave. It is safe to do this when using a non-NDB storage engine on the
slave, since you do not then need to worry about keeping multiple slave SQL nodes synchronized.

• Filter out changes to the mysql.ndb_apply_status table on the slave.  This can be done by
starting the slave SQL node with --replicate-ignore-table=mysql.ndb_apply_status.
If you need for other tables to be ignored by replication, you might wish to use an appropriate --
replicate-wild-ignore-table option instead.

Important

You should not disable replication or binary logging of
mysql.ndb_apply_status or change the storage engine used for this table
when replicating from one NDB Cluster to another. See Replication and binary
log filtering rules with replication between NDB Clusters, for details.

Replication from NDB to a nontransactional storage engine.  When replicating from NDB to a
nontransactional storage engine such as MyISAM, you may encounter unnecessary duplicate key
errors when replicating INSERT ... ON DUPLICATE KEY UPDATE statements. You can suppress
these by using --ndb-log-update-as-write=0, which forces updates to be logged as writes
(rather than as updates).

In addition, when replicating from NDB to a storage engine that does not implement transactions, if
the slave fails to apply any row changes from a given transaction, it does not roll back the rest of the
transaction. (This is true when replicating tables using any transactional storage engine—not only
NDB—to a nontransactional storage engine.) Because of this, it cannot be guaranteed that transactional
consistency will be maintained on the slave in such cases.

Replication and binary log filtering rules with replication between NDB Clusters.  If you are
using any of the options --replicate-do-*, --replicate-ignore-*, --binlog-do-db, or --
binlog-ignore-db to filter databases or tables being replicated, care must be taken not to block
replication or binary logging of the mysql.ndb_apply_status, which is required for replication
between NDB Clusters to operate properly. In particular, you must keep in mind the following:

1. Using --replicate-do-db=db_name (and no other --replicate-do-* or --replicate-
ignore-* options) means that only tables in database db_name are replicated. In this case, you
should also use --replicate-do-db=mysql, --binlog-do-db=mysql, or --replicate-
do-table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is
populated on slaves.

Using --binlog-do-db=db_name (and no other --binlog-do-db options) means that
changes only to tables in database db_name are written to the binary log. In this case, you should
also use --replicate-do-db=mysql, --binlog-do-db=mysql, or --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is populated on
slaves.



Known Issues in NDB Cluster Replication

2412

2. Using --replicate-ignore-db=mysql means that no tables in the mysql
database are replicated. In this case, you should also use --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is replicated.

Using --binlog-ignore-db=mysql means that no changes to tables in the mysql
database are written to the binary log. In this case, you should also use --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is replicated.

You should also remember that each replication rule requires the following:

1. Its own --replicate-do-* or --replicate-ignore-* option, and that multiple rules
cannot be expressed in a single replication filtering option. For information about these rules, see
Section 17.1.3, “Replication and Binary Logging Options and Variables”.

2. Its own --binlog-do-db or --binlog-ignore-db option, and that multiple rules cannot
be expressed in a single binary log filtering option. For information about these rules, see
Section 5.4.4, “The Binary Log”.

If you are replicating an NDB Cluster to a slave that uses a storage engine other than NDB, the
considerations just given previously may not apply, as discussed elsewhere in this section.

NDB Cluster Replication and IPv6.  Currently, the NDB API and MGM API do not support IPv6.
However, MySQL Servers—including those acting as SQL nodes in an NDB Cluster—can use IPv6 to
contact other MySQL Servers. This means that you can replicate between NDB Clusters using IPv6 to
connect the master and slave SQL nodes as shown by the dotted arrow in the following diagram:

Figure 18.14 Replication Between SQL Nodes Connected Using IPv6

However, all connections originating within the NDB Cluster—represented in the preceding diagram by
solid arrows—must use IPv4. In other words, all NDB Cluster data nodes, management servers, and
management clients must be accessible from one another using IPv4. In addition, SQL nodes must use
IPv4 to communicate with the cluster.

Since there is currently no support in the NDB and MGM APIs for IPv6, any applications written using
these APIs must also make all connections using IPv4.

Attribute promotion and demotion.  NDB Cluster Replication includes support for attribute
promotion and demotion. The implementation of the latter distinguishes between lossy and
non-lossy type conversions, and their use on the slave can be controlled by setting the
slave_type_conversions global server system variable.



NDB Cluster Replication Schema and Tables

2413

For more information about attribute promotion and demotion in NDB Cluster, see Row-based
replication: attribute promotion and demotion.

18.6.4 NDB Cluster Replication Schema and Tables

Replication in NDB Cluster makes use of a number of dedicated tables in the mysql database on each
MySQL Server instance acting as an SQL node in both the cluster being replicated and the replication
slave (whether the slave is a single server or a cluster). These tables are created during the MySQL
installation process by the mysql_install_db script, and include a table for storing the binary
log's indexing data. Since the ndb_binlog_index table is local to each MySQL server and does
not participate in clustering, it uses the MyISAM storage engine. This means that it must be created
separately on each mysqld participating in the master cluster. (However, the binary log itself contains
updates from all MySQL servers in the cluster to be replicated.) This table is defined as follows:

CREATE TABLE `ndb_binlog_index` (
    `Position` BIGINT(20) UNSIGNED NOT NULL,
    `File` VARCHAR(255) NOT NULL,
    `epoch` BIGINT(20) UNSIGNED NOT NULL,
    `inserts` INT(10) UNSIGNED NOT NULL,
    `updates` INT(10) UNSIGNED NOT NULL,
    `deletes` INT(10) UNSIGNED NOT NULL,
    `schemaops` INT(10) UNSIGNED NOT NULL,
    `orig_server_id` INT(10) UNSIGNED NOT NULL,
    `orig_epoch` BIGINT(20) UNSIGNED NOT NULL,
    `gci` INT(10) UNSIGNED NOT NULL,
    `next_position` bigint(20) unsigned NOT NULL,
    `next_file` varchar(255) NOT NULL,
    PRIMARY KEY (`epoch`,`orig_server_id`,`orig_epoch`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

The size of this table is dependent on the number of epochs per binary log file and the number of
binary log files. The number of epochs per binary log file normally depends on the amount of binary log
generated per epoch and the size of the binary log file, with smaller epochs resulting in more epochs
per file. You should be aware that empty epochs produce inserts to the ndb_binlog_index table,
even when the --ndb-log-empty-epochs option is OFF, meaning that the number of entries per file
depends on the length of time that the file is in use; that is,

[number of epochs per file] = [time spent per file] / TimeBetweenEpochs

A busy NDB Cluster writes to the binary log regularly and presumably rotates binary log files more
quickly than a quiet one. This means that a “quiet” NDB Cluster with --ndb-log-empty-epochs=ON
can actually have a much higher number of ndb_binlog_index rows per file than one with a great
deal of activity.

When mysqld is started with the --ndb-log-orig option, the orig_server_id and orig_epoch
columns store, respectively, the ID of the server on which the event originated and the epoch in
which the event took place on the originating server, which is useful in NDB Cluster replication setups
employing multiple masters. The SELECT statement used to find the closest binary log position to
the highest applied epoch on the slave in a multi-master setup (see Section 18.6.10, “NDB Cluster
Replication: Multi-Master and Circular Replication”) employs these two columns, which are not indexed.
This can lead to performance issues when trying to fail over, since the query must perform a table
scan, especially when the master has been running with --ndb-log-empty-epochs=ON. You can
improve multi-master failover times by adding an index to these columns, as shown here:

ALTER TABLE mysql.ndb_binlog_index
    ADD INDEX orig_lookup USING BTREE (orig_server_id, orig_epoch);

Adding this index provides no benefit when replicating from a single master to a single slave, since
the query used to get the binary log position in such cases makes no use of orig_server_id or
orig_epoch.



NDB Cluster Replication Schema and Tables

2414

The next_position and next_file columns were added in NDB 7.2.6; see Section 18.6.8,
“Implementing Failover with NDB Cluster Replication”, for more information about using these columns.

The following figure shows the relationship of the NDB Cluster replication master server, its binary log
injector thread, and the mysql.ndb_binlog_index table.

Figure 18.15 The Replication Master Cluster

An additional table, named ndb_apply_status, is used to keep a record of the operations that have
been replicated from the master to the slave. Unlike the case with ndb_binlog_index, the data in
this table is not specific to any one SQL node in the (slave) cluster, and so ndb_apply_status can
use the NDBCLUSTER storage engine, as shown here:

CREATE TABLE `ndb_apply_status` (
    `server_id`   INT(10) UNSIGNED NOT NULL,
    `epoch`       BIGINT(20) UNSIGNED NOT NULL,
    `log_name`    VARCHAR(255) CHARACTER SET latin1 COLLATE latin1_bin NOT NULL,
    `start_pos`   BIGINT(20) UNSIGNED NOT NULL,
    `end_pos`     BIGINT(20) UNSIGNED NOT NULL,
    PRIMARY KEY (`server_id`) USING HASH
) ENGINE=NDBCLUSTER   DEFAULT CHARSET=latin1;

The ndb_apply_status table is populated only on slaves, which means that, on the master, this
table never contains any rows; thus, there is no need to allow for DataMemory or IndexMemory to be
allotted to ndb_apply_status there.

Because this table is populated from data originating on the master, it should be allowed to replicate;
any replication filtering or binary log filtering rules that inadvertently prevent the slave from updating
ndb_apply_status or the master from writing into the binary log may prevent replication between
clusters from operating properly. For more information about potential problems arising from such
filtering rules, see Replication and binary log filtering rules with replication between NDB Clusters.

The ndb_binlog_index and ndb_apply_status tables are created in the mysql database
because they should not be explicitly replicated by the user. User intervention is normally not



NDB Cluster Replication Schema and Tables

2415

required to create or maintain either of these tables, since both ndb_binlog_index and the
ndb_apply_status are maintained by the NDB binary log (binlog) injector thread. This keeps the
master mysqld process updated to changes performed by the NDB storage engine. The NDB binlog
injector thread receives events directly from the NDB storage engine. The NDB injector is responsible
for capturing all the data events within the cluster, and ensures that all events which change, insert, or
delete data are recorded in the ndb_binlog_index table. The slave I/O thread transfers the events
from the master's binary log to the slave's relay log.

However, it is advisable to check for the existence and integrity of these tables as an initial step
in preparing an NDB Cluster for replication. It is possible to view event data recorded in the binary
log by querying the mysql.ndb_binlog_index table directly on the master. This can be also be
accomplished using the SHOW BINLOG EVENTS statement on either the replication master or slave
MySQL servers. (See Section 13.7.5.3, “SHOW BINLOG EVENTS Syntax”.)

You can also obtain useful information from the output of SHOW ENGINE NDB STATUS.

The ndb_schema table is used to track schema changes made to NDB tables. It is defined as shown
here:

CREATE TABLE ndb_schema (
    `db` VARBINARY(63) NOT NULL,
    `name` VARBINARY(63) NOT NULL,
    `slock` BINARY(32) NOT NULL,
    `query` BLOB NOT NULL,
    `node_id` INT UNSIGNED NOT NULL,
    `epoch` BIGINT UNSIGNED NOT NULL,
    `id` INT UNSIGNED NOT NULL,
    `version` INT UNSIGNED NOT NULL,
    `type` INT UNSIGNED NOT NULL,
    PRIMARY KEY USING HASH (db,name)
) ENGINE=NDB   DEFAULT CHARSET=latin1;

Unlike the two tables previously mentioned in this section, the ndb_schema table is not visible either
to MySQL SHOW statements, or in any INFORMATION_SCHEMA tables; however, it can be seen in the
output of ndb_show_tables, as shown here:

shell> ndb_show_tables -t 2
id    type                 state    logging database     schema   name
4     UserTable            Online   Yes     mysql        def      ndb_apply_status
5     UserTable            Online   Yes     ndbworld     def      city
6     UserTable            Online   Yes     ndbworld     def      country
3     UserTable            Online   Yes     mysql        def      NDB$BLOB_2_3
7     UserTable            Online   Yes     ndbworld     def      countrylanguage
2     UserTable            Online   Yes     mysql        def      ndb_schema

NDBT_ProgramExit: 0 - OK

It is also possible to SELECT from this table in mysql and other MySQL client applications, as shown
here:

mysql> SELECT * FROM mysql.ndb_schema WHERE name='city' \G
*************************** 1. row ***************************
     db: ndbworld
   name: city
  slock:
  query: alter table city engine=ndb
node_id: 4
  epoch: 0
     id: 0
version: 0
   type: 7
1 row in set (0.00 sec)

This can sometimes be useful when debugging applications.



Preparing the NDB Cluster for Replication

2416

Note

When performing schema changes on NDB tables, applications should wait
until the ALTER TABLE statement has returned in the MySQL client connection
that issued the statement before attempting to use the updated definition of the
table.

If the ndb_apply_status table or the ndb_schema table does not exist on the slave, ndb_restore
re-creates the missing table or tables (Bug #14612).

Conflict resolution for NDB Cluster Replication requires the presence of an additional
mysql.ndb_replication table. Currently, this table must be created manually. For information
about how to do this, see Section 18.6.11, “NDB Cluster Replication Conflict Resolution”.

18.6.5 Preparing the NDB Cluster for Replication

Preparing the NDB Cluster for replication consists of the following steps:

1. Check all MySQL servers for version compatibility (see Section 18.6.2, “General Requirements for
NDB Cluster Replication”).

2. Create a slave account on the master Cluster with the appropriate privileges:

mysqlM> GRANT REPLICATION SLAVE
     -> ON *.* TO 'slave_user'@'slave_host'
     -> IDENTIFIED BY 'slave_password';

In the previous statement, slave_user is the slave account user name, slave_host is the host
name or IP address of the replication slave, and slave_password is the password to assign to
this account.

For example, to create a slave user account with the name myslave, logging in from the host
named rep-slave, and using the password 53cr37, use the following GRANT statement:

mysqlM> GRANT REPLICATION SLAVE
     -> ON *.* TO 'myslave'@'rep-slave'
     -> IDENTIFIED BY '53cr37';

For security reasons, it is preferable to use a unique user account—not employed for any other
purpose—for the replication slave account.

3.  Configure the slave to use the master. Using the MySQL Monitor, this can be accomplished with
the CHANGE MASTER TO statement:

mysqlS> CHANGE MASTER TO
     -> MASTER_HOST='master_host',
     -> MASTER_PORT=master_port,
     -> MASTER_USER='slave_user',
     -> MASTER_PASSWORD='slave_password';

In the previous statement, master_host is the host name or IP address of the replication master,
master_port is the port for the slave to use for connecting to the master, slave_user is the user
name set up for the slave on the master, and slave_password is the password set for that user
account in the previous step.

For example, to tell the slave to replicate from the MySQL server whose host name is rep-
master, using the replication slave account created in the previous step, use the following
statement:

mysqlS> CHANGE MASTER TO



Starting NDB Cluster Replication (Single Replication Channel)

2417

     -> MASTER_HOST='rep-master',
     -> MASTER_PORT=3306,
     -> MASTER_USER='myslave',
     -> MASTER_PASSWORD='53cr37';

For a complete list of options that can be used with this statement, see Section 13.4.2.1, “CHANGE
MASTER TO Syntax”.

To provide replication backup capability, you also need to add an --ndb-connectstring option
to the slave's my.cnf file prior to starting the replication process. See Section 18.6.9, “NDB Cluster
Backups With NDB Cluster Replication”, for details.

For additional options that can be set in my.cnf for replication slaves, see Section 17.1.3,
“Replication and Binary Logging Options and Variables”.

4. If the master cluster is already in use, you can create a backup of the master and load this onto the
slave to cut down on the amount of time required for the slave to synchronize itself with the master.
If the slave is also running NDB Cluster, this can be accomplished using the backup and restore
procedure described in Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”.

ndb-connectstring=management_host[:port]

In the event that you are not using NDB Cluster on the replication slave, you can create a backup
with this command on the replication master:

shellM> mysqldump --master-data=1

Then import the resulting data dump onto the slave by copying the dump file over to the slave. After
this, you can use the mysql client to import the data from the dumpfile into the slave database as
shown here, where dump_file is the name of the file that was generated using mysqldump on the
master, and db_name is the name of the database to be replicated:

shellS> mysql -u root -p db_name < dump_file

For a complete list of options to use with mysqldump, see Section 4.5.4, “mysqldump — A
Database Backup Program”.

Note

If you copy the data to the slave in this fashion, you should make sure that
the slave is started with the --skip-slave-start option on the command
line, or else include skip-slave-start in the slave's my.cnf file to keep
it from trying to connect to the master to begin replicating before all the data
has been loaded. Once the data loading has completed, follow the additional
steps outlined in the next two sections.

5. Ensure that each MySQL server acting as a replication master is configured with a unique server
ID, and with binary logging enabled, using the row format. (See Section 17.1.2, “Replication
Formats”.) These options can be set either in the master server's my.cnf file, or on the command
line when starting the master mysqld process. See Section 18.6.6, “Starting NDB Cluster
Replication (Single Replication Channel)”, for information regarding the latter option.

18.6.6 Starting NDB Cluster Replication (Single Replication Channel)

This section outlines the procedure for starting NDB Cluster replication using a single replication
channel.

1. Start the MySQL replication master server by issuing this command:



Starting NDB Cluster Replication (Single Replication Channel)

2418

shellM> mysqld --ndbcluster --server-id=id \
        --log-bin &

If the master is running NDB 7.2.12 or earlier, it must also be started with --binlog-format=ROW
(or MIXED). (Bug #16417224)

In the previous statement, id is this server's unique ID (see Section 18.6.2, “General Requirements
for NDB Cluster Replication”). This starts the server's mysqld process with binary logging enabled
using the proper logging format.

Note

You can also start the master with --binlog-format=MIXED, in which
case row-based replication is used automatically when replicating between
clusters. STATEMENT based binary logging is not supported for NDB Cluster
Replication (see Section 18.6.2, “General Requirements for NDB Cluster
Replication”).

2. Start the MySQL replication slave server as shown here:

shellS> mysqld --ndbcluster --server-id=id &

In the command just shown, id is the slave server's unique ID. It is not necessary to enable logging
on the replication slave.

Note

You should use the --skip-slave-start option with this command or
else you should include skip-slave-start in the slave server's my.cnf
file, unless you want replication to begin immediately. With the use of this
option, the start of replication is delayed until the appropriate START SLAVE
statement has been issued, as explained in Step 4 below.

3. It is necessary to synchronize the slave server with the master server's replication binary log. If
binary logging has not previously been running on the master, run the following statement on the
slave:

mysqlS> CHANGE MASTER TO
     -> MASTER_LOG_FILE='',
     -> MASTER_LOG_POS=4;

This instructs the slave to begin reading the master's binary log from the log's starting point.
Otherwise—that is, if you are loading data from the master using a backup—see Section 18.6.8,
“Implementing Failover with NDB Cluster Replication”, for information on how to obtain the correct
values to use for MASTER_LOG_FILE and MASTER_LOG_POS in such cases.

4. Finally, you must instruct the slave to begin applying replication by issuing this command from the
mysql client on the replication slave:

mysqlS> START SLAVE;

This also initiates the transmission of replication data from the master to the slave.

It is also possible to use two replication channels, in a manner similar to the procedure described in
the next section; the differences between this and using a single replication channel are covered in
Section 18.6.7, “Using Two Replication Channels for NDB Cluster Replication”.

It is also possible to improve cluster replication performance by enabling batched updates. This can
be accomplished by setting the slave_allow_batching system variable on the slave mysqld
processes. Normally, updates are applied as soon as they are received. However, the use of batching



Using Two Replication Channels for NDB Cluster Replication

2419

causes updates to be applied in 32 KB batches, which can result in higher throughput and less CPU
usage, particularly where individual updates are relatively small.

Note

Slave batching works on a per-epoch basis; updates belonging to more than
one transaction can be sent as part of the same batch.

All outstanding updates are applied when the end of an epoch is reached, even
if the updates total less than 32 KB.

Batching can be turned on and off at runtime. To activate it at runtime, you can use either of these two
statements:

SET GLOBAL slave_allow_batching = 1;
SET GLOBAL slave_allow_batching = ON;

If a particular batch causes problems (such as a statement whose effects do not appear to be
replicated correctly), slave batching can be deactivated using either of the following statements:

SET GLOBAL slave_allow_batching = 0;
SET GLOBAL slave_allow_batching = OFF;

You can check whether slave batching is currently being used by means of an appropriate SHOW
VARIABLES statement, like this one:

mysql> SHOW VARIABLES LIKE 'slave%';
+---------------------------+-------+
| Variable_name             | Value |
+---------------------------+-------+
| slave_allow_batching      | ON    |
| slave_compressed_protocol | OFF   |
| slave_load_tmpdir         | /tmp  |
| slave_net_timeout         | 3600  |
| slave_skip_errors         | OFF   |
| slave_transaction_retries | 10    |
+---------------------------+-------+
6 rows in set (0.00 sec)

18.6.7 Using Two Replication Channels for NDB Cluster Replication

In a more complete example scenario, we envision two replication channels to provide redundancy
and thereby guard against possible failure of a single replication channel. This requires a total of four
replication servers, two masters for the master cluster and two slave servers for the slave cluster. For
purposes of the discussion that follows, we assume that unique identifiers are assigned as shown here:

Server ID Description

1 Master - primary replication channel (M)

2 Master - secondary replication channel (M')

3 Slave - primary replication channel (S)

4 Slave - secondary replication channel (S')

Setting up replication with two channels is not radically different from setting up a single replication
channel. First, the mysqld processes for the primary and secondary replication masters must be
started, followed by those for the primary and secondary slaves. Then the replication processes may
be initiated by issuing the START SLAVE statement on each of the slaves. The commands and the
order in which they need to be issued are shown here:

1. Start the primary replication master:



Implementing Failover with NDB Cluster Replication

2420

shellM> mysqld --ndbcluster --server-id=1 \
               --log-bin &

For NDB 7.2.12 and earlier, you should use the following (Bug #16417224):

shellM> mysqld --ndbcluster --server-id=1 \
               --log-bin --binlog-format=ROW &

2. Start the secondary replication master:

shellM'> mysqld --ndbcluster --server-id=2 \
               --log-bin &

For NDB 7.2.12 and earlier, you should use this instead (Bug #16417224):

shellM'> mysqld --ndbcluster --server-id=2 \
               --log-bin --binlog-format=ROW &

3. Start the primary replication slave server:

shellS> mysqld --ndbcluster --server-id=3 \
               --skip-slave-start &

4. Start the secondary replication slave:

shellS'> mysqld --ndbcluster --server-id=4 \
                --skip-slave-start &

5. Finally, initiate replication on the primary channel by executing the START SLAVE statement on the
primary slave as shown here:

mysqlS> START SLAVE;

Warning

Only the primary channel is to be started at this point. The secondary
replication channel is to be started only in the event that the primary
replication channel fails, as described in Section 18.6.8, “Implementing
Failover with NDB Cluster Replication”. Running multiple replication
channels simultaneously can result in unwanted duplicate records being
created on the replication slaves.

As mentioned previously, it is not necessary to enable binary logging on replication slaves.

18.6.8 Implementing Failover with NDB Cluster Replication

In the event that the primary Cluster replication process fails, it is possible to switch over to the
secondary replication channel. The following procedure describes the steps required to accomplish
this.

1.   Obtain the time of the most recent global checkpoint (GCP). That is, you need to determine the
most recent epoch from the ndb_apply_status table on the slave cluster, which can be found
using the following query:

mysqlS'> SELECT @latest:=MAX(epoch)
      ->        FROM mysql.ndb_apply_status;



Implementing Failover with NDB Cluster Replication

2421

In a circular replication topology, with a master and a slave running on each host, when you are
using ndb_log_apply_status=1, NDB Cluster epochs are written in the slave binary logs. This
means that the ndb_apply_status table contains information for the slave on this host as well as
for any other host which acts as a slave of the master running on this host.

In this case, you need to determine the latest epoch on this slave to the exclusion of any epochs
from any other slaves in this slave's binary log that were not listed in the IGNORE_SERVER_IDS
options of the CHANGE MASTER TO statement used to set up this slave. The reason for excluding
such epochs is that rows in the mysql.ndb_apply_status table whose server IDs have a match
in the IGNORE_SERVER_IDS list used with the CHANGE MASTER TO statement used to prepare
this slave's master are also considered to be from local servers, in addition to those having the
slave's own server ID. You can retrieve this list as Replicate_Ignore_Server_Ids from the
output of SHOW SLAVE STATUS. We assume that you have obtained this list and are substituting
it for ignore_server_ids in the query shown here, which like the previous version of the query,
selects the greatest epoch into a variable named @latest:

mysqlS'> SELECT @latest:=MAX(epoch)
      ->        FROM mysql.ndb_apply_status
      ->        WHERE server_id NOT IN (ignore_server_ids);

In some cases, it may be simpler or more efficient (or both) to use a list of the server IDs to be
included and server_id IN server_id_list in the WHERE condition of the preceding query.

2.  Using the information obtained from the query shown in Step 1, obtain the corresponding records
from the ndb_binlog_index table on the master cluster.

Prior to NDB 7.2.6, you should use the following query to accomplish this task:

mysqlM'> SELECT
      ->     @file:=SUBSTRING_INDEX(File, '/', -1),
      ->     @pos:=Position
      -> FROM mysql.ndb_binlog_index
      -> WHERE epoch > @latest
      -> ORDER BY epoch ASC LIMIT 1;

Beginning with NDB 7.2.6, you can take advantage of the improved binary logging of DDL
statements implemented in those and later versions by using the following query to obtain the
needed records from the master's ndb_binlog_index table:

mysqlM'> SELECT
      ->     @file:=SUBSTRING_INDEX(next_file, '/', -1),
      ->     @pos:=next_position
      -> FROM mysql.ndb_binlog_index
      -> WHERE epoch = @latest
      -> ORDER BY epoch ASC LIMIT 1;

In either case, these are the records saved on the master since the failure of the primary replication
channel. We have employed a user variable @latest here to represent the value obtained in Step
1. Of course, it is not possible for one mysqld instance to access user variables set on another
server instance directly. These values must be “plugged in” to the second query manually or in
application code.

Important

If (and only if) you use the second of the two queries just shown against
ndb_binlog_index (that is, the query that employs the next_position
and next_file columns), you must ensure that the slave mysqld is
started with --slave-skip-errors=ddl_exist_errors before



NDB Cluster Backups With NDB Cluster Replication

2422

executing START SLAVE. Otherwise, replication may stop with duplicate
DDL errors.

3. Now it is possible to synchronize the secondary channel by running the following query on the
secondary slave server:

mysqlS'> CHANGE MASTER TO
      ->     MASTER_LOG_FILE='@file',
      ->     MASTER_LOG_POS=@pos;

Again we have employed user variables (in this case @file and @pos) to represent the values
obtained in Step 2 and applied in Step 3; in practice these values must be inserted manually or
using application code that can access both of the servers involved.

Note

@file is a string value such as '/var/log/mysql/replication-
master-bin.00001', and so must be quoted when used in SQL or
application code. However, the value represented by @pos must not be
quoted. Although MySQL normally attempts to convert strings to numbers,
this case is an exception.

4. You can now initiate replication on the secondary channel by issuing the appropriate command on
the secondary slave mysqld:

mysqlS'> START SLAVE;

Once the secondary replication channel is active, you can investigate the failure of the primary and
effect repairs. The precise actions required to do this will depend upon the reasons for which the
primary channel failed.

Warning

The secondary replication channel is to be started only if and when the
primary replication channel has failed. Running multiple replication channels
simultaneously can result in unwanted duplicate records being created on the
replication slaves.

If the failure is limited to a single server, it should (in theory) be possible to replicate from M to S', or
from M' to S; however, this has not yet been tested.

18.6.9 NDB Cluster Backups With NDB Cluster Replication

This section discusses making backups and restoring from them using NDB Cluster replication.
We assume that the replication servers have already been configured as covered previously (see
Section 18.6.5, “Preparing the NDB Cluster for Replication”, and the sections immediately following).
This having been done, the procedure for making a backup and then restoring from it is as follows:

1. There are two different methods by which the backup may be started.

• Method A.  This method requires that the cluster backup process was previously enabled on
the master server, prior to starting the replication process. This can be done by including the
following line in a [mysql_cluster] section in the my.cnf file, where management_host
is the IP address or host name of the NDB management server for the master cluster, and port
is the management server's port number:

ndb-connectstring=management_host[:port]



NDB Cluster Backups With NDB Cluster Replication

2423

Note

The port number needs to be specified only if the default port (1186) is not
being used. See Section 18.2.3, “Initial Configuration of NDB Cluster”, for
more information about ports and port allocation in NDB Cluster.

 In this case, the backup can be started by executing this statement on the replication master:

shellM> ndb_mgm -e "START BACKUP"

• Method B.  If the my.cnf file does not specify where to find the management host, you can
start the backup process by passing this information to the NDB management client as part of the
START BACKUP command. This can be done as shown here, where management_host and
port are the host name and port number of the management server:

shellM> ndb_mgm management_host:port -e "START BACKUP"

In our scenario as outlined earlier (see Section 18.6.5, “Preparing the NDB Cluster for
Replication”), this would be executed as follows:

shellM> ndb_mgm rep-master:1186 -e "START BACKUP"

2. Copy the cluster backup files to the slave that is being brought on line. Each system running an
ndbd process for the master cluster will have cluster backup files located on it, and all of these files
must be copied to the slave to ensure a successful restore. The backup files can be copied into any
directory on the computer where the slave management host resides, so long as the MySQL and
NDB binaries have read permissions in that directory. In this case, we will assume that these files
have been copied into the directory /var/BACKUPS/BACKUP-1.

It is not necessary that the slave cluster have the same number of ndbd processes (data nodes)
as the master; however, it is highly recommended this number be the same. It is necessary that
the slave be started with the --skip-slave-start option, to prevent premature startup of the
replication process.

3. Create any databases on the slave cluster that are present on the master cluster that are to be
replicated to the slave.

Important

A CREATE DATABASE (or CREATE SCHEMA) statement corresponding to
each database to be replicated must be executed on each SQL node in the
slave cluster.

4. Reset the slave cluster using this statement in the MySQL Monitor:

mysqlS> RESET SLAVE;

5. You can now start the cluster restoration process on the replication slave using the ndb_restore
command for each backup file in turn. For the first of these, it is necessary to include the -m option
to restore the cluster metadata:

shellS> ndb_restore -c slave_host:port -n node-id \
        -b backup-id -m -r dir

dir is the path to the directory where the backup files have been placed on the replication slave.
For the ndb_restore commands corresponding to the remaining backup files, the -m option
should not be used.



NDB Cluster Backups With NDB Cluster Replication

2424

For restoring from a master cluster with four data nodes (as shown in the figure in Section 18.6,
“NDB Cluster Replication”) where the backup files have been copied to the directory /var/
BACKUPS/BACKUP-1, the proper sequence of commands to be executed on the slave might look
like this:

shellS> ndb_restore -c rep-slave:1186 -n 2 -b 1 -m \
        -r ./var/BACKUPS/BACKUP-1
shellS> ndb_restore -c rep-slave:1186 -n 3 -b 1 \
        -r ./var/BACKUPS/BACKUP-1
shellS> ndb_restore -c rep-slave:1186 -n 4 -b 1 \
        -r ./var/BACKUPS/BACKUP-1
shellS> ndb_restore -c rep-slave:1186 -n 5 -b 1 -e \
        -r ./var/BACKUPS/BACKUP-1

Important

The -e (or --restore_epoch) option in the final invocation of
ndb_restore in this example is required in order that the epoch is written
to the slave mysql.ndb_apply_status. Without this information,
the slave will not be able to synchronize properly with the master. (See
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”.)

6. Now you need to obtain the most recent epoch from the ndb_apply_status table on the slave
(as discussed in Section 18.6.8, “Implementing Failover with NDB Cluster Replication”):

mysqlS> SELECT @latest:=MAX(epoch)
        FROM mysql.ndb_apply_status;

7. Using @latest as the epoch value obtained in the previous step, you can obtain the
correct starting position @pos in the correct binary log file @file from the master's
mysql.ndb_binlog_index table using the query shown here:

mysqlM> SELECT
     ->     @file:=SUBSTRING_INDEX(File, '/', -1),
     ->     @pos:=Position
     -> FROM mysql.ndb_binlog_index
     -> WHERE epoch > @latest
     -> ORDER BY epoch ASC LIMIT 1;

In the event that there is currently no replication traffic, you can get this information by running
SHOW MASTER STATUS on the master and using the value in the Position column for the file
whose name has the suffix with the greatest value for all files shown in the File column. However,
in this case, you must determine this and supply it in the next step manually or by parsing the
output with a script.

8. Using the values obtained in the previous step, you can now issue the appropriate CHANGE
MASTER TO statement in the slave's mysql client:

mysqlS> CHANGE MASTER TO
     ->     MASTER_LOG_FILE='@file',
     ->     MASTER_LOG_POS=@pos;

9. Now that the slave “knows” from what point in which binary log file to start reading data from the
master, you can cause the slave to begin replicating with this standard MySQL statement:

mysqlS> START SLAVE;

To perform a backup and restore on a second replication channel, it is necessary only to repeat these
steps, substituting the host names and IDs of the secondary master and slave for those of the primary



NDB Cluster Backups With NDB Cluster Replication

2425

master and slave replication servers where appropriate, and running the preceding statements on
them.

For additional information on performing Cluster backups and restoring Cluster from backups, see
Section 18.5.3, “Online Backup of NDB Cluster”.

18.6.9.1 NDB Cluster Replication: Automating Synchronization of the Replication Slave
to the Master Binary Log

It is possible to automate much of the process described in the previous section (see Section 18.6.9,
“NDB Cluster Backups With NDB Cluster Replication”). The following Perl script reset-slave.pl
serves as an example of how you can do this.

#!/user/bin/perl -w

#  file: reset-slave.pl

#  Copyright ©2005 MySQL AB

#  This program is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.

#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.

#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to:
#  Free Software Foundation, Inc.
#  59 Temple Place, Suite 330
#  Boston, MA 02111-1307 USA
#
#  Version 1.1

######################## Includes ###############################

use DBI;

######################## Globals ################################

my  $m_host='';
my  $m_port='';
my  $m_user='';
my  $m_pass='';
my  $s_host='';
my  $s_port='';
my  $s_user='';
my  $s_pass='';
my  $dbhM='';
my  $dbhS='';

####################### Sub Prototypes ##########################

sub CollectCommandPromptInfo;
sub ConnectToDatabases;
sub DisconnectFromDatabases;
sub GetSlaveEpoch;
sub GetMasterInfo;
sub UpdateSlave;

######################## Program Main ###########################

CollectCommandPromptInfo;
ConnectToDatabases;
GetSlaveEpoch;



NDB Cluster Backups With NDB Cluster Replication

2426

GetMasterInfo;
UpdateSlave;
DisconnectFromDatabases;

################## Collect Command Prompt Info ##################

sub CollectCommandPromptInfo
{
  ### Check that user has supplied correct number of command line args
  die "Usage:\n
       reset-slave >master MySQL host< >master MySQL port< \n
                   >master user< >master pass< >slave MySQL host< \n
                   >slave MySQL port< >slave user< >slave pass< \n
       All 8 arguments must be passed. Use BLANK for NULL passwords\n"
       unless @ARGV == 8;

  $m_host  =  $ARGV[0];
  $m_port  =  $ARGV[1];
  $m_user  =  $ARGV[2];
  $m_pass  =  $ARGV[3];
  $s_host  =  $ARGV[4];
  $s_port  =  $ARGV[5];
  $s_user  =  $ARGV[6];
  $s_pass  =  $ARGV[7];

  if ($m_pass eq "BLANK") { $m_pass = '';}
  if ($s_pass eq "BLANK") { $s_pass = '';}
}

###############  Make connections to both databases #############

sub ConnectToDatabases
{
  ### Connect to both master and slave cluster databases

  ### Connect to master
  $dbhM
    = DBI->connect(
    "dbi:mysql:database=mysql;host=$m_host;port=$m_port",
    "$m_user", "$m_pass")
      or die "Can't connect to Master Cluster MySQL process!
              Error: $DBI::errstr\n";

  ### Connect to slave
  $dbhS
    = DBI->connect(
          "dbi:mysql:database=mysql;host=$s_host",
          "$s_user", "$s_pass")
    or die "Can't connect to Slave Cluster MySQL process!
            Error: $DBI::errstr\n";
}

################  Disconnect from both databases ################

sub DisconnectFromDatabases
{
  ### Disconnect from master

  $dbhM->disconnect
  or warn " Disconnection failed: $DBI::errstr\n";

  ### Disconnect from slave

  $dbhS->disconnect
  or warn " Disconnection failed: $DBI::errstr\n";
}

######################  Find the last good GCI ##################

sub GetSlaveEpoch
{
  $sth = $dbhS->prepare("SELECT MAX(epoch)



NDB Cluster Backups With NDB Cluster Replication

2427

                         FROM mysql.ndb_apply_status;")
      or die "Error while preparing to select epoch from slave: ",
             $dbhS->errstr;

  $sth->execute
      or die "Selecting epoch from slave error: ", $sth->errstr;

  $sth->bind_col (1, \$epoch);
  $sth->fetch;
  print "\tSlave Epoch =  $epoch\n";
  $sth->finish;
}

#######  Find the position of the last GCI in the binary log ########

sub GetMasterInfo
{
  $sth = $dbhM->prepare("SELECT
                           SUBSTRING_INDEX(File, '/', -1), Position
                         FROM mysql.ndb_binlog_index
                         WHERE epoch > $epoch
                         ORDER BY epoch ASC LIMIT 1;")
      or die "Prepare to select from master error: ", $dbhM->errstr;

  $sth->execute
      or die "Selecting from master error: ", $sth->errstr;

  $sth->bind_col (1, \$binlog);
  $sth->bind_col (2, \$binpos);
  $sth->fetch;
  print "\tMaster binary log =  $binlog\n";
  print "\tMaster binary log position =  $binpos\n";
  $sth->finish;
}

##########  Set the slave to process from that location #########

sub UpdateSlave
{
  $sth = $dbhS->prepare("CHANGE MASTER TO
                         MASTER_LOG_FILE='$binlog',
                         MASTER_LOG_POS=$binpos;")
      or die "Prepare to CHANGE MASTER error: ", $dbhS->errstr;

  $sth->execute
       or die "CHANGE MASTER on slave error: ", $sth->errstr;
  $sth->finish;
  print "\tSlave has been updated. You may now start the slave.\n";
}

# end reset-slave.pl

18.6.9.2 Point-In-Time Recovery Using NDB Cluster Replication

Point-in-time recovery—that is, recovery of data changes made since a given point in time—is
performed after restoring a full backup that returns the server to its state when the backup was made.
Performing point-in-time recovery of NDB Cluster tables with NDB Cluster and NDB Cluster Replication
can be accomplished using a native NDB data backup (taken by issuing CREATE BACKUP in the
ndb_mgm client) and restoring the ndb_binlog_index table (from a dump made using mysqldump).

To perform point-in-time recovery of NDB Cluster, it is necessary to follow the steps shown here:

1. Back up all NDB databases in the cluster, using the START BACKUP command in the ndb_mgm
client (see Section 18.5.3, “Online Backup of NDB Cluster”).

2. At some later point, prior to restoring the cluster, make a backup of the
mysql.ndb_binlog_index table. It is probably simplest to use mysqldump for this task. Also
back up the binary log files at this time.



NDB Cluster Replication: Multi-Master and Circular Replication

2428

This backup should be updated regularly—perhaps even hourly—depending on your needs.

3. (Catastrophic failure or error occurs.)

4. Locate the last known good backup.

5. Clear the data node file systems (using ndbd --initial or ndbmtd --initial).

Note

NDB Cluster Disk Data tablespace and log files are not removed by --
initial. You must delete these manually.

6. Use DROP TABLE or TRUNCATE TABLE with the mysql.ndb_binlog_index table.

7. Execute ndb_restore, restoring all data. You must include the --restore_epoch option
when you run ndb_restore, so that the ndb_apply_status table is populated correctly. (See
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”, for more information.)

8. Restore the ndb_binlog_index table from the output of mysqldump and restore the binary log
files from backup, if necessary.

9. Find the epoch applied most recently—that is, the maximum epoch column value in the
ndb_apply_status table—as the user variable @LATEST_EPOCH (emphasized):

SELECT @LATEST_EPOCH:=MAX(epoch)
    FROM mysql.ndb_apply_status;

10. Find the latest binary log file (@FIRST_FILE) and position (Position column value) within this file
that correspond to @LATEST_EPOCH in the ndb_binlog_index table:

SELECT Position, @FIRST_FILE:=File
    FROM mysql.ndb_binlog_index
    WHERE epoch > @LATEST_EPOCH ORDER BY epoch ASC LIMIT 1;

11. Using mysqlbinlog, replay the binary log events from the given file and position up to the point of
the failure. (See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.)

See also Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”, for more
information about the binary log, replication, and incremental recovery.

18.6.10 NDB Cluster Replication: Multi-Master and Circular Replication

It is possible to use NDB Cluster in multi-master replication, including circular replication between a
number of NDB Clusters.

Circular replication example.  In the next few paragraphs we consider the example of a replication
setup involving three NDB Clusters numbered 1, 2, and 3, in which Cluster 1 acts as the replication
master for Cluster 2, Cluster 2 acts as the master for Cluster 3, and Cluster 3 acts as the master for
Cluster 1. Each cluster has two SQL nodes, with SQL nodes A and B belonging to Cluster 1, SQL
nodes C and D belonging to Cluster 2, and SQL nodes E and F belonging to Cluster 3.

Circular replication using these clusters is supported as long as the following conditions are met:

• The SQL nodes on all masters and slaves are the same

• All SQL nodes acting as replication masters and slaves are started using the --log-slave-
updates option

This type of circular replication setup is shown in the following diagram:



NDB Cluster Replication: Multi-Master and Circular Replication

2429

Figure 18.16 NDB Cluster Circular Replication with All Masters As Slaves

In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates
to SQL node E in Cluster 3; SQL node E replicates to SQL node A. In other words, the replication
line (indicated by the red arrows in the diagram) directly connects all SQL nodes used as replication
masters and slaves.

It is also possible to set up circular replication in such a way that not all master SQL nodes are also
slaves, as shown here:



NDB Cluster Replication: Multi-Master and Circular Replication

2430

Figure 18.17 NDB Cluster Circular Replication Where Not All Masters Are Slaves

In this case, different SQL nodes in each cluster are used as replication masters and slaves. However,
you must not start any of the SQL nodes using --log-slave-updates. This type of circular
replication scheme for NDB Cluster, in which the line of replication (again indicated by the red arrows
in the diagram) is discontinuous, should be possible, but it should be noted that it has not yet been
thoroughly tested and must therefore still be considered experimental.

Using NDB-native backup and restore to initialize a slave NDB Cluster.   When setting up
circular replication, it is possible to initialize the slave cluster by using the management client BACKUP
command on one NDB Cluster to create a backup and then applying this backup on another NDB
Cluster using ndb_restore. However, this does not automatically create binary logs on the second
NDB Cluster's SQL node acting as the replication slave. In order to cause the binary logs to be created,
you must issue a SHOW TABLES statement on that SQL node; this should be done prior to running
START SLAVE.

This is a known issue which we intend to address in a future release.

Multi-master failover example.  In this section, we discuss failover in a multi-master NDB Cluster
replication setup with three NDB Clusters having server IDs 1, 2, and 3. In this scenario, Cluster 1
replicates to Clusters 2 and 3; Cluster 2 also replicates to Cluster 3. This relationship is shown here:



NDB Cluster Replication: Multi-Master and Circular Replication

2431

Figure 18.18 NDB Cluster Multi-Master Replication With 3 Masters

In other words, data replicates from Cluster 1 to Cluster 3 through 2 different routes: directly, and by
way of Cluster 2.

Not all MySQL servers taking part in multi-master replication must act as both master and slave, and
a given NDB Cluster might use different SQL nodes for different replication channels. Such a case is
shown here:

Figure 18.19 NDB Cluster Multi-Master Replication, With MySQL Servers

MySQL servers acting as replication slaves must be run with the --log-slave-updates option.
Which mysqld processes require this option is also shown in the preceding diagram.

Note

Using the --log-slave-updates option has no effect on servers not being
run as replication slaves.

The need for failover arises when one of the replicating clusters goes down. In this example, we
consider the case where Cluster 1 is lost to service, and so Cluster 3 loses 2 sources of updates from
Cluster 1. Because replication between NDB Clusters is asynchronous, there is no guarantee that
Cluster 3's updates originating directly from Cluster 1 are more recent than those received through
Cluster 2. You can handle this by ensuring that Cluster 3 catches up to Cluster 2 with regard to updates
from Cluster 1. In terms of MySQL servers, this means that you need to replicate any outstanding
updates from MySQL server C to server F.



NDB Cluster Replication Conflict Resolution

2432

On server C, perform the following queries:

mysqlC> SELECT @latest:=MAX(epoch)
     ->     FROM mysql.ndb_apply_status
     ->     WHERE server_id=1;

mysqlC> SELECT
     ->     @file:=SUBSTRING_INDEX(File, '/', -1),
     ->     @pos:=Position
     ->     FROM mysql.ndb_binlog_index
     ->     WHERE orig_epoch >= @latest
     ->     AND orig_server_id = 1
     ->     ORDER BY epoch ASC LIMIT 1;

Note

You can improve the performance of this query, and thus likely speed
up failover times significantly, by adding the appropriate index to the
ndb_binlog_index table. See Section 18.6.4, “NDB Cluster Replication
Schema and Tables”, for more information.

Copy over the values for @file and @pos manually from server C to server F (or have your application
perform the equivalent). Then, on server F, execute the following CHANGE MASTER TO statement:

mysqlF> CHANGE MASTER TO
     ->     MASTER_HOST = 'serverC'
     ->     MASTER_LOG_FILE='@file',
     ->     MASTER_LOG_POS=@pos;

Once this has been done, you can issue a START SLAVE statement on MySQL server F, and any
missing updates originating from server B will be replicated to server F.

The CHANGE MASTER TO statement also supports an IGNORE_SERVER_IDS option which takes a
comma-separated list of server IDs and causes events originating from the corresponding servers
to be ignored. For more information, see Section 13.4.2.1, “CHANGE MASTER TO Syntax”, and
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”. For information about how this option intereacts
with the ndb_log_apply_status variable, see Section 18.6.8, “Implementing Failover with NDB
Cluster Replication”.

18.6.11 NDB Cluster Replication Conflict Resolution

When using a replication setup involving multiple masters (including circular replication), it is possible
that different masters may try to update the same row on the slave with different data. Conflict
resolution in NDB Cluster Replication provides a means of resolving such conflicts by permitting a user-
defined resolution column to be used to determine whether or not an update on a given master should
be applied on the slave.

Some types of conflict resolution supported by NDB Cluster (NDB$OLD(), NDB$MAX(), NDB
$MAX_DELETE_WIN()) implement this user-defined column as a “timestamp” column (although its type
cannot be TIMESTAMP, as explained later in this section). These types of conflict resolution are always
applied a row-by-row basis rather than a transactional basis. The epoch-based conflict resolution
functions introduced in NDB 7.2.1 (NDB$EPOCH() and NDB$EPOCH_TRANS()) compare the order in
which epochs are replicated (and thus these functions are transactional). Different methods can be
used to compare resolution column values on the slave when conflicts occur, as explained later in this
section; the method used can be set on a per-table basis.

You should also keep in mind that it is the application's responsibility to ensure that the resolution
column is correctly populated with relevant values, so that the resolution function can make the
appropriate choice when determining whether to apply an update.

Requirements.  Preparations for conflict resolution must be made on both the master and the slave.
These tasks are described in the following list:



NDB Cluster Replication Conflict Resolution

2433

• On the master writing the binary logs, you must determine which columns are sent (all columns or
only those that have been updated). This is done for the MySQL Server as a whole by applying the
mysqld startup option --ndb-log-updated-only (described later in this section) or on a per-
table basis by entries in the mysql.ndb_replication table (see The ndb_replication system
table).

Note

If you are replicating tables with very large columns (such as TEXT or BLOB
columns), --ndb-log-updated-only can also be useful for reducing the
size of the master and slave binary logs and avoiding possible replication
failures due to exceeding max_allowed_packet.

See Section 17.4.1.22, “Replication and max_allowed_packet”, for more
information about this issue.

• On the slave, you must determine which type of conflict resolution to apply (“latest timestamp wins”,
“same timestamp wins”, “primary wins”, “primary wins, complete transaction”, or none). This is done
using the mysql.ndb_replication system table, on a per-table basis (see The ndb_replication
system table).

• Prior to NDB 7.2.5, conflict detection and resolution did not always work properly unless set up for
NDB tables created on the same server only (Bug #13578660).

When using the functions NDB$OLD(), NDB$MAX(), and NDB$MAX_DELETE_WIN() for timestamp-
based conflict resolution, we often refer to the column used for determining updates as a “timestamp”
column. However, the data type of this column is never TIMESTAMP; instead, its data type should be
INT (INTEGER) or BIGINT. The “timestamp” column should also be UNSIGNED and NOT NULL.

The NDB$EPOCH() and NDB$EPOCH_TRANS() functions discussed later in this section work by
comparing the relative order of replication epochs applied on a primary and secondary NDB Cluster,
and do not make use of timestamps.

Master column control.  We can see update operations in terms of “before” and “after” images—
that is, the states of the table before and after the update is applied. Normally, when updating a table
with a primary key, the “before” image is not of great interest; however, when we need to determine
on a per-update basis whether or not to use the updated values on a replication slave, we need to
make sure that both images are written to the master's binary log. This is done with the --ndb-log-
update-as-write option for mysqld, as described later in this section.

Important

Whether logging of complete rows or of updated columns only is done is
decided when the MySQL server is started, and cannot be changed online;
you must either restart mysqld, or start a new mysqld instance with different
logging options.

Logging Full or Partial Rows (--ndb-log-updated-only Option)

Command-Line Format --ndb-log-updated-only

Name ndb_log_updated_only

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON



NDB Cluster Replication Conflict Resolution

2434

For purposes of conflict resolution, there are two basic methods of logging rows, as determined by the
setting of the --ndb-log-updated-only option for mysqld:

• Log complete rows

• Log only column data that has been updated—that is, column data whose value has been set,
regardless of whether or not this value was actually changed. This is the default behavior.

It is usually sufficient—and more efficient—to log updated columns only; however, if you need to log full
rows, you can do so by setting --ndb-log-updated-only to 0 or OFF.

--ndb-log-update-as-write Option: Logging Changed Data as Updates

Command-Line Format --ndb-log-update-as-write

Name ndb_log_update_as_write

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

The setting of the MySQL Server's --ndb-log-update-as-write option determines whether
logging is performed with or without the “before” image. Because conflict resolution is done in the
MySQL Server's update handler, it is necessary to control logging on the master such that updates are
updates and not writes; that is, such that updates are treated as changes in existing rows rather than
the writing of new rows (even though these replace existing rows). This option is turned on by default;
in other words, updates are treated as writes. (That is, updates are by default written as write_row
events in the binary log, rather than as update_row events.)

To turn off the option, start the master mysqld with --ndb-log-update-as-write=0 or --ndb-
log-update-as-write=OFF. You must do this when replicating from NDB tables to tables using a
different storage engine; see Replication from NDB to other storage engines.

Conflict resolution control.  Conflict resolution is usually enabled on the server where conflicts can
occur. Like logging method selection, it is enabled by entries in the mysql.ndb_replication table.

The ndb_replication system table.    To enable conflict resolution, it is necessary to create an
ndb_replication table in the mysql system database on the master, the slave, or both, depending
on the conflict resolution type and method to be employed. This table is used to control logging and
conflict resolution functions on a per-table basis, and has one row per table involved in replication.
ndb_replication is created and filled with control information on the server where the conflict is to
be resolved. In a simple master-slave setup where data can also be changed locally on the slave this
will typically be the slave. In a more complex master-master (2-way) replication schema this will usually
be all of the masters involved. Each row in mysql.ndb_replication corresponds to a table being
replicated, and specifies how to log and resolve conflicts (that is, which conflict resolution function, if
any, to use) for that table. The definition of the mysql.ndb_replication table is shown here:

CREATE TABLE mysql.ndb_replication  (
    db VARBINARY(63),
    table_name VARBINARY(63),
    server_id INT UNSIGNED,
    binlog_type INT UNSIGNED,
    conflict_fn VARBINARY(128),
    PRIMARY KEY USING HASH (db, table_name, server_id)
)   ENGINE=NDB
PARTITION BY KEY(db,table_name);

The columns in this table are described in the next few paragraphs.



NDB Cluster Replication Conflict Resolution

2435

db.  The name of the database containing the table to be replicated.

Beginning with NDB 7.2.5, you may employ either or both of the wildcards _ and % as part of the
database name. Matching is similar to what is implemented for the LIKE operator.

table_name.  The name of the table to be replicated.

Beginning with NDB 7.2.5, the table name may include either or both of the wildcards _ and %.
Matching is similar to what is implemented for the LIKE operator.

server_id.  The unique server ID of the MySQL instance (SQL node) where the table resides.

binlog_type.  The type of binary logging to be employed. This is determined as shown in the
following table:

Value Internal Value Description

0 NBT_DEFAULT Use server default

1 NBT_NO_LOGGING Do not log this table in the binary log

2 NBT_UPDATED_ONLY Only updated attributes are logged

3 NBT_FULL Log full row, even if not updated (MySQL server
default behavior)

4 NBT_USE_UPDATE (For generating
NBT_UPDATED_ONLY_USE_UPDATE and
NBT_FULL_USE_UPDATE values only—not
intended for separate use)

5 [Not used] ---

6 NBT_UPDATED_ONLY_USE_UPDATE
(equal to NBT_UPDATED_ONLY |
NBT_USE_UPDATE)

Use updated attributes, even if values are
unchanged

7 NBT_FULL_USE_UPDATE (equal to
NBT_FULL | NBT_USE_UPDATE)

Use full row, even if values are unchanged

conflict_fn.  The conflict resolution function to be applied. This function must be specified as one of
those shown in the following list:

• NDB$OLD(column_name)

• NDB$MAX(column_name)

• NDB$MAX_DELETE_WIN()

• NDB$EPOCH() and NDB$EPOCH_TRANS() (NDB 7.2.1 and later)

• NDB$EPOCH_TRANS() (NDB 7.2.1 and later)

• NULL: Indicates that conflict resolution is not to be used for the corresponding table.

These functions are described in the next few paragraphs.

NDB$OLD(column_name).   If the value of column_name is the same on both the master and the
slave, then the update is applied; otherwise, the update is not applied on the slave and an exception is
written to the log. This is illustrated by the following pseudocode:

if (master_old_column_value == slave_current_column_value)
  apply_update();
else



NDB Cluster Replication Conflict Resolution

2436

  log_exception();

 This function can be used for “same value wins” conflict resolution. This type of conflict resolution
ensures that updates are not applied on the slave from the wrong master.

Important

The column value from the master's “before” image is used by this function.

NDB$MAX(column_name).   If the “timestamp” column value for a given row coming from the
master is higher than that on the slave, it is applied; otherwise it is not applied on the slave. This is
illustrated by the following pseudocode:

if (master_new_column_value > slave_current_column_value)
  apply_update();

 This function can be used for “greatest timestamp wins” conflict resolution. This type of conflict
resolution ensures that, in the event of a conflict, the version of the row that was most recently updated
is the version that persists.

Important

The column value from the master's “after” image is used by this function.

NDB$MAX_DELETE_WIN().   This is a variation on NDB$MAX(). Due to the fact that no timestamp
is available for a delete operation, a delete using NDB$MAX() is in fact processed as NDB$OLD.
However, for some use cases, this is not optimal. For NDB$MAX_DELETE_WIN(), if the “timestamp”
column value for a given row adding or updating an existing row coming from the master is higher than
that on the slave, it is applied. However, delete operations are treated as always having the higher
value. This is illustrated in the following pseudocode:

if ( (master_new_column_value > slave_current_column_value)
        ||
      operation.type == "delete")
  apply_update();

 This function can be used for “greatest timestamp, delete wins” conflict resolution. This type of conflict
resolution ensures that, in the event of a conflict, the version of the row that was deleted or (otherwise)
most recently updated is the version that persists.

Note

As with NDB$MAX(), the column value from the master's “after” image is the
value used by this function.

NDB$EPOCH() and NDB$EPOCH_TRANS().    The NDB$EPOCH() function, available beginning
with NDB 7.2.1, tracks the order in which replicated epochs are applied on a slave NDB Cluster relative
to changes originating on the slave. This relative ordering is used to determine whether changes
originating on the slave are concurrent with any changes that originate locally, and are therefore
potentially in conflict.

Most of what follows in the description of NDB$EPOCH() also applies to NDB$EPOCH_TRANS(). Any
exceptions are noted in the text.

NDB$EPOCH() is asymmetric, operating on one NDB Cluster in a two-cluster circular replication
configuration (sometimes referred to as “active-active” replication). We refer here to cluster on which
it operates as the primary, and the other as the secondary. The slave on the primary is responsible
for detecting and handling conflicts, while the slave on the secondary is not involved in any conflict
detection or handling.



NDB Cluster Replication Conflict Resolution

2437

When the slave on the primary detects conflicts, it injects events into its own binary log to compensate
for these; this ensures that the secondary NDB Cluster eventually realigns itself with the primary and
so keeps the primary and secondary from diverging. This compensation and realignment mechanism
requires that the primary NDB Cluster always wins any conflicts with the secondary—that is, that the
primary's changes are always used rather than those from the secondary in event of a conflict. This
“primary always wins” rule has the following implications:

• Operations that change data, once committed on the primary, are fully persistent and will not be
undone or rolled back by conflict detection and resolution.

• Data read from the primary is fully consistent. Any changes committed on the Primary (locally or from
the slave) will not be reverted later.

• Operations that change data on the secondary may later be reverted if the primary determines that
they are in conflict.

• Individual rows read on the secondary are self-consistent at all times, each row always reflecting
either a state committed by the secondary, or one committed by the primary.

• Sets of rows read on the secondary may not necessarily be consistent at a given single point in time.
For NDB$EPOCH_TRANS(), this is a transient state; for NDB$EPOCH(), it can be a persistent state.

• Assuming a period of sufficient length without any conflicts, all data on the secondary NDB Cluster
(eventually) becomes consistent with the primary's data.

NDB$EPOCH() and NDB$EPOCH_TRANS() do not require any user schema modifications, or
application changes to provide conflict detection. However, careful thought must be given to the
schema used, and the access patterns used, to verify that the complete system behaves within
specified limits.

Each of the NDB$EPOCH() and NDB$EPOCH_TRANS() functions can take an optional parameter; this
is the number of bits to use to represent the lower 32 bits of the epoch, and should be set to no less
than

CEIL( LOG2( TimeBetweenGlobalCheckpoints / TimeBetweenEpochs ), 1)

For the default values of these configuration parameters (2000 and 100 milliseconds, respectively),
this gives a value of 5 bits, so the default value (6) should be sufficient, unless other values are used
for TimeBetweenGlobalCheckpoints, TimeBetweenEpochs, or both. A value that is too small
can result in false positives, while one that is too large could lead to excessive wasted space in the
database.

Both NDB$EPOCH() and NDB$EPOCH_TRANS() insert entries for conflicting rows into the relevant
exceptions tables, provided that these tables have been defined according to the same exceptions
table schema rules as described elsewhere in this section (see NDB$OLD(column_name)). You need
to create any exceptions table before creating the table with which it is to be used.

As with the other conflict detection functions discussed in this section, NDB$EPOCH() and NDB
$EPOCH_TRANS() are activated by including relevant entries in the mysql.ndb_replication table
(see The ndb_replication system table). The roles of the primary and secondary NDB Clusters in this
scenario are fully determined by mysql.ndb_replication table entries.

Because the conflict detection algorithms employed by NDB$EPOCH() and NDB$EPOCH_TRANS() are
asymmetric, you must use different values for the primary slave's and secondary slave's server_id
entries.

Prior to NDB 7.2.17, conflict between DELETE operations were handled like those for UPDATE
operations, and within the same epoch were considered in conflict. In NDB 7.2.17 and later, a conflict
between DELETE operations alone is not sufficient to trigger a conflict using NDB$EPOCH() or NDB
$EPOCH_TRANS(), and the relative placement within epochs does not matter. (Bug #18459944)



NDB Cluster Replication Conflict Resolution

2438

Conflict detection status variables.    NDB 7.2.1 introduces several status variables that can be
used to monitor NDB$EPOCH() and NDB$EPOCH_TRANS() conflict detection. You can see how many
rows have been found in conflict by NDB$EPOCH() since this slave was last restarted from the current
value of the Ndb_conflict_fn_epoch system status variable.

Ndb_conflict_fn_epoch_trans provides the number of rows that have been found directly in
conflict by NDB$EPOCH_TRANS(); the number of rows actually realigned, including those affected due
to their membership in or dependency on the same transactions as other conflicting rows, is given by
Ndb_conflict_trans_row_reject_count.

For more information, see NDB Cluster Status Variables.

Limitations on NDB$EPOCH().   The following limitations currently apply when using NDB
$EPOCH() to perform conflict detection:

• Conflicts are detected using NDB Cluster epoch boundaries, with granularity proportional to
TimeBetweenEpochs (default: 100 milliseconds). The minimum conflict window is the minimum
time during which concurrent updates to the same data on both clusters always report a conflict. This
is always a nonzero length of time, and is roughly proportional to 2 * (latency + queueing +
TimeBetweenEpochs). This implies that—assuming the default for TimeBetweenEpochs and
ignoring any latency between clusters (as well as any queuing delays)—the minimum conflict window
size is approximately 200 milliseconds. This minimum window should be considered when looking at
expected application “race” patterns.

• Additional storage is required for tables using the NDB$EPOCH() and NDB$EPOCH_TRANS()
functions; from 1 to 32 bits extra space per row is required, depending on the value passed to the
function.

• Conflicts between delete operations may result in divergence between the primary and secondary.
When a row is deleted on both clusters concurrently, the conflict can be detected, but is not
recorded, since the row is deleted. This means that further conflicts during the propagation of any
subsequent realignment operations will not be detected, which can lead to divergence.

Deletes should be externally serialized, or routed to one cluster only. Alternatively, a separate row
should be updated transactionally with such deletes and any inserts that follow them, so that conflicts
can be tracked across row deletes. This may require changes in applications.

• Only two NDB Clusters in a circular “active-active” configuration are currently supported when using
NDB$EPOCH() or NDB$EPOCH_TRANS() for conflict detection.

• Tables having BLOB or TEXT columns are not currently supported with NDB$EPOCH() or NDB
$EPOCH_TRANS().

NDB$EPOCH_TRANS().   NDB$EPOCH_TRANS() extends the NDB$EPOCH() function, and, like NDB
$EPOCH(), is available beginning with NDB 7.2.1. Conflicts are detected and handled in the same way
using the “primary wins all” rule (see NDB$EPOCH() and NDB$EPOCH_TRANS()) but with the extra
condition that any other rows updated in the same transaction in which the conflict occurred are also
regarded as being in conflict. In other words, where NDB$EPOCH() realigns individual conflicting rows
on the secondary, NDB$EPOCH_TRANS() realigns conflicting transactions.

In addition, any transactions which are detectably dependent on a conflicting transaction are also
regarded as being in conflict, these dependencies being determined by the contents of the secondary
cluster's binary log. Since the binary log contains only data modification operations (inserts, updates,
and deletes), only overlapping data modifications are used to determine dependencies between
transactions.

NDB$EPOCH_TRANS() is subject to the same conditions and limitations as NDB$EPOCH(), and in
addition requires that Version 2 binary log row events are used (--log-bin-use-v1-row-events
equal to 0), which adds a storage overhead of 2 bytes per event in the binary log. In addition, all
transaction IDs must be recorded in the secondary's binary log (--ndb-log-transaction-id
option), which adds a further variable overhead (up to 13 bytes per row).



NDB Cluster Replication Conflict Resolution

2439

See NDB$EPOCH() and NDB$EPOCH_TRANS().

Status information.  A server status variable Ndb_conflict_fn_max provides a count of the
number of times that a row was not applied on the current SQL node due to “greatest timestamp wins”
conflict resolution since the last time that mysqld was started.

The number of times that a row was not applied as the result of “same timestamp wins” conflict
resolution on a given mysqld since the last time it was restarted is given by the global status variable
Ndb_conflict_fn_old. In addition to incrementing Ndb_conflict_fn_old, the primary key of the
row that was not used is inserted into an exceptions table, as explained later in this section.

Conflict resolution exceptions table.    To use the NDB$OLD() conflict resolution function, it is also
necessary to create an exceptions table corresponding to each NDB table for which this type of conflict
resolution is to be employed. This is also true when using NDB$EPOCH() or NDB$EPOCH_TRANS()
in NDB 7.2.1 and later. The name of this table is that of the table for which conflict resolution is to be
applied, with the string $EX appended. (For example, if the name of the original table is mytable, the
name of the corresponding exceptions table name should be mytable$EX.) This table is created as
follows:

CREATE TABLE original_table$EX  (
    server_id INT UNSIGNED,
    master_server_id INT UNSIGNED,
    master_epoch BIGINT UNSIGNED,
    count INT UNSIGNED,

    original_table_pk_columns,

    [additional_columns,]

    PRIMARY KEY(server_id, master_server_id, master_epoch, count)
) ENGINE=NDB;

The first four columns are required. The names of the first four columns and the columns matching
the original table's primary key columns are not critical; however, we suggest for reasons of clarity
and consistency, that you use the names shown here for the server_id, master_server_id,
master_epoch, and count columns, and that you use the same names as in the original table for the
columns matching those in the original table's primary key.

Following these columns, the columns making up the original table's primary key should be copied
in the order in which they are used to define the primary key of the original table. The data types for
the columns duplicating the primary key columns of the original table should be the same as (or larger
than) those of the original columns.

Additional columns may optionally be defined following the copied primary key columns, but not before
any of them; any such extra columns cannot be NOT NULL. The exceptions table's primary key must
be defined as shown.

The exceptions table must use the NDB storage engine. An example that uses NDB$OLD() with an
exceptions table is shown later in this section.

Important

The mysql.ndb_replication table is read when a data table is set up
for replication, so the row corresponding to a table to be replicated must be
inserted into mysql.ndb_replication before the table to be replicated is
created.

Examples

The following examples assume that you have already a working NDB Cluster replication setup, as
described in Section 18.6.5, “Preparing the NDB Cluster for Replication”, and Section 18.6.6, “Starting
NDB Cluster Replication (Single Replication Channel)”.



NDB Cluster Replication Conflict Resolution

2440

NDB$MAX() example.  Suppose you wish to enable “greatest timestamp wins” conflict resolution on
table test.t1, using column mycol as the “timestamp”. This can be done using the following steps:

1. Make sure that you have started the master mysqld with --ndb-log-update-as-write=OFF.

2. On the master, perform this INSERT statement:

INSERT INTO mysql.ndb_replication
    VALUES ('test', 't1', 0, NULL, 'NDB$MAX(mycol)');

Inserting a 0 into the server_id indicates that all SQL nodes accessing this table should use
conflict resolution. If you want to use conflict resolution on a specific mysqld only, use the actual
server ID.

Inserting NULL into the binlog_type column has the same effect as inserting 0 (NBT_DEFAULT);
the server default is used.

3. Create the test.t1 table:

CREATE TABLE test.t1 (
    columns
    mycol INT UNSIGNED,
    columns
) ENGINE=NDB;

Now, when updates are done on this table, conflict resolution is applied, and the version of the row
having the greatest value for mycol is written to the slave.

Note

Other binlog_type options—such as NBT_UPDATED_ONLY_USE_UPDATE
should be used to control logging on the master using the ndb_replication
table rather than by using command-line options.

NDB$OLD() example.  Suppose an NDB table such as the one defined here is being replicated, and
you wish to enable “same timestamp wins” conflict resolution for updates to this table:

CREATE TABLE test.t2  (
    a INT UNSIGNED NOT NULL,
    b CHAR(25) NOT NULL,
    columns,
    mycol INT UNSIGNED NOT NULL,
    columns,
    PRIMARY KEY pk (a, b)
)   ENGINE=NDB;

The following steps are required, in the order shown:

1. First—and prior to creating test.t2—you must insert a row into the mysql.ndb_replication
table, as shown here:

INSERT INTO mysql.ndb_replication
    VALUES ('test', 't2', 0, NULL, 'NDB$OLD(mycol)');

Possible values for the binlog_type column are shown earlier in this section. The value 'NDB
$OLD(mycol)' should be inserted into the conflict_fn column.

2. Create an appropriate exceptions table for test.t2. The table creation statement shown here
includes all required columns; any additional columns must be declared following these columns,
and before the definition of the table's primary key.



NDB Cluster Release Notes

2441

CREATE TABLE test.t2$EX  (
    server_id SMALLINT UNSIGNED,
    master_server_id INT UNSIGNED,
    master_epoch BIGINT UNSIGNED,
    count BIGINT UNSIGNED,
    a INT UNSIGNED NOT NULL,
    b CHAR(25) NOT NULL,

    [additional_columns,]

    PRIMARY KEY(server_id, master_server_id, master_epoch, count)
)   ENGINE=NDB;

3. Create the table test.t2 as shown previously.

These steps must be followed for every table for which you wish to perform conflict resolution using
NDB$OLD(). For each such table, there must be a corresponding row in mysql.ndb_replication,
and there must be an exceptions table in the same database as the table being replicated.

18.7 NDB Cluster Release Notes

NDB Cluster release notes are no longer published in the MySQL Reference Manual.

Release notes for the changes in each release of NDB Cluster are located at NDB Cluster 7.2 Release
Notes.

http://dev.mysql.com/doc/relnotes/mysql-cluster/7.2/en/
http://dev.mysql.com/doc/relnotes/mysql-cluster/7.2/en/


2442



2443

Chapter 19 Partitioning

Table of Contents
19.1 Overview of Partitioning in MySQL ................................................................................... 2445
19.2 Partitioning Types ............................................................................................................ 2448

19.2.1 RANGE Partitioning .............................................................................................. 2450
19.2.2 LIST Partitioning ................................................................................................... 2454
19.2.3 COLUMNS Partitioning ......................................................................................... 2456
19.2.4 HASH Partitioning ................................................................................................. 2463
19.2.5 KEY Partitioning ................................................................................................... 2466
19.2.6 Subpartitioning ...................................................................................................... 2468
19.2.7 How MySQL Partitioning Handles NULL ................................................................ 2471

19.3 Partition Management ...................................................................................................... 2475
19.3.1 Management of RANGE and LIST Partitions .......................................................... 2476
19.3.2 Management of HASH and KEY Partitions ............................................................. 2482
19.3.3 Maintenance of Partitions ...................................................................................... 2483
19.3.4 Obtaining Information About Partitions ................................................................... 2484

19.4 Partition Pruning .............................................................................................................. 2486
19.5 Restrictions and Limitations on Partitioning ....................................................................... 2490

19.5.1 Partitioning Keys, Primary Keys, and Unique Keys ................................................. 2496
19.5.2 Partitioning Limitations Relating to Storage Engines ............................................... 2499
19.5.3 Partitioning Limitations Relating to Functions .......................................................... 2500
19.5.4 Partitioning and Table-Level Locking ..................................................................... 2501

This chapter discusses MySQL's implementation of user-defined partitioning. You can determine
whether your MySQL Server supports partitioning by means of a SHOW VARIABLES statement such as
this one:

mysql> SHOW VARIABLES LIKE '%partition%';

+-------------------+-------+
| Variable_name     | Value |
+-------------------+-------+
| have_partitioning | YES   |
+-------------------+-------+
1 row in set (0.00 sec)

Note

The have_partitioning variable is deprecated, and removed in MySQL
5.6.1.

You can also check the output of the SHOW PLUGINS statement, like this:

mysql> SHOW PLUGINS;
+------------+----------+----------------+---------+---------+
| Name       | Status   | Type           | Library | License |
+------------+----------+----------------+---------+---------+
| binlog     | ACTIVE   | STORAGE ENGINE | NULL    | GPL     |
| partition  | ACTIVE   | STORAGE ENGINE | NULL    | GPL     |
| ARCHIVE    | ACTIVE   | STORAGE ENGINE | NULL    | GPL     |
| BLACKHOLE  | ACTIVE   | STORAGE ENGINE | NULL    | GPL     |
| CSV        | ACTIVE   | STORAGE ENGINE | NULL    | GPL     |
| FEDERATED  | DISABLED | STORAGE ENGINE | NULL    | GPL     |
| MEMORY     | ACTIVE   | STORAGE ENGINE | NULL    | GPL     |
| InnoDB     | ACTIVE   | STORAGE ENGINE | NULL    | GPL     |
| MRG_MYISAM | ACTIVE   | STORAGE ENGINE | NULL    | GPL     |
| MyISAM     | ACTIVE   | STORAGE ENGINE | NULL    | GPL     |



2444

| ndbcluster | DISABLED | STORAGE ENGINE | NULL    | GPL     |
+------------+----------+----------------+---------+---------+
11 rows in set (0.00 sec)

You can also check the INFORMATION_SCHEMA.PLUGINS table with a query similar to this one:

mysql> SELECT
    ->     PLUGIN_NAME as Name,
    ->     PLUGIN_VERSION as Version,
    ->     PLUGIN_STATUS as Status
    -> FROM INFORMATION_SCHEMA.PLUGINS
    -> WHERE PLUGIN_TYPE='STORAGE ENGINE';
+--------------------+---------+--------+
| Name               | Version | Status |
+--------------------+---------+--------+
| binlog             | 1.0     | ACTIVE |
| CSV                | 1.0     | ACTIVE |
| MEMORY             | 1.0     | ACTIVE |
| MRG_MYISAM         | 1.0     | ACTIVE |
| MyISAM             | 1.0     | ACTIVE |
| PERFORMANCE_SCHEMA | 0.1     | ACTIVE |
| BLACKHOLE          | 1.0     | ACTIVE |
| ARCHIVE            | 3.0     | ACTIVE |
| InnoDB             | 5.6     | ACTIVE |
| partition          | 1.0     | ACTIVE |
+--------------------+---------+--------+
10 rows in set (0.00 sec)

In either case, if you do not see the partition plugin listed with the value ACTIVE for the Status
column in the output (shown in bold text in each of the examples just given), then your version of
MySQL was not built with partitioning support.

MySQL 5.5 Community binaries provided by Oracle include partitioning support. For information about
partitioning support offered in MySQL Enterprise Edition binaries, see Chapter 25, MySQL Enterprise
Edition.

To enable partitioning if you are compiling MySQL 5.5 from source, the build must be configured with
the -DWITH_PARTITION_STORAGE_ENGINE option. For more information, see Section 2.9, “Installing
MySQL from Source”.

If your MySQL binary is built with partitioning support, nothing further needs to be done to enable it (for
example, no special entries are required in your my.cnf file).

If you want to disable partitioning support, you can start the MySQL Server with the --skip-
partition option, in which case the value of have_partitioning is DISABLED. When partitioning
support is disabled, you can see any existing partitioned tables and drop them (although doing this is
not advised), but you cannot otherwise manipulate them or access their data.

See Section 19.1, “Overview of Partitioning in MySQL”, for an introduction to partitioning and
partitioning concepts.

MySQL supports several types of partitioning as well as subpartitioning; see Section 19.2, “Partitioning
Types”, and Section 19.2.6, “Subpartitioning”.

Section 19.3, “Partition Management”, covers methods of adding, removing, and altering partitions in
existing partitioned tables.

Section 19.3.3, “Maintenance of Partitions”, discusses table maintenance commands for use with
partitioned tables.

The PARTITIONS table in the INFORMATION_SCHEMA database provides information about partitions
and partitioned tables. See Section 21.12, “The INFORMATION_SCHEMA PARTITIONS Table”, for
more information; for some examples of queries against this table, see Section 19.2.7, “How MySQL
Partitioning Handles NULL”.



Overview of Partitioning in MySQL

2445

For known issues with partitioning in MySQL 5.5, see Section 19.5, “Restrictions and Limitations on
Partitioning”.

You may also find the following resources to be useful when working with partitioned tables.

Additional Resources.  Other sources of information about user-defined partitioning in MySQL
include the following:

• MySQL Partitioning Forum

This is the official discussion forum for those interested in or experimenting with MySQL Partitioning
technology. It features announcements and updates from MySQL developers and others. It is
monitored by members of the Partitioning Development and Documentation Teams.

• Mikael Ronström's Blog

MySQL Partitioning Architect and Lead Developer Mikael Ronström frequently posts articles here
concerning his work with MySQL Partitioning and NDB Cluster.

• PlanetMySQL

A MySQL news site featuring MySQL-related blogs, which should be of interest to anyone using
my MySQL. We encourage you to check here for links to blogs kept by those working with MySQL
Partitioning, or to have your own blog added to those covered.

MySQL 5.5 binaries are available from http://dev.mysql.com/downloads/mysql/5.5.html.
However, for the latest partitioning bugfixes and feature additions, you can obtain the source
from our GitHub repository. To enable partitioning, the build must be configured with the -
DWITH_PARTITION_STORAGE_ENGINE option. For more information about building MySQL, see
Section 2.9, “Installing MySQL from Source”. If you have problems compiling a partitioning-enabled
MySQL 5.5 build, check the MySQL Partitioning Forum and ask for assistance there if you do not find a
solution to your problem already posted.

19.1 Overview of Partitioning in MySQL

This section provides a conceptual overview of partitioning in MySQL 5.5.

For information on partitioning restrictions and feature limitations, see Section 19.5, “Restrictions and
Limitations on Partitioning”.

The SQL standard does not provide much in the way of guidance regarding the physical aspects
of data storage. The SQL language itself is intended to work independently of any data structures
or media underlying the schemas, tables, rows, or columns with which it works. Nonetheless, most
advanced database management systems have evolved some means of determining the physical
location to be used for storing specific pieces of data in terms of the file system, hardware or even
both. In MySQL, the InnoDB storage engine has long supported the notion of a tablespace, and the
MySQL Server, even prior to the introduction of partitioning, could be configured to employ different
physical directories for storing different databases (see Section 8.12.3, “Using Symbolic Links”, for an
explanation of how this is done).

Partitioning takes this notion a step further, by enabling you to distribute portions of individual tables
across a file system according to rules which you can set largely as needed. In effect, different portions
of a table are stored as separate tables in different locations. The user-selected rule by which the
division of data is accomplished is known as a partitioning function, which in MySQL can be the
modulus, simple matching against a set of ranges or value lists, an internal hashing function, or a linear
hashing function. The function is selected according to the partitioning type specified by the user, and
takes as its parameter the value of a user-supplied expression. This expression can be a column value,
a function acting on one or more column values, or a set of one or more column values, depending on
the type of partitioning that is used.

http://forums.mysql.com/list.php?106
http://mikaelronstrom.blogspot.com/
http://www.planetmysql.org/
http://dev.mysql.com/downloads/mysql/5.5.html
http://forums.mysql.com/list.php?106


Overview of Partitioning in MySQL

2446

In the case of RANGE, LIST, and [LINEAR] HASH partitioning, the value of the partitioning column
is passed to the partitioning function, which returns an integer value representing the number of the
partition in which that particular record should be stored. This function must be nonconstant and
nonrandom. It may not contain any queries, but may use an SQL expression that is valid in MySQL, as
long as that expression returns either NULL or an integer intval such that

-MAXVALUE <= intval <= MAXVALUE

(MAXVALUE is used to represent the least upper bound for the type of integer in question. -MAXVALUE
represents the greatest lower bound.)

For [LINEAR] KEY, RANGE COLUMNS, and LIST COLUMNS partitioning, the partitioning expression
consists of a list of one or more columns.

For [LINEAR] KEY partitioning, the partitioning function is supplied by MySQL.

For more information about permitted partitioning column types and partitioning functions, see
Section 19.2, “Partitioning Types”, as well as Section 13.1.17, “CREATE TABLE Syntax”, which
provides partitioning syntax descriptions and additional examples. For information about restrictions on
partitioning functions, see Section 19.5.3, “Partitioning Limitations Relating to Functions”.

This is known as horizontal partitioning—that is, different rows of a table may be assigned to different
physical partitions. MySQL 5.5 does not support vertical partitioning, in which different columns of a
table are assigned to different physical partitions. There are no plans at this time to introduce vertical
partitioning into MySQL.

For information about determining whether your MySQL Server binary supports user-defined
partitioning, see Chapter 19, Partitioning.

For creating partitioned tables, you can use most storage engines that are supported by your MySQL
server; the MySQL partitioning engine runs in a separate layer and can interact with any of these.
In MySQL 5.5, all partitions of the same partitioned table must use the same storage engine; for
example, you cannot use MyISAM for one partition and InnoDB for another. However, there is nothing
preventing you from using different storage engines for different partitioned tables on the same MySQL
server or even in the same database.

MySQL partitioning cannot be used with the MERGE, CSV, or FEDERATED storage engines.

Partitioning by KEY or LINEAR KEY is possible with NDBCLUSTER, but other types of user-defined
partitioning are not supported for tables using this storage engine. In addition, an NDBCLUSTER table
that employs user-defined partitioning must have an explicit primary key, and any columns referenced
in the table's partitioning expression must be part of the primary key. However, if no columns are listed
in the PARTITION BY KEY or PARTITION BY LINEAR KEY clause of the CREATE TABLE or ALTER
TABLE statement used to create or modify a user-partitioned NDBCLUSTER table, then the table is not
required to have an explicit primary key. For more information, see Section 18.1.6.1, “Noncompliance
with SQL Syntax in NDB Cluster”.

To employ a particular storage engine for a partitioned table, it is necessary only to use the
[STORAGE] ENGINE option just as you would for a nonpartitioned table. However, you should keep
in mind that [STORAGE] ENGINE (and other table options) need to be listed before any partitioning
options are used in a CREATE TABLE statement. This example shows how to create a table that is
partitioned by hash into 6 partitions and which uses the InnoDB storage engine:

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)
    ENGINE=INNODB
    PARTITION BY HASH( MONTH(tr_date) )
    PARTITIONS 6;

Each PARTITION clause can include a [STORAGE] ENGINE option, but in MySQL 5.5 this has no
effect.



Overview of Partitioning in MySQL

2447

Important

Partitioning applies to all data and indexes of a table; you cannot partition only
the data and not the indexes, or vice versa, nor can you partition only a portion
of the table.

Data and indexes for each partition can be assigned to a specific directory using the DATA
DIRECTORY and INDEX DIRECTORY options for the PARTITION clause of the CREATE TABLE
statement used to create the partitioned table.

The DATA DIRECTORY and INDEX DIRECTORY options have no effect when defining partitions for
tables using the InnoDB storage engine.

DATA DIRECTORY and INDEX DIRECTORY are not supported for individual partitions or subpartitions
on Windows. These options are ignored on Windows, except that a warning is generated.

All columns used in the table's partitioning expression must be part of every unique key that the table
may have, including any primary key. This means that a table such as this one, created by the following
SQL statement, cannot be partitioned:

CREATE TABLE tnp (
    id INT NOT NULL AUTO_INCREMENT,
    ref BIGINT NOT NULL,
    name VARCHAR(255),
    PRIMARY KEY pk (id),
    UNIQUE KEY uk (name)
);

Because the keys pk and uk have no columns in common, there are no columns available for use in a
partitioning expression. Possible workarounds in this situation include adding the name column to the
table's primary key, adding the id column to uk, or simply removing the unique key altogether. See
Section 19.5.1, “Partitioning Keys, Primary Keys, and Unique Keys”, for more information.

In addition, MAX_ROWS and MIN_ROWS can be used to determine the maximum and minimum numbers
of rows, respectively, that can be stored in each partition. The MAX_ROWS option can be useful for
causing NDB Cluster tables to be created with extra partitions, thus allowing for greater storage of hash
indexes. See the documentation for the DataMemory data node configuration parameter, as well as
Section 18.1.2, “NDB Cluster Nodes, Node Groups, Replicas, and Partitions”, for more information.

Some advantages of partitioning are listed here:

• Partitioning makes it possible to store more data in one table than can be held on a single disk or file
system partition.

• Data that loses its usefulness can often be easily removed from a partitioned table by dropping the
partition (or partitions) containing only that data. Conversely, the process of adding new data can in
some cases be greatly facilitated by adding one or more new partitions for storing specifically that
data.

• Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause
can be stored only on one or more partitions, which automatically excludes any remaining partitions
from the search. Because partitions can be altered after a partitioned table has been created, you
can reorganize your data to enhance frequent queries that may not have been often used when the
partitioning scheme was first set up. This ability to exclude non-matching partitions (and thus any
rows they contain) is often referred to as partition pruning. For more information, see Section 19.4,
“Partition Pruning”.

Other benefits usually associated with partitioning include those in the following list. These features are
not currently implemented in MySQL Partitioning, but are high on our list of priorities.

• Queries involving aggregate functions such as SUM() and COUNT() can easily be parallelized.
A simple example of such a query might be SELECT salesperson_id, COUNT(orders) as



Partitioning Types

2448

order_total FROM sales GROUP BY salesperson_id;. By “parallelized,” we mean that the
query can be run simultaneously on each partition, and the final result obtained merely by summing
the results obtained for all partitions.

• Achieving greater query throughput in virtue of spreading data seeks over multiple disks.

Be sure to check this section and chapter frequently for updates as MySQL Partitioning development
continues.

19.2 Partitioning Types
This section discusses the types of partitioning which are available in MySQL 5.5. These include the
types listed here:

• RANGE partitioning.  This type of partitioning assigns rows to partitions based on column
values falling within a given range. See Section 19.2.1, “RANGE Partitioning”. MySQL 5.5 adds an
extension, RANGE COLUMNS, to this type. See Section 19.2.3.1, “RANGE COLUMNS partitioning”.

• LIST partitioning.  Similar to partitioning by RANGE, except that the partition is selected based on
columns matching one of a set of discrete values. See Section 19.2.2, “LIST Partitioning”. MySQL
5.5 adds an extension, LIST COLUMNS, to this type. See Section 19.2.3.2, “LIST COLUMNS
partitioning”.

• HASH partitioning.  With this type of partitioning, a partition is selected based on the value
returned by a user-defined expression that operates on column values in rows to be inserted into
the table. The function may consist of any expression valid in MySQL that yields a nonnegative
integer value. An extension to this type, LINEAR HASH, is also available. See Section 19.2.4, “HASH
Partitioning”.

• KEY partitioning.  This type of partitioning is similar to partitioning by HASH, except that only one
or more columns to be evaluated are supplied, and the MySQL server provides its own hashing
function. These columns can contain other than integer values, since the hashing function supplied
by MySQL guarantees an integer result regardless of the column data type. An extension to this
type, LINEAR KEY, is also available. See Section 19.2.5, “KEY Partitioning”.

A very common use of database partitioning is to segregate data by date. Some database systems
support explicit date partitioning, which MySQL does not implement in 5.5. However, it is not difficult
in MySQL to create partitioning schemes based on DATE, TIME, or DATETIME columns, or based on
expressions making use of such columns.

When partitioning by KEY or LINEAR KEY, you can use a DATE, TIME, or DATETIME column as the
partitioning column without performing any modification of the column value. For example, this table
creation statement is perfectly valid in MySQL:

CREATE TABLE members (
    firstname VARCHAR(25) NOT NULL,
    lastname VARCHAR(25) NOT NULL,
    username VARCHAR(16) NOT NULL,
    email VARCHAR(35),
    joined DATE NOT NULL
)
PARTITION BY KEY(joined)
PARTITIONS 6;

In MySQL 5.5, it is also possible to use a DATE or DATETIME column as the partitioning column using
RANGE COLUMNS and LIST COLUMNS partitioning.

MySQL's other partitioning types, however, require a partitioning expression that yields an integer value
or NULL. If you wish to use date-based partitioning by RANGE, LIST, HASH, or LINEAR HASH, you can
simply employ a function that operates on a DATE, TIME, or DATETIME column and returns such a
value, as shown here:



Partitioning Types

2449

CREATE TABLE members (
    firstname VARCHAR(25) NOT NULL,
    lastname VARCHAR(25) NOT NULL,
    username VARCHAR(16) NOT NULL,
    email VARCHAR(35),
    joined DATE NOT NULL
)
PARTITION BY RANGE( YEAR(joined) ) (
    PARTITION p0 VALUES LESS THAN (1960),
    PARTITION p1 VALUES LESS THAN (1970),
    PARTITION p2 VALUES LESS THAN (1980),
    PARTITION p3 VALUES LESS THAN (1990),
    PARTITION p4 VALUES LESS THAN MAXVALUE
);

Additional examples of partitioning using dates may be found in the following sections of this chapter:

• Section 19.2.1, “RANGE Partitioning”

• Section 19.2.4, “HASH Partitioning”

• Section 19.2.4.1, “LINEAR HASH Partitioning”

For more complex examples of date-based partitioning, see the following sections:

• Section 19.4, “Partition Pruning”

• Section 19.2.6, “Subpartitioning”

MySQL partitioning is optimized for use with the TO_DAYS(), YEAR(), and TO_SECONDS()
functions. However, you can use other date and time functions that return an integer or NULL, such
as WEEKDAY(), DAYOFYEAR(), or MONTH(). See Section 12.7, “Date and Time Functions”, for more
information about such functions.

It is important to remember—regardless of the type of partitioning that you use—that partitions are
always numbered automatically and in sequence when created, starting with 0. When a new row is
inserted into a partitioned table, it is these partition numbers that are used in identifying the correct
partition. For example, if your table uses 4 partitions, these partitions are numbered 0, 1, 2, and 3. For
the RANGE and LIST partitioning types, it is necessary to ensure that there is a partition defined for
each partition number. For HASH partitioning, the user-supplied expression must evaluate to an integer
value greater than 0. For KEY partitioning, this issue is taken care of automatically by the hashing
function which the MySQL server employs internally.

Names of partitions generally follow the rules governing other MySQL identifiers, such as those for
tables and databases. However, you should note that partition names are not case-sensitive. For
example, the following CREATE TABLE statement fails as shown:

mysql> CREATE TABLE t2 (val INT)
    -> PARTITION BY LIST(val)(
    ->     PARTITION mypart VALUES IN (1,3,5),
    ->     PARTITION MyPart VALUES IN (2,4,6)
    -> );
ERROR 1488 (HY000): Duplicate partition name mypart

Failure occurs because MySQL sees no difference between the partition names mypart and MyPart.

When you specify the number of partitions for the table, this must be expressed as a positive, nonzero
integer literal with no leading zeros, and may not be an expression such as 0.8E+01 or 6-2, even if it
evaluates to an integer value. Decimal fractions are not permitted.

In the sections that follow, we do not necessarily provide all possible forms for the syntax that can
be used for creating each partition type; this information may be found in Section 13.1.17, “CREATE
TABLE Syntax”.



RANGE Partitioning

2450

19.2.1 RANGE Partitioning

A table that is partitioned by range is partitioned in such a way that each partition contains rows for
which the partitioning expression value lies within a given range. Ranges should be contiguous but
not overlapping, and are defined using the VALUES LESS THAN operator. For the next few examples,
suppose that you are creating a table such as the following to hold personnel records for a chain of 20
video stores, numbered 1 through 20:

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT NOT NULL,
    store_id INT NOT NULL
);

Note

The employees table used here has no primary or unique keys. While the
examples work as shown for purposes of the present discussion, you should
keep in mind that tables are extremely likely in practice to have primary keys,
unique keys, or both, and that allowable choices for partitioning columns
depend on the columns used for these keys, if any are present. For a discussion
of these issues, see Section 19.5.1, “Partitioning Keys, Primary Keys, and
Unique Keys”.

This table can be partitioned by range in a number of ways, depending on your needs. One way would
be to use the store_id column. For instance, you might decide to partition the table 4 ways by adding
a PARTITION BY RANGE clause as shown here:

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT NOT NULL,
    store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
    PARTITION p0 VALUES LESS THAN (6),
    PARTITION p1 VALUES LESS THAN (11),
    PARTITION p2 VALUES LESS THAN (16),
    PARTITION p3 VALUES LESS THAN (21)
);

In this partitioning scheme, all rows corresponding to employees working at stores 1 through 5
are stored in partition p0, to those employed at stores 6 through 10 are stored in partition p1, and
so on. Note that each partition is defined in order, from lowest to highest. This is a requirement of
the PARTITION BY RANGE syntax; you can think of it as being analogous to a series of if ...
elseif ... statements in C or Java in this regard.

It is easy to determine that a new row containing the data (72, 'Mitchell', 'Wilson',
'1998-06-25', NULL, 13) is inserted into partition p2, but what happens when your chain adds
a 21st store? Under this scheme, there is no rule that covers a row whose store_id is greater than
20, so an error results because the server does not know where to place it. You can keep this from
occurring by using a “catchall” VALUES LESS THAN clause in the CREATE TABLE statement that
provides for all values greater than the highest value explicitly named:

CREATE TABLE employees (
    id INT NOT NULL,



RANGE Partitioning

2451

    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT NOT NULL,
    store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
    PARTITION p0 VALUES LESS THAN (6),
    PARTITION p1 VALUES LESS THAN (11),
    PARTITION p2 VALUES LESS THAN (16),
    PARTITION p3 VALUES LESS THAN MAXVALUE
);

Note

Another way to avoid an error when no matching value is found is to use
the IGNORE keyword as part of the INSERT statement. For an example, see
Section 19.2.2, “LIST Partitioning”. Also see Section 13.2.5, “INSERT Syntax”,
for general information about IGNORE.

MAXVALUE represents an integer value that is always greater than the largest possible integer value (in
mathematical language, it serves as a least upper bound). Now, any rows whose store_id column
value is greater than or equal to 16 (the highest value defined) are stored in partition p3. At some point
in the future—when the number of stores has increased to 25, 30, or more—you can use an ALTER
TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Section 19.3, “Partition
Management”, for details of how to do this).

In much the same fashion, you could partition the table based on employee job codes—that is, based
on ranges of job_code column values. For example—assuming that two-digit job codes are used for
regular (in-store) workers, three-digit codes are used for office and support personnel, and four-digit
codes are used for management positions—you could create the partitioned table using the following
statement:

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT NOT NULL,
    store_id INT NOT NULL
)
PARTITION BY RANGE (job_code) (
    PARTITION p0 VALUES LESS THAN (100),
    PARTITION p1 VALUES LESS THAN (1000),
    PARTITION p2 VALUES LESS THAN (10000)
);

In this instance, all rows relating to in-store workers would be stored in partition p0, those relating to
office and support staff in p1, and those relating to managers in partition p2.

It is also possible to use an expression in VALUES LESS THAN clauses. However, MySQL must be
able to evaluate the expression's return value as part of a LESS THAN (<) comparison.

Rather than splitting up the table data according to store number, you can use an expression based on
one of the two DATE columns instead. For example, let us suppose that you wish to partition based on
the year that each employee left the company; that is, the value of YEAR(separated). An example of
a CREATE TABLE statement that implements such a partitioning scheme is shown here:

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',



RANGE Partitioning

2452

    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT,
    store_id INT
)
PARTITION BY RANGE ( YEAR(separated) ) (
    PARTITION p0 VALUES LESS THAN (1991),
    PARTITION p1 VALUES LESS THAN (1996),
    PARTITION p2 VALUES LESS THAN (2001),
    PARTITION p3 VALUES LESS THAN MAXVALUE
);

In this scheme, for all employees who left before 1991, the rows are stored in partition p0; for those
who left in the years 1991 through 1995, in p1; for those who left in the years 1996 through 2000, in
p2; and for any workers who left after the year 2000, in p3.

It is also possible to partition a table by RANGE, based on the value of a TIMESTAMP column, using the
UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
    report_id INT NOT NULL,
    report_status VARCHAR(20) NOT NULL,
    report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE ( UNIX_TIMESTAMP(report_updated) ) (
    PARTITION p0 VALUES LESS THAN ( UNIX_TIMESTAMP('2008-01-01 00:00:00') ),
    PARTITION p1 VALUES LESS THAN ( UNIX_TIMESTAMP('2008-04-01 00:00:00') ),
    PARTITION p2 VALUES LESS THAN ( UNIX_TIMESTAMP('2008-07-01 00:00:00') ),
    PARTITION p3 VALUES LESS THAN ( UNIX_TIMESTAMP('2008-10-01 00:00:00') ),
    PARTITION p4 VALUES LESS THAN ( UNIX_TIMESTAMP('2009-01-01 00:00:00') ),
    PARTITION p5 VALUES LESS THAN ( UNIX_TIMESTAMP('2009-04-01 00:00:00') ),
    PARTITION p6 VALUES LESS THAN ( UNIX_TIMESTAMP('2009-07-01 00:00:00') ),
    PARTITION p7 VALUES LESS THAN ( UNIX_TIMESTAMP('2009-10-01 00:00:00') ),
    PARTITION p8 VALUES LESS THAN ( UNIX_TIMESTAMP('2010-01-01 00:00:00') ),
    PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)

Range partitioning is particularly useful when one or more of the following conditions is true:

• You want or need to delete “old” data. If you are using the partitioning scheme shown previously
for the employees table, you can simply use ALTER TABLE employees DROP PARTITION
p0; to delete all rows relating to employees who stopped working for the firm prior to 1991. (See
Section 13.1.7, “ALTER TABLE Syntax”, and Section 19.3, “Partition Management”, for more
information.) For a table with a great many rows, this can be much more efficient than running a
DELETE query such as DELETE FROM employees WHERE YEAR(separated) <= 1990;.

• You want to use a column containing date or time values, or containing values arising from some
other series.

• You frequently run queries that depend directly on the column used for partitioning the table. For
example, when executing a query such as EXPLAIN PARTITIONS SELECT COUNT(*) FROM
employees WHERE separated BETWEEN '2000-01-01' AND '2000-12-31' GROUP BY
store_id;, MySQL can quickly determine that only partition p2 needs to be scanned because
the remaining partitions cannot contain any records satisfying the WHERE clause. See Section 19.4,
“Partition Pruning”, for more information about how this is accomplished.

A variant on this type of partitioning, RANGE COLUMNS partitioning, was introduced in MySQL 5.5.0.
Partitioning by RANGE COLUMNS makes it possible to employ multiple columns for defining partitioning
ranges that apply both to placement of rows in partitions and for determining the inclusion or exclusion
of specific partitions when performing partition pruning. See Section 19.2.3.1, “RANGE COLUMNS
partitioning”, for more information.

Partitioning schemes based on time intervals.  If you wish to implement a partitioning scheme
based on ranges or intervals of time in MySQL 5.5, you have two options:



RANGE Partitioning

2453

1. Partition the table by RANGE, and for the partitioning expression, employ a function operating on a
DATE, TIME, or DATETIME column and returning an integer value, as shown here:

CREATE TABLE members (
    firstname VARCHAR(25) NOT NULL,
    lastname VARCHAR(25) NOT NULL,
    username VARCHAR(16) NOT NULL,
    email VARCHAR(35),
    joined DATE NOT NULL
)
PARTITION BY RANGE( YEAR(joined) ) (
    PARTITION p0 VALUES LESS THAN (1960),
    PARTITION p1 VALUES LESS THAN (1970),
    PARTITION p2 VALUES LESS THAN (1980),
    PARTITION p3 VALUES LESS THAN (1990),
    PARTITION p4 VALUES LESS THAN MAXVALUE
);

Beginning with MySQL 5.5.1, it is also possible to partition a table by RANGE based on the value of
a TIMESTAMP column, using the UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
    report_id INT NOT NULL,
    report_status VARCHAR(20) NOT NULL,
    report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE ( UNIX_TIMESTAMP(report_updated) ) (
    PARTITION p0 VALUES LESS THAN ( UNIX_TIMESTAMP('2008-01-01 00:00:00') ),
    PARTITION p1 VALUES LESS THAN ( UNIX_TIMESTAMP('2008-04-01 00:00:00') ),
    PARTITION p2 VALUES LESS THAN ( UNIX_TIMESTAMP('2008-07-01 00:00:00') ),
    PARTITION p3 VALUES LESS THAN ( UNIX_TIMESTAMP('2008-10-01 00:00:00') ),
    PARTITION p4 VALUES LESS THAN ( UNIX_TIMESTAMP('2009-01-01 00:00:00') ),
    PARTITION p5 VALUES LESS THAN ( UNIX_TIMESTAMP('2009-04-01 00:00:00') ),
    PARTITION p6 VALUES LESS THAN ( UNIX_TIMESTAMP('2009-07-01 00:00:00') ),
    PARTITION p7 VALUES LESS THAN ( UNIX_TIMESTAMP('2009-10-01 00:00:00') ),
    PARTITION p8 VALUES LESS THAN ( UNIX_TIMESTAMP('2010-01-01 00:00:00') ),
    PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

Also beginning with MySQL 5.5.1, any other expressions involving TIMESTAMP values are not
permitted. (See Bug #42849.)

Note

It is also possible in MySQL 5.5.1 and later to use
UNIX_TIMESTAMP(timestamp_column) as a partitioning expression for
tables that are partitioned by LIST. However, it is usually not practical to do
so.

2. Partition the table by RANGE COLUMNS, using a DATE or DATETIME column as the partitioning
column. For example, the members table could be defined using the joined column directly, as
shown here:

CREATE TABLE members (
    firstname VARCHAR(25) NOT NULL,
    lastname VARCHAR(25) NOT NULL,
    username VARCHAR(16) NOT NULL,
    email VARCHAR(35),
    joined DATE NOT NULL
)
PARTITION BY RANGE COLUMNS(joined) (
    PARTITION p0 VALUES LESS THAN ('1960-01-01'),
    PARTITION p1 VALUES LESS THAN ('1970-01-01'),
    PARTITION p2 VALUES LESS THAN ('1980-01-01'),
    PARTITION p3 VALUES LESS THAN ('1990-01-01'),
    PARTITION p4 VALUES LESS THAN MAXVALUE



LIST Partitioning

2454

);

Note

The use of partitioning columns employing date or time types other than DATE
or DATETIME is not supported with RANGE COLUMNS.

19.2.2 LIST Partitioning

List partitioning in MySQL is similar to range partitioning in many ways. As in partitioning by RANGE,
each partition must be explicitly defined. The chief difference between the two types of partitioning is
that, in list partitioning, each partition is defined and selected based on the membership of a column
value in one of a set of value lists, rather than in one of a set of contiguous ranges of values. This is
done by using PARTITION BY LIST(expr) where expr is a column value or an expression based
on a column value and returning an integer value, and then defining each partition by means of a
VALUES IN (value_list), where value_list is a comma-separated list of integers.

Note

In MySQL 5.5, it is possible to match against only a list of integers (and possibly
NULL—see Section 19.2.7, “How MySQL Partitioning Handles NULL”) when
partitioning by LIST.

However, beginning with MySQL 5.5.0, other column types may be used in
value lists when employing LIST COLUMN partitioning, which is described later
in this section.

Unlike the case with partitions defined by range, list partitions do not need to be declared in any
particular order. For more detailed syntactical information, see Section 13.1.17, “CREATE TABLE
Syntax”.

For the examples that follow, we assume that the basic definition of the table to be partitioned is
provided by the CREATE TABLE statement shown here:

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT,
    store_id INT
);

(This is the same table used as a basis for the examples in Section 19.2.1, “RANGE Partitioning”.)

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table.

Region Store ID Numbers

North 3, 5, 6, 9, 17

East 1, 2, 10, 11, 19, 20

West 4, 12, 13, 14, 18

Central 7, 8, 15, 16

To partition this table in such a way that rows for stores belonging to the same region are stored in the
same partition, you could use the CREATE TABLE statement shown here:

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),



LIST Partitioning

2455

    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT,
    store_id INT
)
PARTITION BY LIST(store_id) (
    PARTITION pNorth VALUES IN (3,5,6,9,17),
    PARTITION pEast VALUES IN (1,2,10,11,19,20),
    PARTITION pWest VALUES IN (4,12,13,14,18),
    PARTITION pCentral VALUES IN (7,8,15,16)
);

This makes it easy to add or drop employee records relating to specific regions to or from the table.
For instance, suppose that all stores in the West region are sold to another company. Beginning
with MySQL 5.5.0, all rows relating to employees working at stores in that region can be deleted with
the query ALTER TABLE employees TRUNCATE PARTITION pWest, which can be executed
much more efficiently than the equivalent DELETE statement DELETE FROM employees WHERE
store_id IN (4,12,13,14,18);. (Using ALTER TABLE employees DROP PARTITION pWest
would also delete all of these rows, but would also remove the partition pWest from the definition of
the table; you would need to use an ALTER TABLE ... ADD PARTITION statement to restore the
table's original partitioning scheme.)

As with RANGE partitioning, it is possible to combine LIST partitioning with partitioning by hash or key
to produce a composite partitioning (subpartitioning). See Section 19.2.6, “Subpartitioning”.

Unlike the case with RANGE partitioning, there is no “catch-all” such as MAXVALUE; all expected values
for the partitioning expression should be covered in PARTITION ... VALUES IN (...) clauses.
An INSERT statement containing an unmatched partitioning column value fails with an error, as shown
in this example:

mysql> CREATE TABLE h2 (
    ->   c1 INT,
    ->   c2 INT
    -> )
    -> PARTITION BY LIST(c1) (
    ->   PARTITION p0 VALUES IN (1, 4, 7),
    ->   PARTITION p1 VALUES IN (2, 5, 8)
    -> );
Query OK, 0 rows affected (0.11 sec)

mysql> INSERT INTO h2 VALUES (3, 5);
ERROR 1525 (HY000): Table has no partition for value 3

When inserting multiple rows using a single INSERT statement the behavior depends on whether the
table uses a transactional storage engine. For an InnoDB table, the statement is considered a single
transaction, so the presence of any unmatched values causes the statement to fail completely, and
no rows are inserted. For a table using a nontransactional storage engine such as MyISAM, any rows
coming before the row containing the unmatched value are inserted, but any coming after it are not.

You can cause this type of error to be ignored by using the IGNORE keyword. If you do so, rows
containing unmatched partitioning column values are not inserted, but any rows with matching values
are inserted, and no errors are reported:

mysql> TRUNCATE h2;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM h2;
Empty set (0.00 sec)

mysql> INSERT IGNORE INTO h2 VALUES (2, 5), (6, 10), (7, 5), (3, 1), (1, 9);
Query OK, 3 rows affected (0.00 sec)
Records: 5  Duplicates: 2  Warnings: 0

mysql> SELECT * FROM h2;



COLUMNS Partitioning

2456

+------+------+
| c1   | c2   |
+------+------+
|    7 |    5 |
|    1 |    9 |
|    2 |    5 |
+------+------+
3 rows in set (0.00 sec)

MySQL 5.5 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning that
enables you to use columns of types other than integer types for partitioning columns, as well as to use
multiple columns as partitioning keys. For more information, see Section 19.2.3.2, “LIST COLUMNS
partitioning”.

19.2.3 COLUMNS Partitioning

The next two sections discuss COLUMNS partitioning, which are variants on RANGE and LIST
partitioning that were introduced in MySQL 5.5.0. COLUMNS partitioning enables the use of multiple
columns in partitioning keys. All of these columns are taken into account both for the purpose of placing
rows in partitions and for the determination of which partitions are to be checked for matching rows in
partition pruning.

In addition, both RANGE COLUMNS partitioning and LIST COLUMNS partitioning support the use of non-
integer columns for defining value ranges or list members. The permitted data types are shown in the
following list:

• All integer types: TINYINT, SMALLINT, MEDIUMINT, INT (INTEGER), and BIGINT. (This is the
same as with partitioning by RANGE and LIST.)

Other numeric data types (such as DECIMAL or FLOAT) are not supported as partitioning columns.

• DATE and DATETIME.

Columns using other data types relating to dates or times are not supported as partitioning columns.

• The following string types: CHAR, VARCHAR, BINARY, and VARBINARY.

TEXT and BLOB columns are not supported as partitioning columns.

The discussions of RANGE COLUMNS and LIST COLUMNS partitioning in the next two sections assume
that you are already familiar with partitioning based on ranges and lists as supported in MySQL 5.1 and
later; for more information about these, see Section 19.2.1, “RANGE Partitioning”, and Section 19.2.2,
“LIST Partitioning”, respectively.

19.2.3.1 RANGE COLUMNS partitioning

Range columns partitioning is similar to range partitioning, but enables you to define partitions using
ranges based on multiple column values. In addition, you can define the ranges using columns of types
other than integer types.

RANGE COLUMNS partitioning differs significantly from RANGE partitioning in the following ways:

• RANGE COLUMNS does not accept expressions, only names of columns.

• RANGE COLUMNS accepts a list of one or more columns.

RANGE COLUMNS partitions are based on comparisons between tuples (lists of column values) rather
than comparisons between scalar values. Placement of rows in RANGE COLUMNS partitions is also
based on comparisons between tuples; this is discussed further later in this section.

• RANGE COLUMNS partitioning columns are not restricted to integer columns; string, DATE and
DATETIME columns can also be used as partitioning columns. (See Section 19.2.3, “COLUMNS
Partitioning”, for details.)



COLUMNS Partitioning

2457

The basic syntax for creating a table partitioned by RANGE COLUMNS is shown here:

CREATE TABLE table_name
PARTITIONED BY RANGE COLUMNS(column_list) (
    PARTITION partition_name VALUES LESS THAN (value_list)[,
    PARTITION partition_name VALUES LESS THAN (value_list)][,
    ...]
)

column_list:
    column_name[, column_name][, ...]

value_list:
    value[, value][, ...]

Note

Not all CREATE TABLE options that can be used when creating partitioned
tables are shown here. For complete information, see Section 13.1.17,
“CREATE TABLE Syntax”.

In the syntax just shown, column_list is a list of one or more columns (sometimes called a
partitioning column list), and value_list is a list of values (that is, it is a partition definition value list).
A value_list must be supplied for each partition definition, and each value_list must have the
same number of values as the column_list has columns. Generally speaking, if you use N columns
in the COLUMNS clause, then each VALUES LESS THAN clause must also be supplied with a list of N
values.

The elements in the partitioning column list and in the value list defining each partition must occur
in the same order. In addition, each element in the value list must be of the same data type as the
corresponding element in the column list. However, the order of the column names in the partitioning
column list and the value lists does not have to be the same as the order of the table column definitions
in the main part of the CREATE TABLE statement. As with table partitioned by RANGE, you can use
MAXVALUE to represent a value such that any legal value inserted into a given column is always less
than this value. Here is an example of a CREATE TABLE statement that helps to illustrate all of these
points:

mysql> CREATE TABLE rcx (
    ->     a INT,
    ->     b INT,
    ->     c CHAR(3),
    ->     d INT
    -> )
    -> PARTITION BY RANGE COLUMNS(a,d,c) (
    ->     PARTITION p0 VALUES LESS THAN (5,10,'ggg'),
    ->     PARTITION p1 VALUES LESS THAN (10,20,'mmm'),
    ->     PARTITION p2 VALUES LESS THAN (15,30,'sss'),
    ->     PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
    -> );
Query OK, 0 rows affected (0.15 sec)

Table rcx contains the columns a, b, c, d. The partitioning column list supplied to the COLUMNS
clause uses 3 of these columns, in the order a, d, c. Each value list used to define a partition contains
3 values in the same order; that is, each value list tuple has the form (INT, INT, CHAR(3)), which
corresponds to the data types used by columns a, d, and c (in that order).

Placement of rows into partitions is determined by comparing the tuple from a row to be inserted that
matches the column list in the COLUMNS clause with the tuples used in the VALUES LESS THAN
clauses to define partitions of the table. Because we are comparing tuples (that is, lists or sets
of values) rather than scalar values, the semantics of VALUES LESS THAN as used with RANGE
COLUMNS partitions differs somewhat from the case with simple RANGE partitions. In RANGE partitioning,
a row generating an expression value that is equal to a limiting value in a VALUES LESS THAN is
never placed in the corresponding partition; however, when using RANGE COLUMNS partitioning, it is



COLUMNS Partitioning

2458

sometimes possible for a row whose partitioning column list's first element is equal in value to the that
of the first element in a VALUES LESS THAN value list to be placed in the corresponding partition.

Consider the RANGE partitioned table created by this statement:

CREATE TABLE r1 (
    a INT,
    b INT
)
PARTITION BY RANGE (a)  (
    PARTITION p0 VALUES LESS THAN (5),
    PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

If we insert 3 rows into this table such that the column value for a is 5 for each row, all 3 rows are
stored in partition p1 because the a column value is in each case not less than 5, as we can see by
executing the proper query against the INFORMATION_SCHEMA.PARTITIONS table:

mysql> INSERT INTO r1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
    ->     FROM INFORMATION_SCHEMA.PARTITIONS
    ->     WHERE TABLE_NAME = 'r1';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0             |          0 |
| p1             |          3 |
+----------------+------------+
2 rows in set (0.00 sec)

Now consider a similar table rc1 that uses RANGE COLUMNS partitioning with both columns a and b
referenced in the COLUMNS clause, created as shown here:

CREATE TABLE rc1 (
    a INT,
    b INT
)
PARTITION BY RANGE COLUMNS(a, b) (
    PARTITION p0 VALUES LESS THAN (5, 12),
    PARTITION p3 VALUES LESS THAN (MAXVALUE, MAXVALUE)
);

If we insert exactly the same rows into rc1 as we just inserted into r1, the distribution of the rows is
quite different:

mysql> INSERT INTO rc1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
    ->     FROM INFORMATION_SCHEMA.PARTITIONS
    ->     WHERE TABLE_NAME = 'rc1';
+--------------+----------------+------------+
| TABLE_SCHEMA | PARTITION_NAME | TABLE_ROWS |
+--------------+----------------+------------+
| p            | p0             |          2 |
| p            | p1             |          1 |
+--------------+----------------+------------+
2 rows in set (0.00 sec)

This is because we are comparing rows rather than scalar values. We can compare the row values
inserted with the limiting row value from the VALUES THAN LESS THAN clause used to define partition
p0 in table rc1, like this:



COLUMNS Partitioning

2459

mysql> SELECT (5,10) < (5,12), (5,11) < (5,12), (5,12) < (5,12);
+-----------------+-----------------+-----------------+
| (5,10) < (5,12) | (5,11) < (5,12) | (5,12) < (5,12) |
+-----------------+-----------------+-----------------+
|               1 |               1 |               0 |
+-----------------+-----------------+-----------------+
1 row in set (0.00 sec)

The 2 tuples (5,10) and (5,11) evaluate as less than (5,12), so they are stored in partition p0.
Since 5 is not less than 5 and 12 is not less than 12, (5,12) is considered not less than (5,12), and
is stored in partition p1.

The SELECT statement in the preceding example could also have been written using explicit row
constructors, like this:

SELECT ROW(5,10) < ROW(5,12), ROW(5,11) < ROW(5,12), ROW(5,12) < ROW(5,12);

For more information about the use of row constructors in MySQL, see Section 13.2.10.5, “Row
Subqueries”.

For a table partitioned by RANGE COLUMNS using only a single partitioning column, the storing of
rows in partitions is the same as that of an equivalent table that is partitioned by RANGE. The following
CREATE TABLE statement creates a table partitioned by RANGE COLUMNS using 1 partitioning column:

CREATE TABLE rx (
    a INT,
    b INT
)
PARTITION BY RANGE COLUMNS (a)  (
    PARTITION p0 VALUES LESS THAN (5),
    PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

If we insert the rows (5,10), (5,11), and (5,12) into this table, we can see that their placement is
the same as it is for the table r we created and populated earlier:

mysql> INSERT INTO rx VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
    ->     FROM INFORMATION_SCHEMA.PARTITIONS
    ->     WHERE TABLE_NAME = 'rx';
+--------------+----------------+------------+
| TABLE_SCHEMA | PARTITION_NAME | TABLE_ROWS |
+--------------+----------------+------------+
| p            | p0             |          0 |
| p            | p1             |          3 |
+--------------+----------------+------------+
2 rows in set (0.00 sec)

It is also possible to create tables partitioned by RANGE COLUMNS where limiting values for one or
more columns are repeated in successive partition definitions. You can do this as long as the tuples of
column values used to define the partitions are strictly increasing. For example, each of the following
CREATE TABLE statements is valid:

CREATE TABLE rc2 (
    a INT,
    b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
    PARTITION p0 VALUES LESS THAN (0,10),
    PARTITION p1 VALUES LESS THAN (10,20),
    PARTITION p2 VALUES LESS THAN (10,30),



COLUMNS Partitioning

2460

    PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
 );

CREATE TABLE rc3 (
    a INT,
    b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
    PARTITION p0 VALUES LESS THAN (0,10),
    PARTITION p1 VALUES LESS THAN (10,20),
    PARTITION p2 VALUES LESS THAN (10,30),
    PARTITION p3 VALUES LESS THAN (10,35),
    PARTITION p4 VALUES LESS THAN (20,40),
    PARTITION p5 VALUES LESS THAN (MAXVALUE,MAXVALUE)
 );

The following statement also succeeds, even though it might appear at first glance that it would not,
since the limiting value of column b is 25 for partition p0 and 20 for partition p1, and the limiting value
of column c is 100 for partition p1 and 50 for partition p2:

CREATE TABLE rc4 (
    a INT,
    b INT,
    c INT
)
PARTITION BY RANGE COLUMNS(a,b,c) (
    PARTITION p0 VALUES LESS THAN (0,25,50),
    PARTITION p1 VALUES LESS THAN (10,20,100),
    PARTITION p2 VALUES LESS THAN (10,30,50)
    PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 );

When designing tables partitioned by RANGE COLUMNS, you can always test successive partition
definitions by comparing the desired tuples using the mysql client, like this:

mysql> SELECT (0,25,50) < (10,20,100), (10,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (10,20,100) | (10,20,100) < (10,30,50) |
+-------------------------+--------------------------+
|                       1 |                        1 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

If a CREATE TABLE statement contains partition definitions that are not in strictly increasing order, it
fails with an error, as shown in this example:

mysql> CREATE TABLE rcf (
    ->     a INT,
    ->     b INT,
    ->     c INT
    -> )
    -> PARTITION BY RANGE COLUMNS(a,b,c) (
    ->     PARTITION p0 VALUES LESS THAN (0,25,50),
    ->     PARTITION p1 VALUES LESS THAN (20,20,100),
    ->     PARTITION p2 VALUES LESS THAN (10,30,50),
    ->     PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
    ->  );
ERROR 1493 (HY000): VALUES LESS THAN value must be strictly increasing for each partition

When you get such an error, you can deduce which partition definitions are invalid by making “less
than” comparisons between their column lists. In this case, the problem is with the definition of partition
p2 because the tuple used to define it is not less than the tuple used to define partition p3, as shown
here:

mysql> SELECT (0,25,50) < (20,20,100), (20,20,100) < (10,30,50);
+-------------------------+--------------------------+



COLUMNS Partitioning

2461

| (0,25,50) < (20,20,100) | (20,20,100) < (10,30,50) |
+-------------------------+--------------------------+
|                       1 |                        0 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

It is also possible for MAXVALUE to appear for the same column in more than one VALUES LESS THAN
clause when using RANGE COLUMNS. However, the limiting values for individual columns in successive
partition definitions should otherwise be increasing, there should be no more than one partition defined
where MAXVALUE is used as the upper limit for all column values, and this partition definition should
appear last in the list of PARTITION ... VALUES LESS THAN clauses. In addition, you cannot use
MAXVALUE as the limiting value for the first column in more than one partition definition.

As stated previously, it is also possible with RANGE COLUMNS partitioning to use non-integer columns
as partitioning columns. (See Section 19.2.3, “COLUMNS Partitioning”, for a complete listing of these.)
Consider a table named employees (which is not partitioned), created using the following statement:

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT NOT NULL,
    store_id INT NOT NULL
);

Using RANGE COLUMNS partitioning, you can create a version of this table that stores each row in one
of four partitions based on the employee's last name, like this:

CREATE TABLE employees_by_lname (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT NOT NULL,
    store_id INT NOT NULL
)
PARTITION BY RANGE COLUMNS (lname)  (
    PARTITION p0 VALUES LESS THAN ('g'),
    PARTITION p1 VALUES LESS THAN ('m'),
    PARTITION p2 VALUES LESS THAN ('t'),
    PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Alternatively, you could cause the employees table as created previously to be partitioned using this
scheme by executing the following ALTER TABLE statement:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (lname)  (
    PARTITION p0 VALUES LESS THAN ('g'),
    PARTITION p1 VALUES LESS THAN ('m'),
    PARTITION p2 VALUES LESS THAN ('t'),
    PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Note

Because different character sets and collations have different sort orders,
the character sets and collations in use may effect which partition of a table
partitioned by RANGE COLUMNS a given row is stored in when using string
columns as partitioning columns. In addition, changing the character set or
collation for a given database, table, or column after such a table is created may
cause changes in how rows are distributed. For example, when using a case-



COLUMNS Partitioning

2462

sensitive collation, 'and' sorts before 'Andersen', but when using a collation
that is case insensitive, the reverse is true.

For information about how MySQL handles character sets and collations, see
Section 10.1, “Character Set Support”.

Similarly, you can cause the employees table to be partitioned in such a way that each row is stored
in one of several partitions based on the decade in which the corresponding employee was hired using
the ALTER TABLE statement shown here:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (hired)  (
    PARTITION p0 VALUES LESS THAN ('1970-01-01'),
    PARTITION p1 VALUES LESS THAN ('1980-01-01'),
    PARTITION p2 VALUES LESS THAN ('1990-01-01'),
    PARTITION p3 VALUES LESS THAN ('2000-01-01'),
    PARTITION p4 VALUES LESS THAN ('2010-01-01'),
    PARTITION p5 VALUES LESS THAN (MAXVALUE)
);

See Section 13.1.17, “CREATE TABLE Syntax”, for additional information about PARTITION BY
RANGE COLUMNS syntax.

19.2.3.2 LIST COLUMNS partitioning

MySQL 5.5 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning
that enables the use of multiple columns as partition keys, and for columns of data types other than
integer types to be used as partitioning columns; you can use string types, DATE, and DATETIME
columns. (For more information about permitted data types for COLUMNS partitioning columns, see
Section 19.2.3, “COLUMNS Partitioning”.)

Suppose that you have a business that has customers in 12 cities which, for sales and marketing
purposes, you organize into 4 regions of 3 cities each as shown in the following table:

Region Cities

1 Oskarshamn, Högsby, Mönsterås

2 Vimmerby, Hultsfred, Västervik

3 Nässjö, Eksjö, Vetlanda

4 Uppvidinge, Alvesta, Växjo

With LIST COLUMNS partitioning, you can create a table for customer data that assigns a row to any of
4 partitions corresponding to these regions based on the name of the city where a customer resides, as
shown here:

CREATE TABLE customers_1 (
    first_name VARCHAR(25),
    last_name VARCHAR(25),
    street_1 VARCHAR(30),
    street_2 VARCHAR(30),
    city VARCHAR(15),
    renewal DATE
)
PARTITION BY LIST COLUMNS(city) (
    PARTITION pRegion_1 VALUES IN('Oskarshamn', 'Högsby', 'Mönsterås'),
    PARTITION pRegion_2 VALUES IN('Vimmerby', 'Hultsfred', 'Västervik'),
    PARTITION pRegion_3 VALUES IN('Nässjö', 'Eksjö', 'Vetlanda'),
    PARTITION pRegion_4 VALUES IN('Uppvidinge', 'Alvesta', 'Växjo')
);

As with partitioning by RANGE COLUMNS, you do not need to use expressions in the COLUMNS() clause
to convert column values into integers. (In fact, the use of expressions other than column names is not
permitted with COLUMNS().)



HASH Partitioning

2463

It is also possible to use DATE and DATETIME columns, as shown in the following example that
uses the same name and columns as the customers_1 table shown previously, but employs LIST
COLUMNS partitioning based on the renewal column to store rows in one of 4 partitions depending on
the week in February 2010 the customer's account is scheduled to renew:

CREATE TABLE customers_2 (
    first_name VARCHAR(25),
    last_name VARCHAR(25),
    street_1 VARCHAR(30),
    street_2 VARCHAR(30),
    city VARCHAR(15),
    renewal DATE
)
PARTITION BY LIST COLUMNS(renewal) (
    PARTITION pWeek_1 VALUES IN('2010-02-01', '2010-02-02', '2010-02-03',
        '2010-02-04', '2010-02-05', '2010-02-06', '2010-02-07'),
    PARTITION pWeek_2 VALUES IN('2010-02-08', '2010-02-09', '2010-02-10',
        '2010-02-11', '2010-02-12', '2010-02-13', '2010-02-14'),
    PARTITION pWeek_3 VALUES IN('2010-02-15', '2010-02-16', '2010-02-17',
        '2010-02-18', '2010-02-19', '2010-02-20', '2010-02-21'),
    PARTITION pWeek_4 VALUES IN('2010-02-22', '2010-02-23', '2010-02-24',
        '2010-02-25', '2010-02-26', '2010-02-27', '2010-02-28')
);

This works, but becomes cumbersome to define and maintain if the number of dates involved grows
very large; in such cases, it is usually more practical to employ RANGE or RANGE COLUMNS partitioning
instead. In this case, since the column we wish to use as the partitioning key is a DATE column, we use
RANGE COLUMNS partitioning, as shown here:

CREATE TABLE customers_3 (
    first_name VARCHAR(25),
    last_name VARCHAR(25),
    street_1 VARCHAR(30),
    street_2 VARCHAR(30),
    city VARCHAR(15),
    renewal DATE
)
PARTITION BY RANGE COLUMNS(renewal) (
    PARTITION pWeek_1 VALUES LESS THAN('2010-02-09'),
    PARTITION pWeek_2 VALUES LESS THAN('2010-02-15'),
    PARTITION pWeek_3 VALUES LESS THAN('2010-02-22'),
    PARTITION pWeek_4 VALUES LESS THAN('2010-03-01')
);

See Section 19.2.3.1, “RANGE COLUMNS partitioning”, for more information.

In addition (as with RANGE COLUMNS partitioning), you can use multiple columns in the COLUMNS()
clause.

See Section 13.1.17, “CREATE TABLE Syntax”, for additional information about PARTITION BY
LIST COLUMNS() syntax.

19.2.4 HASH Partitioning

Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined
number of partitions. With range or list partitioning, you must specify explicitly into which partition a
given column value or set of column values is to be stored; with hash partitioning, MySQL takes care
of this for you, and you need only specify a column value or expression based on a column value to be
hashed and the number of partitions into which the partitioned table is to be divided.

To partition a table using HASH partitioning, it is necessary to append to the CREATE TABLE statement
a PARTITION BY HASH (expr) clause, where expr is an expression that returns an integer. This
can simply be the name of a column whose type is one of MySQL's integer types. In addition, you
most likely want to follow this with PARTITIONS num, where num is a positive integer representing the
number of partitions into which the table is to be divided.



HASH Partitioning

2464

Note

For simplicity, the tables in the examples that follow do not use any keys. You
should be aware that, if a table has any unique keys, every column used in the
partitioning expression for this table must be part of every unique key, including
the primary key. See Section 19.5.1, “Partitioning Keys, Primary Keys, and
Unique Keys”, for more information.

The following statement creates a table that uses hashing on the store_id column and is divided into
4 partitions:

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT,
    store_id INT
)
PARTITION BY HASH(store_id)
PARTITIONS 4;

If you do not include a PARTITIONS clause, the number of partitions defaults to 1.

Using the PARTITIONS keyword without a number following it results in a syntax error.

You can also use an SQL expression that returns an integer for expr. For instance, you might want to
partition based on the year in which an employee was hired. This can be done as shown here:

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT,
    store_id INT
)
PARTITION BY HASH( YEAR(hired) )
PARTITIONS 4;

expr must return a nonconstant, nonrandom integer value (in other words, it should be varying
but deterministic), and must not contain any prohibited constructs as described in Section 19.5,
“Restrictions and Limitations on Partitioning”. You should also keep in mind that this expression is
evaluated each time a row is inserted or updated (or possibly deleted); this means that very complex
expressions may give rise to performance issues, particularly when performing operations (such as
batch inserts) that affect a great many rows at one time.

The most efficient hashing function is one which operates upon a single table column and whose value
increases or decreases consistently with the column value, as this allows for “pruning” on ranges of
partitions. That is, the more closely that the expression varies with the value of the column on which it
is based, the more efficiently MySQL can use the expression for hash partitioning.

For example, where date_col is a column of type DATE, then the expression TO_DAYS(date_col)
is said to vary directly with the value of date_col, because for every change in the value
of date_col, the value of the expression changes in a consistent manner. The variance of
the expression YEAR(date_col) with respect to date_col is not quite as direct as that of
TO_DAYS(date_col), because not every possible change in date_col produces an equivalent
change in YEAR(date_col). Even so, YEAR(date_col) is a good candidate for a hashing function,
because it varies directly with a portion of date_col and there is no possible change in date_col
that produces a disproportionate change in YEAR(date_col).



HASH Partitioning

2465

By way of contrast, suppose that you have a column named int_col whose type is INT. Now
consider the expression POW(5-int_col,3) + 6. This would be a poor choice for a hashing
function because a change in the value of int_col is not guaranteed to produce a proportional
change in the value of the expression. Changing the value of int_col by a given amount can produce
widely differing changes in the value of the expression. For example, changing int_col from 5 to 6
produces a change of -1 in the value of the expression, but changing the value of int_col from 6 to
7 produces a change of -7 in the expression value.

In other words, the more closely the graph of the column value versus the value of the expression
follows a straight line as traced by the equation y=cx where c is some nonzero constant, the better the
expression is suited to hashing. This has to do with the fact that the more nonlinear an expression is,
the more uneven the distribution of data among the partitions it tends to produce.

In theory, pruning is also possible for expressions involving more than one column value, but
determining which of such expressions are suitable can be quite difficult and time-consuming. For this
reason, the use of hashing expressions involving multiple columns is not particularly recommended.

When PARTITION BY HASH is used, MySQL determines which partition of num partitions to use
based on the modulus of the result of the expression. In other words, for a given expression expr, the
partition in which the record is stored is partition number N, where N = MOD(expr, num). Suppose
that table t1 is defined as follows, so that it has 4 partitions:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
    PARTITION BY HASH( YEAR(col3) )
    PARTITIONS 4;

If you insert a record into t1 whose col3 value is '2005-09-15', then the partition in which it is
stored is determined as follows:

MOD(YEAR('2005-09-01'),4)
=  MOD(2005,4)
=  1

MySQL 5.5 also supports a variant of HASH partitioning known as linear hashing which employs a more
complex algorithm for determining the placement of new rows inserted into the partitioned table. See
Section 19.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm.

The user-supplied expression is evaluated each time a record is inserted or updated. It may also—
depending on the circumstances—be evaluated when records are deleted.

19.2.4.1 LINEAR HASH Partitioning

MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes a
linear powers-of-two algorithm whereas regular hashing employs the modulus of the hashing function's
value.

Syntactically, the only difference between linear-hash partitioning and regular hashing is the addition of
the LINEAR keyword in the PARTITION BY clause, as shown here:

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT,
    store_id INT
)
PARTITION BY LINEAR HASH( YEAR(hired) )
PARTITIONS 4;



KEY Partitioning

2466

Given an expression expr, the partition in which the record is stored when linear hashing is used is
partition number N from among num partitions, where N is derived according to the following algorithm:

1. Find the next power of 2 greater than num. We call this value V; it can be calculated as:

V = POWER(2, CEILING(LOG(2, num)))

(Suppose that num is 13. Then LOG(2,13) is 3.7004397181411. CEILING(3.7004397181411)
is 4, and V = POWER(2,4), which is 16.)

2. Set N = F(column_list) & (V - 1).

3. While N >= num:

• Set V = V / 2

• Set N = N & (V - 1)

Suppose that the table t1, using linear hash partitioning and having 6 partitions, is created using this
statement:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
    PARTITION BY LINEAR HASH( YEAR(col3) )
    PARTITIONS 6;

Now assume that you want to insert two records into t1 having the col3 column values
'2003-04-14' and '1998-10-19'. The partition number for the first of these is determined as
follows:

V = POWER(2, CEILING( LOG(2,6) )) = 8
N = YEAR('2003-04-14') & (8 - 1)
   = 2003 & 7
   = 3

(3 >= 6 is FALSE: record stored in partition #3)

The number of the partition where the second record is stored is calculated as shown here:

V = 8
N = YEAR('1998-10-19') & (8 - 1)
  = 1998 & 7
  = 6

(6 >= 6 is TRUE: additional step required)

N = 6 & ((8 / 2) - 1)
  = 6 & 3
  = 2

(2 >= 6 is FALSE: record stored in partition #2)

The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of
partitions is made much faster, which can be beneficial when dealing with tables containing extremely
large amounts (terabytes) of data. The disadvantage is that data is less likely to be evenly distributed
between partitions as compared with the distribution obtained using regular hash partitioning.

19.2.5 KEY Partitioning

Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a
user-defined expression, the hashing function for key partitioning is supplied by the MySQL server.
NDB Cluster uses MD5() for this purpose; for tables using other storage engines, the server employs
its own internal hashing function which is based on the same algorithm as PASSWORD().



KEY Partitioning

2467

The syntax rules for CREATE TABLE ... PARTITION BY KEY are similar to those for creating a
table that is partitioned by hash. The major differences are listed here:

• KEY is used rather than HASH.

• KEY takes only a list of zero or more column names. Any columns used as the partitioning key
must comprise part or all of the table's primary key, if the table has one. Where no column name is
specified as the partitioning key, the table's primary key is used, if there is one. For example, the
following CREATE TABLE statement is valid in MySQL 5.5:

CREATE TABLE k1 (
    id INT NOT NULL PRIMARY KEY,
    name VARCHAR(20)
)
PARTITION BY KEY()
PARTITIONS 2;

If there is no primary key but there is a unique key, then the unique key is used for the partitioning
key:

CREATE TABLE k1 (
    id INT NOT NULL,
    name VARCHAR(20),
    UNIQUE KEY (id)
)
PARTITION BY KEY()
PARTITIONS 2;

However, if the unique key column were not defined as NOT NULL, then the previous statement
would fail.

In both of these cases, the partitioning key is the id column, even though it is not shown
in the output of SHOW CREATE TABLE or in the PARTITION_EXPRESSION column of the
INFORMATION_SCHEMA.PARTITIONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted
to integer or NULL values. For example, the following CREATE TABLE statement is valid:

CREATE TABLE tm1 (
    s1 CHAR(32) PRIMARY KEY
)
PARTITION BY KEY(s1)
PARTITIONS 10;

The preceding statement would not be valid, were a different partitioning type to be specified. (In
this case, simply using PARTITION BY KEY() would also be valid and have the same effect as
PARTITION BY KEY(s1), since s1 is the table's primary key.)

For additional information about this issue, see Section 19.5, “Restrictions and Limitations on
Partitioning”.

Note

Tables using the NDBCLUSTER storage engine are implicitly partitioned by
KEY, again using the table's primary key as the partitioning key. In the event
that the NDB Cluster table has no explicit primary key, the “hidden” primary
key generated by the NDBCLUSTER storage engine for each NDB Cluster
table is used as the partitioning key.

If you define an explicit partitioning scheme for an NDBCLUSTER table,
the table must have an explicit primary key, and any columns used in the
partitioning expression must be part of this key. However, if the table uses



Subpartitioning

2468

an “empty” partitioning expression—that is, PARTITION BY KEY() with no
column references—then no explicit primary key is required.

You can observe this partitioning using the ndb_desc utility (with the -p
option).

Important

For a key-partitioned table, you cannot execute an ALTER TABLE DROP
PRIMARY KEY, as doing so generates the error ERROR 1466 (HY000):
Field in list of fields for partition function not found
in table. This is not an issue for NDB Cluster tables which are partitioned
by KEY; in such cases, the table is reorganized using the “hidden” primary key
as the table's new partitioning key. See Chapter 18, MySQL NDB Cluster 7.2.

It is also possible to partition a table by linear key. Here is a simple example:

CREATE TABLE tk (
    col1 INT NOT NULL,
    col2 CHAR(5),
    col3 DATE
)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;

Using LINEAR has the same effect on KEY partitioning as it does on HASH partitioning, with the
partition number being derived using a powers-of-two algorithm rather than modulo arithmetic. See
Section 19.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm and its implications.

19.2.6 Subpartitioning

Subpartitioning—also known as composite partitioning—is the further division of each partition in a
partitioned table. Consider the following CREATE TABLE statement:

CREATE TABLE ts (id INT, purchased DATE)
    PARTITION BY RANGE( YEAR(purchased) )
    SUBPARTITION BY HASH( TO_DAYS(purchased) )
    SUBPARTITIONS 2 (
        PARTITION p0 VALUES LESS THAN (1990),
        PARTITION p1 VALUES LESS THAN (2000),
        PARTITION p2 VALUES LESS THAN MAXVALUE
    );

Table ts has 3 RANGE partitions. Each of these partitions—p0, p1, and p2—is further divided into
2 subpartitions. In effect, the entire table is divided into 3 * 2 = 6 partitions. However, due to the
action of the PARTITION BY RANGE clause, the first 2 of these store only those records with a value
less than 1990 in the purchased column.

In MySQL 5.5, it is possible to subpartition tables that are partitioned by RANGE or LIST. Subpartitions
may use either HASH or KEY partitioning. This is also known as composite partitioning.

Note

SUBPARTITION BY HASH and SUBPARTITION BY KEY generally follow
the same syntax rules as PARTITION BY HASH and PARTITION BY KEY,
respectively. An exception to this is that SUBPARTITION BY KEY (unlike
PARTITION BY KEY) does not currently support a default column, so the
column used for this purpose must be specified, even if the table has an explicit
primary key. This is a known issue which we are working to address; see Issues
with subpartitions, for more information and an example.



Subpartitioning

2469

It is also possible to define subpartitions explicitly using SUBPARTITION clauses to specify options for
individual subpartitions. For example, a more verbose fashion of creating the same table ts as shown
in the previous example would be:

CREATE TABLE ts (id INT, purchased DATE)
    PARTITION BY RANGE( YEAR(purchased) )
    SUBPARTITION BY HASH( TO_DAYS(purchased) ) (
        PARTITION p0 VALUES LESS THAN (1990) (
            SUBPARTITION s0,
            SUBPARTITION s1
        ),
        PARTITION p1 VALUES LESS THAN (2000) (
            SUBPARTITION s2,
            SUBPARTITION s3
        ),
        PARTITION p2 VALUES LESS THAN MAXVALUE (
            SUBPARTITION s4,
            SUBPARTITION s5
        )
    );

Some syntactical items of note are listed here:

• Each partition must have the same number of subpartitions.

• If you explicitly define any subpartitions using SUBPARTITION on any partition of a partitioned table,
you must define them all. In other words, the following statement will fail:

CREATE TABLE ts (id INT, purchased DATE)
    PARTITION BY RANGE( YEAR(purchased) )
    SUBPARTITION BY HASH( TO_DAYS(purchased) ) (
        PARTITION p0 VALUES LESS THAN (1990) (
            SUBPARTITION s0,
            SUBPARTITION s1
        ),
        PARTITION p1 VALUES LESS THAN (2000),
        PARTITION p2 VALUES LESS THAN MAXVALUE (
            SUBPARTITION s2,
            SUBPARTITION s3
        )
    );

This statement would still fail even if it included a SUBPARTITIONS 2 clause.

• Each SUBPARTITION clause must include (at a minimum) a name for the subpartition. Otherwise,
you may set any desired option for the subpartition or allow it to assume its default setting for that
option.

• Subpartition names must be unique across the entire table. For example, the following CREATE
TABLE statement is valid in MySQL 5.5:

CREATE TABLE ts (id INT, purchased DATE)
    PARTITION BY RANGE( YEAR(purchased) )
    SUBPARTITION BY HASH( TO_DAYS(purchased) ) (
        PARTITION p0 VALUES LESS THAN (1990) (
            SUBPARTITION s0,
            SUBPARTITION s1
        ),
        PARTITION p1 VALUES LESS THAN (2000) (
            SUBPARTITION s2,
            SUBPARTITION s3
        ),
        PARTITION p2 VALUES LESS THAN MAXVALUE (
            SUBPARTITION s4,
            SUBPARTITION s5
        )
    );



Subpartitioning

2470

Subpartitions can be used with especially large MyISAM tables to distribute data and indexes across
many disks. Suppose that you have 6 disks mounted as /disk0, /disk1, /disk2, and so on. Now
consider the following example:

CREATE TABLE ts (id INT, purchased DATE)
    ENGINE = MYISAM
    PARTITION BY RANGE( YEAR(purchased) )
    SUBPARTITION BY HASH( TO_DAYS(purchased) ) (
        PARTITION p0 VALUES LESS THAN (1990) (
            SUBPARTITION s0
                DATA DIRECTORY = '/disk0/data'
                INDEX DIRECTORY = '/disk0/idx',
            SUBPARTITION s1
                DATA DIRECTORY = '/disk1/data'
                INDEX DIRECTORY = '/disk1/idx'
        ),
        PARTITION p1 VALUES LESS THAN (2000) (
            SUBPARTITION s2
                DATA DIRECTORY = '/disk2/data'
                INDEX DIRECTORY = '/disk2/idx',
            SUBPARTITION s3
                DATA DIRECTORY = '/disk3/data'
                INDEX DIRECTORY = '/disk3/idx'
        ),
        PARTITION p2 VALUES LESS THAN MAXVALUE (
            SUBPARTITION s4
                DATA DIRECTORY = '/disk4/data'
                INDEX DIRECTORY = '/disk4/idx',
            SUBPARTITION s5
                DATA DIRECTORY = '/disk5/data'
                INDEX DIRECTORY = '/disk5/idx'
        )
    );

In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other
variations are possible; another example might be:

CREATE TABLE ts (id INT, purchased DATE)
    ENGINE = MYISAM
    PARTITION BY RANGE(YEAR(purchased))
    SUBPARTITION BY HASH( TO_DAYS(purchased) ) (
        PARTITION p0 VALUES LESS THAN (1990) (
            SUBPARTITION s0a
                DATA DIRECTORY = '/disk0'
                INDEX DIRECTORY = '/disk1',
            SUBPARTITION s0b
                DATA DIRECTORY = '/disk2'
                INDEX DIRECTORY = '/disk3'
        ),
        PARTITION p1 VALUES LESS THAN (2000) (
            SUBPARTITION s1a
                DATA DIRECTORY = '/disk4/data'
                INDEX DIRECTORY = '/disk4/idx',
            SUBPARTITION s1b
                DATA DIRECTORY = '/disk5/data'
                INDEX DIRECTORY = '/disk5/idx'
        ),
        PARTITION p2 VALUES LESS THAN MAXVALUE (
            SUBPARTITION s2a,
            SUBPARTITION s2b
        )
    );

Here, the storage is as follows:

• Rows with purchased dates from before 1990 take up a vast amount of space, so are split up 4
ways, with a separate disk dedicated to the data and to the indexes for each of the two subpartitions
(s0a and s0b) making up partition p0. In other words:



How MySQL Partitioning Handles NULL

2471

• The data for subpartition s0a is stored on /disk0.

• The indexes for subpartition s0a are stored on /disk1.

• The data for subpartition s0b is stored on /disk2.

• The indexes for subpartition s0b are stored on /disk3.

• Rows containing dates ranging from 1990 to 1999 (partition p1) do not require as much room as
those from before 1990. These are split between 2 disks (/disk4 and /disk5) rather than 4 disks
as with the legacy records stored in p0:

• Data and indexes belonging to p1's first subpartition (s1a) are stored on /disk4—the data in /
disk4/data, and the indexes in /disk4/idx.

• Data and indexes belonging to p1's second subpartition (s1b) are stored on /disk5—the data in
/disk5/data, and the indexes in /disk5/idx.

• Rows reflecting dates from the year 2000 to the present (partition p2) do not take up as much space
as required by either of the two previous ranges. Currently, it is sufficient to store all of these in the
default location.

In future, when the number of purchases for the decade beginning with the year 2000 grows to a
point where the default location no longer provides sufficient space, the corresponding rows can
be moved using an ALTER TABLE ... REORGANIZE PARTITION statement. See Section 19.3,
“Partition Management”, for an explanation of how this can be done.

The DATA DIRECTORY and INDEX DIRECTORY options are not permitted in partition definitions when
the NO_DIR_IN_CREATE server SQL mode is in effect. Beginning with MySQL 5.5.5, these options are
also not permitted when defining subpartitions (Bug #42954).

19.2.7 How MySQL Partitioning Handles NULL

Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether
it is a column value or the value of a user-supplied expression. Even though it is permitted to use
NULL as the value of an expression that must otherwise yield an integer, it is important to keep in mind
that NULL is not a number. MySQL's partitioning implementation treats NULL as being less than any
non-NULL value, just as ORDER BY does.

This means that treatment of NULL varies between partitioning of different types, and may produce
behavior which you do not expect if you are not prepared for it. This being the case, we discuss in
this section how each MySQL partitioning type handles NULL values when determining the partition in
which a row should be stored, and provide examples for each.

Handling of NULL with RANGE partitioning.  If you insert a row into a table partitioned by RANGE
such that the column value used to determine the partition is NULL, the row is inserted into the lowest
partition. Consider these two tables in a database named p, created as follows:

mysql> CREATE TABLE t1 (
    ->     c1 INT,
    ->     c2 VARCHAR(20)
    -> )
    -> PARTITION BY RANGE(c1) (
    ->     PARTITION p0 VALUES LESS THAN (0),
    ->     PARTITION p1 VALUES LESS THAN (10),
    ->     PARTITION p2 VALUES LESS THAN MAXVALUE
    -> );
Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE t2 (
    ->     c1 INT,
    ->     c2 VARCHAR(20)



How MySQL Partitioning Handles NULL

2472

    -> )
    -> PARTITION BY RANGE(c1) (
    ->     PARTITION p0 VALUES LESS THAN (-5),
    ->     PARTITION p1 VALUES LESS THAN (0),
    ->     PARTITION p2 VALUES LESS THAN (10),
    ->     PARTITION p3 VALUES LESS THAN MAXVALUE
    -> );
Query OK, 0 rows affected (0.09 sec)

You can see the partitions created by these two CREATE TABLE statements using the following query
against the PARTITIONS table in the INFORMATION_SCHEMA database:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
     >   FROM INFORMATION_SCHEMA.PARTITIONS
     >   WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| t1         | p0             |          0 |              0 |           0 |
| t1         | p1             |          0 |              0 |           0 |
| t1         | p2             |          0 |              0 |           0 |
| t2         | p0             |          0 |              0 |           0 |
| t2         | p1             |          0 |              0 |           0 |
| t2         | p2             |          0 |              0 |           0 |
| t2         | p3             |          0 |              0 |           0 |
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.00 sec)

(For more information about this table, see Section 21.12, “The INFORMATION_SCHEMA
PARTITIONS Table”.) Now let us populate each of these tables with a single row containing a NULL in
the column used as the partitioning key, and verify that the rows were inserted using a pair of SELECT
statements:

mysql> INSERT INTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+------+--------+
| id   | name   |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+--------+
| id   | name   |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

You can see which partitions are used to store the inserted rows by rerunning the previous query
against INFORMATION_SCHEMA.PARTITIONS and inspecting the output:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
     >   FROM INFORMATION_SCHEMA.PARTITIONS
     >   WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| t1         | p0             |          1 |             20 |          20 |
| t1         | p1             |          0 |              0 |           0 |
| t1         | p2             |          0 |              0 |           0 |
| t2         | p0             |          1 |             20 |          20 |



How MySQL Partitioning Handles NULL

2473

| t2         | p1             |          0 |              0 |           0 |
| t2         | p2             |          0 |              0 |           0 |
| t2         | p3             |          0 |              0 |           0 |
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

You can also demonstrate that these rows were stored in the lowest partition of each table by dropping
these partitions, and then re-running the SELECT statements:

mysql> ALTER TABLE t1 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> ALTER TABLE t2 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

(For more information on ALTER TABLE ... DROP PARTITION, see Section 13.1.7, “ALTER TABLE
Syntax”.)

NULL is also treated in this way for partitioning expressions that use SQL functions. Suppose that we
define a table using a CREATE TABLE statement such as this one:

CREATE TABLE tndate (
    id INT,
    dt DATE
)
PARTITION BY RANGE( YEAR(dt) ) (
    PARTITION p0 VALUES LESS THAN (1990),
    PARTITION p1 VALUES LESS THAN (2000),
    PARTITION p2 VALUES LESS THAN MAXVALUE
);

As with other MySQL functions, YEAR(NULL) returns NULL. A row with a dt column value of NULL is
treated as though the partitioning expression evaluated to a value less than any other value, and so is
inserted into partition p0.

Handling of NULL with LIST partitioning.  A table that is partitioned by LIST admits NULL values
if and only if one of its partitions is defined using that value-list that contains NULL. The converse of
this is that a table partitioned by LIST which does not explicitly use NULL in a value list rejects rows
resulting in a NULL value for the partitioning expression, as shown in this example:

mysql> CREATE TABLE ts1 (
    ->     c1 INT,
    ->     c2 VARCHAR(20)
    -> )
    -> PARTITION BY LIST(c1) (
    ->     PARTITION p0 VALUES IN (0, 3, 6),
    ->     PARTITION p1 VALUES IN (1, 4, 7),
    ->     PARTITION p2 VALUES IN (2, 5, 8)
    -> );
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO ts1 VALUES (9, 'mothra');
ERROR 1504 (HY000): Table has no partition for value 9

mysql> INSERT INTO ts1 VALUES (NULL, 'mothra');
ERROR 1504 (HY000): Table has no partition for value NULL

Only rows having a c1 value between 0 and 8 inclusive can be inserted into ts1. NULL falls outside
this range, just like the number 9. We can create tables ts2 and ts3 having value lists containing
NULL, as shown here:



How MySQL Partitioning Handles NULL

2474

mysql> CREATE TABLE ts2 (
    ->     c1 INT,
    ->     c2 VARCHAR(20)
    -> )
    -> PARTITION BY LIST(c1) (
    ->     PARTITION p0 VALUES IN (0, 3, 6),
    ->     PARTITION p1 VALUES IN (1, 4, 7),
    ->     PARTITION p2 VALUES IN (2, 5, 8),
    ->     PARTITION p3 VALUES IN (NULL)
    -> );
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE ts3 (
    ->     c1 INT,
    ->     c2 VARCHAR(20)
    -> )
    -> PARTITION BY LIST(c1) (
    ->     PARTITION p0 VALUES IN (0, 3, 6),
    ->     PARTITION p1 VALUES IN (1, 4, 7, NULL),
    ->     PARTITION p2 VALUES IN (2, 5, 8)
    -> );
Query OK, 0 rows affected (0.01 sec)

When defining value lists for partitioning, you can (and should) treat NULL just as you would any other
value. For example, both VALUES IN (NULL) and VALUES IN (1, 4, 7, NULL) are valid, as are
VALUES IN (1, NULL, 4, 7), VALUES IN (NULL, 1, 4, 7), and so on. You can insert a row
having NULL for column c1 into each of the tables ts2 and ts3:

mysql> INSERT INTO ts2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO ts3 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

By issuing the appropriate query against INFORMATION_SCHEMA.PARTITIONS, you can determine
which partitions were used to store the rows just inserted (we assume, as in the previous examples,
that the partitioned tables were created in the p database):

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
     >   FROM INFORMATION_SCHEMA.PARTITIONS
     >   WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 'ts_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| ts2        | p0             |          0 |              0 |           0 |
| ts2        | p1             |          0 |              0 |           0 |
| ts2        | p2             |          0 |              0 |           0 |
| ts2        | p3             |          1 |             20 |          20 |
| ts3        | p0             |          0 |              0 |           0 |
| ts3        | p1             |          1 |             20 |          20 |
| ts3        | p2             |          0 |              0 |           0 |
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

As shown earlier in this section, you can also verify which partitions were used for storing the rows by
deleting these partitions and then performing a SELECT.

Handling of NULL with HASH and KEY partitioning.  NULL is handled somewhat differently for
tables partitioned by HASH or KEY. In these cases, any partition expression that yields a NULL value
is treated as though its return value were zero. We can verify this behavior by examining the effects
on the file system of creating a table partitioned by HASH and populating it with a record containing
appropriate values. Suppose that you have a table th (also in the p database) created using the
following statement:

mysql> CREATE TABLE th (



Partition Management

2475

    ->     c1 INT,
    ->     c2 VARCHAR(20)
    -> )
    -> PARTITION BY HASH(c1)
    -> PARTITIONS 2;
Query OK, 0 rows affected (0.00 sec)

The partitions belonging to this table can be viewed using the query shown here:

mysql> SELECT TABLE_NAME,PARTITION_NAME,TABLE_ROWS,AVG_ROW_LENGTH,DATA_LENGTH
     >   FROM INFORMATION_SCHEMA.PARTITIONS
     >   WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th         | p0             |          0 |              0 |           0 |
| th         | p1             |          0 |              0 |           0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

Note that TABLE_ROWS for each partition is 0. Now insert two rows into th whose c1 column values
are NULL and 0, and verify that these rows were inserted, as shown here:

mysql> INSERT INTO th VALUES (NULL, 'mothra'), (0, 'gigan');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM th;
+------+---------+
| c1   | c2      |
+------+---------+
| NULL | mothra  |
+------+---------+
|    0 | gigan   |
+------+---------+
2 rows in set (0.01 sec)

Recall that for any integer N, the value of NULL MOD N is always NULL. For tables that are partitioned
by HASH or KEY, this result is treated for determining the correct partition as 0. Checking the
INFORMATION_SCHEMA.PARTITIONS table once again, we can see that both rows were inserted into
partition p0:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
     >   FROM INFORMATION_SCHEMA.PARTITIONS
     >   WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th         | p0             |          2 |             20 |          20 |
| th         | p1             |          0 |              0 |           0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

If you repeat this example using PARTITION BY KEY in place of PARTITION BY HASH in the
definition of the table, you can verify easily that NULL is also treated like 0 for this type of partitioning.

19.3 Partition Management

MySQL 5.5 provides a number of ways to modify partitioned tables. It is possible to add, drop,
redefine, merge, or split existing partitions. All of these actions can be carried out using the partitioning
extensions to the ALTER TABLE statement. There are also ways to obtain information about
partitioned tables and partitions. We discuss these topics in the sections that follow.

• For information about partition management in tables partitioned by RANGE or LIST, see
Section 19.3.1, “Management of RANGE and LIST Partitions”.



Management of RANGE and LIST Partitions

2476

• For a discussion of managing HASH and KEY partitions, see Section 19.3.2, “Management of HASH
and KEY Partitions”.

• See Section 19.3.4, “Obtaining Information About Partitions”, for a discussion of mechanisms
provided in MySQL 5.5 for obtaining information about partitioned tables and partitions.

• For a discussion of performing maintenance operations on partitions, see Section 19.3.3,
“Maintenance of Partitions”.

Note

In MySQL 5.5, all partitions of a partitioned table must have the same number of
subpartitions, and it is not possible to change the subpartitioning once the table
has been created.

To change a table's partitioning scheme, it is necessary only to use the ALTER TABLE statement
with a partition_options clause. This clause has the same syntax as that as used with CREATE
TABLE for creating a partitioned table, and always begins with the keywords PARTITION BY. Suppose
that you have a table partitioned by range using the following CREATE TABLE statement:

CREATE TABLE trb3 (id INT, name VARCHAR(50), purchased DATE)
    PARTITION BY RANGE( YEAR(purchased) ) (
        PARTITION p0 VALUES LESS THAN (1990),
        PARTITION p1 VALUES LESS THAN (1995),
        PARTITION p2 VALUES LESS THAN (2000),
        PARTITION p3 VALUES LESS THAN (2005)
    );

To repartition this table so that it is partitioned by key into two partitions using the id column value as
the basis for the key, you can use this statement:

ALTER TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;

This has the same effect on the structure of the table as dropping the table and re-creating it using
CREATE TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;.

ALTER TABLE ... ENGINE = ... changes only the storage engine used by the table, and leaves
the table's partitioning scheme intact. Use ALTER TABLE ... REMOVE PARTITIONING to remove a
table's partitioning. See Section 13.1.7, “ALTER TABLE Syntax”.

Important

Only a single PARTITION BY, ADD PARTITION, DROP PARTITION,
REORGANIZE PARTITION, or COALESCE PARTITION clause can be used in a
given ALTER TABLE statement. If you (for example) wish to drop a partition and
reorganize a table's remaining partitions, you must do so in two separate ALTER
TABLE statements (one using DROP PARTITION and then a second one using
REORGANIZE PARTITION).

Beginning with MySQL 5.5.0, it is possible to delete all rows from one or more selected partitions using
ALTER TABLE ... TRUNCATE PARTITION.

19.3.1 Management of RANGE and LIST Partitions

Adding and dropping of range and list partitions are handled in a similar fashion, so we discuss the
management of both sorts of partitioning in this section. For information about working with tables that
are partitioned by hash or key, see Section 19.3.2, “Management of HASH and KEY Partitions”.

Dropping a partition from a table that is partitioned by either RANGE or by LIST can be accomplished
using the ALTER TABLE statement with the DROP PARTITION option. Suppose that you have created
a table that is partitioned by range and then populated with 10 records using the following CREATE
TABLE and INSERT statements:



Management of RANGE and LIST Partitions

2477

mysql> CREATE TABLE tr (id INT, name VARCHAR(50), purchased DATE)
    ->     PARTITION BY RANGE( YEAR(purchased) ) (
    ->         PARTITION p0 VALUES LESS THAN (1990),
    ->         PARTITION p1 VALUES LESS THAN (1995),
    ->         PARTITION p2 VALUES LESS THAN (2000),
    ->         PARTITION p3 VALUES LESS THAN (2005),
    ->         PARTITION p4 VALUES LESS THAN (2010),
    ->         PARTITION p5 VALUES LESS THAN (2015)
    ->     );
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO tr VALUES
    ->     (1, 'desk organiser', '2003-10-15'),
    ->     (2, 'alarm clock', '1997-11-05'),
    ->     (3, 'chair', '2009-03-10'),
    ->     (4, 'bookcase', '1989-01-10'),
    ->     (5, 'exercise bike', '2014-05-09'),
    ->     (6, 'sofa', '1987-06-05'),
    ->     (7, 'espresso maker', '2011-11-22'),
    ->     (8, 'aquarium', '1992-08-04'),
    ->     (9, 'study desk', '2006-09-16'),
    ->     (10, 'lava lamp', '1998-12-25');
Query OK, 10 rows affected (0.05 sec)
Records: 10  Duplicates: 0  Warnings: 0

You can see which items should have been inserted into partition p2 as shown here:

mysql> SELECT * FROM tr
    ->     WHERE purchased BETWEEN '1995-01-01' AND '1999-12-31';
+------+-------------+------------+
| id   | name        | purchased  |
+------+-------------+------------+
|    2 | alarm clock | 1997-11-05 |
|   10 | lava lamp   | 1998-12-25 |
+------+-------------+------------+
2 rows in set (0.00 sec)

To drop the partition named p2, execute the following command:

mysql> ALTER TABLE tr DROP PARTITION p2;
Query OK, 0 rows affected (0.03 sec)

Note

The NDBCLUSTER storage engine does not support ALTER TABLE ... DROP
PARTITION. It does, however, support the other partitioning-related extensions
to ALTER TABLE that are described in this chapter.

It is very important to remember that, when you drop a partition, you also delete all the data that was
stored in that partition. You can see that this is the case by re-running the previous SELECT query:

mysql> SELECT * FROM tr WHERE purchased
    -> BETWEEN '1995-01-01' AND '1999-12-31';
Empty set (0.00 sec)

Because of this, you must have the DROP privilege for a table before you can execute ALTER
TABLE ... DROP PARTITION on that table.

If you wish to drop all data from all partitions while preserving the table definition and its partitioning
scheme, use the TRUNCATE TABLE statement. (See Section 13.1.33, “TRUNCATE TABLE Syntax”.)

If you intend to change the partitioning of a table without losing data, use ALTER TABLE ...
REORGANIZE PARTITION instead. See below or in Section 13.1.7, “ALTER TABLE Syntax”, for
information about REORGANIZE PARTITION.



Management of RANGE and LIST Partitions

2478

If you now execute a SHOW CREATE TABLE statement, you can see how the partitioning makeup of
the table has been changed:

mysql> SHOW CREATE TABLE tr\G
*************************** 1. row ***************************
       Table: tr
Create Table: CREATE TABLE `tr` (
  `id` int(11) DEFAULT NULL,
  `name` varchar(50) DEFAULT NULL,
  `purchased` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE ( YEAR(purchased))
(PARTITION p0 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (2010) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN (2015) ENGINE = InnoDB) */
1 row in set (0.00 sec)

When you insert new rows into the changed table with purchased column values between
'1995-01-01' and '2004-12-31' inclusive, those rows will be stored in partition p3. You can verify
this as follows:

mysql> INSERT INTO tr VALUES (11, 'pencil holder', '1995-07-12');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM tr WHERE purchased
    -> BETWEEN '1995-01-01' AND '2004-12-31';
+------+----------------+------------+
| id   | name           | purchased  |
+------+----------------+------------+
|    1 | desk organiser | 2003-10-15 |
|   11 | pencil holder  | 1995-07-12 |
+------+----------------+------------+
2 rows in set (0.00 sec)

mysql> ALTER TABLE tr DROP PARTITION p3;
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT * FROM tr WHERE purchased
    -> BETWEEN '1995-01-01' AND '2004-12-31';
Empty set (0.00 sec)

Note that the number of rows dropped from the table as a result of ALTER TABLE ... DROP
PARTITION is not reported by the server as it would be by the equivalent DELETE query.

Dropping LIST partitions uses exactly the same ALTER TABLE ... DROP PARTITION syntax as
used for dropping RANGE partitions. However, there is one important difference in the effect this has
on your use of the table afterward: You can no longer insert into the table any rows having any of the
values that were included in the value list defining the deleted partition. (See Section 19.2.2, “LIST
Partitioning”, for an example.)

To add a new range or list partition to a previously partitioned table, use the ALTER TABLE ... ADD
PARTITION statement. For tables which are partitioned by RANGE, this can be used to add a new
range to the end of the list of existing partitions. Suppose that you have a partitioned table containing
membership data for your organization, which is defined as follows:

CREATE TABLE members (
    id INT,
    fname VARCHAR(25),
    lname VARCHAR(25),
    dob DATE
)
PARTITION BY RANGE( YEAR(dob) ) (
    PARTITION p0 VALUES LESS THAN (1980),



Management of RANGE and LIST Partitions

2479

    PARTITION p1 VALUES LESS THAN (1990),
    PARTITION p2 VALUES LESS THAN (2000)
);

Suppose further that the minimum age for members is 16. As the calendar approaches the end of
2015, you realize that you will soon be admitting members who were born in 2000 (and later). You can
modify the members table to accommodate new members born in the years 2000 to 2010 as shown
here:

ALTER TABLE members ADD PARTITION (PARTITION p3 VALUES LESS THAN (2010));

With tables that are partitioned by range, you can use ADD PARTITION to add new partitions to the
high end of the partitions list only. Trying to add a new partition in this manner between or before
existing partitions results in an error as shown here:

mysql> ALTER TABLE members
     >     ADD PARTITION (
     >     PARTITION n VALUES LESS THAN (1970));
ERROR 1463 (HY000): VALUES LESS THAN value must be strictly »
   increasing for each partition

You can work around this problem by reorganizing the first partition into two new ones that split the
range between them, like this:

ALTER TABLE members
    REORGANIZE PARTITION p0 INTO (
        PARTITION n0 VALUES LESS THAN (1970),
        PARTITION n1 VALUES LESS THAN (1980)
);

Using SHOW CREATE TABLE you can see that the ALTER TABLE statement has had the desired
effect:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
       Table: members
Create Table: CREATE TABLE `members` (
  `id` int(11) DEFAULT NULL,
  `fname` varchar(25) DEFAULT NULL,
  `lname` varchar(25) DEFAULT NULL,
  `dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE ( YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1970) ENGINE = InnoDB,
 PARTITION n1 VALUES LESS THAN (1980) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2010) ENGINE = InnoDB) */
1 row in set (0.00 sec)

See also Section 13.1.7.1, “ALTER TABLE Partition Operations”.

You can also use ALTER TABLE ... ADD PARTITION to add new partitions to a table that is
partitioned by LIST. Suppose a table tt is defined using the following CREATE TABLE statement:

CREATE TABLE tt (
    id INT,
    data INT
)
PARTITION BY LIST(data) (
    PARTITION p0 VALUES IN (5, 10, 15),
    PARTITION p1 VALUES IN (6, 12, 18)
);



Management of RANGE and LIST Partitions

2480

You can add a new partition in which to store rows having the data column values 7, 14, and 21 as
shown:

ALTER TABLE tt ADD PARTITION (PARTITION p2 VALUES IN (7, 14, 21));

Note that you cannot add a new LIST partition encompassing any values that are already included in
the value list of an existing partition. If you attempt to do so, an error will result:

mysql> ALTER TABLE tt ADD PARTITION 
     >     (PARTITION np VALUES IN (4, 8, 12));
ERROR 1465 (HY000): Multiple definition of same constant »
                    in list partitioning

Because any rows with the data column value 12 have already been assigned to partition p1, you
cannot create a new partition on table tt that includes 12 in its value list. To accomplish this, you could
drop p1, and add np and then a new p1 with a modified definition. However, as discussed earlier, this
would result in the loss of all data stored in p1—and it is often the case that this is not what you really
want to do. Another solution might appear to be to make a copy of the table with the new partitioning
and to copy the data into it using CREATE TABLE ... SELECT ..., then drop the old table and
rename the new one, but this could be very time-consuming when dealing with a large amounts of
data. This also might not be feasible in situations where high availability is a requirement.

You can add multiple partitions in a single ALTER TABLE ... ADD PARTITION statement as shown
here:

CREATE TABLE employees (
  id INT NOT NULL,
  fname VARCHAR(50) NOT NULL,
  lname VARCHAR(50) NOT NULL,
  hired DATE NOT NULL
)
PARTITION BY RANGE( YEAR(hired) ) (
  PARTITION p1 VALUES LESS THAN (1991),
  PARTITION p2 VALUES LESS THAN (1996),
  PARTITION p3 VALUES LESS THAN (2001),
  PARTITION p4 VALUES LESS THAN (2005)
);

ALTER TABLE employees ADD PARTITION (
    PARTITION p5 VALUES LESS THAN (2010),
    PARTITION p6 VALUES LESS THAN MAXVALUE
);

Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing
data. Let us look first at a couple of simple examples involving RANGE partitioning. Recall the members
table which is now defined as shown here:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
       Table: members
Create Table: CREATE TABLE `members` (
  `id` int(11) DEFAULT NULL,
  `fname` varchar(25) DEFAULT NULL,
  `lname` varchar(25) DEFAULT NULL,
  `dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE ( YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1970) ENGINE = InnoDB,
 PARTITION n1 VALUES LESS THAN (1980) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2010) ENGINE = InnoDB) */
1 row in set (0.00 sec)



Management of RANGE and LIST Partitions

2481

Suppose that you would like to move all rows representing members born before 1960 into a separate
partition. As we have already seen, this cannot be done using ALTER TABLE ... ADD PARTITION.
However, you can use another partition-related extension to ALTER TABLE to accomplish this:

ALTER TABLE members REORGANIZE PARTITION n0 INTO (
    PARTITION s0 VALUES LESS THAN (1960),
    PARTITION s1 VALUES LESS THAN (1970)
);

In effect, this command splits partition p0 into two new partitions s0 and s1. It also moves the data that
was stored in p0 into the new partitions according to the rules embodied in the two PARTITION ...
VALUES ... clauses, so that s0 contains only those records for which YEAR(dob) is less than 1960
and s1 contains those rows in which YEAR(dob) is greater than or equal to 1960 but less than 1970.

A REORGANIZE PARTITION clause may also be used for merging adjacent partitions. You can
reverse the effect of the previous statement on the members table as shown here:

ALTER TABLE members REORGANIZE PARTITION s0,s1 INTO (
    PARTITION p0 VALUES LESS THAN (1970)
);

No data is lost in splitting or merging partitions using REORGANIZE PARTITION. In executing the
above statement, MySQL moves all of the records that were stored in partitions s0 and s1 into partition
p0.

The general syntax for REORGANIZE PARTITION is shown here:

ALTER TABLE tbl_name
    REORGANIZE PARTITION partition_list
    INTO (partition_definitions);

Here, tbl_name is the name of the partitioned table, and partition_list is a comma-separated
list of names of one or more existing partitions to be changed. partition_definitions
is a comma-separated list of new partition definitions, which follow the same rules as for the
partition_definitions list used in CREATE TABLE. You are not limited to merging several
partitions into one, or to splitting one partition into many, when using REORGANIZE PARTITION. For
example, you can reorganize all four partitions of the members table into two, like this:

ALTER TABLE members REORGANIZE PARTITION p0,p1,p2,p3 INTO (
    PARTITION m0 VALUES LESS THAN (1980),
    PARTITION m1 VALUES LESS THAN (2000)
);

You can also use REORGANIZE PARTITION with tables that are partitioned by LIST. Let us return
to the problem of adding a new partition to the list-partitioned tt table and failing because the new
partition had a value that was already present in the value-list of one of the existing partitions. We can
handle this by adding a partition that contains only nonconflicting values, and then reorganizing the
new partition and the existing one so that the value which was stored in the existing one is now moved
to the new one:

ALTER TABLE tt ADD PARTITION (PARTITION np VALUES IN (4, 8));
ALTER TABLE tt REORGANIZE PARTITION p1,np INTO (
    PARTITION p1 VALUES IN (6, 18),
    PARTITION np VALUES in (4, 8, 12)
);

Here are some key points to keep in mind when using ALTER TABLE ... REORGANIZE PARTITION
to repartition tables that are partitioned by RANGE or LIST:

• The PARTITION options used to determine the new partitioning scheme are subject to the same
rules as those used with a CREATE TABLE statement.



Management of HASH and KEY Partitions

2482

A new RANGE partitioning scheme cannot have any overlapping ranges; a new LIST partitioning
scheme cannot have any overlapping sets of values.

• The combination of partitions in the partition_definitions list should account for the same
range or set of values overall as the combined partitions named in the partition_list.

For example, partitions p1 and p2 together cover the years 1980 through 1999 in the members table
used as an example in this section. Any reorganization of these two partitions should cover the same
range of years overall.

• For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip over
range partitions.

For instance, you could not reorganize the example members table using a statement beginning with
ALTER TABLE members REORGANIZE PARTITION p0,p2 INTO ... because p0 covers the
years prior to 1970 and p2 the years from 1990 through 1999 inclusive, so these are not adjacent
partitions. (You cannot skip partition p1 in this case.)

• You cannot use REORGANIZE PARTITION to change the type of partitioning used by the table; for
example, you cannot change RANGE partitions to HASH partitions or the reverse. You also cannot use
this statement to change the partitioning expression or column. To accomplish either of these tasks
without dropping and re-creating the table, you can use ALTER TABLE ... PARTITION BY ...,
as shown here:

ALTER TABLE members
    PARTITION BY HASH( YEAR(dob) )
    PARTITIONS 8;

19.3.2 Management of HASH and KEY Partitions

Tables which are partitioned by hash or by key are very similar to one another with regard to making
changes in a partitioning setup, and both differ in a number of ways from tables which have been
partitioned by range or list. For that reason, this section addresses the modification of tables partitioned
by hash or by key only. For a discussion of adding and dropping of partitions of tables that are
partitioned by range or list, see Section 19.3.1, “Management of RANGE and LIST Partitions”.

You cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that
you can from tables that are partitioned by RANGE or LIST. However, you can merge HASH or KEY
partitions using the ALTER TABLE ... COALESCE PARTITION statement. Suppose that you have
a table containing data about clients, which is divided into twelve partitions. The clients table is
defined as shown here:

CREATE TABLE clients (
    id INT,
    fname VARCHAR(30),
    lname VARCHAR(30),
    signed DATE
)
PARTITION BY HASH( MONTH(signed) )
PARTITIONS 12;

To reduce the number of partitions from twelve to eight, execute the following ALTER TABLE
command:

mysql> ALTER TABLE clients COALESCE PARTITION 4;
Query OK, 0 rows affected (0.02 sec)

COALESCE works equally well with tables that are partitioned by HASH, KEY, LINEAR HASH, or LINEAR
KEY. Here is an example similar to the previous one, differing only in that the table is partitioned by
LINEAR KEY:



Maintenance of Partitions

2483

mysql> CREATE TABLE clients_lk (
    ->     id INT,
    ->     fname VARCHAR(30),
    ->     lname VARCHAR(30),
    ->     signed DATE
    -> )
    -> PARTITION BY LINEAR KEY(signed)
    -> PARTITIONS 12;
Query OK, 0 rows affected (0.03 sec)

mysql> ALTER TABLE clients_lk COALESCE PARTITION 4;
Query OK, 0 rows affected (0.06 sec)
Records: 0  Duplicates: 0  Warnings: 0

Note that the number following COALESCE PARTITION is the number of partitions to merge into the
remainder—in other words, it is the number of partitions to remove from the table.

If you attempt to remove more partitions than the table has, the result is an error like the one shown:

mysql> ALTER TABLE clients COALESCE PARTITION 18;
ERROR 1478 (HY000): Cannot remove all partitions, use DROP TABLE instead

To increase the number of partitions for the clients table from 12 to 18. use ALTER TABLE ...
ADD PARTITION as shown here:

ALTER TABLE clients ADD PARTITION PARTITIONS 6;

19.3.3 Maintenance of Partitions

A number of table and partition maintenance tasks can be carried out using SQL statements intended
for such purposes on partitioned tables in MySQL 5.5.

Table maintenance of partitioned tables can be accomplished using the statements CHECK TABLE,
OPTIMIZE TABLE, ANALYZE TABLE, and REPAIR TABLE, which are supported for partitioned tables.

You can use a number of extensions to ALTER TABLE for performing operations of this type on one or
more partitions directly, as described in the following list:

• Rebuilding partitions.  Rebuilds the partition; this has the same effect as dropping all records
stored in the partition, then reinserting them. This can be useful for purposes of defragmentation.

Example:

ALTER TABLE t1 REBUILD PARTITION p0, p1;

• Optimizing partitions.  If you have deleted a large number of rows from a partition or if you have
made many changes to a partitioned table with variable-length rows (that is, having VARCHAR, BLOB,
or TEXT columns), you can use ALTER TABLE ... OPTIMIZE PARTITION to reclaim any unused
space and to defragment the partition data file.

Example:

ALTER TABLE t1 OPTIMIZE PARTITION p0, p1;

Using OPTIMIZE PARTITION on a given partition is equivalent to running CHECK PARTITION,
ANALYZE PARTITION, and REPAIR PARTITION on that partition.

Some MySQL storage engines, including InnoDB, do not support per-partition optimization; in these
cases, ALTER TABLE ... OPTIMIZE PARTITION rebuilds the entire table. In MySQL 5.5.30
and later, running this statement on such a table causes the entire table to rebuilt and analyzed,



Obtaining Information About Partitions

2484

and an appropriate warning to be issued. (Bug #11751825, Bug #42822) Use ALTER TABLE ...
REBUILD PARTITION and ALTER TABLE ... ANALYZE PARTITION instead, to avoid this issue.

• Analyzing partitions.  This reads and stores the key distributions for partitions.

Example:

ALTER TABLE t1 ANALYZE PARTITION p3;

• Repairing partitions.  This repairs corrupted partitions.

Example:

ALTER TABLE t1 REPAIR PARTITION p0,p1;

• Checking partitions.  You can check partitions for errors in much the same way that you can use
CHECK TABLE with nonpartitioned tables.

Example:

ALTER TABLE trb3 CHECK PARTITION p1;

This command will tell you if the data or indexes in partition p1 of table t1 are corrupted. If this is the
case, use ALTER TABLE ... REPAIR PARTITION to repair the partition.

Each of the statements in the list just shown also supports the keyword ALL in place of the list of
partition names. Using ALL causes the statement to act on all partitions in the table.

The use of mysqlcheck and myisamchk is not supported with partitioned tables.

Beginning with MySQL 5.5.0, you can also truncate partitions using ALTER TABLE ... TRUNCATE
PARTITION. This statement can be used to delete all rows from one or more partitions in much the
same way that TRUNCATE TABLE deletes all rows from a table.

ALTER TABLE ... TRUNCATE PARTITION ALL truncates all partitions in the table.

ANALYZE, CHECK, OPTIMIZE, REBUILD, REPAIR, and TRUNCATE operations are not supported for
subpartitions.

19.3.4 Obtaining Information About Partitions

This section discusses obtaining information about existing partitions, which can be done in a number
of ways. Methods of obtaining such information include the following:

• Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a
partitioned table.

• Using the SHOW TABLE STATUS statement to determine whether a table is partitioned.

• Querying the INFORMATION_SCHEMA.PARTITIONS table.

• Using the statement EXPLAIN PARTITIONS SELECT to see which partitions are used by a given
SELECT.

As discussed elsewhere in this chapter, SHOW CREATE TABLE includes in its output the PARTITION
BY clause used to create a partitioned table. For example:

mysql> SHOW CREATE TABLE trb3\G
*************************** 1. row ***************************
       Table: trb3



Obtaining Information About Partitions

2485

Create Table: CREATE TABLE `trb3` (
  `id` int(11) default NULL,
  `name` varchar(50) default NULL,
  `purchased` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (
  PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
  PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
  PARTITION p2 VALUES LESS THAN (2000) ENGINE = MyISAM,
  PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM
)
1 row in set (0.00 sec)

The output from SHOW TABLE STATUS for partitioned tables is the same as that for nonpartitioned
tables, except that the Create_options column contains the string partitioned. The
Engine column contains the name of the storage engine used by all partitions of the table. (See
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”, for more information about this statement.)

You can also obtain information about partitions from INFORMATION_SCHEMA, which contains a
PARTITIONS table. See Section 21.12, “The INFORMATION_SCHEMA PARTITIONS Table”.

It is possible to determine which partitions of a partitioned table are involved in a given SELECT query
using EXPLAIN PARTITIONS. The PARTITIONS keyword adds a partitions column to the output
of EXPLAIN listing the partitions from which records would be matched by the query.

Suppose that you have a table trb1 created and populated as follows:

CREATE TABLE trb1 (id INT, name VARCHAR(50), purchased DATE)
    PARTITION BY RANGE(id)
    (
        PARTITION p0 VALUES LESS THAN (3),
        PARTITION p1 VALUES LESS THAN (7),
        PARTITION p2 VALUES LESS THAN (9),
        PARTITION p3 VALUES LESS THAN (11)
    );

INSERT INTO trb1 VALUES
    (1, 'desk organiser', '2003-10-15'),
    (2, 'CD player', '1993-11-05'),
    (3, 'TV set', '1996-03-10'),
    (4, 'bookcase', '1982-01-10'),
    (5, 'exercise bike', '2004-05-09'),
    (6, 'sofa', '1987-06-05'),
    (7, 'popcorn maker', '2001-11-22'),
    (8, 'aquarium', '1992-08-04'),
    (9, 'study desk', '1984-09-16'),
    (10, 'lava lamp', '1998-12-25');

You can see which partitions are used in a query such as SELECT * FROM trb1;, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: trb1
   partitions: p0,p1,p2,p3
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 10
        Extra: Using filesort

In this case, all four partitions are searched. However, when a limiting condition making use of the
partitioning key is added to the query, you can see that only those partitions containing matching
values are scanned, as shown here:



Partition Pruning

2486

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: trb1
   partitions: p0,p1
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 10
        Extra: Using where

EXPLAIN PARTITIONS provides information about keys used and possible keys, just as with the
standard EXPLAIN SELECT statement:

mysql> ALTER TABLE trb1 ADD PRIMARY KEY (id);
Query OK, 10 rows affected (0.03 sec)
Records: 10  Duplicates: 0  Warnings: 0

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: trb1
   partitions: p0,p1
         type: range
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 7
        Extra: Using where

You should take note of the following restrictions and limitations on EXPLAIN PARTITIONS:

• You cannot use the PARTITIONS and EXTENDED keywords together in the same EXPLAIN ...
SELECT statement. Attempting to do so produces a syntax error.

• If EXPLAIN PARTITIONS is used to examine a query against a nonpartitioned table, no error is
produced, but the value of the partitions column is always NULL.

The rows column of EXPLAIN PARTITIONS output displays the total number of rows in the table.

See also Section 13.8.2, “EXPLAIN Syntax”.

19.4 Partition Pruning

This section discusses an optimization known as partition pruning. The core concept behind partition
pruning is relatively simple, and can be described as “Do not scan partitions where there can be no
matching values”. Suppose that you have a partitioned table t1 defined by this statement:

CREATE TABLE t1 (
    fname VARCHAR(50) NOT NULL,
    lname VARCHAR(50) NOT NULL,
    region_code TINYINT UNSIGNED NOT NULL,
    dob DATE NOT NULL
)
PARTITION BY RANGE( region_code ) (
    PARTITION p0 VALUES LESS THAN (64),
    PARTITION p1 VALUES LESS THAN (128),
    PARTITION p2 VALUES LESS THAN (192),
    PARTITION p3 VALUES LESS THAN MAXVALUE
);



Partition Pruning

2487

Consider the case where you wish to obtain results from a SELECT statement such as this one:

SELECT fname, lname, region_code, dob
    FROM t1
    WHERE region_code > 125 AND region_code < 130;

It is easy to see that none of the rows which ought to be returned will be in either of the partitions p0
or p3; that is, we need to search only in partitions p1 and p2 to find matching rows. By doing so, it is
possible to expend much less time and effort in finding matching rows than would be required to scan
all partitions in the table. This “cutting away” of unneeded partitions is known as pruning. When the
optimizer can make use of partition pruning in performing this query, execution of the query can be
an order of magnitude faster than the same query against a nonpartitioned table containing the same
column definitions and data.

Note

When pruning is performed on a partitioned MyISAM table, all partitions are
opened, whether or not they are examined, due to the design of the MyISAM
storage engine. This means that you must have a sufficient number of file
descriptors available to cover all partitions of the table. See MyISAM and
partition file descriptor usage.

This limitation does not apply to partitioned tables using other MySQL storage
engines such as InnoDB.

The optimizer can perform pruning whenever a WHERE condition can be reduced to either one of the
following two cases:

• partition_column = constant

• partition_column IN (constant1, constant2, ..., constantN)

In the first case, the optimizer simply evaluates the partitioning expression for the value given,
determines which partition contains that value, and scans only this partition. In many cases, the equal
sign can be replaced with another arithmetic comparison, including <, >, <=, >=, and <>. Some queries
using BETWEEN in the WHERE clause can also take advantage of partition pruning. See the examples
later in this section.

In the second case, the optimizer evaluates the partitioning expression for each value in the list,
creates a list of matching partitions, and then scans only the partitions in this partition list.

MySQL 5.5 and later can apply partition pruning to SELECT, DELETE, and UPDATE statements.
INSERT statements currently cannot be pruned.

Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists
of values. For instance, in the previous example, the WHERE clause can be converted to WHERE
region_code IN (126, 127, 128, 129). Then the optimizer can determine that the first two
values in the list are found in partition p1, the remaining two values in partition p2, and that the other
partitions contain no relevant values and so do not need to be searched for matching rows.

Beginning with MySQL 5.5.0, the optimizer can also perform pruning for WHERE conditions that involve
comparisons of the preceding types on multiple columns for tables that use RANGE COLUMNS or LIST
COLUMNS partitioning.

This type of optimization can be applied whenever the partitioning expression consists of an equality
or a range which can be reduced to a set of equalities, or when the partitioning expression represents
an increasing or decreasing relationship. Pruning can also be applied for tables partitioned on a DATE
or DATETIME column when the partitioning expression uses the YEAR() or TO_DAYS() function. In
addition, in MySQL 5.5, pruning can be applied for such tables when the partitioning expression uses
the TO_SECONDS() function.



Partition Pruning

2488

Suppose that table t2, defined as shown here, is partitioned on a DATE column:

CREATE TABLE t2 (
    fname VARCHAR(50) NOT NULL,
    lname VARCHAR(50) NOT NULL,
    region_code TINYINT UNSIGNED NOT NULL,
    dob DATE NOT NULL
)
PARTITION BY RANGE( YEAR(dob) ) (
    PARTITION d0 VALUES LESS THAN (1970),
    PARTITION d1 VALUES LESS THAN (1975),
    PARTITION d2 VALUES LESS THAN (1980),
    PARTITION d3 VALUES LESS THAN (1985),
    PARTITION d4 VALUES LESS THAN (1990),
    PARTITION d5 VALUES LESS THAN (2000),
    PARTITION d6 VALUES LESS THAN (2005),
    PARTITION d7 VALUES LESS THAN MAXVALUE
);

The following statements using t2 can make of use partition pruning:

SELECT * FROM t2 WHERE dob = '1982-06-23';

UPDATE t2 SET region_code = 8 WHERE dob BETWEEN '1991-02-15' AND '1997-04-25';

DELETE FROM t2 WHERE dob >= '1984-06-21' AND dob <= '1999-06-21'

In the case of the last statement, the optimizer can also act as follows:

1. Find the partition containing the low end of the range.

YEAR('1984-06-21') yields the value 1984, which is found in partition d3.

2. Find the partition containing the high end of the range.

YEAR('1999-06-21') evaluates to 1999, which is found in partition d5.

3. Scan only these two partitions and any partitions that may lie between them.

In this case, this means that only partitions d3, d4, and d5 are scanned. The remaining partitions
may be safely ignored (and are ignored).

Important

Invalid DATE and DATETIME values referenced in the WHERE condition of
a statement against a partitioned table are treated as NULL. This means
that a query such as SELECT * FROM partitioned_table WHERE
date_column < '2008-12-00' does not return any values (see Bug
#40972).

So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with
other partitioning types as well.

Consider a table that is partitioned by LIST, where the partitioning expression is increasing or
decreasing, such as the table t3 shown here. (In this example, we assume for the sake of brevity that
the region_code column is limited to values between 1 and 10 inclusive.)

CREATE TABLE t3 (
    fname VARCHAR(50) NOT NULL,
    lname VARCHAR(50) NOT NULL,
    region_code TINYINT UNSIGNED NOT NULL,
    dob DATE NOT NULL
)
PARTITION BY LIST(region_code) (



Partition Pruning

2489

    PARTITION r0 VALUES IN (1, 3),
    PARTITION r1 VALUES IN (2, 5, 8),
    PARTITION r2 VALUES IN (4, 9),
    PARTITION r3 VALUES IN (6, 7, 10)
);

For a statement such as SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3, the
optimizer determines in which partitions the values 1, 2, and 3 are found (r0 and r1) and skips the
remaining ones (r2 and r3).

For tables that are partitioned by HASH or [LINEAR] KEY, partition pruning is also possible in cases in
which the WHERE clause uses a simple = relation against a column used in the partitioning expression.
Consider a table created like this:

CREATE TABLE t4 (
    fname VARCHAR(50) NOT NULL,
    lname VARCHAR(50) NOT NULL,
    region_code TINYINT UNSIGNED NOT NULL,
    dob DATE NOT NULL
)
PARTITION BY KEY(region_code)
PARTITIONS 8;

A statement that compares a column value with a constant can be pruned:

UPDATE t4 WHERE region_code = 7;

Pruning can also be employed for short ranges, because the optimizer can turn such conditions into IN
relations. For example, using the same table t4 as defined previously, queries such as these can be
pruned:

SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;

SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;

In both these cases, the WHERE clause is transformed by the optimizer into WHERE region_code IN
(3, 4, 5).

Important

This optimization is used only if the range size is smaller than the number of
partitions. Consider this statement:

DELETE FROM t4 WHERE region_code BETWEEN 4 AND 12;

The range in the WHERE clause covers 9 values (4, 5, 6, 7, 8, 9, 10, 11, 12), but
t4 has only 8 partitions. This means that the DELETE cannot be pruned.

When a table is partitioned by HASH or [LINEAR] KEY, pruning can be used only on integer columns.
For example, this statement cannot use pruning because dob is a DATE column:

SELECT * FROM t4 WHERE dob >= '2001-04-14' AND dob <= '2005-10-15';

However, if the table stores year values in an INT column, then a query having WHERE year_col >=
2001 AND year_col <= 2005 can be pruned.

Note

In MySQL 5.1, a query against a table partitioned by KEY and having a
composite partitioning key could be pruned only if the query's WHERE clause
compared every column in the key to a constant. In MySQL 5.5, it is possible to



Restrictions and Limitations on Partitioning

2490

prune queries against such tables even if the WHERE clause does not reference
every column in the partitioning key.

19.5 Restrictions and Limitations on Partitioning
This section discusses current restrictions and limitations on MySQL partitioning support.

Prohibited constructs.  The following constructs are not permitted in partitioning expressions:

• Stored procedures, stored functions, UDFs, or plugins.

• Declared variables or user variables.

For a list of SQL functions which are permitted in partitioning expressions, see Section 19.5.3,
“Partitioning Limitations Relating to Functions”.

Arithmetic and logical operators.    Use of the arithmetic operators +, -, and * is permitted in
partitioning expressions. However, the result must be an integer value or NULL (except in the case of
[LINEAR] KEY partitioning, as discussed elsewhere in this chapter; see Section 19.2, “Partitioning
Types”, for more information).

The DIV operator is also supported, and the / operator is not permitted. (Bug #30188, Bug #33182)

The bit operators |, &, ^, <<, >>, and ~ are not permitted in partitioning expressions.

HANDLER statements.  In MySQL 5.5, the HANDLER statement is not supported with partitioned
tables.

Server SQL mode.    Tables employing user-defined partitioning do not preserve the SQL mode
in effect at the time that they were created. As discussed in Section 5.1.8, “Server SQL Modes”, the
results of many MySQL functions and operators may change according to the server SQL mode.
Therefore, a change in the SQL mode at any time after the creation of partitioned tables may lead to
major changes in the behavior of such tables, and could easily lead to corruption or loss of data. For
these reasons, it is strongly recommended that you never change the server SQL mode after creating
partitioned tables.

Examples.  The following examples illustrate some changes in behavior of partitioned tables due to
a change in the server SQL mode:

1. Error handling.  Suppose that you create a partitioned table whose partitioning expression is
one such as column DIV 0 or column MOD 0, as shown here:

mysql> CREATE TABLE tn (c1 INT)
    ->     PARTITION BY LIST(1 DIV c1) (
    ->       PARTITION p0 VALUES IN (NULL),
    ->       PARTITION p1 VALUES IN (1)
    -> );
Query OK, 0 rows affected (0.05 sec)

The default behavior for MySQL is to return NULL for the result of a division by zero, without
producing any errors:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
|            |
+------------+
1 row in set (0.00 sec)

mysql> INSERT INTO tn VALUES (NULL), (0), (1);
Query OK, 3 rows affected (0.00 sec)



Restrictions and Limitations on Partitioning

2491

Records: 3  Duplicates: 0  Warnings: 0

However, changing the server SQL mode to treat division by zero as an error and to enforce strict
error handling causes the same INSERT statement to fail, as shown here:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO tn VALUES (NULL), (0), (1);
ERROR 1365 (22012): Division by 0

2. Table accessibility.  Sometimes a change in the server SQL mode can make partitioned tables
unusable. The following CREATE TABLE statement can be executed successfully only if the
NO_UNSIGNED_SUBTRACTION mode is in effect:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
|            |
+------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
    ->   PARTITION BY RANGE(c1 - 10) (
    ->     PARTITION p0 VALUES LESS THAN (-5),
    ->     PARTITION p1 VALUES LESS THAN (0),
    ->     PARTITION p2 VALUES LESS THAN (5),
    ->     PARTITION p3 VALUES LESS THAN (10),
    ->     PARTITION p4 VALUES LESS THAN (MAXVALUE)
    -> );
ERROR 1563 (HY000): Partition constant is out of partition function domain

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@sql_mode;
+-------------------------+
| @@sql_mode              |
+-------------------------+
| NO_UNSIGNED_SUBTRACTION |
+-------------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
    ->   PARTITION BY RANGE(c1 - 10) (
    ->     PARTITION p0 VALUES LESS THAN (-5),
    ->     PARTITION p1 VALUES LESS THAN (0),
    ->     PARTITION p2 VALUES LESS THAN (5),
    ->     PARTITION p3 VALUES LESS THAN (10),
    ->     PARTITION p4 VALUES LESS THAN (MAXVALUE)
    -> );
Query OK, 0 rows affected (0.05 sec)

If you remove the NO_UNSIGNED_SUBTRACTION server SQL mode after creating tu, you may no
longer be able to access this table:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM tu;
ERROR 1563 (HY000): Partition constant is out of partition function domain
mysql> INSERT INTO tu VALUES (20);
ERROR 1563 (HY000): Partition constant is out of partition function domain

Server SQL modes also impact replication of partitioned tables. Differing SQL modes on master and
slave can lead to partitioning expressions being evaluated differently; this can cause the distribution of



Restrictions and Limitations on Partitioning

2492

data among partitions to be different in the master's and slave's copies of a given table, and may even
cause inserts into partitioned tables that succeed on the master to fail on the slave. For best results,
you should always use the same server SQL mode on the master and on the slave.

Performance considerations.  Some effects of partitioning operations on performance are given in
the following list:

• File system operations.  Partitioning and repartitioning operations (such as ALTER TABLE
with PARTITION BY ..., REORGANIZE PARTITION, or REMOVE PARTITIONING) depend on
file system operations for their implementation. This means that the speed of these operations
is affected by such factors as file system type and characteristics, disk speed, swap space, file
handling efficiency of the operating system, and MySQL server options and variables that relate
to file handling. In particular, you should make sure that large_files_support is enabled
and that open_files_limit is set properly. For partitioned tables using the MyISAM storage
engine, increasing myisam_max_sort_file_size may improve performance; partitioning
and repartitioning operations involving InnoDB tables may be made more efficient by enabling
innodb_file_per_table.

See also Maximum number of partitions.

• MyISAM and partition file descriptor usage.  For a partitioned MyISAM table, MySQL uses 2
file descriptors for each partition, for each such table that is open. This means that you need many
more file descriptors to perform operations on a partitioned MyISAM table than on a table which
is identical to it except that the latter table is not partitioned, particularly when performing ALTER
TABLE operations.

Assume a MyISAM table t with 100 partitions, such as the table created by this SQL statement:

CREATE TABLE t (c1 VARCHAR(50))
PARTITION BY KEY (c1) PARTITIONS 100
ENGINE=MYISAM;

Note

For brevity, we use KEY partitioning for the table shown in this example, but
file descriptor usage as described here applies to all partitioned MyISAM
tables, regardless of the type of partitioning that is employed. Partitioned
tables using other storage engines such as InnoDB are not affected by this
issue.

Now assume that you wish to repartition t so that it has 101 partitions, using the statement shown
here:

ALTER TABLE t PARTITION BY KEY (c1) PARTITIONS 101;

To process this ALTER TABLE statement, MySQL uses 402 file descriptors—that is, two for
each of the 100 original partitions, plus two for each of the 101 new partitions. This is because all
partitions (old and new) must be opened concurrently during the reorganization of the table data. It
is recommended that, if you expect to perform such operations, you should make sure that --open-
files-limit is not set too low to accommodate them.

• Table locks.  The process executing a partitioning operation on a table takes a write lock on the
table. Reads from such tables are relatively unaffected; pending INSERT and UPDATE operations are
performed as soon as the partitioning operation has completed.

• Storage engine.  Partitioning operations, queries, and update operations generally tend to be
faster with MyISAM tables than with InnoDB or NDB tables.

• Indexes; partition pruning.  As with nonpartitioned tables, proper use of indexes can speed up
queries on partitioned tables significantly. In addition, designing partitioned tables and statements



Restrictions and Limitations on Partitioning

2493

using these tables to take advantage of partition pruning can improve performance dramatically. See
Section 19.4, “Partition Pruning”, for more information.

• Performance with LOAD DATA.  In MySQL 5.5, LOAD DATA uses buffering to improve
performance. You should be aware that the buffer uses 130 KB memory per partition to achieve this.

Maximum number of partitions. 
The maximum possible number of partitions for a given table (that does not use the NDB storage
engine) is 1024. This number includes subpartitions.

The maximum possible number of user-defined partitions for a table using the NDBCLUSTER storage
engine is determined according to the version of the NDB Cluster software being used, the number of
data nodes, and other factors. See NDB and user-defined partitioning, for more information.

If, when creating tables with a large number of partitions (but less than the maximum), you encounter
an error message such as Got error ... from storage engine: Out of resources
when opening file, you may be able to address the issue by increasing the value of the
open_files_limit system variable. However, this is dependent on the operating system, and may
not be possible or advisable on all platforms; see Section B.5.2.18, “File Not Found and Similar Errors”,
for more information. In some cases, using large numbers (hundreds) of partitions may also not be
advisable due to other concerns, so using more partitions does not automatically lead to better results.

See also File system operations.

Query cache not supported. 
The query cache is not supported for partitioned tables. Beginning with MySQL 5.5.23, the query
cache is automatically disabled for queries involving partitioned tables, and cannot be enabled for such
queries. (Bug #53775)

Per-partition key caches. 
In MySQL 5.5, key caches are supported for partitioned MyISAM tables, using the CACHE INDEX and
LOAD INDEX INTO CACHE statements. Key caches may be defined for one, several, or all partitions,
and indexes for one, several, or all partitions may be preloaded into key caches.

Foreign keys not supported for partitioned InnoDB tables. 
Partitioned tables using the InnoDB storage engine do not support foreign keys. More specifically, this
means that the following two statements are true:

1. No definition of an InnoDB table employing user-defined partitioning may contain foreign key
references; no InnoDB table whose definition contains foreign key references may be partitioned.

2. No InnoDB table definition may contain a foreign key reference to a user-partitioned table; no
InnoDB table with user-defined partitioning may contain columns referenced by foreign keys.

The scope of the restrictions just listed includes all tables that use the InnoDB storage engine. CREATE
TABLE and ALTER TABLE statements that would result in tables violating these restrictions are not
allowed.

ALTER TABLE ... ORDER BY.  An ALTER TABLE ... ORDER BY column statement run against
a partitioned table causes ordering of rows only within each partition.

Effects on REPLACE statements by modification of primary keys.  It can be desirable in some
cases (see Section 19.5.1, “Partitioning Keys, Primary Keys, and Unique Keys”) to modify a table's
primary key. Be aware that, if your application uses REPLACE statements and you do this, the results
of these statements can be drastically altered. See Section 13.2.8, “REPLACE Syntax”, for more
information and an example.

FULLTEXT indexes. 
Partitioned tables do not support FULLTEXT indexes or searches. This includes partitioned tables
employing the MyISAM storage engine.



Restrictions and Limitations on Partitioning

2494

Spatial columns.  Columns with spatial data types such as POINT or GEOMETRY cannot be used in
partitioned tables.

Temporary tables. 
Temporary tables cannot be partitioned. (Bug #17497)

Log tables.  It is not possible to partition the log tables; an ALTER TABLE ... PARTITION
BY ... statement on such a table fails with an error.

Data type of partitioning key. 
A partitioning key must be either an integer column or an expression that resolves to an integer.
Expressions employing ENUM columns cannot be used. The column or expression value may also be
NULL. (See Section 19.2.7, “How MySQL Partitioning Handles NULL”.)

There are two exceptions to this restriction:

1. When partitioning by [LINEAR] KEY, it is possible to use columns of any valid MySQL data type
other than TEXT or BLOB as partitioning keys, because MySQL's internal key-hashing functions
produce the correct data type from these types. For example, the following two CREATE TABLE
statements are valid:

CREATE TABLE tkc (c1 CHAR)
PARTITION BY KEY(c1)
PARTITIONS 4;

CREATE TABLE tke
    ( c1 ENUM('red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet') )
PARTITION BY LINEAR KEY(c1)
PARTITIONS 6;

2. When partitioning by RANGE COLUMNS or LIST COLUMNS, it is possible to use string, DATE, and
DATETIME columns. For example, each of the following CREATE TABLE statements is valid:

CREATE TABLE rc (c1 INT, c2 DATE)
PARTITION BY RANGE COLUMNS(c2) (
    PARTITION p0 VALUES LESS THAN('1990-01-01'),
    PARTITION p1 VALUES LESS THAN('1995-01-01'),
    PARTITION p2 VALUES LESS THAN('2000-01-01'),
    PARTITION p3 VALUES LESS THAN('2005-01-01'),
    PARTITION p4 VALUES LESS THAN(MAXVALUE)
);

CREATE TABLE lc (c1 INT, c2 CHAR(1))
PARTITION BY LIST COLUMNS(c2) (
    PARTITION p0 VALUES IN('a', 'd', 'g', 'j', 'm', 'p', 's', 'v', 'y'),
    PARTITION p1 VALUES IN('b', 'e', 'h', 'k', 'n', 'q', 't', 'w', 'z'),
    PARTITION p2 VALUES IN('c', 'f', 'i', 'l', 'o', 'r', 'u', 'x', NULL)
);

Neither of the preceding exceptions applies to BLOB or TEXT column types.

Subqueries. 
A partitioning key may not be a subquery, even if that subquery resolves to an integer value or NULL.

Issues with subpartitions. 
Subpartitions must use HASH or KEY partitioning. Only RANGE and LIST partitions may be
subpartitioned; HASH and KEY partitions cannot be subpartitioned.

 SUBPARTITION BY KEY requires that the subpartitioning column or columns be specified explicitly,
unlike the case with PARTITION BY KEY, where it can be omitted (in which case the table's primary
key column is used by default). Consider the table created by this statement:

CREATE TABLE ts (



Restrictions and Limitations on Partitioning

2495

    id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(30)
);

You can create a table having the same columns, partitioned by KEY, using a statement such as this
one:

CREATE TABLE ts (
    id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(30)
)
PARTITION BY KEY()
PARTITIONS 4;
        

The previous statement is treated as though it had been written like this, with the table's primary key
column used as the partitioning column:

CREATE TABLE ts (
    id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(30)
)
PARTITION BY KEY(id)
PARTITIONS 4;
        

However, the following statement that attempts to create a subpartitioned table using the default
column as the subpartitioning column fails, and the column must be specified for the statement to
succeed, as shown here:

mysql> CREATE TABLE ts (
    ->     id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    ->     name VARCHAR(30)
    -> )
    -> PARTITION BY RANGE(id)
    -> SUBPARTITION BY KEY()
    -> SUBPARTITIONS 4
    -> (
    ->     PARTITION p0 VALUES LESS THAN (100),
    ->     PARTITION p1 VALUES LESS THAN (MAXVALUE)
    -> );
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near ')

mysql> CREATE TABLE ts (
    ->     id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    ->     name VARCHAR(30)
    -> )
    -> PARTITION BY RANGE(id)
    -> SUBPARTITION BY KEY(id)
    -> SUBPARTITIONS 4
    -> (
    ->     PARTITION p0 VALUES LESS THAN (100),
    ->     PARTITION p1 VALUES LESS THAN (MAXVALUE)
    -> );
Query OK, 0 rows affected (0.07 sec)

This is a known issue (see Bug #51470).

DELAYED option not supported.  Use of INSERT DELAYED to insert rows into a partitioned table
is not supported. Attempting to do so fails with an error.

DATA DIRECTORY and INDEX DIRECTORY options.  DATA DIRECTORY and INDEX
DIRECTORY are subject to the following restrictions when used with partitioned tables:

• Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored (see Bug #32091).



Partitioning Keys, Primary Keys, and Unique Keys

2496

• On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for
individual partitions or subpartitions (Bug #30459).

Repairing and rebuilding partitioned tables.  The statements CHECK TABLE, OPTIMIZE TABLE,
ANALYZE TABLE, and REPAIR TABLE are supported for partitioned tables.

In addition, you can use ALTER TABLE ... REBUILD PARTITION to rebuild one or more partitions
of a partitioned table; ALTER TABLE ... REORGANIZE PARTITION also causes partitions to be
rebuilt. See Section 13.1.7, “ALTER TABLE Syntax”, for more information about these two statements.

mysqlcheck, myisamchk, and myisampack are not supported with partitioned tables.

19.5.1 Partitioning Keys, Primary Keys, and Unique Keys

This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule
governing this relationship can be expressed as follows: All columns used in the partitioning expression
for a partitioned table must be part of every unique key that the table may have.

In other words, every unique key on the table must use every column in the table's partitioning
expression. (This also includes the table's primary key, since it is by definition a unique key. This
particular case is discussed later in this section.) For example, each of the following table creation
statements is invalid:

CREATE TABLE t1 (
    col1 INT NOT NULL,
    col2 DATE NOT NULL,
    col3 INT NOT NULL,
    col4 INT NOT NULL,
    UNIQUE KEY (col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
    col1 INT NOT NULL,
    col2 DATE NOT NULL,
    col3 INT NOT NULL,
    col4 INT NOT NULL,
    UNIQUE KEY (col1),
    UNIQUE KEY (col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns
used in the partitioning expression.

Each of the following statements is valid, and represents one way in which the corresponding invalid
table creation statement could be made to work:

CREATE TABLE t1 (
    col1 INT NOT NULL,
    col2 DATE NOT NULL,
    col3 INT NOT NULL,
    col4 INT NOT NULL,
    UNIQUE KEY (col1, col2, col3)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
    col1 INT NOT NULL,
    col2 DATE NOT NULL,
    col3 INT NOT NULL,
    col4 INT NOT NULL,



Partitioning Keys, Primary Keys, and Unique Keys

2497

    UNIQUE KEY (col1, col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

This example shows the error produced in such cases:

mysql> CREATE TABLE t3 (
    ->     col1 INT NOT NULL,
    ->     col2 DATE NOT NULL,
    ->     col3 INT NOT NULL,
    ->     col4 INT NOT NULL,
    ->     UNIQUE KEY (col1, col2),
    ->     UNIQUE KEY (col3)
    -> )
    -> PARTITION BY HASH(col1 + col3)
    -> PARTITIONS 4;
ERROR 1491 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

The CREATE TABLE statement fails because both col1 and col3 are included in the proposed
partitioning key, but neither of these columns is part of both of unique keys on the table. This shows
one possible fix for the invalid table definition:

mysql> CREATE TABLE t3 (
    ->     col1 INT NOT NULL,
    ->     col2 DATE NOT NULL,
    ->     col3 INT NOT NULL,
    ->     col4 INT NOT NULL,
    ->     UNIQUE KEY (col1, col2, col3),
    ->     UNIQUE KEY (col3)
    -> )
    -> PARTITION BY HASH(col3)
    -> PARTITIONS 4;
Query OK, 0 rows affected (0.05 sec)

In this case, the proposed partitioning key col3 is part of both unique keys, and the table creation
statement succeeds.

The following table cannot be partitioned at all, because there is no way to include in a partitioning key
any columns that belong to both unique keys:

CREATE TABLE t4 (
    col1 INT NOT NULL,
    col2 INT NOT NULL,
    col3 INT NOT NULL,
    col4 INT NOT NULL,
    UNIQUE KEY (col1, col3),
    UNIQUE KEY (col2, col4)
);

Since every primary key is by definition a unique key, this restriction also includes the table's primary
key, if it has one. For example, the next two statements are invalid:

CREATE TABLE t5 (
    col1 INT NOT NULL,
    col2 DATE NOT NULL,
    col3 INT NOT NULL,
    col4 INT NOT NULL,
    PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t6 (
    col1 INT NOT NULL,
    col2 DATE NOT NULL,



Partitioning Keys, Primary Keys, and Unique Keys

2498

    col3 INT NOT NULL,
    col4 INT NOT NULL,
    PRIMARY KEY(col1, col3),
    UNIQUE KEY(col2)
)
PARTITION BY HASH( YEAR(col2) )
PARTITIONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression.
However, both of the next two statements are valid:

CREATE TABLE t7 (
    col1 INT NOT NULL,
    col2 DATE NOT NULL,
    col3 INT NOT NULL,
    col4 INT NOT NULL,
    PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

CREATE TABLE t8 (
    col1 INT NOT NULL,
    col2 DATE NOT NULL,
    col3 INT NOT NULL,
    col4 INT NOT NULL,
    PRIMARY KEY(col1, col2, col4),
    UNIQUE KEY(col2, col1)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

If a table has no unique keys—this includes having no primary key—then this restriction does not
apply, and you may use any column or columns in the partitioning expression as long as the column
type is compatible with the partitioning type.

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes
all columns used by the table's partitioning expression. Consider the partitioned table created as shown
here:

mysql> CREATE TABLE t_no_pk (c1 INT, c2 INT)
    ->     PARTITION BY RANGE(c1) (
    ->         PARTITION p0 VALUES LESS THAN (10),
    ->         PARTITION p1 VALUES LESS THAN (20),
    ->         PARTITION p2 VALUES LESS THAN (30),
    ->         PARTITION p3 VALUES LESS THAN (40)
    ->     );
Query OK, 0 rows affected (0.12 sec)

It is possible to add a primary key to t_no_pk using either of these ALTER TABLE statements:

#  possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1);
Query OK, 0 rows affected (0.13 sec)
Records: 0  Duplicates: 0  Warnings: 0

# drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.10 sec)
Records: 0  Duplicates: 0  Warnings: 0

#  use another possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1, c2);
Query OK, 0 rows affected (0.12 sec)
Records: 0  Duplicates: 0  Warnings: 0

# drop this PK



Partitioning Limitations Relating to Storage Engines

2499

mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.09 sec)
Records: 0  Duplicates: 0  Warnings: 0

However, the next statement fails, because c1 is part of the partitioning key, but is not part of the
proposed primary key:

#  fails with error 1503
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c2);
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

Since t_no_pk has only c1 in its partitioning expression, attempting to adding a unique key on c2
alone fails. However, you can add a unique key that uses both c1 and c2.

These rules also apply to existing nonpartitioned tables that you wish to partition using ALTER
TABLE ... PARTITION BY. Consider a table np_pk created as shown here:

mysql> CREATE TABLE np_pk (
    ->     id INT NOT NULL AUTO_INCREMENT,
    ->     name VARCHAR(50),
    ->     added DATE,
    ->     PRIMARY KEY (id)
    -> );
Query OK, 0 rows affected (0.08 sec)

The following ALTER TABLE statement fails with an error, because the added column is not part of
any unique key in the table:

mysql> ALTER TABLE np_pk
    ->     PARTITION BY HASH( TO_DAYS(added) )
    ->     PARTITIONS 4;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

However, this statement using the id column for the partitioning column is valid, as shown here:

mysql> ALTER TABLE np_pk
    ->     PARTITION BY HASH(id)
    ->     PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0  Duplicates: 0  Warnings: 0

In the case of np_pk, the only column that may be used as part of a partitioning expression is id; if
you wish to partition this table using any other column or columns in the partitioning expression, you
must first modify the table, either by adding the desired column or columns to the primary key, or by
dropping the primary key altogether.

19.5.2 Partitioning Limitations Relating to Storage Engines

The following limitations apply to the use of storage engines with user-defined partitioning of tables.

MERGE storage engine.  User-defined partitioning and the MERGE storage engine are not
compatible. Tables using the MERGE storage engine cannot be partitioned. Partitioned tables cannot be
merged.

FEDERATED storage engine.  Partitioning of FEDERATED tables is not supported; it is not possible
to create partitioned FEDERATED tables.

CSV storage engine.  Partitioned tables using the CSV storage engine are not supported; it is not
possible to create partitioned CSV tables.

InnoDB storage engine.  InnoDB foreign keys and MySQL partitioning are not compatible.
Partitioned InnoDB tables cannot have foreign key references, nor can they have columns referenced



Partitioning Limitations Relating to Functions

2500

by foreign keys. InnoDB tables which have or which are referenced by foreign keys cannot be
partitioned.

InnoDB does not support the use of multiple disks for subpartitions. (This is currently supported only
by MyISAM.)

In addition, ALTER TABLE ... OPTIMIZE PARTITION does not work correctly with partitioned
tables that use the InnoDB storage engine. Use ALTER TABLE ... REBUILD PARTITION and
ALTER TABLE ... ANALYZE PARTITION, instead, for such tables. For more information, see
Section 13.1.7.1, “ALTER TABLE Partition Operations”.

User-defined partitioning and the NDB storage engine (NDB Cluster).  Partitioning by KEY
(including LINEAR KEY) is the only type of partitioning supported for the NDB storage engine. It is not
possible under normal circumstances in MySQL NDB Cluster 7.2 or MySQL NDB Cluster 7.3 to create
an NDB Cluster table using any partitioning type other than [LINEAR] KEY, and attempting to do so fails
with an error.

Exception (not for production): It is possible to override this restriction by setting the new system
variable on NDB Cluster SQL nodes to ON. If you choose to do this, you should be aware that tables
using partitioning types other than [LINEAR] KEY are not supported in production. In such cases,
you can create and use tables with partitioning types other than KEY or LINEAR KEY, but you do this
entirely at your own risk.

The maximum number of partitions that can be defined for an NDB table depends on the number of
data nodes and node groups in the cluster, the version of the NDB Cluster software in use, and other
factors. See NDB and user-defined partitioning, for more information.

The maximum amount of fixed-size data that can be stored per partition in an NDB table is 16 GB.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDB table not to
meet either or both of the following two requirements are not permitted, and fail with an error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception.  If a user-partitioned NDB table is created using an empty column-list (that is, using
PARTITION BY KEY() or PARTITION BY LINEAR KEY()), then no explicit primary key is required.

Upgrading partitioned tables.  When performing an upgrade, tables which are partitioned by KEY
and which use any storage engine other than NDB must be dumped and reloaded.

Same storage engine for all partitions.  All partitions of a partitioned table must use the same
storage engine and it must be the same storage engine used by the table as a whole. In addition, if one
does not specify an engine on the table level, then one must do either of the following when creating or
altering a partitioned table:

• Do not specify any engine for any partition or subpartition

• Specify the engine for all partitions or subpartitions

19.5.3 Partitioning Limitations Relating to Functions

This section discusses limitations in MySQL Partitioning relating specifically to functions used in
partitioning expressions.

Only the MySQL functions shown in the following table are allowed in partitioning expressions.

ABS() CEILING() (see CEILING() and
FLOOR())

DAY()



Partitioning and Table-Level Locking

2501

DAYOFMONTH() DAYOFWEEK() DAYOFYEAR()

DATEDIFF() EXTRACT() (see EXTRACT()
function with WEEK specifier)

FLOOR() (see CEILING() and
FLOOR())

HOUR() MICROSECOND() MINUTE()

MOD() MONTH() QUARTER()

SECOND() TIME_TO_SEC() TO_DAYS()

TO_SECONDS() (implemented in
MySQL 5.5.0)

UNIX_TIMESTAMP() (permitted
beginning with MySQL 5.5.1 and
fully supported beginning with
MySQL 5.5.15, with TIMESTAMP
columns)

WEEKDAY()

YEAR()  YEARWEEK()

In MySQL 5.5, range optimization can be used for the TO_DAYS(), TO_SECONDS(), and YEAR()
functions. In addition, beginning with MySQL 5.5.15, UNIX_TIMESTAMP() is treated as monotonic in
partitioning expressions. See Section 19.4, “Partition Pruning”, for more information.

CEILING() and FLOOR().  Each of these functions returns an integer only if it is passed an argument
of an exact numeric type, such as one of the INT types or DECIMAL. This means, for example, that the
following CREATE TABLE statement fails with an error, as shown here:

mysql> CREATE TABLE t (c FLOAT) PARTITION BY LIST( FLOOR(c) )(
    ->     PARTITION p0 VALUES IN (1,3,5),
    ->     PARTITION p1 VALUES IN (2,4,6)
    -> );
ERROR 1490 (HY000): The PARTITION function returns the wrong type

EXTRACT() function with WEEK specifier.  The value returned by the EXTRACT() function,
when used as EXTRACT(WEEK FROM col), depends on the value of the default_week_format
system variable. For this reason, beginning with MySQL 5.5.9, EXTRACT() is no longer permitted as a
partitioning function when it specifies the unit as WEEK. (Bug #54483)

See Section 12.6.2, “Mathematical Functions”, for more information about the return types of these
functions, as well as Section 11.2, “Numeric Types”.

19.5.4 Partitioning and Table-Level Locking

For storage engines such as MyISAM that actually execute table-level locks when executing DML
or DDL statements, such a statement affecting a partitioned table imposes a lock on the table as a
whole; that is, all partitions are locked until the statement was finished. For example, a SELECT from a
partitioned MyISAM table causes a lock on the entire table.

In practical terms, what this means is that the statements discussed later in this section tend to execute
more slowly as the number of partitions increases. This limitation is greatly reduced in MySQL 5.6, with
the introduction of partition lock pruning in MySQL 5.6.6.

This is not true for statements effecting partitioned tables using storage engines such as InnoDB, that
employ row-level locking and do not actually perform (or need to perform) the locks prior to partition
pruning.

The next few paragraphs discuss the effects of MySQL statements on partitioned tables using storage
engines that employ table-level locks.

DML statements

SELECT statements lock the entire table. SELECT statements containing unions or joins lock all tables
named in the union or join.



Partitioning and Table-Level Locking

2502

UPDATE also locks the entire table.

REPLACE and INSERT (including INSERT ... ON DUPLICATE KEY UPDATE) lock the entire table.

INSERT ... SELECT locks both the source table and the target table.

Note

INSERT DELAYED is not supported for partitioned tables.

A LOAD DATA statement on a partitioned table locks the entire table.

A trigger on a partitioned table, once activated, locks the entire table.

DDL statements

CREATE VIEW causes a lock on any partitioned table from which it reads.

ALTER TABLE locks the affected partitioned table.

Other statements

LOCK TABLES locks all partitions of a partioned table.

Evaluating the expr in a CALL stored_procedure(expr) statement locks all partitions of any
partitioned table referenced by expr.

ALTER TABLE also takes a metadata lock on the table level.



2503

Chapter 20 Stored Programs and Views

Table of Contents
20.1 Defining Stored Programs ................................................................................................ 2504
20.2 Using Stored Routines (Procedures and Functions) ........................................................... 2505

20.2.1 Stored Routine Syntax .......................................................................................... 2505
20.2.2 Stored Routines and MySQL Privileges ................................................................. 2506
20.2.3 Stored Routine Metadata ...................................................................................... 2506
20.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() ........................... 2507

20.3 Using Triggers ................................................................................................................. 2507
20.3.1 Trigger Syntax and Examples ................................................................................ 2508
20.3.2 Trigger Metadata .................................................................................................. 2511

20.4 Using the Event Scheduler .............................................................................................. 2511
20.4.1 Event Scheduler Overview .................................................................................... 2512
20.4.2 Event Scheduler Configuration .............................................................................. 2513
20.4.3 Event Syntax ........................................................................................................ 2515
20.4.4 Event Metadata .................................................................................................... 2515
20.4.5 Event Scheduler Status ......................................................................................... 2516
20.4.6 The Event Scheduler and MySQL Privileges .......................................................... 2516

20.5 Using Views .................................................................................................................... 2519
20.5.1 View Syntax ......................................................................................................... 2519
20.5.2 View Processing Algorithms .................................................................................. 2520
20.5.3 Updatable and Insertable Views ............................................................................ 2521
20.5.4 The View WITH CHECK OPTION Clause .............................................................. 2523
20.5.5 View Metadata ...................................................................................................... 2523

20.6 Access Control for Stored Programs and Views ................................................................ 2524
20.7 Binary Logging of Stored Programs .................................................................................. 2525

This chapter discusses stored programs and views, which are database objects defined in terms of
SQL code that is stored on the server for later execution.

Stored programs include these objects:

• Stored routines, that is, stored procedures and functions. A stored procedure is invoked using the
CALL statement. A procedure does not have a return value but can modify its parameters for later
inspection by the caller. It can also generate result sets to be returned to the client program. A stored
function is used much like a built-in function. you invoke it in an expression and it returns a value
during expression evaluation.

• Triggers. A trigger is a named database object that is associated with a table and that is activated
when a particular event occurs for the table, such as an insert or update.

• Events. An event is a task that the server runs according to schedule.

Views are stored queries that when referenced produce a result set. A view acts as a virtual table.

This chapter describes how to use stored programs and views. The following sections provide
additional information about SQL syntax for statements related to these objects:

• For each object type, there are CREATE, ALTER, and DROP statements that control which objects
exist and how they are defined. See Section 13.1, “Data Definition Statements”.

• The CALL statement is used to invoke stored procedures. See Section 13.2.1, “CALL Syntax”.

• Stored program definitions include a body that may use compound statements, loops, conditionals,
and declared variables. See Section 13.6, “Compound-Statement Syntax”.



Defining Stored Programs

2504

20.1 Defining Stored Programs
Each stored program contains a body that consists of an SQL statement. This statement may be a
compound statement made up of several statements separated by semicolon (;) characters. For
example, the following stored procedure has a body made up of a BEGIN ... END block that contains
a SET statement and a REPEAT loop that itself contains another SET statement:

CREATE PROCEDURE dorepeat(p1 INT)
BEGIN
  SET @x = 0;
  REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
END;

If you use the mysql client program to define a stored program containing semicolon characters, a
problem arises. By default, mysql itself recognizes the semicolon as a statement delimiter, so you
must redefine the delimiter temporarily to cause mysql to pass the entire stored program definition to
the server.

To redefine the mysql delimiter, use the delimiter command. The following example shows how to
do this for the dorepeat() procedure just shown. The delimiter is changed to // to enable the entire
definition to be passed to the server as a single statement, and then restored to ; before invoking the
procedure. This enables the ; delimiter used in the procedure body to be passed through to the server
rather than being interpreted by mysql itself.

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
    -> BEGIN
    ->   SET @x = 0;
    ->   REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
    -> END
    -> //
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL dorepeat(1000);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;
+------+
| @x   |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

You can redefine the delimiter to a string other than //, and the delimiter can consist of a single
character or multiple characters. You should avoid the use of the backslash (\) character because that
is the escape character for MySQL.

The following is an example of a function that takes a parameter, performs an operation using an SQL
function, and returns the result. In this case, it is unnecessary to use delimiter because the function
definition contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
    -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+



Using Stored Routines (Procedures and Functions)

2505

| Hello, world!  |
+----------------+
1 row in set (0.00 sec)

20.2 Using Stored Routines (Procedures and Functions)
MySQL supports stored routines (procedures and functions). A stored routine is a set of SQL
statements that can be stored in the server. Once this has been done, clients don't need to keep
reissuing the individual statements but can refer to the stored routine instead.

Stored routines require the proc table in the mysql database. This table is created during the MySQL
installation procedure. If you are upgrading to MySQL 5.5 from an earlier version, be sure to update
your grant tables to make sure that the proc table exists. See Section 4.4.7, “mysql_upgrade —
Check and Upgrade MySQL Tables”.

Stored routines can be particularly useful in certain situations:

• When multiple client applications are written in different languages or work on different platforms, but
need to perform the same database operations.

• When security is paramount. Banks, for example, use stored procedures and functions for all
common operations. This provides a consistent and secure environment, and routines can ensure
that each operation is properly logged. In such a setup, applications and users would have no access
to the database tables directly, but can only execute specific stored routines.

Stored routines can provide improved performance because less information needs to be sent between
the server and the client. The tradeoff is that this does increase the load on the database server
because more of the work is done on the server side and less is done on the client (application)
side. Consider this if many client machines (such as Web servers) are serviced by only one or a few
database servers.

Stored routines also enable you to have libraries of functions in the database server. This is a feature
shared by modern application languages that enable such design internally (for example, by using
classes). Using these client application language features is beneficial for the programmer even
outside the scope of database use.

MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2. All syntax
described here is supported and any limitations and extensions are documented where appropriate.

Additional Resources

• You may find the Stored Procedures User Forum of use when working with stored procedures and
functions.

• For answers to some commonly asked questions regarding stored routines in MySQL, see
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”.

• There are some restrictions on the use of stored routines. See Section C.1, “Restrictions on Stored
Programs”.

• Binary logging for stored routines takes place as described in Section 20.7, “Binary Logging of
Stored Programs”.

20.2.1 Stored Routine Syntax

A stored routine is either a procedure or a function. Stored routines are created with the CREATE
PROCEDURE and CREATE FUNCTION statements (see Section 13.1.15, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”). A procedure is invoked using a CALL statement (see Section 13.2.1,
“CALL Syntax”), and can only pass back values using output variables. A function can be called
from inside a statement just like any other function (that is, by invoking the function's name), and can
return a scalar value. The body of a stored routine can use compound statements (see Section 13.6,
“Compound-Statement Syntax”).

http://forums.mysql.com/list.php?98


Stored Routines and MySQL Privileges

2506

Stored routines can be dropped with the DROP PROCEDURE and DROP FUNCTION statements (see
Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Syntax”), and altered with the ALTER
PROCEDURE and ALTER FUNCTION statements (see Section 13.1.5, “ALTER PROCEDURE Syntax”).

A stored procedure or function is associated with a particular database. This has several implications:

• When the routine is invoked, an implicit USE db_name is performed (and undone when the routine
terminates). USE statements within stored routines are not permitted.

• You can qualify routine names with the database name. This can be used to refer to a routine that
is not in the current database. For example, to invoke a stored procedure p or function f that is
associated with the test database, you can say CALL test.p() or test.f().

• When a database is dropped, all stored routines associated with it are dropped as well.

Stored functions cannot be recursive.

Recursion in stored procedures is permitted but disabled by default. To enable recursion, set
the max_sp_recursion_depth server system variable to a value greater than zero. Stored
procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the
value of thread_stack at server startup. See Section 5.1.5, “Server System Variables”, for more
information.

MySQL supports a very useful extension that enables the use of regular SELECT statements (that
is, without using cursors or local variables) inside a stored procedure. The result set of such a query
is simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so
the client must use a MySQL client library that supports multiple result sets. This means the client
must use a client library from a version of MySQL at least as recent as 4.1. The client should also
specify the CLIENT_MULTI_RESULTS option when it connects. For C programs, this can be done with
the mysql_real_connect() C API function. See Section 23.8.7.52, “mysql_real_connect()”, and
Section 23.8.17, “C API Support for Multiple Statement Execution”.

20.2.2 Stored Routines and MySQL Privileges

The MySQL grant system takes stored routines into account as follows:

• The CREATE ROUTINE privilege is needed to create stored routines.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted
automatically to the creator of a routine if necessary, and dropped from the creator when the routine
is dropped.

• The EXECUTE privilege is required to execute stored routines. However, this privilege is granted
automatically to the creator of a routine if necessary (and dropped from the creator when the routine
is dropped). Also, the default SQL SECURITY characteristic for a routine is DEFINER, which enables
users who have access to the database with which the routine is associated to execute the routine.

• If the automatic_sp_privileges system variable is 0, the EXECUTE and ALTER ROUTINE
privileges are not automatically granted to and dropped from the routine creator.

• The creator of a routine is the account used to execute the CREATE statement for it. This might not
be the same as the account named as the DEFINER in the routine definition.

The server manipulates the mysql.proc table in response to statements that create, alter, or drop
stored routines. It is not supported that the server will notice manual manipulation of this table.

20.2.3 Stored Routine Metadata

Metadata about stored routines can be obtained as follows:



Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

2507

• Query the ROUTINES table of the INFORMATION_SCHEMA database. See Section 21.17, “The
INFORMATION_SCHEMA ROUTINES Table”.

• Use the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements to see routine
definitions. See Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”.

• Use the SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS statements to see routine
characteristics. See Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”.

20.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

Within the body of a stored routine (procedure or function) or a trigger, the value of
LAST_INSERT_ID() changes the same way as for statements executed outside the body of these
kinds of objects (see Section 12.14, “Information Functions”). The effect of a stored routine or trigger
upon the value of LAST_INSERT_ID() that is seen by following statements depends on the kind of
routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so following statements do not see a changed value.

20.3 Using Triggers

A trigger is a named database object that is associated with a table, and that activates when a
particular event occurs for the table. Some uses for triggers are to perform checks of values to be
inserted into a table or to perform calculations on values involved in an update.

A trigger is defined to activate when a statement inserts, updates, or deletes rows in the associated
table. These row operations are trigger events. For example, rows can be inserted by INSERT or LOAD
DATA statements, and an insert trigger activates for each inserted row. A trigger can be set to activate
either before or after the trigger event. For example, you can have a trigger activate before each row
that is inserted into a table or after each row that is updated.

Important

MySQL triggers activate only for changes made to tables by SQL statements.
They do not activate for changes in views, nor by changes to tables made by
APIs that do not transmit SQL statements to the MySQL Server. This means
that:

• Triggers are not activated by changes in INFORMATION_SCHEMA or
performance_schema tables, because these tables are actually views.

• Triggers are not activated by updates made using the NDB API.

To use triggers if you have upgraded to MySQL 5.5 from an older release that did not support
triggers, you should upgrade your grant tables so that they contain the trigger-related privileges. See
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.

The following sections describe the syntax for creating and dropping triggers, show some examples of
how to use them, and indicate how to obtain trigger metadata.

Additional Resources

• You may find the Triggers User Forum of use when working with triggers.

• For answers to commonly asked questions regarding triggers in MySQL, see Section A.5, “MySQL
5.5 FAQ: Triggers”.

http://forums.mysql.com/list.php?100


Trigger Syntax and Examples

2508

• There are some restrictions on the use of triggers; see Section C.1, “Restrictions on Stored
Programs”.

• Binary logging for triggers takes place as described in Section 20.7, “Binary Logging of Stored
Programs”.

20.3.1 Trigger Syntax and Examples

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement,
described in Section 13.1.19, “CREATE TRIGGER Syntax”, and Section 13.1.30, “DROP TRIGGER
Syntax”.

Here is a simple example that associates a trigger with a table, to activate for INSERT operations. The
trigger acts as an accumulator, summing the values inserted into one of the columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
       FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.01 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the
account table. It also includes clauses that specify the trigger action time, the triggering event, and
what to do when the trigger activates:

• The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each
row inserted into the table. The other permitted keyword here is AFTER.

• The keyword INSERT indicates the trigger event; that is, the type of operation that activates the
trigger. In the example, INSERT operations cause trigger activation. You can also create triggers for
DELETE and UPDATE operations.

• The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute
each time the trigger activates, which occurs once for each row affected by the triggering event.
In the example, the trigger body is a simple SET that accumulates into a user variable the values
inserted into the amount column. The statement refers to the column as NEW.amount which means
“the value of the amount column to be inserted into the new row.”

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see
what value the variable has afterward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
|               1852.48 |
+-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 -
100, or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the
trigger is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names
within a schema. Triggers in different schemas can have the same name.



Trigger Syntax and Examples

2509

In addition to the requirement that trigger names be unique for a schema, there are other limitations
on the types of triggers you can create. In particular, there cannot be multiple triggers for a given table
that have the same trigger event and action time. For example, you cannot have two BEFORE UPDATE
triggers for a table. To work around this, you can define a trigger that executes multiple statements
by using the BEGIN ... END compound statement construct after FOR EACH ROW. (An example
appears later in this section.)

Within the trigger body, the OLD and NEW keywords enable you to access columns in the rows affected
by a trigger. OLD and NEW are MySQL extensions to triggers; they are not case sensitive.

In an INSERT trigger, only NEW.col_name can be used; there is no old row. In a DELETE trigger, only
OLD.col_name can be used; there is no new row. In an UPDATE trigger, you can use OLD.col_name
to refer to the columns of a row before it is updated and NEW.col_name to refer to the columns of the
row after it is updated.

A column named with OLD is read only. You can refer to it (if you have the SELECT privilege), but
not modify it. You can refer to a column named with NEW if you have the SELECT privilege for it. In a
BEFORE trigger, you can also change its value with SET NEW.col_name = value if you have the
UPDATE privilege for it. This means you can use a trigger to modify the values to be inserted into a new
row or used to update a row. (Such a SET statement has no effect in an AFTER trigger because the row
change will have already occurred.)

In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the sequence number
that is generated automatically when the new row actually is inserted.

By using the BEGIN ... END construct, you can define a trigger that executes multiple statements.
Within the BEGIN block, you also can use other syntax that is permitted within stored routines such as
conditionals and loops. However, just as for stored routines, if you use the mysql program to define a
trigger that executes multiple statements, it is necessary to redefine the mysql statement delimiter so
that you can use the ; statement delimiter within the trigger definition. The following example illustrates
these points. It defines an UPDATE trigger that checks the new value to be used for updating each row,
and modifies the value to be within the range from 0 to 100. This must be a BEFORE trigger because
the value must be checked before it is used to update the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
    -> FOR EACH ROW
    -> BEGIN
    ->     IF NEW.amount < 0 THEN
    ->         SET NEW.amount = 0;
    ->     ELSEIF NEW.amount > 100 THEN
    ->         SET NEW.amount = 100;
    ->     END IF;
    -> END;//
mysql> delimiter ;

It can be easier to define a stored procedure separately and then invoke it from the trigger using a
simple CALL statement. This is also advantageous if you want to execute the same code from within
several triggers.

There are limitations on what can appear in statements that a trigger executes when activated:

• The trigger cannot use the CALL statement to invoke stored procedures that return data to the client
or that use dynamic SQL. (Stored procedures are permitted to return data to the trigger through OUT
or INOUT parameters.)

• The trigger cannot use statements that explicitly or implicitly begin or end a transaction, such as
START TRANSACTION, COMMIT, or ROLLBACK. (ROLLBACK to SAVEPOINT is permitted because it
does not end a transaction.).

See also Section C.1, “Restrictions on Stored Programs”.

MySQL handles errors during trigger execution as follows:



Trigger Syntax and Examples

2510

• If a BEFORE trigger fails, the operation on the corresponding row is not performed.

• A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the
attempt subsequently succeeds.

• An AFTER trigger is executed only if any BEFORE triggers and the row operation execute
successfully.

• An error during either a BEFORE or AFTER trigger results in failure of the entire statement that caused
trigger invocation.

• For transactional tables, failure of a statement should cause rollback of all changes performed by the
statement. Failure of a trigger causes the statement to fail, so trigger failure also causes rollback. For
nontransactional tables, such rollback cannot be done, so although the statement fails, any changes
performed prior to the point of the error remain in effect.

In MySQL 5.5, triggers can contain direct references to tables by name, such as the trigger named
testref shown in this example:

CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(
  a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
  b4 INT DEFAULT 0
);

delimiter |

CREATE TRIGGER testref BEFORE INSERT ON test1
  FOR EACH ROW
  BEGIN
    INSERT INTO test2 SET a2 = NEW.a1;
    DELETE FROM test3 WHERE a3 = NEW.a1;
    UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;
  END;
|

delimiter ;

INSERT INTO test3 (a3) VALUES
  (NULL), (NULL), (NULL), (NULL), (NULL),
  (NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
  (0), (0), (0), (0), (0), (0), (0), (0), (0), (0);

Suppose that you insert the following values into table test1 as shown here:

mysql> INSERT INTO test1 VALUES 
       (1), (3), (1), (7), (1), (8), (4), (4);
Query OK, 8 rows affected (0.01 sec)
Records: 8  Duplicates: 0  Warnings: 0

As a result, the four tables contain the following data:

mysql> SELECT * FROM test1;
+------+
| a1   |
+------+
|    1 |
|    3 |
|    1 |
|    7 |
|    1 |
|    8 |
|    4 |



Trigger Metadata

2511

|    4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2   |
+------+
|    1 |
|    3 |
|    1 |
|    7 |
|    1 |
|    8 |
|    4 |
|    4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
|  2 |
|  5 |
|  6 |
|  9 |
| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4   |
+----+------+
|  1 |    3 |
|  2 |    0 |
|  3 |    1 |
|  4 |    2 |
|  5 |    0 |
|  6 |    0 |
|  7 |    1 |
|  8 |    1 |
|  9 |    0 |
| 10 |    0 |
+----+------+
10 rows in set (0.00 sec)

20.3.2 Trigger Metadata

Metadata about triggers can be obtained as follows:

• Query the TRIGGERS table of the INFORMATION_SCHEMA database. See Section 21.25, “The
INFORMATION_SCHEMA TRIGGERS Table”.

• Use the SHOW CREATE TRIGGER statement. See Section 13.7.5.13, “SHOW CREATE TRIGGER
Syntax”.

• Use the SHOW TRIGGERS statement. See Section 13.7.5.39, “SHOW TRIGGERS Syntax”.

20.4 Using the Event Scheduler
The MySQL Event Scheduler manages the scheduling and execution of events, that is, tasks that run
according to a schedule. The following discussion covers the Event Scheduler and is divided into the
following sections:

• Section 20.4.1, “Event Scheduler Overview”, provides an introduction to and conceptual overview of
MySQL Events.



Additional Resources

2512

• Section 20.4.3, “Event Syntax”, discusses the SQL statements for creating, altering, and dropping
MySQL Events.

• Section 20.4.4, “Event Metadata”, shows how to obtain information about events and how this
information is stored by the MySQL Server.

• Section 20.4.6, “The Event Scheduler and MySQL Privileges”, discusses the privileges required to
work with events and the ramifications that events have with regard to privileges when executing.

Stored routines require the event table in the mysql database. This table is created during the
MySQL 5.5 installation procedure. If you are upgrading to MySQL 5.5 from an earlier version,
be sure to update your grant tables to make sure that the event table exists. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

Additional Resources

• You may find the MySQL Event Scheduler User Forum of use when working with scheduled events.

• There are some restrictions on the use of events; see Section C.1, “Restrictions on Stored
Programs”.

• Binary logging for events takes place as described in Section 20.7, “Binary Logging of Stored
Programs”.

20.4.1 Event Scheduler Overview

MySQL Events are tasks that run according to a schedule. Therefore, we sometimes refer to them as
scheduled events. When you create an event, you are creating a named database object containing
one or more SQL statements to be executed at one or more regular intervals, beginning and ending at
a specific date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a
“cron job”) or the Windows Task Scheduler.

Scheduled tasks of this type are also sometimes known as “temporal triggers”, implying that these are
objects that are triggered by the passage of time. While this is essentially correct, we prefer to use the
term events to avoid confusion with triggers of the type discussed in Section 20.3, “Using Triggers”.
Events should more specifically not be confused with “temporary triggers”. Whereas a trigger is a
database object whose statements are executed in response to a specific type of event that occurs
on a given table, a (scheduled) event is an object whose statements are executed in response to the
passage of a specified time interval.

While there is no provision in the SQL Standard for event scheduling, there are precedents in other
database systems, and you may notice some similarities between these implementations and that
found in the MySQL Server.

MySQL Events have the following major features and properties:

• In MySQL, an event is uniquely identified by its name and the schema to which it is assigned.

• An event performs a specific action according to a schedule. This action consists of an SQL
statement, which can be a compound statement in a BEGIN ... END block if desired (see
Section 13.6, “Compound-Statement Syntax”). An event's timing can be either one-time or recurrent.
A one-time event executes one time only. A recurrent event repeats its action at a regular interval,
and the schedule for a recurring event can be assigned a specific start day and time, end day and
time, both, or neither. (By default, a recurring event's schedule begins as soon as it is created, and
continues indefinitely, until it is disabled or dropped.)

If a repeating event does not terminate within its scheduling interval, the result may be multiple
instances of the event executing simultaneously. If this is undesirable, you should institute a
mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK()
function, or row or table locking.

http://forums.mysql.com/list.php?119


Event Scheduler Configuration

2513

• Users can create, modify, and drop scheduled events using SQL statements intended for these
purposes. Syntactically invalid event creation and modification statements fail with an appropriate
error message. A user may include statements in an event's action which require privileges that the
user does not actually have. The event creation or modification statement succeeds but the event's
action fails. See Section 20.4.6, “The Event Scheduler and MySQL Privileges” for details.

• Many of the properties of an event can be set or modified using SQL statements. These properties
include the event's name, timing, persistence (that is, whether it is preserved following the expiration
of its schedule), status (enabled or disabled), action to be performed, and the schema to which it is
assigned. See Section 13.1.2, “ALTER EVENT Syntax”.

The default definer of an event is the user who created the event, unless the event has been altered,
in which case the definer is the user who issued the last ALTER EVENT statement affecting that
event. An event can be modified by any user having the EVENT privilege on the database for which
the event is defined. See Section 20.4.6, “The Event Scheduler and MySQL Privileges”.

• An event's action statement may include most SQL statements permitted within stored routines. For
restrictions, see Section C.1, “Restrictions on Stored Programs”.

20.4.2 Event Scheduler Configuration

Events are executed by a special event scheduler thread; when we refer to the Event Scheduler, we
actually refer to this thread. When running, the event scheduler thread and its current state can be
seen by users having the PROCESS privilege in the output of SHOW PROCESSLIST, as shown in the
discussion that follows.

The global event_scheduler system variable determines whether the Event Scheduler is enabled
and running on the server. It has one of these 3 values, which affect event scheduling as described
here:

• OFF: The Event Scheduler is stopped. The event scheduler thread does not run, is not shown in the
output of SHOW PROCESSLIST, and no scheduled events are executed. OFF is the default value for
event_scheduler.

When the Event Scheduler is stopped (event_scheduler is OFF), it can be started by setting the
value of event_scheduler to ON. (See next item.)

• ON: The Event Scheduler is started; the event scheduler thread runs and executes all scheduled
events.

When the Event Scheduler is ON, the event scheduler thread is listed in the output of SHOW
PROCESSLIST as a daemon process, and its state is represented as shown here:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
     Id: 1
   User: root
   Host: localhost
     db: NULL
Command: Query
   Time: 0
  State: NULL
   Info: show processlist
*************************** 2. row ***************************
     Id: 2
   User: event_scheduler
   Host: localhost
     db: NULL
Command: Daemon
   Time: 3
  State: Waiting for next activation
   Info: NULL
2 rows in set (0.00 sec)



Event Scheduler Configuration

2514

Event scheduling can be stopped by setting the value of event_scheduler to OFF.

• DISABLED: This value renders the Event Scheduler nonoperational. When the Event Scheduler is
DISABLED, the event scheduler thread does not run (and so does not appear in the output of SHOW
PROCESSLIST). In addition, the Event Scheduler state cannot be changed at runtime.

If the Event Scheduler status has not been set to DISABLED, event_scheduler can be toggled
between ON and OFF (using SET). It is also possible to use 0 for OFF, and 1 for ON when setting this
variable. Thus, any of the following 4 statements can be used in the mysql client to turn on the Event
Scheduler:

SET GLOBAL event_scheduler = ON;
SET @@global.event_scheduler = ON;
SET GLOBAL event_scheduler = 1;
SET @@global.event_scheduler = 1;

Similarly, any of these 4 statements can be used to turn off the Event Scheduler:

SET GLOBAL event_scheduler = OFF;
SET @@global.event_scheduler = OFF;
SET GLOBAL event_scheduler = 0;
SET @@global.event_scheduler = 0;

Although ON and OFF have numeric equivalents, the value displayed for event_scheduler by
SELECT or SHOW VARIABLES is always one of OFF, ON, or DISABLED. DISABLED has no numeric
equivalent. For this reason, ON and OFF are usually preferred over 1 and 0 when setting this variable.

Note that attempting to set event_scheduler without specifying it as a global variable causes an
error:

mysql< SET @@event_scheduler = OFF;
ERROR 1229 (HY000): Variable 'event_scheduler' is a GLOBAL
variable and should be set with SET GLOBAL

Important

It is possible to set the Event Scheduler to DISABLED only at server startup. If
event_scheduler is ON or OFF, you cannot set it to DISABLED at runtime.
Also, if the Event Scheduler is set to DISABLED at startup, you cannot change
the value of event_scheduler at runtime.

To disable the event scheduler, use one of the following two methods:

• As a command-line option when starting the server:

--event-scheduler=DISABLED

• In the server configuration file (my.cnf, or my.ini on Windows systems), include the line where it
will be read by the server (for example, in a [mysqld] section):

event_scheduler=DISABLED

To enable the Event Scheduler, restart the server without the --event-scheduler=DISABLED
command-line option, or after removing or commenting out the line containing event-
scheduler=DISABLED in the server configuration file, as appropriate. Alternatively, you can use ON
(or 1) or OFF (or 0) in place of the DISABLED value when starting the server.

Note

You can issue event-manipulation statements when event_scheduler is set
to DISABLED. No warnings or errors are generated in such cases (provided



Event Syntax

2515

that the statements are themselves valid). However, scheduled events cannot
execute until this variable is set to ON (or 1). Once this has been done, the event
scheduler thread executes all events whose scheduling conditions are satisfied.

Starting the MySQL server with the --skip-grant-tables option causes event_scheduler to
be set to DISABLED, overriding any other value set either on the command line or in the my.cnf or
my.ini file (Bug #26807).

For SQL statements used to create, alter, and drop events, see Section 20.4.3, “Event Syntax”.

MySQL provides an EVENTS table in the INFORMATION_SCHEMA database. This table can be
queried to obtain information about scheduled events which have been defined on the server. See
Section 20.4.4, “Event Metadata”, and Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”,
for more information.

For information regarding event scheduling and the MySQL privilege system, see Section 20.4.6, “The
Event Scheduler and MySQL Privileges”.

20.4.3 Event Syntax

MySQL provides several SQL statements for working with scheduled events:

• New events are defined using the CREATE EVENT statement. See Section 13.1.11, “CREATE
EVENT Syntax”.

• The definition of an existing event can be changed by means of the ALTER EVENT statement. See
Section 13.1.2, “ALTER EVENT Syntax”.

• When a scheduled event is no longer wanted or needed, it can be deleted from the server by its
definer using the DROP EVENT statement. See Section 13.1.22, “DROP EVENT Syntax”. Whether an
event persists past the end of its schedule also depends on its ON COMPLETION clause, if it has one.
See Section 13.1.11, “CREATE EVENT Syntax”.

An event can be dropped by any user having the EVENT privilege for the database on which the
event is defined. See Section 20.4.6, “The Event Scheduler and MySQL Privileges”.

20.4.4 Event Metadata

Metadata about events can be obtained as follows:

• Query the event table of the mysql database.

• Query the EVENTS table of the INFORMATION_SCHEMA database. See Section 21.7, “The
INFORMATION_SCHEMA EVENTS Table”.

• Use the SHOW CREATE EVENT statement. See Section 13.7.5.9, “SHOW CREATE EVENT Syntax”.

• Use the SHOW EVENTS statement. See Section 13.7.5.19, “SHOW EVENTS Syntax”.

Event Scheduler Time Representation

Each session in MySQL has a session time zone (STZ). This is the session time_zone value that is
initialized from the server's global time_zone value when the session begins but may be changed
during the session.

The session time zone that is current when a CREATE EVENT or ALTER EVENT statement executes is
used to interpret times specified in the event definition. This becomes the event time zone (ETZ); that
is, the time zone that is used for event scheduling and is in effect within the event as it executes.

For representation of event information in the mysql.event table, the execute_at, starts, and
ends times are converted to UTC and stored along with the event time zone. This enables event
execution to proceed as defined regardless of any subsequent changes to the server time zone or
daylight saving time effects. The last_executed time is also stored in UTC.



Event Scheduler Status

2516

If you select information from mysql.event, the times just mentioned are retrieved as UTC values.
These times can also be obtained by selecting from the INFORMATION_SCHEMA.EVENTS table or
from SHOW EVENTS, but they are reported as ETZ values. Other times available from these sources
indicate when an event was created or last altered; these are displayed as STZ values. The following
table summarizes representation of event times.

Value mysql.event INFORMATION_SCHEMA.EVENTSSHOW EVENTS

Execute at UTC ETZ ETZ

Starts UTC ETZ ETZ

Ends UTC ETZ ETZ

Last executed UTC ETZ n/a

Created STZ STZ n/a

Last altered STZ STZ n/a

20.4.5 Event Scheduler Status

The Event Scheduler writes information about event execution that terminates with an error or warning
to the MySQL Server's error log. See Section 20.4.6, “The Event Scheduler and MySQL Privileges” for
an example.

Information about the state of the Event Scheduler for debugging and troubleshooting purposes
can be obtained by running mysqladmin debug (see Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”); after running this command, the server's error log contains output
relating to the Event Scheduler, similar to what is shown here:

Events status:
LLA = Last Locked At  LUA = Last Unlocked At
WOC = Waiting On Condition  DL = Data Locked

Event scheduler status:
State      : INITIALIZED
Thread id  : 0
LLA        : init_scheduler:313
LUA        : init_scheduler:318
WOC        : NO
Workers    : 0
Executed   : 0
Data locked: NO

Event queue status:
Element count   : 1
Data locked     : NO
Attempting lock : NO
LLA             : init_queue:148
LUA             : init_queue:168
WOC             : NO
Next activation : 0000-00-00 00:00:00

In statements that occur as part of events executed by the Event Scheduler, diagnostics messages
(not only errors, but also warnings) are written to the error log, and, on Windows, to the application
event log. For frequently executed events, it is possible for this to result in many logged messages.
For example, for SELECT ... INTO var_list statements, if the query returns no rows, a warning
with error code 1329 occurs (No data), and the variable values remain unchanged. If the query
returns multiple rows, error 1172 occurs (Result consisted of more than one row). For
either condition, you can avoid having the warnings be logged by declaring a condition handler; see
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”. For statements that may retrieve multiple rows,
another strategy is to use LIMIT 1 to limit the result set to a single row.

20.4.6 The Event Scheduler and MySQL Privileges



The Event Scheduler and MySQL Privileges

2517

To enable or disable the execution of scheduled events, it is necessary to set the value of the global
event_scheduler system variable. This requires the SUPER privilege.

The EVENT privilege governs the creation, modification, and deletion of events. This privilege can
be bestowed using GRANT. For example, this GRANT statement confers the EVENT privilege for the
schema named myschema on the user jon@ghidora:

GRANT EVENT ON myschema.* TO jon@ghidora;

(We assume that this user account already exists, and that we wish for it to remain unchanged
otherwise.)

To grant this same user the EVENT privilege on all schemas, use the following statement:

GRANT EVENT ON *.* TO jon@ghidora;

The EVENT privilege has global or schema-level scope. Therefore, trying to grant it on a single table
results in an error as shown:

mysql> GRANT EVENT ON myschema.mytable TO jon@ghidora;
ERROR 1144 (42000): Illegal GRANT/REVOKE command; please
consult the manual to see which privileges can be used

It is important to understand that an event is executed with the privileges of its definer, and that it
cannot perform any actions for which its definer does not have the requisite privileges. For example,
suppose that jon@ghidora has the EVENT privilege for myschema. Suppose also that this user
has the SELECT privilege for myschema, but no other privileges for this schema. It is possible for
jon@ghidora to create a new event such as this one:

CREATE EVENT e_store_ts
    ON SCHEDULE
      EVERY 10 SECOND
    DO
      INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());

The user waits for a minute or so, and then performs a SELECT * FROM mytable; query, expecting
to see several new rows in the table. Instead, the table is empty. Since the user does not have the
INSERT privilege for the table in question, the event has no effect.

If you inspect the MySQL error log (hostname.err), you can see that the event is executing, but the
action it is attempting to perform fails, as indicated by RetCode=0:

060209 22:39:44 [Note]     EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:39:44 [Note]     EVEX EXECUTED event newdb.e  [EXPR:10]. RetCode=0
060209 22:39:54 [Note]     EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:39:54 [Note]     EVEX EXECUTED event newdb.e  [EXPR:10]. RetCode=0
060209 22:40:04 [Note]     EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:40:04 [Note]     EVEX EXECUTED event newdb.e  [EXPR:10]. RetCode=0

Since this user very likely does not have access to the error log, it is possible to verify whether the
event's action statement is valid by executing it directly:

mysql> INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
ERROR 1142 (42000): INSERT command denied to user
'jon'@'ghidora' for table 'mytable'

Inspection of the INFORMATION_SCHEMA.EVENTS table shows that e_store_ts exists and is
enabled, but its LAST_EXECUTED column is NULL:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS



The Event Scheduler and MySQL Privileges

2518

     >     WHERE EVENT_NAME='e_store_ts'
     >     AND EVENT_SCHEMA='myschema'\G
*************************** 1. row ***************************
   EVENT_CATALOG: NULL
    EVENT_SCHEMA: myschema
      EVENT_NAME: e_store_ts
         DEFINER: jon@ghidora
      EVENT_BODY: SQL
EVENT_DEFINITION: INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP())
      EVENT_TYPE: RECURRING
      EXECUTE_AT: NULL
  INTERVAL_VALUE: 5
  INTERVAL_FIELD: SECOND
        SQL_MODE: NULL
          STARTS: 0000-00-00 00:00:00
            ENDS: 0000-00-00 00:00:00
          STATUS: ENABLED
   ON_COMPLETION: NOT PRESERVE
         CREATED: 2006-02-09 22:36:06
    LAST_ALTERED: 2006-02-09 22:36:06
   LAST_EXECUTED: NULL
   EVENT_COMMENT:
1 row in set (0.00 sec)

To rescind the EVENT privilege, use the REVOKE statement. In this example, the EVENT privilege on the
schema myschema is removed from the jon@ghidora user account:

REVOKE EVENT ON myschema.* FROM jon@ghidora;

Important

Revoking the EVENT privilege from a user does not delete or disable any events
that may have been created by that user.

An event is not migrated or dropped as a result of renaming or dropping the
user who created it.

Suppose that the user jon@ghidora has been granted the EVENT and INSERT privileges on the
myschema schema. This user then creates the following event:

CREATE EVENT e_insert
    ON SCHEDULE
      EVERY 7 SECOND
    DO
      INSERT INTO myschema.mytable;

After this event has been created, root revokes the EVENT privilege for jon@ghidora. However,
e_insert continues to execute, inserting a new row into mytable each seven seconds. The same
would be true if root had issued either of these statements:

• DROP USER jon@ghidora;

• RENAME USER jon@ghidora TO someotherguy@ghidora;

You can verify that this is true by examining the mysql.event table (discussed later in this section)
or the INFORMATION_SCHEMA.EVENTS table (see Section 21.7, “The INFORMATION_SCHEMA
EVENTS Table”) before and after issuing a DROP USER or RENAME USER statement.

Event definitions are stored in the mysql.event table. To drop an event created by another user
account, the MySQL root user (or another user with the necessary privileges) can delete rows from
this table. For example, to remove the event e_insert shown previously, root can use the following
statement:

DELETE FROM mysql.event
    WHERE db = 'myschema'



Using Views

2519

      AND definer = 'jon@ghidora'
      AND name = 'e_insert';

It is very important to match the event name, database schema name, and user account when deleting
rows from the mysql.event table. This is because the same user can create different events of the
same name in different schemas.

Users' EVENT privileges are stored in the Event_priv columns of the mysql.user and
mysql.db tables. In both cases, this column holds one of the values 'Y' or 'N'. 'N' is the default.
mysql.user.Event_priv is set to 'Y' for a given user only if that user has the global EVENT privilege
(that is, if the privilege was bestowed using GRANT EVENT ON *.*). For a schema-level EVENT
privilege, GRANT creates a row in mysql.db and sets that row's Db column to the name of the schema,
the User column to the name of the user, and the Event_priv column to 'Y'. There should never be
any need to manipulate these tables directly, since the GRANT EVENT and REVOKE EVENT statements
perform the required operations on them.

Five status variables provide counts of event-related operations (but not of statements executed by
events; see Section C.1, “Restrictions on Stored Programs”). These are:

• Com_create_event: The number of CREATE EVENT statements executed since the last server
restart.

• Com_alter_event: The number of ALTER EVENT statements executed since the last server
restart.

• Com_drop_event: The number of DROP EVENT statements executed since the last server restart.

• Com_show_create_event: The number of SHOW CREATE EVENT statements executed since the
last server restart.

• Com_show_events: The number of SHOW EVENTS statements executed since the last server
restart.

You can view current values for all of these at one time by running the statement SHOW STATUS LIKE
'%event%';.

20.5 Using Views
MySQL supports views, including updatable views. Views are stored queries that when invoked
produce a result set. A view acts as a virtual table.

To use views if you have upgraded to MySQL 5.5 from an older release that did not support views, you
should upgrade your grant tables so that they contain the view-related privileges. See Section 4.4.7,
“mysql_upgrade — Check and Upgrade MySQL Tables”.

The following discussion describes the syntax for creating and dropping views, and shows some
examples of how to use them.

Additional Resources

• You may find the Views User Forum of use when working with views.

• For answers to some commonly asked questions regarding views in MySQL, see Section A.6,
“MySQL 5.5 FAQ: Views”.

• There are some restrictions on the use of views; see Section C.5, “Restrictions on Views”.

20.5.1 View Syntax

The CREATE VIEW statement creates a new view (see Section 13.1.20, “CREATE VIEW Syntax”).
To alter the definition of a view or drop a view, use ALTER VIEW (see Section 13.1.9, “ALTER VIEW
Syntax”), or DROP VIEW (see Section 13.1.31, “DROP VIEW Syntax”).

http://forums.mysql.com/list.php?100


View Processing Algorithms

2520

A view can be created from many kinds of SELECT statements. It can refer to base tables or other
views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The
following example defines a view that selects two columns from another table, as well as an expression
calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50), (5, 60);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty  | price | value |
+------+-------+-------+
|    3 |    50 |   150 |
|    5 |    60 |   300 |
+------+-------+-------+
mysql> SELECT * FROM v WHERE qty = 5;
+------+-------+-------+
| qty  | price | value |
+------+-------+-------+
|    5 |    60 |   300 |
+------+-------+-------+

20.5.2 View Processing Algorithms

The optional ALGORITHM clause for CREATE VIEW or ALTER VIEW is a MySQL extension to standard
SQL. It affects how MySQL processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE,
or UNDEFINED.

• For MERGE, the text of a statement that refers to the view and the view definition are merged such
that parts of the view definition replace corresponding parts of the statement.

• For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to
execute the statement.

• For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if
possible, because MERGE is usually more efficient and because a view cannot be updatable if a
temporary table is used.

• If no ALGORITHM clause is present, UNDEFINED is the default algorithm.

A reason to specify TEMPTABLE explicitly is that locks can be released on underlying tables after the
temporary table has been created and before it is used to finish processing the statement. This might
result in quicker lock release than the MERGE algorithm so that other clients that use the view are not
blocked as long.

A view algorithm can be UNDEFINED for three reasons:

• No ALGORITHM clause is present in the CREATE VIEW statement.

• The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.

• ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table. In
this case, MySQL generates a warning and sets the algorithm to UNDEFINED.

As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the
statement that refers to the view. The following examples briefly illustrate how the MERGE algorithm
works. The examples assume that there is a view v_merge that has this definition:

CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS
SELECT c1, c2 FROM t WHERE c3 > 100;

Example 1: Suppose that we issue this statement:



Updatable and Insertable Views

2521

SELECT * FROM v_merge;

MySQL handles the statement as follows:

• v_merge becomes t

• * becomes vc1, vc2, which corresponds to c1, c2

• The view WHERE clause is added

The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE c3 > 100;

Example 2: Suppose that we issue this statement:

SELECT * FROM v_merge WHERE vc1 < 100;

This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100
and the view WHERE clause is added to the statement WHERE clause using an AND connective (and
parentheses are added to make sure the parts of the clause are executed with correct precedence).
The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);

Effectively, the statement to be executed has a WHERE clause of this form:

WHERE (select WHERE) AND (view WHERE)

If the MERGE algorithm cannot be used, a temporary table must be used instead. MERGE cannot be
used if the view contains any of the following constructs:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• LIMIT

• UNION or UNION ALL

• Subquery in the select list

• Assignment to user variables

• Refers only to literal values (in this case, there is no underlying table)

20.5.3 Updatable and Insertable Views

Some views are updatable and references to them can be used to specify tables to be updated in data
change statements. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to
update the contents of the underlying table.

For a view to be updatable, there must be a one-to-one relationship between the rows in the view
and the rows in the underlying table. There are also certain other constructs that make a view
nonupdatable. To be more specific, a view is not updatable if it contains any of the following:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)



Updatable and Insertable Views

2522

• DISTINCT

• GROUP BY

• HAVING

• UNION or UNION ALL

• Subquery in the select list

• Certain joins (see additional join discussion later in this section)

• Reference to nonupdatable view in the FROM clause

• Subquery in the WHERE clause that refers to a table in the FROM clause

• Refers only to literal values (in this case, there is no underlying table to update)

• ALGORITHM = TEMPTABLE (use of a temporary table always makes a view nonupdatable)

• Multiple references to any column of a base table

It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed
with the MERGE algorithm. For this to work, the view must use an inner join (not an outer join or a
UNION). Also, only a single table in the view definition can be updated, so the SET clause must name
only columns from one of the tables in the view. Views that use UNION ALL are not permitted even
though they might be theoretically updatable.

With respect to insertability (being updatable with INSERT statements), an updatable view is insertable
if it also satisfies these additional requirements for the view columns:

• There must be no duplicate view column names.

• The view must contain all columns in the base table that do not have a default value.

• The view columns must be simple column references. They must not be expressions or composite
expressions, such as these:

3.14159
col1 + 3
UPPER(col2)
col3 / col4
(subquery)

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true)
if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO
(false). The IS_UPDATABLE column in the INFORMATION_SCHEMA.VIEWS table displays the status of
this flag. It means that the server always knows whether a view is updatable.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are rejected.
(Note that even if a view is updatable, it might not be possible to insert into it, as described elsewhere
in this section.)

The updatability of views may be affected by the value of the updatable_views_with_limit
system variable. See Section 5.1.5, “Server System Variables”.

Earlier discussion in this section pointed out that a view is not insertable if not all columns are simple
column references (for example, if it contains columns that are expressions or composite expressions).
Although such a view is not insertable, it can be updatable if you update only columns that are not
expressions. Consider this view:

CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;



The View WITH CHECK OPTION Clause

2523

This view is not insertable because col2 is an expression. But it is updatable if the update does not try
to update col2. This update is permissible:

UPDATE v SET col1 = 0;

This update is not permissible because it attempts to update an expression column:

UPDATE v SET col2 = 0;

For a multiple-table updatable view, INSERT can work if it inserts into a single table. DELETE is not
supported.

INSERT DELAYED is not supported for views.

If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that
does not include the AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(),
because the side effects of inserting default values into columns not part of the view should not be
visible.

20.5.4 The View WITH CHECK OPTION Clause

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts to rows for
which the WHERE clause in the select_statement is not true. It also prevents updates to rows for
which the WHERE clause is true but the update would cause it to be not true (in other words, it prevents
visible rows from being updated to nonvisible rows).

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords
determine the scope of check testing when the view is defined in terms of another view. When neither
keyword is given, the default is CASCADED. The LOCAL keyword restricts the CHECK OPTION only to
the view being defined. CASCADED causes the checks for underlying views to be evaluated as well.

Consider the definitions for the following table and set of views:

CREATE TABLE t1 (a INT);
CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2
WITH CHECK OPTION;
CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0
WITH LOCAL CHECK OPTION;
CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0
WITH CASCADED CHECK OPTION;

Here the v2 and v3 views are defined in terms of another view, v1. v2 has a LOCAL check option,
so inserts are tested only against the v2 check. v3 has a CASCADED check option, so inserts are
tested not only against its own check, but against those of underlying views. The following statements
illustrate these differences:

mysql> INSERT INTO v2 VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

20.5.5 View Metadata

Metadata about views can be obtained as follows:

• Query the VIEWS table of the INFORMATION_SCHEMA database. See Section 21.27, “The
INFORMATION_SCHEMA VIEWS Table”.

• Use the SHOW CREATE VIEW statement. See Section 13.7.5.14, “SHOW CREATE VIEW Syntax”.



Access Control for Stored Programs and Views

2524

20.6 Access Control for Stored Programs and Views
Stored programs and views are defined prior to use and, when referenced, execute within a security
context that determines their privileges. These privileges are controlled by their DEFINER attribute, and,
if there is one, their SQL SECURITY characteristic.

All stored programs (procedures, functions, triggers, and events) and views can have a DEFINER
attribute that names a MySQL account. If the DEFINER attribute is omitted from a stored program or
view definition, the default account is the user who creates the object.

In addition, stored routines (procedures and functions) and views can have an SQL SECURITY
characteristic with a value of DEFINER or INVOKER to specify whether the object executes in definer or
invoker context. If the SQL SECURITY characteristic is omitted, the default is definer context.

Triggers and events have no SQL SECURITY characteristic and always execute in definer context. The
server invokes these objects automatically as necessary, so there is no invoking user.

Definer and invoker security contexts differ as follows:

• A stored program or view that executes in definer security context executes with the privileges
of the account named by its DEFINER attribute. These privileges may be entirely different from
those of the invoking user. The invoker must have appropriate privileges to reference the object (for
example, EXECUTE to call a stored procedure or SELECT to select from a view), but when the object
executes, the invoker's privileges are ignored and only the DEFINER account privileges matter. If this
account has few privileges, the object is correspondingly limited in the operations it can perform. If
the DEFINER account is highly privileged (such as a root account), the object can perform powerful
operations no matter who invokes it.

• A stored routine or view that executes in invoker security context can perform only operations for
which the invoker has privileges. The DEFINER attribute can be specified but has no effect for
objects that execute in invoker context.

Consider the following stored procedure:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p1()
SQL SECURITY DEFINER
BEGIN
  UPDATE t1 SET counter = counter + 1;
END;

Any user who has the EXECUTE privilege for p1 can invoke it with a CALL statement. However,
when p1 executes, it does so in DEFINER security context and thus executes with the privileges of
'admin'@'localhost', the account named in the DEFINER attribute. This account must have the
EXECUTE privilege for p1 as well as the UPDATE privilege for the table t1. Otherwise, the procedure
fails.

Now consider this stored procedure, which is identical to p1 except that its SQL SECURITY
characteristic is INVOKER:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p2()
SQL SECURITY INVOKER
BEGIN
  UPDATE t1 SET counter = counter + 1;
END;

p2, unlike p1, executes in INVOKER security context. The DEFINER attribute is irrelevant and p2
executes with the privileges of the invoking user. p2 fails if the invoker lacks the EXECUTE privilege for
p2 or the UPDATE privilege for the table t1.

MySQL uses the following rules to control which accounts a user can specify in an object DEFINER
attribute:



Binary Logging of Stored Programs

2525

• You can specify a DEFINER value other than your own account only if you have the SUPER privilege.

• If you do not have the SUPER privilege, the only legal user value is your own account, either specified
literally or by using CURRENT_USER. You cannot set the definer to some other account.

To minimize the risk potential for stored program and view creation and use, follow these guidelines:

• For a stored routine or view, use SQL SECURITY INVOKER in the object definition when possible so
that it can be used only by users with permissions appropriate for the operations performed by the
object.

• If you create definer-context stored programs or views while using an account that has the SUPER
privilege, specify an explicit DEFINER attribute that names an account possessing only the privileges
required for the operations performed by the object. Specify a highly privileged DEFINER account
only when absolutely necessary.

• Administrators can prevent users from specifying highly privileged DEFINER accounts by not granting
them the SUPER privilege.

• Definer-context objects should be written keeping in mind that they may be able to access data for
which the invoking user has no privileges. In some cases, you can prevent reference to these objects
by not granting unauthorized users particular privileges:

• A stored procedure or function cannot be referenced by a user who does not have the EXECUTE
privilege for it.

• A view cannot be referenced by a user who does not have the appropriate privilege for it (SELECT
to select from it, INSERT to insert into it, and so forth).

However, no such control exists for triggers because users do not reference them directly. A
trigger always executes in DEFINER context and is activated by access to the table with which it is
associated, even ordinary table accesses by users with no special privileges. If the DEFINER account
is highly privileged, the trigger can perform sensitive or dangerous operations. This remains true
if the SUPER and TRIGGER privileges needed to create the trigger are revoked from the account
of the user who created it. Administrators should be especially careful about granting users that
combination of privileges.

20.7 Binary Logging of Stored Programs

The binary log contains information about SQL statements that modify database contents. This
information is stored in the form of “events” that describe the modifications. The binary log has two
important purposes:

• For replication, the binary log is used on master replication servers as a record of the statements to
be sent to slave servers. The master server sends the events contained in its binary log to its slaves,
which execute those events to make the same data changes that were made on the master. See
Section 17.2, “Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup file has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 7.3.2, “Using Backups
for Recovery”.

However, if logging occurs at the statement level, there are certain binary logging issues with respect to
stored programs (stored procedures and functions, triggers, and events):

• In some cases, a statement might affect different sets of rows on master and slave.

• Replicated statements executed on a slave are processed by the slave SQL thread, which has full
privileges. It is possible for a procedure to follow different execution paths on master and slave



Binary Logging of Stored Programs

2526

servers, so a user can write a routine containing a dangerous statement that will execute only on the
slave where it is processed by a thread that has full privileges.

• If a stored program that modifies data is nondeterministic, it is not repeatable. This can result in
different data on master and slave, or cause restored data to differ from the original data.

This section describes how MySQL handles binary logging for stored programs. It states the current
conditions that the implementation places on the use of stored programs, and what you can do to avoid
logging problems. It also provides additional information about the reasons for these conditions.

In general, the issues described here result when binary logging occurs at the SQL statement level.
If you use row-based binary logging, the log contains changes made to individual rows as a result
of executing SQL statements. When routines or triggers execute, row changes are logged, not the
statements that make the changes. For stored procedures, this means that the CALL statement is
not logged. For stored functions, row changes made within the function are logged, not the function
invocation. For triggers, row changes made by the trigger are logged. On the slave side, only the
row changes are seen, not the stored program invocation. For general information about row-based
logging, see Section 17.1.2, “Replication Formats”.

Unless noted otherwise, the remarks here assume that you have enabled binary logging by starting
the server with the --log-bin option. (See Section 5.4.4, “The Binary Log”.) If the binary log is not
enabled, replication is not possible, nor is the binary log available for data recovery.

The conditions on the use of stored functions in MySQL can be summarized as follows. These
conditions do not apply to stored procedures or Event Scheduler events and they do not apply unless
binary logging is enabled.

• To create or alter a stored function, you must have the SUPER privilege, in addition to the CREATE
ROUTINE or ALTER ROUTINE privilege that is normally required. (Depending on the DEFINER value
in the function definition, SUPER might be required regardless of whether binary logging is enabled.
See Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.)

• When you create a stored function, you must declare either that it is deterministic or that it does not
modify data. Otherwise, it may be unsafe for data recovery or replication.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

This function is deterministic (and does not modify data), so it is safe:

CREATE FUNCTION f1(i INT)
RETURNS INT
DETERMINISTIC
READS SQL DATA
BEGIN
  RETURN i;
END;

This function uses UUID(), which is not deterministic, so the function also is not deterministic and is
not safe:

CREATE FUNCTION f2()
RETURNS CHAR(36) CHARACTER SET utf8
BEGIN
  RETURN UUID();
END;



Binary Logging of Stored Programs

2527

This function modifies data, so it may not be safe:

CREATE FUNCTION f3(p_id INT)
RETURNS INT
BEGIN
  UPDATE t SET modtime = NOW() WHERE id = p_id;
  RETURN ROW_COUNT();
END;

Assessment of the nature of a function is based on the “honesty” of the creator: MySQL does not
check that a function declared DETERMINISTIC is free of statements that produce nondeterministic
results.

• Although it is possible to create a deterministic stored function without specifying DETERMINISTIC,
you cannot execute this function using statement-based binary logging. To execute such a
function, you must use row-based or mixed binary logging. Alternatively, if you explicitly specify
DETERMINISTIC in the function definition, you can use any kind of logging, including statement-
based logging.

• To relax the preceding conditions on function creation (that you must have the SUPER privilege
and that a function must be declared deterministic or to not modify data), set the global
log_bin_trust_function_creators system variable to 1. By default, this variable has a value
of 0, but you can change it like this:

mysql> SET GLOBAL log_bin_trust_function_creators = 1;

You can also set this variable by using the --log-bin-trust-function-creators=1 option
when starting the server.

If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is
not required for function creation unless, as described previously, the DEFINER value in the function
definition requires it.

• For information about built-in functions that may be unsafe for replication (and thus cause stored
functions that use them to be unsafe as well), see Section 17.4.1, “Replication Features and Issues”.

Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to
triggers with the following exception: CREATE TRIGGER does not have an optional DETERMINISTIC
characteristic, so triggers are assumed to be always deterministic. However, this assumption might be
invalid in some cases. For example, the UUID() function is nondeterministic (and does not replicate).
Be careful about using such functions in triggers.

Triggers can update tables, so error messages similar to those for stored functions occur with CREATE
TRIGGER if you do not have the required privileges. On the slave side, the slave uses the trigger
DEFINER attribute to determine which user is considered to be the creator of the trigger.

The rest of this section provides additional detail about the logging implementation and its implications.
You need not read it unless you are interested in the background on the rationale for the current
logging-related conditions on stored routine use. This discussion applies only for statement-based
logging, and not for row-based logging, with the exception of the first item: CREATE and DROP
statements are logged as statements regardless of the logging mode.

• The server writes CREATE EVENT, CREATE PROCEDURE, CREATE FUNCTION, ALTER EVENT,
ALTER PROCEDURE, ALTER FUNCTION, DROP EVENT, DROP PROCEDURE, and DROP FUNCTION
statements to the binary log.

• A stored function invocation is logged as a SELECT statement if the function changes data and
occurs within a statement that would not otherwise be logged. This prevents nonreplication of data
changes that result from use of stored functions in nonlogged statements. For example, SELECT
statements are not written to the binary log, but a SELECT might invoke a stored function that makes



Binary Logging of Stored Programs

2528

changes. To handle this, a SELECT func_name() statement is written to the binary log when the
given function makes a change. Suppose that the following statements are executed on the master:

CREATE FUNCTION f1(a INT) RETURNS INT
BEGIN
  IF (a < 3) THEN
    INSERT INTO t2 VALUES (a);
  END IF;
  RETURN 0;
END;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1),(2),(3);

SELECT f1(a) FROM t1;

When the SELECT statement executes, the function f1() is invoked three times. Two of those
invocations insert a row, and MySQL logs a SELECT statement for each of them. That is, MySQL
writes the following statements to the binary log:

SELECT f1(1);
SELECT f1(2);

The server also logs a SELECT statement for a stored function invocation when the function invokes
a stored procedure that causes an error. In this case, the server writes the SELECT statement to the
log along with the expected error code. On the slave, if the same error occurs, that is the expected
result and replication continues. Otherwise, replication stops.

• Logging stored function invocations rather than the statements executed by a function has a security
implication for replication, which arises from two factors:

• It is possible for a function to follow different execution paths on master and slave servers.

• Statements executed on a slave are processed by the slave SQL thread which has full privileges.

The implication is that although a user must have the CREATE ROUTINE privilege to create a
function, the user can write a function containing a dangerous statement that will execute only on the
slave where it is processed by a thread that has full privileges. For example, if the master and slave
servers have server ID values of 1 and 2, respectively, a user on the master server could create and
invoke an unsafe function unsafe_func() as follows:

mysql> delimiter //
mysql> CREATE FUNCTION unsafe_func () RETURNS INT
    -> BEGIN
    ->   IF @@server_id=2 THEN dangerous_statement; END IF;
    ->   RETURN 1;
    -> END;
    -> //
mysql> delimiter ;
mysql> INSERT INTO t VALUES(unsafe_func());

The CREATE FUNCTION and INSERT statements are written to the binary log, so the slave will
execute them. Because the slave SQL thread has full privileges, it will execute the dangerous
statement. Thus, the function invocation has different effects on the master and slave and is not
replication-safe.

To guard against this danger for servers that have binary logging enabled, stored function creators
must have the SUPER privilege, in addition to the usual CREATE ROUTINE privilege that is required.
Similarly, to use ALTER FUNCTION, you must have the SUPER privilege in addition to the ALTER
ROUTINE privilege. Without the SUPER privilege, an error will occur:

ERROR 1419 (HY000): You do not have the SUPER privilege and



Binary Logging of Stored Programs

2529

binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

If you do not want to require function creators to have the SUPER privilege (for example, if all users
with the CREATE ROUTINE privilege on your system are experienced application developers), set
the global log_bin_trust_function_creators system variable to 1. You can also set this
variable by using the --log-bin-trust-function-creators=1 option when starting the server.
If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is
not required for function creation unless, as described previously, the DEFINER value in the function
definition requires it.

• If a function that performs updates is nondeterministic, it is not repeatable. This can have two
undesirable effects:

• It will make a slave different from the master.

• Restored data will be different from the original data.

To deal with these problems, MySQL enforces the following requirement: On a master server,
creation and alteration of a function is refused unless you declare the function to be deterministic or
to not modify data. Two sets of function characteristics apply here:

• The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a function
always produces the same result for given inputs. The default is NOT DETERMINISTIC if
neither characteristic is given. To declare that a function is deterministic, you must specify
DETERMINISTIC explicitly.

• The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA characteristics
provide information about whether the function reads or writes data. Either NO SQL or READS SQL
DATA indicates that a function does not change data, but you must specify one of these explicitly
because the default is CONTAINS SQL if no characteristic is given.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

If you set log_bin_trust_function_creators to 1, the requirement that functions be
deterministic or not modify data is dropped.

• Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the
server does not log the CALL statement, it logs those statements within the procedure that actually
execute. As a result, the same changes that occur on the master will be observed on slave servers.
This prevents problems that could result from a procedure having different execution paths on
different machines.

In general, statements executed within a stored procedure are written to the binary log using the
same rules that would apply were the statements to be executed in standalone fashion. Some
special care is taken when logging procedure statements because statement execution within
procedures is not quite the same as in nonprocedure context:

•  A statement to be logged might contain references to local procedure variables. These variables
do not exist outside of stored procedure context, so a statement that refers to such a variable
cannot be logged literally. Instead, each reference to a local variable is replaced by this construct
for logging purposes:

NAME_CONST(var_name, var_value)



Binary Logging of Stored Programs

2530

var_name is the local variable name, and var_value is a constant indicating the value that the
variable has at the time the statement is logged. NAME_CONST() has a value of var_value, and
a “name” of var_name. Thus, if you invoke this function directly, you get a result like this:

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
|     14 |
+--------+

NAME_CONST() enables a logged standalone statement to be executed on a slave with the same
effect as the original statement that was executed on the master within a stored procedure.

The use of NAME_CONST() can result in a problem for CREATE TABLE ... SELECT statements
when the source column expressions refer to local variables. Converting these references to
NAME_CONST() expressions can result in column names that are different on the master and
slave servers, or names that are too long to be legal column identifiers. A workaround is to supply
aliases for columns that refer to local variables. Consider this statement when myvar has a value
of 1:

CREATE TABLE t1 SELECT myvar;

That will be rewritten as follows:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1);

To ensure that the master and slave tables have the same column names, write the statement like
this:

CREATE TABLE t1 SELECT myvar AS myvar;

The rewritten statement becomes:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1) AS myvar;

• A statement to be logged might contain references to user-defined variables. To handle this,
MySQL writes a SET statement to the binary log to make sure that the variable exists on the slave
with the same value as on the master. For example, if a statement refers to a variable @my_var,
that statement will be preceded in the binary log by the following statement, where value is the
value of @my_var on the master:

SET @my_var = value;

• Procedure calls can occur within a committed or rolled-back transaction. Transactional context is
accounted for so that the transactional aspects of procedure execution are replicated correctly.
That is, the server logs those statements within the procedure that actually execute and modify
data, and also logs BEGIN, COMMIT, and ROLLBACK statements as necessary. For example, if
a procedure updates only transactional tables and is executed within a transaction that is rolled
back, those updates are not logged. If the procedure occurs within a committed transaction, BEGIN
and COMMIT statements are logged with the updates. For a procedure that executes within a
rolled-back transaction, its statements are logged using the same rules that would apply if the
statements were executed in standalone fashion:

• Updates to transactional tables are not logged.

• Updates to nontransactional tables are logged because rollback does not cancel them.



Binary Logging of Stored Programs

2531

• Updates to a mix of transactional and nontransactional tables are logged surrounded by BEGIN
and ROLLBACK so that slaves will make the same changes and rollbacks as on the master.

• A stored procedure call is not written to the binary log at the statement level if the procedure is
invoked from within a stored function. In that case, the only thing logged is the statement that invokes
the function (if it occurs within a statement that is logged) or a DO statement (if it occurs within a
statement that is not logged). For this reason, care should be exercised in the use of stored functions
that invoke a procedure, even if the procedure is otherwise safe in itself.



2532



2533

Chapter 21 INFORMATION_SCHEMA Tables

Table of Contents
21.1 The INFORMATION_SCHEMA CHARACTER_SETS Table ............................................... 2536
21.2 The INFORMATION_SCHEMA COLLATIONS Table ......................................................... 2537
21.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table ... 2537
21.4 The INFORMATION_SCHEMA COLUMNS Table ............................................................. 2538
21.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table .......................................... 2538
21.6 The INFORMATION_SCHEMA ENGINES Table ............................................................... 2539
21.7 The INFORMATION_SCHEMA EVENTS Table ................................................................. 2539
21.8 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables ........... 2543
21.9 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables . 2543
21.10 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table ........................................ 2543
21.11 The INFORMATION_SCHEMA PARAMETERS Table ..................................................... 2544
21.12 The INFORMATION_SCHEMA PARTITIONS Table ........................................................ 2545
21.13 The INFORMATION_SCHEMA PLUGINS Table .............................................................. 2548
21.14 The INFORMATION_SCHEMA PROCESSLIST Table ..................................................... 2549
21.15 The INFORMATION_SCHEMA PROFILING Table .......................................................... 2550
21.16 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table ............................ 2551
21.17 The INFORMATION_SCHEMA ROUTINES Table ........................................................... 2551
21.18 The INFORMATION_SCHEMA SCHEMATA Table .......................................................... 2553
21.19 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table ........................................ 2553
21.20 The INFORMATION_SCHEMA STATISTICS Table ......................................................... 2554
21.21 The INFORMATION_SCHEMA TABLES Table ............................................................... 2554
21.22 The INFORMATION_SCHEMA TABLESPACES Table .................................................... 2556
21.23 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table ........................................ 2556
21.24 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table ............................................ 2557
21.25 The INFORMATION_SCHEMA TRIGGERS Table ........................................................... 2557
21.26 The INFORMATION_SCHEMA USER_PRIVILEGES Table ............................................. 2559
21.27 The INFORMATION_SCHEMA VIEWS Table ................................................................. 2559
21.28 InnoDB INFORMATION_SCHEMA Tables ...................................................................... 2561

21.28.1 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table ........................... 2561
21.28.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table .................. 2563
21.28.3 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table .............. 2565
21.28.4 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables 2567
21.28.5 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables ................................................................................ 2568
21.28.6 The INFORMATION_SCHEMA INNODB_LOCKS Table ........................................ 2569
21.28.7 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table ............................. 2570
21.28.8 The INFORMATION_SCHEMA INNODB_TRX Table ............................................ 2571

21.29 NDB Cluster INFORMATION_SCHEMA Tables ............................................................... 2573
21.29.1 The INFORMATION_SCHEMA FILES Table ........................................................ 2573
21.29.2 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table ............ 2579

21.30 Thread Pool INFORMATION_SCHEMA Tables ............................................................... 2580
21.30.1 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table ................... 2580
21.30.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table ................... 2582
21.30.3 The INFORMATION_SCHEMA TP_THREAD_STATE Table ................................. 2583

21.31 Extensions to SHOW Statements ................................................................................... 2584

INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server
such as the name of a database or table, the data type of a column, or access privileges. Other terms
that are sometimes used for this information are data dictionary and system catalog.



INFORMATION_SCHEMA Usage Notes

2534

INFORMATION_SCHEMA Usage Notes

INFORMATION_SCHEMA is a database within each MySQL instance, the place that stores information
about all the other databases that the MySQL server maintains. The INFORMATION_SCHEMA database
contains several read-only tables. They are actually views, not base tables, so there are no files
associated with them, and you cannot set triggers on them. Also, there is no database directory with
that name.

Although you can select INFORMATION_SCHEMA as the default database with a USE statement, you
can only read the contents of tables, not perform INSERT, UPDATE, or DELETE operations on them.

Example

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
       FROM information_schema.tables
       WHERE table_schema = 'db5'
       ORDER BY table_name;
+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
| fk         | BASE TABLE | InnoDB |
| fk2        | BASE TABLE | InnoDB |
| goto       | BASE TABLE | MyISAM |
| into       | BASE TABLE | MyISAM |
| k          | BASE TABLE | MyISAM |
| kurs       | BASE TABLE | MyISAM |
| loop       | BASE TABLE | MyISAM |
| pk         | BASE TABLE | InnoDB |
| t          | BASE TABLE | MyISAM |
| t2         | BASE TABLE | MyISAM |
| t3         | BASE TABLE | MyISAM |
| t7         | BASE TABLE | MyISAM |
| tables     | BASE TABLE | MyISAM |
| v          | VIEW       | NULL   |
| v2         | VIEW       | NULL   |
| v3         | VIEW       | NULL   |
| v56        | VIEW       | NULL   |
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, showing just three pieces
of information: the name of the table, its type, and its storage engine.

The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N)
CHARACTER SET utf8 where N is at least 64. MySQL uses the default collation for this character
set (utf8_general_ci) for all searches, sorts, comparisons, and other string operations on
such columns. However, searches in INFORMATION_SCHEMA string columns are also affected
by file system case sensitivity. For more information, see Section 10.1.8.7, “Using Collation in
INFORMATION_SCHEMA Searches”.

Each MySQL user has the right to access these tables, but can see only the rows in the tables that
correspond to objects for which the user has the proper access privileges. In some cases (for example,
the ROUTINE_DEFINITION column in the INFORMATION_SCHEMA.ROUTINES table), users who have
insufficient privileges will see NULL.

Character Set Considerations

The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N)
CHARACTER SET utf8 where N is at least 64. MySQL uses the default collation for this character
set (utf8_general_ci) for all searches, sorts, comparisons, and other string operations on such
columns.



INFORMATION_SCHEMA as Alternative to SHOW Statements

2535

Because some MySQL objects are represented as files, searches in INFORMATION_SCHEMA string
columns can be affected by file system case sensitivity. For more information, see Section 10.1.8.7,
“Using Collation in INFORMATION_SCHEMA Searches”.

INFORMATION_SCHEMA as Alternative to SHOW Statements

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way
to provide access to the information provided by the various SHOW statements that MySQL supports
(SHOW DATABASES, SHOW TABLES, and so forth). Using SELECT has these advantages, compared to
SHOW:

• It conforms to Codd's rules, because all access is done on tables.

• You can use the familiar syntax of the SELECT statement, and only need to learn some table and
column names.

• The implementor need not worry about adding keywords.

• You can filter, sort, concatenate, and transform the results from INFORMATION_SCHEMA queries into
whatever format your application needs, such as a data structure or a text representation to parse.

• This technique is more interoperable with other database systems. For example, Oracle Database
users are familiar with querying tables in the Oracle data dictionary.

Because SHOW is familiar and widely used, the SHOW statements remain as an alternative. In fact, along
with the implementation of INFORMATION_SCHEMA, there are enhancements to SHOW as described in
Section 21.31, “Extensions to SHOW Statements”.

Privileges

Each MySQL user has the right to access these tables, but can see only the rows in the tables that
correspond to objects for which the user has the proper access privileges. In some cases (for example,
the ROUTINE_DEFINITION column in the INFORMATION_SCHEMA.ROUTINES table), users who have
insufficient privileges see NULL. These restrictions do not apply for InnoDB tables; you can see them
with only the PROCESS privilege.

The same privileges apply to selecting information from INFORMATION_SCHEMA and viewing the same
information through SHOW statements. In either case, you must have some privilege on an object to see
information about it.

Performance Considerations

INFORMATION_SCHEMA queries that search for information from more than one database might take
a long time and impact performance. To check the efficiency of a query, you can use EXPLAIN. For
information about using EXPLAIN output to tune INFORMATION_SCHEMA queries, see Section 8.2.3,
“Optimizing INFORMATION_SCHEMA Queries”.

Standards Considerations

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO
SQL:2003 standard Part 11 Schemata. Our intent is approximate compliance with SQL:2003 core
feature F021 Basic information schema.

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity.
However, MySQL has omitted many columns that are not relevant for our implementation,
and added columns that are MySQL-specific. One such column is the ENGINE column in the
INFORMATION_SCHEMA.TABLES table.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we
changed the names of some columns marked “MySQL extension”. (For example, we changed
COLLATION to TABLE_COLLATION in the TABLES table.) See the list of reserved words near the



Conventions in the INFORMATION_SCHEMA Reference Sections

2536

end of this article: https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-
disarticles/gulutzan5.

Conventions in the INFORMATION_SCHEMA Reference Sections

The following sections describe each of the tables and columns in INFORMATION_SCHEMA. For each
column, there are three pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA
table. This corresponds to the standard SQL name unless the “Remarks” field says “MySQL
extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the
value of the column is always NULL. If this field says “MySQL extension,” the column is a MySQL
extension to standard SQL.

Many sections indicate what SHOW statement is equivalent to a SELECT that retrieves information from
INFORMATION_SCHEMA. For SHOW statements that display information for the default database if you
omit a FROM db_name clause, you can often select information for the default database by adding an
AND TABLE_SCHEMA = SCHEMA() condition to the WHERE clause of a query that retrieves information
from an INFORMATION_SCHEMA table.

For information about INFORMATION_SCHEMA tables specific to the InnoDB storage engine,
see Section 21.28, “InnoDB INFORMATION_SCHEMA Tables”. For information about
INFORMATION_SCHEMA tables specific to the NDB storage engine (NDB Cluster), see Section 21.29,
“NDB Cluster INFORMATION_SCHEMA Tables”. For information about INFORMATION_SCHEMA tables
specific to the thread pool plugin, see Section 21.30, “Thread Pool INFORMATION_SCHEMA Tables”.

For answers to questions that are often asked concerning the INFORMATION_SCHEMA database, see
Section A.7, “MySQL 5.5 FAQ: INFORMATION_SCHEMA”.

Related Information

These sections discuss additional INFORMATION_SCHEMA-related topics:

• information about INFORMATION_SCHEMA tables specific to the InnoDB storage engine:
Section 21.28, “InnoDB INFORMATION_SCHEMA Tables”

• information about INFORMATION_SCHEMA tables specific to the NDB storage engine (NDB Cluster):
Section 21.29, “NDB Cluster INFORMATION_SCHEMA Tables”

• information about INFORMATION_SCHEMA tables specific to the thread pool plugin: Section 21.30,
“Thread Pool INFORMATION_SCHEMA Tables”

• Answers to questions that are often asked concerning the INFORMATION_SCHEMA database:
Section A.7, “MySQL 5.5 FAQ: INFORMATION_SCHEMA”

• INFORMATION_SCHEMA queries and the optimizer: Section 8.2.3, “Optimizing
INFORMATION_SCHEMA Queries”

• The effect of collation on INFORMATION_SCHEMA comparisons: Section 10.1.8.7, “Using Collation in
INFORMATION_SCHEMA Searches”

21.1 The INFORMATION_SCHEMA CHARACTER_SETS Table
The CHARACTER_SETS table provides information about available character sets.

INFORMATION_SCHEMA Name SHOW Name Remarks

CHARACTER_SET_NAME Charset  

https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5
https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5


The INFORMATION_SCHEMA COLLATIONS Table

2537

INFORMATION_SCHEMA Name SHOW Name Remarks

DEFAULT_COLLATE_NAME Default collation  

DESCRIPTION Description MySQL extension

MAXLEN Maxlen MySQL extension

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
  [WHERE CHARACTER_SET_NAME LIKE 'wild']

SHOW CHARACTER SET
  [LIKE 'wild']

21.2 The INFORMATION_SCHEMA COLLATIONS Table
The COLLATIONS table provides information about collations for each character set.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation  

CHARACTER_SET_NAME Charset MySQL extension

ID Id MySQL extension

IS_DEFAULT Default MySQL extension

IS_COMPILED Compiled MySQL extension

SORTLEN Sortlen MySQL extension

• COLLATION_NAME is the collation name.

• CHARACTER_SET_NAME is the name of the character set with which the collation is associated.

• ID is the collation ID.

• IS_DEFAULT indicates whether the collation is the default for its character set.

• IS_COMPILED indicates whether the character set is compiled into the server.

• SORTLEN is related to the amount of memory required to sort strings expressed in the character set.

Collation information is also available from the SHOW COLLATION statement. The following statements
are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
  [WHERE COLLATION_NAME LIKE 'wild']

SHOW COLLATION
  [LIKE 'wild']

21.3 The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable
for what collation. The columns are equivalent to the first two display fields that we get from SHOW
COLLATION.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation  

CHARACTER_SET_NAME Charset  



The INFORMATION_SCHEMA COLUMNS Table

2538

21.4 The INFORMATION_SCHEMA COLUMNS Table
The COLUMNS table provides information about columns in tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG  def

TABLE_SCHEMA   

TABLE_NAME   

COLUMN_NAME Field  

ORDINAL_POSITION  see notes

COLUMN_DEFAULT Default  

IS_NULLABLE Null  

DATA_TYPE Type  

CHARACTER_MAXIMUM_LENGTH Type  

CHARACTER_OCTET_LENGTH   

NUMERIC_PRECISION Type  

NUMERIC_SCALE Type  

CHARACTER_SET_NAME   

COLLATION_NAME Collation  

COLUMN_TYPE Type MySQL extension

COLUMN_KEY Key MySQL extension

EXTRA Extra MySQL extension

PRIVILEGES Privileges MySQL extension

COLUMN_COMMENT Comment MySQL extension

Notes:

• In SHOW, the Type display includes values from several different COLUMNS columns.

• ORDINAL_POSITION is necessary because you might want to say ORDER BY
ORDINAL_POSITION. Unlike SHOW, SELECT does not have automatic ordering.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for
multibyte character sets.

• CHARACTER_SET_NAME can be derived from Collation. For example, if you say SHOW FULL
COLUMNS FROM t, and you see in the Collation column a value of latin1_swedish_ci, the
character set is what is before the first underscore: latin1.

The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
  FROM INFORMATION_SCHEMA.COLUMNS
  WHERE table_name = 'tbl_name'
  [AND table_schema = 'db_name']
  [AND column_name LIKE 'wild']

SHOW COLUMNS
  FROM tbl_name
  [FROM db_name]
  [LIKE 'wild']

21.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table



The INFORMATION_SCHEMA ENGINES Table

2539

The COLUMN_PRIVILEGES table provides information about column privileges. This information comes
from the mysql.columns_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE  'user_name'@'host_name'
value

TABLE_CATALOG  def

TABLE_SCHEMA   

TABLE_NAME   

COLUMN_NAME   

PRIVILEGE_TYPE   

IS_GRANTABLE   

Notes:

• In the output from SHOW FULL COLUMNS, the privileges are all in one field and in lowercase, for
example, select,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege
per row, in uppercase.

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES.

• If the user has GRANT OPTION privilege, IS_GRANTABLE should be YES. Otherwise,
IS_GRANTABLE should be NO. The output does not list GRANT OPTION as a separate privilege.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SHOW GRANTS ...

21.6 The INFORMATION_SCHEMA ENGINES Table

The ENGINES table provides information about storage engines.

INFORMATION_SCHEMA Name SHOW Name Remarks

ENGINE Engine MySQL extension

SUPPORT Support MySQL extension

COMMENT Comment MySQL extension

TRANSACTIONS Transactions MySQL extension

XA XA MySQL extension

SAVEPOINTS Savepoints MySQL extension

Notes:

• The ENGINES table is a nonstandard table. Its contents correspond to the columns of the SHOW
ENGINES statement. For descriptions of its columns, see Section 13.7.5.17, “SHOW ENGINES
Syntax”.

See also Section 13.7.5.17, “SHOW ENGINES Syntax”.

21.7 The INFORMATION_SCHEMA EVENTS Table



The INFORMATION_SCHEMA EVENTS Table

2540

The EVENTS table provides information about scheduled events, which are discussed in Section 20.4,
“Using the Event Scheduler”. The SHOW Name values correspond to column names of the SHOW
EVENTS statement.

INFORMATION_SCHEMA Name SHOW Name Remarks

EVENT_CATALOG  def, MySQL extension

EVENT_SCHEMA Db MySQL extension

EVENT_NAME Name MySQL extension

DEFINER Definer MySQL extension

TIME_ZONE Time zone MySQL extension

EVENT_BODY  MySQL extension

EVENT_DEFINITION  MySQL extension

EVENT_TYPE Type MySQL extension

EXECUTE_AT Execute at MySQL extension

INTERVAL_VALUE Interval value MySQL extension

INTERVAL_FIELD Interval field MySQL extension

SQL_MODE  MySQL extension

STARTS Starts MySQL extension

ENDS Ends MySQL extension

STATUS Status MySQL extension

ON_COMPLETION  MySQL extension

CREATED  MySQL extension

LAST_ALTERED  MySQL extension

LAST_EXECUTED  MySQL extension

EVENT_COMMENT  MySQL extension

ORIGINATOR Originator MySQL extension

CHARACTER_SET_CLIENT character_set_client MySQL extension

COLLATION_CONNECTION collation_connection MySQL extension

DATABASE_COLLATION Database Collation MySQL extension

Notes:

• The EVENTS table is a nonstandard table.

• EVENT_CATALOG: The value of this column is always def.

• EVENT_SCHEMA: The name of the schema (database) to which this event belongs.

• EVENT_NAME: The name of the event.

• DEFINER: The account of the user who created the event, in 'user_name'@'host_name' format.

• TIME_ZONE: The event time zone, which is the time zone used for scheduling the event and that is in
effect within the event as it executes. The default value is SYSTEM.

• EVENT_BODY: The language used for the statements in the event's DO clause; in MySQL 5.5, this is
always SQL.

This column is not to be confused with the column of the same name (now named
EVENT_DEFINITION) that existed in earlier MySQL versions.



The INFORMATION_SCHEMA EVENTS Table

2541

• EVENT_DEFINITION: The text of the SQL statement making up the event's DO clause; in other
words, the statement executed by this event.

• EVENT_TYPE: The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• EXECUTE_AT: For a one-time event, this is the DATETIME value specified in the AT clause of
the CREATE EVENT statement used to create the event, or of the last ALTER EVENT statement
that modified the event. The value shown in this column reflects the addition or subtraction of
any INTERVAL value included in the event's AT clause. For example, if an event is created using
ON SCHEDULE AT CURRENT_TIMESTAMP + '1:6' DAY_HOUR, and the event was created at
2006-02-09 14:05:30, the value shown in this column would be '2006-02-10 20:05:30'.

If the event's timing is determined by an EVERY clause instead of an AT clause (that is, if the event is
recurring), the value of this column is NULL.

• INTERVAL_VALUE: For recurring events, this column contains the numeric portion of the event's
EVERY clause.

For a one-time event (that is, an event whose timing is determined by an AT clause), this column is
NULL.

• INTERVAL_FIELD: For recurring events, this column contains the units portion of the EVERY clause
governing the timing of the event. Thus, this column contains a value such as 'YEAR', 'QUARTER',
'DAY', and so on.

For a one-time event (that is, an event whose timing is determined by an AT clause), this column is
NULL.

• SQL_MODE: The SQL mode in effect when the event was created or altered, and under which the
event executes. For the permitted values, see Section 5.1.8, “Server SQL Modes”.

• STARTS: For a recurring event whose definition includes a STARTS clause, this column contains
the corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any
expressions used.

If there is no STARTS clause affecting the timing of the event, this column is NULL

• ENDS: For a recurring event whose definition includes a ENDS clause, this column contains the
corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any
expressions used.

If there is no ENDS clause affecting the timing of the event, this column is NULL.

• STATUS: One of the three values ENABLED, DISABLED, or SLAVESIDE_DISABLED.

SLAVESIDE_DISABLED indicates that the creation of the event occurred on another MySQL server
acting as a replication master and was replicated to the current MySQL server which is acting as a
slave, but the event is not presently being executed on the slave. See Section 17.4.1.12, “Replication
of Invoked Features”, for more information.

• ON_COMPLETION: One of the two values PRESERVE or NOT PRESERVE.

• CREATED: The date and time when the event was created. This is a TIMESTAMP value.

• LAST_ALTERED: The date and time when the event was last modified. This is a TIMESTAMP value.
If the event has not been modified since its creation, this column holds the same value as the
CREATED column.

• LAST_EXECUTED: The date and time when the event last executed. A DATETIME value. If the event
has never executed, this column is NULL.

LAST_EXECUTED indicates when the event started. As a result, the ENDS column is never less than
LAST_EXECUTED.



The INFORMATION_SCHEMA EVENTS Table

2542

• EVENT_COMMENT: The text of a comment, if the event has one. If not, the value of this column is an
empty string.

• ORIGINATOR: The server ID of the MySQL server on which the event was created; used in
replication. The default value is 0.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the event was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the event was created.

• DATABASE_COLLATION: The collation of the database with which the event is associated.

Example: Suppose that the user jon@ghidora creates an event named e_daily, and then modifies
it a few minutes later using an ALTER EVENT statement, as shown here:

DELIMITER |

CREATE EVENT e_daily
    ON SCHEDULE
      EVERY 1 DAY
    COMMENT 'Saves total number of sessions then clears the table each day'
    DO
      BEGIN
        INSERT INTO site_activity.totals (time, total)
          SELECT CURRENT_TIMESTAMP, COUNT(*)
            FROM site_activity.sessions;
        DELETE FROM site_activity.sessions;
      END |

DELIMITER ;

ALTER EVENT e_daily
    ENABLE;

(Note that comments can span multiple lines.)

This user can then run the following SELECT statement, and obtain the output shown:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
     > WHERE EVENT_NAME = 'e_daily'
     > AND EVENT_SCHEMA = 'myschema'\G
*************************** 1. row ***************************
       EVENT_CATALOG: def
        EVENT_SCHEMA: test
          EVENT_NAME: e_daily
             DEFINER: me@localhost
           TIME_ZONE: SYSTEM
          EVENT_BODY: SQL
    EVENT_DEFINITION: BEGIN
        INSERT INTO site_activity.totals (time, total)
          SELECT CURRENT_TIMESTAMP, COUNT(*)
            FROM site_activity.sessions;
        DELETE FROM site_activity.sessions;
      END
          EVENT_TYPE: RECURRING
          EXECUTE_AT: NULL
      INTERVAL_VALUE: 1
      INTERVAL_FIELD: DAY
            SQL_MODE:
              STARTS: 2008-09-03 12:13:39
                ENDS: NULL
              STATUS: ENABLED
       ON_COMPLETION: NOT PRESERVE
             CREATED: 2008-09-03 12:13:39
        LAST_ALTERED: 2008-09-03 12:13:39
       LAST_EXECUTED: NULL



The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables

2543

       EVENT_COMMENT: Saves total number of sessions then clears the
                      table each day
          ORIGINATOR: 1
CHARACTER_SET_CLIENT: latin1
COLLATION_CONNECTION: latin1_swedish_ci
  DATABASE_COLLATION: latin1_swedish_ci

Times in the EVENTS table are displayed using the event time zone or the current session time zone,
as described in Section 20.4.4, “Event Metadata”.

See also Section 13.7.5.19, “SHOW EVENTS Syntax”.

21.8 The INFORMATION_SCHEMA GLOBAL_STATUS and
SESSION_STATUS Tables

The GLOBAL_STATUS and SESSION_STATUS tables provide information about server status variables.
Their contents correspond to the information produced by the SHOW GLOBAL STATUS and SHOW
SESSION STATUS statements (see Section 13.7.5.36, “SHOW STATUS Syntax”).

INFORMATION_SCHEMA Name SHOW Name Remarks

VARIABLE_NAME Variable_name  

VARIABLE_VALUE Value  

Notes:

• The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(1024).

21.9 The INFORMATION_SCHEMA GLOBAL_VARIABLES and
SESSION_VARIABLES Tables

The GLOBAL_VARIABLES and SESSION_VARIABLES tables provide information about server status
variables. Their contents correspond to the information produced by the SHOW GLOBAL VARIABLES
and SHOW SESSION VARIABLES statements (see Section 13.7.5.40, “SHOW VARIABLES Syntax”).

INFORMATION_SCHEMA Name SHOW Name Remarks

VARIABLE_NAME Variable_name  

VARIABLE_VALUE Value  

Notes:

• The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(1024). For
variables with very long values that are not completely displayed, use SELECT as a workaround. For
example:

SELECT @@GLOBAL.innodb_data_file_path;

21.10 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
The KEY_COLUMN_USAGE table describes which key columns have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG  def

CONSTRAINT_SCHEMA   

CONSTRAINT_NAME   

TABLE_CATALOG  def



The INFORMATION_SCHEMA PARAMETERS Table

2544

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_SCHEMA   

TABLE_NAME   

COLUMN_NAME   

ORDINAL_POSITION   

POSITION_IN_UNIQUE_CONSTRAINT   

REFERENCED_TABLE_SCHEMA   

REFERENCED_TABLE_NAME   

REFERENCED_COLUMN_NAME   

Notes:

• If the constraint is a foreign key, then this is the column of the foreign key, not the column that the
foreign key references.

• The value of ORDINAL_POSITION is the column's position within the constraint, not the column's
position within the table. Column positions are numbered beginning with 1.

• The value of POSITION_IN_UNIQUE_CONSTRAINT is NULL for unique and primary-key constraints.
For foreign-key constraints, it is the ordinal position in key of the table that is being referenced.

Suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(
    s1 INT,
    s2 INT,
    s3 INT,
    PRIMARY KEY(s3)
) ENGINE=InnoDB;

CREATE TABLE t3
(
    s1 INT,
    s2 INT,
    s3 INT,
    KEY(s1),
    CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)
) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = 1.

21.11 The INFORMATION_SCHEMA PARAMETERS Table

The PARAMETERS table provides information about stored procedure and function parameters,
and about return values for stored functions. Parameter information is similar to the contents of the
param_list column in the mysql.proc table.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

SPECIFIC_CATALOG  def

SPECIFIC_SCHEMA db routine database



The INFORMATION_SCHEMA PARTITIONS Table

2545

INFORMATION_SCHEMA Name mysql.proc Name Remarks

SPECIFIC_NAME name routine name

ORDINAL_POSITION  1, 2, 3, ... for parameters, 0
for function RETURNS clause

PARAMETER_MODE  IN, OUT, INOUT (NULL for
RETURNS)

PARAMETER_NAME  parameter name (NULL for
RETURNS)

DATA_TYPE  same as for COLUMNS table

CHARACTER_MAXIMUM_LENGTH  same as for COLUMNS table

CHARACTER_OCTET_LENGTH  same as for COLUMNS table

NUMERIC_PRECISION  same as for COLUMNS table

NUMERIC_SCALE  same as for COLUMNS table

CHARACTER_SET_NAME  same as for COLUMNS table

COLLATION_NAME  same as for COLUMNS table

DTD_IDENTIFIER  same as for COLUMNS table

ROUTINE_TYPE type same as for ROUTINES table

Notes:

• The PARAMETERS table was added in MySQL 5.5.3.

• For successive parameters of a stored procedure or function, the ORDINAL_POSITION values are
1, 2, 3, and so forth. For a stored function, there is also a row that describes the data type for the
RETURNS clause. The return value is not a true parameter, so the row that describes it has these
unique characteristics:

• The ORDINAL_POSITION value is 0.

• The PARAMETER_NAME and PARAMETER_MODE values are NULL because the return value has no
name and the mode does not apply.

21.12 The INFORMATION_SCHEMA PARTITIONS Table

The PARTITIONS table provides information about table partitions. See Chapter 19, Partitioning, for
more information about partitioning tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG  MySQL extension

TABLE_SCHEMA  MySQL extension

TABLE_NAME  MySQL extension

PARTITION_NAME  MySQL extension

SUBPARTITION_NAME  MySQL extension

PARTITION_ORDINAL_POSITION  MySQL extension

SUBPARTITION_ORDINAL_POSITION  MySQL extension

PARTITION_METHOD  MySQL extension

SUBPARTITION_METHOD  MySQL extension

PARTITION_EXPRESSION  MySQL extension

SUBPARTITION_EXPRESSION  MySQL extension



The INFORMATION_SCHEMA PARTITIONS Table

2546

INFORMATION_SCHEMA Name SHOW Name Remarks

PARTITION_DESCRIPTION  MySQL extension

TABLE_ROWS  MySQL extension

AVG_ROW_LENGTH  MySQL extension

DATA_LENGTH  MySQL extension

MAX_DATA_LENGTH  MySQL extension

INDEX_LENGTH  MySQL extension

DATA_FREE  MySQL extension

CREATE_TIME  MySQL extension

UPDATE_TIME  MySQL extension

CHECK_TIME  MySQL extension

CHECKSUM  MySQL extension

PARTITION_COMMENT  MySQL extension

NODEGROUP  MySQL extension

TABLESPACE_NAME  MySQL extension

Notes:

• The PARTITIONS table is a nonstandard table.

Each record in this table corresponds to an individual partition or subpartition of a partitioned table.

• TABLE_CATALOG: This column is always def.

• TABLE_SCHEMA: This column contains the name of the database to which the table belongs.

• TABLE_NAME: This column contains the name of the table containing the partition.

• PARTITION_NAME: The name of the partition.

• SUBPARTITION_NAME: If the PARTITIONS table record represents a subpartition, then this column
contains the name of subpartition; otherwise it is NULL.

• PARTITION_ORDINAL_POSITION: All partitions are indexed in the same order as they are defined,
with 1 being the number assigned to the first partition. The indexing can change as partitions are
added, dropped, and reorganized; the number shown is this column reflects the current order, taking
into account any indexing changes.

• SUBPARTITION_ORDINAL_POSITION: Subpartitions within a given partition are also indexed and
reindexed in the same manner as partitions are indexed within a table.

• PARTITION_METHOD: One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LINEAR KEY;
that is, one of the available partitioning types as discussed in Section 19.2, “Partitioning Types”.

• SUBPARTITION_METHOD: One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY; that is,
one of the available subpartitioning types as discussed in Section 19.2.6, “Subpartitioning”.

• PARTITION_EXPRESSION: This is the expression for the partitioning function used in the CREATE
TABLE or ALTER TABLE statement that created the table's current partitioning scheme.

For example, consider a partitioned table created in the test database using this statement:

CREATE TABLE tp (
    c1 INT,
    c2 INT,
    c3 VARCHAR(25)



The INFORMATION_SCHEMA PARTITIONS Table

2547

)
PARTITION BY HASH(c1 + c2)
PARTITIONS 4;

The PARTITION_EXPRESSION column in a PARTITIONS table record for a partition from this table
displays c1 + c2, as shown here:

mysql> SELECT DISTINCT PARTITION_EXPRESSION
     >     FROM INFORMATION_SCHEMA.PARTITIONS
     >     WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';
+----------------------+
| PARTITION_EXPRESSION |
+----------------------+
| c1 + c2              |
+----------------------+
1 row in set (0.09 sec)

• SUBPARTITION_EXPRESSION: This works in the same fashion for the subpartitioning expression
that defines the subpartitioning for a table as PARTITION_EXPRESSION does for the partitioning
expression used to define a table's partitioning.

If the table has no subpartitions, then this column is NULL.

• PARTITION_DESCRIPTION: This column is used for RANGE and LIST partitions. For a RANGE
partition, it contains the value set in the partition's VALUES LESS THAN clause, which can be
either an integer or MAXVALUE. For a LIST partition, this column contains the values defined in the
partition's VALUES IN clause, which is a comma-separated list of integer values.

For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always NULL.

• TABLE_ROWS: The number of table rows in the partition.

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column is only an estimated
value used in SQL optimization, and may not always be exact.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• AVG_ROW_LENGTH: The average length of the rows stored in this partition or subpartition, in bytes.

This is the same as DATA_LENGTH divided by TABLE_ROWS.

You can also obtain equivalent information using the ndb_desc utility.

• DATA_LENGTH: The total length of all rows stored in this partition or subpartition, in bytes—that is,
the total number of bytes stored in the partition or subpartition.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• MAX_DATA_LENGTH: The maximum number of bytes that can be stored in this partition or
subpartition.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• INDEX_LENGTH: The length of the index file for this partition or subpartition, in bytes.

For partitions of NDB tables, whether the tables use implicit or explicit partitioning, the
INDEX_LENGTH column value is always 0. However, you can obtain equivalent information using the
ndb_desc utility.

• DATA_FREE: The number of bytes allocated to the partition or subpartition but not used.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• CREATE_TIME: The time of the partition's or subpartition's creation.



The INFORMATION_SCHEMA PLUGINS Table

2548

Prior to MySQL 5.5.44, for partitioned InnoDB tables, this column was always NULL. The correct
creation time is shown in MySQL 5.5.44 and later. (Bug #17299181, Bug #69990)

• UPDATE_TIME: The time that the partition or subpartition was last modified.

For partitioned InnoDB tables, this column is always NULL.

• CHECK_TIME: The last time that the table to which this partition or subpartition belongs was checked.

For partitioned InnoDB tables, this column is always NULL.

• CHECKSUM: The checksum value, if any; otherwise, this column is NULL.

• PARTITION_COMMENT: This column contains the text of any comment made for the partition.

In MySQL 5.5, the display width of this column is 80 characters, and partition comments which
exceed this length are truncated to fit. This issue is fixed in MySQL 5.6. (Bug #11748924, Bug
#37728)

The default value for this column is an empty string.

• NODEGROUP: This is the nodegroup to which the partition belongs. This is relevant only to NDB
Cluster tables; otherwise the value of this column is always 0.

• TABLESPACE_NAME: This column contains the name of the tablespace to which the partition
belongs. The value of this column is always DEFAULT.

• A nonpartitioned table has one record in INFORMATION_SCHEMA.PARTITIONS; however, the
values of the PARTITION_NAME, SUBPARTITION_NAME, PARTITION_ORDINAL_POSITION,
SUBPARTITION_ORDINAL_POSITION, PARTITION_METHOD, SUBPARTITION_METHOD,
PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, and PARTITION_DESCRIPTION
columns are all NULL. (The PARTITION_COMMENT column in this case is blank.)

In MySQL 5.5, there is also only one record in the PARTITIONS table for a table using the
NDBCLUSTER storage engine. The same columns are also NULL (or empty) as for a nonpartitioned
table.

21.13 The INFORMATION_SCHEMA PLUGINS Table
The PLUGINS table provides information about server plugins.

INFORMATION_SCHEMA Name SHOW Name Remarks

PLUGIN_NAME Name MySQL extension

PLUGIN_VERSION  MySQL extension

PLUGIN_STATUS Status MySQL extension

PLUGIN_TYPE Type MySQL extension

PLUGIN_TYPE_VERSION  MySQL extension

PLUGIN_LIBRARY Library MySQL extension

PLUGIN_LIBRARY_VERSION  MySQL extension

PLUGIN_AUTHOR  MySQL extension

PLUGIN_DESCRIPTION  MySQL extension

PLUGIN_LICENSE  MySQL extension

LOAD_OPTION  MySQL extension

Notes:

• The PLUGINS table is a nonstandard table.



The INFORMATION_SCHEMA PROCESSLIST Table

2549

• PLUGIN_NAME is the name used to refer to the plugin in statements such as INSTALL PLUGIN and
UNINSTALL PLUGIN.

• PLUGIN_VERSION is the version from the plugin's general type descriptor.

• PLUGIN_STATUS indicates the plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.

• PLUGIN_TYPE indicates the type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or
AUTHENTICATION.

• PLUGIN_TYPE_VERSION is the version from the plugin's type-specific descriptor.

• PLUGIN_LIBRARY is the name of the plugin shared library file. This is the name used to refer to the
plugin file in statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in
the directory named by the plugin_dir system variable. If the library name is NULL, the plugin is
compiled in and cannot be uninstalled with UNINSTALL PLUGIN.

• PLUGIN_LIBRARY_VERSION indicates the plugin API interface version.

• PLUGIN_AUTHOR names the plugin author.

• PLUGIN_DESCRIPTION provides a short description of the plugin.

• PLUGIN_LICENSE indicates how the plugin is licensed; for example, GPL.

• LOAD_OPTION indicates how the plugin was loaded. The value is OFF, ON, FORCE, or
FORCE_PLUS_PERMANENT. See Section 5.5.2, “Installing and Uninstalling Plugins”. This column was
added in MySQL 5.5.7.

For plugins installed with INSTALL PLUGIN, the PLUGIN_NAME and PLUGIN_LIBRARY values are
also registered in the mysql.plugin table.

These statements are equivalent:

SELECT
  PLUGIN_NAME, PLUGIN_STATUS, PLUGIN_TYPE,
  PLUGIN_LIBRARY, PLUGIN_LICENSE
FROM INFORMATION_SCHEMA.PLUGINS;

SHOW PLUGINS;

For information about plugin data structures that form the basis of the information in the PLUGINS
table, see Section 24.2, “The MySQL Plugin API”.

Plugin information is also available using the SHOW PLUGINS statement. See Section 13.7.5.26,
“SHOW PLUGINS Syntax”.

21.14 The INFORMATION_SCHEMA PROCESSLIST Table
The PROCESSLIST table provides information about which threads are running.

INFORMATION_SCHEMA Name SHOW Name Remarks

ID Id MySQL extension

USER User MySQL extension

HOST Host MySQL extension

DB db MySQL extension

COMMAND Command MySQL extension

TIME Time MySQL extension

STATE State MySQL extension

INFO Info MySQL extension



The INFORMATION_SCHEMA PROFILING Table

2550

For an extensive description of the table columns, see Section 13.7.5.30, “SHOW PROCESSLIST
Syntax”.

Notes:

• The PROCESSLIST table is a nonstandard table.

• Like the output from the corresponding SHOW statement, the PROCESSLIST table will only show
information about your own threads, unless you have the PROCESS privilege, in which case you will
see information about other threads, too. As an anonymous user, you cannot see any rows at all.

• If an SQL statement refers to INFORMATION_SCHEMA.PROCESSLIST, MySQL populates the entire
table once, when statement execution begins, so there is read consistency during the statement.
There is no read consistency for a multi-statement transaction, though.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST

SHOW FULL PROCESSLIST

21.15 The INFORMATION_SCHEMA PROFILING Table

The PROFILING table provides statement profiling information. Its contents correspond to the
information produced by the SHOW PROFILES and SHOW PROFILE statements (see Section 13.7.5.32,
“SHOW PROFILES Syntax”). The table is empty unless the profiling session variable is set to 1.

INFORMATION_SCHEMA Name SHOW Name Remarks

QUERY_ID Query_ID  

SEQ  

STATE Status  

DURATION Duration  

CPU_USER CPU_user  

CPU_SYSTEM CPU_system  

CONTEXT_VOLUNTARY Context_voluntary  

CONTEXT_INVOLUNTARY Context_involuntary  

BLOCK_OPS_IN Block_ops_in  

BLOCK_OPS_OUT Block_ops_out  

MESSAGES_SENT Messages_sent  

MESSAGES_RECEIVED Messages_received  

PAGE_FAULTS_MAJOR Page_faults_major  

PAGE_FAULTS_MINOR Page_faults_minor  

SWAPS Swaps  

SOURCE_FUNCTION Source_function  

SOURCE_FILE Source_file  

SOURCE_LINE Source_line  

Notes:

• QUERY_ID is a numeric statement identifier.

• SEQ is a sequence number indicating the display order for rows with the same QUERY_ID value.



The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table

2551

• STATE is the profiling state to which the row measurements apply.

• DURATION indicates how long statement execution remained in the given state, in seconds.

• CPU_USER and CPU_SYSTEM indicate user and system CPU use, in seconds.

• CONTEXT_VOLUNTARY and CONTEXT_INVOLUNTARY indicate how many voluntary and involuntary
context switches occurred.

• BLOCK_OPS_IN and BLOCK_OPS_OUT indicate the number of block input and output operations.

• MESSAGES_SENT and MESSAGES_RECEIVED indicate the number of communication messages sent
and received.

• PAGE_FAULTS_MAJOR and PAGE_FAULTS_MINOR indicate the number of major and minor page
faults.

• SWAPS indicates how many swaps occurred.

• SOURCE_FUNCTION, SOURCE_FILE, and SOURCE_LINE provide information indicating where in the
source code the profiled state executes.

21.16 The INFORMATION_SCHEMA
REFERENTIAL_CONSTRAINTS Table

The REFERENTIAL_CONSTRAINTS table provides information about foreign keys.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG  def

CONSTRAINT_SCHEMA   

CONSTRAINT_NAME   

UNIQUE_CONSTRAINT_CATALOG  def

UNIQUE_CONSTRAINT_SCHEMA   

UNIQUE_CONSTRAINT_NAME   

MATCH_OPTION   

UPDATE_RULE   

DELETE_RULE   

TABLE_NAME   

REFERENCED_TABLE_NAME   

Notes:

• TABLE_NAME has the same value as TABLE_NAME in
INFORMATION_SCHEMA.TABLE_CONSTRAINTS.

• CONSTRAINT_SCHEMA and CONSTRAINT_NAME identify the foreign key.

• UNIQUE_CONSTRAINT_SCHEMA, UNIQUE_CONSTRAINT_NAME, and REFERENCED_TABLE_NAME
identify the referenced key.

• The only valid value at this time for MATCH_OPTION is NONE.

• The possible values for UPDATE_RULE or DELETE_RULE are CASCADE, SET NULL, SET DEFAULT,
RESTRICT, NO ACTION.

21.17 The INFORMATION_SCHEMA ROUTINES Table



The INFORMATION_SCHEMA ROUTINES Table

2552

The ROUTINES table provides information about stored routines (both procedures and functions). The
ROUTINES table does not include user-defined functions (UDFs).

The column named “mysql.proc Name” indicates the mysql.proc table column that corresponds to
the INFORMATION_SCHEMA.ROUTINES table column, if any.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

SPECIFIC_NAME specific_name  

ROUTINE_CATALOG  def

ROUTINE_SCHEMA db  

ROUTINE_NAME name  

ROUTINE_TYPE type {PROCEDURE|FUNCTION}

DATA_TYPE  same as for COLUMNS table

CHARACTER_MAXIMUM_LENGTH  same as for COLUMNS table

CHARACTER_OCTET_LENGTH  same as for COLUMNS table

NUMERIC_PRECISION  same as for COLUMNS table

NUMERIC_SCALE  same as for COLUMNS table

CHARACTER_SET_NAME  same as for COLUMNS table

COLLATION_NAME  same as for COLUMNS table

DTD_IDENTIFIER  data type descriptor

ROUTINE_BODY  SQL

ROUTINE_DEFINITION body_utf8  

EXTERNAL_NAME  NULL

EXTERNAL_LANGUAGE language NULL

PARAMETER_STYLE  SQL

IS_DETERMINISTIC is_deterministic  

SQL_DATA_ACCESS sql_data_access  

SQL_PATH  NULL

SECURITY_TYPE security_type  

CREATED created  

LAST_ALTERED modified  

SQL_MODE sql_mode MySQL extension

ROUTINE_COMMENT comment MySQL extension

DEFINER definer MySQL extension

CHARACTER_SET_CLIENT  MySQL extension

COLLATION_CONNECTION  MySQL extension

DATABASE_COLLATION  MySQL extension

Notes:

• MySQL calculates EXTERNAL_LANGUAGE thus:

• If mysql.proc.language='SQL', EXTERNAL_LANGUAGE is NULL

• Otherwise, EXTERNAL_LANGUAGE is what is in mysql.proc.language. However, we do not
have external languages yet, so it is always NULL.

• CREATED: The date and time when the routine was created. This is a TIMESTAMP value.



The INFORMATION_SCHEMA SCHEMATA Table

2553

• LAST_ALTERED: The date and time when the routine was last modified. This is a TIMESTAMP value.
If the routine has not been modified since its creation, this column holds the same value as the
CREATED column.

• SQL_MODE: The SQL mode in effect when the routine was created or altered, and under which the
routine executes. For the permitted values, see Section 5.1.8, “Server SQL Modes”.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the routine was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the routine was created.

• DATABASE_COLLATION: The collation of the database with which the routine is associated.

• The DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
NUMERIC_PRECISION, NUMERIC_SCALE, CHARACTER_SET_NAME, and COLLATION_NAME
columns provide information about the data type for the RETURNS clause of stored functions. If a
stored routine is a stored procedure, these columns all are NULL. These columns were added in
MySQL 5.5.3.

• Information about stored function RETURNS data types is also available in the PARAMETERS
table. The return value data type row for a function can be identified as the row that has an
ORDINAL_POSITION value of 0.

21.18 The INFORMATION_SCHEMA SCHEMATA Table
A schema is a database, so the SCHEMATA table provides information about databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

CATALOG_NAME  def

SCHEMA_NAME Database  

DEFAULT_CHARACTER_SET_NAME   

DEFAULT_COLLATION_NAME   

SQL_PATH  NULL

The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
  FROM INFORMATION_SCHEMA.SCHEMATA
  [WHERE SCHEMA_NAME LIKE 'wild']

SHOW DATABASES
  [LIKE 'wild']

21.19 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. This
information comes from the mysql.db grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE  'user_name'@'host_name'
value, MySQL extension

TABLE_CATALOG  def, MySQL extension

TABLE_SCHEMA  MySQL extension

PRIVILEGE_TYPE  MySQL extension

IS_GRANTABLE  MySQL extension



The INFORMATION_SCHEMA STATISTICS Table

2554

Notes:

• This is a nonstandard table. It takes its values from the mysql.db table.

21.20 The INFORMATION_SCHEMA STATISTICS Table
The STATISTICS table provides information about table indexes.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG  def

TABLE_SCHEMA  = Database

TABLE_NAME Table  

NON_UNIQUE Non_unique  

INDEX_SCHEMA  = Database

INDEX_NAME Key_name  

SEQ_IN_INDEX Seq_in_index  

COLUMN_NAME Column_name  

COLLATION Collation  

CARDINALITY Cardinality  

SUB_PART Sub_part MySQL extension

PACKED Packed MySQL extension

NULLABLE Null MySQL extension

INDEX_TYPE Index_type MySQL extension

COMMENT Comment MySQL extension

Notes:

• There is no standard table for indexes. The preceding list is similar to what SQL Server 2000 returns
for sp_statistics, except that we replaced the name QUALIFIER with CATALOG and we replaced
the name OWNER with SCHEMA.

Clearly, the preceding table and the output from SHOW INDEX are derived from the same parent. So
the correlation is already close.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
  WHERE table_name = 'tbl_name'
  AND table_schema = 'db_name'

SHOW INDEX
  FROM tbl_name
  FROM db_name

21.21 The INFORMATION_SCHEMA TABLES Table
The TABLES table provides information about tables in databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG  def

TABLE_SCHEMA Table_...  

TABLE_NAME Table_...  

TABLE_TYPE   



The INFORMATION_SCHEMA TABLES Table

2555

INFORMATION_SCHEMA Name SHOW Name Remarks

ENGINE Engine MySQL extension

VERSION Version The version number of the
table's .frm file, MySQL
extension

ROW_FORMAT Row_format MySQL extension

TABLE_ROWS Rows MySQL extension

AVG_ROW_LENGTH Avg_row_length MySQL extension

DATA_LENGTH Data_length MySQL extension

MAX_DATA_LENGTH Max_data_length MySQL extension

INDEX_LENGTH Index_length MySQL extension

DATA_FREE Data_free MySQL extension

AUTO_INCREMENT Auto_increment MySQL extension

CREATE_TIME Create_time MySQL extension

UPDATE_TIME Update_time MySQL extension

CHECK_TIME Check_time MySQL extension

TABLE_COLLATION Collation MySQL extension

CHECKSUM Checksum MySQL extension

CREATE_OPTIONS Create_options MySQL extension

TABLE_COMMENT Comment MySQL extension

INDEX_COMMENT Index_comment MySQL extension

Notes:

• Refer to SHOW TABLE STATUS for field descriptions.

• TABLE_SCHEMA and TABLE_NAME are a single field in a SHOW display, for example Table_in_db1.

• TABLE_TYPE should be BASE TABLE or VIEW. The TABLES table does not list TEMPORARY tables.

• For partitioned tables, the ENGINE column shows the name of the storage engine used by all
partitions. (Previously, this column showed PARTITION for such tables.)

• The TABLE_ROWS column is NULL if the table is in the INFORMATION_SCHEMA database.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also
true if the InnoDB table is partitioned.)

• For NDB tables, DATA_LENGTH includes data stored in main memory only; the MAX_DATA_LENGTH
and DATA_FREE columns apply to Disk Data.

• For NDB Cluster Disk Data tables, MAX_DATA_LENGTH shows the space allocated for the disk part
of a Disk Data table or fragment. (In-memory data resource usage is reported by the DATA_LENGTH
column.)

• The DATA_FREE column shows the free space in bytes for InnoDB tables.

For NDB Cluster, DATA_FREE shows the space allocated on disk for, but not used by, a Disk Data
table or fragment on disk. (In-memory data resource usage is reported by the DATA_LENGTH
column.)

• Prior to MySQL 5.5.44, for partitioned InnoDB tables, the CREATE_TIME column showed NULL.
This column shows the correct table creation time for such tables in MySQL 5.5.44 and later. (Bug
#17299181, Bug #69990)



The INFORMATION_SCHEMA TABLESPACES Table

2556

For partitioned InnoDB tables, the UPDATE_TIME and CHECK_TIME columns are always NULL.

• We have nothing for the table's default character set. TABLE_COLLATION is close, because collation
names begin with a character set name.

• The CREATE_OPTIONS column shows partitioned if the table is partitioned.

The following statements are equivalent:

SELECT table_name FROM INFORMATION_SCHEMA.TABLES
  WHERE table_schema = 'db_name'
  [AND table_name LIKE 'wild']

SHOW TABLES
  FROM db_name
  [LIKE 'wild']

21.22 The INFORMATION_SCHEMA TABLESPACES Table

The TABLESPACES table provides information about active tablespaces. The table was added in
MySQL 5.5.3.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLESPACE_NAME  MySQL extension

ENGINE  MySQL extension

TABLESPACE_TYPE  MySQL extension

LOGFILE_GROUP_NAME  MySQL extension

EXTENT_SIZE  MySQL extension

AUTOEXTEND_SIZE  MySQL extension

MAXIMUM_SIZE  MySQL extension

NODEGROUP_ID  MySQL extension

TABLESPACE_COMMENT  MySQL extension

Notes:

The INFORMATION_SCHEMA.TABLESPACES table does not provide information about InnoDB
tablespaces.

21.23 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG  def

CONSTRAINT_SCHEMA   

CONSTRAINT_NAME   

TABLE_SCHEMA   

TABLE_NAME   

CONSTRAINT_TYPE   

Notes:

• The CONSTRAINT_TYPE value can be UNIQUE, PRIMARY KEY, or FOREIGN KEY.



The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

2557

• The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name
field in the output from SHOW INDEX when the Non_unique field is 0.

• The CONSTRAINT_TYPE column can contain one of these values: UNIQUE, PRIMARY KEY,
FOREIGN KEY, CHECK. This is a CHAR (not ENUM) column. The CHECK value is not available until we
support CHECK.

21.24 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
The TABLE_PRIVILEGES table provides information about table privileges. This information comes
from the mysql.tables_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE  'user_name'@'host_name'
value

TABLE_CATALOG  def

TABLE_SCHEMA   

TABLE_NAME   

PRIVILEGE_TYPE   

IS_GRANTABLE   

Notes:

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES, ALTER, INDEX, DROP, CREATE VIEW.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

SHOW GRANTS ...

21.25 The INFORMATION_SCHEMA TRIGGERS Table
The TRIGGERS table provides information about triggers. To see information about a table's triggers,
you must have the TRIGGER privilege for the table.

INFORMATION_SCHEMA Name SHOW Name Remarks

TRIGGER_CATALOG  def

TRIGGER_SCHEMA   

TRIGGER_NAME Trigger  

EVENT_MANIPULATION Event  

EVENT_OBJECT_CATALOG  def

EVENT_OBJECT_SCHEMA   

EVENT_OBJECT_TABLE Table  

ACTION_ORDER  0

ACTION_CONDITION  NULL

ACTION_STATEMENT Statement  

ACTION_ORIENTATION  ROW

ACTION_TIMING Timing  

ACTION_REFERENCE_OLD_TABLE  NULL

ACTION_REFERENCE_NEW_TABLE  NULL



The INFORMATION_SCHEMA TRIGGERS Table

2558

INFORMATION_SCHEMA Name SHOW Name Remarks

ACTION_REFERENCE_OLD_ROW  OLD

ACTION_REFERENCE_NEW_ROW  NEW

CREATED Created  

SQL_MODE sql_mode MySQL extension

DEFINER Definer MySQL extension

CHARACTER_SET_CLIENT character_set_client MySQL extension

COLLATION_CONNECTION collation_connection MySQL extension

DATABASE_COLLATION Database Collation MySQL extension

Notes:

• The names in the “SHOW Name” column refer to the SHOW TRIGGERS statement, not SHOW CREATE
TRIGGER. See Section 13.7.5.39, “SHOW TRIGGERS Syntax”.

• TRIGGER_SCHEMA and TRIGGER_NAME: The name of the database in which the trigger occurs and
the trigger name, respectively.

• EVENT_MANIPULATION: The trigger event. This is the type of operation on the associated table for
which the trigger activates. The value is 'INSERT' (a row was inserted), 'DELETE' (a row was
deleted), or 'UPDATE' (a row was modified).

• EVENT_OBJECT_SCHEMA and EVENT_OBJECT_TABLE: As noted in Section 20.3, “Using Triggers”,
every trigger is associated with exactly one table. These columns indicate the database in which this
table occurs, and the table name, respectively.

• ACTION_ORDER: The ordinal position of the trigger's action within the list of all similar triggers on the
same table. This value is always 0, because it is not possible to have more than one trigger with the
same EVENT_MANIPULATION and ACTION_TIMING on the same table.

• ACTION_STATEMENT: The trigger body; that is, the statement executed when the trigger activates.
This text uses UTF-8 encoding.

• ACTION_ORIENTATION: Always contains the value 'ROW'.

• ACTION_TIMING: Whether the trigger activates before or after the triggering event. The value is
'BEFORE' or 'AFTER'.

• ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW: The old and new column
identifiers, respectively. This means that ACTION_REFERENCE_OLD_ROW always contains the value
'OLD' and ACTION_REFERENCE_NEW_ROW always contains the value 'NEW'.

• SQL_MODE: The SQL mode in effect when the trigger was created, and under which the trigger
executes. For the permitted values, see Section 5.1.8, “Server SQL Modes”.

• DEFINER: The account of the user who created the trigger, in 'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the trigger was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the trigger was created.

• DATABASE_COLLATION: The collation of the database with which the trigger is associated.

• The following columns currently always contain NULL: ACTION_CONDITION,
ACTION_REFERENCE_OLD_TABLE, ACTION_REFERENCE_NEW_TABLE, and CREATED.

Example, using the ins_sum trigger defined in Section 20.3, “Using Triggers”:



The INFORMATION_SCHEMA USER_PRIVILEGES Table

2559

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS
       WHERE TRIGGER_SCHEMA='test' AND TRIGGER_NAME='ins_sum'\G
*************************** 1. row ***************************
           TRIGGER_CATALOG: def
            TRIGGER_SCHEMA: test
              TRIGGER_NAME: ins_sum
        EVENT_MANIPULATION: INSERT
      EVENT_OBJECT_CATALOG: def
       EVENT_OBJECT_SCHEMA: test
        EVENT_OBJECT_TABLE: account
              ACTION_ORDER: 0
          ACTION_CONDITION: NULL
          ACTION_STATEMENT: SET @sum = @sum + NEW.amount
        ACTION_ORIENTATION: ROW
             ACTION_TIMING: BEFORE
ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
  ACTION_REFERENCE_OLD_ROW: OLD
  ACTION_REFERENCE_NEW_ROW: NEW
                   CREATED: NULL
                  SQL_MODE:
                   DEFINER: me@localhost
      CHARACTER_SET_CLIENT: utf8
      COLLATION_CONNECTION: utf8_general_ci
        DATABASE_COLLATION: latin1_swedish_ci

21.26 The INFORMATION_SCHEMA USER_PRIVILEGES Table
The USER_PRIVILEGES table provides information about global privileges. This information comes
from the mysql.user grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE  'user_name'@'host_name'
value, MySQL extension

TABLE_CATALOG  def, MySQL extension

PRIVILEGE_TYPE  MySQL extension

IS_GRANTABLE  MySQL extension

Notes:

• This is a nonstandard table. It takes its values from the mysql.user table.

21.27 The INFORMATION_SCHEMA VIEWS Table
The VIEWS table provides information about views in databases. You must have the SHOW VIEW
privilege to access this table.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG  def

TABLE_SCHEMA   

TABLE_NAME   

VIEW_DEFINITION   

CHECK_OPTION   

IS_UPDATABLE   

DEFINER   

SECURITY_TYPE   

CHARACTER_SET_CLIENT  MySQL extension



The INFORMATION_SCHEMA VIEWS Table

2560

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_CONNECTION  MySQL extension

Notes:

• The VIEW_DEFINITION column has most of what you see in the Create Table field that SHOW
CREATE VIEW produces. Skip the words before SELECT and skip the words WITH CHECK OPTION.
Suppose that the original statement was:

CREATE VIEW v AS
  SELECT s2,s1 FROM t
  WHERE s1 > 5
  ORDER BY s1
  WITH CHECK OPTION;

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• The CHECK_OPTION column has a value of NONE, CASCADE, or LOCAL.

• MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES
(true) if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is
set to NO (false). The IS_UPDATABLE column in the VIEWS table displays the status of this flag. It
means that the server always knows whether a view is updatable.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and will be
rejected. (Note that even if a view is updatable, it might not be possible to insert into it; for details,
refer to Section 20.5.3, “Updatable and Insertable Views”.)

• DEFINER: The account of the user who created the view, in 'user_name'@'host_name' format.
SECURITY_TYPE has a value of DEFINER or INVOKER.

• CHARACTER_SET_CLIENT: The session value of the character_set_client system variable
when the view was created.

• COLLATION_CONNECTION: The session value of the collation_connection system variable
when the view was created.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support.
For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard
SQL concatenation operator, the double bar (||), in your queries. If you then create a view that
concatenates items, you might worry that changing the sql_mode setting to a value different from
ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a
view definition, MySQL always stores it the same way, in a canonical form. Here is an example that
shows how the server changes a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT VIEW_DEFINITION FROM INFORMATION_SCHEMA.VIEWS
       WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v';
+----------------------------------+
| VIEW_DEFINITION                  |
+----------------------------------+
| select concat('a','b') AS `col1` |
+----------------------------------+
1 row in set (0.00 sec)



InnoDB INFORMATION_SCHEMA Tables

2561

The advantage of storing a view definition in canonical form is that changes made later to the value
of sql_mode will not affect the results from the view. However an additional consequence is that
comments prior to SELECT are stripped from the definition by the server.

21.28 InnoDB INFORMATION_SCHEMA Tables
This section provides table definitions for InnoDB INFORMATION_SCHEMA tables. For related
information and examples, see Section 14.18, “InnoDB INFORMATION_SCHEMA Tables”.

InnoDB INFORMATION_SCHEMA tables can be used to monitor ongoing InnoDB activity, to detect
inefficiencies before they turn into issues, or to troubleshoot performance and capacity issues. As your
database becomes bigger and busier, running up against the limits of your hardware capacity, you
monitor and tune these aspects to keep the database running smoothly.

21.28.1 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

The INNODB_BUFFER_PAGE table holds information about each page in the InnoDB buffer pool.

For related usage information and examples, see Section 14.18.3, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

Warning

Querying the INNODB_BUFFER_PAGE table can introduce significant
performance overhead. Do not query this table on a production system
unless you are aware of the performance impact that your query may have,
and have determined it to be acceptable. To avoid impacting performance,
reproduce the issue you want to investigate on a test instance and query the
INNODB_BUFFER_PAGE table on the test instance.

Table 21.1 INNODB_BUFFER_PAGE Columns

Column name Description

POOL_ID Buffer Pool ID. An identifier to distinguish between multiple buffer pool
instances.

BLOCK_ID Buffer Pool Block ID.

SPACE Tablespace ID. Uses the same value as in
INNODB_SYS_TABLES.SPACE.

PAGE_NUMBER Page number.

PAGE_TYPE Page type. Permitted values are ALLOCATED (Freshly allocated page),
INDEX (B-tree node), UNDO_LOG (Undo log page), INODE (Index
node), IBUF_FREE_LIST (Insert buffer free list), IBUF_BITMAP
(Insert buffer bitmap), SYSTEM (System page), TRX_SYSTEM
(Transaction system data), FILE_SPACE_HEADER (File space header),
EXTENT_DESCRIPTOR (Extent descriptor page), BLOB (Uncompressed
BLOB page), COMPRESSED_BLOB (First compressed BLOB page),
COMPRESSED_BLOB2 (Subsequent comp BLOB page), IBUF_INDEX
(Insert buffer index), UNKNOWN (unknown).

FLUSH_TYPE Flush type.

FIX_COUNT Number of threads using this block within the buffer pool. When zero, the
block is eligible to be evicted.

IS_HASHED Whether hash index has been built on this page.

NEWEST_MODIFICATION Log Sequence Number of the youngest modification.

OLDEST_MODIFICATION Log Sequence Number of the oldest modification.

ACCESS_TIME An abstract number used to judge the first access time of the page.



The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

2562

Column name Description

TABLE_NAME Name of the table the page belongs to. This column is only applicable to
pages of type INDEX.

INDEX_NAME Name of the index the page belongs to. It can be the name of a clustered
index or a secondary index. This column is only applicable to pages of
type INDEX.

NUMBER_RECORDS Number of records within the page.

DATA_SIZE Sum of the sizes of the records. This column is only applicable to pages
of type INDEX.

COMPRESSED_SIZE Compressed page size. Null for pages that are not compressed.

PAGE_STATE Page state. A page with valid data has one of the following states:
FILE_PAGE (buffers a page of data from a file), MEMORY (buffers a
page from an in-memory object), COMPRESSED. Other possible states
(managed by InnoDB) are: NULL, READY_FOR_USE, NOT_USED,
REMOVE_HASH.

IO_FIX Specifies whether any I/O is pending for this page: IO_NONE = no
pending I/O, IO_READ = read pending, IO_WRITE = write pending.

IS_OLD Specifies whether or not the block is in the sublist of old blocks in the LRU
list.

FREE_PAGE_CLOCK The value of the freed_page_clock counter when the block was the
last placed at the head of the LRU list. The freed_page_clock counter
tracks the number of blocks removed from the end of the LRU list.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE WHERE BLOCK_ID=9\G
*************************** 1. row ***************************
            POOL_ID: 0
           BLOCK_ID: 9
              SPACE: 0
        PAGE_NUMBER: 8019
          PAGE_TYPE: INDEX
         FLUSH_TYPE: 2
          FIX_COUNT: 0
          IS_HASHED: YES
NEWEST_MODIFICATION: 226918754
OLDEST_MODIFICATION: 0
        ACCESS_TIME: 3376847655
         TABLE_NAME: employees/salaries
         INDEX_NAME: PRIMARY
     NUMBER_RECORDS: 468
          DATA_SIZE: 14976
    COMPRESSED_SIZE: 0
         PAGE_STATE: FILE_PAGE
             IO_FIX: IO_NONE
             IS_OLD: YES
    FREE_PAGE_CLOCK: 8

Notes:

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the buffer
pool until space is required for other data. The INNODB_BUFFER_PAGE table reports information



The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

2563

about these pages until they are evicted from the buffer pool. For more information about how the
InnoDB manages buffer pool data, see Section 14.9.2.1, “The InnoDB Buffer Pool”.

21.28.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered that determines which pages to evict from the buffer pool when it
becomes full.

The INNODB_BUFFER_PAGE_LRU table has the same columns as the INNODB_BUFFER_PAGE table,
except that the INNODB_BUFFER_PAGE_LRU table has an LRU_POSITION column instead of a
BLOCK_ID column.

For related usage information and examples, see Section 14.18.3, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

Warning

Querying the INNODB_BUFFER_PAGE_LRU table can introduce significant
performance overhead. Do not query this table on a production system
unless you are aware of the performance impact that your query may have,
and have determined it to be acceptable. To avoid impacting performance,
reproduce the issue you want to investigate on a test instance and query the
INNODB_BUFFER_PAGE_LRU table on the test instance.

Table 21.2 INNODB_BUFFER_PAGE_LRU Columns

Column name Description

POOL_ID Buffer Pool ID. An identifier to distinguish between multiple buffer pool
instances.

LRU_POSITION The position of the page in the LRU list.

SPACE Tablespace ID. Uses the same value as in
INNODB_SYS_TABLES.SPACE.

PAGE_NUMBER Page number.

PAGE_TYPE Page type. Permitted values are ALLOCATED (Freshly allocated page),
INDEX (B-tree node), UNDO_LOG (Undo log page), INODE (Index
node), IBUF_FREE_LIST (Insert buffer free list), IBUF_BITMAP
(Insert buffer bitmap), SYSTEM (System page), TRX_SYSTEM
(Transaction system data), FILE_SPACE_HEADER (File space header),
EXTENT_DESCRIPTOR (Extent descriptor page), BLOB (Uncompressed
BLOB page), COMPRESSED_BLOB (First compressed BLOB page),
COMPRESSED_BLOB2 (Subsequent comp BLOB page), IBUF_INDEX
(Insert buffer index), UNKNOWN (unknown).

FLUSH_TYPE Flush type.

FIX_COUNT Number of threads using this block within the buffer pool. When zero, the
block is eligible to be evicted.

IS_HASHED Whether hash index has been built on this page.

NEWEST_MODIFICATION Log Sequence Number of the youngest modification.

OLDEST_MODIFICATION Log Sequence Number of the oldest modification.

ACCESS_TIME An abstract number used to judge the first access time of the page.

TABLE_NAME Name of the table the page belongs to. This column is only applicable to
pages of type INDEX.

INDEX_NAME Name of the index the page belongs to. It can be the name of a clustered
index or a secondary index. This column is only applicable to pages of
type INDEX.



The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

2564

Column name Description

NUMBER_RECORDS Number of records within the page.

DATA_SIZE Sum of the sizes of the records. This column is only applicable to pages
of type INDEX.

COMPRESSED_SIZE Compressed page size. Null for pages that are not compressed.

PAGE_STATE Page state. A page with valid data has one of the following states:
FILE_PAGE (buffers a page of data from a file), MEMORY (buffers a
page from an in-memory object), COMPRESSED. Other possible states
(managed by InnoDB) are: NULL, READY_FOR_USE, NOT_USED,
REMOVE_HASH.

IO_FIX Specifies whether any I/O is pending for this page: IO_NONE = no
pending I/O, IO_READ = read pending, IO_WRITE = write pending.

IS_OLD Specifies whether or not the block is in the sublist of old blocks in the LRU
list.

FREE_PAGE_CLOCK The value of the freed_page_clock counter when the block was the
last placed at the head of the LRU list. The freed_page_clock counter
tracks the number of blocks removed from the end of the LRU list.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU LIMIT 1\G
*************************** 1. row ***************************
            POOL_ID: 0
       LRU_POSITION: 0
              SPACE: 0
        PAGE_NUMBER: 7485
          PAGE_TYPE: INDEX
         FLUSH_TYPE: 2
          FIX_COUNT: 0
          IS_HASHED: YES
NEWEST_MODIFICATION: 216319316
OLDEST_MODIFICATION: 0
        ACCESS_TIME: 3376846384
         TABLE_NAME: employees/salaries
         INDEX_NAME: emp_no
     NUMBER_RECORDS: 1300
          DATA_SIZE: 15600
    COMPRESSED_SIZE: 0
         COMPRESSED: NO
             IO_FIX: IO_NONE
             IS_OLD: YES
    FREE_PAGE_CLOCK: 0

Notes

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• Querying this table can require MySQL to allocate a large block of contiguous memory, more than 64
bytes time the number of active pages in the buffer pool. This allocation could potentially cause an
out-of-memory error, especially for systems with multi-gigabyte buffer pools.

• Querying this table requires MySQL to lock the data structure representing the buffer pool while
traversing the LRU list, which can reduce concurrency, especially for systems with multi-gigabyte
buffer pools.



The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

2565

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the
buffer pool until space is required for other data. The INNODB_BUFFER_PAGE_LRU table reports
information about these pages until they are evicted from the buffer pool. For more information about
how the InnoDB manages buffer pool data, see Section 14.9.2.1, “The InnoDB Buffer Pool”.

21.28.3 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS
Table

The INNODB_BUFFER_POOL_STATS table provides much of the same buffer pool information provided
in SHOW ENGINE INNODB STATUS output. Much of the same information may also be obtained using
InnoDB buffer pool server status variables.

The idea of making pages in the buffer pool “young” or “not young” refers to transferring them between
the sublists at the head and tail of the buffer pool data structure. Pages made “young” take longer
to age out of the buffer pool, while pages made “not young” are moved much closer to the point of
eviction.

For related usage information and examples, see Section 14.18.3, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

Table 21.3 INNODB_BUFFER_POOL_STATS Columns

Column name Description

POOL_ID Buffer Pool ID. A unique identifier to distinguish between multiple buffer
pool instances.

POOL_SIZE The InnoDB buffer pool size in pages.

FREE_BUFFERS The number of free pages in the InnoDB buffer pool

DATABASE_PAGES The number of pages in the InnoDB buffer pool containing data. The
number includes both dirty and clean pages.

OLD_DATABASE_PAGES The number of pages in the old buffer pool sublist.

MODIFIED_DATABASE_PAGESThe number of modified (dirty) database pages

PENDING_DECOMPRESS The number of pages pending decompression

PENDING_READS The number of pending reads

PENDING_FLUSH_LRU The number of pages pending flush in the LRU

PENDING_FLUSH_LIST The number of pages pending flush in the flush list

PAGES_MADE_YOUNG The number of pages made young

PAGES_NOT_MADE_YOUNG The number of pages not made young

PAGES_MADE_YOUNG_RATE The number of pages made young per second (pages made young since
the last printout / time elapsed)

PAGES_MADE_NOT_YOUNG_RATEThe number of pages not made per second (pages not made young
since the last printout / time elapsed)

NUMBER_PAGES_READ The number of pages read

NUMBER_PAGES_CREATED The number of pages created

NUMBER_PAGES_WRITTEN The number of pages written

PAGES_READ_RATE The number of pages read per second (pages read since the last
printout / time elapsed)

PAGES_CREATE_RATE The number of pages created per second (pages created since the last
printout / time elapsed)

PAGES_WRITTEN_RATE The number of pages written per second (pages written since the last
printout / time elapsed)

NUMBER_PAGES_GET The number of logical read requests.



The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

2566

Column name Description

HIT_RATE The buffer pool hit rate

YOUNG_MAKE_PER_THOUSAND_GETSThe number of pages made young per thousand gets

NOT_YOUNG_MAKE_PER_THOUSAND_GETSThe number of pages not made young per thousand gets

NUMBER_PAGES_READ_AHEADThe number of pages read ahead

NUMBER_READ_AHEAD_EVICTEDThe number of pages read into the InnoDB buffer pool by the read-
ahead background thread that were subsequently evicted without having
been accessed by queries.

READ_AHEAD_RATE The read ahead rate per second (pages read ahead since the last
printout / time elapsed)

READ_AHEAD_EVICTED_RATEThe number of read ahead pages evicted without access per second
(read ahead pages not accessed since the last printout / time elapsed)

LRU_IO_TOTAL LRU IO total

LRU_IO_CURRENT LRU IO for the current interval

UNCOMPRESS_TOTAL Total number of pages decompressed

UNCOMPRESS_CURRENT The number of pages decompressed in the current interval

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_POOL_STATS\G
*************************** 1. row ***************************
                         POOL_ID: 0
                       POOL_SIZE: 8192
                    FREE_BUFFERS: 0
                  DATABASE_PAGES: 8014
              OLD_DATABASE_PAGES: 2938
         MODIFIED_DATABASE_PAGES: 0
              PENDING_DECOMPRESS: 0
                   PENDING_READS: 0
               PENDING_FLUSH_LRU: 0
              PENDING_FLUSH_LIST: 0
                PAGES_MADE_YOUNG: 7380
            PAGES_NOT_MADE_YOUNG: 0
           PAGES_MADE_YOUNG_RATE: 0
       PAGES_MADE_NOT_YOUNG_RATE: 0
               NUMBER_PAGES_READ: 2723
            NUMBER_PAGES_CREATED: 12657
            NUMBER_PAGES_WRITTEN: 16181
                 PAGES_READ_RATE: 0
               PAGES_CREATE_RATE: 0
              PAGES_WRITTEN_RATE: 0
                NUMBER_PAGES_GET: 28952710
                        HIT_RATE: 1000
    YOUNG_MAKE_PER_THOUSAND_GETS: 0
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
         NUMBER_PAGES_READ_AHEAD: 2469
       NUMBER_READ_AHEAD_EVICTED: 0
                 READ_AHEAD_RATE: 0
         READ_AHEAD_EVICTED_RATE: 0
                    LRU_IO_TOTAL: 0
                  LRU_IO_CURRENT: 0
                UNCOMPRESS_TOTAL: 0
              UNCOMPRESS_CURRENT: 0
1 row in set (0.00 sec)

Notes:

• This table is primarily useful for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.



The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables

2567

• You must have the PROCESS privilege to query this table.

21.28.4 The INFORMATION_SCHEMA INNODB_CMP and
INNODB_CMP_RESET Tables

The INNODB_CMP and INNODB_CMP_RESET tables contain status information on operations related to
compressed InnoDB tables.

Table 21.4 Columns of INNODB_CMP and INNODB_CMP_RESET

Column name Description

PAGE_SIZE Compressed page size in bytes.

COMPRESS_OPS Number of times a B-tree page of the size PAGE_SIZE has been
compressed. Pages are compressed whenever an empty page is created
or the space for the uncompressed modification log runs out.

COMPRESS_OPS_OK Number of times a B-tree page of the size PAGE_SIZE has
been successfully compressed. This count should never exceed
COMPRESS_OPS.

COMPRESS_TIME Total time in seconds spent in attempts to compress B-tree pages of the
size PAGE_SIZE.

UNCOMPRESS_OPS Number of times a B-tree page of the size PAGE_SIZE has been
uncompressed. B-tree pages are uncompressed whenever compression
fails or at first access when the uncompressed page does not exist in the
buffer pool.

UNCOMPRESS_TIME Total time in seconds spent in uncompressing B-tree pages of the size
PAGE_SIZE.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP\G
*************************** 1. row ***************************
      page_size: 1024
   compress_ops: 0
compress_ops_ok: 0
  compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 2. row ***************************
      page_size: 2048
   compress_ops: 0
compress_ops_ok: 0
  compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 3. row ***************************
      page_size: 4096
   compress_ops: 0
compress_ops_ok: 0
  compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 4. row ***************************
      page_size: 8192
   compress_ops: 199755
compress_ops_ok: 112015
  compress_time: 83
 uncompress_ops: 74253
uncompress_time: 13
*************************** 5. row ***************************
      page_size: 16384
   compress_ops: 0
compress_ops_ok: 0



The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables

2568

  compress_time: 0
 uncompress_ops: 0
uncompress_time: 0

Notes:

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of these tables
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.18.1.3, “Using the Compression Information Schema Tables”.

21.28.5 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables contain status information on compressed
pages within the InnoDB buffer pool.

Table 21.5 Columns of INNODB_CMPMEM and INNODB_CMPMEM_RESET

Column name Description

PAGE_SIZE Block size in bytes. Each record of this table describes blocks of this size.

BUFFER_POOL_INSTANCEA unique identifier for the buffer pool instance.

PAGES_USED Number of blocks of the size PAGE_SIZE that are currently in use.

PAGES_FREE Number of blocks of the size PAGE_SIZE that are currently available for
allocation. This column shows the external fragmentation in the memory
pool. Ideally, these numbers should be at most 1.

RELOCATION_OPS Number of times a block of the size PAGE_SIZE has been relocated.
The buddy system can relocate the allocated “buddy neighbor” of a freed
block when it tries to form a bigger freed block. Reading from the table
INNODB_CMPMEM_RESET resets this count.

RELOCATION_TIME Total time in microseconds spent in relocating blocks of the size
PAGE_SIZE. Reading from the table INNODB_CMPMEM_RESET resets this
count.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMPMEM\G
*************************** 1. row ***************************
           page_size: 1024
buffer_pool_instance: 0
          pages_used: 0
          pages_free: 0
      relocation_ops: 0
     relocation_time: 0
*************************** 2. row ***************************
           page_size: 2048
buffer_pool_instance: 0
          pages_used: 0
          pages_free: 0
      relocation_ops: 0
     relocation_time: 0
*************************** 3. row ***************************
           page_size: 4096
buffer_pool_instance: 0
          pages_used: 0
          pages_free: 0
      relocation_ops: 0
     relocation_time: 0



The INFORMATION_SCHEMA INNODB_LOCKS Table

2569

*************************** 4. row ***************************
           page_size: 8192
buffer_pool_instance: 0
          pages_used: 9043
          pages_free: 1
      relocation_ops: 2457
     relocation_time: 0
*************************** 5. row ***************************
           page_size: 16384
buffer_pool_instance: 0
          pages_used: 0
          pages_free: 0
      relocation_ops: 0
     relocation_time: 0

Notes:

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of these tables
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.18.1.3, “Using the Compression Information Schema Tables”.

21.28.6 The INFORMATION_SCHEMA INNODB_LOCKS Table

The INNODB_LOCKS table contains information about each lock that an InnoDB transaction has
requested but not yet acquired, and each lock that a transaction holds that is blocking another
transaction.

Table 21.6 INNODB_LOCKS Columns

Column name Description

LOCK_ID Unique lock ID number, internal to InnoDB. Treat it as an opaque string.
Although LOCK_ID currently contains TRX_ID, the format of the data in LOCK_ID
is subject to change at any time. Do not write applications that parse the
LOCK_ID value.

LOCK_TRX_ID ID of the transaction holding the lock. To obtain details about the transaction, join
this column with the TRX_ID column of the INNODB_TRX table.

LOCK_MODE How the lock is requested. Permitted values are S[,GAP], X[,GAP], IS[,GAP],
IX[,GAP], AUTO_INC, and UNKNOWN. Lock modes other than AUTO_INC and
UNKNOWN indicate gap locks, if present. For information about S, X, IS, IX, and
gap locks, refer to Section 14.8.1, “InnoDB Locking”.

LOCK_TYPE The type of lock. Permitted values are RECORD for a row-level lock, TABLE for a
table-level lock.

LOCK_TABLE Name of the table that has been locked or contains locked records.

LOCK_INDEX Name of the index, if LOCK_TYPE is RECORD; otherwise NULL.

LOCK_SPACE Tablespace ID of the locked record, if LOCK_TYPE is RECORD; otherwise NULL.

LOCK_PAGE Page number of the locked record, if LOCK_TYPE is RECORD; otherwise NULL.

LOCK_REC Heap number of the locked record within the page, if LOCK_TYPE is RECORD;
otherwise NULL.

LOCK_DATA The data associated with the lock, if any. Values are primary key values of the
locked record if LOCK_TYPE is RECORD, otherwise NULL. This column contains
the values of the primary key columns in the locked row, formatted as a valid
SQL string (ready to be copied to SQL statements). If there is no primary key,
LOCK_DATA is the unique InnoDB internal row ID number. If a gap lock is taken
for key values or ranges above the largest value in the index, LOCK_DATA reports



The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table

2570

Column name Description
supremum pseudo-record. When the page containing the locked record is
not in the buffer pool (in the case that it was paged out to disk while the lock
was held), InnoDB does not fetch the page from disk, to avoid unnecessary disk
operations. Instead, LOCK_DATA is set to NULL.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCKS\G
*************************** 1. row ***************************
    lock_id: 3723:72:3:2
lock_trx_id: 3723
  lock_mode: X
  lock_type: RECORD
 lock_table: `mysql`.`t`
 lock_index: PRIMARY
 lock_space: 72
  lock_page: 3
   lock_rec: 2
  lock_data: 1, 9
*************************** 2. row ***************************
    lock_id: 3722:72:3:2
lock_trx_id: 3722
  lock_mode: S
  lock_type: RECORD
 lock_table: `mysql`.`t`
 lock_index: PRIMARY
 lock_space: 72
  lock_page: 3
   lock_rec: 2
  lock_data: 1, 9

Notes:

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Section 14.18.2.3, “Persistence and Consistency of
InnoDB Transaction and Locking Information”.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”.

21.28.7 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table

The INNODB_LOCK_WAITS table contains one or more rows for each blocked InnoDB transaction,
indicating the lock it has requested and any locks that are blocking that request.

Table 21.7 INNODB_LOCK_WAITS Columns

Column name Description

REQUESTING_TRX_ID ID of the requesting (blocked) transaction.

REQUESTED_LOCK_ID ID of the lock for which a transaction is waiting. To obtain details
about the lock, join this column with the LOCK_ID column of the
INNODB_LOCKS table.

BLOCKING_TRX_ID ID of the blocking transaction.

BLOCKING_LOCK_ID ID of a lock held by a transaction blocking another transaction from
proceeding. To obtain details about the lock, join this column with the
LOCK_ID column of the INNODB_LOCKS table.

Example:



The INFORMATION_SCHEMA INNODB_TRX Table

2571

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCK_WAITS\G
*************************** 1. row ***************************
requesting_trx_id: 3B7
requested_lock_id: 3B7:0:306:2
  blocking_trx_id: 3B6
 blocking_lock_id: 3B6:0:306:2

Notes:

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Section 14.18.2.3, “Persistence and Consistency of
InnoDB Transaction and Locking Information”.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”.

21.28.8 The INFORMATION_SCHEMA INNODB_TRX Table

The INNODB_TRX table contains information about every transaction currently executing inside
InnoDB, including whether the transaction is waiting for a lock, when the transaction started, and the
SQL statement the transaction is executing, if any.

Table 21.8 INNODB_TRX Columns

Column name Description

TRX_ID Unique transaction ID number, internal to InnoDB. (Starting in
MySQL 5.6, these IDs are not created for transactions that are
read only and nonlocking. See Optimizing InnoDB Read-Only
Transactions for details.)

TRX_WEIGHT The weight of a transaction, reflecting (but not necessarily the
exact count of) the number of rows altered and the number of
rows locked by the transaction. To resolve a deadlock, InnoDB
selects the transaction with the smallest weight as the “victim” to roll
back. Transactions that have changed non-transactional tables are
considered heavier than others, regardless of the number of altered
and locked rows.

TRX_STATE Transaction execution state. Permitted values are RUNNING, LOCK
WAIT, ROLLING BACK, and COMMITTING.

TRX_STARTED Transaction start time.

TRX_REQUESTED_LOCK_ID ID of the lock the transaction is currently waiting for, if TRX_STATE
is LOCK WAIT; otherwise NULL. To obtain details about the lock,
join this column with the LOCK_ID column of the INNODB_LOCKS
table.

TRX_WAIT_STARTED Time when the transaction started waiting on the lock, if
TRX_STATE is LOCK WAIT; otherwise NULL.

TRX_MYSQL_THREAD_ID MySQL thread ID. To obtain details about the thread, join this
column with the ID column of the INFORMATION_SCHEMA
PROCESSLIST table, but see Section 14.18.2.3, “Persistence and
Consistency of InnoDB Transaction and Locking Information”.

TRX_QUERY The SQL statement that is being executed by the transaction.

TRX_OPERATION_STATE The transaction's current operation, if any; otherwise NULL.

TRX_TABLES_IN_USE The number of InnoDB tables used while processing the current
SQL statement of this transaction.

http://dev.mysql.com/doc/refman/5.6/en/innodb-performance-ro-txn.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-performance-ro-txn.html


The INFORMATION_SCHEMA INNODB_TRX Table

2572

Column name Description

TRX_TABLES_LOCKED Number of InnoDB tables that the current SQL statement has row
locks on. (Because these are row locks, not table locks, the tables
can usually still be read from and written to by multiple transactions,
despite some rows being locked.)

TRX_LOCK_STRUCTS The number of locks reserved by the transaction.

TRX_LOCK_MEMORY_BYTES Total size taken up by the lock structures of this transaction in
memory.

TRX_ROWS_LOCKED Approximate number or rows locked by this transaction. The value
might include delete-marked rows that are physically present but
not visible to the transaction.

TRX_ROWS_MODIFIED The number of modified and inserted rows in this transaction.

TRX_CONCURRENCY_TICKETS A value indicating how much work the current transaction
can do before being swapped out, as specified by the
innodb_concurrency_tickets system variable.

TRX_ISOLATION_LEVEL The isolation level of the current transaction.

TRX_UNIQUE_CHECKS Whether unique checks are turned on or off for the current
transaction. For example, they might be turned off during a bulk
data load.

TRX_FOREIGN_KEY_CHECKS Whether foreign key checks are turned on or off for the current
transaction. For example, they might be turned off during a bulk
data load.

TRX_LAST_FOREIGN_KEY_ERRORDetailed error message for the last foreign key error, if any;
otherwise NULL.

TRX_ADAPTIVE_HASH_LATCHED Whether the adaptive hash index is locked by the current
transaction. (Only a single transaction at a time can modify the
adaptive hash index.)

TRX_ADAPTIVE_HASH_TIMEOUT Whether to relinquish the search latch immediately for the adaptive
hash index, or reserve it across calls from MySQL. When there
is no adaptive hash index contention, this value remains zero
and statements reserve the latch until they finish. During times of
contention, it counts down to zero, and statements release the latch
immediately after each row lookup.

Example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX\G
*************************** 1. row ***************************
                    trx_id: 3B7
                 trx_state: RUNNING
               trx_started: 2014-11-19 14:33:45
     trx_requested_lock_id: NULL
          trx_wait_started: NULL
                trx_weight: 1
       trx_mysql_thread_id: 2
                 trx_query: SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX
       trx_operation_state: NULL
         trx_tables_in_use: 0
         trx_tables_locked: 0
          trx_lock_structs: 1
     trx_lock_memory_bytes: 376
           trx_rows_locked: 0
         trx_rows_modified: 0
   trx_concurrency_tickets: 0
       trx_isolation_level: REPEATABLE READ
         trx_unique_checks: 1
    trx_foreign_key_checks: 1



NDB Cluster INFORMATION_SCHEMA Tables

2573

trx_last_foreign_key_error: NULL
 trx_adaptive_hash_latched: 0
 trx_adaptive_hash_timeout: 10000
*************************** 2. row ***************************
                    trx_id: 3B6
                 trx_state: RUNNING
               trx_started: 2014-11-19 14:32:38
     trx_requested_lock_id: NULL
          trx_wait_started: NULL
                trx_weight: 94055
       trx_mysql_thread_id: 1
                 trx_query: DELETE FROM employees.salaries WHERE salary > 75000
       trx_operation_state: updating or deleting
         trx_tables_in_use: 1
         trx_tables_locked: 1
          trx_lock_structs: 841
     trx_lock_memory_bytes: 129464
           trx_rows_locked: 392752
         trx_rows_modified: 93214
   trx_concurrency_tickets: 0
       trx_isolation_level: REPEATABLE READ
         trx_unique_checks: 1
    trx_foreign_key_checks: 1
trx_last_foreign_key_error: NULL
 trx_adaptive_hash_latched: 0
 trx_adaptive_hash_timeout: 10000

Notes:

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Section 14.18.2.3, “Persistence and Consistency of
InnoDB Transaction and Locking Information”.

• Use DESCRIBE or SHOW COLUMNS to view additional information about the columns of this table
including data types and default values.

• You must have the PROCESS privilege to query this table.

• For usage information, see Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”.

21.29 NDB Cluster INFORMATION_SCHEMA Tables

The following sections provide information about INFORMATION_SCHEMA tables which are
specific to NDB Cluster. The FILES table was added in MySQL Server 5.1.6 as part of NDB
Cluster data-on-disk support (it is available in standard MySQL 5.5 but is not used there). The
ndb_transid_mysql_connection_map table was added as part of additions made to NDB
Cluster's ndbinfo information database in MySQL NDB Cluster 7.2.2; it is implemented as an
INFORMATION_SCHEMA plugin available only in NDB Cluster binaries or source, and does not exist in
MySQL Server 5.5.

Additional statistical and other data about NDB Cluster transactions, operations, threads, blocks, and
other aspects of performance can be obtained from the tables in the ndbinfo database. Information
about these tables, see Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”.

21.29.1 The INFORMATION_SCHEMA FILES Table

The FILES table provides information about the files in which MySQL NDB Disk Data tables are stored.

Note

This table provides information about Disk Data files only; you cannot use it
for determining disk space allocation or availability for individual NDB tables.
However, it is possible to see how much space is allocated for each NDB table
having data stored on disk—as well as how much remains available for storage



The INFORMATION_SCHEMA FILES Table

2574

of data on disk for that table—using ndb_desc. For more information, see
Section 18.4.10, “ndb_desc — Describe NDB Tables”.

INFORMATION_SCHEMA Name SHOW Name Remarks

FILE_ID  MySQL extension

FILE_NAME  MySQL extension

FILE_TYPE  MySQL extension

TABLESPACE_NAME  MySQL extension

TABLE_CATALOG  MySQL extension

TABLE_SCHEMA  MySQL extension

TABLE_NAME  MySQL extension

LOGFILE_GROUP_NAME  MySQL extension

LOGFILE_GROUP_NUMBER  MySQL extension

ENGINE  MySQL extension

FULLTEXT_KEYS  MySQL extension

DELETED_ROWS  MySQL extension

UPDATE_COUNT  MySQL extension

FREE_EXTENTS  MySQL extension

TOTAL_EXTENTS  MySQL extension

EXTENT_SIZE  MySQL extension

INITIAL_SIZE  MySQL extension

MAXIMUM_SIZE  MySQL extension

AUTOEXTEND_SIZE  MySQL extension

CREATION_TIME  MySQL extension

LAST_UPDATE_TIME  MySQL extension

LAST_ACCESS_TIME  MySQL extension

RECOVER_TIME  MySQL extension

TRANSACTION_COUNTER  MySQL extension

VERSION  MySQL extension

ROW_FORMAT  MySQL extension

TABLE_ROWS  MySQL extension

AVG_ROW_LENGTH  MySQL extension

DATA_LENGTH  MySQL extension

MAX_DATA_LENGTH  MySQL extension

INDEX_LENGTH  MySQL extension

DATA_FREE  MySQL extension

CREATE_TIME  MySQL extension

UPDATE_TIME  MySQL extension

CHECK_TIME  MySQL extension

CHECKSUM  MySQL extension

STATUS  MySQL extension

EXTRA  MySQL extension

Notes:



The INFORMATION_SCHEMA FILES Table

2575

• FILE_ID column values are auto-generated.

• FILE_NAME is the name of an UNDO log file created by CREATE LOGFILE GROUP or ALTER
LOGFILE GROUP, or of a data file created by CREATE TABLESPACE or ALTER TABLESPACE.

• FILE_TYPE is one of the values UNDOFILE, DATAFILE, or TABLESPACE.

• TABLESPACE_NAME is the name of the tablespace with which the file is associated.

• The value of the TABLESPACE_CATALOG column is always NULL.

• TABLE_NAME is the name of the Disk Data table with which the file is associated, if any.

• The LOGFILE_GROUP_NAME column gives the name of the log file group to which the log file or data
file belongs.

• For an UNDO log file, the LOGFILE_GROUP_NUMBER contains the auto-generated ID number of the
log file group to which the log file belongs.

• For an NDB Cluster Disk Data log file or data file, the value of the ENGINE column is always NDB or
NDBCLUSTER.

• For an NDB Cluster Disk Data log file or data file, the value of the FULLTEXT_KEYS column is
always empty.

• The FREE EXTENTS column displays the number of extents which have not yet been used by the
file. The TOTAL EXTENTS column show the total number of extents allocated to the file.

The difference between these two columns is the number of extents currently in use by the file:

SELECT TOTAL_EXTENTS - FREE_EXTENTS AS extents_used
    FROM INFORMATION_SCHEMA.FILES
    WHERE FILE_NAME = 'myfile.dat';

You can approximate the amount of disk space in use by the file by multiplying this difference by the
value of the EXTENT_SIZE column, which gives the size of an extent for the file in bytes:

SELECT (TOTAL_EXTENTS - FREE_EXTENTS) * EXTENT_SIZE AS bytes_used
    FROM INFORMATION_SCHEMA.FILES
    WHERE FILE_NAME = 'myfile.dat';

Similarly, you can estimate the amount of space that remains available in a given file by multiplying
FREE_EXTENTS by EXTENT_SIZE:

SELECT FREE_EXTENTS * EXTENT_SIZE AS bytes_free
    FROM INFORMATION_SCHEMA.FILES
    WHERE FILE_NAME = 'myfile.dat';

Important

The byte values produced by the preceding queries are approximations only,
and their precision is inversely proportional to the value of EXTENT_SIZE.
That is, the larger EXTENT_SIZE becomes, the less accurate the
approximations are.

It is also important to remember that once an extent is used, it cannot be freed again without
dropping the data file of which it is a part. This means that deletes from a Disk Data table do not
release disk space.

The extent size can be set in a CREATE TABLESPACE statement. See Section 13.1.18, “CREATE
TABLESPACE Syntax”, for more information.



The INFORMATION_SCHEMA FILES Table

2576

• The INITIAL_SIZE column shows the size in bytes of the file. This is the same value that was used
in the INITIAL_SIZE clause of the CREATE LOGFILE GROUP, ALTER LOGFILE GROUP, CREATE
TABLESPACE, or ALTER TABLESPACE statement used to create the file.

For NDB Cluster Disk Data files, the value of the MAXIMUM_SIZE column is always the same as
INITIAL_SIZE, and the AUTOEXTEND_SIZE column is always empty.

• The CREATION_TIME column shows the date and time when the file was created. The
LAST_UPDATE_TIME column displays the date and time when the file was last modified. The
LAST_ACCESSED column provides the date and time when the file was last accessed by the server.

The values of these columns are as reported by the operating system, and are not supplied by the
NDB storage engine. Where no value is provided by the operating system, these columns display
0000-00-00 00:00:00.

• For NDB Cluster Disk Data files, the value of the RECOVER_TIME and TRANSACTION_COUNTER
columns is always 0.

• For NDB Cluster Disk Data files, the following columns are always NULL:

• VERSION

• ROW_FORMAT

• TABLE_ROWS

• AVG_ROW_LENGTH

• DATA_LENGTH

• MAX_DATA_LENGTH

• INDEX_LENGTH

• DATA_FREE

• CREATE_TIME

• UPDATE_TIME

• CHECK_TIME

• CHECKSUM

• For NDB Cluster Disk Data files, the value of the STATUS column is always NORMAL.

• For NDB Cluster Disk Data files, the EXTRA column shows which data node the file belongs to, as
each data node has its own copy of the file. Suppose that you use this statement on an NDB Cluster
with four data nodes:

CREATE LOGFILE GROUP mygroup
    ADD UNDOFILE 'new_undo.dat'
    INITIAL_SIZE 2G
    ENGINE NDB;

After running the CREATE LOGFILE GROUP statement successfully, you should see a result similar
to the one shown here for this query against the FILES table:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_TYPE, EXTRA
    ->     FROM INFORMATION_SCHEMA.FILES
    ->     WHERE FILE_NAME = 'new_undo.dat';
+--------------------+-------------+----------------+



The INFORMATION_SCHEMA FILES Table

2577

| LOGFILE_GROUP_NAME | FILE_TYPE   | EXTRA          |
+--------------------+-------------+----------------+
| mygroup            | UNDO FILE   | CLUSTER_NODE=3 |
| mygroup            | UNDO FILE   | CLUSTER_NODE=4 |
| mygroup            | UNDO FILE   | CLUSTER_NODE=5 |
| mygroup            | UNDO FILE   | CLUSTER_NODE=6 |
+--------------------+-------------+----------------+
4 rows in set (0.01 sec)

• The FILES table is a nonstandard table.

• An additional row is present in the FILES table following the creation of a logfile group. This row
has NULL for the value of the FILE_NAME column. For this row, the value of the FILE_ID column is
always 0, that of the FILE_TYPE column is always UNDO FILE, and that of the STATUS column is
always NORMAL. The value of the ENGINE column is always NDBCLUSTER.

The FREE_EXTENTS column in this row shows the total number of free extents available to
all undo files belonging to a given log file group whose name and number are shown in the
LOGFILE_GROUP_NAME and LOGFILE_GROUP_NUMBER columns, respectively.

Suppose there are no existing log file groups on your NDB Cluster, and you create one using the
following statement:

mysql> CREATE LOGFILE GROUP lg1
    ->   ADD UNDOFILE 'undofile.dat'
    ->   INITIAL_SIZE = 16M
    ->   UNDO_BUFFER_SIZE = 1M
    ->   ENGINE = NDB;
Query OK, 0 rows affected (3.81 sec)

You can now see this NULL row when you query the FILES table:

mysql> SELECT DISTINCT
    ->   FILE_NAME AS File,
    ->   FREE_EXTENTS AS Free,
    ->   TOTAL_EXTENTS AS Total,
    ->   EXTENT_SIZE AS Size,
    ->   INITIAL_SIZE AS Initial
    ->   FROM INFORMATION_SCHEMA.FILES;
+--------------+---------+---------+------+----------+
| File         | Free    | Total   | Size | Initial  |
+--------------+---------+---------+------+----------+
| undofile.dat |    NULL | 4194304 |    4 | 16777216 |
| NULL         | 4184068 |    NULL |    4 |     NULL |
+--------------+---------+---------+------+----------+
2 rows in set (0.01 sec)

The total number of free extents available for undo logging is always somewhat less than the sum of
the TOTAL_EXTENTS column values for all undo files in the log file group due to overhead required
for maintaining the undo files. This can be seen by adding a second undo file to the log file group,
then repeating the previous query against the FILES table:

mysql> ALTER LOGFILE GROUP lg1
    ->   ADD UNDOFILE 'undofile02.dat'
    ->   INITIAL_SIZE = 4M
    ->   ENGINE = NDB;
Query OK, 0 rows affected (1.02 sec)

mysql> SELECT DISTINCT
    ->   FILE_NAME AS File,
    ->   FREE_EXTENTS AS Free,
    ->   TOTAL_EXTENTS AS Total,
    ->   EXTENT_SIZE AS Size,
    ->   INITIAL_SIZE AS Initial
    ->   FROM INFORMATION_SCHEMA.FILES;



The INFORMATION_SCHEMA FILES Table

2578

+----------------+---------+---------+------+----------+
| File           | Free    | Total   | Size | Initial  |
+----------------+---------+---------+------+----------+
| undofile.dat   |    NULL | 4194304 |    4 | 16777216 |
| undofile02.dat |    NULL | 1048576 |    4 |  4194304 |
| NULL           | 5223944 |    NULL |    4 |     NULL |
+----------------+---------+---------+------+----------+
3 rows in set (0.01 sec)

The amount of free space in bytes which is available for undo logging by Disk Data tables using this
log file group can be approximated by multiplying the number of free extents by the initial size:

mysql> SELECT
    ->   FREE_EXTENTS AS 'Free Extents',
    ->   FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
    ->   FROM INFORMATION_SCHEMA.FILES
    ->   WHERE LOGFILE_GROUP_NAME = 'lg1'
    ->   AND FILE_NAME IS NULL;
+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
|      5223944 |   20895776 |
+--------------+------------+
1 row in set (0.02 sec)

If you create an NDB Cluster Disk Data table and then insert some rows into it, you can see
approximately how much space remains for undo logging afterward, for example:

mysql> CREATE TABLESPACE ts1
    ->   ADD DATAFILE 'data1.dat'
    ->   USE LOGFILE GROUP lg1
    ->   INITIAL_SIZE 512M
    ->   ENGINE = NDB;
Query OK, 0 rows affected (8.71 sec)

mysql> CREATE TABLE dd (
    ->   c1 INT NOT NULL PRIMARY KEY,
    ->   c2 INT,
    ->   c3 DATE
    ->   )
    ->   TABLESPACE ts1 STORAGE DISK
    ->   ENGINE = NDB;
Query OK, 0 rows affected (2.11 sec)

mysql> INSERT INTO dd VALUES
    ->   (NULL, 1234567890, '2007-02-02'),
    ->   (NULL, 1126789005, '2007-02-03'),
    ->   (NULL, 1357924680, '2007-02-04'),
    ->   (NULL, 1642097531, '2007-02-05');
Query OK, 4 rows affected (0.01 sec)

mysql> SELECT
    ->   FREE_EXTENTS AS 'Free Extents',
    ->   FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
    ->   FROM INFORMATION_SCHEMA.FILES
    ->   WHERE LOGFILE_GROUP_NAME = 'lg1'
    ->   AND FILE_NAME IS NULL;
+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
|      5207565 |   20830260 |
+--------------+------------+
1 row in set (0.01 sec)

• An additional row is present in the FILES table for any NDB Cluster tablespace, whether or not any
data files are associated with the tablespace. This row has NULL for the value of the FILE_NAME
column. For this row, the value of the FILE_ID column is always 0, that of the FILE_TYPE column



The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table

2579

is always TABLESPACE, and that of the STATUS column is always NORMAL. The value of the ENGINE
column is always NDBCLUSTER.

• There are no SHOW statements associated with the FILES table.

• For additional information, and examples of creating and dropping NDB Cluster Disk Data objects,
see Section 18.5.12, “NDB Cluster Disk Data Tables”.

21.29.2 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map
Table

The ndb_transid_mysql_connection_map table provides a mapping between NDB transactions,
NDB transaction coordinators, and MySQL Servers attached to an NDB Cluster as API nodes. This
information is used when populating the server_operations and server_transactions tables
of the ndbinfo NDB Cluster information database.

INFORMATION_SCHEMA Name SHOW Name Remarks

mysql_connection_id  MySQL Server connection ID

node_id  Transaction coordinator node
ID

ndb_transid  NDB transaction ID

The mysql_connection_id is the same as the connection or session ID shown in the output of
SHOW PROCESSLIST.

There are no SHOW statements associated with this table.

This is a nonstandard table, added in MySQL NDB Cluster 7.2.2. It is implemented as an
INFORMATION_SCHEMA plugin; you can verify that it is supported by checking the output of SHOW
PLUGINS. If ndb_transid_mysql_connection_map support is enabled, the output from this
statement includes a plugin having this name, of type INFORMATION SCHEMA, and having status
ACTIVE, as shown here (using emphasized text):

mysql> SHOW PLUGINS;
+----------------------------------+--------+--------------------+---------+---------+
| Name                             | Status | Type               | Library | License |
+----------------------------------+--------+--------------------+---------+---------+
| binlog                           | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| mysql_native_password            | ACTIVE | AUTHENTICATION     | NULL    | GPL     |
| mysql_old_password               | ACTIVE | AUTHENTICATION     | NULL    | GPL     |
| CSV                              | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| MEMORY                           | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| MRG_MYISAM                       | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| MyISAM                           | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| PERFORMANCE_SCHEMA               | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| BLACKHOLE                        | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| ARCHIVE                          | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| ndbcluster                       | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| ndbinfo                          | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| ndb_transid_mysql_connection_map | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| InnoDB                           | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
| INNODB_TRX                       | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_LOCKS                     | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_LOCK_WAITS                | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_CMP                       | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_CMP_RESET                 | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_CMPMEM                    | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| INNODB_CMPMEM_RESET              | ACTIVE | INFORMATION SCHEMA | NULL    | GPL     |
| partition                        | ACTIVE | STORAGE ENGINE     | NULL    | GPL     |
+----------------------------------+--------+--------------------+---------+---------+
22 rows in set (0.00 sec)



Thread Pool INFORMATION_SCHEMA Tables

2580

The plugin is enabled by default. You can disable it (or force the server not to run unless the plugin
starts) by starting the server with the --ndb-transid-mysql-connection-map option. If the plugin
is disabled, the status is shown by SHOW PLUGINS as DISABLED. The plugin cannot be enabled or
disabled at runtime.

Although the names of this table and its columns are displayed using lowercase, you can use
uppercase or lowercase when referring to them in SQL statements.

For this table to be created, the MySQL Server must be a binary supplied with the NDB Cluster
distribution, or one built from the NDB Cluster sources with NDB storage engine support enabled. It is
not available in the standard MySQL 5.5 Server.

21.30 Thread Pool INFORMATION_SCHEMA Tables
The following sections describe the INFORMATION_SCHEMA tables associated with the thread pool
plugin. They provide information about thread pool operation:

• TP_THREAD_GROUP_STATE: Information about thread pool thread group states

• TP_THREAD_GROUP_STATS: Thread group statistics

• TP_THREAD_STATE: Information about thread pool thread states

Rows in these tables represent snapshots in time. In the case of TP_THREAD_STATE, all rows for a
thread group comprise a snapshot in time. Thus, the MySQL server holds the mutex of the thread
group while producing the snapshot. But it does not hold mutexes on all thread groups at the same
time, to prevent a statement against TP_THREAD_STATE from blocking the entire MySQL server.

The thread pool INFORMATION_SCHEMA tables are implemented by individual plugins and the decision
whether to load one can be made independently of the others (see Section 5.5.4.2, “Thread Pool
Installation”). However, the content of all the tables depends on the thread pool plugin being enabled.
If a table plugin is enabled but the thread pool plugin is not, the table becomes visible and can be
accessed but will be empty.

21.30.1 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table

This table has one row per thread group in the thread pool. Each row provides information about the
current state of a group. The table has these columns:

• TP_GROUP_ID

The thread group ID. This is a unique key within the table.

• CONSUMER THREADS

The number of consumer threads. There is at most one thread ready to start executing if the active
threads become stalled or blocked.

• RESERVE_THREADS

The number of threads in the reserved state. This means that they will not be started until there is
a need to wake a new thread and there is no consumer thread. This is where most threads end up
when the thread group has created more threads than needed for normal operation. Often a thread
group needs additional threads for a short while and then does not need them again for a while. In
this case, they go into the reserved state and remain until needed again. They take up some extra
memory resources, but no extra computing resources.

• CONNECT_THREAD_COUNT

The number of threads that are processing or waiting to process connection initialization and
authentication. There can be a maximum of four connection threads per thread group; these threads
expire after a period of inactivity.



The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table

2581

This column was added in MySQL 5.5.55.

• CONNECTION_COUNT

The number of connections using this thread group.

• QUEUED_QUERIES

The number of statements waiting in the high-priority queue.

• QUEUED_TRANSACTIONS

The number of statements waiting in the low-priority queue. These are the initial statements for
transactions that have not started, so they also represent queued transactions.

• STALL_LIMIT

The value of the thread_pool_stall_limit variable on the thread group. This is the same value
for all thread groups.

• PRIO_KICKUP_TIMER

The value of the thread_pool_prio_kickup_timer on the thread group. This is the same value
for all thread groups.

• ALGORITHM

The value of the thread_pool_algorithm on the thread group. This is the same value for all
thread groups.

• THREAD_COUNT

The number of threads started in the thread pool as part of this thread group.

• ACTIVE_THREAD_COUNT

The number of threads active executing statements.

• MAX_THREAD_IDS_IN_GROUP

The maximum thread ID of the threads in the group. This is the same as MAX(TP_THREAD_NUMBER)
for the threads when selected from the TP_THREAD_GROUP_STATE table. That is, these two queries
are equivalent:

SELECT TP_GROUP_ID, MAX_THREAD_IDS_IN_GROUP
FROM TP_THREAD_GROUP_STATE;

SELECT TP_GROUP_ID, MAX(TP_THREAD_NUMBER)
FROM TP_THREAD_STATE GROUP BY TP_GROUP_ID;

• STALLED_THREAD_COUNT

The number of stalled statements in the thread group. A stalled statement could be executing, but
from a thread pool perspective it is stalled and making no progress. A long-running statement quickly
ends up in this category.

• WAITING_THREAD_NUMBER

If there is a thread handling the polling of statements in the thread group, this specifies the thread
number within this thread group. It is possible that this thread could be executing a statement.

• OLDEST_QUEUED



The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table

2582

How long in milliseconds the oldest queued statement has been waiting for execution.

21.30.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table

This table reports statistics per thread group. There is one row per group. The table has these columns:

• TP_GROUP_ID

The thread group ID. This is a unique key within the table.

• CONNECTIONS_STARTED

The number of connections started.

• CONNECTIONS_CLOSED

The number of connections closed.

• QUERIES_EXECUTED

The number of statements executed. This number is incremented when a statement starts executing,
not when it finishes.

• QUERIES_QUEUED

The number of statements received that were queued for execution. This does not count statements
that the thread group was able to begin executing immediately without queuing, which can happen
under the conditions described in Section 5.5.4.3, “Thread Pool Operation”.

• THREADS_STARTED

The number of threads started.

• PRIO_KICKUPS

The number of statements that have been moved from low-priority queue to high-priority queue
based on the value of the thread_pool_prio_kickup_timer system variable. If this number
increases quickly, consider increasing the value of that variable. A quickly increasing counter means
that the priority system is not keeping transactions from starting too early. For InnoDB, this most
likely means deteriorating performance due to too many concurrent transactions..

• STALLED_QUERIES_EXECUTED

The number of statements that have become defined as stalled due to executing for a time longer
than the value of the thread_pool_stall_limit system variable.

• BECOME_CONSUMER_THREAD

The number of times thread have been assigned the consumer thread role.

• BECOME_RESERVE_THREAD

The number of times threads have been assigned the reserve thread role.

• BECOME_WAITING_THREAD

The number of times threads have been assigned the waiter thread role. When statements are
queued, this happens very often, even in normal operation, so rapid increases in this value are
normal in the case of a highly loaded system where statements are queued up.

• WAKE_THREAD_STALL_CHECKER



The INFORMATION_SCHEMA TP_THREAD_STATE Table

2583

The number of times the stall check thread decided to wake or create a thread to possibly handle
some statements or take care of the waiter thread role.

• SLEEP_WAITS

The number of THD_WAIT_SLEEP waits. These occur when threads go to sleep; for example, by
calling the SLEEP() function.

• DISK_IO_WAITS

The number of THD_WAIT_DISKIO waits. These occur when threads perform disk I/O that is likely
to not hit the file system cache. Such waits occur when the buffer pool reads and writes data to disk,
not for normal reads from and writes to files.

• ROW_LOCK_WAITS

The number of THD_WAIT_ROW_LOCK waits for release of a row lock by another transaction.

• GLOBAL_LOCK_WAITS

The number of THD_WAIT_GLOBAL_LOCK waits for a global lock to be released.

• META_DATA_LOCK_WAITS

The number of THD_WAIT_META_DATA_LOCK waits for a metadata lock to be released.

• TABLE_LOCK_WAITS

The number of THD_WAIT_TABLE_LOCK waits for a table to be unlocked that the statement needs to
access.

• USER_LOCK_WAITS

The number of THD_WAIT_USER_LOCK waits for a special lock constructed by the user thread.

• BINLOG_WAITS

The number of THD_WAIT_BINLOG_WAITS waits for the binary log to become free.

• GROUP_COMMIT_WAITS

The number of THD_WAIT_GROUP_COMMIT waits. These occur when a group commit must wait for
the other parties to complete their part of a transaction.

• FSYNC_WAITS

The number of THD_WAIT_SYNC waits for a file sync operation.

21.30.3 The INFORMATION_SCHEMA TP_THREAD_STATE Table

This table has one row per thread created by the thread pool to handle connections. The table has
these columns:

• TP_GROUP_ID

The thread group ID.

• TP_THREAD_NUMBER

The ID of the thread within its thread group. TP_GROUP_ID and TP_THREAD_NUMBER together
provide a unique key within the table.

• PROCESS_COUNT



Extensions to SHOW Statements

2584

The 10ms interval in which the statement that uses this thread is currently executing. 0 means no
statement is executing, 1 means it is in the first 10ms, and so forth.

• WAIT_TYPE

The type of wait for the thread. NULL means the thread is not blocked. Otherwise, the thread is
blocked by a call to thd_wait_begin() and the value specifies the type of wait. The xxx_WAIT
columns of the TP_THREAD_GROUP_STATS table accumulate counts for each wait type.

The WAIT_TYPE value is a string that describes the type of wait, as shown in the following table.

Table 21.9 WAIT_TYPE Values

Wait Type Meaning

THD_WAIT_SLEEP Waiting for sleep

THD_WAIT_DISKIO Waiting for Disk IO

THD_WAIT_ROW_LOCK Waiting for row lock

THD_WAIT_GLOBAL_LOCK Waiting for global lock

THD_WAIT_META_DATA_LOCK Waiting for metadata lock

THD_WAIT_TABLE_LOCK Waiting for table lock

THD_WAIT_USER_LOCK Waiting for user lock

THD_WAIT_BINLOG Waiting for binlog

THD_WAIT_GROUP_COMMIT Waiting for group commit

THD_WAIT_SYNC Waiting for fsync

21.31 Extensions to SHOW Statements

Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which
rows to display.

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW
DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of its
tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA          |
+---------------------------------------+
| CHARACTER_SETS                        |
| COLLATIONS                            |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS                               |
| COLUMN_PRIVILEGES                     |
| ENGINES                               |
| EVENTS                                |
| FILES                                 |
| GLOBAL_STATUS                         |
| GLOBAL_VARIABLES                      |
| KEY_COLUMN_USAGE                      |
| PARTITIONS                            |
| PLUGINS                               |
| PROCESSLIST                           |
| REFERENTIAL_CONSTRAINTS               |
| ROUTINES                              |



Extensions to SHOW Statements

2585

| SCHEMATA                              |
| SCHEMA_PRIVILEGES                     |
| SESSION_STATUS                        |
| SESSION_VARIABLES                     |
| STATISTICS                            |
| TABLES                                |
| TABLE_CONSTRAINTS                     |
| TABLE_PRIVILEGES                      |
| TRIGGERS                              |
| USER_PRIVILEGES                       |
| VIEWS                                 |
+---------------------------------------+

SHOW COLUMNS and DESCRIBE can display information about the columns in individual
INFORMATION_SCHEMA tables.

SHOW statements that accept a LIKE clause to limit the rows displayed also permit a WHERE clause that
specifies more general conditions that selected rows must satisfy:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW TRIGGERS
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW
statement. For example, the SHOW CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset  | Description                 | Default collation   | Maxlen |
+----------+-----------------------------+---------------------+--------+
| big5     | Big5 Traditional Chinese    | big5_chinese_ci     |      2 |
| dec8     | DEC West European           | dec8_swedish_ci     |      1 |
| cp850    | DOS West European           | cp850_general_ci    |      1 |
| hp8      | HP West European            | hp8_english_ci      |      1 |
| koi8r    | KOI8-R Relcom Russian       | koi8r_general_ci    |      1 |
| latin1   | cp1252 West European        | latin1_swedish_ci   |      1 |
| latin2   | ISO 8859-2 Central European | latin2_general_ci   |      1 |
...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As
an example, the following statement displays information about character sets for which the default
collation contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description               | Default collation   | Maxlen |
+---------+---------------------------+---------------------+--------+
| ujis    | EUC-JP Japanese           | ujis_japanese_ci    |      3 |
| sjis    | Shift-JIS Japanese        | sjis_japanese_ci    |      2 |
| cp932   | SJIS for Windows Japanese | cp932_japanese_ci   |      2 |
| eucjpms | UJIS for Windows Japanese | eucjpms_japanese_ci |      3 |
+---------+---------------------------+---------------------+--------+

This statement displays the multibyte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;



Extensions to SHOW Statements

2586

+---------+---------------------------+---------------------+--------+
| Charset | Description               | Default collation   | Maxlen |
+---------+---------------------------+---------------------+--------+
| big5    | Big5 Traditional Chinese  | big5_chinese_ci     |      2 |
| ujis    | EUC-JP Japanese           | ujis_japanese_ci    |      3 |
| sjis    | Shift-JIS Japanese        | sjis_japanese_ci    |      2 |
| euckr   | EUC-KR Korean             | euckr_korean_ci     |      2 |
| gb2312  | GB2312 Simplified Chinese | gb2312_chinese_ci   |      2 |
| gbk     | GBK Simplified Chinese    | gbk_chinese_ci      |      2 |
| utf8    | UTF-8 Unicode             | utf8_general_ci     |      3 |
| ucs2    | UCS-2 Unicode             | ucs2_general_ci     |      2 |
| cp932   | SJIS for Windows Japanese | cp932_japanese_ci   |      2 |
| eucjpms | UJIS for Windows Japanese | eucjpms_japanese_ci |      3 |
+---------+---------------------------+---------------------+--------+



2587

Chapter 22 MySQL Performance Schema

Table of Contents
22.1 Performance Schema Quick Start .................................................................................... 2588
22.2 Performance Schema Build Configuration ......................................................................... 2594
22.3 Performance Schema Startup Configuration ...................................................................... 2595
22.4 Performance Schema Runtime Configuration .................................................................... 2595

22.4.1 Performance Schema Event Timing ....................................................................... 2596
22.4.2 Performance Schema Event Filtering ..................................................................... 2599
22.4.3 Event Pre-Filtering ................................................................................................ 2600
22.4.4 Naming Instruments or Consumers for Filtering Operations ..................................... 2601
22.4.5 Determining What Is Instrumented ......................................................................... 2602

22.5 Performance Schema Queries ......................................................................................... 2602
22.6 Performance Schema Instrument Naming Conventions ..................................................... 2603
22.7 Performance Schema Status Monitoring ........................................................................... 2604
22.8 Performance Schema General Table Characteristics ......................................................... 2607
22.9 Performance Schema Table Descriptions ......................................................................... 2608

22.9.1 Performance Schema Table Index ......................................................................... 2608
22.9.2 Performance Schema Setup Tables ....................................................................... 2609
22.9.3 Performance Schema Instance Tables ................................................................... 2611
22.9.4 Performance Schema Wait Event Tables ............................................................... 2614
22.9.5 Performance Schema Summary Tables ................................................................. 2617
22.9.6 Performance Schema Miscellaneous Tables .......................................................... 2620

22.10 Performance Schema Option and Variable Reference ..................................................... 2621
22.11 Performance Schema System Variables ......................................................................... 2622
22.12 Performance Schema Status Variables ........................................................................... 2628
22.13 Performance Schema and Plugins .................................................................................. 2629
22.14 Using the Performance Schema to Diagnose Problems ................................................... 2629

The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level.
The Performance Schema is available as of MySQL 5.5.3 and has these characteristics:

• The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE_SCHEMA storage engine and the performance_schema
database. The Performance Schema focuses primarily on performance data. This differs from
INFORMATION_SCHEMA, which serves for inspection of metadata.

• The Performance Schema monitors server events. An “event” is anything the server does that takes
time and has been instrumented so that timing information can be collected. In general, an event
could be a function call, a wait for the operating system, a stage of an SQL statement execution such
as parsing or sorting, or an entire statement or group of statements. Event collection provides access
to information about synchronization calls (such as for mutexes) and file I/O calls for the server and
for several storage engines.

• Performance Schema events are distinct from events written to the server's binary log (which
describe data modifications) and Event Scheduler events (which are a type of stored program).

• Current events are available, as well as event histories and summaries. This enables you to
determine how many times instrumented activities were performed and how much time they took.
Event information is available to show the activities of specific threads, or activity associated with
particular objects such as a mutex or file.

• The PERFORMANCE_SCHEMA storage engine collects event data using “instrumentation points” in
server source code.

• Collected events are stored in tables in the performance_schema database. These tables can be
queried using SELECT statements like other tables.



Performance Schema Quick Start

2588

• Performance Schema configuration can be modified dynamically by updating tables in the
performance_schema database through SQL statements. Configuration changes affect data
collection immediately.

• Tables in the Performance Schema are in-memory tables that use no persistent on-disk storage. The
contents are repopulated beginning at server startup and discarded at server shutdown.

• Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply
to storage engines might not be implemented for all storage engines. Instrumentation of each third-
party engine is the responsibility of the engine maintainer. See also Section C.8, “Restrictions on
Performance Schema”.

• Data collection is implemented by modifying the server source code to add instrumentation. There
are no separate threads associated with the Performance Schema, unlike other features such as
replication or the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution
while having minimal impact on server performance. The implementation follows these design goals:

• Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAIN) to change.

• No memory allocation is done beyond that which occurs during server startup. By using early
allocation of structures with a fixed size, it is never necessary to resize or reallocate them, which is
critical for achieving good runtime performance.

• Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

• The parser is unchanged. There are no new keywords or statements.

• Execution of server code proceeds normally even if the Performance Schema fails internally.

• When there is a choice between performing processing during event collection initially or during
event retrieval later, priority is given to making collection faster. This is because collection is ongoing
whereas retrieval is on demand and might never happen at all.

• It is easy to add new instrumentation points.

• Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code will continue to work. This benefits developers of third-party plugins because it is not necessary
to upgrade each plugin to stay synchronized with the latest Performance Schema changes.

22.1 Performance Schema Quick Start
This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Section 22.14, “Using the Performance Schema to Diagnose Problems”.

For the Performance Schema to be available, support for it must have been configured when
MySQL was built. You can verify whether this is the case by checking the server's help output. If the
Performance Schema is available, the output will mention several variables with names that begin with
performance_schema:

shell> mysqld --verbose --help
...
  --performance_schema
                      Enable the performance schema.
  --performance_schema_events_waits_history_long_size=#
                      Number of rows in events_waits_history_long.



Performance Schema Quick Start

2589

...

If such variables do not appear in the output, your server has not been built to support the Performance
Schema. In this case, see Section 22.2, “Performance Schema Build Configuration”.

Assuming that the Performance Schema is available, it is disabled by default. To enable it, start the
server with the performance_schema variable enabled. For example, use these lines in your my.cnf
file:

[mysqld]
performance_schema

When the server starts, it sees performance_schema and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

mysql> SHOW VARIABLES LIKE 'performance_schema';
+--------------------+-------+
| Variable_name      | Value |
+--------------------+-------+
| performance_schema | ON    |
+--------------------+-------+

A value of ON means that the Performance Schema initialized successfully and is ready for use. A
value of OFF means that some error occurred. Check the server error log for information about what
went wrong.

The Performance Schema is implemented as a storage engine. If this engine is available (which you
should already have checked earlier), you should see it listed with a SUPPORT value of YES in the
output from the INFORMATION_SCHEMA.ENGINES table or the SHOW ENGINES statement:

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES
       WHERE ENGINE='PERFORMANCE_SCHEMA'\G
*************************** 1. row ***************************
      ENGINE: PERFORMANCE_SCHEMA
     SUPPORT: YES
     COMMENT: Performance Schema
TRANSACTIONS: NO
          XA: NO
  SAVEPOINTS: NO

mysql> SHOW ENGINES\G
...
      Engine: PERFORMANCE_SCHEMA
     Support: YES
     Comment: Performance Schema
Transactions: NO
          XA: NO
  Savepoints: NO
...

The PERFORMANCE_SCHEMA storage engine operates on tables in the performance_schema
database. You can make performance_schema the default database so that references to its tables
need not be qualified with the database name:

mysql> USE performance_schema;

Many examples in this chapter assume performance_schema as the default database.

Performance Schema tables are stored in the performance_schema database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the INFORMATION_SCHEMA database or by using SHOW statements. For example, use either of these
statements to see what Performance Schema tables exist:



Performance Schema Quick Start

2590

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
       WHERE TABLE_SCHEMA = 'performance_schema';
+----------------------------------------------+
| TABLE_NAME                                   |
+----------------------------------------------+
| cond_instances                               |
| events_waits_current                         |
| events_waits_history                         |
| events_waits_history_long                    |
| events_waits_summary_by_instance             |
| events_waits_summary_by_thread_by_event_name |
| events_waits_summary_global_by_event_name    |
| file_instances                               |
| file_summary_by_event_name                   |
| file_summary_by_instance                     |
| mutex_instances                              |
| performance_timers                           |
| rwlock_instances                             |
| setup_consumers                              |
| setup_instruments                            |
| setup_timers                                 |
| threads                                      |
+----------------------------------------------+

mysql> SHOW TABLES FROM performance_schema;
+----------------------------------------------+
| Tables_in_performance_schema                 |
+----------------------------------------------+
| cond_instances                               |
| events_waits_current                         |
| events_waits_history                         |
...

The number of Performance Schema tables increases over time as implementation of additional
instrumentation proceeds.

The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Note

Before MySQL 5.5.8, the table names were uppercase, which caused problems
on some systems for certain values of the lower_case_table_names system
variable.

To see the structure of individual tables, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE setup_timers\G
*************************** 1. row ***************************
       Table: setup_timers
Create Table: CREATE TABLE `setup_timers` (
  `NAME` varchar(64) NOT NULL,
  `TIMER_NAME` enum('CYCLE','NANOSECOND','MICROSECOND','MILLISECOND','TICK')
   NOT NULL
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

Table structure is also available by selecting from tables such as INFORMATION_SCHEMA.COLUMNS or
by using statements such as SHOW COLUMNS.

Tables in the performance_schema database can be grouped according to the type of information
in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information
about the tables in each group, see Section 22.9, “Performance Schema Table Descriptions”.

To see what the server is doing at the moment, examine the events_waits_current table. It
contains one row per thread showing each thread's most recent monitored event:



Performance Schema Quick Start

2591

mysql> SELECT * FROM events_waits_current\G
*************************** 1. row ***************************
            THREAD_ID: 0
             EVENT_ID: 5523
           EVENT_NAME: wait/synch/mutex/mysys/THR_LOCK::mutex
               SOURCE: thr_lock.c:525
          TIMER_START: 201660494489586
            TIMER_END: 201660494576112
           TIMER_WAIT: 86526
                SPINS: NULL
        OBJECT_SCHEMA: NULL
          OBJECT_NAME: NULL
          OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 142270668
     NESTING_EVENT_ID: NULL
            OPERATION: lock
      NUMBER_OF_BYTES: NULL
                FLAGS: 0
...

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK::mutex, a mutex in the mysys subsystem. The first few columns provide the following
information:

• The ID columns indicate which thread the event comes from and the event number.

• EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

• The timer columns show when the event started and stopped and how long it took. If an event is
still in progress, the TIMER_END and TIMER_WAIT values are NULL. Timer values are approximate
and expressed in picoseconds. For information about timers and event time collection, see
Section 22.4.1, “Performance Schema Event Timing”.

The history tables contain the same kind of rows as the current-events table but have more rows and
show what the server has been doing “recently” rather than “currently.” The events_waits_history
and events_waits_history_long tables contain the most recent 10 events per thread and most
recent 10,000 events, respectively. For example, to see information for recent events produced by
thread 13, do this:

mysql> SELECT EVENT_ID, EVENT_NAME, TIMER_WAIT
       FROM events_waits_history WHERE THREAD_ID = 13
       ORDER BY EVENT_ID;
+----------+-----------------------------------------+------------+
| EVENT_ID | EVENT_NAME                              | TIMER_WAIT |
+----------+-----------------------------------------+------------+
|       86 | wait/synch/mutex/mysys/THR_LOCK::mutex  |     686322 |
|       87 | wait/synch/mutex/mysys/THR_LOCK_malloc  |     320535 |
|       88 | wait/synch/mutex/mysys/THR_LOCK_malloc  |     339390 |
|       89 | wait/synch/mutex/mysys/THR_LOCK_malloc  |     377100 |
|       90 | wait/synch/mutex/sql/LOCK_plugin        |     614673 |
|       91 | wait/synch/mutex/sql/LOCK_open          |     659925 |
|       92 | wait/synch/mutex/sql/THD::LOCK_thd_data |     494001 |
|       93 | wait/synch/mutex/mysys/THR_LOCK_malloc  |     222489 |
|       94 | wait/synch/mutex/mysys/THR_LOCK_malloc  |     214947 |
|       95 | wait/synch/mutex/mysys/LOCK_alarm       |     312993 |
+----------+-----------------------------------------+------------+

As new events are added to a history table, older events are discarded if the table is full.

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times
or have taken the most wait time, sort the events_waits_summary_global_by_event_name
table on the COUNT_STAR or SUM_TIMER_WAIT column, which correspond to a COUNT(*) or
SUM(TIMER_WAIT) value, respectively, calculated over all events:



Performance Schema Quick Start

2592

mysql> SELECT EVENT_NAME, COUNT_STAR
       FROM events_waits_summary_global_by_event_name
       ORDER BY COUNT_STAR DESC LIMIT 10;
+---------------------------------------------------+------------+
| EVENT_NAME                                        | COUNT_STAR |
+---------------------------------------------------+------------+
| wait/synch/mutex/mysys/THR_LOCK_malloc            |       6419 |
| wait/io/file/sql/FRM                              |        452 |
| wait/synch/mutex/sql/LOCK_plugin                  |        337 |
| wait/synch/mutex/mysys/THR_LOCK_open              |        187 |
| wait/synch/mutex/mysys/LOCK_alarm                 |        147 |
| wait/synch/mutex/sql/THD::LOCK_thd_data           |        115 |
| wait/io/file/myisam/kfile                         |        102 |
| wait/synch/mutex/sql/LOCK_global_system_variables |         89 |
| wait/synch/mutex/mysys/THR_LOCK::mutex            |         89 |
| wait/synch/mutex/sql/LOCK_open                    |         88 |
+---------------------------------------------------+------------+

mysql> SELECT EVENT_NAME, SUM_TIMER_WAIT
       FROM events_waits_summary_global_by_event_name
       ORDER BY SUM_TIMER_WAIT DESC LIMIT 10;
+----------------------------------------+----------------+
| EVENT_NAME                             | SUM_TIMER_WAIT |
+----------------------------------------+----------------+
| wait/io/file/sql/MYSQL_LOG             |     1599816582 |
| wait/synch/mutex/mysys/THR_LOCK_malloc |     1530083250 |
| wait/io/file/sql/binlog_index          |     1385291934 |
| wait/io/file/sql/FRM                   |     1292823243 |
| wait/io/file/myisam/kfile              |      411193611 |
| wait/io/file/myisam/dfile              |      322401645 |
| wait/synch/mutex/mysys/LOCK_alarm      |      145126935 |
| wait/io/file/sql/casetest              |      104324715 |
| wait/synch/mutex/sql/LOCK_plugin       |       86027823 |
| wait/io/file/sql/pid                   |       72591750 |
+----------------------------------------+----------------+

These results show that the THR_LOCK_malloc mutex is “hot,” both in terms of how often it is used
and amount of time that threads wait attempting to acquire it.

Note

The THR_LOCK_malloc mutex is used only in debug builds. In production
builds it is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when
used by the server, produces an event. These tables provide event names and explanatory notes or
status information. For example, the file_instances table lists instances of instruments for file I/O
operations and their associated files:

mysql> SELECT * FROM file_instances\G
*************************** 1. row ***************************
 FILE_NAME: /opt/mysql-log/60500/binlog.000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
*************************** 2. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/tables_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
*************************** 3. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/columns_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
...

Setup tables are used to configure and display monitoring characteristics. For example, to see which
event timer is selected, query the setup_timers tables:

mysql> SELECT * FROM setup_timers;



Performance Schema Quick Start

2593

+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | CYCLE      |
+------+------------+

setup_instruments lists the set of instruments for which events can be collected and shows which
of them are enabled:

mysql> SELECT * FROM setup_instruments;
+------------------------------------------------------------+---------+-------+
| NAME                                                       | ENABLED | TIMED |
+------------------------------------------------------------+---------+-------+
...
| wait/synch/mutex/sql/LOCK_global_read_lock                 | YES     | YES   |
| wait/synch/mutex/sql/LOCK_global_system_variables          | YES     | YES   |
| wait/synch/mutex/sql/LOCK_lock_db                          | YES     | YES   |
| wait/synch/mutex/sql/LOCK_manager                          | YES     | YES   |
...
| wait/synch/rwlock/sql/LOCK_grant                           | YES     | YES   |
| wait/synch/rwlock/sql/LOGGER::LOCK_logger                  | YES     | YES   |
| wait/synch/rwlock/sql/LOCK_sys_init_connect                | YES     | YES   |
| wait/synch/rwlock/sql/LOCK_sys_init_slave                  | YES     | YES   |
...
| wait/io/file/sql/binlog                                    | YES     | YES   |
| wait/io/file/sql/binlog_index                              | YES     | YES   |
| wait/io/file/sql/casetest                                  | YES     | YES   |
| wait/io/file/sql/dbopt                                     | YES     | YES   |
...

To understand how to interpret instrument names, see Section 22.6, “Performance Schema Instrument
Naming Conventions”.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
       WHERE NAME = 'wait/synch/mutex/sql/LOCK_mysql_create_db';

The Performance Schema uses collected events to update tables in the performance_schema
database, which act as “consumers” of event information. The setup_consumers table lists the
available consumers and shows which of them are enabled:

mysql> SELECT * FROM setup_consumers;
+----------------------------------------------+---------+
| NAME                                         | ENABLED |
+----------------------------------------------+---------+
| events_waits_current                         | YES     |
| events_waits_history                         | YES     |
| events_waits_history_long                    | YES     |
| events_waits_summary_by_thread_by_event_name | YES     |
| events_waits_summary_by_event_name           | YES     |
| events_waits_summary_by_instance             | YES     |
| file_summary_by_event_name                   | YES     |
| file_summary_by_instance                     | YES     |
+----------------------------------------------+---------+

To control whether the Performance Schema maintains a consumer as a destination for event
information, set its ENABLED value.

For more information about the setup tables and how to use them to control event collection, see
Section 22.4.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
performance_timers lists the available event timers and their characteristics. For information about
timers, see Section 22.4.1, “Performance Schema Event Timing”.



Performance Schema Build Configuration

2594

22.2 Performance Schema Build Configuration

For the Performance Schema to be available, it must be configured into the MySQL server at build
time. Binary MySQL distributions provided by Oracle Corporation are configured to support the
Performance Schema. If you use a binary MySQL distribution from another provider, check with the
provider whether the distribution has been appropriately configured.

If you build MySQL from a source distribution, enable the Performance Schema by running CMake with
the WITH_PERFSCHEMA_STORAGE_ENGINE option enabled:

shell> cmake . -DWITH_PERFSCHEMA_STORAGE_ENGINE=1

Configuring MySQL with the -DWITHOUT_PERFSCHEMA_STORAGE_ENGINE=1 option prevents
inclusion of the Performance Schema, so if you want it included, do not use this option. See
Section 2.9.4, “MySQL Source-Configuration Options”.

If you install MySQL over a previous installation that was configured without the Performance Schema
(or with an older version of the Performance Schema that may not have all the current tables), run
mysql_upgrade after starting the server to ensure that the performance_schema database exists
with all current tables. Then restart the server. One indication that you need to do this is the presence
of messages such as the following in the error log:

[ERROR] Native table 'performance_schema'.'events_waits_history'
has the wrong structure
[ERROR] Native table 'performance_schema'.'events_waits_history_long'
has the wrong structure
...

To verify whether a server was built with Performance Schema support, check its help output. If the
Performance Schema is available, the output will mention several variables with names that begin with
performance_schema:

shell> mysqld --verbose --help
...
  --performance_schema
                      Enable the performance schema.
  --performance_schema_events_waits_history_long_size=#
                      Number of rows in events_waits_history_long.
...

You can also connect to the server and look for a line that names the PERFORMANCE_SCHEMA storage
engine in the output from SHOW ENGINES:

mysql> SHOW ENGINES\G
...
      Engine: PERFORMANCE_SCHEMA
     Support: YES
     Comment: Performance Schema
Transactions: NO
          XA: NO
  Savepoints: NO
...

If the Performance Schema was not configured into the server at build time, no row for
PERFORMANCE_SCHEMA will appear in the output from SHOW ENGINES. You might see
performance_schema listed in the output from SHOW DATABASES, but it will have no tables and you
will not be able to use it.

A line for PERFORMANCE_SCHEMA in the SHOW ENGINES output means that the Performance Schema
is available, not that it is enabled. To enable it, you must do so at server startup, as described in the
next section.



Performance Schema Startup Configuration

2595

22.3 Performance Schema Startup Configuration
To use the MySQL Performance Schema, it must be enabled at server startup to enable event
collection to occur.

The Performance Schema is disabled by default. To enable it, start the server with the
performance_schema variable enabled. For example, use these lines in your my.cnf file:

[mysqld]
performance_schema

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets performance_schema to OFF, and the server runs
without instrumentation.

The Performance Schema includes several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+---------------------------------------------------+---------+
| Variable_name                                     | Value   |
+---------------------------------------------------+---------+
| performance_schema                                | ON      |
| performance_schema_events_waits_history_long_size | 10000   |
| performance_schema_events_waits_history_size      | 10      |
| performance_schema_max_cond_classes               | 80      |
| performance_schema_max_cond_instances             | 1000    |
| performance_schema_max_file_classes               | 50      |
| performance_schema_max_file_handles               | 32768   |
| performance_schema_max_file_instances             | 10000   |
| performance_schema_max_mutex_classes              | 200     |
| performance_schema_max_mutex_instances            | 1000000 |
| performance_schema_max_rwlock_classes             | 30      |
| performance_schema_max_rwlock_instances           | 1000000 |
| performance_schema_max_table_handles              | 100000  |
| performance_schema_max_table_instances            | 50000   |
| performance_schema_max_thread_classes             | 50      |
| performance_schema_max_thread_instances           | 1000    |
+---------------------------------------------------+---------+

The performance_schema variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. It may
be necessary to tune the values of Performance Schema system variables to
find the number of instances that balances insufficient instrumentation against
excessive memory consumption.

To change the value of Performance Schema system variables, set them at server startup. For
example, put the following lines in a my.cnf file to change the sizes of the history tables for wait
events:

[mysqld]
performance_schema
performance_schema_events_waits_history_size=20
performance_schema_events_waits_history_long_size=15000

22.4 Performance Schema Runtime Configuration
Specific Performance Schema features can be enabled at runtime to control which types of event
collection occur.



Performance Schema Event Timing

2596

Performance Schema setup tables contain information about monitoring configuration:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
       WHERE TABLE_SCHEMA = 'performance_schema'
       AND TABLE_NAME LIKE 'setup%';
+-------------------+
| TABLE_NAME        |
+-------------------+
| setup_consumers   |
| setup_instruments |
| setup_timers      |
+-------------------+

You can examine the contents of these tables to obtain information about Performance Schema
monitoring characteristics. If you have the UPDATE privilege, you can change Performance Schema
operation by modifying setup tables to affect how monitoring occurs. For additional details about these
tables, see Section 22.9.2, “Performance Schema Setup Tables”.

To see which event timer is selected, query the setup_timers tables:

mysql> SELECT * FROM setup_timers;
+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | CYCLE      |
+------+------------+

The NAME value indicates the type of instrument to which the timer applies, and TIMER_NAME indicates
which timer applies to those instruments. The timer applies to instruments where their name begins
with a component matching the NAME value. There are only “wait” instruments, so this table has only
one row and the timer applies to all instruments.

To change the timer, update the NAME value. For example, to use the NANOSECOND timer:

mysql> UPDATE setup_timers SET TIMER_NAME = 'NANOSECOND'
       WHERE NAME = 'wait';

mysql> SELECT * FROM setup_timers;
+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | NANOSECOND |
+------+------------+

For discussion of timers, see Section 22.4.1, “Performance Schema Event Timing”.

The setup_instruments and setup_consumers tables list the instruments for which events can
be collected and the types of consumers for which event information actually is collected, respectively.
Section 22.4.2, “Performance Schema Event Filtering”, discusses how you can modify these tables to
affect event collection.

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the
statements in a file and start the server with the --init-file=file_name option. This strategy can
also be useful if you have multiple monitoring configurations, each tailored to produce a different kind
of monitoring, such as casual server health monitoring, incident investigation, application behavior
troubleshooting, and so forth. Put the statements for each monitoring configuration into their own file
and specify the appropriate file as the --init-file argument when you start the server.

22.4.1 Performance Schema Event Timing

Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also



Performance Schema Event Timing

2597

possible to configure instruments not to collect timing information. This section discusses the available
timers and their characteristics, and how timing values are represented in events.

Performance Schema Timers

Two Performance Schema tables provide timer information:

• performance_timers lists the available timers and their characteristics.

• setup_timers indicates which timers are used for which instruments.

Each timer row in setup_timers must refer to one of the timers listed in performance_timers.

Timers vary in precision and amount of overhead. To see what timers are available and their
characteristics, check the performance_timers table:

mysql> SELECT * FROM performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME  | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
| CYCLE       |      2389029850 |                1 |             72 |
| NANOSECOND  |      1000000000 |                1 |            112 |
| MICROSECOND |         1000000 |                1 |            136 |
| MILLISECOND |            1036 |                1 |            168 |
| TICK        |             105 |                1 |           2416 |
+-------------+-----------------+------------------+----------------+

The columns have these meanings:

• The TIMER_NAME column shows the names of the available timers. CYCLE refers to the timer that
is based on the CPU (processor) cycle counter. The timers in setup_timers that you can use are
those that do not have NULL in the other columns. If the values associated with a given timer name
are NULL, that timer is not supported on your platform.

• TIMER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds. For TICK, the frequency may
vary by platform (for example, some use 100 ticks/second, others 1000 ticks/second).

• TIMER_RESOLUTION indicates the number of timer units by which timer values increase at a time. If
a timer has a resolution of 10, its value increases by 10 each time.

• TIMER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given
timer. The overhead per event is twice the value displayed because the timer is invoked at the
beginning and end of the event.

To see which timer is in effect or to change the timer, access the setup_timers table:

mysql> SELECT * FROM setup_timers;
+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | CYCLE      |
+------+------------+

mysql> UPDATE setup_timers SET TIMER_NAME = 'MICROSECOND'
       WHERE NAME = 'wait';

mysql> SELECT * FROM setup_timers;
+------+-------------+
| NAME | TIMER_NAME  |
+------+-------------+
| wait | MICROSECOND |
+------+-------------+



Performance Schema Event Timing

2598

By default, the Performance Schema uses the best timer available for each instrument type, but you
can select a different one. Generally the best timer is CYCLE, which uses the CPU cycle counter
whenever possible to provide high precision and low overhead.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1
GHz (one billion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using
the cycle counter is much cheaper than getting the actual time of day. For example, the standard
gettimeofday() function can take hundreds of cycles, which is an unacceptable overhead for data
gathering that may occur thousands or millions of times per second.

Cycle counters also have disadvantages:

• End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

• Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a
CPU slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from
cycles to real-time units is subject to error.

• Cycle counters might be unreliable or unavailable depending on the processor or the operating
system. For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C
instruction) and it is theoretically possible for the operating system to prevent user-mode programs
from using it.

• Some processor details related to out-of-order execution or multiprocessor synchronization might
cause the counter to seem fast or slow by up to 1000 cycles.

MySQL works with cycle counters on x386 (Windows, OS X, Linux, Solaris, and other Unix flavors),
PowerPC, and IA-64.

Performance Schema Timer Representation in Events

Rows in Performance Schema tables that store current events and historical events have three
columns to represent timing information: TIMER_START and TIMER_END indicate when the event
started and finished, and TIMER_WAIT indicates the event duration.

The setup_instruments table has an ENABLED column to indicate the instruments for which
to collect events. The table also has a TIMED column to indicate which instruments are timed. If
an instrument is not enabled, it produces no events. If an enabled instrument is not timed, events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer
values. This in turn causes those values to be ignored when calculating the sum, minimum, maximum,
and average time values in summary tables.

Within events, times are stored in picoseconds (trillionths of a second) to normalize them to a standard
unit, regardless of which timer is selected. The timer used for an event is the one in effect when event
timing begins. This timer is used to convert start and end values to picoseconds for storage in the
event.

Modifications to the setup_timers table affect monitoring immediately. Events already measured
are stored using the original timer unit, and events in progress may use the original timer for the begin
time and the new timer for the end time. To avoid unpredictable results if you make timer changes, use
TRUNCATE TABLE to reset Performance Schema statistics.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TIMER_START and TIMER_END values in events represent picoseconds since the baseline.
TIMER_WAIT values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor
rate varies, there might be drift. For these reasons, it is not reasonable to look at the TIMER_START
value for an event as an accurate measure of time elapsed since server startup. On the other hand, it



Performance Schema Event Filtering

2599

is reasonable to use TIMER_START or TIMER_WAIT values in ORDER BY clauses to order events by
start time or duration.

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.
In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other
words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary
to perform a division for every instrumentation. Division is expensive on many platforms. Multiplication
is not expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest
possible TIMER_FREQUENCY value, using a multiplier large enough to ensure that there is no major
precision loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the
decision enables overhead to be minimized.

22.4.2 Performance Schema Event Filtering

Events are processed in a producer/consumer fashion:

• Instrumented code is the source for events and produces events to be collected. The
setup_instruments table lists the instruments for which events can be collected, whether they
are enabled, and (for enabled instruments) whether to collect timing information:

mysql> SELECT * FROM setup_instruments;
+------------------------------------------------------------+---------+-------+
| NAME                                                       | ENABLED | TIMED |
+------------------------------------------------------------+---------+-------+
...
| wait/synch/mutex/sql/LOCK_global_read_lock                 | YES     | YES   |
| wait/synch/mutex/sql/LOCK_global_system_variables          | YES     | YES   |
| wait/synch/mutex/sql/LOCK_lock_db                          | YES     | YES   |
| wait/synch/mutex/sql/LOCK_manager                          | YES     | YES   |
...
| wait/synch/rwlock/sql/LOCK_grant                           | YES     | YES   |
| wait/synch/rwlock/sql/LOGGER::LOCK_logger                  | YES     | YES   |
| wait/synch/rwlock/sql/LOCK_sys_init_connect                | YES     | YES   |
| wait/synch/rwlock/sql/LOCK_sys_init_slave                  | YES     | YES   |
...
| wait/io/file/sql/binlog                                    | YES     | YES   |
| wait/io/file/sql/binlog_index                              | YES     | YES   |
| wait/io/file/sql/casetest                                  | YES     | YES   |
| wait/io/file/sql/dbopt                                     | YES     | YES   |
...

• Performance Schema tables are the destinations for events and consume events. The
setup_consumers table lists the types of consumers to which event information can be sent:

mysql> SELECT * FROM setup_consumers;
+----------------------------------------------+---------+
| NAME                                         | ENABLED |
+----------------------------------------------+---------+
| events_waits_current                         | YES     |
| events_waits_history                         | YES     |
| events_waits_history_long                    | YES     |
| events_waits_summary_by_thread_by_event_name | YES     |
| events_waits_summary_by_event_name           | YES     |
| events_waits_summary_by_instance             | YES     |
| file_summary_by_event_name                   | YES     |
| file_summary_by_instance                     | YES     |
+----------------------------------------------+---------+

Filtering can be done at different stages of performance monitoring:

• Pre-filtering.  This is done by modifying Performance Schema configuration so that only certain
types of events are collected from producers, and collected events update only certain consumers.
To do this, enable or disable instruments or consumers. Pre-filtering is done by the Performance
Schema and has a global effect that applies to all users.



Event Pre-Filtering

2600

Reasons to use pre-filtering:

• To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and
want to disable the timing code to eliminate timing overhead.

• To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If
you enable only file instruments with pre-filtering, no rows are collected for nonfile instruments.
With post-filtering, nonfile events are collected, leaving fewer rows for file events.

• To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about
event histories, you can disable the history table consumers to improve performance.

• Post-filtering.  This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Reasons to use post-filtering:

• To avoid making decisions for individual users about which event information is of interest.

• To use the Performance Schema to investigate a performance issue when the restrictions to
impose using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Section 22.5, “Performance Schema Queries”.

22.4.3 Event Pre-Filtering

Pre-filtering is done by modifying Performance Schema configuration so that only certain types of
events are collected from producers, and collected events update only certain consumers. This type of
filtering is done by the Performance Schema and has a global effect that applies to all users.

Pre-filtering can be applied to either the producer or consumer stage of event processing:

• To affect pre-filtering at the producer stage, modify the setup_instruments table. An instrument
can be enabled or disabled by setting its ENABLED value to YES or NO. An instrument can be
configured whether to collect timing information by setting its TIMED value to YES or NO.

• To affect pre-filtering at the consumer stage, modify the setup_consumers table. A consumer can
be enabled or disabled by setting its ENABLED value to YES or NO.

Here are some examples that show the types of pre-filtering operations available:

• Disable all instruments:

mysql> UPDATE setup_instruments SET ENABLED = 'NO';

Now no events will be collected. This change, like other pre-filtering operations, affects other users
as well, even if they want to see event information.

• Disable all file instruments, adding them to the current set of disabled instruments:

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
       WHERE NAME LIKE 'wait/io/file/%';



Naming Instruments or Consumers for Filtering Operations

2601

• Disable only file instruments, enable all other instruments:

mysql> UPDATE setup_instruments
       SET ENABLED = IF(NAME LIKE 'wait/io/file/%', 'NO', 'YES');

The preceding queries use the LIKE operator and the pattern 'wait/io/file/%' to match all
instrument names that begin with 'wait/io/file/. For additional information about specifying
patterns to select instruments, see Section 22.4.4, “Naming Instruments or Consumers for Filtering
Operations”.

• Enable all but those instruments in the mysys library:

mysql> UPDATE setup_instruments
       SET ENABLED = CASE WHEN NAME LIKE '%/mysys/%' THEN 'YES' ELSE 'NO' END;

• Disable a specific instrument:

mysql> UPDATE setup_instruments SET ENABLED = 'NO'
       WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• To toggle the state of an instrument, “flip” its ENABLED value:

mysql> UPDATE setup_instruments
       SET ENABLED = IF(ENABLED = 'YES', 'NO', 'YES')
       WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• Disable timing for all events:

mysql> UPDATE setup_instruments SET TIMED = 'NO';

Setting the TIMED column for instruments affects Performance Schema table contents as described in
Section 22.4.1, “Performance Schema Event Timing”.

When you change the monitoring configuration, the Performance Schema does not flush the history
tables. Events already collected remain in the current-events and history tables until displaced by
newer events. If you disable instruments, you might need to wait a while before events for them are
displaced by newer events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

After making instrumentation changes, you might want to truncate the summary tables to clear
aggregate information for previously collected events. The effect of TRUNCATE TABLE for summary
tables is to reset the summary columns to 0 or NULL, not to remove rows.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer.
For example, if you do not care about historical event information, disable the history consumers:

mysql> UPDATE setup_consumers
       SET ENABLED = 'NO' WHERE NAME LIKE '%history%';

22.4.4 Naming Instruments or Consumers for Filtering Operations

Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

mysql> UPDATE setup_instruments
       SET ENABLED = 'NO'
       WHERE NAME = 'wait/synch/mutex/myisammrg/MYRG_INFO::mutex';

mysql> UPDATE setup_consumers
       SET ENABLED = 'NO' WHERE NAME = 'file_summary_by_instance';



Determining What Is Instrumented

2602

To specify a group of instruments or consumers, use a pattern that matches the group members:

mysql> UPDATE setup_instruments
       SET ENABLED = 'NO'
       WHERE NAME LIKE 'wait/synch/mutex/%';

mysql> UPDATE setup_consumers
       SET ENABLED = 'NO' WHERE NAME LIKE '%history%';

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For
example, to select all file I/O instruments, it is better to use a pattern that includes the entire instrument
name prefix:

... WHERE NAME LIKE 'wait/io/file/%';

A pattern of '%/file/%' will match other instruments that have a component of '/file/' anywhere
in the name. Even less suitable is the pattern '%file%' because it will match instruments with
'file' anywhere in the name, such as wait/synch/mutex/sql/LOCK_des_key_file.

To check which instrument or consumer names a pattern matches, perform a simple test:

mysql> SELECT NAME FROM setup_instruments WHERE NAME LIKE 'pattern';

mysql> SELECT NAME FROM setup_consumers WHERE NAME LIKE 'pattern';

For information about the types of names that are supported, see Section 22.6, “Performance Schema
Instrument Naming Conventions”.

22.4.5 Determining What Is Instrumented

It is always possible to determine what instruments the Performance Schema includes by checking
the setup_instruments table. For example, to see what file-related events are instrumented for the
InnoDB storage engine, use this query:

mysql> SELECT * FROM setup_instruments WHERE NAME LIKE 'wait/io/file/innodb/%';
+--------------------------------------+---------+-------+
| NAME                                 | ENABLED | TIMED |
+--------------------------------------+---------+-------+
| wait/io/file/innodb/innodb_data_file | YES     | YES   |
| wait/io/file/innodb/innodb_log_file  | YES     | YES   |
| wait/io/file/innodb/innodb_temp_file | YES     | YES   |
+--------------------------------------+---------+-------+

An exhaustive description of precisely what is instrumented is not given in this documentation, for
several reasons:

• What is instrumented is the server code. Changes to this code occur often, which also affects the set
of instruments.

• It is not practical to list all the instruments because there are hundreds of them.

• As described earlier, it is possible to find out by querying the setup_instruments table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used
by automated tools.

22.5 Performance Schema Queries
Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate
WHERE clauses that restrict what event information to select from the events available after pre-filtering
has been applied.



Performance Schema Instrument Naming Conventions

2603

In Section 22.4.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the
event tables contain both file and nonfile information, post-filtering is another way to see information
only for file events. Add a WHERE clause to queries to restrict event selection appropriately:

mysql> SELECT THREAD_ID, NUMBER_OF_BYTES
       FROM events_waits_history
       WHERE EVENT_NAME LIKE 'wait/io/file/%'
       AND NUMBER_OF_BYTES IS NOT NULL;
+-----------+-----------------+
| THREAD_ID | NUMBER_OF_BYTES |
+-----------+-----------------+
|        11 |              66 |
|        11 |              47 |
|        11 |             139 |
|         5 |              24 |
|         5 |             834 |
+-----------+-----------------+

22.6 Performance Schema Instrument Naming Conventions

An instrument name consists of a sequence of components separated by '/' characters. Example
names:

wait/io/file/myisam/log
wait/io/file/mysys/charset
wait/synch/cond/mysys/COND_alarm
wait/synch/cond/sql/BINLOG::update_cond
wait/synch/mutex/mysys/BITMAP_mutex
wait/synch/mutex/sql/LOCK_delete
wait/synch/rwlock/innodb/trx_sys_lock
wait/synch/rwlock/sql/Query_cache_query::lock

The instrument name space has a tree-like structure. The components of an instrument name from left
to right provide a progression from more general to more specific. The number of components a name
has depends on the type of instrument.

The interpretation of a given component in a name depends on the components to the left of it. For
example, myisam appears in both of the following names, but myisam in the first name is related to file
I/O, whereas in the second it is related to a synchronization instrument:

wait/io/file/myisam/log
wait/synch/cond/myisam/MI_SORT_INFO::cond

Instrument names consist of a prefix with a structure defined by the Performance Schema
implementation and a suffix defined by the developer implementing the instrument code. The top-
level component of an instrument prefix indicates the type of instrument. This component also
determines which event timer in the setup_timers table applies to the instrument. For the prefix part
of instrument names, the top level indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

• A name for the major component (a server module such as myisam, innodb, mysys, or sql) or a
plugin name.

• The name of a variable in the code, in the form XXX (a global variable) or CCC::MMM (a member MMM
in class CCC). Examples: COND_thread_cache, THR_LOCK_myisam, BINLOG::LOCK_index.

In MySQL 5.5, there is a single top-level component, wait, indicating a wait instrument. The naming
tree for wait instruments has this structure:

• wait/io



Performance Schema Status Monitoring

2604

An instrumented I/O operation.

• wait/io/file

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a call to fwrite()). Due to caching, the physical file I/O on the disk might
not happen within this call.

• wait/synch

An instrumented synchronization object. For synchronization objects, the TIMER_WAIT time includes
the amount of time blocked while attempting to acquire a lock on the object, if any.

• wait/synch/cond

A condition is used by one thread to signal to other threads that something they were waiting for
has happened. If a single thread was waiting for a condition, it can wake up and proceed with its
execution. If several threads were waiting, they can all wake up and compete for the resource for
which they were waiting.

• wait/synch/mutex

A mutual exclusion object used to permit access to a resource (such as a section of executable
code) while preventing other threads from accessing the resource.

• wait/synch/rwlock

A read/write lock object used to lock a specific variable for access while preventing its use by other
threads. A shared read lock can be acquired simultaneously by multiple threads. An exclusive
write lock can be acquired by only one thread at a time.

22.7 Performance Schema Status Monitoring
There are several status variables associated with the Performance Schema:

mysql> SHOW STATUS LIKE 'perf%';
+------------------------------------------+-------+
| Variable_name                            | Value |
+------------------------------------------+-------+
| Performance_schema_cond_classes_lost     | 0     |
| Performance_schema_cond_instances_lost   | 0     |
| Performance_schema_file_classes_lost     | 0     |
| Performance_schema_file_handles_lost     | 0     |
| Performance_schema_file_instances_lost   | 0     |
| Performance_schema_locker_lost           | 0     |
| Performance_schema_mutex_classes_lost    | 0     |
| Performance_schema_mutex_instances_lost  | 0     |
| Performance_schema_rwlock_classes_lost   | 0     |
| Performance_schema_rwlock_instances_lost | 0     |
| Performance_schema_table_handles_lost    | 0     |
| Performance_schema_table_instances_lost  | 0     |
| Performance_schema_thread_classes_lost   | 0     |
| Performance_schema_thread_instances_lost | 0     |
+------------------------------------------+-------+

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

• Performance_schema_xxx_classes_lost indicates how many instruments of type xxx could
not be loaded.

• Performance_schema_xxx_instances_lost indicates how many instances of object type xxx
could not be created.



Performance Schema Status Monitoring

2605

• Performance_schema_xxx_handles_lost indicates how many instances of object type xxx
could not be opened.

• Performance_schema_locker_lost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory
for the instrumentation at runtime, it increments Performance_schema_mutex_classes_lost.
The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it will not be collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there will be
only one instance. Other mutexes have an instance per connection, or per page in various caches
and data buffers, so the number of instances varies over time. Increasing the maximum number of
connections or the maximum size of some buffers will increase the maximum number of instances
that might be allocated at once. If the server cannot create a given instrumented mutex instance, it
increments Performance_schema_mutex_instances_lost.

Suppose that the following conditions hold:

• The server was started with the --performance_schema_max_mutex_classes=200 option and
thus has room for 200 mutex instruments.

• 150 mutex instruments have been loaded already.

• The plugin named plugin_a contains 40 mutex instruments.

• The plugin named plugin_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how
many are available, as illustrated by the following sequence of statements:

INSTALL PLUGIN plugin_a

The server now has 150+40 = 190 mutex instruments.

UNINSTALL PLUGIN plugin_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still
available, but new events for the instruments are not collected.

INSTALL PLUGIN plugin_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

INSTALL PLUGIN plugin_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The
Performance_schema_mutex_classes_lost indicates the number of instruments (mutex classes)
lost:

mysql> SHOW STATUS LIKE "perf%mutex_classes_lost";
+---------------------------------------+-------+
| Variable_name                         | Value |
+---------------------------------------+-------+
| Performance_schema_mutex_classes_lost | 10    |
+---------------------------------------+-------+
1 row in set (0.10 sec)

The instrumentation still works and collects (partial) data for plugin_b.



Performance Schema Status Monitoring

2606

When the server cannot create a mutex instrument, these results occur:

• No row for the instrument is inserted into the setup_instruments table.

• Performance_schema_mutex_classes_lost increases by 1.

• Performance_schema_mutex_instances_lost does not change. (When the mutex instrument
is not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.

A value of Performance_schema_mutex_classes_lost greater than 0 can happen in two cases:

• To save a few bytes of memory, you start the server with --
performance_schema_max_mutex_classes=N, where N is less than the default value. The
default value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but
this can be reduced if some plugins are never loaded. For example, you might choose not to load
some of the storage engines in the distribution.

• You load a third-party plugin that is instrumented for the Performance Schema but do not allow for
the plugin's instrumentation memory requirements when you start the server. Because it comes from
a third party, the instrument memory consumption of this engine is not accounted for in the default
value chosen for performance_schema_max_mutex_classes.

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate
more using --performance_schema_max_mutex_classes=N, loading the plugin leads to
starvation of instruments.

If the value chosen for performance_schema_max_mutex_classes is too small,
no error is reported in the error log and there is no failure at runtime. However, the
content of the tables in the performance_schema database will miss events. The
Performance_schema_mutex_classes_lost status variable is the only visible sign to indicate that
some events were dropped internally due to failure to create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wait/synch/mutex/sql/LOCK_delete is the name of a mutex instrument
in the setup_instruments table. This single instrument is used when creating a mutex in the
code (in THD::LOCK_delete) however many instances of the mutex are needed as the server
runs. In this case, LOCK_delete is a mutex that is per connection (THD), so if a server has 1000
connections, there are 1000 threads, and 1000 instrumented LOCK_delete mutex instances
(THD::LOCK_delete).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments
Performance_schema_mutex_instances_lost by 200 to indicate that instances could not be
created.

A value of Performance_schema_mutex_instances_lost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for --
performance_schema_max_mutex_instances=N.

The bottom line is that if SHOW STATUS LIKE 'perf%' says that nothing was lost (all values are
zero), the Performance Schema data is accurate and can be relied upon. If something was lost, the
data is incomplete, and the Performance Schema could not record everything given the insufficient
amount of memory it was given to use. In this case, the specific Performance_schema_xxx_lost
variable indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you
do not care about performance data for file I/O, you can start the server with all Performance Schema



Performance Schema General Table Characteristics

2607

parameters related to file I/O set to 0. No memory will be allocated for file-related classes, instances, or
handles, and all file events will be lost.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the
Performance Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
  Type: performance_schema
  Name: events_waits_history.row_size
Status: 76
*************************** 4. row ***************************
  Type: performance_schema
  Name: events_waits_history.row_count
Status: 10000
*************************** 5. row ***************************
  Type: performance_schema
  Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
  Type: performance_schema
  Name: performance_schema.memory
Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see Section 13.7.5.16,
“SHOW ENGINE Syntax”.

22.8 Performance Schema General Table Characteristics
The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Many tables in the performance_schema database are read only and cannot be modified:

mysql> TRUNCATE TABLE setup_instruments;
ERROR 1683 (HY000): Invalid performance_schema usage.

Some of the setup tables have columns that can be modified to affect Performance Schema operation.
Truncation is permitted to clear collected events, so TRUNCATE TABLE can be used on tables
containing those kinds of information, such as tables named with a prefix of events_waits_.

Summary tables can be truncated with TRUNCATE TABLE. The effect is to reset the summary columns
to 0 or NULL, not to remove rows. This enables you to clear collected values and restart aggregation.
That might be useful, for example, after you have made a runtime configuration change.

Privileges are as for other databases and tables:

• To retrieve from performance_schema tables, you must have the SELECT privilege.

• To change those columns that can be modified, you must have the UPDATE privilege.

• To truncate tables that can be truncated, you must have the DROP privilege.

Because only a limited set of privileges apply to Performance Schema tables, attempts to use GRANT
ALL as shorthand for granting privileges at the database or table leval fail with an error:

mysql> GRANT ALL ON performance_schema.*
       TO 'u1'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'



Performance Schema Table Descriptions

2608

mysql> GRANT ALL ON performance_schema.setup_instruments
       TO 'u2'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'

Instead, grant exactly the desired privileges:

mysql> GRANT SELECT ON performance_schema.*
       TO 'u1'@'localhost';
Query OK, 0 rows affected (0.03 sec)

mysql> GRANT SELECT, UPDATE ON performance_schema.setup_instruments
       TO 'u2'@'localhost';
Query OK, 0 rows affected (0.02 sec)

22.9 Performance Schema Table Descriptions
Tables in the performance_schema database can be grouped as follows:

• Setup tables. These tables are used to configure and display monitoring characteristics.

• Current events table. The events_waits_current table contains the most recent event for each
thread.

• History tables. These tables have the same structure as events_waits_current but contain
more rows. The events_waits_history table contains the most recent 10 events per thread.
events_waits_history_long contains the most recent 10,000 events.

To change the sizes of these tables, set the
performance_schema_events_waits_history_size and
performance_schema_events_waits_history_long_size system variables at server
startup.

• Summary tables. These tables contain information aggregated over groups of events, including those
that have been discarded from the history tables.

• Instance tables. These tables document what types of objects are instrumented. An instrumented
object, when used by the server, produces an event. These tables provide event names and
explanatory notes or status information.

• Miscellaneous tables. These do not fall into any of the other table groups.

22.9.1 Performance Schema Table Index

The following table lists each Performance Schema table and provides a short description of each one.

Table 22.1 Performance Schema Tables

Table Name Description

cond_instances synchronization object instances

events_waits_current Current wait events

events_waits_history Most recent wait events for each thread

events_waits_history_long Most recent wait events overall

events_waits_summary_by_instance Wait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event name

events_waits_summary_global_by_event_name Wait events per event name

file_instances File instances

file_summary_by_event_name File events per event name



Performance Schema Setup Tables

2609

Table Name Description

file_summary_by_instance File events per file instance

mutex_instances Mutex synchronization object instances

performance_timers Which event timers are available

rwlock_instances Lock synchronization object instances

setup_consumers Consumers for which event information can
be stored

setup_instruments Classes of instrumented objects for which
events can be collected

setup_timers Current event timer

threads Information about server threads

22.9.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you
have the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree
of flexibility in modifying Performance Schema configuration. For example, you can use a single
statement with standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

• setup_consumers: The types of consumers for which event information can be stored

• setup_instruments: The classes of instrumented objects for which events can be collected

• setup_timers: The current event timer

22.9.2.1 The setup_consumers Table

The setup_consumers table lists the types of consumers for which event information can be stored:

mysql> SELECT * FROM setup_consumers;
+----------------------------------------------+---------+
| NAME                                         | ENABLED |
+----------------------------------------------+---------+
| events_waits_current                         | YES     |
| events_waits_history                         | YES     |
| events_waits_history_long                    | YES     |
| events_waits_summary_by_thread_by_event_name | YES     |
| events_waits_summary_by_event_name           | YES     |
| events_waits_summary_by_instance             | YES     |
| file_summary_by_event_name                   | YES     |
| file_summary_by_instance                     | YES     |
+----------------------------------------------+---------+

The setup_consumers table has these columns:

• NAME

The consumer name.

• ENABLED

Whether the consumer is enabled. The value is YES or NO. This column can be modified. If you
disable a consumer, the server does not spend time adding event information to it.

TRUNCATE TABLE is not permitted for the setup_consumers table.



Performance Schema Setup Tables

2610

Disabling the events_waits_current consumer disables everything else that depends on waits,
such as the events_waits_history and events_waits_history_long tables, and all summary
tables.

22.9.2.2 The setup_instruments Table

The setup_instruments table lists classes of instrumented objects for which events can be
collected:

mysql> SELECT * FROM setup_instruments;
+------------------------------------------------------------+---------+-------+
| NAME                                                       | ENABLED | TIMED |
+------------------------------------------------------------+---------+-------+
...
| wait/synch/mutex/sql/LOCK_global_read_lock                 | YES     | YES   |
| wait/synch/mutex/sql/LOCK_global_system_variables          | YES     | YES   |
| wait/synch/mutex/sql/LOCK_lock_db                          | YES     | YES   |
| wait/synch/mutex/sql/LOCK_manager                          | YES     | YES   |
...
| wait/synch/rwlock/sql/LOCK_grant                           | YES     | YES   |
| wait/synch/rwlock/sql/LOGGER::LOCK_logger                  | YES     | YES   |
| wait/synch/rwlock/sql/LOCK_sys_init_connect                | YES     | YES   |
| wait/synch/rwlock/sql/LOCK_sys_init_slave                  | YES     | YES   |
...
| wait/io/file/sql/binlog                                    | YES     | YES   |
| wait/io/file/sql/binlog_index                              | YES     | YES   |
| wait/io/file/sql/casetest                                  | YES     | YES   |
| wait/io/file/sql/dbopt                                     | YES     | YES   |
...

Each instrument added to the source code provides a row for this table, even when the instrumented
code is not executed. When an instrument is enabled and executed, instrumented instances are
created, which are visible in the *_instances tables.

The setup_instruments table has these columns:

• NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed
in Section 22.6, “Performance Schema Instrument Naming Conventions”. Events produced from
execution of an instrument have an EVENT_NAME value that is taken from the instrument NAME value.
(Events do not really have a “name,” but this provides a way to associate events with instruments.)

• ENABLED

Whether the instrument is enabled. The value is YES or NO. This column can be modified. A disabled
instrument produces no events.

• TIMED

Whether the instrument is timed. This column can be modified.

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT
timer values. This in turn causes those values to be ignored when calculating the sum, minimum,
maximum, and average time values in summary tables.

TRUNCATE TABLE is not permitted for the setup_instruments table.

22.9.2.3 The setup_timers Table

The setup_timers table shows the currently selected event timer:

mysql> SELECT * FROM setup_timers;



Performance Schema Instance Tables

2611

+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | CYCLE      |
+------+------------+

The setup_timers.TIMER_NAME value can be changed to select a different timer. The value can
be any of the values in the performance_timers.TIMER_NAME column. For an explanation of how
event timing occurs, see Section 22.4.1, “Performance Schema Event Timing”.

Modifications to the setup_timers table affect monitoring immediately. Events already in
progress use the original timer for the begin time and the new timer for the end time, which leads to
unpredictable results. If you make timer changes, you may want to use TRUNCATE TABLE to reset
Performance Schema statistics.

The setup_timers table has these columns:

• NAME

The type of instrument the timer is used for.

• TIMER_NAME

The timer that applies to the instrument type. This column can be modified.

TRUNCATE TABLE is not permitted for the setup_timers table.

22.9.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

• cond_instances: Condition synchronization object instances

• file_instances: File instances

• mutex_instances: Mutex synchronization object instances

• rwlock_instances: Lock synchronization object instances

These tables list instrumented synchronization objects and files. There are three types of
synchronization objects: cond, mutex, and rwlock. Each instance table has an EVENT_NAME or NAME
column to indicate the instrument associated with each row. Instrument names may have multiple
parts and form a hierarchy, as discussed in Section 22.6, “Performance Schema Instrument Naming
Conventions”.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for
investigating performance bottlenecks or deadlocks. For examples of how to use them for this purpose,
see Section 22.14, “Using the Performance Schema to Diagnose Problems”

22.9.3.1 The cond_instances Table

The cond_instances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event
has happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the
thread is waiting for, but there is no immediate way to tell which other thread, or threads, will cause the
condition to happen.

The cond_instances table has these columns:

• NAME



Performance Schema Instance Tables

2612

The instrument name associated with the condition.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented condition.

TRUNCATE TABLE is not permitted for the cond_instances table.

22.9.3.2 The file_instances Table

The file_instances table lists all the files seen by the Performance Schema when executing file I/O
instrumentation. If a file on disk has never been opened, it will not be in file_instances. When a file
is deleted from the disk, it is also removed from the file_instances table.

The file_instances table has these columns:

• FILE_NAME

The file name.

• EVENT_NAME

The instrument name associated with the file.

• OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_COUNT will be 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT
> 0.

TRUNCATE TABLE is not permitted for the file_instances table.

22.9.3.3 The mutex_instances Table

The mutex_instances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these
two threads will compete against each other, so that the first query to obtain a lock on the mutex will
cause the other query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The mutex_instances table has these columns:

• NAME

The instrument name associated with the mutex.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented mutex.

• LOCKED_BY_THREAD_ID

When a thread currently has a mutex locked, LOCKED_BY_THREAD_ID is the THREAD_ID of the
locking thread, otherwise it is NULL.

TRUNCATE TABLE is not permitted for the mutex_instances table.



Performance Schema Instance Tables

2613

For every mutex instrumented in the code, the Performance Schema provides the following
information.

• The setup_instruments table lists the name of the instrumentation point, with the prefix wait/
synch/mutex/.

• When some code creates a mutex, a row is added to the mutex_instances table. The
OBJECT_INSTANCE_BEGIN column is a property that uniquely identifies the mutex.

• When a thread attempts to lock a mutex, the events_waits_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT_NAME column), and indicating which
mutex is waited on (in the OBJECT_INSTANCE_BEGIN column).

• When a thread succeeds in locking a mutex:

• events_waits_current shows that the wait on the mutex is completed (in the TIMER_END and
TIMER_WAIT columns)

• The completed wait event is added to the events_waits_history and
events_waits_history_long tables

• mutex_instances shows that the mutex is now owned by the thread (in the THREAD_ID
column).

• When a thread unlocks a mutex, mutex_instances shows that the mutex now has no owner (the
THREAD_ID column is NULL).

• When a mutex object is destroyed, the corresponding row is removed from mutex_instances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

• events_waits_current, to see what mutex a thread is waiting for

• mutex_instances, to see which other thread currently owns a mutex

22.9.3.4 The rwlock_instances Table

The rwlock_instances table lists all the rwlock instances (read write locks) seen by the
Performance Schema while the server executes. An rwlock is a synchronization mechanism used in
the code to enforce that threads at a given time can have access to some common resource following
certain rules. The resource is said to be “protected” by the rwlock. The access is either shared (many
threads can have a read lock at the same time) or exclusive (only one thread can have a write lock at a
given time).

Depending on how many threads are requesting a lock, and the nature of the locks requested, access
can be either granted in shared mode, granted in exclusive mode, or not granted at all, waiting for other
threads to finish first.

The rwlock_instances table has these columns:

• NAME

The instrument name associated with the lock.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented lock.

• WRITE_LOCKED_BY_THREAD_ID

When a thread currently has an rwlock locked in exclusive (write) mode,
WRITE_LOCKED_BY_THREAD_ID is the THREAD_ID of the locking thread, otherwise it is NULL.



Performance Schema Wait Event Tables

2614

• READ_LOCKED_BY_COUNT

When a thread currently has an rwlock locked in shared (read) mode, READ_LOCKED_BY_COUNT
is incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a
read lock, but it can be used to see whether there is a read contention on an rwlock, and see how
many readers are currently active.

TRUNCATE TABLE is not permitted for the rwlock_instances table.

By performing queries on both of the following tables, a monitoring application or a DBA may detect
some bottlenecks or deadlocks between threads that involve locks:

• events_waits_current, to see what rwlock a thread is waiting for

• rwlock_instances, to see which other thread currently owns an rwlock

There is a limitation: The rwlock_instances can be used only to identify the thread holding a write
lock, but not the threads holding a read lock.

22.9.4 Performance Schema Wait Event Tables

The Performance Schema instruments waits, which are events that take time.

These tables store wait events:

• events_waits_current: Current wait events

• events_waits_history: The most recent wait events per thread

• events_waits_history_long: The most recent wait events globally (across all threads)

The following sections describe the wait event tables. There are also summary tables that aggregate
information about wait events; see Section 22.9.5.1, “Wait Event Summary Tables”.

Wait Event Configuration

To control collection of wait events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with wait. Use these
instruments to enable or disable collection of wait events.

• The setup_consumers table contains consumer values with names corresponding to the current
and recent wait event table names. Use these consumers to filter collection of wait events.

The wait instruments are enabled by default. For example:

mysql> SELECT * FROM setup_instruments
       WHERE NAME LIKE 'wait/io/file/innodb%';
+--------------------------------------+---------+-------+
| NAME                                 | ENABLED | TIMED |
+--------------------------------------+---------+-------+
| wait/io/file/innodb/innodb_data_file | YES     | YES   |
| wait/io/file/innodb/innodb_log_file  | YES     | YES   |
| wait/io/file/innodb/innodb_temp_file | YES     | YES   |
+--------------------------------------+---------+-------+

The wait consumers are enabled by default:

mysql> SELECT * FROM setup_consumers WHERE NAME LIKE '%waits%';
+---------------------------+---------+
| NAME                      | ENABLED |
+---------------------------+---------+
| events_waits_current      | YES     |



Performance Schema Wait Event Tables

2615

| events_waits_history      | YES     |
| events_waits_history_long | YES     |
+---------------------------+---------+

To control wait event collection, update the setup_instruments and setup_consumers tables:

• Enable:

UPDATE setup_instruments SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'wait/%';
UPDATE setup_consumers SET ENABLED = 'YES'
WHERE NAME LIKE '%waits%';

• Disable:

UPDATE setup_instruments SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'wait/%';
UPDATE setup_consumers SET ENABLED = 'NO'
WHERE NAME LIKE '%waits%';

To collect only specific wait events, enable only the corresponding wait instruments. To collect wait
events only for specific wait event tables, enable the wait instruments but only the wait consumers
corresponding to the desired tables.

The setup_timers table contains a row with a NAME value of wait that indicates the unit for wait
event timing. The default unit is CYCLE:

mysql> SELECT * FROM setup_timers WHERE NAME = 'wait';
+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | CYCLE      |
+------+------------+

To change the timing unit, modify the TIMER_NAME value:

UPDATE setup_timers SET TIMER_NAME = 'NANOSECOND'
WHERE NAME = 'wait';

For additional information about configuring event collection, see Section 22.4, “Performance Schema
Runtime Configuration”.

22.9.4.1 The events_waits_current Table

The events_waits_current table contains current wait events, one row per thread showing the
current status of the thread's most recent monitored wait event.

Of the tables that contain wait event rows, events_waits_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the
events_waits_history and events_waits_history_long tables are collections of the most
recent wait events, up to a fixed number of rows.

For information about configuration of wait event collection, see Section 22.9.4, “Performance Schema
Wait Event Tables”.

The events_waits_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have
the same pair of values.



Performance Schema Wait Event Tables

2616

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 22.6, “Performance Schema Instrument Naming Conventions”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can
check the context in which this occurs.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END and TIMER_WAIT are NULL.

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 22.4.1, “Performance Schema Event Timing”.

• SPINS

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, OBJECT_INSTANCE_BEGIN

These columns identify the object “being acted on.” What that means depends on the object type.

For a synchronization object (cond, mutex, rwlock):

• OBJECT_SCHEMA, OBJECT_NAME, and OBJECT_TYPE are NULL.

• OBJECT_INSTANCE_BEGIN is the address of the synchronization object in memory.

For a file I/O object:

• OBJECT_SCHEMA is NULL.

• OBJECT_NAME is the file name.

• OBJECT_TYPE is FILE.

• OBJECT_INSTANCE_BEGIN is an address in memory.

An OBJECT_INSTANCE_BEGIN value itself has no meaning, except that different values indicate
different objects. OBJECT_INSTANCE_BEGIN can be used for debugging. For example, it can be
used with GROUP BY OBJECT_INSTANCE_BEGIN to see whether the load on 1,000 mutexes (that
protect, say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This
can help you correlate with other sources of information if you see the same object address in a log
file or another debugging or performance tool.

• NESTING_EVENT_ID

Always NULL.



Performance Schema Summary Tables

2617

• OPERATION

The type of operation performed, such as lock, read, or write.

• NUMBER_OF_BYTES

The number of bytes read or written by the operation.

• FLAGS

Reserved for future use.

TRUNCATE TABLE is permitted for the events_waits_current table. It removes the rows.

22.9.4.2 The events_waits_history Table

The events_waits_history table contains the most recent 10 wait events per thread. To change
the table size, modify the performance_schema_events_waits_history_size system variable
at server startup. Wait events are not added to the table until they have ended. As new events are
added, older events are discarded if the table is full.

The events_waits_history table has the same structure as events_waits_current. See
Section 22.9.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the events_waits_history table. It removes the rows.

For information about configuration of wait event collection, see Section 22.9.4, “Performance Schema
Wait Event Tables”.

22.9.4.3 The events_waits_history_long Table

The events_waits_history_long table contains the most recent 10,000 wait events. To change
the table size, modify the performance_schema_events_waits_history_long_size system
variable at server startup. Wait events are not added to the table until they have ended. As new events
are added, older events are discarded if the table is full. When a thread ends, its rows are removed
from the table.

The events_waits_history_long table has the same structure as events_waits_current.
See Section 22.9.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the events_waits_history_long table. It removes the rows.

For information about configuration of wait event collection, see Section 22.9.4, “Performance Schema
Wait Event Tables”.

22.9.5 Performance Schema Summary Tables

Summary tables provide aggregated information for terminated events over time. The tables in this
group summarize event data in different ways.

Wait Event Summaries

• events_waits_summary_by_instance: Wait events per instance

• events_waits_summary_by_thread_by_event_name: Wait events per thread and event name

• events_waits_summary_global_by_event_name: Wait events per event name

File I/O Summaries

• file_summary_by_event_name: File events per event name



Performance Schema Summary Tables

2618

• file_summary_by_instance: File events per file instance

Each summary table has grouping columns that determine how to group the data to be aggregated,
and summary columns that contain the aggregated values. Tables that summarize events in similar
ways often have similar sets of summary columns and differ only in the grouping columns used to
determine how events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. The effect is to reset the summary columns
to 0 or NULL, not to remove rows. This enables you to clear collected values and restart aggregation.
That might be useful, for example, after you have made a runtime configuration change.

22.9.5.1 Wait Event Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and
aggregates that information in summary tables. Section 22.9.4, “Performance Schema Wait Event
Tables” describes the events on which wait summaries are based. See that discussion for information
about the content of wait events, the current and recent wait event tables, and how to control wait event
collection.

Example wait event summary information:

mysql> SELECT * FROM events_waits_summary_global_by_event_name\G
...
*************************** 6. row ***************************
    EVENT_NAME: wait/synch/mutex/sql/BINARY_LOG::LOCK_index
    COUNT_STAR: 8
SUM_TIMER_WAIT: 2119302
MIN_TIMER_WAIT: 196092
AVG_TIMER_WAIT: 264912
MAX_TIMER_WAIT: 569421
...
*************************** 9. row ***************************
    EVENT_NAME: wait/synch/mutex/sql/hash_filo::lock
    COUNT_STAR: 69
SUM_TIMER_WAIT: 16848828
MIN_TIMER_WAIT: 0
AVG_TIMER_WAIT: 244185
MAX_TIMER_WAIT: 735345
...

Each wait event summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table:

• events_waits_summary_by_instance has EVENT_NAME and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given event name and object. If an instrument is used to
create multiple instances, each instance has a unique OBJECT_INSTANCE_BEGIN value, so these
instances are summarized separately in this table.

• events_waits_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_waits_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name. An instrument might be used to create multiple
instances of the instrumented object. For example, if there is an instrument for a mutex that is
created for each connection, there are as many instances as there are connections. The summary
row for the instrument summarizes over all these instances.

Each wait event summary table has these summary columns containing aggregated values:

• COUNT_STAR

The number of summarized events. This value includes all events, whether timed or nontimed.



Performance Schema Summary Tables

2619

• SUM_TIMER_WAIT

The total wait time of the summarized timed events. This value is calculated only for timed
events because nontimed events have a wait time of NULL. The same is true for the other
xxx_TIMER_WAIT values.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed events.

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed events.

TRUNCATE TABLE is permitted for wait summary tables. It resets the summary columns to zero rather
than removing rows.

22.9.5.2 File I/O Summary Tables

The Performance Schema maintains file I/O summary tables that aggregate information about I/O
operations.

Example file I/O event summary information:

mysql> SELECT * FROM file_summary_by_instance\G
...
*************************** 2. row ***************************
                FILE_NAME: /var/mysql/share/english/errmsg.sys
               EVENT_NAME: wait/io/file/sql/ERRMSG
               COUNT_READ: 3
              COUNT_WRITE: 0
 SUM_NUMBER_OF_BYTES_READ: 42211
SUM_NUMBER_OF_BYTES_WRITE: 0
...
*************************** 6. row ***************************
                FILE_NAME: /var/mysql/data/binlog.000001
               EVENT_NAME: wait/io/file/sql/binlog
               COUNT_READ: 0
              COUNT_WRITE: 0
 SUM_NUMBER_OF_BYTES_READ: 0
SUM_NUMBER_OF_BYTES_WRITE: 0
...

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• file_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• file_summary_by_instance has FILE_NAME and EVENT_NAME columns. Each row summarizes
events for a given file instrument instance.

Each file I/O summary table has these summary columns containing aggregated values:

• COUNT_READ

The number of read operations in the summarized events.

• COUNT_WRITE

The number of write operations in the summarized events.



Performance Schema Miscellaneous Tables

2620

• SUM_NUMBER_OF_BYTES_READ

The number of bytes read in the summarized events.

• SUM_NUMBER_OF_BYTES_WRITE

The number of bytes written in the summarized events.

TRUNCATE TABLE is permitted for file I/O summary tables. It resets the summary columns to zero
rather than removing rows.

The MySQL server uses several techniques to avoid I/O operations by caching information read from
files, so it is possible that statements you might expect to result in I/O events will not. You may be able
to ensure that I/O does occur by flushing caches or restarting the server to reset its state.

22.9.6 Performance Schema Miscellaneous Tables

The following sections describe tables that do not fall into the table categories discussed in the
preceding sections:

• performance_timers: Which event timers are available

• threads: Information about server threads

22.9.6.1 The performance_timers Table

The performance_timers table shows which event timers are available:

mysql> SELECT * FROM performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME  | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
| CYCLE       |      2389029850 |                1 |             72 |
| NANOSECOND  |            NULL |             NULL |           NULL |
| MICROSECOND |         1000000 |                1 |            585 |
| MILLISECOND |            1035 |                1 |            738 |
| TICK        |             101 |                1 |            630 |
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
The rows that do not contain NULL indicate which timers you can use in setup_timers.

The performance_timers table has these columns:

• TIMER_NAME

The name by which to refer to the timer when configuring the setup_timers table.

• TIMER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to
the CPU speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to
2400000000.

• TIMER_RESOLUTION

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10,
its value increases by 10 each time.

• TIMER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The
Performance Schema determines this value by invoking the timer 20 times during initialization
and picking the smallest value. The total overhead really is twice this amount because the



Performance Schema Option and Variable Reference

2621

instrumentation invokes the timer at the start and end of each event. The timer code is called only for
timed events, so this overhead does not apply for nontimed events.

TRUNCATE TABLE is not permitted for the performance_timers table.

22.9.6.2 The threads Table

The threads table contains a row for each server thread:

mysql> SELECT * FROM threads;
+-----------+----------------+----------------------------------------+
| THREAD_ID | PROCESSLIST_ID | NAME                                   |
+-----------+----------------+----------------------------------------+
|         0 |              0 | thread/sql/main                        |
|         1 |              0 | thread/innodb/io_handler_thread        |
|        16 |              0 | thread/sql/signal_handler              |
|        23 |              7 | thread/sql/one_connection              |
|         5 |              0 | thread/innodb/io_handler_thread        |
|        12 |              0 | thread/innodb/srv_lock_timeout_thread  |
|        22 |              6 | thread/sql/one_connection              |
...

Note

For INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST,
information about threads for other users is shown only if the current user
has the PROCESS privilege. That is not true of the threads table; all rows
are shown to any user who has the SELECT privilege for the table. Users who
should not be able to see threads for other users should not be given that
privilege.

The threads table has these columns:

• THREAD_ID

This is the unique identifier of an instrumented thread.

• PROCESSLIST_ID

For threads that are displayed in the INFORMATION_SCHEMA.PROCESSLIST table, this is the same
value displayed in the ID column of that table. It is also the value displayed in the Id column of SHOW
PROCESSLIST output, and the value that CONNECTION_ID() would return within that thread.

For background threads (threads not associated with a user connection), PROCESSLIST_ID is 0, so
the values are not unique.

This column was named ID before MySQL 5.5.8.

• NAME

NAME is the name associated with the instrumentation of the code in the server. For example,
thread/sql/one_connection corresponds to the thread function in the code responsible for
handling a user connection, and thread/sql/main stands for the main() function of the server.

TRUNCATE TABLE is not permitted for the threads table.

The threads table was named PROCESSLIST before MySQL 5.5.6.

22.10 Performance Schema Option and Variable Reference
Table 22.2 Performance Schema Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schemaYes Yes Yes  Global No



Performance Schema System Variables

2622

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Performance_schema_cond_classes_lost   Yes Global No

Performance_schema_cond_instances_lost   Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes  Global No

performance_schema_events_waits_history_sizeYes Yes Yes  Global No

Performance_schema_file_classes_lost   Yes Global No

Performance_schema_file_handles_lost   Yes Global No

Performance_schema_file_instances_lost   Yes Global No

Performance_schema_locker_lost   Yes Global No

performance_schema_max_cond_classesYes Yes Yes  Global No

performance_schema_max_cond_instancesYes Yes Yes  Global No

performance_schema_max_file_classesYes Yes Yes  Global No

performance_schema_max_file_handlesYes Yes Yes  Global No

performance_schema_max_file_instancesYes Yes Yes  Global No

performance_schema_max_mutex_classesYes Yes Yes  Global No

performance_schema_max_mutex_instancesYes Yes Yes  Global No

performance_schema_max_rwlock_classesYes Yes Yes  Global No

performance_schema_max_rwlock_instancesYes Yes Yes  Global No

performance_schema_max_table_handlesYes Yes Yes  Global No

performance_schema_max_table_instancesYes Yes Yes  Global No

performance_schema_max_thread_classesYes Yes Yes  Global No

performance_schema_max_thread_instancesYes Yes Yes  Global No

Performance_schema_mutex_classes_lost   Yes Global No

Performance_schema_mutex_instances_lost   Yes Global No

Performance_schema_rwlock_classes_lost   Yes Global No

Performance_schema_rwlock_instances_lost   Yes Global No

Performance_schema_table_handles_lost   Yes Global No

Performance_schema_table_instances_lost   Yes Global No

Performance_schema_thread_classes_lost   Yes Global No

Performance_schema_thread_instances_lost   Yes Global No

22.11 Performance Schema System Variables
The Performance Schema implements several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+---------------------------------------------------+---------+
| Variable_name                                     | Value   |
+---------------------------------------------------+---------+
| performance_schema                                | ON      |
| performance_schema_events_waits_history_long_size | 10000   |
| performance_schema_events_waits_history_size      | 10      |
| performance_schema_max_cond_classes               | 80      |
| performance_schema_max_cond_instances             | 1000    |
| performance_schema_max_file_classes               | 50      |
| performance_schema_max_file_handles               | 32768   |
| performance_schema_max_file_instances             | 10000   |
| performance_schema_max_mutex_classes              | 200     |
| performance_schema_max_mutex_instances            | 1000000 |



Performance Schema System Variables

2623

| performance_schema_max_rwlock_classes             | 30      |
| performance_schema_max_rwlock_instances           | 1000000 |
| performance_schema_max_table_handles              | 100000  |
| performance_schema_max_table_instances            | 50000   |
| performance_schema_max_thread_classes             | 50      |
| performance_schema_max_thread_instances           | 1000    |
+---------------------------------------------------+---------+

Performance Schema system variables can be set at server startup on the command line or in option
files, and many can be set at runtime. See Section 22.10, “Performance Schema Option and Variable
Reference”.

Performance Schema system variables have the following meanings:

•   performance_schema

Introduced 5.5.3

Command-Line Format --performance-schema=#

Name performance_schema

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is OFF. At server startup, you can specify this variable with no value or a value of 1
to enable it, or with a value of 0 to disable it.

•   performance_schema_events_waits_history_long_size

Introduced 5.5.3

Command-Line Format --performance-schema-events-waits-history-long-size=#

Name performance_schema_events_waits_history_long_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 10000

The number of rows in the events_waits_history_long table.

•   performance_schema_events_waits_history_size

Introduced 5.5.3

Command-Line Format --performance-schema-events-waits-history-size=#

Name performance_schema_events_waits_history_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type integer



Performance Schema System Variables

2624

Default 10

The number of rows per thread in the events_waits_history table.

•   performance_schema_max_cond_classes

Introduced 5.5.3

Command-Line Format --performance-schema-max-cond-classes=#

Name performance_schema_max_cond_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 80

The maximum number of condition instruments.

•   performance_schema_max_cond_instances

Introduced 5.5.3

Command-Line Format --performance-schema-max-cond-instances=#

Name performance_schema_max_cond_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 1000

The maximum number of instrumented condition objects.

•   performance_schema_max_file_classes

Introduced 5.5.3

Command-Line Format --performance-schema-max-file-classes=#

Name performance_schema_max_file_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 50

The maximum number of file instruments.

•   performance_schema_max_file_handles

Introduced 5.5.3

Command-Line Format --performance-schema-max-file-handles=#

System Variable Name performance_schema_max_file_handles



Performance Schema System Variables

2625

Variable
Scope

Global

Dynamic
Variable

No

Type integerPermitted Values

Default 32768

The maximum number of opened file objects.

The value of performance_schema_max_file_handles should be greater than the value of
open_files_limit: open_files_limit affects the maximum number of open file handles the
server can support and performance_schema_max_file_handles affects how many of these
file handles can be instrumented.

•   performance_schema_max_file_instances

Introduced 5.5.3

Command-Line Format --performance-schema-max-file-instances=#

Name performance_schema_max_file_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 10000

The maximum number of instrumented file objects.

•   performance_schema_max_mutex_classes

Introduced 5.5.3

Command-Line Format --performance-schema-max-mutex-classes=#

Name performance_schema_max_mutex_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 200

The maximum number of mutex instruments.

•   performance_schema_max_mutex_instances

Introduced 5.5.3

Command-Line Format --performance-schema-max-mutex-instances=#

Name performance_schema_max_mutex_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No



Performance Schema System Variables

2626

Type integerPermitted Values

Default 1000

The maximum number of instrumented mutex objects.

•   performance_schema_max_rwlock_classes

Introduced 5.5.3

Command-Line Format --performance-schema-max-rwlock-classes=#

Name performance_schema_max_rwlock_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (<=
5.5.6) Default 20

Type integerPermitted Values (>=
5.5.7) Default 30

The maximum number of rwlock instruments.

•   performance_schema_max_rwlock_instances

Introduced 5.5.3

Command-Line Format --performance-schema-max-rwlock-instances=#

Name performance_schema_max_rwlock_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 1000

The maximum number of instrumented rwlock objects.

•   performance_schema_max_table_handles

Introduced 5.5.3

Command-Line Format --performance-schema-max-table-handles=#

Name performance_schema_max_table_handles

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 100000

The maximum number of opened table objects.

•   performance_schema_max_table_instances



Performance Schema System Variables

2627

Introduced 5.5.3

Command-Line Format --performance-schema-max-table-instances=#

Name performance_schema_max_table_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 50000

The maximum number of instrumented table objects.

•   performance_schema_max_thread_classes

Introduced 5.5.3

Command-Line Format --performance-schema-max-thread-classes=#

Name performance_schema_max_thread_classes

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 50

The maximum number of thread instruments.

•   performance_schema_max_thread_instances

Introduced 5.5.3

Command-Line Format --performance-schema-max-thread-instances=#

Name performance_schema_max_thread_instances

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Default 1000

The maximum number of instrumented thread objects. The value controls the size of the threads
table. If this maximum is exceeded such that a thread cannot be instrumented, the Performance
Schema increments the Performance_schema_thread_instances_lost status variable.

The max_connections and max_delayed_threads system variables affect how
many threads are run in the server. performance_schema_max_thread_instances
affects how many of these running threads can be instrumented. If you increase
max_connections or max_delayed_threads, you should consider
increasing performance_schema_max_thread_instances so that
performance_schema_max_thread_instances is greater than the sum of max_connections
and max_delayed_threads.



Performance Schema Status Variables

2628

22.12 Performance Schema Status Variables

The Performance Schema implements several status variables that provide information about
instrumentation that could not be loaded or created due to memory constraints:

mysql> SHOW STATUS LIKE 'perf%';
+------------------------------------------+-------+
| Variable_name                            | Value |
+------------------------------------------+-------+
| Performance_schema_cond_classes_lost     | 0     |
| Performance_schema_cond_instances_lost   | 0     |
| Performance_schema_file_classes_lost     | 0     |
| Performance_schema_file_handles_lost     | 0     |
| Performance_schema_file_instances_lost   | 0     |
| Performance_schema_locker_lost           | 0     |
| Performance_schema_mutex_classes_lost    | 0     |
| Performance_schema_mutex_instances_lost  | 0     |
| Performance_schema_rwlock_classes_lost   | 0     |
| Performance_schema_rwlock_instances_lost | 0     |
| Performance_schema_table_handles_lost    | 0     |
| Performance_schema_table_instances_lost  | 0     |
| Performance_schema_thread_classes_lost   | 0     |
| Performance_schema_thread_instances_lost | 0     |
+------------------------------------------+-------+

Performance Schema status variables have the following meanings:

•   Performance_schema_cond_classes_lost

How many condition instruments could not be loaded.

•   Performance_schema_cond_instances_lost

How many condition instrument instances could not be created.

•   Performance_schema_file_classes_lost

How many file instruments could not be loaded.

•   Performance_schema_file_handles_lost

How many file instrument instances could not be opened.

•   Performance_schema_file_instances_lost

How many file instrument instances could not be created.

•   Performance_schema_locker_lost

How many events are “lost” or not recorded, due to the following conditions:

• Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).

• The depth of the nested events stack is greater than the limit imposed by the implementation.

Events recorded by the Performance Schema are not recursive, so this variable should always be 0.

•   Performance_schema_mutex_classes_lost

How many mutex instruments could not be loaded.

•   Performance_schema_mutex_instances_lost

How many mutex instrument instances could not be created.



Performance Schema and Plugins

2629

•   Performance_schema_rwlock_classes_lost

How many rwlock instruments could not be loaded.

•   Performance_schema_rwlock_instances_lost

How many rwlock instrument instances could not be created.

•   Performance_schema_table_handles_lost

How many table instrument instances could not be opened.

•   Performance_schema_table_instances_lost

How many table instrument instances could not be created.

•   Performance_schema_thread_classes_lost

How many thread instruments could not be loaded.

•   Performance_schema_thread_instances_lost

The number of thread instances that could not be instrumented in the threads table. This can be
nonzero if the value of performance_schema_max_thread_instances is too small.

For information on using these variables to check Performance Schema status, see Section 22.7,
“Performance Schema Status Monitoring”.

22.13 Performance Schema and Plugins

Removing a plugin with UNINSTALL PLUGIN does not affect information already collected for code
in that plugin. Time spent executing the code while the plugin was loaded was still spent even if the
plugin is unloaded later. The associated event information, including aggregate information, remains
readable in performance_schema database tables. For additional information about the effect of
plugin installation and removal, see Section 22.7, “Performance Schema Status Monitoring”.

A plugin implementor who instruments plugin code should document its instrumentation characteristics
to enable those who load the plugin to account for its requirements. For example, a third-party storage
engine should include in its documentation how much memory the engine needs for mutex and other
instruments.

22.14 Using the Performance Schema to Diagnose Problems

The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema
for this purpose. The discussion here relies on the use of event filtering, which is described in
Section 22.4.2, “Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use
case where performance is deemed “too slow” and needs optimization, and you should enable all
instrumentation (no pre-filtering at all).

1. Run the use case.

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis will rely heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if
analysis shows that the issue is not related to file I/O in a particular storage engine, disable the file



Using the Performance Schema to Diagnose Problems

2630

I/O instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

At each iteration, the Performance Schema output, particularly the
events_waits_history_long table, will contain less and less “noise” caused by nonsignificant
instruments, and given that this table has a fixed size, will contain more and more data relevant to
the analysis of the problem at hand.

At each iteration, investigation should lead closer and closer to the root cause of the problem, as
the “signal/noise” ratio will improve, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action,
such as:

• Tune the server parameters (cache sizes, memory, and so forth).

• Tune a query by writing it differently,

• Tune the database schema (tables, indexes, and so forth).

• Tune the code (this applies to storage engine or server developers only).

6. Start again at step 1, to see the effects of the changes on performance.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for
investigating performance bottlenecks or deadlocks. This is made possible by Performance Schema
instrumentation as follows:

1. Suppose that thread 1 is stuck waiting for a mutex.

2. You can determine what the thread is waiting for:

SELECT * FROM events_waits_current WHERE THREAD_ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events_waits_current.OBJECT_INSTANCE_BEGIN.

3. You can determine which thread is holding mutex A:

SELECT * FROM mutex_instances WHERE OBJECT_INSTANCE_BEGIN = mutex_A;

Say the query result identifies that it is thread 2 holding mutex A, as found in
mutex_instances.LOCKED_BY_THREAD_ID.

4. You can see what thread 2 is doing:

SELECT * FROM events_waits_current WHERE THREAD_ID = thread_2;



2631

Chapter 23 Connectors and APIs

Table of Contents
23.1 MySQL Connector/C ........................................................................................................ 2634
23.2 MySQL Connector/C++ .................................................................................................... 2634
23.3 MySQL Connector/J ........................................................................................................ 2634
23.4 MySQL Connector/Net ..................................................................................................... 2635
23.5 MySQL Connector/ODBC ................................................................................................ 2635
23.6 MySQL Connector/Python ................................................................................................ 2635
23.7 libmysqld, the Embedded MySQL Server Library ............................................................... 2635

23.7.1 Compiling Programs with libmysqld ....................................................................... 2636
23.7.2 Restrictions When Using the Embedded MySQL Server ......................................... 2636
23.7.3 Options with the Embedded Server ....................................................................... 2637
23.7.4 Embedded Server Examples ................................................................................. 2637

23.8 MySQL C API ................................................................................................................. 2640
23.8.1 MySQL C API Implementations ............................................................................. 2641
23.8.2 Simultaneous MySQL Server and Connector/C Installations .................................... 2642
23.8.3 Example C API Client Programs ............................................................................ 2643
23.8.4 Building and Running C API Client Programs ......................................................... 2643
23.8.5 C API Data Structures .......................................................................................... 2647
23.8.6 C API Function Overview ...................................................................................... 2652
23.8.7 C API Function Descriptions .................................................................................. 2657
23.8.8 C API Prepared Statements .................................................................................. 2707
23.8.9 C API Prepared Statement Data Structures ............................................................ 2707
23.8.10 C API Prepared Statement Function Overview ..................................................... 2713
23.8.11 C API Prepared Statement Function Descriptions ................................................. 2716
23.8.12 C API Threaded Function Descriptions ................................................................ 2739
23.8.13 C API Embedded Server Function Descriptions .................................................... 2740
23.8.14 C API Client Plugin Functions ............................................................................. 2740
23.8.15 Common Questions and Problems When Using the C API .................................... 2743
23.8.16 Controlling Automatic Reconnection Behavior ....................................................... 2745
23.8.17 C API Support for Multiple Statement Execution ................................................... 2746
23.8.18 C API Prepared Statement Problems ................................................................... 2748
23.8.19 C API Prepared Statement Handling of Date and Time Values .............................. 2748
23.8.20 C API Support for Prepared CALL Statements ..................................................... 2749

23.9 MySQL PHP API ............................................................................................................. 2753
23.10 MySQL Perl API ............................................................................................................ 2753
23.11 MySQL Python API ........................................................................................................ 2754
23.12 MySQL Ruby APIs ........................................................................................................ 2755

23.12.1 The MySQL/Ruby API ......................................................................................... 2755
23.12.2 The Ruby/MySQL API ......................................................................................... 2755

23.13 MySQL Tcl API ............................................................................................................. 2755
23.14 MySQL Eiffel Wrapper ................................................................................................... 2755

MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide low-
level access to the MySQL protocol and MySQL resources. Both Connectors and the APIs enable you
to connect and execute MySQL statements from another language or environment, including ODBC,
Java (JDBC), Perl, Python, PHP, Ruby, and native C and embedded MySQL instances.

Note

Connector version numbers do not correlate with MySQL Server version
numbers. See Table 23.2, “MySQL Connector Versions and MySQL Server
Versions”.



MySQL Connectors

2632

MySQL Connectors

Oracle develops a number of connectors:

• Connector/C is a standalone replacement for the MySQL Client Library (libmysqlclient), to be
used for C applications.

• Connector/C++ enables C++ applications to connect to MySQL.

• Connector/J provides driver support for connecting to MySQL from Java applications using the
standard Java Database Connectivity (JDBC) API.

• Connector/Net enables developers to create .NET applications that connect to MySQL. Connector/
Net implements a fully functional ADO.NET interface and provides support for use with ADO.NET
aware tools. Applications that use Connector/Net can be written in any supported .NET language.

MySQL for Visual Studio works with Connector/Net and Microsoft Visual Studio 2012, 2013, 2015,
and 2017. MySQL for Visual Studio provides access to MySQL objects and data from Visual Studio.
As a Visual Studio package, it integrates directly into Server Explorer providing the ability to create
new connections and work with MySQL database objects.

• Connector/ODBC provides driver support for connecting to MySQL using the Open Database
Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and OS X
platforms.

• Connector/Python provides driver support for connecting to MySQL from Python applications using
an API that is compliant with the Python DB API version 2.0. No additional Python modules or
MySQL client libraries are required.

The MySQL C API

For direct access to using MySQL natively within a C application, there are two methods:

• The C API provides low-level access to the MySQL client/server protocol through the
libmysqlclient client library. This is the primary method used to connect to an instance of
the MySQL server, and is used both by MySQL command-line clients and many of the MySQL
Connectors and third-party APIs detailed here.

libmysqlclient is included in MySQL distributions and in Connector/C distributions.

• libmysqld is an embedded MySQL server library that enables you to embed an instance of the
MySQL server into your C applications.

libmysqld is included in MySQL distributions, but not in Connector/C distributions.

See also Section 23.8.1, “MySQL C API Implementations”.

To access MySQL from a C application, or to build an interface to MySQL for a language not supported
by the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's
utilities are available to help with the process; see Section 4.7, “MySQL Program Development
Utilities”.

Third-Party MySQL APIs

The remaining APIs described in this chapter provide an interface to MySQL from specific application
languages. These third-party solutions are not developed or supported by Oracle. Basic information on
their usage and abilities is provided here for reference purposes only.

All the third-party language APIs are developed using one of two methods, using libmysqlclient or
by implementing a native driver. The two solutions offer different benefits:

• Using libmysqlclient offers complete compatibility with MySQL because it uses the same
libraries as the MySQL client applications. However, the feature set is limited to the implementation

http://dev.mysql.com/doc/connector-c/en/
http://dev.mysql.com/doc/connector-cpp/en/
http://dev.mysql.com/doc/connector-j/5.1/en/
http://dev.mysql.com/doc/connector-net/en/
http://dev.mysql.com/doc/visual-studio/en/
http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/connector-python/en/
http://www.python.org/dev/peps/pep-0249/


Third-Party MySQL APIs

2633

and interfaces exposed through libmysqlclient and the performance may be lower as data is
copied between the native language, and the MySQL API components.

• Native drivers are an implementation of the MySQL network protocol entirely within the host
language or environment. Native drivers are fast, as there is less copying of data between
components, and they can offer advanced functionality not available through the standard MySQL
API. Native drivers are also easier for end users to build and deploy because no copy of the MySQL
client libraries is needed to build the native driver components.

Table 23.1, “MySQL APIs and Interfaces” lists many of the libraries and interfaces available for MySQL.
Table 23.2, “MySQL Connector Versions and MySQL Server Versions” shows which MySQL Server
versions each connector supports.

Table 23.1 MySQL APIs and Interfaces

EnvironmentAPI Type Notes

Ada GNU Ada MySQL Bindings libmysqlclientSee MySQL Bindings for GNU Ada

C C API libmysqlclientSee Section 23.8, “MySQL C API”.

C Connector/C Replacement
for
libmysqlclient

See MySQL Connector/C Developer
Guide.

C++ Connector/C++ libmysqlclientSee MySQL Connector/C++ Developer
Guide.

 MySQL++ libmysqlclientSee MySQL++ Web site.

 MySQL wrapped libmysqlclientSee MySQL wrapped.

Cocoa MySQL-Cocoa libmysqlclientCompatible with the Objective-C
Cocoa environment. See http://mysql-
cocoa.sourceforge.net/

D MySQL for D libmysqlclientSee MySQL for D.

Eiffel Eiffel MySQL libmysqlclientSee Section 23.14, “MySQL Eiffel
Wrapper”.

Erlang erlang-mysql-driver libmysqlclientSee erlang-mysql-driver.

Haskell Haskell MySQL Bindings Native Driver See Brian O'Sullivan's pure Haskell
MySQL bindings.

 hsql-mysql libmysqlclientSee MySQL driver for Haskell .

Java/
JDBC

Connector/J Native Driver See MySQL Connector/J 5.1 Developer
Guide.

Kaya MyDB libmysqlclientSee MyDB.

Lua LuaSQL libmysqlclientSee LuaSQL.

.NET/
Mono

Connector/Net Native Driver See MySQL Connector/Net Developer
Guide.

Objective
Caml

OBjective Caml MySQL Bindings libmysqlclientSee MySQL Bindings for Objective
Caml.

Octave Database bindings for GNU
Octave

libmysqlclientSee Database bindings for GNU
Octave.

ODBC Connector/ODBC libmysqlclientSee MySQL Connector/ODBC
Developer Guide.

Perl DBI/DBD::mysql libmysqlclientSee Section 23.10, “MySQL Perl API”.

 Net::MySQL Native Driver See Net::MySQL at CPAN

PHP mysql, ext/mysql interface
(deprecated)

libmysqlclientSee Original MySQL API.

http://gnade.sourceforge.net/
http://dev.mysql.com/doc/connector-c/en/
http://dev.mysql.com/doc/connector-c/en/
http://dev.mysql.com/doc/connector-cpp/en/
http://dev.mysql.com/doc/connector-cpp/en/
http://tangentsoft.net/mysql++/doc/
http://www.alhem.net/project/mysql/
http://mysql-cocoa.sourceforge.net/
http://mysql-cocoa.sourceforge.net/
http://www.steinmole.de/d/
http://code.google.com/p/erlang-mysql-driver/
http://www.serpentine.com/blog/software/mysql/
http://www.serpentine.com/blog/software/mysql/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hsql-mysql-1.7
http://dev.mysql.com/doc/connector-j/5.1/en/
http://dev.mysql.com/doc/connector-j/5.1/en/
http://kayalang.org/library/latest/MyDB
http://keplerproject.github.io/luasql/doc/us/
http://dev.mysql.com/doc/connector-net/en/
http://dev.mysql.com/doc/connector-net/en/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://octave.sourceforge.net/database/index.html
http://octave.sourceforge.net/database/index.html
http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/connector-odbc/en/
http://search.cpan.org/dist/Net-MySQL/MySQL.pm
http://dev.mysql.com/doc/apis-php/en/apis-php-mysql.html


MySQL Connector/C

2634

EnvironmentAPI Type Notes

 mysqli, ext/mysqli interface libmysqlclientSee MySQL Improved Extension.

 PDO_MYSQL libmysqlclientSee MySQL Functions (PDO_MYSQL).

 PDO mysqlnd Native Driver  

Python Connector/Python Native Driver See MySQL Connector/Python
Developer Guide.

Python Connector/Python C Extension libmysqlclientSee MySQL Connector/Python
Developer Guide.

 MySQLdb libmysqlclientSee Section 23.11, “MySQL Python
API”.

Ruby MySQL/Ruby libmysqlclientUses libmysqlclient. See
Section 23.12.1, “The MySQL/Ruby
API”.

 Ruby/MySQL Native Driver See Section 23.12.2, “The Ruby/
MySQL API”.

Scheme Myscsh libmysqlclientSee Myscsh.

SPL sql_mysql libmysqlclientSee sql_mysql for SPL.

Tcl MySQLtcl libmysqlclientSee Section 23.13, “MySQL Tcl API”.

Table 23.2 MySQL Connector Versions and MySQL Server Versions

Connector Connector version MySQL Server version

Connector/C 6.1.0 GA 5.6, 5.5, 5.1, 5.0, 4.1

Connector/C++ 1.0.5 GA 5.6, 5.5, 5.1

Connector/J 5.1.8 5.6, 5.5, 5.1, 5.0, 4.1

Connector/Net 6.9.9 GA 5.7, 5.6, 5.5, 5.1, 5.0

Connector/Net 6.8.8 GA 5.7, 5.6, 5.5, 5.1, 5.0

Connector/ODBC 5.1 5.6, 5.5, 5.1, 5.0, 4.1.1+

Connector/ODBC 3.51 (Unicode not
supported)

5.6, 5.5, 5.1, 5.0, 4.1

Connector/Python 2.0 5.7, 5.6, 5.5

Connector/Python 1.2 5.7, 5.6, 5.5

23.1 MySQL Connector/C
The MySQL Connector/C manual is published in standalone form, not as part of the MySQL Reference
Manual. For information, see these documents:

• Main manual: MySQL Connector/C Developer Guide

• Release notes: MySQL Connector/C Release Notes

23.2 MySQL Connector/C++
The MySQL Connector/C++ manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/C++ Developer Guide

• Release notes: MySQL Connector/C++ Release Notes

23.3 MySQL Connector/J

http://dev.mysql.com/doc/apis-php/en/apis-php-mysqli.html
http://dev.mysql.com/doc/apis-php/en/apis-php-pdo-mysql.html
http://dev.mysql.com/doc/connector-python/en/
http://dev.mysql.com/doc/connector-python/en/
http://dev.mysql.com/doc/connector-python/en/
http://dev.mysql.com/doc/connector-python/en/
https://github.com/aehrisch/myscsh
http://www.clifford.at/spl/spldoc/sql_mysql.html
http://dev.mysql.com/doc/connector-c/en/
http://dev.mysql.com/doc/relnotes/connector-c/en/
http://dev.mysql.com/doc/connector-cpp/en/
http://dev.mysql.com/doc/relnotes/connector-cpp/en/


MySQL Connector/Net

2635

The MySQL Connector/J manual is published in standalone form, not as part of the MySQL Reference
Manual. For information, see these documents:

• Main manual: MySQL Connector/J 5.1 Developer Guide

• Release notes: MySQL Connector/J Release Notes

23.4 MySQL Connector/Net
The MySQL Connector/Net manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/Net Developer Guide

• Release notes: MySQL Connector/Net Release Notes

23.5 MySQL Connector/ODBC
The MySQL Connector/ODBC manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/ODBC Developer Guide

• Release notes: MySQL Connector/ODBC Release Notes

23.6 MySQL Connector/Python
The MySQL Connector/Python manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/Python Developer Guide

• Release notes: MySQL Connector/Python Release Notes

23.7 libmysqld, the Embedded MySQL Server Library
The embedded MySQL server library makes it possible to run a full-featured MySQL server inside a
client application. The main benefits are increased speed and more simple management for embedded
applications.

The embedded server library is based on the client/server version of MySQL, which is written in C/C++.
Consequently, the embedded server also is written in C/C++. There is no embedded server available in
other languages.

The API is identical for the embedded MySQL version and the client/server version. To change an old
threaded application to use the embedded library, you normally only have to add calls to the following
functions.

Table 23.3 MySQL Embedded Server Library Functions

Function When to Call

mysql_library_init() Call it before any other MySQL function is called, preferably early in the
main() function.

mysql_library_end() Call it before your program exits.

mysql_thread_init() Call it in each thread you create that accesses MySQL.

mysql_thread_end() Call it before calling pthread_exit().

Then you must link your code with libmysqld.a instead of libmysqlclient.a. To ensure binary
compatibility between your application and the server library, be sure to compile your application
against headers for the same series of MySQL that was used to compile the server library. For

http://dev.mysql.com/doc/connector-j/5.1/en/
http://dev.mysql.com/doc/relnotes/connector-j/en/
http://dev.mysql.com/doc/connector-net/en/
http://dev.mysql.com/doc/relnotes/connector-net/en/
http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/relnotes/connector-odbc/en/
http://dev.mysql.com/doc/connector-python/en/
http://dev.mysql.com/doc/relnotes/connector-python/en/


Compiling Programs with libmysqld

2636

example, if libmysqld was compiled against MySQL 5.1 headers, do not compile your application
against MySQL 5.5 headers, or vice versa.

The mysql_library_xxx() functions are also included in libmysqlclient.a to enable you to
change between the embedded and the client/server version by just linking your application with the
right library. See Section 23.8.7.40, “mysql_library_init()”.

One difference between the embedded server and the standalone server is that for the embedded
server, authentication for connections is disabled by default.

23.7.1 Compiling Programs with libmysqld

In precompiled binary MySQL distributions that include libmysqld, the embedded server library,
MySQL builds the library using the appropriate vendor compiler if there is one.

To get a libmysqld library if you build MySQL from source yourself, you should configure MySQL
with the -DWITH_EMBEDDED_SERVER=1 option. See Section 2.9.4, “MySQL Source-Configuration
Options”.

When you link your program with libmysqld, you must also include the system-specific pthread
libraries and some libraries that the MySQL server uses. You can get the full list of libraries by
executing mysql_config --libmysqld-libs.

The correct flags for compiling and linking a threaded program must be used, even if you do not directly
call any thread functions in your code.

To compile a C program to include the necessary files to embed the MySQL server library into an
executable version of a program, the compiler will need to know where to find various files and need
instructions on how to compile the program. The following example shows how a program could be
compiled from the command line, assuming that you are using gcc, use the GNU C compiler:

gcc mysql_test.c -o mysql_test \
`/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

Immediately following the gcc command is the name of the C program source file. After it, the -o
option is given to indicate that the file name that follows is the name that the compiler is to give to
the output file, the compiled program. The next line of code tells the compiler to obtain the location
of the include files and libraries and other settings for the system on which it is compiled. The
mysql_config command is contained in backticks, not single quotation marks.

On some non-gcc platforms, the embedded library depends on C++ runtime libraries and linking
against the embedded library might result in missing-symbol errors. To solve this, link using a C++
compiler or explicitly list the required libraries on the link command line.

23.7.2 Restrictions When Using the Embedded MySQL Server

The embedded server has the following limitations:

• No user-defined functions (UDFs).

• No stack trace on core dump.

• You cannot set this up as a master or a slave (no replication).

• Very large result sets may be unusable on low memory systems.

• You cannot connect to an embedded server from an outside process with sockets or TCP/IP.
However, you can connect to an intermediate application, which in turn can connect to an embedded
server on the behalf of a remote client or outside process.

• InnoDB is not reentrant in the embedded server and cannot be used for multiple connections, either
successively or simultaneously.



Options with the Embedded Server

2637

• The Event Scheduler is not available. Because of this, the event_scheduler system variable is
disabled.

• The Performance Schema is not available.

Some of these limitations can be changed by editing the mysql_embed.h include file and recompiling
MySQL.

23.7.3 Options with the Embedded Server

Any options that may be given with the mysqld server daemon, may be used with an
embedded server library. Server options may be given in an array as an argument to the
mysql_library_init(), which initializes the server. They also may be given in an option file like
my.cnf. To specify an option file for a C program, use the --defaults-file option as one of the
elements of the second argument of the mysql_library_init() function. See Section 23.8.7.40,
“mysql_library_init()”, for more information on the mysql_library_init() function.

Using option files can make it easier to switch between a client/server application and one where
MySQL is embedded. Put common options under the [server] group. These are read by both
MySQL versions. Client/server-specific options should go under the [mysqld] section. Put options
specific to the embedded MySQL server library in the [embedded] section. Options specific to
applications go under section labeled [ApplicationName_SERVER]. See Section 4.2.6, “Using
Option Files”.

23.7.4 Embedded Server Examples

These two example programs should work without any changes on a Linux or FreeBSD system.
For other operating systems, minor changes are needed, mostly with file paths. These examples
are designed to give enough details for you to understand the problem, without the clutter that is a
necessary part of a real application. The first example is very straightforward. The second example
is a little more advanced with some error checking. The first is followed by a command-line entry for
compiling the program. The second is followed by a GNUmake file that may be used for compiling
instead.

Example 1

test1_libmysqld.c

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include "mysql.h"

MYSQL *mysql;
MYSQL_RES *results;
MYSQL_ROW record;

static char *server_options[] = \
       { "mysql_test", "--defaults-file=my.cnf", NULL };
int num_elements = (sizeof(server_options) / sizeof(char *)) - 1;

static char *server_groups[] = { "libmysqld_server",
                                 "libmysqld_client", NULL };

int main(void)
{
   mysql_library_init(num_elements, server_options, server_groups);
   mysql = mysql_init(NULL);
   mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
   mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);

   mysql_real_connect(mysql, NULL,NULL,NULL, "database1", 0,NULL,0);

   mysql_query(mysql, "SELECT column1, column2 FROM table1");



Embedded Server Examples

2638

   results = mysql_store_result(mysql);

   while((record = mysql_fetch_row(results))) {
      printf("%s - %s \n", record[0], record[1]);
   }

   mysql_free_result(results);
   mysql_close(mysql);
   mysql_library_end();

   return 0;
}

Here is the command line for compiling the above program:

gcc test1_libmysqld.c -o test1_libmysqld \
 `/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

Example 2

To try the example, create an test2_libmysqld directory at the same level as the MySQL source
directory. Save the test2_libmysqld.c source and the GNUmakefile in the directory, and run
GNU make from inside the test2_libmysqld directory.

test2_libmysqld.c

/*
 * A simple example client, using the embedded MySQL server library
*/

#include <mysql.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

MYSQL *db_connect(const char *dbname);
void db_disconnect(MYSQL *db);
void db_do_query(MYSQL *db, const char *query);

const char *server_groups[] = {
  "test2_libmysqld_SERVER", "embedded", "server", NULL
};

int
main(int argc, char **argv)
{
  MYSQL *one, *two;

  /* mysql_library_init() must be called before any other mysql
   * functions.
   *
   * You can use mysql_library_init(0, NULL, NULL), and it
   * initializes the server using groups = {
   *   "server", "embedded", NULL
   *  }.
   *
   * In your $HOME/.my.cnf file, you probably want to put:

[test2_libmysqld_SERVER]
language = /path/to/source/of/mysql/sql/share/english

   * You could, of course, modify argc and argv before passing
   * them to this function.  Or you could create new ones in any
   * way you like.  But all of the arguments in argv (except for
   * argv[0], which is the program name) should be valid options
   * for the MySQL server.
   *
   * If you link this client against the normal mysqlclient
   * library, this function is just a stub that does nothing.
   */



Embedded Server Examples

2639

  mysql_library_init(argc, argv, (char **)server_groups);

  one = db_connect("test");
  two = db_connect(NULL);

  db_do_query(one, "SHOW TABLE STATUS");
  db_do_query(two, "SHOW DATABASES");

  mysql_close(two);
  mysql_close(one);

  /* This must be called after all other mysql functions */
  mysql_library_end();

  exit(EXIT_SUCCESS);
}

static void
die(MYSQL *db, char *fmt, ...)
{
  va_list ap;
  va_start(ap, fmt);
  vfprintf(stderr, fmt, ap);
  va_end(ap);
  (void)putc('\n', stderr);
  if (db)
    db_disconnect(db);
  exit(EXIT_FAILURE);
}

MYSQL *
db_connect(const char *dbname)
{
  MYSQL *db = mysql_init(NULL);
  if (!db)
    die(db, "mysql_init failed: no memory");
  /*
   * Notice that the client and server use separate group names.
   * This is critical, because the server does not accept the
   * client's options, and vice versa.
   */
  mysql_options(db, MYSQL_READ_DEFAULT_GROUP, "test2_libmysqld_CLIENT");
  if (!mysql_real_connect(db, NULL, NULL, NULL, dbname, 0, NULL, 0))
    die(db, "mysql_real_connect failed: %s", mysql_error(db));

  return db;
}

void
db_disconnect(MYSQL *db)
{
  mysql_close(db);
}

void
db_do_query(MYSQL *db, const char *query)
{
  if (mysql_query(db, query) != 0)
    goto err;

  if (mysql_field_count(db) > 0)
  {
    MYSQL_RES   *res;
    MYSQL_ROW    row, end_row;
    int num_fields;

    if (!(res = mysql_store_result(db)))
      goto err;
    num_fields = mysql_num_fields(res);
    while ((row = mysql_fetch_row(res)))
    {
      (void)fputs(">> ", stdout);



MySQL C API

2640

      for (end_row = row + num_fields; row < end_row; ++row)
        (void)printf("%s\t", row ? (char*)*row : "NULL");
      (void)fputc('\n', stdout);
    }
    (void)fputc('\n', stdout);
    mysql_free_result(res);
  }
  else
    (void)printf("Affected rows: %lld\n", mysql_affected_rows(db));

  return;

err:
  die(db, "db_do_query failed: %s [%s]", mysql_error(db), query);
}

GNUmakefile

# This assumes the MySQL software is installed in /usr/local/mysql
inc      := /usr/local/mysql/include/mysql
lib      := /usr/local/mysql/lib

# If you have not installed the MySQL software yet, try this instead
#inc      := $(HOME)/mysql-5.5/include
#lib      := $(HOME)/mysql-5.5/libmysqld

CC       := gcc
CPPFLAGS := -I$(inc) -D_THREAD_SAFE -D_REENTRANT
CFLAGS   := -g -W -Wall
LDFLAGS  := -static
# You can change -lmysqld to -lmysqlclient to use the
# client/server library
LDLIBS    = -L$(lib) -lmysqld -lm -ldl -lcrypt

ifneq (,$(shell grep FreeBSD /COPYRIGHT 2>/dev/null))
# FreeBSD
LDFLAGS += -pthread
else
# Assume Linux
LDLIBS += -lpthread
endif

# This works for simple one-file test programs
sources := $(wildcard *.c)
objects := $(patsubst %c,%o,$(sources))
targets := $(basename $(sources))

all: $(targets)

clean:
        rm -f $(targets) $(objects) *.core

23.8 MySQL C API

The C API provides low-level access to the MySQL client/server protocol and enables C programs
to access database contents. The C API code is distributed with MySQL and implemented in the
libmysqlclient library. See Section 23.8.1, “MySQL C API Implementations”.

Most other client APIs use the libmysqlclient library to communicate with the MySQL server.
(Exceptions are Connector/J and Connector/Net.) This means that, for example, you can take
advantage of many of the same environment variables that are used by other client programs because
they are referenced from the library. For a list of these variables, see Section 4.1, “Overview of MySQL
Programs”.

For instructions on building client programs using the C API, see Section 23.8.4.1, “Building C API
Client Programs”. For programming with threads, see Section 23.8.4.2, “Writing C API Threaded Client
Programs”. To create a standalone application which includes the "server" and "client" in the same



MySQL C API Implementations

2641

program (and does not communicate with an external MySQL server), see Section 23.7, “libmysqld, the
Embedded MySQL Server Library”.

Note

If, after an upgrade, you experience problems with compiled client programs,
such as Commands out of sync or unexpected core dumps, the programs
were probably compiled using old header or library files. In this case, check
the date of the mysql.h file and libmysqlclient.a library used for
compilation to verify that they are from the new MySQL distribution. If not,
recompile the programs with the new headers and libraries. Recompilation
might also be necessary for programs compiled against the shared client
library if the library major version number has changed (for example, from
libmysqlclient.so.17 to libmysqlclient.so.18). For additional
compatibility information, see Section 23.8.4.3, “Running C API Client
Programs”.

Clients have a maximum communication buffer size. The size of the buffer that is allocated initially
(16KB) is automatically increased up to the maximum size (16MB by default). Because buffer sizes
are increased only as demand warrants, simply increasing the maximum limit does not in itself cause
more resources to be used. This size check is mostly a precaution against erroneous statements and
communication packets.

The communication buffer must be large enough to contain a single SQL statement (for client-to-
server traffic) and one row of returned data (for server-to-client traffic). Each session's communication
buffer is dynamically enlarged to handle any query or row up to the maximum limit. For example, if
you have BLOB values that contain up to 16MB of data, you must have a communication buffer limit
of at least 16MB (in both server and client). The default maximum built into the client library is 1GB,
but the default maximum in the server is 1MB. You can increase this by changing the value of the
max_allowed_packet parameter at server startup. See Section 5.1.1, “Configuring the Server”.

The MySQL server shrinks each communication buffer to net_buffer_length bytes after each
query. For clients, the size of the buffer associated with a connection is not decreased until the
connection is closed, at which time client memory is reclaimed.

23.8.1 MySQL C API Implementations

The MySQL C API is a C-based API that client applications written in C can use to communicate with
MySQL Server. Client programs refer to C API header files at compile time and link to a C API library
file at link time. The library comes in two versions, depending on how the application is intended to
communicate with the server:

• libmysqlclient: The client version of the library, used for applications that communicate over a
network connection as a client of a standalone server process.

• libmysqld: The embedded server version of the library, used for applications intended to include
an embedded MySQL server within the application itself. The application communicates with its own
private server instance.

Both libraries have the same interface. In terms of C API calls, an application communicates with a
standalone server the same way it communicates with an embedded server. A given client can be
built to communicate with a standalone or embedded server, depending on whether it is linked against
libmysqlclient or libmysqld at build time.

There are two ways to obtain the C API header and library files required to build C API client programs:

• Install a MySQL Server distribution. Server distributions include both libmysqlclient and
libmysqld.

• Install a Connector/C distribution. Connector/C distributions include only libmysqlclient. They do
not include libmysqld.



Simultaneous MySQL Server and Connector/C Installations

2642

For both MySQL Server and Connector/C, you can install a binary distribution that contains the C API
files pre-built, or you can use a source distribution and build the C API files yourself.

Normally, you install either a MySQL Server distribution or a Connector/C distribution, but not both. For
information about issues involved with simultaneous MySQL Server and Connector/C installations, see
Section 23.8.2, “Simultaneous MySQL Server and Connector/C Installations”.

The names of the library files to use when linking C API client applications depend on the library type
and platform for which a distribution is built:

• On Unix (and Unix-like) sytems, the static library is libmysqlclient.a. The dynamic library is
libmysqlclient.so on most Unix systems and libmysqlclient.dylib on OS X.

For distributions that include embedded server libraries, the corresponding library names begin with
libmysqld rather than libmysqlclient.

• On Windows, the static library is mysqlclient.lib and the dynamic library is libmysql.dll.
Windows distributions also include libmysql.lib, a static import library needed for using the
dynamic library.

For distributions that include embedded server libraries, the corresponding library names are
mysqlserver.lib, libmysqld.dll, and libmysqld.lib.

Windows distributions also include a set of debug libraries. These have the same names as the
nondebug libraries, but are located in the lib/debug library. You must use the debug libraries when
compiling clients built using the debug C runtime.

On Unix, you may also see libraries that include _r in the names. Before MySQL 5.5, these were
built as thread-safe (re-entrant) libraries separately from the non-_r libraries. As of 5.5, both libraries
are the same and the _r names are symbolic links to the corresponding non-_r names. There is
no need to use the _r libraries. For example, if you use mysql_config to obtain linker flags, you
can use mysql_config --libs in all cases, even for threaded clients. There is no need to use
mysql_config --libs_r.

23.8.2 Simultaneous MySQL Server and Connector/C Installations

MySQL Server and Connector/C installation packages both provide the files needed to build and run
MySQL C API client programs. This section discusses when it is possible to install both products on the
same system. For some packaging formats, this is possible without conflict. For others, both products
cannot be installed at the same time.

This discussion assumes the use of similar package types for both products (for example, RPM
packages for both products). It does not try to describe coexistence between packaging types (for
example, use of RPM packages for one product and a tar file package for the other). Nor does it
describe coexistence of packages provided by Oracle and those provided by third-party vendors.

If you install both products, it may be necessary to adjust your development tools or runtime
environment to choose one set of header files and libraries over the other. See Section 23.8.4.1,
“Building C API Client Programs”, and Section 23.8.4.3, “Running C API Client Programs”.

tar and Zip file packages install under the directory into which you unpack them. For example, you
can unpack MySQL Server and Connector/C tar packages under /usr/local and they will unpack
into distinct directory names without conflict.

Windows MSI installers use their own installation directory, so MySQL Server and Connector/C
installers do not conflict.

OS X DMG packages install under the same parent directory but in a different subdirectory, so there is
no conflict. For example:

/usr/local/mysql-5.6.11-osx10.7-x86_64/



Example C API Client Programs

2643

/usr/local/mysql-connector-c-6.1.0-osx10.7-x86/

Solaris PKG packages install under the same parent directory but in a different subdirectory, so there is
no conflict. For example:

/opt/mysql/mysql
/opt/mysql/connector-c

The Solaris Connector/C installer does not create any symlinks from system directories such as /
usr/bin or /usr/lib into the installation directory. That must be done manually if desired after
installation.

For RPM installations, there are several types of RPM packages. MySQL Server shared and devel
RPM packages are similar to the corresponding Connector/C RPM packages. These RPM package
types cannot coexist because the MySQL Server and Connector/C RPM packages use the same
installation locations for the client library-related files. This means the following conditions hold:

• If MySQL Server shared and devel RPM packages are installed, they provide the C API headers
and libraries, and there is no need to install the Connector/C RPM packages. To install the
Connector/C packages anyway, you must first remove the corresponding MySQL Server packages.

• To install MySQL Server RPM packages if you already have Connector/C RPM packages installed,
you must first remove the Connector/C RPM packages.

MySQL Server RPM packages other than shared and devel do not conflict with Connector/C
packages and can be installed if Connector/C is installed. This includes the main server RPM that
includes the mysqld server itself.

23.8.3 Example C API Client Programs

Many of the clients in MySQL source distributions are written in C, such as mysql, mysqladmin, and
mysqlshow. If you are looking for examples that demonstrate how to use the C API, take a look at
these clients: Obtain a source distribution and look in its client directory. See Section 2.1.2, “How to
Get MySQL”.

23.8.4 Building and Running C API Client Programs

The following sections provide information on building client programs that use the C API. Topics
include compiling and linking clients, writing threaded clients, and troubleshooting runtime problems.

23.8.4.1 Building C API Client Programs

This section provides guidelines for compiling C programs that use the MySQL C API.

Compiling MySQL Clients on Unix

The examples here use gcc as the compiler. A different compiler might be appropriate on some
systems (for example, clang on OS X or FreeBSD, or Sun Studio on Solaris). Adjust the examples as
necessary.

You may need to specify an -I option when you compile client programs that use MySQL header
files, so that the compiler can find them. For example, if the header files are installed in /usr/local/
mysql/include, use this option in the compile command:

-I/usr/local/mysql/include

MySQL clients must be linked using the -lmysqlclient option in the link command. You may also
need to specify a -L option to tell the linker where to find the library. For example, if the library is
installed in /usr/local/mysql/lib, use these options in the link command:

-L/usr/local/mysql/lib -lmysqlclient



Building and Running C API Client Programs

2644

The path names may differ on your system. Adjust the -I and -L options as necessary.

To make it simpler to compile MySQL programs on Unix, use the mysql_config script. See
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”.

mysql_config displays the options needed for compiling or linking:

shell> mysql_config --cflags
shell> mysql_config --libs

You can run those commands to get the proper options and add them manually to compilation or link
commands. Alternatively, include the output from mysql_config directly within command lines using
backticks:

shell> gcc -c `mysql_config --cflags` progname.c
shell> gcc -o progname progname.o `mysql_config --libs`

On Unix, linking uses dynamic libraries by default. To link to the static client library instead, add its path
name to the link command. For example, if the library is located in /usr/local/mysql/lib, link like
this:

shell> gcc -o progname progname.o /usr/local/mysql/lib/libmysqlclient.a

Or use mysql_config to provide the library name:

shell> gcc -o progname progname.o `mysql_config --variable=pkglibdir`/libmysqlclient.a

mysql_config does not currently provide a way to list all libraries needed for static linking, so
it might be necessary to name additional libraries on the link command (for example, -lnsl -
lsocket on Solaris). To get an idea which libraries to add, use mysql_config --libs and ldd
libmysqlclient.so (or otool -L libmysqlclient.dylib on OS X).

Compiling MySQL Clients on Microsoft Windows

To specify header and library file locations, use the facilities provided by your development
environment.

To build C API clients on Windows, you must link in the C client library, as well as the Windows ws2_32
sockets library and Secur32 security library.

You link your code with either the dynamic or static C client library. On Windows, the static library
is named mysqlclient.lib and the dynamic library is named libmysql.dll. In addition, the
libmysql.lib static import library is needed for using the dynamic library. If the static C client library
is used, the client application must be compiled with the same version of Visual Studio used to compile
the C client library (which is Visual Studio 2008 for the static C client library built by Oracle).

Note

The MySQL Connector/C is a standalone, drop-in replacement of the MySQL
C client libraries that come with the MySQL server distribution. The Oracle-built
MySQL Connector/C contains currently two versions of the static client library,
one built with Visual Studio 2013 and the other one with Visual Studio 2015;
use the one that matches the Visual Studio version you use to compile your
application.

When using the Oracle-built MySQL C client library (or MySQL Connector/C), following these rules
when it comes to linking the C runtime for your client application:

• For the Community version of the MySQL C client library (or the Community version of MySQL
Connector/C):

http://dev.mysql.com/doc/connector-c/en/
http://dev.mysql.com/doc/connector-c/en/


Building and Running C API Client Programs

2645

• For version 5.5.54 and before (or MySQL Connector/C Community 6.1.9 and before):

• If linking to the static C client library, link statically to the C runtime (use the /MT compiler
option).

• If linking to the dynamic C client library, link either statically or dynamically to the C runtime (use
either /MT or /MD compiler option).

• For version 5.5.55 and later (or MySQL Connector/C Community 6.1.10 and later): Always link
dynamically to the C runtime (use the /MD compiler option), whether you are linking to the static or
dynamic C client library. Also, target hosts running the client application need to have the Visual
C++ Redistributable for Visual Studio 2008 installed if you are using the C client libraries, or the
Visual C++ Redistributable for Visual Studio 2015 installed if you are using MySQL Connector/C.
The redistributable packages are available at the Microsoft Download Center.

• For the Commercial version of the MySQL C client library (or the Commercial version of MySQL
Connector/C):

• If linking to the static C client library, link statically to the C runtime (use the /MT compiler option).

• If linking to the dynamic C client library, link either statically or dynamically to the C runtime (use
either /MT or /MD compiler option).

In general, when linking to a static MySQL C client library, the client library and the client application
must use the same compiler option when it comes to linking the C runtime—that is, if your C client
library is compiled with the /MT option, your client application should also be compiled with the /MT
option, and so on (see the MSDN page describing the C library linking options  for more details). Follow
this rule when you are building your own static MySQL C client library (or MySQL Connector/C) from
source and linking you client application to it.

Note

Debug Mode: Because of the above-mentioned rule, you cannot build your
application in debug mode (with the /MTd or /MDd compiler option) and link
it to the static C client library built by Oracle, which is not built with the debug
options; instead, you will have to build the static client library from source with
the debug options.

Troubleshooting Problems Linking to the MySQL Client Library

If the linker cannot find the MySQL client library, you might get undefined-reference errors for symbols
that start with mysql_, such as those shown here:

/tmp/ccFKsdPa.o: In function `main':
/tmp/ccFKsdPa.o(.text+0xb): undefined reference to `mysql_init'
/tmp/ccFKsdPa.o(.text+0x31): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x69): undefined reference to `mysql_error'
/tmp/ccFKsdPa.o(.text+0x9a): undefined reference to `mysql_close'

You should be able to solve this problem by adding -Ldir_path -lmysqlclient at the end of your
link command, where dir_path represents the path name of the directory where the client library is
located. To determine the correct directory, try this command:

shell> mysql_config --libs

The output from mysql_config might indicate other libraries that should be specified on the link
command as well. You can include mysql_config output directly in your compile or link command
using backticks. For example:

shell> gcc -o progname progname.o `mysql_config --libs`

http://www.microsoft.com/en-us/download/default.aspx
http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx


Building and Running C API Client Programs

2646

If an error occurs at link time that the floor symbol is undefined, link to the math library by adding -
lm to the end of the compile/link line. Similarly, if you get undefined-reference errors for other functions
that should exist on your system, such as connect(), check the manual page for the function in
question to determine which libraries you should add to the link command.

If you get undefined-reference errors such as the following for functions that do not exist on your
system, it usually means that your MySQL client library was compiled on a system that is not 100%
compatible with yours:

mf_format.o(.text+0x201): undefined reference to `__lxstat'

In this case, you should download the latest MySQL or Connector/C source distribution and compile
the MySQL client library yourself. See Section 2.9, “Installing MySQL from Source”, and MySQL
Connector/C Developer Guide.

23.8.4.2 Writing C API Threaded Client Programs

The client library is almost thread-safe. The biggest problem is that the subroutines in sql/
net_serv.cc that read from sockets are not interrupt-safe. This was done with the thought that
you might want to have your own alarm that can break a long read to a server. If you install interrupt
handlers for the SIGPIPE interrupt, socket handling should be thread-safe.

To avoid aborting the program when a connection terminates, MySQL blocks SIGPIPE on the first call
to mysql_library_init(), mysql_init(), or mysql_connect(). To use your own SIGPIPE
handler, first call mysql_library_init(), then install your handler.

If “undefined symbol” errors occur when linking against the libmysqlclient client library, in most
cases this is because you have not included the thread libraries on the link/compile command.

The client library is thread-safe per connection. You can let two threads share the same connection
with the following caveats:

• Multiple threads cannot send a query to the MySQL server at the same time on the same
connection. In particular, you must ensure that between calls to mysql_query() and
mysql_store_result() in one thread, no other thread uses the same connection. You must
have a mutex lock around your pair of mysql_query() and mysql_store_result() calls. After
mysql_store_result() returns, the lock can be released and other threads may query the same
connection.

If you use POSIX threads, you can use pthread_mutex_lock() and
pthread_mutex_unlock() to establish and release a mutex lock.

• Many threads can access different result sets that are retrieved with mysql_store_result().

• To use mysql_use_result(), you must ensure that no other thread is using the same connection
until the result set is closed. However, it really is best for threaded clients that share the same
connection to use mysql_store_result().

You need to know the following if you have a thread that did not create the connection to the MySQL
database but is calling MySQL functions:

When you call mysql_init(), MySQL creates a thread-specific variable for the thread that is used
by the debug library (among other things). If you call a MySQL function before the thread has called
mysql_init(), the thread does not have the necessary thread-specific variables in place and you are
likely to end up with a core dump sooner or later. To avoid problems, you must do the following:

1. Call mysql_library_init() before any other MySQL functions. It is not thread-safe, so call it
before threads are created, or protect the call with a mutex.

2. Arrange for mysql_thread_init() to be called early in the thread handler before calling any
MySQL function. If you call mysql_init(), it will call mysql_thread_init() for you.

http://dev.mysql.com/doc/connector-c/en/
http://dev.mysql.com/doc/connector-c/en/


C API Data Structures

2647

3. In the thread, call mysql_thread_end() before calling pthread_exit(). This frees the
memory used by MySQL thread-specific variables.

The preceding notes regarding mysql_init() also apply to mysql_connect(), which calls
mysql_init().

23.8.4.3 Running C API Client Programs

If, after an upgrade, you experience problems with compiled client programs, such as Commands
out of sync or unexpected core dumps, the programs were probably compiled using old header
or library files. In this case, check the date of the mysql.h file and libmysqlclient.a library used
for compilation to verify that they are from the new MySQL distribution. If not, recompile the programs
with the new headers and libraries. Recompilation might also be necessary for programs compiled
against the shared client library if the library major version number has changed (for example, from
libmysqlclient.so.17 to libmysqlclient.so.18).

The major client library version determines compatibility. (For example, for
libmysqlclient.so.18.1.0, the major version is 18.) For this reason, the libraries shipped
with newer versions of MySQL are drop-in replacements for older versions that have the same
major number. As long as the major library version is the same, you can upgrade the library and old
applications should continue to work with it.

Undefined-reference errors might occur at runtime when you try to execute a MySQL program. If these
errors specify symbols that start with mysql_ or indicate that the libmysqlclient library cannot be
found, it means that your system cannot find the shared libmysqlclient.so library. The solution
to this problem is to tell your system to search for shared libraries in the directory where that library is
located. Use whichever of the following methods is appropriate for your system:

• Add the path of the directory where libmysqlclient.so is located to the LD_LIBRARY_PATH or
LD_LIBRARY environment variable.

• On OS X, add the path of the directory where libmysqlclient.dylib is located to the
DYLD_LIBRARY_PATH environment variable.

• Copy the shared-library files (such as libmysqlclient.so) to some directory that is searched
by your system, such as /lib, and update the shared library information by executing ldconfig.
Be sure to copy all related files. A shared library might exist under several names, using symlinks to
provide the alternate names.

If the application is linked to the embedded server library, runtime error messages will indicate the
libmysqld rather than libmysqlclient library, but the solution to the problem is the same as just
described.

23.8.4.4 C API Server and Client Library Versions

The string and numeric forms of the MySQL server version are available at compile time as the values
of the MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and at runtime as the values of
the mysql_get_server_info() and mysql_get_server_version() functions.

The client library version is the MySQL version. For Connector/C, this is the MySQL version on which
the Connector/C distribution is based. The string and numeric forms of this version are available at
compile time as the values of the MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and
at runtime as the values of the mysql_get_client_info() and mysql_get_client_version()
functions.

23.8.5 C API Data Structures

This section describes C API data structures other than those used for prepared statements. For
information about the latter, see Section 23.8.9, “C API Prepared Statement Data Structures”.

•  MYSQL



C API Data Structures

2648

This structure represents handler for one database connection. It is used for almost all MySQL
functions. Do not try to make a copy of a MYSQL structure. There is no guarantee that such a copy
will be usable.

•  MYSQL_RES

This structure represents the result of a query that returns rows (SELECT, SHOW, DESCRIBE,
EXPLAIN). The information returned from a query is called the result set in the remainder of this
section.

•  MYSQL_ROW

This is a type-safe representation of one row of data. It is currently implemented as an array of
counted byte strings. (You cannot treat these as null-terminated strings if field values may contain
binary data, because such values may contain null bytes internally.) Rows are obtained by calling
mysql_fetch_row().

•  MYSQL_FIELD

This structure contains metadata: information about a field, such as the field's name, type, and size.
Its members are described in more detail later in this section. You may obtain the MYSQL_FIELD
structures for each field by calling mysql_fetch_field() repeatedly. Field values are not part of
this structure; they are contained in a MYSQL_ROW structure.

•  MYSQL_FIELD_OFFSET

This is a type-safe representation of an offset into a MySQL field list. (Used by
mysql_field_seek().) Offsets are field numbers within a row, beginning at zero.

•   my_ulonglong

The type used for the number of rows and for mysql_affected_rows(), mysql_num_rows(),
and mysql_insert_id(). This type provides a range of 0 to 1.84e19.

Some functions that return a row count using this type return -1 as an unsigned value to
indicate an error or exceptional condition. You can check for -1 by comparing the return value to
(my_ulonglong)-1 (or to (my_ulonglong)~0, which is equivalent).

On some systems, attempting to print a value of type my_ulonglong does not work. To print such a
value, convert it to unsigned long and use a %lu print format. Example:

printf ("Number of rows: %lu\n",
        (unsigned long) mysql_num_rows(result));

•   my_bool

A boolean type, for values that are true (nonzero) or false (zero).

The MYSQL_FIELD structure contains the members described in the following list. The definitions apply
primarily for columns of result sets such as those produced by SELECT statements. As of MySQL 5.5.3,
MYSQL_FIELD structures are also used to provide metadata for OUT and INOUT parameters returned
from stored procedures executed using prepared CALL statements. For such parameters, some of the
structure members have a meaning different from the meaning for column values.

• char * name

The name of the field, as a null-terminated string. If the field was given an alias with an AS clause,
the value of name is the alias. For a procedure parameter, the parameter name.

• char * org_name



C API Data Structures

2649

The name of the field, as a null-terminated string. Aliases are ignored. For expressions, the value is
an empty string. For a procedure parameter, the parameter name.

• char * table

The name of the table containing this field, if it is not a calculated field. For calculated fields, the
table value is an empty string. If the column is selected from a view, table names the view. If the
table or view was given an alias with an AS clause, the value of table is the alias. For a UNION, the
value is the empty string. For a procedure parameter, the procedure name.

• char * org_table

The name of the table, as a null-terminated string. Aliases are ignored. If the column is selected from
a view, org_table names the view. For a UNION, the value is the empty string. For a procedure
parameter, the procedure name.

• char * db

The name of the database that the field comes from, as a null-terminated string. If the field is a
calculated field, db is an empty string. For a UNION, the value is the empty string. For a procedure
parameter, the name of the database containing the procedure.

• char * catalog

The catalog name. This value is always "def".

• char * def

The default value of this field, as a null-terminated string. This is set only if you use
mysql_list_fields().

• unsigned long length

The width of the field. This corresponds to the display length, in bytes.

The server determines the length value before it generates the result set, so this is the minimum
length required for a data type capable of holding the largest possible value from the result column,
without knowing in advance the actual values that will be produced by the query for the result set.

• unsigned long max_length

The maximum width of the field for the result set (the length in bytes of the longest field value for the
rows actually in the result set). If you use mysql_store_result() or mysql_list_fields(),
this contains the maximum length for the field. If you use mysql_use_result(), the value of this
variable is zero.

The value of max_length is the length of the string representation of the values in the result set. For
example, if you retrieve a FLOAT column and the “widest” value is -12.345, max_length is 7 (the
length of '-12.345').

If you are using prepared statements, max_length is not set by default because for the binary
protocol the lengths of the values depend on the types of the values in the result set. (See
Section 23.8.9, “C API Prepared Statement Data Structures”.) If you want the max_length values
anyway, enable the STMT_ATTR_UPDATE_MAX_LENGTH option with mysql_stmt_attr_set()
and the lengths will be set when you call mysql_stmt_store_result(). (See Section 23.8.11.3,
“mysql_stmt_attr_set()”, and Section 23.8.11.28, “mysql_stmt_store_result()”.)

• unsigned int name_length

The length of name.

• unsigned int org_name_length



C API Data Structures

2650

The length of org_name.

• unsigned int table_length

The length of table.

• unsigned int org_table_length

The length of org_table.

• unsigned int db_length

The length of db.

• unsigned int catalog_length

The length of catalog.

• unsigned int def_length

The length of def.

• unsigned int flags

Bit-flags that describe the field. The flags value may have zero or more of the bits set that are
shown in the following table.

Flag Value Flag Description

NOT_NULL_FLAG Field cannot be NULL

PRI_KEY_FLAG Field is part of a primary key

UNIQUE_KEY_FLAG Field is part of a unique key

MULTIPLE_KEY_FLAG Field is part of a nonunique key

UNSIGNED_FLAG Field has the UNSIGNED attribute

ZEROFILL_FLAG Field has the ZEROFILL attribute

BINARY_FLAG Field has the BINARY attribute

AUTO_INCREMENT_FLAG Field has the AUTO_INCREMENT attribute

ENUM_FLAG Field is an ENUM

SET_FLAG Field is a SET

BLOB_FLAG Field is a BLOB or TEXT (deprecated)

TIMESTAMP_FLAG Field is a TIMESTAMP (deprecated)

NUM_FLAG Field is numeric; see additional notes following table

NO_DEFAULT_VALUE_FLAG Field has no default value; see additional notes following
table

Some of these flags indicate data type information and are superseded by or used in conjunction
with the MYSQL_TYPE_xxx value in the field->type member described later:

• To check for BLOB or TIMESTAMP values, check whether type is MYSQL_TYPE_BLOB or
MYSQL_TYPE_TIMESTAMP. (The BLOB_FLAG and TIMESTAMP_FLAG flags are unneeded.)

• ENUM and SET values are returned as strings. For these, check that the type value is
MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.

NUM_FLAG indicates that a column is numeric. This includes columns with a type of
MYSQL_TYPE_DECIMAL, MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_TINY, MYSQL_TYPE_SHORT,



C API Data Structures

2651

MYSQL_TYPE_LONG, MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, MYSQL_TYPE_NULL,
MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, and MYSQL_TYPE_YEAR.

NO_DEFAULT_VALUE_FLAG indicates that a column has no DEFAULT clause in its definition.
This does not apply to NULL columns (because such columns have a default of NULL), or to
AUTO_INCREMENT columns (which have an implied default value).

The following example illustrates a typical use of the flags value:

if (field->flags & NOT_NULL_FLAG)
    printf("Field cannot be null\n");

You may use the convenience macros shown in the following table to determine the boolean status
of the flags value.

Flag Status Description

IS_NOT_NULL(flags) True if this field is defined as NOT NULL

IS_PRI_KEY(flags) True if this field is a primary key

IS_BLOB(flags) True if this field is a BLOB or TEXT (deprecated; test
field->type instead)

• unsigned int decimals

The number of decimals for numeric fields.

• unsigned int charsetnr

An ID number that indicates the character set/collation pair for the field.

Normally, character values in result sets are converted to the character set indicated by the
character_set_results system variable. In this case, charsetnr corresponds to the
character set indicated by that variable. Character set conversion can be suppressed by setting
character_set_results to NULL. In this case, charsetnr corresponds to the character set of
the original table column or expression. See also Section 10.1.4, “Connection Character Sets and
Collations”.

To distinguish between binary and nonbinary data for string data types, check whether the
charsetnr value is 63. If so, the character set is binary, which indicates binary rather than
nonbinary data. This enables you to distinguish BINARY from CHAR, VARBINARY from VARCHAR, and
the BLOB types from the TEXT types.

charsetnr values are the same as those displayed in the Id column of the SHOW COLLATION
statement or the ID column of the INFORMATION_SCHEMA COLLATIONS table. You can use those
information sources to see which character set and collation specific charsetnr values indicate:

mysql> SHOW COLLATION WHERE Id = 63;
+-----------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-----------+---------+----+---------+----------+---------+
| binary    | binary  | 63 | Yes     | Yes      |       1 |
+-----------+---------+----+---------+----------+---------+

mysql> SELECT COLLATION_NAME, CHARACTER_SET_NAME
    -> FROM INFORMATION_SCHEMA.COLLATIONS WHERE ID = 33;
+-----------------+--------------------+
| COLLATION_NAME  | CHARACTER_SET_NAME |
+-----------------+--------------------+
| utf8_general_ci | utf8               |
+-----------------+--------------------+

• enum enum_field_types type



C API Function Overview

2652

The type of the field. The type value may be one of the MYSQL_TYPE_ symbols shown in the
following table.

Type Value Type Description

MYSQL_TYPE_TINY TINYINT field

MYSQL_TYPE_SHORT SMALLINT field

MYSQL_TYPE_LONG INTEGER field

MYSQL_TYPE_INT24 MEDIUMINT field

MYSQL_TYPE_LONGLONG BIGINT field

MYSQL_TYPE_DECIMAL DECIMAL or NUMERIC field

MYSQL_TYPE_NEWDECIMAL Precision math DECIMAL or NUMERIC

MYSQL_TYPE_FLOAT FLOAT field

MYSQL_TYPE_DOUBLE DOUBLE or REAL field

MYSQL_TYPE_BIT BIT field

MYSQL_TYPE_TIMESTAMP TIMESTAMP field

MYSQL_TYPE_DATE DATE field

MYSQL_TYPE_TIME TIME field

MYSQL_TYPE_DATETIME DATETIME field

MYSQL_TYPE_YEAR YEAR field

MYSQL_TYPE_STRING CHAR or BINARY field

MYSQL_TYPE_VAR_STRING VARCHAR or VARBINARY field

MYSQL_TYPE_BLOB BLOB or TEXT field (use max_length to determine the
maximum length)

MYSQL_TYPE_SET SET field

MYSQL_TYPE_ENUM ENUM field

MYSQL_TYPE_GEOMETRY Spatial field

MYSQL_TYPE_NULL NULL-type field

You can use the IS_NUM() macro to test whether a field has a numeric type. Pass the type value
to IS_NUM() and it evaluates to TRUE if the field is numeric:

if (IS_NUM(field->type))
    printf("Field is numeric\n");

ENUM and SET values are returned as strings. For these, check that the type value is
MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.

23.8.6 C API Function Overview

The following table summarizes the functions available in the C API. For greater detail, see the
descriptions in Section 23.8.7, “C API Function Descriptions”.

Table 23.4 C API Function Names and Descriptions

Function Description

my_init() Initialize global variables, and thread handler in thread-safe
programs

mysql_affected_rows() Returns the number of rows changed/deleted/inserted by the last
UPDATE, DELETE, or INSERT query



C API Function Overview

2653

Function Description

mysql_autocommit() Toggles autocommit mode on/off

mysql_change_user() Changes user and database on an open connection

mysql_character_set_name()Return default character set name for current connection

mysql_client_find_plugin()Return pointer to plugin

mysql_client_register_plugin()Register a plugin

mysql_close() Closes a server connection

mysql_commit() Commits the transaction

mysql_connect() Connects to a MySQL server (this function is deprecated; use
mysql_real_connect() instead)

mysql_create_db() Creates a database (this function is deprecated; use the SQL
statement CREATE DATABASE instead)

mysql_data_seek() Seeks to an arbitrary row number in a query result set

mysql_debug() Does a DBUG_PUSH with the given string

mysql_drop_db() Drops a database (this function is deprecated; use the SQL
statement DROP DATABASE instead)

mysql_dump_debug_info() Makes the server write debug information to the log

mysql_eof() Determines whether the last row of a result set has been read (this
function is deprecated; mysql_errno() or mysql_error() may
be used instead)

mysql_errno() Returns the error number for the most recently invoked MySQL
function

mysql_error() Returns the error message for the most recently invoked MySQL
function

mysql_escape_string() Escapes special characters in a string for use in an SQL statement

mysql_fetch_field() Returns the type of the next table field

mysql_fetch_field_direct()Returns the type of a table field, given a field number

mysql_fetch_fields() Returns an array of all field structures

mysql_fetch_lengths() Returns the lengths of all columns in the current row

mysql_fetch_row() Fetches the next row from the result set

mysql_field_count() Returns the number of result columns for the most recent statement

mysql_field_seek() Puts the column cursor on a specified column

mysql_field_tell() Returns the position of the field cursor used for the last
mysql_fetch_field()

mysql_free_result() Frees memory used by a result set

mysql_get_character_set_info()Return information about default character set

mysql_get_client_info() Returns client version information as a string

mysql_get_client_version()Returns client version information as an integer

mysql_get_host_info() Returns a string describing the connection

mysql_get_proto_info() Returns the protocol version used by the connection

mysql_get_server_info() Returns the server version number

mysql_get_server_version()Returns version number of server as an integer

mysql_get_ssl_cipher() Return current SSL cipher

mysql_hex_string() Encode string in hexadecimal format



C API Function Overview

2654

Function Description

mysql_info() Returns information about the most recently executed query

mysql_init() Gets or initializes a MYSQL structure

mysql_insert_id() Returns the ID generated for an AUTO_INCREMENT column by the
previous query

mysql_kill() Kills a given thread

mysql_library_end() Finalize the MySQL C API library

mysql_library_init() Initialize the MySQL C API library

mysql_list_dbs() Returns database names matching a simple regular expression

mysql_list_fields() Returns field names matching a simple regular expression

mysql_list_processes() Returns a list of the current server threads

mysql_list_tables() Returns table names matching a simple regular expression

mysql_load_plugin() Load a plugin

mysql_load_plugin_v() Load a plugin

mysql_more_results() Checks whether any more results exist

mysql_next_result() Returns/initiates the next result in multiple-result executions

mysql_num_fields() Returns the number of columns in a result set

mysql_num_rows() Returns the number of rows in a result set

mysql_options() Sets connect options for mysql_real_connect()

mysql_ping() Checks whether the connection to the server is working,
reconnecting as necessary

mysql_plugin_options() Set a plugin option

mysql_query() Executes an SQL query specified as a null-terminated string

mysql_real_connect() Connects to a MySQL server

mysql_real_escape_string()Escapes special characters in a string for use in an SQL statement,
taking into account the current character set of the connection

mysql_real_query() Executes an SQL query specified as a counted string

mysql_refresh() Flush or reset tables and caches

mysql_reload() Tells the server to reload the grant tables

mysql_rollback() Rolls back the transaction

mysql_row_seek() Seeks to a row offset in a result set, using value returned from
mysql_row_tell()

mysql_row_tell() Returns the row cursor position

mysql_select_db() Selects a database

mysql_server_end() Finalize the MySQL C API library

mysql_server_init() Initialize the MySQL C API library

mysql_set_character_set()Set default character set for current connection

mysql_set_local_infile_default()Set the LOAD DATA LOCAL INFILE handler callbacks to their
default values

mysql_set_local_infile_handler()Install application-specific LOAD DATA LOCAL INFILE handler
callbacks

mysql_set_server_option()Sets an option for the connection (like multi-statements)

mysql_sqlstate() Returns the SQLSTATE error code for the last error



C API Function Overview

2655

Function Description

mysql_shutdown() Shuts down the database server

mysql_ssl_set() Prepare to establish SSL connection to server

mysql_stat() Returns the server status as a string

mysql_store_result() Retrieves a complete result set to the client

mysql_thread_end() Finalize thread handler

mysql_thread_id() Returns the current thread ID

mysql_thread_init() Initialize thread handler

mysql_thread_safe() Returns 1 if the clients are compiled as thread-safe

mysql_use_result() Initiates a row-by-row result set retrieval

mysql_warning_count() Returns the warning count for the previous SQL statement

Application programs should use this general outline for interacting with MySQL:

1. Initialize the MySQL library by calling mysql_library_init(). This function exists in both the
libmysqlclient C client library and the libmysqld embedded server library, so it is used
whether you build a regular client program by linking with the -libmysqlclient flag, or an
embedded server application by linking with the -libmysqld flag.

2. Initialize a connection handler by calling mysql_init() and connect to the server by calling
mysql_real_connect().

3. Issue SQL statements and process their results. (The following discussion provides more
information about how to do this.)

4. Close the connection to the MySQL server by calling mysql_close().

5. End use of the MySQL library by calling mysql_library_end().

The purpose of calling mysql_library_init() and mysql_library_end() is to provide proper
initialization and finalization of the MySQL library. For applications that are linked with the client library,
they provide improved memory management. If you do not call mysql_library_end(), a block of
memory remains allocated. (This does not increase the amount of memory used by the application, but
some memory leak detectors will complain about it.) For applications that are linked with the embedded
server, these calls start and stop the server.

In a nonmulti-threaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is
not thread-safe in a multi-threaded environment, and thus neither is mysql_init(), which calls
mysql_library_init(). You must either call mysql_library_init() prior to spawning any
threads, or else use a mutex to protect the call, whether you invoke mysql_library_init() or
indirectly through mysql_init(). This should be done prior to any other client library call.

To connect to the server, call mysql_init() to initialize a connection handler, then call
mysql_real_connect() with that handler (along with other information such as the host name, user
name, and password). Upon connection, mysql_real_connect() sets the reconnect flag (part of
the MYSQL structure) to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions. A
value of 1 for this flag indicates that if a statement cannot be performed because of a lost connection,
to try reconnecting to the server before giving up. You can use the MYSQL_OPT_RECONNECT option
to mysql_options() to control reconnection behavior. When you are done with the connection, call
mysql_close() to terminate it.

While a connection is active, the client may send SQL statements to the server using mysql_query()
or mysql_real_query(). The difference between the two is that mysql_query() expects the query
to be specified as a null-terminated string whereas mysql_real_query() expects a counted string. If
the string contains binary data (which may include null bytes), you must use mysql_real_query().



C API Function Overview

2656

For each non-SELECT query (for example, INSERT, UPDATE, DELETE), you can find out how many
rows were changed (affected) by calling mysql_affected_rows().

For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are
SELECT-like in that they return rows. These include SHOW, DESCRIBE, and EXPLAIN. Treat these
statements the same way as SELECT statements.)

There are two ways for a client to process result sets. One way is to retrieve the entire result set all at
once by calling mysql_store_result(). This function acquires from the server all the rows returned
by the query and stores them in the client. The second way is for the client to initiate a row-by-row
result set retrieval by calling mysql_use_result(). This function initializes the retrieval, but does not
actually get any rows from the server.

In both cases, you access rows by calling mysql_fetch_row(). With mysql_store_result(),
mysql_fetch_row() accesses rows that have previously been fetched from the server. With
mysql_use_result(), mysql_fetch_row() actually retrieves the row from the server. Information
about the size of the data in each row is available by calling mysql_fetch_lengths().

After you are done with a result set, call mysql_free_result() to free the memory used for it.

The two retrieval mechanisms are complementary. Choose the approach that is most appropriate for
each client application. In practice, clients tend to use mysql_store_result() more commonly.

An advantage of mysql_store_result() is that because the rows have all been fetched to the
client, you not only can access rows sequentially, you can move back and forth in the result set using
mysql_data_seek() or mysql_row_seek() to change the current row position within the result set.
You can also find out how many rows there are by calling mysql_num_rows(). On the other hand,
the memory requirements for mysql_store_result() may be very high for large result sets and you
are more likely to encounter out-of-memory conditions.

An advantage of mysql_use_result() is that the client requires less memory for the result
set because it maintains only one row at a time (and because there is less allocation overhead,
mysql_use_result() can be faster). Disadvantages are that you must process each row quickly to
avoid tying up the server, you do not have random access to rows within the result set (you can only
access rows sequentially), and the number of rows in the result set is unknown until you have retrieved
them all. Furthermore, you must retrieve all the rows even if you determine in mid-retrieval that you've
found the information you were looking for.

The API makes it possible for clients to respond appropriately to statements (retrieving rows
only as necessary) without knowing whether the statement is a SELECT. You can do this by
calling mysql_store_result() after each mysql_query() (or mysql_real_query()).
If the result set call succeeds, the statement was a SELECT and you can read the rows. If the
result set call fails, call mysql_field_count() to determine whether a result was actually
to be expected. If mysql_field_count() returns zero, the statement returned no data
(indicating that it was an INSERT, UPDATE, DELETE, and so forth), and was not expected to
return rows. If mysql_field_count() is nonzero, the statement should have returned rows,
but did not. This indicates that the statement was a SELECT that failed. See the description for
mysql_field_count() for an example of how this can be done.

Both mysql_store_result() and mysql_use_result() enable you to obtain information about
the fields that make up the result set (the number of fields, their names and types, and so forth). You
can access field information sequentially within the row by calling mysql_fetch_field() repeatedly,
or by field number within the row by calling mysql_fetch_field_direct(). The current field
cursor position may be changed by calling mysql_field_seek(). Setting the field cursor affects
subsequent calls to mysql_fetch_field(). You can also get information for fields all at once by
calling mysql_fetch_fields().

For detecting and reporting errors, MySQL provides access to error information by means of the
mysql_errno() and mysql_error() functions. These return the error code or error message for
the most recently invoked function that can succeed or fail, enabling you to determine when an error
occurred and what it was.



C API Function Descriptions

2657

23.8.7 C API Function Descriptions

In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C
programming language, not a MySQL NULL value.

Functions that return a value generally return a pointer or an integer. Unless specified otherwise,
functions returning a pointer return a non-NULL value to indicate success or a NULL value to indicate
an error, and functions returning an integer return zero to indicate success or nonzero to indicate an
error. Note that “nonzero” means just that. Unless the function description says otherwise, do not test
against a value other than zero:

if (result)                   /* correct */
    ... error ...

if (result < 0)               /* incorrect */
    ... error ...

if (result == -1)             /* incorrect */
    ... error ...

When a function returns an error, the Errors subsection of the function description lists the possible
types of errors. You can find out which of these occurred by calling mysql_errno(). A string
representation of the error may be obtained by calling mysql_error().

23.8.7.1 mysql_affected_rows()

my_ulonglong mysql_affected_rows(MYSQL *mysql)

Description

mysql_affected_rows() may be called immediately after executing a statement with
mysql_query() or mysql_real_query(). It returns the number of rows changed, deleted, or
inserted by the last statement if it was an UPDATE, DELETE, or INSERT. For SELECT statements,
mysql_affected_rows() works like mysql_num_rows().

For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If
you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld,
the affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value per row is 1 if
the row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its
current values. If you specify the CLIENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if an
existing row is set to its current values.

Following a CALL statement for a stored procedure, mysql_affected_rows() returns the value
that it would return for the last statement executed within the procedure, or 0 if that statement would
return -1. Within the procedure, you can use ROW_COUNT() at the SQL level to obtain the affected-
rows value for individual statements.

As of MySQL 5.5.5, mysql_affected_rows() returns a meaningful value for a wider range
of statements. For details, see the description for ROW_COUNT() in Section 12.14, “Information
Functions”.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records were updated for an UPDATE statement, no rows matched the WHERE clause in the query or



C API Function Descriptions

2658

that no query has yet been executed. -1 indicates that the query returned an error or that, for a SELECT
query, mysql_affected_rows() was called prior to calling mysql_store_result().

Because mysql_affected_rows() returns an unsigned value, you can check for -1 by comparing
the return value to (my_ulonglong)-1 (or to (my_ulonglong)~0, which is equivalent).

Errors

None.

Example

char *stmt = "UPDATE products SET cost=cost*1.25
              WHERE group=10";
mysql_query(&mysql,stmt);
printf("%ld products updated",
       (long) mysql_affected_rows(&mysql));

23.8.7.2 mysql_autocommit()

my_bool mysql_autocommit(MYSQL *mysql, my_bool mode)

Description

Sets autocommit mode on if mode is 1, off if mode is 0.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

23.8.7.3 mysql_change_user()

my_bool mysql_change_user(MYSQL *mysql, const char *user, const char
*password, const char *db)

Description

Changes the user and causes the database specified by db to become the default (current) database
on the connection specified by mysql. In subsequent queries, this database is the default for table
references that include no explicit database specifier.

mysql_change_user() fails if the connected user cannot be authenticated or does not have
permission to use the database. In this case, the user and database are not changed.

Pass a db parameter of NULL if you do not want to have a default database.

This function resets the session state as if one had done a new connect and reauthenticated. (See
Section 23.8.16, “Controlling Automatic Reconnection Behavior”.) It always performs a ROLLBACK of
any active transactions, closes and drops all temporary tables, and unlocks all locked tables. Session
system variables are reset to the values of the corresponding global system variables. Prepared
statements are released and HANDLER variables are closed. Locks acquired with GET_LOCK() are
released. These effects occur even if the user did not change.

Return Values

Zero for success. Nonzero if an error occurred.



C API Function Descriptions

2659

Errors

The same that you can get from mysql_real_connect(), plus:

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• ER_UNKNOWN_COM_ERROR

The MySQL server does not implement this command (probably an old server).

• ER_ACCESS_DENIED_ERROR

The user or password was wrong.

• ER_BAD_DB_ERROR

The database did not exist.

• ER_DBACCESS_DENIED_ERROR

The user did not have access rights to the database.

• ER_WRONG_DB_NAME

The database name was too long.

Example

if (mysql_change_user(&mysql, "user", "password", "new_database"))
{
   fprintf(stderr, "Failed to change user.  Error: %s\n",
           mysql_error(&mysql));
}

23.8.7.4 mysql_character_set_name()

const char *mysql_character_set_name(MYSQL *mysql)

Description

Returns the default character set name for the current connection.

Return Values

The default character set name

Errors

None.



C API Function Descriptions

2660

23.8.7.5 mysql_close()

void mysql_close(MYSQL *mysql)

Description

Closes a previously opened connection. mysql_close() also deallocates the connection
handler pointed to by mysql if the handler was allocated automatically by mysql_init() or
mysql_connect().

Return Values

None.

Errors

None.

23.8.7.6 mysql_commit()

my_bool mysql_commit(MYSQL *mysql)

Description

Commits the current transaction.

The action of this function is subject to the value of the completion_type system variable. In
particular, if the value of completion_type is RELEASE (or 2), the server performs a release after
terminating a transaction and closes the client connection. Call mysql_close() from the client
program to close the connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

23.8.7.7 mysql_connect()

MYSQL *mysql_connect(MYSQL *mysql, const char *host, const char *user, const
char *passwd)

Description

This function is deprecated. Use mysql_real_connect() instead.

mysql_connect() attempts to establish a connection to a MySQL database engine running on
host. mysql_connect() must complete successfully before you can execute any of the other API
functions, with the exception of mysql_get_client_info().

The meanings of the parameters are the same as for the corresponding parameters for
mysql_real_connect() with the difference that the connection parameter may be NULL. In this
case, the C API allocates memory for the connection structure automatically and frees it when you call
mysql_close(). The disadvantage of this approach is that you cannot retrieve an error message if
the connection fails. (To get error information from mysql_errno() or mysql_error(), you must
provide a valid MYSQL pointer.)

Return Values

Same as for mysql_real_connect().



C API Function Descriptions

2661

Errors

Same as for mysql_real_connect().

23.8.7.8 mysql_create_db()

int mysql_create_db(MYSQL *mysql, const char *db)

Description

Creates the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL CREATE
DATABASE statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_create_db(&mysql, "my_database"))
{
   fprintf(stderr, "Failed to create new database.  Error: %s\n",
           mysql_error(&mysql));
}

23.8.7.9 mysql_data_seek()

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset)

Description

Seeks to an arbitrary row in a query result set. The offset value is a row number. Specify a value in
the range from 0 to mysql_num_rows(result)-1.

This function requires that the result set structure contains the entire result of the query, so
mysql_data_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

Return Values

None.



C API Function Descriptions

2662

Errors

None.

23.8.7.10 mysql_debug()

void mysql_debug(const char *debug)

Description

Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug library. To use
this function, you must compile the client library to support debugging. See Section 24.5.3, “The DBUG
Package”.

Return Values

None.

Errors

None.

Example

The call shown here causes the client library to generate a trace file in /tmp/client.trace on the
client machine:

mysql_debug("d:t:O,/tmp/client.trace");

23.8.7.11 mysql_drop_db()

int mysql_drop_db(MYSQL *mysql, const char *db)

Description

Drops the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL DROP DATABASE
statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.



C API Function Descriptions

2663

Example

if(mysql_drop_db(&mysql, "my_database"))
  fprintf(stderr, "Failed to drop the database: Error: %s\n",
          mysql_error(&mysql));

23.8.7.12 mysql_dump_debug_info()

int mysql_dump_debug_info(MYSQL *mysql)

Description

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.13 mysql_eof()

my_bool mysql_eof(MYSQL_RES *result)

Description

This function is deprecated. mysql_errno() or mysql_error() may be used instead.

mysql_eof() determines whether the last row of a result set has been read.

If you acquire a result set from a successful call to mysql_store_result(), the client receives the
entire set in one operation. In this case, a NULL return from mysql_fetch_row() always means the
end of the result set has been reached and it is unnecessary to call mysql_eof(). When used with
mysql_store_result(), mysql_eof() always returns true.

On the other hand, if you use mysql_use_result() to initiate a result set retrieval, the rows of
the set are obtained from the server one by one as you call mysql_fetch_row() repeatedly.
Because an error may occur on the connection during this process, a NULL return value from
mysql_fetch_row() does not necessarily mean the end of the result set was reached normally. In
this case, you can use mysql_eof() to determine what happened. mysql_eof() returns a nonzero
value if the end of the result set was reached and zero if an error occurred.

Historically, mysql_eof() predates the standard MySQL error functions mysql_errno()
and mysql_error(). Because those error functions provide the same information, their use is
preferred over mysql_eof(), which is deprecated. (In fact, they provide more information, because



C API Function Descriptions

2664

mysql_eof() returns only a boolean value whereas the error functions indicate a reason for the error
when one occurs.)

Return Values

Zero for success. Nonzero if the end of the result set has been reached.

Errors

None.

Example

The following example shows how you might use mysql_eof():

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
    // do something with data
}
if(!mysql_eof(result))  // mysql_fetch_row() failed due to an error
{
    fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

However, you can achieve the same effect with the standard MySQL error functions:

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
    // do something with data
}
if(mysql_errno(&mysql))  // mysql_fetch_row() failed due to an error
{
    fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

23.8.7.14 mysql_errno()

unsigned int mysql_errno(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_errno() returns the error code for the most recently
invoked API function that can succeed or fail. A return value of zero means that no error occurred.
Client error message numbers are listed in the MySQL errmsg.h header file. Server error message
numbers are listed in mysqld_error.h. Errors also are listed at Appendix B, Errors, Error Codes, and
Common Problems.

Note

Some functions such as mysql_fetch_row() do not set mysql_errno() if
they succeed. A rule of thumb is that all functions that have to ask the server for
information reset mysql_errno() if they succeed.

MySQL-specific error numbers returned by mysql_errno() differ from SQLSTATE values
returned by mysql_sqlstate(). For example, the mysql client program displays errors using
the following format, where 1146 is the mysql_errno() value and '42S02' is the corresponding
mysql_sqlstate() value:



C API Function Descriptions

2665

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Return Values

An error code value for the last mysql_xxx() call, if it failed. zero means no error occurred.

Errors

None.

23.8.7.15 mysql_error()

const char *mysql_error(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_error() returns a null-terminated string containing
the error message for the most recently invoked API function that failed. If a function did not fail, the
return value of mysql_error() may be the previous error or an empty string to indicate no error.

A rule of thumb is that all functions that have to ask the server for information reset mysql_error() if
they succeed.

For functions that reset mysql_error(), either of these two tests can be used to check for an error:

if(*mysql_error(&mysql))
{
  // an error occurred
}

if(mysql_error(&mysql)[0])
{
  // an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL client library.
You can choose error messages in several different languages. See Section 10.2, “Setting the Error
Message Language”.

Return Values

A null-terminated character string that describes the error. An empty string if no error occurred.

Errors

None.

23.8.7.16 mysql_escape_string()

Note

This function should not be used. Use mysql_real_escape_string()
instead.

mysql_escape_string() is identical to mysql_real_escape_string() except that
mysql_real_escape_string() takes a connection handler as its first argument and escapes the
string according to the current character set. mysql_escape_string() does not take a connection
argument and does not respect the current character set.

23.8.7.17 mysql_fetch_field()

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)



C API Function Descriptions

2666

Description

Returns the definition of one column of a result set as a MYSQL_FIELD structure. Call this function
repeatedly to retrieve information about all columns in the result set. mysql_fetch_field() returns
NULL when no more fields are left.

mysql_fetch_field() is reset to return information about the first field each time you execute
a new SELECT query. The field returned by mysql_fetch_field() is also affected by calls to
mysql_field_seek().

If you've called mysql_query() to perform a SELECT on a table but have not called
mysql_store_result(), MySQL returns the default blob length (8KB) if you call
mysql_fetch_field() to ask for the length of a BLOB field. (The 8KB size is chosen because
MySQL does not know the maximum length for the BLOB. This should be made configurable
sometime.) Once you've retrieved the result set, field->max_length contains the length of the
largest value for this column in the specific query.

Return Values

The MYSQL_FIELD structure for the current column. NULL if no columns are left.

Errors

None.

Example

MYSQL_FIELD *field;

while((field = mysql_fetch_field(result)))
{
    printf("field name %s\n", field->name);
}

23.8.7.18 mysql_fetch_field_direct()

MYSQL_FIELD *mysql_fetch_field_direct(MYSQL_RES *result, unsigned int
fieldnr)

Description

Given a field number fieldnr for a column within a result set, returns that column's field definition as
a MYSQL_FIELD structure. Use this function to retrieve the definition for an arbitrary column. Specify a
value for fieldnr in the range from 0 to mysql_num_fields(result)-1.

Return Values

The MYSQL_FIELD structure for the specified column.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *field;

num_fields = mysql_num_fields(result);
for(i = 0; i < num_fields; i++)
{
    field = mysql_fetch_field_direct(result, i);



C API Function Descriptions

2667

    printf("Field %u is %s\n", i, field->name);
}

23.8.7.19 mysql_fetch_fields()

MYSQL_FIELD *mysql_fetch_fields(MYSQL_RES *result)

Description

Returns an array of all MYSQL_FIELD structures for a result set. Each structure provides the field
definition for one column of the result set.

Return Values

An array of MYSQL_FIELD structures for all columns of a result set.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *fields;

num_fields = mysql_num_fields(result);
fields = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
{
   printf("Field %u is %s\n", i, fields[i].name);
}

23.8.7.20 mysql_fetch_lengths()

unsigned long *mysql_fetch_lengths(MYSQL_RES *result)

Description

Returns the lengths of the columns of the current row within a result set. If you plan to copy field
values, this length information is also useful for optimization, because you can avoid calling strlen().
In addition, if the result set contains binary data, you must use this function to determine the size of the
data, because strlen() returns incorrect results for any field containing null characters.

The length for empty columns and for columns containing NULL values is zero. To see how to
distinguish these two cases, see the description for mysql_fetch_row().

Return Values

An array of unsigned long integers representing the size of each column (not including any terminating
null bytes). NULL if an error occurred.

Errors

mysql_fetch_lengths() is valid only for the current row of the result set. It returns NULL if you call
it before calling mysql_fetch_row() or after retrieving all rows in the result.

Example

MYSQL_ROW row;
unsigned long *lengths;
unsigned int num_fields;
unsigned int i;



C API Function Descriptions

2668

row = mysql_fetch_row(result);
if (row)
{
    num_fields = mysql_num_fields(result);
    lengths = mysql_fetch_lengths(result);
    for(i = 0; i < num_fields; i++)
    {
         printf("Column %u is %lu bytes in length.\n",
                i, lengths[i]);
    }
}

23.8.7.21 mysql_fetch_row()

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

Description

Retrieves the next row of a result set. When used after mysql_store_result(),
mysql_fetch_row() returns NULL when there are no more rows to retrieve. When used after
mysql_use_result(), mysql_fetch_row() returns NULL when there are no more rows to retrieve
or if an error occurred.

The number of values in the row is given by mysql_num_fields(result). If row holds the
return value from a call to mysql_fetch_row(), pointers to the values are accessed as row[0] to
row[mysql_num_fields(result)-1]. NULL values in the row are indicated by NULL pointers.

The lengths of the field values in the row may be obtained by calling mysql_fetch_lengths().
Empty fields and fields containing NULL both have length 0; you can distinguish these by checking the
pointer for the field value. If the pointer is NULL, the field is NULL; otherwise, the field is empty.

Return Values

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve or if an error
occurred.

Errors

Errors are not reset between calls to mysql_fetch_row()

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

MYSQL_ROW row;
unsigned int num_fields;
unsigned int i;

num_fields = mysql_num_fields(result);
while ((row = mysql_fetch_row(result)))
{
   unsigned long *lengths;
   lengths = mysql_fetch_lengths(result);
   for(i = 0; i < num_fields; i++)
   {
       printf("[%.*s] ", (int) lengths[i],
              row[i] ? row[i] : "NULL");
   }



C API Function Descriptions

2669

   printf("\n");
}

23.8.7.22 mysql_field_count()

unsigned int mysql_field_count(MYSQL *mysql)

Description

Returns the number of columns for the most recent query on the connection.

The normal use of this function is when mysql_store_result() returned NULL (and thus you
have no result set pointer). In this case, you can call mysql_field_count() to determine whether
mysql_store_result() should have produced a nonempty result. This enables the client program
to take proper action without knowing whether the query was a SELECT (or SELECT-like) statement.
The example shown here illustrates how this may be done.

See Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query()
Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{
    // error
}
else // query succeeded, process any data returned by it
{
    result = mysql_store_result(&mysql);
    if (result)  // there are rows
    {
        num_fields = mysql_num_fields(result);
        // retrieve rows, then call mysql_free_result(result)
    }
    else  // mysql_store_result() returned nothing; should it have?
    {
        if(mysql_field_count(&mysql) == 0)
        {
            // query does not return data
            // (it was not a SELECT)
            num_rows = mysql_affected_rows(&mysql);
        }
        else // mysql_store_result() should have returned data
        {
            fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
        }
    }
}

An alternative is to replace the mysql_field_count(&mysql) call with mysql_errno(&mysql).
In this case, you are checking directly for an error from mysql_store_result() rather than inferring
from the value of mysql_field_count() whether the statement was a SELECT.

23.8.7.23 mysql_field_seek()



C API Function Descriptions

2670

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result, MYSQL_FIELD_OFFSET
offset)

Description

Sets the field cursor to the given offset. The next call to mysql_fetch_field() retrieves the field
definition of the column associated with that offset.

To seek to the beginning of a row, pass an offset value of zero.

Return Values

The previous value of the field cursor.

Errors

None.

23.8.7.24 mysql_field_tell()

MYSQL_FIELD_OFFSET mysql_field_tell(MYSQL_RES *result)

Description

Returns the position of the field cursor used for the last mysql_fetch_field(). This value can be
used as an argument to mysql_field_seek().

Return Values

The current offset of the field cursor.

Errors

None.

23.8.7.25 mysql_free_result()

void mysql_free_result(MYSQL_RES *result)

Description

Frees the memory allocated for a result set by mysql_store_result(), mysql_use_result(),
mysql_list_dbs(), and so forth. When you are done with a result set, you must free the memory it
uses by calling mysql_free_result().

Do not attempt to access a result set after freeing it.

Return Values

None.

Errors

None.

23.8.7.26 mysql_get_character_set_info()

void mysql_get_character_set_info(MYSQL *mysql, MY_CHARSET_INFO *cs)

Description

This function provides information about the default client character set. The default character set may
be changed with the mysql_set_character_set() function.



C API Function Descriptions

2671

Example

This example shows the fields that are available in the MY_CHARSET_INFO structure:

if (!mysql_set_character_set(&mysql, "utf8"))
{
    MY_CHARSET_INFO cs;
    mysql_get_character_set_info(&mysql, &cs);
    printf("character set information:\n");
    printf("character set+collation number: %d\n", cs.number);
    printf("character set name: %s\n", cs.name);
    printf("collation name: %s\n", cs.csname);
    printf("comment: %s\n", cs.comment);
    printf("directory: %s\n", cs.dir);
    printf("multi byte character min. length: %d\n", cs.mbminlen);
    printf("multi byte character max. length: %d\n", cs.mbmaxlen);
}

23.8.7.27 mysql_get_client_info()

const char *mysql_get_client_info(void)

Description

Returns a string that represents the MySQL client library version; for example, "5.5.58".

The function value is the MySQL version. For Connector/C, this is the MySQL version on which the
Connector/C distribution is based. For more information, see Section 23.8.4.4, “C API Server and
Client Library Versions”.

Return Values

A character string that represents the MySQL client library version.

Errors

None.

23.8.7.28 mysql_get_client_version()

unsigned long mysql_get_client_version(void)

Description

Returns an integer that represents the MySQL client library version. The value has the format XYYZZ
where X is the major version, YY is the release level (or minor version), and ZZ is the sub-version within
the release level:

major_version*10000 + release_level*100 + sub_version

For example, "5.5.58" is returned as 50558.

The function value is the MySQL version. For Connector/C, this is the MySQL version on which the
Connector/C distribution is based. For more information, see Section 23.8.4.4, “C API Server and
Client Library Versions”.

Return Values

An integer that represents the MySQL client library version.

Errors

None.



C API Function Descriptions

2672

23.8.7.29 mysql_get_host_info()

const char *mysql_get_host_info(MYSQL *mysql)

Description

Returns a string describing the type of connection in use, including the server host name.

Return Values

A character string representing the server host name and the connection type.

Errors

None.

23.8.7.30 mysql_get_proto_info()

unsigned int mysql_get_proto_info(MYSQL *mysql)

Description

Returns the protocol version used by current connection.

Return Values

An unsigned integer representing the protocol version used by the current connection.

Errors

None.

23.8.7.31 mysql_get_server_info()

const char *mysql_get_server_info(MYSQL *mysql)

Description

Returns a string that represents the MySQL server version; for example, "5.5.58".

Return Values

A character string that represents the MySQL server version.

Errors

None.

23.8.7.32 mysql_get_server_version()

unsigned long mysql_get_server_version(MYSQL *mysql)

Description

Returns an integer that represents the MySQL server version. The value has the format XYYZZ where
X is the major version, YY is the release level (or minor version), and ZZ is the sub-version within the
release level:

major_version*10000 + release_level*100 + sub_version

For example, "5.5.58" is returned as 50558.



C API Function Descriptions

2673

This function is useful in client programs for determining whether some version-specific server
capability exists.

Return Values

An integer that represents the MySQL server version.

Errors

None.

23.8.7.33 mysql_get_ssl_cipher()

const char *mysql_get_ssl_cipher(MYSQL *mysql)

Description

mysql_get_ssl_cipher() returns the encryption cipher used for the given connection to the server.
mysql is the connection handler returned from mysql_init().

Return Values

A string naming the encryption cipher used for the connection, or NULL if no cipher is being used.

23.8.7.34 mysql_hex_string()

unsigned long mysql_hex_string(char *to, const char *from, unsigned long
length)

Description

This function creates a legal SQL string for use in an SQL statement. See Section 9.1.1, “String
Literals”.

The string in the from argument is encoded in hexadecimal format, with each character encoded as
two hexadecimal digits. The result is placed in the to argument, followed by a terminating null byte.

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at
least length*2+1 bytes long. When mysql_hex_string() returns, the contents of to is a null-
terminated string. The return value is the length of the encoded string, not including the terminating null
byte.

The return value can be placed into an SQL statement using either X'value' or 0xvalue format.
However, the return value does not include the X'...' or 0x. The caller must supply whichever of
those is desired.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
end = strmov(end,"X'");
end += mysql_hex_string(end,"What is this",12);
end = strmov(end,"',X'");
end += mysql_hex_string(end,"binary data: \0\r\n",16);
end = strmov(end,"')");

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
   fprintf(stderr, "Failed to insert row, Error: %s\n",
           mysql_error(&mysql));
}



C API Function Descriptions

2674

The strmov() function used in the example is included in the libmysqlclient library and works
like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into to, not including the terminating null character.

Errors

None.

23.8.7.35 mysql_info()

const char *mysql_info(MYSQL *mysql)

Description

Retrieves a string providing information about the most recently executed statement, but only for the
statements listed here. For other statements, mysql_info() returns NULL. The format of the string
varies depending on the type of statement, as described here. The numbers are illustrative only; the
string contains values appropriate for the statement.

• INSERT INTO ... SELECT ...

String format: Records: 100 Duplicates: 0 Warnings: 0

• INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 3 Duplicates: 0 Warnings: 0

• LOAD DATA INFILE ...

String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

• ALTER TABLE

String format: Records: 3 Duplicates: 0 Warnings: 0

• UPDATE

String format: Rows matched: 40 Changed: 40 Warnings: 0

mysql_info() returns a non-NULL value for INSERT ... VALUES only for the multiple-row form of
the statement (that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed statement.
NULL if no information is available for the statement.

Errors

None.

23.8.7.36 mysql_init()

MYSQL *mysql_init(MYSQL *mysql)

Description

Allocates or initializes a MYSQL object suitable for mysql_real_connect(). If mysql is a NULL
pointer, the function allocates, initializes, and returns a new object. Otherwise, the object is initialized



C API Function Descriptions

2675

and the address of the object is returned. If mysql_init() allocates a new object, it is freed when
mysql_close() is called to close the connection.

In a nonmulti-threaded environment, mysql_init() invokes mysql_library_init()
automatically as necessary. However, mysql_library_init() is not thread-safe in a multi-
threaded environment, and thus neither is mysql_init(). Before calling mysql_init(), either
call mysql_library_init() prior to spawning any threads, or use a mutex to protect the
mysql_library_init() call. This should be done prior to any other client library call.

Return Values

An initialized MYSQL* handler. NULL if there was insufficient memory to allocate a new object.

Errors

In case of insufficient memory, NULL is returned.

23.8.7.37 mysql_insert_id()

my_ulonglong mysql_insert_id(MYSQL *mysql)

Description

Returns the value generated for an AUTO_INCREMENT column by the previous INSERT or UPDATE
statement. Use this function after you have performed an INSERT statement into a table that
contains an AUTO_INCREMENT field, or have used INSERT or UPDATE to set a column value with
LAST_INSERT_ID(expr).

The return value of mysql_insert_id() is always zero unless explicitly updated under one of the
following conditions:

• INSERT statements that store a value into an AUTO_INCREMENT column. This is true whether the
value is automatically generated by storing the special values NULL or 0 into the column, or is an
explicit nonspecial value.

• In the case of a multiple-row INSERT statement, mysql_insert_id() returns the first
automatically generated AUTO_INCREMENT value that was successfully inserted.

If no rows are successfully inserted, mysql_insert_id() returns 0.

• If an INSERT ... SELECT statement is executed, and no automatically generated value is
successfully inserted, mysql_insert_id() returns the ID of the last inserted row.

• If an INSERT ... SELECT statement uses LAST_INSERT_ID(expr), mysql_insert_id()
returns expr.

• INSERT statements that generate an AUTO_INCREMENT value by inserting
LAST_INSERT_ID(expr) into any column or by updating any column to
LAST_INSERT_ID(expr).

• If the previous statement returned an error, the value of mysql_insert_id() is undefined.

The return value of mysql_insert_id() can be simplified to the following sequence:

1. If there is an AUTO_INCREMENT column, and an automatically generated value was successfully
inserted, return the first such value.

2. If LAST_INSERT_ID(expr) occurred in the statement, return expr, even if there was an
AUTO_INCREMENT column in the affected table.

3. The return value varies depending on the statement used. When called after an INSERT statement:



C API Function Descriptions

2676

• If there is an AUTO_INCREMENT column in the table, and there were some explicit values for this
column that were successfully inserted into the table, return the last of the explicit values.

When called after an INSERT ... ON DUPLICATE KEY UPDATE statement:

• If there is an AUTO_INCREMENT column in the table and there were some explicit successfully
inserted values or some updated values, return the last of the inserted or updated values.

mysql_insert_id() returns 0 if the previous statement does not use an AUTO_INCREMENT value.
If you need to save the value for later, be sure to call mysql_insert_id() immediately after the
statement that generates the value.

The value of mysql_insert_id() is affected only by statements issued within the current client
connection. It is not affected by statements issued by other clients.

The LAST_INSERT_ID() SQL function will contain the value of the first automatically generated value
that was successfully inserted. LAST_INSERT_ID() is not reset between statements because the
value of that function is maintained in the server. Another difference from mysql_insert_id() is that
LAST_INSERT_ID() is not updated if you set an AUTO_INCREMENT column to a specific nonspecial
value. See Section 12.14, “Information Functions”.

mysql_insert_id() returns 0 following a CALL statement for a stored procedure that generates
an AUTO_INCREMENT value because in this case mysql_insert_id() applies to CALL and not the
statement within the procedure. Within the procedure, you can use LAST_INSERT_ID() at the SQL
level to obtain the AUTO_INCREMENT value.

The reason for the differences between LAST_INSERT_ID() and mysql_insert_id() is that
LAST_INSERT_ID() is made easy to use in scripts while mysql_insert_id() tries to provide more
exact information about what happens to the AUTO_INCREMENT column.

Return Values

Described in the preceding discussion.

Errors

None.

23.8.7.38 mysql_kill()

int mysql_kill(MYSQL *mysql, unsigned long pid)

Description

Asks the server to kill the thread specified by pid.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL KILL statement
instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR



C API Function Descriptions

2677

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.39 mysql_library_end()

void mysql_library_end(void)

Description

This function finalizes the MySQL library. Call it when you are done using the library (for example, after
disconnecting from the server). The action taken by the call depends on whether your application is
linked to the MySQL client library or the MySQL embedded server library. For a client program linked
against the libmysqlclient library by using the -lmysqlclient flag, mysql_library_end()
performs some memory management to clean up. For an embedded server application linked against
the libmysqld library by using the -lmysqld flag, mysql_library_end() shuts down the
embedded server and then cleans up.

For usage information, see Section 23.8.6, “C API Function Overview”, and Section 23.8.7.40,
“mysql_library_init()”.

23.8.7.40 mysql_library_init()

int mysql_library_init(int argc, char **argv, char **groups)

Description

Call this function to initialize the MySQL library before you call any other MySQL function, whether
your application is a regular client program or uses the embedded server. If the application uses the
embedded server, this call starts the server and initializes any subsystems (mysys, InnoDB, and so
forth) that the server uses.

After your application is done using the MySQL library, call mysql_library_end() to clean up. See
Section 23.8.7.39, “mysql_library_end()”.

The choice of whether the application operates as a regular client or uses the embedded server
depends on whether you use the libmysqlclient or libmysqld library at link time to produce the
final executable. For additional information, see Section 23.8.6, “C API Function Overview”.

In a nonmulti-threaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is
not thread-safe in a multi-threaded environment, and thus neither is mysql_init(), which calls
mysql_library_init(). You must either call mysql_library_init() prior to spawning any
threads, or else use a mutex to protect the call, whether you invoke mysql_library_init() or
indirectly through mysql_init(). Do this prior to any other client library call.

The argc and argv arguments are analogous to the arguments to main(), and enable passing of
options to the embedded server. For convenience, argc may be 0 (zero) if there are no command-
line arguments for the server. This is the usual case for applications intended for use only as regular
(nonembedded) clients, and the call typically is written as mysql_library_init(0, NULL, NULL).

#include <mysql.h>
#include <stdlib.h>



C API Function Descriptions

2678

int main(void) {
  if (mysql_library_init(0, NULL, NULL)) {
    fprintf(stderr, "could not initialize MySQL library\n");
    exit(1);
  }

  /* Use any MySQL API functions here */

  mysql_library_end();

  return EXIT_SUCCESS;
}

When arguments are to be passed (argc is greater than 0), the first element of argv is ignored (it
typically contains the program name). mysql_library_init() makes a copy of the arguments so it
is safe to destroy argv or groups after the call.

For embedded applications, if you want to connect to an external server without starting the embedded
server, you have to specify a negative value for argc.

The groups argument is an array of strings that indicate the groups in option files from which to
read options. See Section 4.2.6, “Using Option Files”. Make the final entry in the array NULL. For
convenience, if the groups argument itself is NULL, the [server] and [embedded] groups are used
by default.

#include <mysql.h>
#include <stdlib.h>

static char *server_args[] = {
  "this_program",       /* this string is not used */
  "--datadir=.",
  "--key_buffer_size=32M"
};
static char *server_groups[] = {
  "embedded",
  "server",
  "this_program_SERVER",
  (char *)NULL
};

int main(void) {
  if (mysql_library_init(sizeof(server_args) / sizeof(char *),
                        server_args, server_groups)) {
    fprintf(stderr, "could not initialize MySQL library\n");
    exit(1);
  }

  /* Use any MySQL API functions here */

  mysql_library_end();

  return EXIT_SUCCESS;
}

Return Values

Zero for success. Nonzero if an error occurred.

23.8.7.41 mysql_list_dbs()

MYSQL_RES *mysql_list_dbs(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of database names on the server that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters % or _, or may



C API Function Descriptions

2679

be a NULL pointer to match all databases. Calling mysql_list_dbs() is similar to executing the
query SHOW DATABASES [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.42 mysql_list_fields()

MYSQL_RES *mysql_list_fields(MYSQL *mysql, const char *table, const char
*wild)

Description

Returns an empty result set for which the metadata provides information about the columns in
the given table that match the simple regular expression specified by the wild parameter. wild
may contain the wildcard characters % or _, or may be a NULL pointer to match all fields. Calling
mysql_list_fields() is similar to executing the query SHOW COLUMNS FROM tbl_name [LIKE
wild].

It is preferable to use SHOW COLUMNS FROM tbl_name instead of mysql_list_fields().

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST



C API Function Descriptions

2680

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

int i;
MYSQL_RES *tbl_cols = mysql_list_fields(mysql, "mytbl", "f%");

unsigned int field_cnt = mysql_num_fields(tbl_cols);
printf("Number of columns: %d\n", field_cnt);

for (i=0; i < field_cnt; ++i)
{
  /* col describes i-th column of the table */
  MYSQL_FIELD *col = mysql_fetch_field_direct(tbl_cols, i);
  printf ("Column %d: %s\n", i, col->name);
}
mysql_free_result(tbl_cols);

23.8.7.43 mysql_list_processes()

MYSQL_RES *mysql_list_processes(MYSQL *mysql)

Description

Returns a result set describing the current server threads. This is the same kind of information as that
reported by mysqladmin processlist or a SHOW PROCESSLIST query.

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.44 mysql_list_tables()

MYSQL_RES *mysql_list_tables(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of table names in the current database that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters % or _, or



C API Function Descriptions

2681

may be a NULL pointer to match all tables. Calling mysql_list_tables() is similar to executing the
query SHOW TABLES [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.45 mysql_more_results()

my_bool mysql_more_results(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or
when you execute CALL statements, which can return multiple result sets.

mysql_more_results() true if more results exist from the currently executed statement, in which
case the application must call mysql_next_result() to fetch the results.

Return Values

TRUE (1) if more results exist. FALSE (0) if no more results exist.

In most cases, you can call mysql_next_result() instead to test whether more results exist and
initiate retrieval if so.

See Section 23.8.17, “C API Support for Multiple Statement Execution”, and Section 23.8.7.46,
“mysql_next_result()”.

Errors

None.

23.8.7.46 mysql_next_result()

int mysql_next_result(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or
when you use CALL statements to execute stored procedures, which can return multiple result sets.



C API Function Descriptions

2682

mysql_next_result() reads the next statement result and returns a status to indicate whether
more results exist. If mysql_next_result() returns an error, there are no more results.

Before each call to mysql_next_result(), you must call mysql_free_result() for the current
statement if it is a statement that returned a result set (rather than just a result status).

After calling mysql_next_result() the state of the connection is as if you had called
mysql_real_query() or mysql_query() for the next statement. This means that you can call
mysql_store_result(), mysql_warning_count(), mysql_affected_rows(), and so forth.

If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS
flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition
to any result sets that might be returned by statements executed within the procedure. Because CALL
can return multiple results, process them using a loop that calls mysql_next_result() to determine
whether there are more results.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). As of MySQL 5.5.3,
CLIENT_MULTI_RESULTS is enabled by default.

It is also possible to test whether there are more results by calling mysql_more_results().
However, this function does not change the connection state, so if it returns true, you must still call
mysql_next_result() to advance to the next result.

For an example that shows how to use mysql_next_result(), see Section 23.8.17, “C API Support
for Multiple Statement Execution”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order. For example, if you did not call
mysql_use_result() for a previous result set.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.47 mysql_num_fields()

unsigned int mysql_num_fields(MYSQL_RES *result)

To pass a MYSQL* argument instead, use unsigned int mysql_field_count(MYSQL *mysql).



C API Function Descriptions

2683

Description

Returns the number of columns in a result set.

You can get the number of columns either from a pointer to a result set or to a connection handler. You
would use the connection handler if mysql_store_result() or mysql_use_result() returned
NULL (and thus you have no result set pointer). In this case, you can call mysql_field_count() to
determine whether mysql_store_result() should have produced a nonempty result. This enables
the client program to take proper action without knowing whether the query was a SELECT (or SELECT-
like) statement. The example shown here illustrates how this may be done.

See Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query()
Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{
    // error
}
else // query succeeded, process any data returned by it
{
    result = mysql_store_result(&mysql);
    if (result)  // there are rows
    {
        num_fields = mysql_num_fields(result);
        // retrieve rows, then call mysql_free_result(result)
    }
    else  // mysql_store_result() returned nothing; should it have?
    {
        if (mysql_errno(&mysql))
        {
           fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
        }
        else if (mysql_field_count(&mysql) == 0)
        {
            // query does not return data
            // (it was not a SELECT)
            num_rows = mysql_affected_rows(&mysql);
        }
    }
}

An alternative (if you know that your query should have returned a result set) is to replace the
mysql_errno(&mysql) call with a check whether mysql_field_count(&mysql) returns 0. This
happens only if something went wrong.

23.8.7.48 mysql_num_rows()

my_ulonglong mysql_num_rows(MYSQL_RES *result)

Description

Returns the number of rows in the result set.



C API Function Descriptions

2684

The use of mysql_num_rows() depends on whether you use mysql_store_result()
or mysql_use_result() to return the result set. If you use mysql_store_result(),
mysql_num_rows() may be called immediately. If you use mysql_use_result(),
mysql_num_rows() does not return the correct value until all the rows in the result set have been
retrieved.

mysql_num_rows() is intended for use with statements that return a result set, such as SELECT. For
statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be obtained with
mysql_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

23.8.7.49 mysql_options()

int mysql_options(MYSQL *mysql, enum mysql_option option, const void *arg)

Description

Can be used to set extra connect options and affect behavior for a connection. This function may be
called multiple times to set several options.

Call mysql_options() after mysql_init() and before mysql_connect() or
mysql_real_connect().

The option argument is the option that you want to set; the arg argument is the value for the option.
If the option is an integer, specify a pointer to the value of the integer as the arg argument.

The following list describes the possible options, their effect, and how arg is used for each option.
For option descriptions that indicate arg is unused, its value is irrelevant; it is conventional to pass 0.
Several of the options apply only when the application is linked against the libmysqld embedded
server library and are unused for applications linked against the libmysqlclient client library.

• MYSQL_DEFAULT_AUTH (argument type: char *)

The name of the authentication plugin to use. This option was added in MySQL 5.5.7.

• MYSQL_ENABLE_CLEARTEXT_PLUGIN (argument type: my_bool *)

Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.5.1.3, “Client-
Side Cleartext Pluggable Authentication”.) This option was added in MySQL 5.5.27.

• MYSQL_INIT_COMMAND (argument type: char *)

SQL statement to execute when connecting to the MySQL server. Automatically re-executed if
reconnection occurs.

• MYSQL_OPT_COMPRESS (argument: not used)

Use the compressed client/server protocol.

• MYSQL_OPT_CONNECT_TIMEOUT (argument type: unsigned int *)

The connect timeout in seconds.

• MYSQL_OPT_GUESS_CONNECTION (argument: not used)



C API Function Descriptions

2685

For an application linked against the libmysqld embedded server library, this enables the library
to guess whether to use the embedded server or a remote server. “Guess” means that if the
host name is set and is not localhost, it uses a remote server. This behavior is the default.
MYSQL_OPT_USE_EMBEDDED_CONNECTION and MYSQL_OPT_USE_REMOTE_CONNECTION can be
used to override it. This option is ignored for applications linked against the libmysqlclient client
library.

• MYSQL_OPT_LOCAL_INFILE (argument type: optional pointer to unsigned int)

This option affects client-side LOCAL capability for LOAD DATA operations. By default, LOCAL
capability is determined by the default compiled into the MySQL client library (see Section 13.2.6,
“LOAD DATA INFILE Syntax”). To control this capability explicitly, invoke mysql_options() to set
the MYSQL_OPT_LOCAL_INFILE option:

• LOCAL is disabled if the pointer points to an unsigned int that has a zero value.

• LOCAL is enabled if no pointer is given or if the pointer points to an unsigned int that has a
nonzero value.

Successful use of a LOCAL load operation by a client also requires that the server permits it.

• MYSQL_OPT_NAMED_PIPE (argument: not used)

Use a named pipe to connect to the MySQL server on Windows, if the server permits named-pipe
connections.

• MYSQL_OPT_PROTOCOL (argument type: unsigned int *)

Type of protocol to use. Specify one of the enum values of mysql_protocol_type defined in
mysql.h.

• MYSQL_OPT_READ_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for each attempt to read from the server. There are retries if necessary, so
the total effective timeout value is three times the option value. You can set the value so that a lost
connection can be detected earlier than the TCP/IP Close_Wait_Timeout value of 10 minutes.

Implementation of this timeout uses mechanisms that may not be available on all platforms. On such
a platform, a client that issues a read call might under certain circumstances wait without timing out.
For example, a client might not time out if the server is not responding because it is waiting for a
“disk full” condition to clear.

• MYSQL_OPT_RECONNECT (argument type: my_bool *)

Enable or disable automatic reconnection to the server if the connection is found to have been lost.
Reconnect is off by default; this option provides a way to set reconnection behavior explicitly.

• MYSQL_OPT_SSL_MODE (argument type: unsigned int *)

The security state to use for the connection to the server. The only permitted arument
value is SSL_MODE_REQUIRED (require a secure connection). If set, this option causes
mysql_real_connect() to fail if an encrypted connection cannot be obtained, without falling
back to an unencrypted connection. Thus, mysql_real_connect() returns an error if the server
does not support SSL or the client is not configured to use SSL. For more information about the
security states, see the description of --ssl-mode in Section 6.4.5, “Command Options for Secure
Connections”.

To require an encrypted connection in MySQL 5.5, the standard MySQL client programs call
mysql_options() to set MYSQL_OPT_SSL_MODE if the --ssl-mode=REQUIRED command-line
option was specified. Third-party applications that must be able to require encrypted connections can
use the same technique. For details, see Section 23.8.7.67, “mysql_ssl_set()”.



C API Function Descriptions

2686

This option was added in MySQL 5.5.55.

• MYSQL_OPT_SSL_VERIFY_SERVER_CERT (argument type: my_bool *)

Enable or disable verification of the server's Common Name value in its certificate against the host
name used when connecting to the server. The connection is rejected if there is a mismatch. For
encrypted connections, this feature can be used to prevent man-in-the-middle attacks. Verification is
disabled by default.

• MYSQL_OPT_USE_EMBEDDED_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this forces the use of
the embedded server for the connection. This option is ignored for applications linked against the
libmysqlclient client library.

• MYSQL_OPT_USE_REMOTE_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this forces the use
of a remote server for the connection. This option is ignored for applications linked against the
libmysqlclient client library.

• MYSQL_OPT_USE_RESULT (argument: not used)

This option is unused.

• MYSQL_OPT_WRITE_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for each attempt to write to the server. There is a retry if necessary, so the
total effective timeout value is two times the option value.

• MYSQL_PLUGIN_DIR (argument type: char *)

The directory in which to look for client plugins. This option was added in MySQL 5.5.7.

• MYSQL_READ_DEFAULT_FILE (argument type: char *)

Read options from the named option file instead of from my.cnf.

• MYSQL_READ_DEFAULT_GROUP (argument type: char *)

Read options from the named group from my.cnf or the file specified with
MYSQL_READ_DEFAULT_FILE.

• MYSQL_REPORT_DATA_TRUNCATION (argument type: my_bool *)

Enable or disable reporting of data truncation errors for prepared statements using the error
member of MYSQL_BIND structures. (Default: enabled.)

• MYSQL_SECURE_AUTH (argument type: my_bool *)

Whether to connect to a server that does not support the password hashing used in MySQL 4.1.1
and later.

• MYSQL_SET_CHARSET_DIR (argument type: char *)

The path name to the directory that contains character set definition files.

• MYSQL_SET_CHARSET_NAME (argument type: char *)

The name of the character set to use as the default character set. The argument can be
MYSQL_AUTODETECT_CHARSET_NAME to cause the character set to be autodetected based on the
operating system setting (see Section 10.1.4, “Connection Character Sets and Collations”).



C API Function Descriptions

2687

• MYSQL_SET_CLIENT_IP (argument type: char *)

For an application linked against the libmysqld embedded server library (when libmysqld is
compiled with authentication support), this means that the user is considered to have connected from
the specified IP address (specified as a string) for authentication purposes. This option is ignored for
applications linked against the libmysqlclient client library.

• MYSQL_SHARED_MEMORY_BASE_NAME (argument type: char *)

The name of the shared-memory object for communication to the server on Windows, if the server
supports shared-memory connections. Specify the same value as the --shared-memory-base-
name option used for the mysqld server you want to connect to.

The client group is always read if you use MYSQL_READ_DEFAULT_FILE or
MYSQL_READ_DEFAULT_GROUP.

The specified group in the option file may contain the following options.

Option Description

character-sets-
dir=dir_name

The directory where character sets are installed.

compress Use the compressed client/server protocol.

connect-timeout=seconds The connect timeout in seconds. On Linux this timeout is also
used for waiting for the first answer from the server.

database=db_name Connect to this database if no database was specified in the
connect command.

debug Debug options.

default-character-
set=charset_name

The default character set to use.

disable-local-infile Disable use of LOAD DATA LOCAL INFILE.

enable-cleartext-plugin Enable the mysql_clear_password cleartext authentication
plugin. Added in MySQL 5.5.27.

host=host_name Default host name.

init-command=stmt Statement to execute when connecting to MySQL server.
Automatically re-executed if reconnection occurs.

interactive-
timeout=seconds

Same as specifying CLIENT_INTERACTIVE to
mysql_real_connect(). See Section 23.8.7.52,
“mysql_real_connect()”.

local-infile[={0|1}] If no argument or nonzero argument, enable use of LOAD DATA
LOCAL; otherwise disable.

max_allowed_packet=bytes Maximum size of packet that client can read from server.

multi-queries, multi-
results

Enable multiple result sets from multiple-statement executions or
stored procedures.

multi-statements Enable the client to send multiple statements in a single string
(separated by ; characters).

password=password Default password.

pipe Use named pipes to connect to a MySQL server on Windows.

port=port_num Default port number.

protocol={TCP|SOCKET|
PIPE|MEMORY}

The protocol to use when connecting to the server.

return-found-rows Tell mysql_info() to return found rows instead of updated rows
when using UPDATE.



C API Function Descriptions

2688

Option Description

shared-memory-base-
name=name

Shared-memory name to use to connect to server.

socket={file_name|pipe_name}Default socket file.

ssl-ca=file_name Certificate Authority file.

ssl-capath=dir_name Certificate Authority directory.

ssl-cert=file_name Certificate file.

ssl-cipher=cipher_list Permissible SSL ciphers.

ssl-key=file_name Key file.

timeout=seconds Like connect-timeout.

user Default user.

timeout has been replaced by connect-timeout, but timeout is still supported for backward
compatibility.

For more information about option files used by MySQL programs, see Section 4.2.6, “Using Option
Files”.

Return Values

Zero for success. Nonzero if you specify an unknown option.

Example

The following mysql_options() calls request the use of compression in the client/server protocol,
cause options to be read from the [odbc] group of option files, and disable transaction autocommit
mode:

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");
mysql_options(&mysql,MYSQL_INIT_COMMAND,"SET autocommit=0");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
    fprintf(stderr, "Failed to connect to database: Error: %s\n",
          mysql_error(&mysql));
}

This code requests that the client use the compressed client/server protocol and read the additional
options from the odbc section in the my.cnf file.

23.8.7.50 mysql_ping()

int mysql_ping(MYSQL *mysql)

Description

Checks whether the connection to the server is working. If the connection has gone down and auto-
reconnect is enabled an attempt to reconnect is made. If the connection is down and auto-reconnect is
disabled, mysql_ping() returns an error.

Auto-reconnect is disabled by default. To enable it, call mysql_options() with the
MYSQL_OPT_RECONNECT option. For details, see Section 23.8.7.49, “mysql_options()”.

mysql_ping() can be used by clients that remain idle for a long while, to check whether the server
has closed the connection and reconnect if necessary.



C API Function Descriptions

2689

If mysql_ping()) does cause a reconnect, there is no explicit indication of it. To determine whether
a reconnect occurs, call mysql_thread_id() to get the original connection identifier before calling
mysql_ping(), then call mysql_thread_id() again to see whether the identifier has changed.

If reconnect occurs, some characteristics of the connection will have been reset. For details about
these characteristics, see Section 23.8.16, “Controlling Automatic Reconnection Behavior”.

Return Values

Zero if the connection to the server is active. Nonzero if an error occurred. A nonzero return does not
indicate whether the MySQL server itself is down; the connection might be broken for other reasons
such as network problems.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.51 mysql_query()

int mysql_query(MYSQL *mysql, const char *stmt_str)

Description

Executes the SQL statement pointed to by the null-terminated string stmt_str. Normally, the string
must consist of a single SQL statement without a terminating semicolon (;) or \g. If multiple-statement
execution has been enabled, the string can contain several statements separated by semicolons. See
Section 23.8.17, “C API Support for Multiple Statement Execution”.

mysql_query() cannot be used for statements that contain binary data; you must use
mysql_real_query() instead. (Binary data may contain the \0 character, which mysql_query()
interprets as the end of the statement string.)

If you want to know whether the statement should return a result set, you can use
mysql_field_count() to check for this. See Section 23.8.7.22, “mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.



C API Function Descriptions

2690

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.52 mysql_real_connect()

MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, const char
*user, const char *passwd, const char *db, unsigned int port, const char
*unix_socket, unsigned long client_flag)

Description

mysql_real_connect() attempts to establish a connection to a MySQL database engine running on
host. mysql_real_connect() must complete successfully before you can execute any other API
functions that require a valid MYSQL connection handler structure.

The parameters are specified as follows:

• For the first parameter, specify the address of an existing MYSQL structure. Before calling
mysql_real_connect(), call mysql_init() to initialize the MYSQL structure. You can change a
lot of connect options with the mysql_options() call. See Section 23.8.7.49, “mysql_options()”.

• The value of host may be either a host name or an IP address. If host is NULL or the string
"localhost", a connection to the local host is assumed. For Windows, the client connects
using a shared-memory connection, if the server has shared-memory connections enabled.
Otherwise, TCP/IP is used. For Unix, the client connects using a Unix socket file. For local
connections, you can also influence the type of connection to use with the MYSQL_OPT_PROTOCOL
or MYSQL_OPT_NAMED_PIPE options to mysql_options(). The type of connection must be
supported by the server. For a host value of "." on Windows, the client connects using a named
pipe, if the server has named-pipe connections enabled. If named-pipe connections are not enabled,
an error occurs.

• The user parameter contains the user's MySQL login ID. If user is NULL or the empty string "",
the current user is assumed. Under Unix, this is the current login name. Under Windows ODBC, the
current user name must be specified explicitly. See the Connector/ODBC section of Chapter 23,
Connectors and APIs.

• The passwd parameter contains the password for user. If passwd is NULL, only entries in the user
table for the user that have a blank (empty) password field are checked for a match. This enables the
database administrator to set up the MySQL privilege system in such a way that users get different
privileges depending on whether they have specified a password.

Note

Do not attempt to encrypt the password before calling
mysql_real_connect(); password encryption is handled automatically by
the client API.

• The user and passwd parameters use whatever character set has been configured for the MYSQL
object. By default, this is latin1, but can be changed by calling mysql_options(mysql,
MYSQL_SET_CHARSET_NAME, "charset_name") prior to connecting.

• db is the database name. If db is not NULL, the connection sets the default database to this value.

• If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host
parameter determines the type of the connection.

• If unix_socket is not NULL, the string specifies the socket or named pipe to use. Note that the
host parameter determines the type of the connection.

• The value of client_flag is usually 0, but can be set to a combination of the following flags to
enable certain features.



C API Function Descriptions

2691

Flag Name Flag Description

CLIENT_COMPRESS Use compression in the client/server protocol.

CLIENT_FOUND_ROWS Return the number of found (matched) rows, not the number of
changed rows.

CLIENT_IGNORE_SIGPIPE Prevents the client library from installing a SIGPIPE signal
handler. This can be used to avoid conflicts with a handler that
the application has already installed.

CLIENT_IGNORE_SPACE Permit spaces after function names. Makes all functions names
reserved words.

CLIENT_INTERACTIVE Permit interactive_timeout seconds of inactivity (rather
than wait_timeout seconds) before closing the connection.
The client's session wait_timeout variable is set to the value
of the session interactive_timeout variable.

CLIENT_LOCAL_FILES Enable LOAD DATA LOCAL handling.

CLIENT_MULTI_RESULTS Tell the server that the client can handle multiple result sets from
multiple-statement executions or stored procedures. This flag
is automatically enabled if CLIENT_MULTI_STATEMENTS is
enabled. See the note following this table for more information
about this flag.

CLIENT_MULTI_STATEMENTS Tell the server that the client may send multiple statements in a
single string (separated by ; characters). If this flag is not set,
multiple-statement execution is disabled. See the note following
this table for more information about this flag.

CLIENT_NO_SCHEMA Do not permit db_name.tbl_name.col_name syntax. This is
for ODBC. It causes the parser to generate an error if you use
that syntax, which is useful for trapping bugs in some ODBC
programs.

CLIENT_ODBC Unused.

CLIENT_SSL Use SSL (encrypted protocol). Do not set this option within
an application program; it is set internally in the client
library. Instead, use mysql_ssl_set() before calling
mysql_real_connect().

CLIENT_REMEMBER_OPTIONS Remember options specified by calls to mysql_options().
Without this option, if mysql_real_connect() fails, you must
repeat the mysql_options() calls before trying to connect
again. With this option, the mysql_options() calls need not
be repeated.

If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS
flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition
to any result sets that might be returned by statements executed within the procedure. Because CALL
can return multiple results, process them using a loop that calls mysql_next_result() to determine
whether there are more results.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). As of MySQL 5.5.3,
CLIENT_MULTI_RESULTS is enabled by default.

If you enable CLIENT_MULTI_STATEMENTS or CLIENT_MULTI_RESULTS, you should process
the result for every call to mysql_query() or mysql_real_query() by using a loop that calls
mysql_next_result() to determine whether there are more results. For an example, see
Section 23.8.17, “C API Support for Multiple Statement Execution”.



C API Function Descriptions

2692

For some parameters, it is possible to have the value taken from an option file rather than from
an explicit value in the mysql_real_connect() call. To do this, call mysql_options() with
the MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP option before calling
mysql_real_connect(). Then, in the mysql_real_connect() call, specify the “no-value” value
for each parameter to be read from an option file:

• For host, specify a value of NULL or the empty string ("").

• For user, specify a value of NULL or the empty string.

• For passwd, specify a value of NULL. (For the password, a value of the empty string in the
mysql_real_connect() call cannot be overridden in an option file, because the empty string
indicates explicitly that the MySQL account must have an empty password.)

• For db, specify a value of NULL or the empty string.

• For port, specify a value of 0.

• For unix_socket, specify a value of NULL.

If no value is found in an option file for a parameter, its default value is used as indicated in the
descriptions given earlier in this section.

Return Values

A MYSQL* connection handler if the connection was successful, NULL if the connection was
unsuccessful. For a successful connection, the return value is the same as the value of the first
parameter.

Errors

• CR_CONN_HOST_ERROR

Failed to connect to the MySQL server.

• CR_CONNECTION_ERROR

Failed to connect to the local MySQL server.

• CR_IPSOCK_ERROR

Failed to create an IP socket.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SOCKET_CREATE_ERROR

Failed to create a Unix socket.

• CR_UNKNOWN_HOST

Failed to find the IP address for the host name.

• CR_VERSION_ERROR

A protocol mismatch resulted from attempting to connect to a server with a client library that uses a
different protocol version.

• CR_NAMEDPIPEOPEN_ERROR

Failed to create a named pipe on Windows.



C API Function Descriptions

2693

• CR_NAMEDPIPEWAIT_ERROR

Failed to wait for a named pipe on Windows.

• CR_NAMEDPIPESETSTATE_ERROR

Failed to get a pipe handler on Windows.

• CR_SERVER_LOST

If connect_timeout > 0 and it took longer than connect_timeout seconds to connect to the
server or if the server died while executing the init-command.

• CR_ALREADY_CONNECTED

The MYSQL connection handler is already connected.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
    fprintf(stderr, "Failed to connect to database: Error: %s\n",
          mysql_error(&mysql));
}

By using mysql_options() the MySQL library reads the [client] and [your_prog_name]
sections in the my.cnf file which ensures that your program works, even if someone has set up
MySQL in some nonstandard way.

Upon connection, mysql_real_connect() sets the reconnect flag (part of the MYSQL structure)
to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions. A value of 1 for this flag
indicates that if a statement cannot be performed because of a lost connection, to try reconnecting to
the server before giving up. You can use the MYSQL_OPT_RECONNECT option to mysql_options()
to control reconnection behavior.

23.8.7.53 mysql_real_escape_string()

unsigned long mysql_real_escape_string(MYSQL *mysql, char *to, const char
*from, unsigned long length)

Description

This function creates a legal SQL string for use in an SQL statement. See Section 9.1.1, “String
Literals”.

The mysql argument must be a valid, open connection because character escaping depends on the
character set in use by the server.

The string in the from argument is encoded to produce an escaped SQL string, taking into account
the current character set of the connection. The result is placed in the to argument, followed by a
terminating null byte.

Characters encoded are \, ', ", NUL (ASCII 0), \n, \r, and Control+Z. Strictly speaking, MySQL
requires only that backslash and the quote character used to quote the string in the query be escaped.
mysql_real_escape_string() quotes the other characters to make them easier to read in
log files. For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in
Section 9.1.1, “String Literals”, and Section 12.5, “String Functions”.



C API Function Descriptions

2694

The string pointed to by from must be length bytes long. You must allocate the to buffer
to be at least length*2+1 bytes long. (In the worst case, each character may need to be
encoded as using two bytes, and there must be room for the terminating null byte.) When
mysql_real_escape_string() returns, the contents of to is a null-terminated string. The return
value is the length of the encoded string, not including the terminating null byte.

If you must change the character set of the connection, use the mysql_set_character_set()
function rather than executing a SET NAMES (or SET CHARACTER SET) statement.
mysql_set_character_set() works like SET NAMES but also affects the character set used by
mysql_real_escape_string(), which SET NAMES does not.

Example

The following example inserts two escaped strings into an INSERT statement, each within single quote
characters:

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table VALUES(");
*end++ = '\'';
end += mysql_real_escape_string(&mysql,end,"What is this",12);
*end++ = '\'';
*end++ = ',';
*end++ = '\'';
end += mysql_real_escape_string(&mysql,end,"binary data: \0\r\n",16);
*end++ = '\'';
*end++ = ')';

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
   fprintf(stderr, "Failed to insert row, Error: %s\n",
           mysql_error(&mysql));
}

The strmov() function used in the example is included in the libmysqlclient library and works
like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into the to argument, not including the terminating null
character.

Errors

None.

23.8.7.54 mysql_real_query()

int mysql_real_query(MYSQL *mysql, const char *stmt_str, unsigned long
length)

Description

Executes the SQL statement pointed to by stmt_str, a string length bytes long. Normally, the string
must consist of a single SQL statement without a terminating semicolon (;) or \g. If multiple-statement
execution has been enabled, the string can contain several statements separated by semicolons. See
Section 23.8.17, “C API Support for Multiple Statement Execution”.

mysql_query() cannot be used for statements that contain binary data; you must use
mysql_real_query() instead. (Binary data may contain the \0 character, which mysql_query()
interprets as the end of the statement string.) In addition, mysql_real_query() is faster than
mysql_query() because it does not call strlen() on the statement string.



C API Function Descriptions

2695

If you want to know whether the statement should return a result set, you can use
mysql_field_count() to check for this. See Section 23.8.7.22, “mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.55 mysql_refresh()

int mysql_refresh(MYSQL *mysql, unsigned int options)

Description

This function flushes tables or caches, or resets replication server information. The connected user
must have the RELOAD privilege.

The options argument is a bitmask composed from any combination of the following values. Multiple
values can be OR'ed together to perform multiple operations with a single call.

• REFRESH_GRANT

Refresh the grant tables, like FLUSH PRIVILEGES.

• REFRESH_LOG

Flush the logs, like FLUSH LOGS.

• REFRESH_TABLES

Flush the table cache, like FLUSH TABLES.

• REFRESH_HOSTS

Flush the host cache, like FLUSH HOSTS.

• REFRESH_STATUS

Reset status variables, like FLUSH STATUS.

• REFRESH_THREADS

Flush the thread cache.

• REFRESH_SLAVE



C API Function Descriptions

2696

On a slave replication server, reset the master server information and restart the slave, like RESET
SLAVE.

• REFRESH_MASTER

On a master replication server, remove the binary log files listed in the binary log index and truncate
the index file, like RESET MASTER.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.56 mysql_reload()

int mysql_reload(MYSQL *mysql)

Description

Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD
privilege.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL FLUSH
PRIVILEGES statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.



C API Function Descriptions

2697

23.8.7.57 mysql_rollback()

my_bool mysql_rollback(MYSQL *mysql)

Description

Rolls back the current transaction.

The action of this function is subject to the value of the completion_type system variable. In
particular, if the value of completion_type is RELEASE (or 2), the server performs a release after
terminating a transaction and closes the client connection. Call mysql_close() from the client
program to close the connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

23.8.7.58 mysql_row_seek()

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a query result set. The offset value is a row offset, typically
a value returned from mysql_row_tell() or from mysql_row_seek(). This value is not a row
number; to seek to a row within a result set by number, use mysql_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_row_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_row_seek().

Errors

None.

23.8.7.59 mysql_row_tell()

MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql_fetch_row(). This value can be
used as an argument to mysql_row_seek().

Use mysql_row_tell() only after mysql_store_result(), not after mysql_use_result().

Return Values

The current offset of the row cursor.

Errors

None.

23.8.7.60 mysql_select_db()



C API Function Descriptions

2698

int mysql_select_db(MYSQL *mysql, const char *db)

Description

Causes the database specified by db to become the default (current) database on the connection
specified by mysql. In subsequent queries, this database is the default for table references that include
no explicit database specifier.

mysql_select_db() fails unless the connected user can be authenticated as having permission to
use the database.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.61 mysql_set_character_set()

int mysql_set_character_set(MYSQL *mysql, const char *csname)

Description

This function is used to set the default character set for the current connection. The string csname
specifies a valid character set name. The connection collation becomes the default collation of the
character set. This function works like the SET NAMES statement, but also sets the value of mysql-
>charset, and thus affects the character set used by mysql_real_escape_string()

Return Values

Zero for success. Nonzero if an error occurred.

Example

MYSQL mysql;

mysql_init(&mysql);
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
    fprintf(stderr, "Failed to connect to database: Error: %s\n",
          mysql_error(&mysql));
}

if (!mysql_set_character_set(&mysql, "utf8"))
{
    printf("New client character set: %s\n",
           mysql_character_set_name(&mysql));
}



C API Function Descriptions

2699

23.8.7.62 mysql_set_local_infile_default()

void mysql_set_local_infile_default(MYSQL *mysql);

Description

Sets the LOAD DATA LOCAL INFILE callback functions to the defaults used internally by the C client
library. The library calls this function automatically if mysql_set_local_infile_handler() has
not been called or does not supply valid functions for each of its callbacks.

Return Values

None.

Errors

None.

23.8.7.63 mysql_set_local_infile_handler()

void mysql_set_local_infile_handler(MYSQL *mysql, int (*local_infile_init)
(void **, const char *, void *), int (*local_infile_read)(void *, char *,
unsigned int), void (*local_infile_end)(void *), int (*local_infile_error)
(void *, char*, unsigned int), void *userdata);

Description

This function installs callbacks to be used during the execution of LOAD DATA LOCAL INFILE
statements. It enables application programs to exert control over local (client-side) data file reading.
The arguments are the connection handler, a set of pointers to callback functions, and a pointer to a
data area that the callbacks can use to share information.

To use mysql_set_local_infile_handler(), you must write the following callback functions:

int
local_infile_init(void **ptr, const char *filename, void *userdata);

The initialization function. This is called once to do any setup necessary, open the data file, allocate
data structures, and so forth. The first void** argument is a pointer to a pointer. You can set the
pointer (that is, *ptr) to a value that will be passed to each of the other callbacks (as a void*). The
callbacks can use this pointed-to value to maintain state information. The userdata argument is the
same value that is passed to mysql_set_local_infile_handler().

The initialization function should return zero for success, nonzero for an error.

int
local_infile_read(void *ptr, char *buf, unsigned int buf_len);

The data-reading function. This is called repeatedly to read the data file. buf points to the buffer where
the read data is stored, and buf_len is the maximum number of bytes that the callback can read and
store in the buffer. (It can read fewer bytes, but should not read more.)

The return value is the number of bytes read, or zero when no more data could be read (this indicates
EOF). Return a value less than zero if an error occurs.

void
local_infile_end(void *ptr)

The termination function. This is called once after local_infile_read() has returned zero (EOF)
or an error. Within this function, deallocate any memory allocated by local_infile_init() and
perform any other cleanup necessary. It is invoked even if the initialization function returns an error.



C API Function Descriptions

2700

int
local_infile_error(void *ptr,
                   char *error_msg,
                   unsigned int error_msg_len);

The error-handling function. This is called to get a textual error message to return to the user in case
any of your other functions returns an error. error_msg points to the buffer into which the message is
written, and error_msg_len is the length of the buffer. Write the message as a null-terminated string,
at most error_msg_len−1 bytes long.

The return value is the error number.

Typically, the other callbacks store the error message in the data structure pointed to by ptr, so that
local_infile_error() can copy the message from there into error_msg.

After calling mysql_set_local_infile_handler() in your C code and passing pointers
to your callback functions, you can then issue a LOAD DATA LOCAL INFILE statement (for
example, by using mysql_query()). The client library automatically invokes your callbacks. The
file name specified in LOAD DATA LOCAL INFILE will be passed as the second parameter to the
local_infile_init() callback.

Return Values

None.

Errors

None.

23.8.7.64 mysql_set_server_option()

int mysql_set_server_option(MYSQL *mysql, enum enum_mysql_set_option option)

Description

Enables or disables an option for the connection. option can have one of the following values.

Option Description

MYSQL_OPTION_MULTI_STATEMENTS_ON Enable multiple-statement support

MYSQL_OPTION_MULTI_STATEMENTS_OFF Disable multiple-statement support

If you enable multiple-statement support, you should retrieve results from calls to mysql_query()
or mysql_real_query() by using a loop that calls mysql_next_result() to determine whether
there are more results. For an example, see Section 23.8.17, “C API Support for Multiple Statement
Execution”.

Enabling multiple-statement support with MYSQL_OPTION_MULTI_STATEMENTS_ON does not
have quite the same effect as enabling it by passing the CLIENT_MULTI_STATEMENTS flag to
mysql_real_connect(): CLIENT_MULTI_STATEMENTS also enables CLIENT_MULTI_RESULTS.
If you are using the CALL SQL statement in your programs, multiple-result support must be enabled;
this means that MYSQL_OPTION_MULTI_STATEMENTS_ON by itself is insufficient to permit the use of
CALL.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC



C API Function Descriptions

2701

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• ER_UNKNOWN_COM_ERROR

The server did not support mysql_set_server_option() (which is the case that the server is
older than 4.1.1) or the server did not support the option one tried to set.

23.8.7.65 mysql_shutdown()

int mysql_shutdown(MYSQL *mysql, enum mysql_enum_shutdown_level
shutdown_level)

Description

Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.
MySQL servers support only one type of shutdown; shutdown_level must be equal to
SHUTDOWN_DEFAULT. Dynamically linked executables which have been compiled with older versions
of the libmysqlclient headers and call mysql_shutdown() need to be used with the old
libmysqlclient dynamic library.

The shutdown process is described in Section 5.1.12, “The Server Shutdown Process”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.66 mysql_sqlstate()

const char *mysql_sqlstate(MYSQL *mysql)

Description

Returns a null-terminated string containing the SQLSTATE error code for the most recently executed
SQL statement. The error code consists of five characters. '00000' means “no error.” The values are
specified by ANSI SQL and ODBC. For a list of possible values, see Appendix B, Errors, Error Codes,
and Common Problems.



C API Function Descriptions

2702

SQLSTATE values returned by mysql_sqlstate() differ from MySQL-specific error numbers
returned by mysql_errno(). For example, the mysql client program displays errors using the
following format, where 1146 is the mysql_errno() value and '42S02' is the corresponding
mysql_sqlstate() value:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Not all MySQL error numbers are mapped to SQLSTATE error codes. The value 'HY000' (general
error) is used for unmapped error numbers.

If you call mysql_sqlstate() after mysql_real_connect() fails, mysql_sqlstate() might not
return a useful value. For example, this happens if a host is blocked by the server and the connection is
closed without any SQLSTATE value being sent to the client.

Return Values

A null-terminated character string containing the SQLSTATE error code.

See Also

See Section 23.8.7.14, “mysql_errno()”, Section 23.8.7.15, “mysql_error()”, and Section 23.8.11.27,
“mysql_stmt_sqlstate()”.

23.8.7.67 mysql_ssl_set()

my_bool mysql_ssl_set(MYSQL *mysql, const char *key, const char *cert, const
char *ca, const char *capath, const char *cipher)

Description

mysql_ssl_set() is used for establishing secure connections using SSL. It must be called before
mysql_real_connect().

mysql_ssl_set() does nothing unless SSL support is enabled in the client library.

Arguments:

• mysql: The connection handler returned from mysql_init().

• key: The path name to the key file

• cert: The path name to the certificate file

• ca: The path name to the certificate authority file

• capath: The path name to a directory that contains trusted SSL CA certificates in PEM format

• cipher: A list of permissible ciphers to use for SSL encryption

The mysql argument must be a valid connection handler. Any unused SSL arguments may be given
as NULL.

Return Values

This function always returns 0. If SSL setup is incorrect, a subsequent mysql_real_connect() call
returns an error when you attempt to connect.

Enforcing an Encrypted Connection

mysql_ssl_set() specifies SSL information such as certificate and key files for establishing a
secure connection if such connections are available, but does not enforce any requirement that the



C API Function Descriptions

2703

connection obtained be secure. To require an encrypted connection, the standard MySQL client
programs use the following technique, which can also be used by third-party applications:

1. If the --ssl-mode=REQUIRED command-line option was specified, turn on SSL by calling
mysql_ssl_set() to supply the appropriate SSL values. In addition, call mysql_options(),
passing the MYSQL_OPT_SSL_MODE option with a value of SSL_MODE_REQUIRED. If the
mysql_options() call fails, exit with an error.

2. Call mysql_real_connect() to connect to the server, then call mysql_get_ssl_cipher() to
check whether the resulting connection is encrypted. If not, exit with an error.

MySQL clients implement this technique using a wrapper function named
mysql_connect_ssl_check() to establish and check the connection, rather than calling
mysql_real_connect() directly. To see how this works, look in the client directory of
a MySQL source distribution at the source for any of the standard MySQL clients, as well as
the client_priv.h file that contains the mysql_connect_ssl_check() wrapper function
implementation. A call to mysql_connect_ssl_check() takes arguments like the arguments
to mysql_real_connect(), plus an extra argument indicating whether to require an encrypted
connection:

if (!mysql_connect_ssl_check(&mysql, host, user, pass, db,
                             port, sock, flags,
                             opt_ssl_required))
{
  /* failure: connection not obtained, or not secure if required to be */
}
else
{
  /* success: connection obtained, secure if required to be */
}

Version notes:

• In MySQL 5.5.49, the --ssl-mode=REQUIRED command-line option was backported
from MySQL 5.7 to MySQL 5.5. Clients are required to check for themselves, after calling
mysql_real_connect(), whether the connection is encrypted, and fail if not. To do this, call
mysql_get_ssl_cipher().

• In MySQL 5.5.55, the MYSQL_OPT_SSL_MODE option for mysql_options() was backported from
MySQL 5.7 to MySQL 5.5. A call to mysql_options() to set MYSQL_OPT_SSL_MODE option to
value of SSL_MODE_REQUIRED suffices to cause mysql_real_connect() to fail if the connection
is not encrypted. mysql_get_ssl_cipher(). can still be called after connecting, although it is not
necessary to do so.

Important

In MySQL 5.5, the minor C API version number was not incremented for
this change. Application programs compiled for MySQL 5.5 that require
MYSQL_OPT_SSL_MODE may fail to operate properly if the dynamic loader
provides an older client library without MYSQL_OPT_SSL_MODE. Such
applications must be written to handle this possibility by checking whether the
mysql_options() call succeeds or fails.

23.8.7.68 mysql_stat()

const char *mysql_stat(MYSQL *mysql)

Description

Returns a character string containing information similar to that provided by the mysqladmin status
command. This includes uptime in seconds and the number of running threads, questions, reloads, and
open tables.



C API Function Descriptions

2704

Return Values

A character string describing the server status. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.69 mysql_store_result()

MYSQL_RES *mysql_store_result(MYSQL *mysql)

Description

After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result()
or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW,
DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after
you are done with the result set.

You need not call mysql_store_result() or mysql_use_result() for other statements,
but it does not do any harm or cause any notable performance degradation if you call
mysql_store_result() in all cases. You can detect whether the statement has a result set by
checking whether mysql_store_result() returns a nonzero value (more about this later).

If you enable multiple-statement support, you should retrieve results from calls to mysql_query()
or mysql_real_query() by using a loop that calls mysql_next_result() to determine whether
there are more results. For an example, see Section 23.8.17, “C API Support for Multiple Statement
Execution”.

If you want to know whether a statement should return a result set, you can use
mysql_field_count() to check for this. See Section 23.8.7.22, “mysql_field_count()”.

mysql_store_result() reads the entire result of a query to the client, allocates a MYSQL_RES
structure, and places the result into this structure.

mysql_store_result() returns a null pointer if the statement did not return a result set (for
example, if it was an INSERT statement).

mysql_store_result() also returns a null pointer if reading of the result set failed. You can
check whether an error occurred by checking whether mysql_error() returns a nonempty string,
mysql_errno() returns nonzero, or mysql_field_count() returns zero.

An empty result set is returned if there are no rows returned. (An empty result set differs from a null
pointer as a return value.)

After you have called mysql_store_result() and gotten back a result that is not a null pointer, you
can call mysql_num_rows() to find out how many rows are in the result set.



C API Function Descriptions

2705

You can call mysql_fetch_row() to fetch rows from the result set, or mysql_row_seek() and
mysql_row_tell() to obtain or set the current row position within the result set.

See Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query()
Returns Success”.

Return Values

A MYSQL_RES result structure with the results. NULL (0) if an error occurred.

Errors

mysql_store_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.70 mysql_thread_id()

unsigned long mysql_thread_id(MYSQL *mysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument to
mysql_kill() to kill the thread.

If the connection is lost and you reconnect with mysql_ping(), the thread ID changes. This means
you should not get the thread ID and store it for later. You should get it when you need it.

Note

This function does not work correctly if thread IDs become larger than
32 bits, which can occur on some systems. To avoid problems with
mysql_thread_id(), do not use it. To get the connection ID, execute a
SELECT CONNECTION_ID() query and retrieve the result.

Return Values

The thread ID of the current connection.

Errors

None.

23.8.7.71 mysql_use_result()



C API Function Descriptions

2706

MYSQL_RES *mysql_use_result(MYSQL *mysql)

Description

After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result()
or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW,
DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after
you are done with the result set.

mysql_use_result() initiates a result set retrieval but does not actually read the result set into the
client like mysql_store_result() does. Instead, each row must be retrieved individually by making
calls to mysql_fetch_row(). This reads the result of a query directly from the server without storing
it in a temporary table or local buffer, which is somewhat faster and uses much less memory than
mysql_store_result(). The client allocates memory only for the current row and a communication
buffer that may grow up to max_allowed_packet bytes.

On the other hand, you should not use mysql_use_result() for locking reads if you are doing a lot
of processing for each row on the client side, or if the output is sent to a screen on which the user may
type a ^S (stop scroll). This ties up the server and prevent other threads from updating any tables from
which the data is being fetched.

When using mysql_use_result(), you must execute mysql_fetch_row() until a NULL value is
returned, otherwise, the unfetched rows are returned as part of the result set for your next query. The C
API gives the error Commands out of sync; you can't run this command now if you forget
to do this!

You may not use mysql_data_seek(), mysql_row_seek(), mysql_row_tell(),
mysql_num_rows(), or mysql_affected_rows() with a result returned from
mysql_use_result(), nor may you issue other queries until mysql_use_result() has finished.
(However, after you have fetched all the rows, mysql_num_rows() accurately returns the number of
rows fetched.)

You must call mysql_free_result() once you are done with the result set.

When using the libmysqld embedded server, the memory benefits are essentially lost because
memory usage incrementally increases with each row retrieved until mysql_free_result() is
called.

Return Values

A MYSQL_RES result structure. NULL if an error occurred.

Errors

mysql_use_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.



C API Prepared Statements

2707

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.7.72 mysql_warning_count()

unsigned int mysql_warning_count(MYSQL *mysql)

Description

Returns the number of errors, warnings, and notes generated during execution of the previous SQL
statement.

Return Values

The warning count.

Errors

None.

23.8.8 C API Prepared Statements

The MySQL client/server protocol provides for the use of prepared statements. This capability uses
the MYSQL_STMT statement handler data structure returned by the mysql_stmt_init() initialization
function. Prepared execution is an efficient way to execute a statement more than once. The statement
is first parsed to prepare it for execution. Then it is executed one or more times at a later time, using
the statement handler returned by the initialization function.

Prepared execution is faster than direct execution for statements executed more than once, primarily
because the query is parsed only once. In the case of direct execution, the query is parsed every time
it is executed. Prepared execution also can provide a reduction of network traffic because for each
execution of the prepared statement, it is necessary only to send the data for the parameters.

Prepared statements might not provide a performance increase in some situations. For best results,
test your application both with prepared and nonprepared statements and choose whichever yields
best performance.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

For a list of SQL statements that can be used as prepared statements, see Section 13.5, “Prepared
SQL Statement Syntax”.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 13.5.4, “Automatic Prepared Statement Repreparation”.

23.8.9 C API Prepared Statement Data Structures

Prepared statements use several data structures:

• To obtain a statement handler, pass a MYSQL connection handler to mysql_stmt_init(), which
returns a pointer to a MYSQL_STMT data structure. This structure is used for further operations with
the statement. To specify the statement to prepare, pass the MYSQL_STMT pointer and the statement
string to mysql_stmt_prepare().

• To provide input parameters for a prepared statement, set up MYSQL_BIND structures and pass
them to mysql_stmt_bind_param(). To receive output column values, set up MYSQL_BIND
structures and pass them to mysql_stmt_bind_result().



C API Prepared Statement Data Structures

2708

• The MYSQL_TIME structure is used to transfer temporal data in both directions.

The following discussion describes the prepared statement data types in detail. For examples that
show how to use them, see Section 23.8.11.10, “mysql_stmt_execute()”, and Section 23.8.11.11,
“mysql_stmt_fetch()”.

•  MYSQL_STMT

This structure is a handler for a prepared statement. A handler is created by calling
mysql_stmt_init(), which returns a pointer to a MYSQL_STMT. The handler is used for all
subsequent operations with the statement until you close it with mysql_stmt_close(), at which
point the handler becomes invalid and should no longer be used.

The MYSQL_STMT structure has no members intended for application use. Applications should not try
to copy a MYSQL_STMT structure. There is no guarantee that such a copy will be usable.

Multiple statement handlers can be associated with a single connection. The limit on the number of
handlers depends on the available system resources.

•  MYSQL_BIND

This structure is used both for statement input (data values sent to the server) and output (result
values returned from the server):

• For input, use MYSQL_BIND structures with mysql_stmt_bind_param() to bind parameter data
values to buffers for use by mysql_stmt_execute().

• For output, use MYSQL_BIND structures with mysql_stmt_bind_result() to bind buffers to
result set columns, for use in fetching rows with mysql_stmt_fetch().

To use a MYSQL_BIND structure, zero its contents to initialize it, then set its members appropriately.
For example, to declare and initialize an array of three MYSQL_BIND structures, use this code:

MYSQL_BIND bind[3];
memset(bind, 0, sizeof(bind));

The MYSQL_BIND structure contains the following members for use by application programs. For
several of the members, the manner of use depends on whether the structure is used for input or
output.

• enum enum_field_types buffer_type

The type of the buffer. This member indicates the data type of the C language variable bound
to a statement parameter or result set column. For input, buffer_type indicates the type
of the variable containing the value to be sent to the server. For output, it indicates the type
of the variable into which a value received from the server should be stored. For permissible
buffer_type values, see Section 23.8.9.1, “C API Prepared Statement Type Codes”.

• void *buffer

A pointer to the buffer to be used for data transfer. This is the address of a C language variable.

For input, buffer is a pointer to the variable in which you store the data value for a statement
parameter. When you call mysql_stmt_execute(), MySQL use the value stored in the variable
in place of the corresponding parameter marker in the statement (specified with ? in the statement
string).

For output, buffer is a pointer to the variable in which to return a result set column value. When
you call mysql_stmt_fetch(), MySQL stores a column value from the current row of the result
set in this variable. You can access the value when the call returns.



C API Prepared Statement Data Structures

2709

To minimize the need for MySQL to perform type conversions between C language values on the
client side and SQL values on the server side, use C variables that have types similar to those of
the corresponding SQL values:

• For numeric data types, buffer should point to a variable of the proper numeric C type.
For integer variables (which can be char for single-byte values or an integer type for larger
values), you should also indicate whether the variable has the unsigned attribute by setting the
is_unsigned member, described later.

• For character (nonbinary) and binary string data types, buffer should point to a character
buffer.

• For date and time data types, buffer should point to a MYSQL_TIME structure.

For guidelines about mapping between C types and SQL types and notes about type conversions,
see Section 23.8.9.1, “C API Prepared Statement Type Codes”, and Section 23.8.9.2, “C API
Prepared Statement Type Conversions”.

• unsigned long buffer_length

The actual size of *buffer in bytes. This indicates the maximum amount of data that can be
stored in the buffer. For character and binary C data, the buffer_length value specifies the
length of *buffer when used with mysql_stmt_bind_param() to specify input values, or
the maximum number of output data bytes that can be fetched into the buffer when used with
mysql_stmt_bind_result().

• unsigned long *length

A pointer to an unsigned long variable that indicates the actual number of bytes of data stored
in *buffer. length is used for character or binary C data.

For input parameter data binding, set *length to indicate the actual length of the parameter value
stored in *buffer. This is used by mysql_stmt_execute().

For output value binding, MySQL sets *length when you call mysql_stmt_fetch(). The
mysql_stmt_fetch() return value determines how to interpret the length:

• If the return value is 0, *length indicates the actual length of the parameter value.

• If the return value is MYSQL_DATA_TRUNCATED, *length indicates the nontruncated length of
the parameter value. In this case, the minimum of *length and buffer_length indicates the
actual length of the value.

length is ignored for numeric and temporal data types because the buffer_type value
determines the length of the data value.

If you must determine the length of a returned value before fetching it, see Section 23.8.11.11,
“mysql_stmt_fetch()”, for some strategies.

• my_bool *is_null

This member points to a my_bool variable that is true if a value is NULL, false if it is not NULL.
For input, set *is_null to true to indicate that you are passing a NULL value as a statement
parameter.

is_null is a pointer to a boolean scalar, not a boolean scalar, to provide flexibility in how you
specify NULL values:

• If your data values are always NULL, use MYSQL_TYPE_NULL as the buffer_type value when
you bind the column. The other MYSQL_BIND members, including is_null, do not matter.



C API Prepared Statement Data Structures

2710

• If your data values are always NOT NULL, set is_null = (my_bool*) 0, and set the other
members appropriately for the variable you are binding.

• In all other cases, set the other members appropriately and set is_null to the address of a
my_bool variable. Set that variable's value to true or false appropriately between executions to
indicate whether the corresponding data value is NULL or NOT NULL, respectively.

For output, when you fetch a row, MySQL sets the value pointed to by is_null to true or false
according to whether the result set column value returned from the statement is or is not NULL.

• my_bool is_unsigned

This member applies for C variables with data types that can be unsigned (char, short
int, int, long long int). Set is_unsigned to true if the variable pointed to by buffer is
unsigned and false otherwise. For example, if you bind a signed char variable to buffer,
specify a type code of MYSQL_TYPE_TINY and set is_unsigned to false. If you bind an
unsigned char instead, the type code is the same but is_unsigned should be true. (For
char, it is not defined whether it is signed or unsigned, so it is best to be explicit about signedness
by using signed char or unsigned char.)

is_unsigned applies only to the C language variable on the client side. It indicates nothing
about the signedness of the corresponding SQL value on the server side. For example, if you use
an int variable to supply a value for a BIGINT UNSIGNED column, is_unsigned should be
false because int is a signed type. If you use an unsigned int variable to supply a value for
a BIGINT column, is_unsigned should be true because unsigned int is an unsigned type.
MySQL performs the proper conversion between signed and unsigned values in both directions,
although a warning occurs if truncation results.

• my_bool *error

For output, set this member to point to a my_bool variable to have truncation information
for the parameter stored there after a row fetching operation. When truncation reporting is
enabled, mysql_stmt_fetch() returns MYSQL_DATA_TRUNCATED and *error is true in
the MYSQL_BIND structures for parameters in which truncation occurred. Truncation indicates
loss of sign or significant digits, or that a string was too long to fit in a column. Truncation
reporting is enabled by default, but can be controlled by calling mysql_options() with the
MYSQL_REPORT_DATA_TRUNCATION option.

•  MYSQL_TIME

This structure is used to send and receive DATE, TIME, DATETIME, and TIMESTAMP data
directly to and from the server. Set the buffer member to point to a MYSQL_TIME structure,
and set the buffer_type member of a MYSQL_BIND structure to one of the temporal types
(MYSQL_TYPE_TIME, MYSQL_TYPE_DATE, MYSQL_TYPE_DATETIME, MYSQL_TYPE_TIMESTAMP).

The MYSQL_TIME structure contains the members listed in the following table.

Member Description

unsigned int year The year

unsigned int month The month of the year

unsigned int day The day of the month

unsigned int hour The hour of the day

unsigned int minute The minute of the hour

unsigned int second The second of the minute

my_bool neg A boolean flag indicating whether the time is negative



C API Prepared Statement Data Structures

2711

Member Description

unsigned long second_part The fractional part of the second in microseconds; currently
unused

Only those parts of a MYSQL_TIME structure that apply to a given type of temporal value are used.
The year, month, and day elements are used for DATE, DATETIME, and TIMESTAMP values. The
hour, minute, and second elements are used for TIME, DATETIME, and TIMESTAMP values. See
Section 23.8.19, “C API Prepared Statement Handling of Date and Time Values”.

23.8.9.1 C API Prepared Statement Type Codes

The buffer_type member of MYSQL_BIND structures indicates the data type of the C language
variable bound to a statement parameter or result set column. For input, buffer_type indicates the
type of the variable containing the value to be sent to the server. For output, it indicates the type of the
variable into which a value received from the server should be stored.

The following table shows the permissible values for the buffer_type member of MYSQL_BIND
structures for input values sent to the server. The table shows the C variable types that you can use,
the corresponding type codes, and the SQL data types for which the supplied value can be used
without conversion. Choose the buffer_type value according to the data type of the C language
variable that you are binding. For the integer types, you should also set the is_unsigned member to
indicate whether the variable is signed or unsigned.

Input Variable C Type buffer_type Value SQL Type of Destination Value

signed char MYSQL_TYPE_TINY TINYINT

short int MYSQL_TYPE_SHORT SMALLINT

int MYSQL_TYPE_LONG INT

long long int MYSQL_TYPE_LONGLONG BIGINT

float MYSQL_TYPE_FLOAT FLOAT

double MYSQL_TYPE_DOUBLE DOUBLE

MYSQL_TIME MYSQL_TYPE_TIME TIME

MYSQL_TIME MYSQL_TYPE_DATE DATE

MYSQL_TIME MYSQL_TYPE_DATETIME DATETIME

MYSQL_TIME MYSQL_TYPE_TIMESTAMP TIMESTAMP

char[] MYSQL_TYPE_STRING TEXT, CHAR, VARCHAR

char[] MYSQL_TYPE_BLOB BLOB, BINARY, VARBINARY

 MYSQL_TYPE_NULL NULL

Use MYSQL_TYPE_NULL as indicated in the description for the is_null member in Section 23.8.9, “C
API Prepared Statement Data Structures”.

For input string data, use MYSQL_TYPE_STRING or MYSQL_TYPE_BLOB depending on whether the
value is a character (nonbinary) or binary string:

• MYSQL_TYPE_STRING indicates character input string data. The value is assumed to be in the
character set indicated by the character_set_client system variable. If the server stores the
value into a column with a different character set, it converts the value to that character set.

• MYSQL_TYPE_BLOB indicates binary input string data. The value is treated as having the binary
character set. That is, it is treated as a byte string and no conversion occurs.

The following table shows the permissible values for the buffer_type member of MYSQL_BIND
structures for output values received from the server. The table shows the SQL types of received
values, the corresponding type codes that such values have in result set metadata, and the



C API Prepared Statement Data Structures

2712

recommended C language data types to bind to the MYSQL_BIND structure to receive the SQL values
without conversion. Choose the buffer_type value according to the data type of the C language
variable that you are binding. For the integer types, you should also set the is_unsigned member to
indicate whether the variable is signed or unsigned.

SQL Type of Received
Value

buffer_type Value Output Variable C Type

TINYINT MYSQL_TYPE_TINY signed char

SMALLINT MYSQL_TYPE_SHORT short int

MEDIUMINT MYSQL_TYPE_INT24 int

INT MYSQL_TYPE_LONG int

BIGINT MYSQL_TYPE_LONGLONG long long int

FLOAT MYSQL_TYPE_FLOAT float

DOUBLE MYSQL_TYPE_DOUBLE double

DECIMAL MYSQL_TYPE_NEWDECIMAL char[]

YEAR MYSQL_TYPE_SHORT short int

TIME MYSQL_TYPE_TIME MYSQL_TIME

DATE MYSQL_TYPE_DATE MYSQL_TIME

DATETIME MYSQL_TYPE_DATETIME MYSQL_TIME

TIMESTAMP MYSQL_TYPE_TIMESTAMP MYSQL_TIME

CHAR, BINARY MYSQL_TYPE_STRING char[]

VARCHAR, VARBINARY MYSQL_TYPE_VAR_STRING char[]

TINYBLOB, TINYTEXT MYSQL_TYPE_TINY_BLOB char[]

BLOB, TEXT MYSQL_TYPE_BLOB char[]

MEDIUMBLOB, MEDIUMTEXT MYSQL_TYPE_MEDIUM_BLOB char[]

LONGBLOB, LONGTEXT MYSQL_TYPE_LONG_BLOB char[]

BIT MYSQL_TYPE_BIT char[]

23.8.9.2 C API Prepared Statement Type Conversions

Prepared statements transmit data between the client and server using C language variables on the
client side that correspond to SQL values on the server side. If there is a mismatch between the C
variable type on the client side and the corresponding SQL value type on the server side, MySQL
performs implicit type conversions in both directions.

MySQL knows the type code for the SQL value on the server side. The buffer_type value in the
MYSQL_BIND structure indicates the type code of the C variable that holds the value on the client
side. The two codes together tell MySQL what conversion must be performed, if any. Here are some
examples:

• If you use MYSQL_TYPE_LONG with an int variable to pass an integer value to the server that is to
be stored into a FLOAT column, MySQL converts the value to floating-point format before storing it.

• If you fetch an SQL MEDIUMINT column value, but specify a buffer_type value of
MYSQL_TYPE_LONGLONG and use a C variable of type long long int as the destination buffer,
MySQL converts the MEDIUMINT value (which requires less than 8 bytes) for storage into the long
long int (an 8-byte variable).

• If you fetch a numeric column with a value of 255 into a char[4] character array and specify a
buffer_type value of MYSQL_TYPE_STRING, the resulting value in the array is a 4-byte string
'255\0'.



C API Prepared Statement Function Overview

2713

• MySQL returns DECIMAL values as the string representation of the original server-side value,
which is why the corresponding C type is char[]. For example, 12.345 is returned to the client as
'12.345'. If you specify MYSQL_TYPE_NEWDECIMAL and bind a string buffer to the MYSQL_BIND
structure, mysql_stmt_fetch() stores the value in the buffer as a string without conversion. If
instead you specify a numeric variable and type code, mysql_stmt_fetch() converts the string-
format DECIMAL value to numeric form.

• For the MYSQL_TYPE_BIT type code, BIT values are returned into a string buffer, which is why the
corresponding C type is char[]. The value represents a bit string that requires interpretation on the
client side. To return the value as a type that is easier to deal with, you can cause the value to be
cast to integer using either of the following types of expressions:

SELECT bit_col + 0 FROM t
SELECT CAST(bit_col AS UNSIGNED) FROM t

To retrieve the value, bind an integer variable large enough to hold the value and specify the
appropriate corresponding integer type code.

Before binding variables to the MYSQL_BIND structures that are to be used for fetching column
values, you can check the type codes for each column of the result set. This might be desirable if you
want to determine which variable types would be best to use to avoid type conversions. To get the
type codes, call mysql_stmt_result_metadata() after executing the prepared statement with
mysql_stmt_execute(). The metadata provides access to the type codes for the result set as
described in Section 23.8.11.23, “mysql_stmt_result_metadata()”, and Section 23.8.5, “C API Data
Structures”.

To determine whether output string values in a result set returned from the server contain binary
or nonbinary data, check whether the charsetnr value of the result set metadata is 63 (see
Section 23.8.5, “C API Data Structures”). If so, the character set is binary, which indicates binary
rather than nonbinary data. This enables you to distinguish BINARY from CHAR, VARBINARY from
VARCHAR, and the BLOB types from the TEXT types.

If you cause the max_length member of the MYSQL_FIELD column metadata structures to be set
(by calling mysql_stmt_attr_set()), be aware that the max_length values for the result set
indicate the lengths of the longest string representation of the result values, not the lengths of the
binary representation. That is, max_length does not necessarily correspond to the size of the buffers
needed to fetch the values with the binary protocol used for prepared statements. Choose the size
of the buffers according to the types of the variables into which you fetch the values. For example,
a TINYINT column containing the value -128 might have a max_length value of 4. But the binary
representation of any TINYINT value requires only 1 byte for storage, so you can supply a signed
char variable in which to store the value and set is_unsigned to indicate that values are signed.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 13.5.4, “Automatic Prepared Statement Repreparation”.

23.8.10 C API Prepared Statement Function Overview

The following table summarizes the functions available for prepared statement processing. For greater
detail, see the descriptions in Section 23.8.11, “C API Prepared Statement Function Descriptions”.

Function Description

mysql_stmt_affected_rows()Returns the number of rows changed, deleted, or inserted by
prepared UPDATE, DELETE, or INSERT statement

mysql_stmt_attr_get() Gets value of an attribute for a prepared statement

mysql_stmt_attr_set() Sets an attribute for a prepared statement

mysql_stmt_bind_param() Associates application data buffers with the parameter markers in a
prepared SQL statement



C API Prepared Statement Function Overview

2714

Function Description

mysql_stmt_bind_result() Associates application data buffers with columns in a result set

mysql_stmt_close() Frees memory used by a prepared statement

mysql_stmt_data_seek() Seeks to an arbitrary row number in a statement result set

mysql_stmt_errno() Returns the error number for the last statement execution

mysql_stmt_error() Returns the error message for the last statement execution

mysql_stmt_execute() Executes a prepared statement

mysql_stmt_fetch() Fetches the next row of data from a result set and returns data for all
bound columns

mysql_stmt_fetch_column()Fetch data for one column of the current row of a result set

mysql_stmt_field_count() Returns the number of result columns for the most recent statement

mysql_stmt_free_result() Free the resources allocated to a statement handler

mysql_stmt_init() Allocates memory for a MYSQL_STMT structure and initializes it

mysql_stmt_insert_id() Returns the ID generated for an AUTO_INCREMENT column by a
prepared statement

mysql_stmt_next_result() Returns/initiates the next result in a multiple-result execution

mysql_stmt_num_rows() Returns the row count from a buffered statement result set

mysql_stmt_param_count() Returns the number of parameters in a prepared statement

mysql_stmt_param_metadata()(Return parameter metadata in the form of a result set) This function
does nothing

mysql_stmt_prepare() Prepares an SQL statement string for execution

mysql_stmt_reset() Resets the statement buffers in the server

mysql_stmt_result_metadata()Returns prepared statement metadata in the form of a result set

mysql_stmt_row_seek() Seeks to a row offset in a statement result set, using value returned
from mysql_stmt_row_tell()

mysql_stmt_row_tell() Returns the statement row cursor position

mysql_stmt_send_long_data()Sends long data in chunks to server

mysql_stmt_sqlstate() Returns the SQLSTATE error code for the last statement execution

mysql_stmt_store_result()Retrieves a complete result set to the client

Call mysql_stmt_init() to create a statement handler, then mysql_stmt_prepare()
to prepare the statement string, mysql_stmt_bind_param() to supply the parameter
data, and mysql_stmt_execute() to execute the statement. You can repeat the
mysql_stmt_execute() by changing parameter values in the respective buffers supplied through
mysql_stmt_bind_param().

You can send text or binary data in chunks to server using mysql_stmt_send_long_data(). See
Section 23.8.11.26, “mysql_stmt_send_long_data()”.

If the statement is a SELECT or any other statement that produces a result set,
mysql_stmt_prepare() also returns the result set metadata information in the form of a
MYSQL_RES result set through mysql_stmt_result_metadata().

You can supply the result buffers using mysql_stmt_bind_result(), so that the
mysql_stmt_fetch() automatically returns data to these buffers. This is row-by-row fetching.

When statement execution has been completed, close the statement handler using
mysql_stmt_close() so that all resources associated with it can be freed. At that point the handler
becomes invalid and should no longer be used.



C API Prepared Statement Function Overview

2715

If you obtained a SELECT statement's result set metadata by calling
mysql_stmt_result_metadata(), you should also free the metadata using
mysql_free_result().

Execution Steps

To prepare and execute a statement, an application follows these steps:

1. Create a prepared statement handler with mysql_stmt_init(). To prepare the statement on the
server, call mysql_stmt_prepare() and pass it a string containing the SQL statement.

2. If the statement will produce a result set, call mysql_stmt_result_metadata() to obtain the
result set metadata. This metadata is itself in the form of result set, albeit a separate one from the
one that contains the rows returned by the query. The metadata result set indicates how many
columns are in the result and contains information about each column.

3. Set the values of any parameters using mysql_stmt_bind_param(). All parameters must be
set. Otherwise, statement execution returns an error or produces unexpected results.

4. Call mysql_stmt_execute() to execute the statement.

5. If the statement produces a result set, bind the data buffers to use for retrieving the row values by
calling mysql_stmt_bind_result().

6. Fetch the data into the buffers row by row by calling mysql_stmt_fetch() repeatedly until no
more rows are found.

7. Repeat steps 3 through 6 as necessary, by changing the parameter values and re-executing the
statement.

When mysql_stmt_prepare() is called, the MySQL client/server protocol performs these actions:

• The server parses the statement and sends the okay status back to the client by assigning a
statement ID. It also sends total number of parameters, a column count, and its metadata if it is a
result set oriented statement. All syntax and semantics of the statement are checked by the server
during this call.

• The client uses this statement ID for the further operations, so that the server can identify the
statement from among its pool of statements.

When mysql_stmt_execute() is called, the MySQL client/server protocol performs these actions:

• The client uses the statement handler and sends the parameter data to the server.

• The server identifies the statement using the ID provided by the client, replaces the parameter
markers with the newly supplied data, and executes the statement. If the statement produces a result
set, the server sends the data back to the client. Otherwise, it sends an okay status and the number
of rows changed, deleted, or inserted.

When mysql_stmt_fetch() is called, the MySQL client/server protocol performs these actions:

• The client reads the data from the current row of the result set and places it into the application data
buffers by doing the necessary conversions. If the application buffer type is same as that of the field
type returned from the server, the conversions are straightforward.

If an error occurs, you can get the statement error number, error message, and SQLSTATE code using
mysql_stmt_errno(), mysql_stmt_error(), and mysql_stmt_sqlstate(), respectively.

Prepared Statement Logging

For prepared statements that are executed with the mysql_stmt_prepare() and
mysql_stmt_execute() C API functions, the server writes Prepare and Execute lines to the
general query log so that you can tell when statements are prepared and executed.



C API Prepared Statement Function Descriptions

2716

Suppose that you prepare and execute a statement as follows:

1. Call mysql_stmt_prepare() to prepare the statement string "SELECT ?".

2. Call mysql_stmt_bind_param() to bind the value 3 to the parameter in the prepared statement.

3. Call mysql_stmt_execute() to execute the prepared statement.

As a result of the preceding calls, the server writes the following lines to the general query log:

Prepare  [1] SELECT ?
Execute  [1] SELECT 3

Each Prepare and Execute line in the log is tagged with a [N] statement identifier so that you can
keep track of which prepared statement is being logged. N is a positive integer. If there are multiple
prepared statements active simultaneously for the client, N may be greater than 1. Each Execute lines
shows a prepared statement after substitution of data values for ? parameters.

23.8.11 C API Prepared Statement Function Descriptions

To prepare and execute queries, use the functions described in detail in the following sections.

All functions that operate with a MYSQL_STMT structure begin with the prefix mysql_stmt_.

To create a MYSQL_STMT handler, use the mysql_stmt_init() function.

23.8.11.1 mysql_stmt_affected_rows()

my_ulonglong mysql_stmt_affected_rows(MYSQL_STMT *stmt)

Description

mysql_stmt_affected_rows() may be called immediately after executing a statement with
mysql_stmt_execute(). It is like mysql_affected_rows() but for prepared statements. For
a description of what the affected-rows value returned by this function means, See Section 23.8.7.1,
“mysql_affected_rows()”.

Errors

None.

Example

See the Example in Section 23.8.11.10, “mysql_stmt_execute()”.

23.8.11.2 mysql_stmt_attr_get()

my_bool mysql_stmt_attr_get(MYSQL_STMT *stmt, enum enum_stmt_attr_type
option, void *arg)

Description

Can be used to get the current value for a statement attribute.

The option argument is the option that you want to get; the arg should point to a variable that should
contain the option value. If the option is an integer, arg should point to the value of the integer.

See Section 23.8.11.3, “mysql_stmt_attr_set()”, for a list of options and option types.

Return Values

Zero for success. Nonzero if option is unknown.



C API Prepared Statement Function Descriptions

2717

Errors

None.

23.8.11.3 mysql_stmt_attr_set()

my_bool mysql_stmt_attr_set(MYSQL_STMT *stmt, enum enum_stmt_attr_type
option, const void *arg)

Description

Can be used to affect behavior for a prepared statement. This function may be called multiple times to
set several options.

The option argument is the option that you want to set. The arg argument is the value for the option.
arg should point to a variable that is set to the desired attribute value. The variable type is as indicated
in the following table.

The following table shows the possible option values.

Option Argument Type Function

STMT_ATTR_UPDATE_MAX_LENGTH my_bool * If set to 1, causes
mysql_stmt_store_result() to
update the metadata MYSQL_FIELD-
>max_length value.

STMT_ATTR_CURSOR_TYPE unsigned long
*

Type of cursor to open for statement
when mysql_stmt_execute()
is invoked. *arg can be
CURSOR_TYPE_NO_CURSOR
(the default) or
CURSOR_TYPE_READ_ONLY.

STMT_ATTR_PREFETCH_ROWS unsigned long
*

Number of rows to fetch from server
at a time when using a cursor. *arg
can be in the range from 1 to the
maximum value of unsigned long.
The default is 1.

If you use the STMT_ATTR_CURSOR_TYPE option with CURSOR_TYPE_READ_ONLY, a cursor is
opened for the statement when you invoke mysql_stmt_execute(). If there is already an open
cursor from a previous mysql_stmt_execute() call, it closes the cursor before opening a new one.
mysql_stmt_reset() also closes any open cursor before preparing the statement for re-execution.
mysql_stmt_free_result() closes any open cursor.

If you open a cursor for a prepared statement, mysql_stmt_store_result() is unnecessary,
because that function causes the result set to be buffered on the client side.

Return Values

Zero for success. Nonzero if option is unknown.

Errors

None.

Example

The following example opens a cursor for a prepared statement and sets the number of rows to fetch at
a time to 5:



C API Prepared Statement Function Descriptions

2718

MYSQL_STMT *stmt;
int rc;
unsigned long type;
unsigned long prefetch_rows = 5;

stmt = mysql_stmt_init(mysql);
type = (unsigned long) CURSOR_TYPE_READ_ONLY;
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_CURSOR_TYPE, (void*) &type);
/* ... check return value ... */
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_PREFETCH_ROWS,
                         (void*) &prefetch_rows);
/* ... check return value ... */

23.8.11.4 mysql_stmt_bind_param()

my_bool mysql_stmt_bind_param(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_param() is used to bind input data for the parameter markers in the SQL
statement that was passed to mysql_stmt_prepare(). It uses MYSQL_BIND structures to supply the
data. bind is the address of an array of MYSQL_BIND structures. The client library expects the array to
contain one element for each ? parameter marker that is present in the query.

Suppose that you prepare the following statement:

INSERT INTO mytbl VALUES(?,?,?)

When you bind the parameters, the array of MYSQL_BIND structures must contain three elements, and
can be declared like this:

MYSQL_BIND bind[3];

Section 23.8.9, “C API Prepared Statement Data Structures”, describes the members of each
MYSQL_BIND element and how they should be set to provide input values.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is invalid or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 23.8.11.10, “mysql_stmt_execute()”.

23.8.11.5 mysql_stmt_bind_result()

my_bool mysql_stmt_bind_result(MYSQL_STMT *stmt, MYSQL_BIND *bind)



C API Prepared Statement Function Descriptions

2719

Description

mysql_stmt_bind_result() is used to associate (that is, bind) output columns in the result set
to data buffers and length buffers. When mysql_stmt_fetch() is called to fetch data, the MySQL
client/server protocol places the data for the bound columns into the specified buffers.

All columns must be bound to buffers prior to calling mysql_stmt_fetch(). bind is the
address of an array of MYSQL_BIND structures. The client library expects the array to contain one
element for each column of the result set. If you do not bind columns to MYSQL_BIND structures,
mysql_stmt_fetch() simply ignores the data fetch. The buffers should be large enough to hold the
data values, because the protocol does not return data values in chunks.

A column can be bound or rebound at any time, even after a result set has been partially retrieved.
The new binding takes effect the next time mysql_stmt_fetch() is called. Suppose that an
application binds the columns in a result set and calls mysql_stmt_fetch(). The client/server
protocol returns data in the bound buffers. Then suppose that the application binds the columns to a
different set of buffers. The protocol places data into the newly bound buffers when the next call to
mysql_stmt_fetch() occurs.

To bind a column, an application calls mysql_stmt_bind_result() and passes the type, address,
and length of the output buffer into which the value should be stored. Section 23.8.9, “C API Prepared
Statement Data Structures”, describes the members of each MYSQL_BIND element and how they
should be set to receive output values.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is invalid or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 23.8.11.11, “mysql_stmt_fetch()”.

23.8.11.6 mysql_stmt_close()

my_bool mysql_stmt_close(MYSQL_STMT *stmt)

Description

Closes the prepared statement. mysql_stmt_close() also deallocates the statement handler
pointed to by stmt, which at that point becomes invalid and should no longer be used. For a failed
mysql_stmt_close() call, do not call mysql_stmt_error(), or mysql_stmt_errno(), or
mysql_stmt_sqlstate() to obtain error information because mysql_stmt_close() makes the
statement handler invalid. Call mysql_error(), mysql_errno(), or mysql_sqlstate() instead.

If the current statement has pending or unread results, this function cancels them so that the next
query can be executed.



C API Prepared Statement Function Descriptions

2720

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 23.8.11.10, “mysql_stmt_execute()”.

23.8.11.7 mysql_stmt_data_seek()

void mysql_stmt_data_seek(MYSQL_STMT *stmt, my_ulonglong offset)

Description

Seeks to an arbitrary row in a statement result set. The offset value is a row number and should be
in the range from 0 to mysql_stmt_num_rows(stmt)-1.

This function requires that the statement result set structure contains the entire result of the
last executed query, so mysql_stmt_data_seek() may be used only in conjunction with
mysql_stmt_store_result().

Return Values

None.

Errors

None.

23.8.11.8 mysql_stmt_errno()

unsigned int mysql_stmt_errno(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_errno() returns the error code for the most
recently invoked statement API function that can succeed or fail. A return value of zero means that no
error occurred. Client error message numbers are listed in the MySQL errmsg.h header file. Server
error message numbers are listed in mysqld_error.h. Errors also are listed at Appendix B, Errors,
Error Codes, and Common Problems.

If the failed statement API function was mysql_stmt_close(), do not call or mysql_stmt_errno()
to obtain error information because mysql_stmt_close() makes the statement handler invalid. Call
mysql_errno() instead.

Return Values

An error code value. Zero if no error occurred.

Errors

None.



C API Prepared Statement Function Descriptions

2721

23.8.11.9 mysql_stmt_error()

const char *mysql_stmt_error(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_error() returns a null-terminated string
containing the error message for the most recently invoked statement API function that can succeed or
fail. An empty string ("") is returned if no error occurred. Either of these two tests can be used to check
for an error:

if(*mysql_stmt_errno(stmt))
{
  // an error occurred
}

if (mysql_stmt_error(stmt)[0])
{
  // an error occurred
}

If the failed statement API function was mysql_stmt_close(), do not call mysql_stmt_error()
to obtain error information because mysql_stmt_close() makes the statement handler invalid. Call
mysql_error() instead.

The language of the client error messages may be changed by recompiling the MySQL client library.
You can choose error messages in several different languages.

Return Values

A character string that describes the error. An empty string if no error occurred.

Errors

None.

23.8.11.10 mysql_stmt_execute()

int mysql_stmt_execute(MYSQL_STMT *stmt)

Description

mysql_stmt_execute() executes the prepared query associated with the statement handler. The
currently bound parameter marker values are sent to server during this call, and the server replaces the
markers with this newly supplied data.

Statement processing following mysql_stmt_execute() depends on the type of statement:

• For an UPDATE, DELETE, or INSERT, the number of changed, deleted, or inserted rows can be found
by calling mysql_stmt_affected_rows().

• For a statement such as SELECT that generates a result set, you must call mysql_stmt_fetch()
to fetch the data prior to calling any other functions that result in query processing. For more
information on how to fetch the results, refer to Section 23.8.11.11, “mysql_stmt_fetch()”.

Do not following invocation of mysql_stmt_execute() with a call to mysql_store_result()
or mysql_use_result(). Those functions are not intended for processing results from prepared
statements.

For statements that generate a result set, you can request that mysql_stmt_execute() open a
cursor for the statement by calling mysql_stmt_attr_set() before executing the statement. If you
execute a statement multiple times, mysql_stmt_execute() closes any open cursor before opening
a new one.



C API Prepared Statement Function Descriptions

2722

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 13.5.4, “Automatic Prepared Statement Repreparation”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to create and populate a table using mysql_stmt_init(),
mysql_stmt_prepare(), mysql_stmt_param_count(), mysql_stmt_bind_param(),
mysql_stmt_execute(), and mysql_stmt_affected_rows(). The mysql variable is
assumed to be a valid connection handler. For an example that shows how to retrieve data, see
Section 23.8.11.11, “mysql_stmt_fetch()”.

#define STRING_SIZE 50

#define DROP_SAMPLE_TABLE "DROP TABLE IF EXISTS test_table"
#define CREATE_SAMPLE_TABLE "CREATE TABLE test_table(col1 INT,\
                                                 col2 VARCHAR(40),\
                                                 col3 SMALLINT,\
                                                 col4 TIMESTAMP)"
#define INSERT_SAMPLE "INSERT INTO \
                       test_table(col1,col2,col3) \
                       VALUES(?,?,?)"

MYSQL_STMT    *stmt;
MYSQL_BIND    bind[3];
my_ulonglong  affected_rows;
int           param_count;
short         small_data;
int           int_data;
char          str_data[STRING_SIZE];
unsigned long str_length;
my_bool       is_null;

if (mysql_query(mysql, DROP_SAMPLE_TABLE))
{
  fprintf(stderr, " DROP TABLE failed\n");
  fprintf(stderr, " %s\n", mysql_error(mysql));
  exit(0);
}

if (mysql_query(mysql, CREATE_SAMPLE_TABLE))



C API Prepared Statement Function Descriptions

2723

{
  fprintf(stderr, " CREATE TABLE failed\n");
  fprintf(stderr, " %s\n", mysql_error(mysql));
  exit(0);
}

/* Prepare an INSERT query with 3 parameters */
/* (the TIMESTAMP column is not named; the server */
/*  sets it to the current date and time) */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
  fprintf(stderr, " mysql_stmt_init(), out of memory\n");
  exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_SAMPLE, strlen(INSERT_SAMPLE)))
{
  fprintf(stderr, " mysql_stmt_prepare(), INSERT failed\n");
  fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
  exit(0);
}
fprintf(stdout, " prepare, INSERT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in INSERT: %d\n", param_count);

if (param_count != 3) /* validate parameter count */
{
  fprintf(stderr, " invalid parameter count returned by MySQL\n");
  exit(0);
}

/* Bind the data for all 3 parameters */

memset(bind, 0, sizeof(bind));

/* INTEGER PARAM */
/* This is a number type, so there is no need
   to specify buffer_length */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= 0;
bind[0].length= 0;

/* STRING PARAM */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= 0;
bind[1].length= &str_length;

/* SMALLINT PARAM */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null;
bind[2].length= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
  fprintf(stderr, " mysql_stmt_bind_param() failed\n");
  fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
  exit(0);
}

/* Specify the data values for the first row */
int_data= 10;             /* integer */
strncpy(str_data, "MySQL", STRING_SIZE); /* string  */
str_length= strlen(str_data);

/* INSERT SMALLINT data as NULL */



C API Prepared Statement Function Descriptions

2724

is_null= 1;

/* Execute the INSERT statement - 1*/
if (mysql_stmt_execute(stmt))
{
  fprintf(stderr, " mysql_stmt_execute(), 1 failed\n");
  fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
  exit(0);
}

/* Get the number of affected rows */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 1): %lu\n",
                (unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
  fprintf(stderr, " invalid affected rows by MySQL\n");
  exit(0);
}

/* Specify data values for second row,
   then re-execute the statement */
int_data= 1000;
strncpy(str_data, "
        The most popular Open Source database",
        STRING_SIZE);
str_length= strlen(str_data);
small_data= 1000;         /* smallint */
is_null= 0;               /* reset */

/* Execute the INSERT statement - 2*/
if (mysql_stmt_execute(stmt))
{
  fprintf(stderr, " mysql_stmt_execute, 2 failed\n");
  fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
  exit(0);
}

/* Get the total rows affected */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 2): %lu\n",
                (unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
  fprintf(stderr, " invalid affected rows by MySQL\n");
  exit(0);
}

/* Close the statement */
if (mysql_stmt_close(stmt))
{
  /* mysql_stmt_close() invalidates stmt, so call          */
  /* mysql_error(mysql) rather than mysql_stmt_error(stmt) */
  fprintf(stderr, " failed while closing the statement\n");
  fprintf(stderr, " %s\n", mysql_error(mysql));
  exit(0);
}

Note

For complete examples on the use of prepared statement functions, refer to the
file tests/mysql_client_test.c. This file can be obtained from a MySQL
source distribution or from the source repository (see Section 2.9, “Installing
MySQL from Source”).

23.8.11.11 mysql_stmt_fetch()

int mysql_stmt_fetch(MYSQL_STMT *stmt)



C API Prepared Statement Function Descriptions

2725

Description

mysql_stmt_fetch() returns the next row in the result set. It can be called only while the result set
exists; that is, after a call to mysql_stmt_execute() for a statement such as SELECT that produces
a result set.

mysql_stmt_fetch() returns row data using the buffers bound by mysql_stmt_bind_result().
It returns the data in those buffers for all the columns in the current row set and the lengths are
returned to the length pointer. All columns must be bound by the application before it calls
mysql_stmt_fetch().

By default, result sets are fetched unbuffered a row at a time from the server. To buffer the entire result
set on the client, call mysql_stmt_store_result() after binding the data buffers and before calling
mysql_stmt_fetch().

If a fetched data value is a NULL value, the *is_null value of the corresponding MYSQL_BIND
structure contains TRUE (1). Otherwise, the data and its length are returned in the *buffer and
*length elements based on the buffer type specified by the application. Each numeric and temporal
type has a fixed length, as listed in the following table. The length of the string types depends on the
length of the actual data value, as indicated by data_length.

Type Length

MYSQL_TYPE_TINY 1

MYSQL_TYPE_SHORT 2

MYSQL_TYPE_LONG 4

MYSQL_TYPE_LONGLONG 8

MYSQL_TYPE_FLOAT 4

MYSQL_TYPE_DOUBLE 8

MYSQL_TYPE_TIME sizeof(MYSQL_TIME)

MYSQL_TYPE_DATE sizeof(MYSQL_TIME)

MYSQL_TYPE_DATETIME sizeof(MYSQL_TIME)

MYSQL_TYPE_STRING data length

MYSQL_TYPE_BLOB data_length

In some cases you might want to determine the length of a column value before fetching it with
mysql_stmt_fetch(). For example, the value might be a long string or BLOB value for which you
want to know how much space must be allocated. To accomplish this, you can use these strategies:

• Before invoking mysql_stmt_fetch() to retrieve individual rows, pass
STMT_ATTR_UPDATE_MAX_LENGTH to mysql_stmt_attr_set(), then invoke
mysql_stmt_store_result() to buffer the entire result on the client side. Setting
the STMT_ATTR_UPDATE_MAX_LENGTH attribute causes the maximal length of column
values to be indicated by the max_length member of the result set metadata returned by
mysql_stmt_result_metadata().

• Invoke mysql_stmt_fetch() with a zero-length buffer for the column in question and a pointer in
which the real length can be stored. Then use the real length with mysql_stmt_fetch_column().

real_length= 0;

bind[0].buffer= 0;
bind[0].buffer_length= 0;
bind[0].length= &real_length
mysql_stmt_bind_result(stmt, bind);

mysql_stmt_fetch(stmt);
if (real_length > 0)



C API Prepared Statement Function Descriptions

2726

{
  data= malloc(real_length);
  bind[0].buffer= data;
  bind[0].buffer_length= real_length;
  mysql_stmt_fetch_column(stmt, bind, 0, 0);
}

Return Values

Return Value Description

0 Successful, the data has been fetched to application data buffers.

1 Error occurred. Error code and message can be obtained by
calling mysql_stmt_errno() and mysql_stmt_error().

MYSQL_NO_DATA No more rows/data exists

MYSQL_DATA_TRUNCATED Data truncation occurred

MYSQL_DATA_TRUNCATED is returned when truncation reporting is enabled. To determine which
column values were truncated when this value is returned, check the error members of the
MYSQL_BIND structures used for fetching values. Truncation reporting is enabled by default, but can be
controlled by calling mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION option.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• CR_UNSUPPORTED_PARAM_TYPE

The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or
MYSQL_TYPE_TIMESTAMP, but the data type is not DATE, TIME, DATETIME, or TIMESTAMP.

• All other unsupported conversion errors are returned from mysql_stmt_bind_result().

Example

The following example demonstrates how to fetch data from a table using
mysql_stmt_result_metadata(), mysql_stmt_bind_result(), and mysql_stmt_fetch().
(This example expects to retrieve the two rows inserted by the example shown in Section 23.8.11.10,
“mysql_stmt_execute()”.) The mysql variable is assumed to be a valid connection handler.

#define STRING_SIZE 50

#define SELECT_SAMPLE "SELECT col1, col2, col3, col4 \
                       FROM test_table"

MYSQL_STMT    *stmt;



C API Prepared Statement Function Descriptions

2727

MYSQL_BIND    bind[4];
MYSQL_RES     *prepare_meta_result;
MYSQL_TIME    ts;
unsigned long length[4];
int           param_count, column_count, row_count;
short         small_data;
int           int_data;
char          str_data[STRING_SIZE];
my_bool       is_null[4];
my_bool       error[4];

/* Prepare a SELECT query to fetch data from test_table */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
  fprintf(stderr, " mysql_stmt_init(), out of memory\n");
  exit(0);
}
if (mysql_stmt_prepare(stmt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))
{
  fprintf(stderr, " mysql_stmt_prepare(), SELECT failed\n");
  fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
  exit(0);
}
fprintf(stdout, " prepare, SELECT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in SELECT: %d\n", param_count);

if (param_count != 0) /* validate parameter count */
{
  fprintf(stderr, " invalid parameter count returned by MySQL\n");
  exit(0);
}

/* Fetch result set meta information */
prepare_meta_result = mysql_stmt_result_metadata(stmt);
if (!prepare_meta_result)
{
  fprintf(stderr,
         " mysql_stmt_result_metadata(), \
           returned no meta information\n");
  fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
  exit(0);
}

/* Get total columns in the query */
column_count= mysql_num_fields(prepare_meta_result);
fprintf(stdout,
        " total columns in SELECT statement: %d\n",
        column_count);

if (column_count != 4) /* validate column count */
{
  fprintf(stderr, " invalid column count returned by MySQL\n");
  exit(0);
}

/* Execute the SELECT query */
if (mysql_stmt_execute(stmt))
{
  fprintf(stderr, " mysql_stmt_execute(), failed\n");
  fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
  exit(0);
}

/* Bind the result buffers for all 4 columns before fetching them */

memset(bind, 0, sizeof(bind));

/* INTEGER COLUMN */



C API Prepared Statement Function Descriptions

2728

bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= &is_null[0];
bind[0].length= &length[0];
bind[0].error= &error[0];

/* STRING COLUMN */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= &is_null[1];
bind[1].length= &length[1];
bind[1].error= &error[1];

/* SMALLINT COLUMN */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null[2];
bind[2].length= &length[2];
bind[2].error= &error[2];

/* TIMESTAMP COLUMN */
bind[3].buffer_type= MYSQL_TYPE_TIMESTAMP;
bind[3].buffer= (char *)&ts;
bind[3].is_null= &is_null[3];
bind[3].length= &length[3];
bind[3].error= &error[3];

/* Bind the result buffers */
if (mysql_stmt_bind_result(stmt, bind))
{
  fprintf(stderr, " mysql_stmt_bind_result() failed\n");
  fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
  exit(0);
}

/* Now buffer all results to client (optional step) */
if (mysql_stmt_store_result(stmt))
{
  fprintf(stderr, " mysql_stmt_store_result() failed\n");
  fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
  exit(0);
}

/* Fetch all rows */
row_count= 0;
fprintf(stdout, "Fetching results ...\n");
while (!mysql_stmt_fetch(stmt))
{
  row_count++;
  fprintf(stdout, "  row %d\n", row_count);

  /* column 1 */
  fprintf(stdout, "   column1 (integer)  : ");
  if (is_null[0])
    fprintf(stdout, " NULL\n");
  else
    fprintf(stdout, " %d(%ld)\n", int_data, length[0]);

  /* column 2 */
  fprintf(stdout, "   column2 (string)   : ");
  if (is_null[1])
    fprintf(stdout, " NULL\n");
  else
    fprintf(stdout, " %s(%ld)\n", str_data, length[1]);

  /* column 3 */
  fprintf(stdout, "   column3 (smallint) : ");
  if (is_null[2])
    fprintf(stdout, " NULL\n");
  else
    fprintf(stdout, " %d(%ld)\n", small_data, length[2]);



C API Prepared Statement Function Descriptions

2729

  /* column 4 */
  fprintf(stdout, "   column4 (timestamp): ");
  if (is_null[3])
    fprintf(stdout, " NULL\n");
  else
    fprintf(stdout, " %04d-%02d-%02d %02d:%02d:%02d (%ld)\n",
                     ts.year, ts.month, ts.day,
                     ts.hour, ts.minute, ts.second,
                     length[3]);
  fprintf(stdout, "\n");
}

/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %d\n", row_count);
if (row_count != 2)
{
  fprintf(stderr, " MySQL failed to return all rows\n");
  exit(0);
}

/* Free the prepared result metadata */
mysql_free_result(prepare_meta_result);

/* Close the statement */
if (mysql_stmt_close(stmt))
{
  /* mysql_stmt_close() invalidates stmt, so call          */
  /* mysql_error(mysql) rather than mysql_stmt_error(stmt) */
  fprintf(stderr, " failed while closing the statement\n");
  fprintf(stderr, " %s\n", mysql_error(mysql));
  exit(0);
}

23.8.11.12 mysql_stmt_fetch_column()

int mysql_stmt_fetch_column(MYSQL_STMT *stmt, MYSQL_BIND *bind, unsigned int
column, unsigned long offset)

Description

Fetches one column from the current result set row. bind provides the buffer where data should be
placed. It should be set up the same way as for mysql_stmt_bind_result(). column indicates
which column to fetch. The first column is numbered 0. offset is the offset within the data value at
which to begin retrieving data. This can be used for fetching the data value in pieces. The beginning of
the value is offset 0.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_INVALID_PARAMETER_NO

Invalid column number.

• CR_NO_DATA

The end of the result set has already been reached.

23.8.11.13 mysql_stmt_field_count()

unsigned int mysql_stmt_field_count(MYSQL_STMT *stmt)



C API Prepared Statement Function Descriptions

2730

Description

Returns the number of columns for the most recent statement for the statement handler. This value is
zero for statements such as INSERT or DELETE that do not produce result sets.

mysql_stmt_field_count() can be called after you have prepared a statement by invoking
mysql_stmt_prepare().

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

23.8.11.14 mysql_stmt_free_result()

my_bool mysql_stmt_free_result(MYSQL_STMT *stmt)

Description

Releases memory associated with the result set produced by execution of the prepared statement. If
there is a cursor open for the statement, mysql_stmt_free_result() closes it.

Return Values

Zero for success. Nonzero if an error occurred.

23.8.11.15 mysql_stmt_init()

MYSQL_STMT *mysql_stmt_init(MYSQL *mysql)

Description

Creates and returns a MYSQL_STMT handler. The handler should be freed with
mysql_stmt_close(), at which point the handler becomes invalid and should no longer be used.

See also Section 23.8.9, “C API Prepared Statement Data Structures”, for more information.

Return Values

A pointer to a MYSQL_STMT structure in case of success. NULL if out of memory.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

23.8.11.16 mysql_stmt_insert_id()

my_ulonglong mysql_stmt_insert_id(MYSQL_STMT *stmt)

Description

Returns the value generated for an AUTO_INCREMENT column by the prepared INSERT or UPDATE
statement. Use this function after you have executed a prepared INSERT statement on a table which
contains an AUTO_INCREMENT field.

See Section 23.8.7.37, “mysql_insert_id()”, for more information.



C API Prepared Statement Function Descriptions

2731

Return Values

Value for AUTO_INCREMENT column which was automatically generated or explicitly set during
execution of prepared statement, or value generated by LAST_INSERT_ID(expr) function. Return
value is undefined if statement does not set AUTO_INCREMENT value.

Errors

None.

23.8.11.17 mysql_stmt_next_result()

int mysql_stmt_next_result(MYSQL_STMT *mysql)

Description

This function is used when you use prepared CALL statements to execute stored procedures, which
can return multiple result sets. Use a loop that calls mysql_stmt_next_result() to determine
whether there are more results. If a procedure has OUT or INOUT parameters, their values will be
returned as a single-row result set following any other result sets. The values will appear in the order in
which they are declared in the procedure parameter list.

mysql_stmt_next_result() returns a status to indicate whether more results exist. If
mysql_stmt_next_result() returns an error, there are no more results.

Before each call to mysql_stmt_next_result(), you must call mysql_stmt_free_result() for
the current result if it produced a result set (rather than just a result status).

After calling mysql_stmt_next_result() the state of the connection is as if you had called
mysql_stmt_execute(). This means that you can call mysql_stmt_bind_result(),
mysql_stmt_affected_rows(), and so forth.

It is also possible to test whether there are more results by calling mysql_more_results().
However, this function does not change the connection state, so if it returns true, you must still call
mysql_stmt_next_result() to advance to the next result.

For an example that shows how to use mysql_stmt_next_result(), see Section 23.8.20, “C API
Support for Prepared CALL Statements”.

mysql_stmt_next_result() was added in MySQL 5.5.3.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR



C API Prepared Statement Function Descriptions

2732

An unknown error occurred.

23.8.11.18 mysql_stmt_num_rows()

my_ulonglong mysql_stmt_num_rows(MYSQL_STMT *stmt)

Description

Returns the number of rows in the result set.

The use of mysql_stmt_num_rows() depends on whether you used
mysql_stmt_store_result() to buffer the entire result set in the statement handler. If you use
mysql_stmt_store_result(), mysql_stmt_num_rows() may be called immediately. Otherwise,
the row count is unavailable unless you count the rows as you fetch them.

mysql_stmt_num_rows() is intended for use with statements that return a result set, such as
SELECT. For statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be
obtained with mysql_stmt_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

23.8.11.19 mysql_stmt_param_count()

unsigned long mysql_stmt_param_count(MYSQL_STMT *stmt)

Description

Returns the number of parameter markers present in the prepared statement.

Return Values

An unsigned long integer representing the number of parameters in a statement.

Errors

None.

Example

See the Example in Section 23.8.11.10, “mysql_stmt_execute()”.

23.8.11.20 mysql_stmt_param_metadata()

MYSQL_RES *mysql_stmt_param_metadata(MYSQL_STMT *stmt)

This function currently does nothing.

23.8.11.21 mysql_stmt_prepare()

int mysql_stmt_prepare(MYSQL_STMT *stmt, const char *stmt_str, unsigned long
length)

Description

Given the statement handler returned by mysql_stmt_init(), prepares the SQL statement pointed
to by the string stmt_str and returns a status value. The string length should be given by the length
argument. The string must consist of a single SQL statement. You should not add a terminating
semicolon (;) or \g to the statement.



C API Prepared Statement Function Descriptions

2733

The application can include one or more parameter markers in the SQL statement by embedding
question mark (?) characters into the SQL string at the appropriate positions.

The markers are legal only in certain places in SQL statements. For example, they are permitted in
the VALUES() list of an INSERT statement (to specify column values for a row), or in a comparison
with a column in a WHERE clause to specify a comparison value. However, they are not permitted for
identifiers (such as table or column names), or to specify both operands of a binary operator such
as the = equal sign. The latter restriction is necessary because it would be impossible to determine
the parameter type. In general, parameters are legal only in Data Manipulation Language (DML)
statements, and not in Data Definition Language (DDL) statements.

The parameter markers must be bound to application variables using mysql_stmt_bind_param()
before executing the statement.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 13.5.4, “Automatic Prepared Statement Repreparation”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

If the prepare operation was unsuccessful (that is, mysql_stmt_prepare() returns nonzero), the
error message can be obtained by calling mysql_stmt_error().

Example

See the Example in Section 23.8.11.10, “mysql_stmt_execute()”.

23.8.11.22 mysql_stmt_reset()

my_bool mysql_stmt_reset(MYSQL_STMT *stmt)

Description

Resets a prepared statement on client and server to state after prepare. It resets the statement on the
server, data sent using mysql_stmt_send_long_data(), unbuffered result sets and current errors.
It does not clear bindings or stored result sets. Stored result sets will be cleared when executing the
prepared statement (or closing it).

To re-prepare the statement with another query, use mysql_stmt_prepare().



C API Prepared Statement Function Descriptions

2734

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

23.8.11.23 mysql_stmt_result_metadata()

MYSQL_RES *mysql_stmt_result_metadata(MYSQL_STMT *stmt)

Description

If a statement passed to mysql_stmt_prepare() is one that produces a result set,
mysql_stmt_result_metadata() returns the result set metadata in the form of a pointer to a
MYSQL_RES structure that can be used to process the meta information such as number of fields and
individual field information. This result set pointer can be passed as an argument to any of the field-
based API functions that process result set metadata, such as:

• mysql_num_fields()

• mysql_fetch_field()

• mysql_fetch_field_direct()

• mysql_fetch_fields()

• mysql_field_count()

• mysql_field_seek()

• mysql_field_tell()

• mysql_free_result()

The result set structure should be freed when you are done with it, which you can do by passing it
to mysql_free_result(). This is similar to the way you free a result set obtained from a call to
mysql_store_result().

The result set returned by mysql_stmt_result_metadata() contains only metadata. It
does not contain any row results. The rows are obtained by using the statement handler with
mysql_stmt_fetch().

Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared query.

Errors

• CR_OUT_OF_MEMORY



C API Prepared Statement Function Descriptions

2735

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 23.8.11.11, “mysql_stmt_fetch()”.

23.8.11.24 mysql_stmt_row_seek()

MYSQL_ROW_OFFSET mysql_stmt_row_seek(MYSQL_STMT *stmt, MYSQL_ROW_OFFSET
offset)

Description

Sets the row cursor to an arbitrary row in a statement result set. The offset value is a row offset that
should be a value returned from mysql_stmt_row_tell() or from mysql_stmt_row_seek().
This value is not a row number; if you want to seek to a row within a result set by number, use
mysql_stmt_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_stmt_row_seek() may be used only in conjunction with mysql_stmt_store_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_stmt_row_seek().

Errors

None.

23.8.11.25 mysql_stmt_row_tell()

MYSQL_ROW_OFFSET mysql_stmt_row_tell(MYSQL_STMT *stmt)

Description

Returns the current position of the row cursor for the last mysql_stmt_fetch(). This value can be
used as an argument to mysql_stmt_row_seek().

You should use mysql_stmt_row_tell() only after mysql_stmt_store_result().

Return Values

The current offset of the row cursor.

Errors

None.

23.8.11.26 mysql_stmt_send_long_data()

my_bool mysql_stmt_send_long_data(MYSQL_STMT *stmt, unsigned int
parameter_number, const char *data, unsigned long length)

Description

Enables an application to send parameter data to the server in pieces (or “chunks”). Call this function
after mysql_stmt_bind_param() and before mysql_stmt_execute(). It can be called multiple



C API Prepared Statement Function Descriptions

2736

times to send the parts of a character or binary data value for a column, which must be one of the TEXT
or BLOB data types.

parameter_number indicates which parameter to associate the data with. Parameters are numbered
beginning with 0. data is a pointer to a buffer containing data to be sent, and length indicates the
number of bytes in the buffer.

Note

The next mysql_stmt_execute() call ignores the bind buffer for all
parameters that have been used with mysql_stmt_send_long_data()
since last mysql_stmt_execute() or mysql_stmt_reset().

If you want to reset/forget the sent data, you can do it with mysql_stmt_reset(). See
Section 23.8.11.22, “mysql_stmt_reset()”.

As of MySQL 5.5.11, the max_long_data_size system variable controls the maximum size
of parameter values that can be sent with mysql_stmt_send_long_data(). If this variable
not set at server startup, the default is the value of the max_allowed_packet system variable.
max_long_data_size is deprecated. In MySQL 5.6, it is removed and the maximum parameter size
is controlled by max_allowed_packet.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_INVALID_BUFFER_USE

The parameter does not have a string or binary type.

• CR_INVALID_PARAMETER_NO

Invalid parameter number.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It inserts the
data value 'MySQL - The most popular Open Source database' into the text_column
column. The mysql variable is assumed to be a valid connection handler.

#define INSERT_QUERY "INSERT INTO \
                      test_long_data(text_column) VALUES(?)"

MYSQL_BIND bind[1];
long       length;



C API Prepared Statement Function Descriptions

2737

stmt = mysql_stmt_init(mysql);
if (!stmt)
{
  fprintf(stderr, " mysql_stmt_init(), out of memory\n");
  exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_QUERY, strlen(INSERT_QUERY)))
{
  fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
  fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
  exit(0);
}
 memset(bind, 0, sizeof(bind));
 bind[0].buffer_type= MYSQL_TYPE_STRING;
 bind[0].length= &length;
 bind[0].is_null= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
  fprintf(stderr, "\n param bind failed");
  fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
  exit(0);
}

 /* Supply data in chunks to server */
 if (mysql_stmt_send_long_data(stmt,0,"MySQL",5))
{
  fprintf(stderr, "\n send_long_data failed");
  fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
  exit(0);
}

 /* Supply the next piece of data */
 if (mysql_stmt_send_long_data(stmt,0,
           " - The most popular Open Source database",40))
{
  fprintf(stderr, "\n send_long_data failed");
  fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
  exit(0);
}

 /* Now, execute the query */
 if (mysql_stmt_execute(stmt))
{
  fprintf(stderr, "\n mysql_stmt_execute failed");
  fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
  exit(0);
}

23.8.11.27 mysql_stmt_sqlstate()

const char *mysql_stmt_sqlstate(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_sqlstate() returns a null-terminated string
containing the SQLSTATE error code for the most recently invoked prepared statement API function
that can succeed or fail. The error code consists of five characters. "00000" means “no error.” The
values are specified by ANSI SQL and ODBC. For a list of possible values, see Appendix B, Errors,
Error Codes, and Common Problems.

Not all MySQL errors are mapped to SQLSTATE codes. The value "HY000" (general error) is used for
unmapped errors.

If the failed statement API function was mysql_stmt_close(), do not call
mysql_stmt_sqlstate() to obtain error information because mysql_stmt_close() makes the
statement handler invalid. Call mysql_sqlstate() instead.



C API Prepared Statement Function Descriptions

2738

Return Values

A null-terminated character string containing the SQLSTATE error code.

23.8.11.28 mysql_stmt_store_result()

int mysql_stmt_store_result(MYSQL_STMT *stmt)

Description

Result sets are produced by calling mysql_stmt_execute() to executed prepared
statements for SQL statements such as SELECT, SHOW, DESCRIBE, and EXPLAIN. By default,
result sets for successfully executed prepared statements are not buffered on the client and
mysql_stmt_fetch() fetches them one at a time from the server. To cause the complete result
set to be buffered on the client, call mysql_stmt_store_result() after binding data buffers with
mysql_stmt_bind_result() and before calling mysql_stmt_fetch() to fetch rows. (For an
example, see Section 23.8.11.11, “mysql_stmt_fetch()”.)

mysql_stmt_store_result() is optional for result set processing, unless you will call
mysql_stmt_data_seek(), mysql_stmt_row_seek(), or mysql_stmt_row_tell(). Those
functions require a seekable result set.

It is unnecessary to call mysql_stmt_store_result() after executing an SQL statement
that does not produce a result set, but if you do, it does not harm or cause any notable
performance problem. You can detect whether the statement produced a result set by checking if
mysql_stmt_result_metadata() returns NULL. For more information, refer to Section 23.8.11.23,
“mysql_stmt_result_metadata()”.

Note

MySQL does not by default calculate MYSQL_FIELD->max_length for
all columns in mysql_stmt_store_result() because calculating this
would slow down mysql_stmt_store_result() considerably and
most applications do not need max_length. If you want max_length
to be updated, you can call mysql_stmt_attr_set(MYSQL_STMT,
STMT_ATTR_UPDATE_MAX_LENGTH, &flag) to enable this. See
Section 23.8.11.3, “mysql_stmt_attr_set()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.



C API Threaded Function Descriptions

2739

23.8.12 C API Threaded Function Descriptions

To create a threaded client, use the functions described in the following sections. See also
Section 23.8.4.2, “Writing C API Threaded Client Programs”.

23.8.12.1 my_init()

void my_init(void)

Description

my_init() initializes some global variables that MySQL needs. It also calls mysql_thread_init()
for this thread.

It is necessary for my_init() to be called early in the initialization phase of a program's
use of the MySQL library. However, my_init() is automatically called by mysql_init(),
mysql_library_init(), mysql_server_init(), and mysql_connect(). If you ensure that
your program invokes one of those functions before any other MySQL calls, there is no need to invoke
my_init() explicitly.

To access the prototype for my_init(), your program should include these header files:

#include <my_global.h>
#include <my_sys.h>

Return Values

None.

23.8.12.2 mysql_thread_end()

void mysql_thread_end(void)

Description

This function needs to be called before calling pthread_exit() to free memory allocated by
mysql_thread_init().

mysql_thread_end() is not invoked automatically by the client library. It must be called explicitly to
avoid a memory leak.

Return Values

None.

23.8.12.3 mysql_thread_init()

my_bool mysql_thread_init(void)

Description

This function must be called early within each created thread to initialize thread-specific variables.
However, you may not necessarily need to invoke it explicitly: mysql_thread_init() is
automatically called by my_init(), which itself is automatically called by mysql_init(),
mysql_library_init(), mysql_server_init(), and mysql_connect(). If you invoke any of
those functions, mysql_thread_init() is called for you.

Return Values

Zero for success. Nonzero if an error occurred.

23.8.12.4 mysql_thread_safe()



C API Embedded Server Function Descriptions

2740

unsigned int mysql_thread_safe(void)

Description

This function indicates whether the client library is compiled as thread-safe.

Return Values

1 if the client library is thread-safe, 0 otherwise.

23.8.13 C API Embedded Server Function Descriptions

MySQL applications can be written to use an embedded server. See Section 23.7, “libmysqld,
the Embedded MySQL Server Library”. To write such an application, you must link it against the
libmysqld library by using the -lmysqld flag rather than linking it against the libmysqlclient
client library by using the -lmysqlclient flag. However, the calls to initialize and finalize the library
are the same whether you write a client application or one that uses the embedded server: Call
mysql_library_init() to initialize the library and mysql_library_end() when you are done
with it. See Section 23.8.6, “C API Function Overview”.

23.8.13.1 mysql_server_init()

int mysql_server_init(int argc, char **argv, char **groups)

Description

This function initializes the MySQL library, which must be done before you call any other
MySQL function. However, mysql_server_init() is deprecated and you should call
mysql_library_init() instead. See Section 23.8.7.40, “mysql_library_init()”.

Return Values

Zero for success. Nonzero if an error occurred.

23.8.13.2 mysql_server_end()

void mysql_server_end(void)

Description

This function finalizes the MySQL library, which should be done when you are done using the library.
However, mysql_server_end() is deprecated and mysql_library_end() should be used
instead. See Section 23.8.7.39, “mysql_library_end()”.

Return Values

None.

23.8.14 C API Client Plugin Functions

This section describes functions used for the client-side plugin API. They enable management of client
plugins. For a description of the st_mysql_client_plugin structure used by these functions, see
Client Plugin Descriptors.

It is unlikely that a client program needs to call the functions in this section. For example, a client
that supports the use of authentication plugins normally causes a plugin to be loaded by calling
mysql_options() to set the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";

/* ... process command-line options ... */



C API Client Plugin Functions

2741

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);

Typically, the program will also accept --plugin-dir and --default-auth options that enable
users to override the default values.

23.8.14.1 mysql_client_find_plugin()

struct st_mysql_client_plugin *mysql_client_find_plugin(MYSQL *mysql, const
char *name, int type)

Description

Returns a pointer to a loaded plugin, loading the plugin first if necessary. An error occurs if the type is
invalid or the plugin cannot be found or loaded.

Specify the parameters as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

• name: The plugin name.

• type: The plugin type.

This function was added in MySQL 5.5.7.

Return Values

A pointer to the plugin for success. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 23.8.7.15,
“mysql_error()”, and Section 23.8.7.14, “mysql_errno()”.

Example

MYSQL mysql;
struct st_mysql_client_plugin *p;

if ((p = mysql_client_find_plugin(&mysql, "myplugin",
                                  MYSQL_CLIENT_AUTHENTICATION_PLUGIN, 0)))
{
  printf("Plugin version: %d.%d.%d\n", p->version[0], p->version[1], p->version[2]);
}

23.8.14.2 mysql_client_register_plugin()

struct st_mysql_client_plugin *mysql_client_register_plugin(MYSQL *mysql,
struct st_mysql_client_plugin *plugin)

Description

Adds a plugin structure to the list of loaded plugins. An error occurs if the plugin is already loaded.

Specify the parameters as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

• plugin: A pointer to the plugin structure.

This function was added in MySQL 5.5.7.



C API Client Plugin Functions

2742

Return Values

A pointer to the plugin for success. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 23.8.7.15,
“mysql_error()”, and Section 23.8.7.14, “mysql_errno()”.

23.8.14.3 mysql_load_plugin()

struct st_mysql_client_plugin *mysql_load_plugin(MYSQL *mysql, const char
*name, int type, int argc, ...)

Description

Loads a MySQL client plugin, specified by name and type. An error occurs if the type is invalid or the
plugin cannot be loaded.

It is not possible to load multiple plugins of the same type. An error occurs if you try to load a plugin of
a type already loaded.

Specify the parameters as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

• name: The name of the plugin to load.

• type: The type of plugin to load, or −1 to disable type checking. If type is not −1, only plugins
matching the type are considered for loading.

• argc: The number of following arguments (0 if there are none). Interpretation of any following
arguments depends on the plugin type.

This function was added in MySQL 5.5.7.

Another way to cause plugins to be loaded is to set the LIBMYSQL_PLUGINS environment variable to a
semicolon-separated list of plugin names. For example:

shell> export LIBMYSQL_PLUGINS="myplugin1;myplugin2"

Plugins named by LIBMYSQL_PLUGINS are loaded when the client program calls
mysql_library_init(). No error is reported if problems occur loading these plugins.

Return Values

A pointer to the plugin if it was loaded successfully. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 23.8.7.15,
“mysql_error()”, and Section 23.8.7.14, “mysql_errno()”.

Example

MYSQL mysql;

if(!mysql_load_plugin(&mysql, "myplugin",
                      MYSQL_CLIENT_AUTHENTICATION_PLUGIN, 0))
{
    fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
    exit(-1);



Common Questions and Problems When Using the C API

2743

}

See Also

See also Section 23.8.14.3, “mysql_load_plugin()”, Section 23.8.7.15, “mysql_error()”,
Section 23.8.7.14, “mysql_errno()”.

23.8.14.4 mysql_load_plugin_v()

struct st_mysql_client_plugin *mysql_load_plugin_v(MYSQL *mysql, const char
*name, int type, int argc, va_list args)

Description

This function is equivalent to mysql_load_plugin(), but it accepts a va_list instead of a variable
list of parameters.

This function was added in MySQL 5.5.7.

See Also

See also Section 23.8.14.3, “mysql_load_plugin()”.

23.8.14.5 mysql_plugin_options()

int mysql_plugin_options(struct st_mysql_client_plugin *plugin, const char
*option, const void *value)

Description

Passes an option type and value to a plugin. This function can be called multiple times to set several
options. If the plugin does not have an option handler, an error occurs.

Specify the parameters as follows:

• plugin: A pointer to the plugin structure.

• option: The option to be set.

• value: A pointer to the option value.

This function was added in MySQL 5.5.7.

Return Values

Zero for success, 1 if an error occurred. If the plugin has an option handler, that handler should also
return zero for success and 1 if an error occurred.

23.8.15 Common Questions and Problems When Using the C API

23.8.15.1 Why mysql_store_result() Sometimes Returns NULL After mysql_query()
Returns Success

It is possible for mysql_store_result() to return NULL following a successful call to
mysql_query(). When this happens, it means one of the following conditions occurred:

• There was a malloc() failure (for example, if the result set was too large).

• The data could not be read (an error occurred on the connection).

• The query returned no data (for example, it was an INSERT, UPDATE, or DELETE).

You can always check whether the statement should have produced a nonempty result by calling
mysql_field_count(). If mysql_field_count() returns zero, the result is empty and the



Common Questions and Problems When Using the C API

2744

last query was a statement that does not return values (for example, an INSERT or a DELETE). If
mysql_field_count() returns a nonzero value, the statement should have produced a nonempty
result. See the description of the mysql_field_count() function for an example.

You can test for an error by calling mysql_error() or mysql_errno().

23.8.15.2 What Results You Can Get from a Query

In addition to the result set returned by a query, you can also get the following information:

• mysql_affected_rows() returns the number of rows affected by the last query when doing an
INSERT, UPDATE, or DELETE.

For a fast re-create, use TRUNCATE TABLE.

• mysql_num_rows() returns the number of rows in a result set. With mysql_store_result(),
mysql_num_rows() may be called as soon as mysql_store_result() returns. With
mysql_use_result(), mysql_num_rows() may be called only after you have fetched all the
rows with mysql_fetch_row().

• mysql_insert_id() returns the ID generated by the last query that inserted a row into a table with
an AUTO_INCREMENT index. See Section 23.8.7.37, “mysql_insert_id()”.

• Some queries (LOAD DATA INFILE ..., INSERT INTO ... SELECT ..., UPDATE)
return additional information. The result is returned by mysql_info(). See the description for
mysql_info() for the format of the string that it returns. mysql_info() returns a NULL pointer if
there is no additional information.

23.8.15.3 How to Get the Unique ID for the Last Inserted Row

If you insert a record into a table that contains an AUTO_INCREMENT column, you can obtain the value
stored into that column by calling the mysql_insert_id() function.

You can check from your C applications whether a value was stored in an AUTO_INCREMENT column
by executing the following code (which assumes that you've checked that the statement succeeded). It
determines whether the query was an INSERT with an AUTO_INCREMENT index:

if ((result = mysql_store_result(&mysql)) == 0 &&
    mysql_field_count(&mysql) == 0 &&
    mysql_insert_id(&mysql) != 0)
{
    used_id = mysql_insert_id(&mysql);
}

When a new AUTO_INCREMENT value has been generated, you can also obtain it by executing a
SELECT LAST_INSERT_ID() statement with mysql_query() and retrieving the value from the
result set returned by the statement.

When inserting multiple values, the last automatically incremented value is returned.

For LAST_INSERT_ID(), the most recently generated ID is maintained in the server on a per-
connection basis. It is not changed by another client. It is not even changed if you update another
AUTO_INCREMENT column with a nonmagic value (that is, a value that is not NULL and not 0). Using
LAST_INSERT_ID() and AUTO_INCREMENT columns simultaneously from multiple clients is perfectly
valid. Each client will receive the last inserted ID for the last statement that client executed.

If you want to use the ID that was generated for one table and insert it into a second table, you can use
SQL statements like this:

INSERT INTO foo (auto,text)
    VALUES(NULL,'text');         # generate ID by inserting NULL
INSERT INTO foo2 (id,text)
    VALUES(LAST_INSERT_ID(),'text');  # use ID in second table



Controlling Automatic Reconnection Behavior

2745

mysql_insert_id() returns the value stored into an AUTO_INCREMENT column, whether
that value is automatically generated by storing NULL or 0 or was specified as an explicit value.
LAST_INSERT_ID() returns only automatically generated AUTO_INCREMENT values. If you store an
explicit value other than NULL or 0, it does not affect the value returned by LAST_INSERT_ID().

For more information on obtaining the last ID in an AUTO_INCREMENT column:

• For information on LAST_INSERT_ID(), which can be used within an SQL statement, see
Section 12.14, “Information Functions”.

• For information on mysql_insert_id(), the function you use from within the C API, see
Section 23.8.7.37, “mysql_insert_id()”.

• For information on obtaining the auto-incremented value when using Connector/J, see Retrieving
AUTO_INCREMENT Column Values through JDBC.

• For information on obtaining the auto-incremented value when using Connector/ODBC, see
Obtaining Auto-Increment Values.

23.8.16 Controlling Automatic Reconnection Behavior

The MySQL client library can perform an automatic reconnection to the server if it finds that the
connection is down when you attempt to send a statement to the server to be executed. If auto-
reconnect is enabled, the library tries once to reconnect to the server and send the statement again.

Auto-reconnect is disabled by default.

If it is important for your application to know that the connection has been dropped (so that it can exit
or take action to adjust for the loss of state information), be sure that auto-reconnect is disabled. To
ensure this, call mysql_options() with the MYSQL_OPT_RECONNECT option:

my_bool reconnect = 0;
mysql_options(&mysql, MYSQL_OPT_RECONNECT, &reconnect);

If the connection has gone down, the effect of mysql_ping() depends on the auto-reconnect state. If
auto-reconnect is enabled, mysql_ping() performs a reconnect. Otherwise, it returns an error.

Some client programs might provide the capability of controlling automatic reconnection. For example,
mysql reconnects by default, but the --skip-reconnect option can be used to suppress this
behavior.

If an automatic reconnection does occur (for example, as a result of calling mysql_ping()), there
is no explicit indication of it. To check for reconnection, call mysql_thread_id() to get the original
connection identifier before calling mysql_ping(), then call mysql_thread_id() again to see
whether the identifier changed.

Automatic reconnection can be convenient because you need not implement your own reconnect code,
but if a reconnection does occur, several aspects of the connection state are reset on the server side
and your application will not be notified.

The connection-related state is affected as follows:

• Any active transactions are rolled back and autocommit mode is reset.

• All table locks are released.

• All TEMPORARY tables are closed (and dropped).

• Session system variables are reinitialized to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NAMES.

• User variable settings are lost.

http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-usagenotes-last-insert-id.html
http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-usagenotes-last-insert-id.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html


C API Support for Multiple Statement Execution

2746

• Prepared statements are released.

• HANDLER variables are closed.

• The value of LAST_INSERT_ID() is reset to 0.

• Locks acquired with GET_LOCK() are released.

If the connection drops, it is possible that the session associated with the connection on the server side
will still be running if the server has not yet detected that the client is no longer connected. In this case,
any locks held by the original connection still belong to that session, so you may want to kill it by calling
mysql_kill().

23.8.17 C API Support for Multiple Statement Execution

By default, mysql_query() and mysql_real_query() interpret their statement string argument
as a single statement to be executed, and you process the result according to whether the statement
produces a result set (a set of rows, as for SELECT) or an affected-rows count (as for INSERT,
UPDATE, and so forth).

MySQL also supports the execution of a string containing multiple statements separated by
semicolon (;) characters. This capability is enabled by special options that are specified either
when you connect to the server with mysql_real_connect() or after connecting by calling
mysql_set_server_option().

Executing a multiple-statement string can produce multiple result sets or row-count indicators.
Processing these results involves a different approach than for the single-statement case: After
handling the result from the first statement, it is necessary to check whether more results exist
and process them in turn if so. To support multiple-result processing, the C API includes the
mysql_more_results() and mysql_next_result() functions. These functions are used at the
end of a loop that iterates as long as more results are available. Failure to process the result this way
may result in a dropped connection to the server.

Multiple-result processing also is required if you execute CALL statements for stored procedures.
Results from a stored procedure have these characteristics:

• Statements within the procedure may produce result sets (for example, if it executes SELECT
statements). These result sets are returned in the order that they are produced as the procedure
executes.

In general, the caller cannot know how many result sets a procedure will return. Procedure execution
may depend on loops or conditional statements that cause the execution path to differ from one call
to the next. Therefore, you must be prepared to retrieve multiple results.

• The final result from the procedure is a status result that includes no result set. The status indicates
whether the procedure succeeded or an error occurred.

The multiple statement and result capabilities can be used only with mysql_query() or
mysql_real_query(). They cannot be used with the prepared statement interface. Prepared
statement handlers are defined to work only with strings that contain a single statement. See
Section 23.8.8, “C API Prepared Statements”.

To enable multiple-statement execution and result processing, the following options may be used:

• The mysql_real_connect() function has a flags argument for which two option values are
relevant:

• CLIENT_MULTI_RESULTS enables the client program to process multiple results. This option
must be enabled if you execute CALL statements for stored procedures that produce result
sets. Otherwise, such procedures result in an error Error 1312 (0A000): PROCEDURE
proc_name can't return a result set in the given context. As of MySQL 5.5.3,
CLIENT_MULTI_RESULTS is enabled by default.



C API Support for Multiple Statement Execution

2747

• CLIENT_MULTI_STATEMENTS enables mysql_query() and mysql_real_query()
to execute statement strings containing multiple statements separated by semicolons.
This option also enables CLIENT_MULTI_RESULTS implicitly, so a flags argument
of CLIENT_MULTI_STATEMENTS to mysql_real_connect() is equivalent to an
argument of CLIENT_MULTI_STATEMENTS | CLIENT_MULTI_RESULTS. That is,
CLIENT_MULTI_STATEMENTS is sufficient to enable multiple-statement execution and all multiple-
result processing.

• After the connection to the server has been established, you can use the
mysql_set_server_option() function to enable or disable multiple-statement
execution by passing it an argument of MYSQL_OPTION_MULTI_STATEMENTS_ON or
MYSQL_OPTION_MULTI_STATEMENTS_OFF. Enabling multiple-statement execution with this
function also enables processing of “simple” results for a multiple-statement string where each
statement produces a single result, but is not sufficient to permit processing of stored procedures
that produce result sets.

The following procedure outlines a suggested strategy for handling multiple statements:

1. Pass CLIENT_MULTI_STATEMENTS to mysql_real_connect(), to fully enable multiple-
statement execution and multiple-result processing.

2. After calling mysql_query() or mysql_real_query() and verifying that it succeeds, enter a
loop within which you process statement results.

3. For each iteration of the loop, handle the current statement result, retrieving either a result set or an
affected-rows count. If an error occurs, exit the loop.

4. At the end of the loop, call mysql_next_result() to check whether another result exists and
initiate retrieval for it if so. If no more results are available, exit the loop.

One possible implementation of the preceding strategy is shown following. The final part of the loop
can be reduced to a simple test of whether mysql_next_result() returns nonzero. The code as
written distinguishes between no more results and an error, which enables a message to be printed for
the latter occurrence.

/* connect to server with the CLIENT_MULTI_STATEMENTS option */
if (mysql_real_connect (mysql, host_name, user_name, password,
    db_name, port_num, socket_name, CLIENT_MULTI_STATEMENTS) == NULL)
{
  printf("mysql_real_connect() failed\n");
  mysql_close(mysql);
  exit(1);
}

/* execute multiple statements */
status = mysql_query(mysql,
                     "DROP TABLE IF EXISTS test_table;\
                      CREATE TABLE test_table(id INT);\
                      INSERT INTO test_table VALUES(10);\
                      UPDATE test_table SET id=20 WHERE id=10;\
                      SELECT * FROM test_table;\
                      DROP TABLE test_table");
if (status)
{
  printf("Could not execute statement(s)");
  mysql_close(mysql);
  exit(0);
}

/* process each statement result */
do {
  /* did current statement return data? */
  result = mysql_store_result(mysql);
  if (result)



C API Prepared Statement Problems

2748

  {
    /* yes; process rows and free the result set */
    process_result_set(mysql, result);
    mysql_free_result(result);
  }
  else          /* no result set or error */
  {
    if (mysql_field_count(mysql) == 0)
    {
      printf("%lld rows affected\n",
            mysql_affected_rows(mysql));
    }
    else  /* some error occurred */
    {
      printf("Could not retrieve result set\n");
      break;
    }
  }
  /* more results? -1 = no, >0 = error, 0 = yes (keep looping) */
  if ((status = mysql_next_result(mysql)) > 0)
    printf("Could not execute statement\n");
} while (status == 0);

mysql_close(mysql);

23.8.18 C API Prepared Statement Problems

Here follows a list of the currently known problems with prepared statements:

• TIME, TIMESTAMP, and DATETIME do not support parts of seconds (for example, from
DATE_FORMAT()).

•  When converting an integer to string, ZEROFILL is honored with prepared statements in some
cases where the MySQL server does not print the leading zeros. (For example, with MIN(number-
with-zerofill)).

• When converting a floating-point number to a string in the client, the rightmost digits of the converted
value may differ slightly from those of the original value.

• Prepared statements use the query cache under the conditions described in Section 8.10.3.1, “How
the Query Cache Operates”.

• Prepared statements do not support multi-statements (that is, multiple statements within a single
string separated by ; characters).

• Before MySQL 5.5.3, prepared CALL statements cannot invoke stored procedures that return result
sets because prepared statements do not support multiple result sets. Nor can the calling application
access a stored procedure's OUT or INOUT parameters when the procedure returns. As of MySQL
5.5.3, these capabilities are supported as described in Section 23.8.20, “C API Support for Prepared
CALL Statements”.

23.8.19 C API Prepared Statement Handling of Date and Time Values

The binary (prepared statement) protocol enables you to send and receive date and time values (DATE,
TIME, DATETIME, and TIMESTAMP), using the MYSQL_TIME structure. The members of this structure
are described in Section 23.8.9, “C API Prepared Statement Data Structures”.

To send temporal data values, create a prepared statement using mysql_stmt_prepare(). Then,
before calling mysql_stmt_execute() to execute the statement, use the following procedure to set
up each temporal parameter:

1. In the MYSQL_BIND structure associated with the data value, set the buffer_type member to
the type that indicates what kind of temporal value you're sending. For DATE, TIME, DATETIME,
or TIMESTAMP values, set buffer_type to MYSQL_TYPE_DATE, MYSQL_TYPE_TIME,
MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, respectively.



C API Support for Prepared CALL Statements

2749

2. Set the buffer member of the MYSQL_BIND structure to the address of the MYSQL_TIME structure
in which you pass the temporal value.

3. Fill in the members of the MYSQL_TIME structure that are appropriate for the type of temporal value
to pass.

Use mysql_stmt_bind_param() to bind the parameter data to the statement. Then you can call
mysql_stmt_execute().

To retrieve temporal values, the procedure is similar, except that you set the buffer_type member
to the type of value you expect to receive, and the buffer member to the address of a MYSQL_TIME
structure into which the returned value should be placed. Use mysql_stmt_bind_result() to bind
the buffers to the statement after calling mysql_stmt_execute() and before fetching the results.

Here is a simple example that inserts DATE, TIME, and TIMESTAMP data. The mysql variable is
assumed to be a valid connection handler.

  MYSQL_TIME  ts;
  MYSQL_BIND  bind[3];
  MYSQL_STMT  *stmt;

  strmov(query, "INSERT INTO test_table(date_field, time_field, \
                               timestamp_field) VALUES(?,?,?");

  stmt = mysql_stmt_init(mysql);
  if (!stmt)
  {
    fprintf(stderr, " mysql_stmt_init(), out of memory\n");
    exit(0);
  }
  if (mysql_stmt_prepare(mysql, query, strlen(query)))
  {
    fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
    fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
    exit(0);
  }

  /* set up input buffers for all 3 parameters */
  bind[0].buffer_type= MYSQL_TYPE_DATE;
  bind[0].buffer= (char *)&ts;
  bind[0].is_null= 0;
  bind[0].length= 0;
  ...
  bind[1]= bind[2]= bind[0];
  ...

  mysql_stmt_bind_param(stmt, bind);

  /* supply the data to be sent in the ts structure */
  ts.year= 2002;
  ts.month= 02;
  ts.day= 03;

  ts.hour= 10;
  ts.minute= 45;
  ts.second= 20;

  mysql_stmt_execute(stmt);
  ..

23.8.20 C API Support for Prepared CALL Statements

This section describes prepared-statement support in the C API for stored procedures executed using
CALL statements:



C API Support for Prepared CALL Statements

2750

Prior to MySQL 5.5.3, prepared CALL statements can be used only for stored procedures that produce
at most one result set. Nor can the calling application use placeholders for OUT or INOUT parameters.

MySQL 5.5.3 expands support for stored procedures executed using prepared CALL statements in the
following ways:

• A stored procedure can produce any number of result sets. The number of columns and the data
types of the columns need not be the same for all result sets.

• The final values of OUT and INOUT parameters are available to the calling application after the
procedure returns. These parameters are returned as an extra single-row result set following any
result sets produced by the procedure itself. The row contains the values of the OUT and INOUT
parameters in the order in which they are declared in the procedure parameter list.

The following discussion shows how to use these capabilities through the C API for prepared
statements. To use prepared CALL statements through the PREPARE and EXECUTE statements, see
Section 13.2.1, “CALL Syntax”.

If an application might be compiled or executed in a context where a version of MySQL older than 5.5.3
is used, prepared CALL capabilities for multiple result sets and OUT or INOUT parameters might not be
available:

• For the client side, the application will not compile unless the libraries are from MySQL 5.5.3 or
higher (the API function and symbols introduced in that version will not be present).

• To verify at runtime that the server is recent enough, a client can use this test:

if (mysql_get_server_version(mysql) < 50503)
{
  fprintf(stderr,
          "Server does not support required CALL capabilities\n");
  mysql_close(mysql);
  exit (1);
}

An application that executes a prepared CALL statement should use a loop that fetches a result and
then invokes mysql_stmt_next_result() to determine whether there are more results. The
results consist of any result sets produced by the stored procedure followed by a final status value that
indicates whether the procedure terminated successfully.

If the procedure has OUT or INOUT parameters, the result set preceding the final status value
contains their values. To determine whether a result set contains parameter values, test whether
the SERVER_PS_OUT_PARAMS bit is set in the server_status member of the MYSQL connection
handler:

mysql->server_status & SERVER_PS_OUT_PARAMS

The following example uses a prepared CALL statement to execute a stored procedure that produces
multiple result sets and that provides parameter values back to the caller by means of OUT and INOUT
parameters. The procedure takes parameters of all three types (IN, OUT, INOUT), displays their initial
values, assigns new values, displays the updated values, and returns. The expected return information
from the procedure therefore consists of multiple result sets and a final status:

• One result set from a SELECT that displays the initial parameter values: 10, NULL, 30. (The OUT
parameter is assigned a value by the caller, but this assignment is expected to be ineffective: OUT
parameters are seen as NULL within a procedure until assigned a value within the procedure.)

• One result set from a SELECT that displays the modified parameter values: 100, 200, 300.

• One result set containing the final OUT and INOUT parameter values: 200, 300.



C API Support for Prepared CALL Statements

2751

• A final status packet.

The code to execute the procedure:

MYSQL_STMT *stmt;
MYSQL_BIND ps_params[3];  /* input parameter buffers */
int        int_data[3];   /* input/output values */
my_bool    is_null[3];    /* output value nullability */
int        status;

/* set up stored procedure */
status = mysql_query(mysql, "DROP PROCEDURE IF EXISTS p1");
test_error(mysql, status);

status = mysql_query(mysql,
  "CREATE PROCEDURE p1("
  "  IN p_in INT, "
  "  OUT p_out INT, "
  "  INOUT p_inout INT) "
  "BEGIN "
  "  SELECT p_in, p_out, p_inout; "
  "  SET p_in = 100, p_out = 200, p_inout = 300; "
  "  SELECT p_in, p_out, p_inout; "
  "END");
test_error(mysql, status);

/* initialize and prepare CALL statement with parameter placeholders */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
  printf("Could not initialize statement\n");
  exit(1);
}
status = mysql_stmt_prepare(stmt, "CALL p1(?, ?, ?)", 16);
test_stmt_error(stmt, status);

/* initialize parameters: p_in, p_out, p_inout (all INT) */
memset(ps_params, 0, sizeof (ps_params));

ps_params[0].buffer_type = MYSQL_TYPE_LONG;
ps_params[0].buffer = (char *) &int_data[0];
ps_params[0].length = 0;
ps_params[0].is_null = 0;

ps_params[1].buffer_type = MYSQL_TYPE_LONG;
ps_params[1].buffer = (char *) &int_data[1];
ps_params[1].length = 0;
ps_params[1].is_null = 0;

ps_params[2].buffer_type = MYSQL_TYPE_LONG;
ps_params[2].buffer = (char *) &int_data[2];
ps_params[2].length = 0;
ps_params[2].is_null = 0;

/* bind parameters */
status = mysql_stmt_bind_param(stmt, ps_params);
test_stmt_error(stmt, status);

/* assign values to parameters and execute statement */
int_data[0]= 10;  /* p_in */
int_data[1]= 20;  /* p_out */
int_data[2]= 30;  /* p_inout */

status = mysql_stmt_execute(stmt);
test_stmt_error(stmt, status);

/* process results until there are no more */
do {
  int i;
  int num_fields;       /* number of columns in result */
  MYSQL_FIELD *fields;  /* for result set metadata */



C API Support for Prepared CALL Statements

2752

  MYSQL_BIND *rs_bind;  /* for output buffers */

  /* the column count is > 0 if there is a result set */
  /* 0 if the result is only the final status packet */
  num_fields = mysql_stmt_field_count(stmt);

  if (num_fields > 0)
  {
    /* there is a result set to fetch */
    printf("Number of columns in result: %d\n", (int) num_fields);

    /* what kind of result set is this? */
    printf("Data: ");
    if(mysql->server_status & SERVER_PS_OUT_PARAMS)
      printf("this result set contains OUT/INOUT parameters\n");
    else
      printf("this result set is produced by the procedure\n");

    MYSQL_RES *rs_metadata = mysql_stmt_result_metadata(stmt);
    test_stmt_error(stmt, rs_metadata == NULL);

    fields = mysql_fetch_fields(rs_metadata);

    rs_bind = (MYSQL_BIND *) malloc(sizeof (MYSQL_BIND) * num_fields);
    if (!rs_bind)
    {
      printf("Cannot allocate output buffers\n");
      exit(1);
    }
    memset(rs_bind, 0, sizeof (MYSQL_BIND) * num_fields);

    /* set up and bind result set output buffers */
    for (i = 0; i < num_fields; ++i)
    {
      rs_bind[i].buffer_type = fields[i].type;
      rs_bind[i].is_null = &is_null[i];

      switch (fields[i].type)
      {
        case MYSQL_TYPE_LONG:
          rs_bind[i].buffer = (char *) &(int_data[i]);
          rs_bind[i].buffer_length = sizeof (int_data);
          break;

        default:
          fprintf(stderr, "ERROR: unexpected type: %d.\n", fields[i].type);
          exit(1);
      }
    }

    status = mysql_stmt_bind_result(stmt, rs_bind);
    test_stmt_error(stmt, status);

    /* fetch and display result set rows */
    while (1)
    {
      status = mysql_stmt_fetch(stmt);

      if (status == 1 || status == MYSQL_NO_DATA)
        break;

      for (i = 0; i < num_fields; ++i)
      {
        switch (rs_bind[i].buffer_type)
        {
          case MYSQL_TYPE_LONG:
            if (*rs_bind[i].is_null)
              printf(" val[%d] = NULL;", i);
            else
              printf(" val[%d] = %ld;",
                     i, (long) *((int *) rs_bind[i].buffer));
            break;



MySQL PHP API

2753

          default:
            printf("  unexpected type (%d)\n",
              rs_bind[i].buffer_type);
        }
      }
      printf("\n");
    }

    mysql_free_result(rs_metadata); /* free metadata */
    free(rs_bind);                  /* free output buffers */
  }
  else
  {
    /* no columns = final status packet */
    printf("End of procedure output\n");
  }

  /* more results? -1 = no, >0 = error, 0 = yes (keep looking) */
  status = mysql_stmt_next_result(stmt);
  if (status > 0)
    test_stmt_error(stmt, status);
} while (status == 0);

mysql_stmt_close(stmt);

Execution of the procedure should produce the following output:

Number of columns in result: 3
Data: this result set is produced by the procedure
 val[0] = 10; val[1] = NULL; val[2] = 30;
Number of columns in result: 3
Data: this result set is produced by the procedure
 val[0] = 100; val[1] = 200; val[2] = 300;
Number of columns in result: 2
Data: this result set contains OUT/INOUT parameters
 val[0] = 200; val[1] = 300;
End of procedure output

The code uses two utility routines, test_error() and test_stmt_error(), to check for errors and
terminate after printing diagnostic information if an error occurred:

static void test_error(MYSQL *mysql, int status)
{
  if (status)
  {
    fprintf(stderr, "Error: %s (errno: %d)\n",
            mysql_error(mysql), mysql_errno(mysql));
    exit(1);
  }
}

static void test_stmt_error(MYSQL_STMT *stmt, int status)
{
  if (status)
  {
    fprintf(stderr, "Error: %s (errno: %d)\n",
            mysql_stmt_error(stmt), mysql_stmt_errno(stmt));
    exit(1);
  }
}

23.9 MySQL PHP API
The MySQL PHP API manual is now published in standalone form, not as part of the MySQL
Reference Manual. See MySQL and PHP.

23.10 MySQL Perl API

http://dev.mysql.com/doc/apis-php/en/


MySQL Python API

2754

The Perl DBI module provides a generic interface for database access. You can write a DBI script
that works with many different database engines without change. To use DBI with MySQL, install the
following:

1. The DBI module.

2. The DBD::mysql module. This is the DataBase Driver (DBD) module for Perl.

3. Optionally, the DBD module for any other type of database server you want to access.

Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl, which
should be considered obsolete.

These sections contain information about using Perl with MySQL and writing MySQL applications in
Perl:

• For installation instructions for Perl DBI support, see Section 2.12, “Perl Installation Notes”.

• For an example of reading options from option files, see Section 5.6.4, “Using Client Programs in a
Multiple-Server Environment”.

• For secure coding tips, see Section 6.1.1, “Security Guidelines”.

• For debugging tips, see Section 24.5.1.4, “Debugging mysqld under gdb”.

• For some Perl-specific environment variables, see Section 4.9, “MySQL Program Environment
Variables”.

• For considerations for running on OS X, see Section 2.4, “Installing MySQL on OS X”.

• For ways to quote string literals, see Section 9.1.1, “String Literals”.

DBI information is available at the command line, online, or in printed form:

• Once you have the DBI and DBD::mysql modules installed, you can get information about them at
the command line with the perldoc command:

shell> perldoc DBI
shell> perldoc DBI::FAQ
shell> perldoc DBD::mysql

You can also use pod2man, pod2html, and so on to translate this information into other formats.

• For online information about Perl DBI, visit the DBI Web site, http://dbi.perl.org/. That site hosts
a general DBI mailing list. Oracle Corporation hosts a list specifically about DBD::mysql; see
Section 1.5.2, “MySQL Mailing Lists”.

• For printed information, the official DBI book is Programming the Perl DBI (Alligator Descartes and
Tim Bunce, O'Reilly & Associates, 2000). Information about the book is available at the DBI Web
site, http://dbi.perl.org/.

For information that focuses specifically on using DBI with MySQL, see MySQL and Perl for the Web
(Paul DuBois, New Riders, 2001). This book's Web site is http://www.kitebird.com/mysql-perl/.

23.11 MySQL Python API

MySQLdb is a third-party driver that provides MySQL support for Python, compliant with the Python DB
API version 2.0. It can be found at http://sourceforge.net/projects/mysql-python/.

The new MySQL Connector/Python component provides an interface to the same Python API, and is
built into the MySQL Server and supported by Oracle. See MySQL Connector/Python Developer Guide

http://dbi.perl.org/
http://dbi.perl.org/
http://www.kitebird.com/mysql-perl/
http://sourceforge.net/projects/mysql-python/
http://dev.mysql.com/doc/connector-python/en/


MySQL Ruby APIs

2755

for details on the Connector, as well as coding guidelines for Python applications and sample Python
code.

23.12 MySQL Ruby APIs

Two APIs are available for Ruby programmers developing MySQL applications:

• The MySQL/Ruby API is based on the libmysqlclient API library. For information on installing
and using the MySQL/Ruby API, see Section 23.12.1, “The MySQL/Ruby API”.

• The Ruby/MySQL API is written to use the native MySQL network protocol (a native driver). For
information on installing and using the Ruby/MySQL API, see Section 23.12.2, “The Ruby/MySQL
API”.

For background and syntax information about the Ruby language, see Ruby Programming Language.

23.12.1 The MySQL/Ruby API

The MySQL/Ruby module provides access to MySQL databases using Ruby through
libmysqlclient.

For information on installing the module, and the functions exposed, see MySQL/Ruby.

23.12.2 The Ruby/MySQL API

The Ruby/MySQL module provides access to MySQL databases using Ruby through a native driver
interface using the MySQL network protocol.

For information on installing the module, and the functions exposed, see Ruby/MySQL.

23.13 MySQL Tcl API

MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming
language. It can be found at http://www.xdobry.de/mysqltcl/.

23.14 MySQL Eiffel Wrapper

Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language,
written by Michael Ravits. It can be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.

http://www.ruby-lang.org
http://tmtm.org/en/mysql/ruby/
http://tmtm.org/en/ruby/mysql/README_en.html
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tcl
http://www.xdobry.de/mysqltcl/
http://en.wikipedia.org/wiki/Eiffel_(programming_language)
http://efsa.sourceforge.net/archive/ravits/mysql.htm


2756



2757

Chapter 24 Extending MySQL

Table of Contents
24.1 MySQL Internals .............................................................................................................. 2757

24.1.1 MySQL Threads ................................................................................................... 2757
24.1.2 The MySQL Test Suite ......................................................................................... 2758

24.2 The MySQL Plugin API .................................................................................................... 2759
24.2.1 Types of Plugins ................................................................................................... 2759
24.2.2 Plugin API Characteristics ..................................................................................... 2762
24.2.3 Plugin API Components ........................................................................................ 2763
24.2.4 Writing Plugins ..................................................................................................... 2764

24.3 MySQL Services for Plugins ............................................................................................ 2804
24.4 Adding New Functions to MySQL ..................................................................................... 2805

24.4.1 Features of the User-Defined Function Interface ..................................................... 2806
24.4.2 Adding a New User-Defined Function .................................................................... 2806
24.4.3 Adding a New Native Function .............................................................................. 2815

24.5 Debugging and Porting MySQL ........................................................................................ 2817
24.5.1 Debugging a MySQL Server .................................................................................. 2817
24.5.2 Debugging a MySQL Client ................................................................................... 2825
24.5.3 The DBUG Package ............................................................................................. 2825

24.1 MySQL Internals

This chapter describes a lot of things that you need to know when working on the MySQL code.
To track or contribute to MySQL development, follow the instructions in Section 2.9.3, “Installing
MySQL Using a Development Source Tree”. If you are interested in MySQL internals, you should
also subscribe to our internals mailing list. This list has relatively low traffic. For details on how
to subscribe, please see Section 1.5.2, “MySQL Mailing Lists”. Many MySQL developers at Oracle
Corporation are on the internals list and we help other people who are working on the MySQL code.
Feel free to use this list both to ask questions about the code and to send patches that you would like
to contribute to the MySQL project!

24.1.1 MySQL Threads

The MySQL server creates the following threads:

• Connection manager threads handle client connection requests on the network interfaces that
the server listens to. On all platforms, one manager thread handles TCP/IP connection requests.
On Unix, this manager thread also handles Unix socket file connection requests. On Windows, a
manager thread handles shared-memory connection requests, and another handles named-pipe
connection requests. The server does not create threads to handle interfaces that it does not listen
to. For example, a Windows server that does not have support for named-pipe connections enabled
does not create a thread to handle them.

• Connection manager threads associate each client connection with a thread dedicated to it that
handles authentication and request processing for that connection. Manager threads create a new
thread when necessary but try to avoid doing so by consulting the thread cache first to see whether
it contains a thread that can be used for the connection. When a connection ends, its thread is
returned to the thread cache if the cache is not full.

For information about tuning the parameters that control thread resources, see Section 8.12.5.1,
“How MySQL Uses Threads for Client Connections”.

• On a master replication server, connections from slave servers are handled like client connections:
There is one thread per connected slave.



The MySQL Test Suite

2758

• On a slave replication server, an I/O thread is started to connect to the master server and read
updates from it. An SQL thread is started to apply updates read from the master. These two threads
run independently and can be started and stopped independently.

• A signal thread handles all signals. This thread also normally handles alarms and calls
process_alarm() to force timeouts on connections that have been idle too long.

• If InnoDB is used, there will be additional read and write threads by default. The number of these are
controlled by the innodb_read_io_threads and innodb_write_io_threads parameters. See
Section 14.17, “InnoDB Startup Options and System Variables”.

• If mysqld is compiled with -DUSE_ALARM_THREAD, a dedicated thread that handles alarms is
created. This is only used on some systems where there are problems with sigwait() or if you
want to use the thr_alarm() code in your application without a dedicated signal handling thread.

• If the server is started with the --flush_time=val option, a dedicated thread is created to flush all
tables every val seconds.

• Each table for which INSERT DELAYED statements are issued gets its own thread. See
Section 13.2.5.2, “INSERT DELAYED Syntax”.

• If the event scheduler is active, there is one thread for the scheduler, and a thread for each event
currently running. See Section 20.4.1, “Event Scheduler Overview”.

mysqladmin processlist only shows the connection, INSERT DELAYED, replication, and event
threads.

24.1.2 The MySQL Test Suite

The test system that is included in Unix source and binary distributions makes it possible for users and
developers to perform regression tests on the MySQL code. These tests can be run on Unix.

You can also write your own test cases. For information about the MySQL Test Framework, including
system requirements, see the manual available at http://dev.mysql.com/doc/mysqltest/2.0/en/.

The current set of test cases does not test everything in MySQL, but it should catch most obvious
bugs in the SQL processing code, operating system or library issues, and is quite thorough in testing
replication. Our goal is to have the tests cover 100% of the code. We welcome contributions to our test
suite. You may especially want to contribute tests that examine the functionality critical to your system
because this ensures that all future MySQL releases work well with your applications.

The test system consists of a test language interpreter (mysqltest), a Perl script to run all tests
(mysql-test-run.pl), the actual test cases written in a special test language, and their expected
results. To run the test suite on your system after a build, type make test from the source root
directory, or change location to the mysql-test directory and type ./mysql-test-run.pl. If you
have installed a binary distribution, change location to the mysql-test directory under the installation
root directory (for example, /usr/local/mysql/mysql-test), and run ./mysql-test-run.pl.
All tests should succeed. If any do not, feel free to try to find out why and report the problem if it
indicates a bug in MySQL. See Section 1.6, “How to Report Bugs or Problems”.

If one test fails, you should run mysql-test-run.pl with the --force option to check whether any
other tests fail.

If you have a copy of mysqld running on the machine where you want to run the test suite, you do
not have to stop it, as long as it is not using ports 9306 or 9307. If either of those ports is taken, you
should set the MTR_BUILD_THREAD environment variable to an appropriate value, and the test suite
will use a different set of ports for master, slave, and NDB). For example:

shell> export MTR_BUILD_THREAD=31

http://dev.mysql.com/doc/mysqltest/2.0/en/


The MySQL Plugin API

2759

shell> ./mysql-test-run.pl [options] [test_name]

In the mysql-test directory, you can run an individual test case with ./mysql-test-run.pl
test_name.

If you have a question about the test suite, or have a test case to contribute, send an email message to
the MySQL internals mailing list. See Section 1.5.2, “MySQL Mailing Lists”.

24.2 The MySQL Plugin API

MySQL supports a plugin API that enables creation of server components. Plugins can be loaded at
server startup, or loaded and unloaded at runtime without restarting the server. The API is generic and
does not specify what plugins can do. The components supported by this interface include, but are not
limited to, storage engines, full-text parser plugins, and server extensions.

For example, full-text parser plugins can be used to replace or augment the built-in full-text parser.
A plugin can parse text into words using rules that differ from those used by the built-in parser. This
can be useful if you need to parse text with characteristics different from those expected by the built-in
parser.

The plugin interface is more general than the older user-defined function (UDF) interface.

The plugin interface uses the plugin table in the mysql database to record information about plugins
that have been installed permanently with the INSTALL PLUGIN statement. This table is created as
part of the MySQL installation process. Plugins can also be installed for a single server invocation with
the --plugin-load option. Plugins installed this way are not recorded in the plugin table. See
Section 5.5.2, “Installing and Uninstalling Plugins”.

MySQL 5.5.7 and up supports an API for client plugins in addition to that for server plugins. This
is used, for example, by authentication plugins where a server-side plugin and a client-side plugin
cooperate to enable clients to connect to the server through a variety of authentication methods.

Additional Resources

The book MySQL 5.1 Plugin Development by Sergei Golubchik and Andrew Hutchings provides a
wealth of detail about the plugin API. Despite the fact that the book's title refers to MySQL Server 5.1,
most of the information in it applies to later versions as well.

24.2.1 Types of Plugins

The plugin API enables creation of plugins that implement several capabilities:

• Storage engines

• Full-text parsers

• Daemons

• INFORMATION_SCHEMA tables

• Semisynchronous replication

• Auditing

• Authentication

The following sections provide an overview of these plugin types.

Storage Engine Plugins



Types of Plugins

2760

The pluggable storage engine architecture used by MySQL Server enables storage engines to be
written as plugins and loaded into and unloaded from a running server. For a description of this
architecture, see Section 15.2, “Overview of MySQL Storage Engine Architecture”.

For information on how to use the plugin API to write storage engines, see MySQL Internals: Writing a
Custom Storage Engine.

Full-Text Parser Plugins

MySQL has a built-in parser that it uses by default for full-text operations (parsing text to be indexed,
or parsing a query string to determine the terms to be used for a search). For full-text processing,
“parsing” means extracting words from text or a query string based on rules that define which character
sequences make up a word and where word boundaries lie.

When parsing for indexing purposes, the parser passes each word to the server, which adds it to a full-
text index. When parsing a query string, the parser passes each word to the server, which accumulates
the words for use in a search.

The parsing properties of the built-in full-text parser are described in Section 12.9, “Full-Text Search
Functions”. These properties include rules for determining how to extract words from text. The parser
is influenced by certain system variables such as ft_min_word_len and ft_max_word_len that
cause words shorter or longer to be excluded, and by the stopword list that identifies common words to
be ignored.

The plugin API enables you to provide a full-text parser of your own so that you have control over the
basic duties of a parser. A parser plugin can operate in either of two roles:

• The plugin can replace the built-in parser. In this role, the plugin reads the input to be parsed, splits it
up into words, and passes the words to the server (either for indexing or for word accumulation).

One reason to use a parser this way is that you need to use different rules from those of the built-
in parser for determining how to split up input into words. For example, the built-in parser considers
the text “case-sensitive” to consist of two words “case” and “sensitive,” whereas an application might
need to treat the text as a single word.

• The plugin can act in conjunction with the built-in parser by serving as a front end for it. In this role,
the plugin extracts text from the input and passes the text to the parser, which splits up the text into
words using its normal parsing rules. In particular, this parsing will be affected by the ft_xxx system
variables and the stopword list.

One reason to use a parser this way is that you need to index content such as PDF documents, XML
documents, or .doc files. The built-in parser is not intended for those types of input but a plugin can
pull out the text from these input sources and pass it to the built-in parser.

It is also possible for a parser plugin to operate in both roles. That is, it could extract text from
noncleartext input (the front end role), and also parse the text into words (thus replacing the built-in
parser).

A full-text plugin is associated with full-text indexes on a per-index basis. That is, when you install a
parser plugin initially, that does not cause it to be used for any full-text operations. It simply becomes
available. For example, a full-text parser plugin becomes available to be named in a WITH PARSER
clause when creating individual FULLTEXT indexes. To create such an index at table-creation time, do
this:

CREATE TABLE t
(
  doc CHAR(255),
  FULLTEXT INDEX (doc) WITH PARSER my_parser

http://dev.mysql.com/doc/internals/en/custom-engine.html
http://dev.mysql.com/doc/internals/en/custom-engine.html


Types of Plugins

2761

) ENGINE=MyISAM;

Or you can add the index after the table has been created:

ALTER TABLE t ADD FULLTEXT INDEX (doc) WITH PARSER my_parser;

The only SQL change for associating the parser with the index is the WITH PARSER clause. Searches
are specified as before, with no changes needed for queries.

When you associate a parser plugin with a FULLTEXT index, the plugin is required for using the index.
If the parser plugin is dropped, any index associated with it becomes unusable. Any attempt to use a
table for which a plugin is not available results in an error, although DROP TABLE is still possible.

For more information about full-text plugins, see Section 24.2.4.4, “Writing Full-Text Parser Plugins”.
MySQL 5.5 only supports full-text plugins with MyISAM.

Daemon Plugins

A daemon plugin is a simple type of plugin used for code that should be run by the server but that does
not communicate with it. MySQL distributions include an example daemon plugin that writes periodic
heartbeat messages to a file.

For more information about daemon plugins, see Section 24.2.4.5, “Writing Daemon Plugins”.

INFORMATION_SCHEMA Plugins

INFORMATION_SCHEMA plugins enable the creation of tables containing server metadata that
are exposed to users through the INFORMATION_SCHEMA database. For example, InnoDB uses
INFORMATION_SCHEMA plugins to provide tables that contain information about current transactions
and locks.

For more information about INFORMATION_SCHEMA plugins, see Section 24.2.4.6, “Writing
INFORMATION_SCHEMA Plugins”.

Semisynchronous Replication Plugins

MySQL replication is asynchronous by default. With semisynchronous replication, a commit performed
on the master side blocks before returning to the session that performed the transaction until
at least one slave acknowledges that it has received and logged the events for the transaction.
Semisynchronous replication is implemented through complementary master and client plugins. See
Section 17.3.8, “Semisynchronous Replication”.

For more information about semisynchronous replication plugins, see Section 24.2.4.7, “Writing
Semisynchronous Replication Plugins”.

Audit Plugins

As of MySQL 5.5.3, the server provides a pluggable audit interface that enables information about
server operations to be reported to interested parties. Audit notification occurs for these operations
(although the interface is general and the server could be modified to report others):

• Write a message to the general query log (if the log is enabled)

• Write a message to the error log

• Send a query result to a client

Audit plugins may register with the audit interface to receive notification about server operations. When
an auditable event occurs within the server, the server determines whether notification is needed. For



Plugin API Characteristics

2762

each registered audit plugin, the server checks the event against those event classes in which the
plugin is interested and passes the event to the plugin if there is a match.

This interface enables audit plugins to receive notifications only about operations in event classes they
consider significant and to ignore others. The interface provides for categorization of operations into
event classes and further division into event subclasses within each class.

When an audit plugin is notified of an auditable event, it receives a pointer to the current THD structure
and a pointer to a structure that contains information about the event. The plugin can examine the
event and perform whatever auditing actions are appropriate. For example, the plugin can see what
statement produced a result set or was logged, the number of rows in a result, who the current user
was for an operation, or the error code for failed operations.

For more information about audit plugins, see Section 24.2.4.8, “Writing Audit Plugins”.

Authentication Plugins

MySQL 5.5.7 and up supports pluggable authentication. Authentication plugins exist on both the
server and client sides. Plugins on the server side implement authentication methods for use by clients
when they connect to the server. A plugin on the client side communicates with a server-side plugin to
provide the authentication information that it requires. A client-side plugin may interact with the user,
performing tasks such as soliciting a password or other authentication credentials to be sent to the
server. See Section 6.3.6, “Pluggable Authentication”.

Pluggable authentication also enables proxy user capability, in which one user takes the identity of
another user. A server-side authentication plugin can return to the server the name of the user whose
identity the connecting user should have. See Section 6.3.7, “Proxy Users”.

For more information about authentication plugins, see Section 24.2.4.9, “Writing Authentication
Plugins”.

24.2.2 Plugin API Characteristics

The server plugin API has these characteristics:

• All plugins have several things in common.

Each plugin has a name that it can be referred to in SQL statements, as well as other metadata such
as an author and a description that provide other information. This information can be examined in
the INFORMATION_SCHEMA.PLUGINS table or using the SHOW PLUGINS statement.

• The plugin framework is extendable to accommodate different kinds of plugins.

Although some aspects of the plugin API are common to all types of plugins, the API also permits
type-specific interface elements so that different types of plugins can be created. A plugin with one
purpose can have an interface most appropriate to its own requirements and not the requirements of
some other plugin type.

Interfaces for several types of plugins exist, such as storage engines, full-text parser, and
INFORMATION_SCHEMA tables. Others can be added.

• Plugins can expose information to users.

A plugin can implement system and status variables that are available through the SHOW
VARIABLES and SHOW STATUS statements.

• The plugin API includes versioning information.

The version information included in the plugin API enables a plugin library and each plugin that it
contains to be self-identifying with respect to the API version that was used to build the library. If the



Plugin API Components

2763

API changes over time, the version numbers will change, but a server can examine a given plugin
library's version information to determine whether it supports the plugins in the library.

There are two types of version numbers. The first is the version for the general plugin framework
itself. Each plugin library includes this kind of version number. The second type of version applies
to individual plugins. Each specific type of plugin has a version for its interface, so each plugin in a
library has a type-specific version number. For example, a library containing a full-text parser plugin
has a general plugin API version number, and the plugin has a version number specific to the full-text
plugin interface.

• The plugin API implements security restrictions.

A plugin library must be installed in a specific dedicated directory for which the location is controlled
by the server and cannot be changed at runtime. Also, the library must contain specific symbols that
identify it as a plugin library. The server will not load something as a plugin if it was not built as a
plugin.

• Plugins have access to server services.

The services interface exposes server functionality that plugins can access using ordinary function
calls. For details, see Section 24.3, “MySQL Services for Plugins”.

In some respects, the server plugin API is similar to the older user-defined function (UDF) API that it
supersedes, but the plugin API has several advantages over the older interface. For example, UDFs
had no versioning information. Also, the newer plugin interface eliminates the security issues of the
older UDF interface. The older interface for writing nonplugin UDFs permitted libraries to be loaded
from any directory searched by the system's dynamic linker, and the symbols that identified the UDF
library were relatively nonspecific.

The client plugin API has similar architectural characteristics, but client plugins have no direct access to
the server the way server plugins do.

24.2.3 Plugin API Components

The server plugin implementation comprises several components.

SQL statements:

• INSTALL PLUGIN registers a plugin in the mysql.plugin table and loads the plugin code.

• UNINSTALL PLUGIN unregisters a plugin from the mysql.plugin table and unloads the plugin
code.

• The WITH PARSER clause for full-text index creation associates a full-text parser plugin with a given
FULLTEXT index.

• SHOW PLUGINS displays information about server plugins.

Command-line options and system variables:

• The --plugin-load option enables plugins to be loaded at server startup time.

• The plugin_dir system variable indicates the location of the directory where all plugins
must be installed. The value of this variable can be specified at server startup with a --
plugin_dir=dir_name option. mysql_config --plugindir displays the default plugin
directory path name.

For additional information about plugin loading, see Section 5.5.2, “Installing and Uninstalling Plugins”.

Plugin-related tables:

• The INFORMATION_SCHEMA.PLUGINS table contains plugin information.



Writing Plugins

2764

• The mysql.plugin table lists each plugin that was installed with INSTALL PLUGIN and is required
for plugin use. For new MySQL installations, this table is created during the installation process.

The client plugin implementation is simpler:

• For the mysql_options() C API function, the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR
options enable client programs to load authentication plugins.

• There are C API functions that enable management of client plugins.

To examine how MySQL implements plugins, consult the following source files in a MySQL source
distribution:

• In the include/mysql directory, plugin.h exposes the public plugin API. This file should be
examined by anyone who wants to write a plugin library. plugin_xxx.h files provide additional
information that pertains to specific types of plugins. client_plugin.h contains information
specific to client plugins.

• In the sql directory, sql_plugin.h and sql_plugin.cc comprise the internal plugin
implementation. sql_acl.cc is where the server uses authentication plugins. These files need not
be consulted by plugin developers. They may be of interest for those who want to know more about
how the server handles plugins.

• In the sql-common directory, client_plugin.h implements the C API client plugin functions, and
client.c implements client authentication support. These files need not be consulted by plugin
developers. They may be of interest for those who want to know more about how the server handles
plugins.

24.2.4 Writing Plugins

To create a plugin library, you must provide the required descriptor information that indicates what
plugins the library file contains, and write the interface functions for each plugin.

Every server plugin must have a general descriptor that provides information to the plugin API, and a
type-specific descriptor that provides information about the plugin interface for a given type of plugin.
The structure of the general descriptor is the same for all plugin types. The structure of the type-
specific descriptor varies among plugin types and is determined by the requirements of what the plugin
needs to do. The server plugin interface also enables plugins to expose status and system variables.
These variables become visible through the SHOW STATUS and SHOW VARIABLES statements and the
corresponding INFORMATION_SCHEMA tables.

For client-side plugins, the architecture is a bit different. Each plugin must have a descriptor, but there
is no division into separate general and type-specific descriptors. Instead, the descriptor begins with a
fixed set of members common to all client plugin types, and the common members are followed by any
additional members required to implement the specific plugin type.

You can write plugins in C or C++ (or another language that can use C calling conventions). Plugins
are loaded and unloaded dynamically, so your operating system must support dynamic loading and you
must have compiled the calling application dynamically (not statically). For server plugins, this means
that mysqld must be compiled dynamically.

A server plugin contains code that becomes part of the running server, so when you write the plugin,
you are bound by any and all constraints that otherwise apply to writing server code. For example, you
may have problems if you attempt to use functions from the libstdc++ library. These constraints may
change in future versions of the server, so it is possible that server upgrades will require revisions to
plugins originally written for older servers. For information about these constraints, see Section 2.9.4,
“MySQL Source-Configuration Options”, and Section 2.9.5, “Dealing with Problems Compiling MySQL”.

Client plugin writers should avoid dependencies on what symbols the calling application has because
you cannot be sure what applications will use the plugin.



Writing Plugins

2765

24.2.4.1 Overview of Plugin Writing

The following procedure provides an overview of the steps needed to create a plugin library. The next
sections provide additional details on setting plugin data structures and writing specific types of plugins.

1. In the plugin source file, include the header files that the plugin library needs. The plugin.h file is
required, and the library might require other files as well. For example:

#include <stdlib.h>
#include <ctype.h>
#include <mysql/plugin.h>

2. Set up the descriptor information for the plugin library file. For server plugins, write the library
descriptor, which must contain the general plugin descriptor for each server plugin in the file. For
more information, see Server Plugin Library and Plugin Descriptors. In addition, set up the type-
specific descriptor for each server plugin in the library. Each plugin's general descriptor points to its
type-specific descriptor.

For client plugins, write the client descriptor. For more information, see Client Plugin Descriptors.

3. Write the plugin interface functions for each plugin. For example, each plugin's general plugin
descriptor points to the initialization and deinitialization functions that the server should invoke when
it loads and unloads the plugin. The plugin's type-specific description may also point to interface
functions.

4. For server plugins, set up the status and system variables, if there are any.

5. Compile the plugin library as a shared library and install it in the plugin directory. For more
information, see Section 24.2.4.3, “Compiling and Installing Plugin Libraries”.

6. For server plugins, register the plugin with the server. For more information, see Section 5.5.2,
“Installing and Uninstalling Plugins”.

7. Test the plugin to verify that it works properly.

24.2.4.2 Plugin Data Structures

A plugin library file includes descriptor information to indicate what plugins it contains.

If the plugin library contains any server plugins, it must include the following descriptor information:

• A library descriptor indicates the general server plugin API version number used by the library and
contains a general plugin descriptor for each server plugin in the library. To provide the framework
for this descriptor, invoke two macros from the plugin.h header file:

mysql_declare_plugin(name)
 ... one or more server plugin descriptors here ...
mysql_declare_plugin_end;

The macros expand to provide a declaration for the API version automatically. You must provide the
plugin descriptors.

• Within the library descriptor, each general server plugin is described by a st_mysql_plugin
structure. This plugin descriptor structure contains information that is common to every type of server
plugin: A value that indicates the plugin type; the plugin name, author, description, and license type;
pointers to the initialization and deinitialization functions that the server invokes when it loads and
unloads the plugin, and pointers to any status or system variables the plugin implements.

• Each general server plugin descriptor within the library descriptor also contains a pointer to a type-
specific plugin descriptor. The structure of the type-specific descriptors varies from one plugin type to
another because each type of plugin can have its own API. A type-specific plugin descriptor contains



Writing Plugins

2766

a type-specific API version number and pointers to the functions that are needed to implement that
plugin type. For example, a full-text parser plugin has initialization and deinitialization functions, and
a main parsing function. The server invokes these functions when it uses the plugin to parse text.

The plugin library also contains the interface functions that are referenced by the general and type-
specific descriptors for each plugin in the library.

If the plugin library contains a client plugin, it must include a descriptor for the plugin. The descriptor
begins with a fixed set of members common to all client plugins, followed by any members specific to
the plugin type. To provide the descriptor framework, invoke two macros from the client_plugin.h
header file:

mysql_declare_client_plugin(plugin_type)
   ... members common to all client plugins ...
   ... type-specific extra members ...
mysql_end_client_plugin;

The plugin library also contains any interface functions referenced by the client descriptor.

The mysql_declare_plugin() and mysql_declare_client_plugin() macros differ somewhat
in how they can be invoked, which has implications for the contents of plugin libraries. The following
guidelines summarize the rules:

• mysql_declare_plugin() and mysql_declare_client_plugin() can both be used in
the same source file, which means that a plugin library can contain both server and client plugins.
However, each of mysql_declare_plugin() and mysql_declare_client_plugin() can be
used at most once.

• mysql_declare_plugin() permits multiple server plugin declarations, so a plugin library can
contain multiple server plugins.

• mysql_declare_client_plugin() permits only a single client plugin declaration. To create
multiple client plugins, separate plugin libraries must be used.

When a client program looks for a client plugin that is in a plugin library and not built into
libmysqlclient, it looks for a file with a base name that is the same as the plugin name. For
example, if a program needs to use a client authentication plugin named auth_xxx on a system that
uses .so as the library suffix, it looks in the file named auth_xxx.so. (On OS X, the program looks
first for auth_xxx.dylib, then for auth_xxx.so.) For this reason, if a plugin library contains a client
plugin, the library must have the same base name as that plugin.

The same is not true for a library that contains server plugins. The --plugin-load option and the
INSTALL PLUGIN statement provide the library file name explicitly, so there need be no explicit
relationship between the library name and the name of any server plugins it contains.

Server Plugin Library and Plugin Descriptors

Every plugin library that contains server plugins must include a library descriptor that contains the
general plugin descriptor for each server plugin in the file. This section discusses how to write the
library and general descriptors for server plugins.

The library descriptor must define two symbols:

• _mysql_plugin_interface_version_ specifies the version number of the general plugin
framework. This is given by the MYSQL_PLUGIN_INTERFACE_VERSION symbol, which is defined in
the plugin.h file.

• _mysql_plugin_declarations_ defines an array of plugin declarations, terminated by a
declaration with all members set to 0. Each declaration is an instance of the st_mysql_plugin
structure (also defined in plugin.h). There must be one of these for each server plugin in the
library.



Writing Plugins

2767

If the server does not find those two symbols in a library, it does not accept it as a legal plugin library
and rejects it with an error. This prevents use of a library for plugin purposes unless it was built
specifically as a plugin library.

The conventional way to define the two required symbols is by using the mysql_declare_plugin()
and mysql_declare_plugin_end macros from the plugin.h file:

mysql_declare_plugin(name)
 ... one or more server plugin descriptors here ...
mysql_declare_plugin_end;

Each server plugin must have a general descriptor that provides information to the server plugin API.
The general descriptor has the same structure for all plugin types. The st_mysql_plugin structure in
the plugin.h file defines this descriptor:

struct st_mysql_plugin
{
  int type;             /* the plugin type (a MYSQL_XXX_PLUGIN value)   */
  void *info;           /* pointer to type-specific plugin descriptor   */
  const char *name;     /* plugin name                                  */
  const char *author;   /* plugin author (for I_S.PLUGINS)              */
  const char *descr;    /* general descriptive text (for I_S.PLUGINS)   */
  int license;          /* the plugin license (PLUGIN_LICENSE_XXX)      */
  int (*init)(void *);  /* the function to invoke when plugin is loaded */
  int (*deinit)(void *);/* the function to invoke when plugin is unloaded */
  unsigned int version; /* plugin version (for I_S.PLUGINS)             */
  struct st_mysql_show_var *status_vars;
  struct st_mysql_sys_var **system_vars;
  void * __reserved1;   /* reserved for dependency checking             */
  unsigned long flags;  /* flags for plugin */
};

The st_mysql_plugin descriptor structure members are used as follows. char * members should
be specified as null-terminated strings.

• type: The plugin type. This must be one of the plugin-type values from plugin.h:

/*
  The allowable types of plugins
*/
#define MYSQL_UDF_PLUGIN             0  /* User-defined function        */
#define MYSQL_STORAGE_ENGINE_PLUGIN  1  /* Storage Engine               */
#define MYSQL_FTPARSER_PLUGIN        2  /* Full-text parser plugin      */
#define MYSQL_DAEMON_PLUGIN          3  /* The daemon/raw plugin type */
#define MYSQL_INFORMATION_SCHEMA_PLUGIN  4  /* The I_S plugin type */
#define MYSQL_AUDIT_PLUGIN           5  /* The Audit plugin type        */
#define MYSQL_REPLICATION_PLUGIN     6  /* The replication plugin type */
#define MYSQL_AUTHENTICATION_PLUGIN  7  /* The authentication plugin type */
...

For example, for a full-text parser plugin, the type value is MYSQL_FTPARSER_PLUGIN.

• info: A pointer to the type-specific descriptor for the plugin. This descriptor's structure depends on
the particular type of plugin, unlike that of the general plugin descriptor structure. For version-control
purposes, the first member of the type-specific descriptor for every plugin type is expected to be the
interface version for the type. This enables the server to check the type-specific version for every
plugin no matter its type. Following the version number, the descriptor includes any other members
needed, such as callback functions and other information needed by the server to invoke the plugin
properly. Later sections on writing particular types of server plugins describe the structure of their
type-specific descriptors.

• name: A string that gives the plugin name. This is the name that will be listed in the mysql.plugin
table and by which you refer to the plugin in SQL statements such as INSTALL PLUGIN and



Writing Plugins

2768

UNINSTALL PLUGIN, or with the --plugin-load option. The name is also visible in the
INFORMATION_SCHEMA.PLUGINS table or the output from SHOW PLUGINS.

The plugin name should not begin with the name of any server option. If it does, the server will fail
to initialize it. For example, the server has a --socket option, so you should not use a plugin name
such as socket, socket_plugin, and so forth.

• author: A string naming the plugin author. This can be whatever you like.

• desc: A string that provides a general description of the plugin. This can be whatever you like.

• license: The plugin license type. The value can be one of PLUGIN_LICENSE_PROPRIETARY,
PLUGIN_LICENSE_GPL, or PLUGIN_LICENSE_BSD.

• init: A once-only initialization function, or NULL if there is no such function. The server executes
this function when it loads the plugin, which happens for INSTALL PLUGIN or, for plugins listed
in the mysql.plugin table, at server startup. The function takes one argument that points to the
internal structure used to identify the plugin. It returns zero for success and nonzero for failure.

• deinit: A once-only deinitialization function, or NULL if there is no such function. The server
executes this function when it unloads the plugin, which happens for UNINSTALL PLUGIN or, for
plugins listed in the mysql.plugin table, at server shutdown. The function takes one argument that
points to the internal structure used to identify the plugin It returns zero for success and nonzero for
failure.

• version: The plugin version number. When the plugin is installed, this value can be retrieved from
the INFORMATION_SCHEMA.PLUGINS table. The value includes major and minor numbers. If you
write the value as a hex constant, the format is 0xMMNN, where MM and NN are the major and minor
numbers, respectively. For example, 0x0302 represents version 3.2.

• status_vars: A pointer to a structure for status variables associated with the plugin, or NULL if
there are no such variables. When the plugin is installed, these variables are displayed in the output
of the SHOW STATUS statement.

The status_vars member, if not NULL, points to an array of st_mysql_show_var structures that
describe status variables. See Server Plugin Status and System Variables.

• system_vars: A pointer to a structure for system variables associated with the plugin, or NULL
if there are no such variables. These options and system variables can be used to help initialize
variables within the plugin.

The system_vars member, if not NULL, points to an array of st_mysql_sys_var structures that
describe system variables. See Server Plugin Status and System Variables.

• __reserved1: A placeholder for the future. It should be set to NULL.

• flags: Plugin flags. Individual bits correspond to different flags. The value should be set to the OR
of the applicable flags. These flags are available:

#define PLUGIN_OPT_NO_INSTALL   1UL   /* Not dynamically loadable */
#define PLUGIN_OPT_NO_UNINSTALL 2UL   /* Not dynamically unloadable */

PLUGIN_OPT_NO_INSTALL indicates that the plugin cannot be loaded at runtime with the INSTALL
PLUGIN statement. This is appropriate for plugins that must be loaded at server startup with the --
plugin-load option. PLUGIN_OPT_NO_UNINSTALL indicates that the plugin cannot be unloaded
at runtime with the UNINSTALL PLUGIN statement.

This member was added in MySQL 5.5.16.

The server invokes the init and deinit functions in the general plugin descriptor only when loading
and unloading the plugin. They have nothing to do with use of the plugin such as happens when an
SQL statement causes the plugin to be invoked.



Writing Plugins

2769

For example, the descriptor information for a library that contains a single full-text parser plugin named
simple_parser looks like this:

mysql_declare_plugin(ftexample)
{
  MYSQL_FTPARSER_PLUGIN,      /* type                            */
  &simple_parser_descriptor,  /* descriptor                      */
  "simple_parser",            /* name                            */
  "Oracle Corporation",       /* author                          */
  "Simple Full-Text Parser",  /* description                     */
  PLUGIN_LICENSE_GPL,         /* plugin license                  */
  simple_parser_plugin_init,  /* init function (when loaded)     */
  simple_parser_plugin_deinit,/* deinit function (when unloaded) */
  0x0001,                     /* version                         */
  simple_status,              /* status variables                */
  simple_system_variables,    /* system variables                */
  NULL,
  0
}
mysql_declare_plugin_end;

For a full-text parser plugin, the type must be MYSQL_FTPARSER_PLUGIN. This is the value that
identifies the plugin as being legal for use in a WITH PARSER clause when creating a FULLTEXT index.
(No other plugin type is legal for this clause.)

plugin.h defines the mysql_declare_plugin() and mysql_declare_plugin_end macros like
this:

#ifndef MYSQL_DYNAMIC_PLUGIN
#define __MYSQL_DECLARE_PLUGIN(NAME, VERSION, PSIZE, DECLS) \
MYSQL_PLUGIN_EXPORT int VERSION= MYSQL_PLUGIN_INTERFACE_VERSION; \
MYSQL_PLUGIN_EXPORT int PSIZE= sizeof(struct st_mysql_plugin); \
MYSQL_PLUGIN_EXPORT struct st_mysql_plugin DECLS[]= {
#else
#define __MYSQL_DECLARE_PLUGIN(NAME, VERSION, PSIZE, DECLS) \
MYSQL_PLUGIN_EXPORT int _mysql_plugin_interface_version_= MYSQL_PLUGIN_INTERFACE_VERSION; \
MYSQL_PLUGIN_EXPORT int _mysql_sizeof_struct_st_plugin_= sizeof(struct st_mysql_plugin); \
MYSQL_PLUGIN_EXPORT struct st_mysql_plugin _mysql_plugin_declarations_[]= {
#endif

#define mysql_declare_plugin(NAME) \
__MYSQL_DECLARE_PLUGIN(NAME, \
                 builtin_ ## NAME ## _plugin_interface_version, \
                 builtin_ ## NAME ## _sizeof_struct_st_plugin, \
                 builtin_ ## NAME ## _plugin)

#define mysql_declare_plugin_end ,{0,0,0,0,0,0,0,0,0,0,0,0,0}}

Note

Those declarations define the _mysql_plugin_interface_version_
symbol only if the MYSQL_DYNAMIC_PLUGIN symbol is defined. This means
that -DMYSQL_DYNAMIC_PLUGIN must be provided as part of the compilation
command to build the plugin as a shared library.

When the macros are used as just shown, they expand to the following code, which
defines both of the required symbols (_mysql_plugin_interface_version_ and
_mysql_plugin_declarations_):

int _mysql_plugin_interface_version_= MYSQL_PLUGIN_INTERFACE_VERSION;
int _mysql_sizeof_struct_st_plugin_= sizeof(struct st_mysql_plugin);
struct st_mysql_plugin _mysql_plugin_declarations_[]= {
{
  MYSQL_FTPARSER_PLUGIN,      /* type                            */
  &simple_parser_descriptor,  /* descriptor                      */



Writing Plugins

2770

  "simple_parser",            /* name                            */
  "Oracle Corporation",       /* author                          */
  "Simple Full-Text Parser",  /* description                     */
  PLUGIN_LICENSE_GPL,         /* plugin license                  */
  simple_parser_plugin_init,  /* init function (when loaded)     */
  simple_parser_plugin_deinit,/* deinit function (when unloaded) */
  0x0001,                     /* version                         */
  simple_status,              /* status variables                */
  simple_system_variables,    /* system variables                */
  NULL,
  0
}
  ,{0,0,0,0,0,0,0,0,0,0,0,0}}
};

The preceding example declares a single plugin in the general descriptor, but it is possible to declare
multiple plugins. List the declarations one after the other between mysql_declare_plugin() and
mysql_declare_plugin_end, separated by commas.

MySQL server plugins can be written in C or C++ (or another language that can use C calling
conventions). If you write a C++ plugin, one C++ feature that you should not use is nonconstant
variables to initialize global structures. Members of structures such as the st_mysql_plugin
structure should be initialized only with constant variables. The simple_parser descriptor shown
earlier is permissible in a C++ plugin because it satisfies that requirement:

mysql_declare_plugin(ftexample)
{
  MYSQL_FTPARSER_PLUGIN,      /* type                            */
  &simple_parser_descriptor,  /* descriptor                      */
  "simple_parser",            /* name                            */
  "Oracle Corporation",       /* author                          */
  "Simple Full-Text Parser",  /* description                     */
  PLUGIN_LICENSE_GPL,         /* plugin license                  */
  simple_parser_plugin_init,  /* init function (when loaded)     */
  simple_parser_plugin_deinit,/* deinit function (when unloaded) */
  0x0001,                     /* version                         */
  simple_status,              /* status variables                */
  simple_system_variables,    /* system variables                */
  NULL,
  0
}
mysql_declare_plugin_end;

Here is another valid way to write the general descriptor. It uses constant variables to indicate the
plugin name, author, and description:

const char *simple_parser_name = "simple_parser";
const char *simple_parser_author = "Oracle Corporation";
const char *simple_parser_description = "Simple Full-Text Parser";

mysql_declare_plugin(ftexample)
{
  MYSQL_FTPARSER_PLUGIN,      /* type                            */
  &simple_parser_descriptor,  /* descriptor                      */
  simple_parser_name,         /* name                            */
  simple_parser_author,       /* author                          */
  simple_parser_description,  /* description                     */
  PLUGIN_LICENSE_GPL,         /* plugin license                  */
  simple_parser_plugin_init,  /* init function (when loaded)     */
  simple_parser_plugin_deinit,/* deinit function (when unloaded) */
  0x0001,                     /* version                         */
  simple_status,              /* status variables                */
  simple_system_variables,    /* system variables                */
  NULL,
  0
}
mysql_declare_plugin_end;



Writing Plugins

2771

However, the following general descriptor is invalid. It uses structure members to indicate the plugin
name, author, and description, but structures are not considered constant initializers in C++:

typedef struct
{
  const char *name;
  const char *author;
  const char *description;
} plugin_info;

plugin_info parser_info = {
  "simple_parser",
  "Oracle Corporation",
  "Simple Full-Text Parser"
};

mysql_declare_plugin(ftexample)
{
  MYSQL_FTPARSER_PLUGIN,      /* type                            */
  &simple_parser_descriptor,  /* descriptor                      */
  parser_info.name,           /* name                            */
  parser_info.author,         /* author                          */
  parser_info.description,    /* description                     */
  PLUGIN_LICENSE_GPL,         /* plugin license                  */
  simple_parser_plugin_init,  /* init function (when loaded)     */
  simple_parser_plugin_deinit,/* deinit function (when unloaded) */
  0x0001,                     /* version                         */
  simple_status,              /* status variables                */
  simple_system_variables,    /* system variables                */
  NULL,
  0
}
mysql_declare_plugin_end;

Server Plugin Status and System Variables

The server plugin interface enables plugins to expose status and system variables using the
status_vars and system_vars members of the general plugin descriptor.

The status_vars member of the general plugin descriptor, if not 0, points to an array of
st_mysql_show_var structures, each of which describes one status variable, followed by a structure
with all members set to 0. The st_mysql_show_var structure has this definition:

struct st_mysql_show_var {
  const char *name;
  char *value;
  enum enum_mysql_show_type type;
};

When the plugin is installed, the plugin name and the name value are joined with an underscore to form
the name displayed by SHOW STATUS.

The following table shows the permissible status variable type values and what the corresponding
variable should be.

Table 24.1 Server Plugin Status Variable Types

Variable Type Meaning

SHOW_BOOL Pointer to a boolean variable

SHOW_INT Pointer to an integer variable

SHOW_LONG Pointer to a long integer variable

SHOW_LONGLONG Pointer to a longlong integer variable



Writing Plugins

2772

Variable Type Meaning

SHOW_CHAR A string

SHOW_CHAR_PTR Pointer to a string

SHOW_ARRAY Pointer to another st_mysql_show_var array

SHOW_FUNC Pointer to a function

SHOW_DOUBLE Pointer to a double

For the SHOW_FUNC type, the function is called and fills in its out parameter, which then provides
information about the variable to be displayed. The function has this signature:

#define SHOW_VAR_FUNC_BUFF_SIZE 1024

typedef int (*mysql_show_var_func) (void *thd,
                                    struct st_mysql_show_var *out,
                                    char *buf);

The system_vars member, if not 0, points to an array of st_mysql_sys_var structures, each of
which describes one system variable (which can also be set from the command-line or configuration
file), followed by a structure with all members set to 0. The st_mysql_sys_var structure is defined as
follows:

struct st_mysql_sys_var {
 int flags;
 const char *name, *comment;
 int (*check)(THD*, struct st_mysql_sys_var *, void*, st_mysql_value*);
 void (*update)(THD*, struct st_mysql_sys_var *, void*, const void*);
};

Additional fields are append as required depending upon the flags.

For convenience, a number of macros are defined that make creating new system variables within a
plugin much simpler.

Throughout the macros, the following fields are available:

• name: An unquoted identifier for the system variable.

• varname: The identifier for the static variable. Where not available, it is the same as the name field.

• opt: Additional use flags for the system variable. The following table shows the permissible flags.

Table 24.2 Server Plugin System Variable Flags

Flag Value Description

PLUGIN_VAR_READONLYThe system variable is read only

PLUGIN_VAR_NOSYSVARThe system variable is not user visible at runtime

PLUGIN_VAR_NOCMDOPTThe system variable is not configurable from the command line

PLUGIN_VAR_NOCMDARGNo argument is required at the command line (typically used for boolean
variables)

PLUGIN_VAR_RQCMDARGAn argument is required at the command line (this is the default)

PLUGIN_VAR_OPCMDARGAn argument is optional at the command line

PLUGIN_VAR_MEMALLOCUsed for string variables; indicates that memory is to be allocated for
storage of the string

• comment: A descriptive comment to be displayed in the server help message. NULL if this variable is
to be hidden.



Writing Plugins

2773

• check: The check function, NULL for default.

• update: The update function, NULL for default.

• default: The variable default value.

• minimum: The variable minimum value.

• maximum: The variable maximum value.

• blocksize: The variable block size. When the value is set, it is rounded to the nearest multiple of
blocksize.

A system variable may be accessed either by using the static variable directly or by using the
SYSVAR()accessor macro. The SYSVAR() macro is provided for completeness. Usually it should be
used only when the code cannot directly access the underlying variable.

For example:

static int my_foo;
static MYSQL_SYSVAR_INT(foo_var, my_foo,
                        PLUGIN_VAR_RQCMDARG, "foo comment",
                        NULL, NULL, 0, 0, INT_MAX, 0);
 ...
   SYSVAR(foo_var)= value;
   value= SYSVAR(foo_var);
   my_foo= value;
   value= my_foo;

Session variables may be accessed only through the THDVAR() accessor macro. For example:

static MYSQL_THDVAR_BOOL(some_flag,
                         PLUGIN_VAR_NOCMDARG, "flag comment",
                         NULL, NULL, FALSE);
 ...
   if (THDVAR(thd, some_flag))
   {
     do_something();
     THDVAR(thd, some_flag)= FALSE;
   }

All global and session system variables must be published to mysqld before use. This is done by
constructing a NULL-terminated array of the variables and linking to it in the plugin public interface. For
example:

static struct st_mysql_sys_var *my_plugin_vars[]= {
  MYSQL_SYSVAR(foo_var),
  MYSQL_SYSVAR(some_flag),
  NULL
};
mysql_declare_plugin(fooplug)
{
  MYSQL_..._PLUGIN,
  &plugin_data,
  "fooplug",
  "foo author",
  "This does foo!",
  PLUGIN_LICENSE_GPL,
  foo_init,
  foo_fini,
  0x0001,
  NULL,
  my_plugin_vars,
  NULL,
  0
}



Writing Plugins

2774

mysql_declare_plugin_end;

The following convenience macros enable you to declare different types of system variables:

• Boolean system variables of type my_bool, which is a 1-byte boolean. (0 = FALSE, 1 = TRUE)

MYSQL_THDVAR_BOOL(name, opt, comment, check, update, default)
MYSQL_SYSVAR_BOOL(name, varname, opt, comment, check, update, default)

• String system variables of type char*, which is a pointer to a null-terminated string.

MYSQL_THDVAR_STR(name, opt, comment, check, update, default)
MYSQL_SYSVAR_STR(name, varname, opt, comment, check, update, default)

• Integer system variables, of which there are several varieties.

• An int system variable, which is typically a 4-byte signed word.

MYSQL_THDVAR_INT(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_INT(name, varname, opt, comment, check, update, default,
               minimum, maximum, blocksize)

• An unsigned int system variable, which is typically a 4-byte unsigned word.

MYSQL_THDVAR_UINT(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_UINT(name, varname, opt, comment, check, update, default,
                minimum, maximum, blocksize)

• A long system variable, which is typically either a 4- or 8-byte signed word.

MYSQL_THDVAR_LONG(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_LONG(name, varname, opt, comment, check, update, default,
                minimum, maximum, blocksize)

• An unsigned long system variable, which is typically either a 4- or 8-byte unsigned word.

MYSQL_THDVAR_ULONG(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_ULONG(name, varname, opt, comment, check, update, default,
                 minimum, maximum, blocksize)

• A long long system variable, which is typically an 8-byte signed word.

MYSQL_THDVAR_LONGLONG(name, opt, comment, check, update,
                    default, minimum, maximum, blocksize)
MYSQL_SYSVAR_LONGLONG(name, varname, opt, comment, check, update,
                    default, minimum, maximum, blocksize)

• An unsigned long long system variable, which is typically an 8-byte unsigned word.

MYSQL_THDVAR_ULONGLONG(name, opt, comment, check, update,
                     default, minimum, maximum, blocksize)
MYSQL_SYSVAR_ULONGLONG(name, varname, opt, comment, check, update,
                     default, minimum, maximum, blocksize)

• An unsigned long system variable, which is typically either a 4- or 8-byte unsigned word. The
range of possible values is an ordinal of the number of elements in the typelib, starting from 0.

MYSQL_THDVAR_ENUM(name, opt, comment, check, update, default, typelib)
MYSQL_SYSVAR_ENUM(name, varname, opt, comment, check, update,
                default, typelib)



Writing Plugins

2775

• An unsigned long long system variable, which is typically an 8-byte unsigned word. Each bit
represents an element in the typelib.

MYSQL_THDVAR_SET(name, opt, comment, check, update, default, typelib)
MYSQL_SYSVAR_SET(name, varname, opt, comment, check, update,
               default, typelib)

Internally, all mutable and plugin system variables are stored in a HASH structure.

Display of the server command-line help text is handled by compiling a DYNAMIC_ARRAY of all
variables relevant to command-line options, sorting them, and then iterating through them to display
each option.

When a command-line option has been handled, it is then removed from the argv by the
handle_option() function (my_getopt.c); in effect, it is consumed.

The server processes command-line options during the plugin installation process, immediately after
the plugin has been successfully loaded but before the plugin initialization function has been called

Plugins loaded at runtime do not benefit from any configuration options and must have usable defaults.
Once they are installed, they are loaded at mysqld initialization time and configuration options can be
set at the command line or within my.cnf.

Plugins should consider the thd parameter to be read only.

Client Plugin Descriptors

Each client plugin must have a descriptor that provides information to the client plugin API. The
descriptor structure begins with a fixed set of members common to all client plugins, followed by any
members specific to the plugin type.

The st_mysql_client_plugin structure in the client_plugin.h file defines a “generic”
descriptor that contains the common members:

struct st_mysql_client_plugin
{
  int type;
  unsigned int interface_version;
  const char *name;
  const char *author;
  const char *desc;
  unsigned int version[3];
  const char *license;
  void *mysql_api;
  int (*init)(char *, size_t, int, va_list);
  int (*deinit)();
  int (*options)(const char *option, const void *);
};

The common st_mysql_client_plugin descriptor structure members are used as follows. char *
members should be specified as null-terminated strings.

• type: The plugin type. This must be one of the plugin-type values from client_plugin.h, such as
MYSQL_CLIENT_AUTHENTICATION_PLUGIN.

• interface_version: The plugin interface version. For example, this is
MYSQL_CLIENT_AUTHENTICATION_PLUGIN_INTERFACE_VERSION for an authentication plugin.

• name: A string that gives the plugin name. This is the name by which you refer to the plugin when
you call mysql_options() with the MYSQL_DEFAULT_AUTH option or specify the --default-
auth option to a MySQL client program.



Writing Plugins

2776

• author: A string naming the plugin author. This can be whatever you like.

• desc: A string that provides a general description of the plugin. This can be whatever you like.

• version: The plugin version as an array of three integers indicating the major, minor, and teeny
versions. For example, {1,2,3} indicates version 1.2.3.

• license: A string that specifies the license type.

• mysql_api: For internal use. Specify it as NULL in the plugin descriptor.

• init: A once-only initialization function, or NULL if there is no such function. The client library
executes this function when it loads the plugin. The function returns zero for success and nonzero for
failure.

The init function uses its first two arguments to return an error message if an error occurs. The first
argument is a pointer to a char buffer, and the second argument indicates the buffer length. Any
message returned by the init function must be null-terminated, so the maximum message length is
the buffer length minus one. The next arguments are passed to mysql_load_plugin(). The first
indicates how many more arguments there are (0 if none), followed by any remaining arguments.

• deinit: A once-only deinitialization function, or NULL if there is no such function. The client library
executes this function when it unloads the plugin. The function takes no arguments. It returns zero
for success and nonzero for failure.

• options: A function for handling options passed to the plugin, or NULL if there is no such function.
The function takes two arguments representing the option name and a pointer to its value. The
function returns zero for success and nonzero for failure.

For a given client plugin type, the common descriptor members may be followed by
additional members necessary to implement plugins of that type. For example, the
st_mysql_client_plugin_AUTHENTICATION structure for authentication plugins has a function at
the end that the client library calls to perform authentication.

To declare a plugin, use the mysql_declare_client_plugin() and
mysql_end_client_plugin macros:

mysql_declare_client_plugin(plugin_type)
   ... members common to all client plugins ...
   ... type-specific extra members ...
mysql_end_client_plugin;

Do not specify the type or interface_version member explicitly. The
mysql_declare_client_plugin() macro uses the plugin_type argument to generate their
values automatically. For example, declare an authentication client plugin like this:

mysql_declare_client_plugin(AUTHENTICATION)
  "my_auth_plugin",
  "Author Name",
  "My Client Authentication Plugin",
  {1,0,0},
  "GPL",
  NULL,
  my_auth_init,
  my_auth_deinit,
  my_auth_options,
  my_auth_main
mysql_end_client_plugin;

This declaration uses the AUTHENTICATION argument to set the type and
interface_version members to MYSQL_CLIENT_AUTHENTICATION_PLUGIN and
MYSQL_CLIENT_AUTHENTICATION_PLUGIN_INTERFACE_VERSION.



Writing Plugins

2777

Depending on the plugin type, the descriptor may have other members following the common
members. For example, for an authentication plugin, there is a function (my_auth_main() in the
descriptor just shown) that handles communication with the server. See Section 24.2.4.9, “Writing
Authentication Plugins”.

Normally, a client program that supports the use of authentication plugins causes a plugin to be loaded
by calling mysql_options() to set the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);

Typically, the program will also accept --plugin-dir and --default-auth options that enable
users to override the default values.

Should a client program require lower-level plugin management, the client library contains functions
that take an st_mysql_client_plugin argument. See Section 23.8.14, “C API Client Plugin
Functions”.

24.2.4.3 Compiling and Installing Plugin Libraries

After your plugin is written, you must compile it and install it. The procedure for compiling shared
objects varies from system to system. If you build your library using CMake, it should be able to
generate the correct compilation commands for your system. If the library is named somepluglib, you
should end up with a shared library file that has a name something like somepluglib.so. (The .so
file name suffix might differ on your system.)

To use CMake, you'll need to set up the configuration files to enable the plugin to be compiled and
installed. Use the plugin examples under the plugin directory of a MySQL source distribution as a
guide.

Create CMakeLists.txt, which should look something like this:

MYSQL_ADD_PLUGIN(somepluglib somepluglib.c
  MODULE_ONLY MODULE_OUTPUT_NAME "somepluglib")

When CMake generates the Makefile, it should take care of passing to the compilation command
the -DMYSQL_DYNAMIC_PLUGIN flag, and passing to the linker the -lmysqlservices flag, which
is needed to link in any functions from services provided through the plugin services interface. See
Section 24.3, “MySQL Services for Plugins”.

Run CMake, then run make:

shell> cmake .
shell> make

If you need to specify configuration options to CMake, see Section 2.9.4, “MySQL Source-Configuration
Options”, for a list. For example, you might want to specify CMAKE_INSTALL_PREFIX to indicate the
MySQL base directory under which the plugin should be installed. You can see what value to use for
this option with SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'basedir';
+---------------+------------------+
| Variable_name | Value            |
+---------------+------------------+
| base          | /usr/local/mysql |



Writing Plugins

2778

+---------------+------------------+

The location of the plugin directory where you should install the library is given by the plugin_dir
system variable. For example:

mysql> SHOW VARIABLES LIKE 'plugin_dir';
+---------------+-----------------------------------+
| Variable_name | Value                             |
+---------------+-----------------------------------+
| plugin_dir    | /usr/local/mysql/lib/mysql/plugin |
+---------------+-----------------------------------+

To install the plugin library, use make:

shell> make install

Verify that make install installed the plugin library in the proper directory. After installing it, make
sure that the library permissions permit it to be executed by the server.

24.2.4.4 Writing Full-Text Parser Plugins

MySQL supports server-side full-text parser plugins only with MyISAM. For introductory information
about full-text parser plugins, see Full-Text Parser Plugins.

A full-text parser plugin can be used to replace or modify the built-in full-text parser. This section
describes how to write a full-text parser plugin named simple_parser. This plugin performs parsing
based on simpler rules than those used by the MySQL built-in full-text parser: Words are nonempty
runs of whitespace characters.

The instructions use the source code in the plugin/fulltext directory of MySQL source
distributions, so change location into that directory. The following procedure describes how the plugin
library is created:

1. To write a full-text parser plugin, include the following header file in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#include <mysql/plugin.h>

plugin.h defines the MYSQL_FTPARSER_PLUGIN server plugin type and the data structures
needed to declare the plugin.

2. Set up the library descriptor for the plugin library file.

This descriptor contains the general plugin descriptor for the server plugin. For a full-text parser
plugin, the type must be MYSQL_FTPARSER_PLUGIN. This is the value that identifies the plugin as
being legal for use in a WITH PARSER clause when creating a FULLTEXT index. (No other plugin
type is legal for this clause.)

For example, the library descriptor for a library that contains a single full-text parser plugin named
simple_parser looks like this:

mysql_declare_plugin(ftexample)
{
  MYSQL_FTPARSER_PLUGIN,      /* type                            */
  &simple_parser_descriptor,  /* descriptor                      */
  "simple_parser",            /* name                            */
  "Oracle Corporation",       /* author                          */
  "Simple Full-Text Parser",  /* description                     */
  PLUGIN_LICENSE_GPL,         /* plugin license                  */
  simple_parser_plugin_init,  /* init function (when loaded)     */
  simple_parser_plugin_deinit,/* deinit function (when unloaded) */



Writing Plugins

2779

  0x0001,                     /* version                         */
  simple_status,              /* status variables                */
  simple_system_variables,    /* system variables                */
  NULL,
  0
}
mysql_declare_plugin_end;

The name member (simple_parser) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed
by SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

For more information, see Server Plugin Library and Plugin Descriptors.

3. Set up the type-specific plugin descriptor.

Each general plugin descriptor in the library descriptor points to a type-specific descriptor. For a full-
text parser plugin, the type-specific descriptor is an instance of the st_mysql_ftparser structure
in the plugin.h file:

struct st_mysql_ftparser
{
  int interface_version;
  int (*parse)(MYSQL_FTPARSER_PARAM *param);
  int (*init)(MYSQL_FTPARSER_PARAM *param);
  int (*deinit)(MYSQL_FTPARSER_PARAM *param);
};

As shown by the structure definition, the descriptor has an interface version number and contains
pointers to three functions.

The interface version number is specified using a symbol, which is in the form:
MYSQL_xxx_INTERFACE_VERSION. For full-text parser plugins, the symbol is
MYSQL_FTPARSER_INTERFACE_VERSION. In the source code, you will find the actual interface
version number for the full-text parser plugin defined in include/mysql/plugin_ftparser.h.

The init and deinit members should point to a function or be set to 0 if the function is not
needed. The parse member must point to the function that performs the parsing.

In the simple_parser declaration, that descriptor is indicated by
&simple_parser_descriptor. The descriptor specifies the version number for the full-text
plugin interface (as given by MYSQL_FTPARSER_INTERFACE_VERSION), and the plugin's parsing,
initialization, and deinitialization functions:

static struct st_mysql_ftparser simple_parser_descriptor=
{
  MYSQL_FTPARSER_INTERFACE_VERSION, /* interface version      */
  simple_parser_parse,              /* parsing function       */
  simple_parser_init,               /* parser init function   */
  simple_parser_deinit              /* parser deinit function */
};

A full-text parser plugin is used in two different contexts, indexing and searching. In both contexts,
the server calls the initialization and deinitialization functions at the beginning and end of
processing each SQL statement that causes the plugin to be invoked. However, during statement
processing, the server calls the main parsing function in context-specific fashion:

• For indexing, the server calls the parser for each column value to be indexed.

• For searching, the server calls the parser to parse the search string. The parser might also be
called for rows processed by the statement. In natural language mode, there is no need for the
server to call the parser. For boolean mode phrase searches or natural language searches with
query expansion, the parser is used to parse column values for information that is not in the



Writing Plugins

2780

index. Also, if a boolean mode search is done for a column that has no FULLTEXT index, the
built-in parser will be called. (Plugins are associated with specific indexes. If there is no index, no
plugin is used.)

The plugin declaration in the general plugin descriptor has init and deinit members that point
initialization and deinitialization functions, and so does the type-specific plugin descriptor to which
it points. However, these pairs of functions have different purposes and are invoked for different
reasons:

• For the plugin declaration in the general plugin descriptor, the initialization and deinitialization
functions are invoked when the plugin is loaded and unloaded.

• For the type-specific plugin descriptor, the initialization and deinitialization functions are invoked
per SQL statement for which the plugin is used.

Each interface function named in the plugin descriptor should return zero for success or nonzero
for failure, and each of them receives an argument that points to a MYSQL_FTPARSER_PARAM
structure containing the parsing context. The structure has this definition:

typedef struct st_mysql_ftparser_param
{
  int (*mysql_parse)(struct st_mysql_ftparser_param *,
                     char *doc, int doc_len);
  int (*mysql_add_word)(struct st_mysql_ftparser_param *,
                        char *word, int word_len,
                        MYSQL_FTPARSER_BOOLEAN_INFO *boolean_info);
  void *ftparser_state;
  void *mysql_ftparam;
  struct charset_info_st *cs;
  char *doc;
  int length;
  int flags;
  enum enum_ftparser_mode mode;
} MYSQL_FTPARSER_PARAM;

The structure members are used as follows:

• mysql_parse: A pointer to a callback function that invokes the server's built-in parser. Use
this callback when the plugin acts as a front end to the built-in parser. That is, when the plugin
parsing function is called, it should process the input to extract the text and pass the text to the
mysql_parse callback.

The first parameter for this callback function should be the param value itself:

param->mysql_parse(param, ...);

A front end plugin can extract text and pass it all at once to the built-in parser, or it can extract
and pass text to the built-in parser a piece at a time. However, in this case, the built-in parser
treats the pieces of text as though there are implicit word breaks between them.

• mysql_add_word: A pointer to a callback function that adds a word to a full-text index or to the
list of search terms. Use this callback when the parser plugin replaces the built-in parser. That
is, when the plugin parsing function is called, it should parse the input into words and invoke the
mysql_add_word callback for each word.

The first parameter for this callback function should be the param value itself:

param->mysql_add_word(param, ...);

• ftparser_state: This is a generic pointer. The plugin can set it to point to information to be
used internally for its own purposes.



Writing Plugins

2781

• mysql_ftparam: This is set by the server. It is passed as the first argument to the
mysql_parse or mysql_add_word callback.

• cs: A pointer to information about the character set of the text, or 0 if no information is available.

• doc: A pointer to the text to be parsed.

• length: The length of the text to be parsed, in bytes.

• flags: Parser flags. This is zero if there are no special flags. The only nonzero flag is
MYSQL_FTFLAGS_NEED_COPY, which means that mysql_add_word() must save a copy of
the word (that is, it cannot use a pointer to the word because the word is in a buffer that will be
overwritten.) This member was added in MySQL 5.1.12.

This flag might be set or reset by MySQL before calling the parser plugin, by the parser plugin
itself, or by the mysql_parse() function.

• mode: The parsing mode. This value will be one of the following constants:

• MYSQL_FTPARSER_SIMPLE_MODE: Parse in fast and simple mode, which is used for indexing
and for natural language queries. The parser should pass to the server only those words that
should be indexed. If the parser uses length limits or a stopword list to determine which words
to ignore, it should not pass such words to the server.

• MYSQL_FTPARSER_WITH_STOPWORDS: Parse in stopword mode. This is used in boolean
searches for phrase matching. The parser should pass all words to the server, even stopwords
or words that are outside any normal length limits.

• MYSQL_FTPARSER_FULL_BOOLEAN_INFO: Parse in boolean mode. This is used for parsing
boolean query strings. The parser should recognize not only words but also boolean-
mode operators and pass them to the server as tokens using the mysql_add_word
callback. To tell the server what kind of token is being passed, the plugin needs to fill in a
MYSQL_FTPARSER_BOOLEAN_INFO structure and pass a pointer to it.

If the parser is called in boolean mode, the param->mode value will be
MYSQL_FTPARSER_FULL_BOOLEAN_INFO. The MYSQL_FTPARSER_BOOLEAN_INFO structure that
the parser uses for passing token information to the server looks like this:

typedef struct st_mysql_ftparser_boolean_info
{
  enum enum_ft_token_type type;
  int yesno;
  int weight_adjust;
  char wasign;
  char trunc;
  /* These are parser state and must be removed. */
  char prev;
  char *quot;
} MYSQL_FTPARSER_BOOLEAN_INFO;

The parser should fill in the structure members as follows:

• type: The token type. The following table shows the permissible types.

Table 24.3 Full-Text Parser Token Types

Token Value Meaning

FT_TOKEN_EOF End of data

FT_TOKEN_WORD A regular word

FT_TOKEN_LEFT_PAREN The beginning of a group or subexpression



Writing Plugins

2782

Token Value Meaning

FT_TOKEN_RIGHT_PAREN The end of a group or subexpression

FT_TOKEN_STOPWORD A stopword

• yesno: Whether the word must be present for a match to occur. 0 means that the word is
optional but increases the match relevance if it is present. Values larger than 0 mean that the
word must be present. Values smaller than 0 mean that the word must not be present.

• weight_adjust: A weighting factor that determines how much a match for the word counts. It
can be used to increase or decrease the word's importance in relevance calculations. A value of
zero indicates no weight adjustment. Values greater than or less than zero mean higher or lower
weight, respectively. The examples at Section 12.9.2, “Boolean Full-Text Searches”, that use the
< and > operators illustrate how weighting works.

• wasign: The sign of the weighting factor. A negative value acts like the ~ boolean-search
operator, which causes the word's contribution to the relevance to be negative.

• trunc: Whether matching should be done as if the boolean-mode * truncation operator had
been given.

Plugins should not use the prev and quot members of the MYSQL_FTPARSER_BOOLEAN_INFO
structure.

Note

The plugin parser framework does not support:

• The @distance boolean operator.

• A leading plus sign (+) or minus sign (-) boolean operator followed by a
space and then a word ('+ apple' or '- apple'). The leading plus or
minus sign must be directly adjacent to the word, for example: '+apple'
or '-apple'.

For information about boolean full-text search operators, see Section 12.9.2,
“Boolean Full-Text Searches”.

4. Set up the plugin interface functions.

The general plugin descriptor in the library descriptor names the initialization and deinitialization
functions that the server should invoke when it loads and unloads the plugin. For simple_parser,
these functions do nothing but return zero to indicate that they succeeded:

static int simple_parser_plugin_init(void *arg __attribute__((unused)))
{
  return(0);
}

static int simple_parser_plugin_deinit(void *arg __attribute__((unused)))
{
  return(0);
}

Because those functions do not actually do anything, you could omit them and specify 0 for each of
them in the plugin declaration.

The type-specific plugin descriptor for simple_parser names the initialization, deinitialization,
and parsing functions that the server invokes when the plugin is used. For simple_parser, the
initialization and deinitialization functions do nothing:



Writing Plugins

2783

static int simple_parser_init(MYSQL_FTPARSER_PARAM *param
                              __attribute__((unused)))
{
  return(0);
}

static int simple_parser_deinit(MYSQL_FTPARSER_PARAM *param
                                __attribute__((unused)))
{
  return(0);
}

Here too, because those functions do nothing, you could omit them and specify 0 for each of them
in the plugin descriptor.

The main parsing function, simple_parser_parse(), acts as a replacement for the built-in
full-text parser, so it needs to split text into words and pass each word to the server. The parsing
function's first argument is a pointer to a structure that contains the parsing context. This structure
has a doc member that points to the text to be parsed, and a length member that indicates how
long the text is. The simple parsing done by the plugin considers nonempty runs of whitespace
characters to be words, so it identifies words like this:

static int simple_parser_parse(MYSQL_FTPARSER_PARAM *param)
{
  char *end, *start, *docend= param->doc + param->length;

  for (end= start= param->doc;; end++)
  {
    if (end == docend)
    {
      if (end > start)
        add_word(param, start, end - start);
      break;
    }
    else if (isspace(*end))
    {
      if (end > start)
        add_word(param, start, end - start);
      start= end + 1;
    }
  }
  return(0);
}

As the parser finds each word, it invokes a function add_word() to pass the word to the server.
add_word() is a helper function only; it is not part of the plugin interface. The parser passes the
parsing context pointer to add_word(), as well as a pointer to the word and a length value:

static void add_word(MYSQL_FTPARSER_PARAM *param, char *word, size_t len)
{
  MYSQL_FTPARSER_BOOLEAN_INFO bool_info=
    { FT_TOKEN_WORD, 0, 0, 0, 0, ' ', 0 };

  param->mysql_add_word(param, word, len, &bool_info);
}

For boolean-mode parsing, add_word() fills in the members of the bool_info structure as
described earlier in the discussion of the st_mysql_ftparser_boolean_info structure.

5. Set up the status variables. For the simple_parser plugin, the following status variable array sets
up one status variable with a value that is static text, and another with a value that is stored in a
long integer variable:

long number_of_calls= 0;



Writing Plugins

2784

struct st_mysql_show_var simple_status[]=
{
  {"static", (char *)"just a static text", SHOW_CHAR},
  {"called", (char *)&number_of_calls,     SHOW_LONG},
  {0,0,0}
};

When the plugin is installed, the plugin name and the name value are joined with an underscore to
form the name displayed by SHOW STATUS. For the array just shown, the resulting status variable
names are simple_parser_static and simple_parser_called. This convention means that
you can easily display the variables for a plugin using its name:

mysql> SHOW STATUS LIKE 'simple_parser%';
+----------------------+--------------------+
| Variable_name        | Value              |
+----------------------+--------------------+
| simple_parser_static | just a static text |
| simple_parser_called | 0                  |
+----------------------+--------------------+

6. To compile and install a plugin library file, use the instructions in Section 24.2.4.3, “Compiling
and Installing Plugin Libraries”. To make the library file available for use, install it in the plugin
directory (the directory named by the plugin_dir system variable). For the simple_parser
plugin, it is compiled and installed when you build MySQL from source. It is also included in binary
distributions. The build process produces a shared object library with a name of mypluglib.so
(the .so suffix might differ depending on your platform).

7. To use the plugin, register it with the server. For example, to register the plugin at runtime, use this
statement (adjust the .so suffix for your platform as necessary):

INSTALL PLUGIN simple_parser SONAME 'mypluglib.so';

For additional information about plugin loading, see Section 5.5.2, “Installing and Uninstalling
Plugins”.

8. To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement. See Section 5.5.3, “Obtaining Server Plugin Information”.

9. Test the plugin to verify that it works properly.

Create a table that contains a string column and associate the parser plugin with a FULLTEXT index
on the column:

mysql> CREATE TABLE t (c VARCHAR(255),
    ->   FULLTEXT (c) WITH PARSER simple_parser
    -> ) ENGINE=MyISAM;
Query OK, 0 rows affected (0.01 sec)

Insert some text into the table and try some searches. These should verify that the parser plugin
treats all nonwhitespace characters as word characters:

mysql> INSERT INTO t VALUES
    ->   ('latin1_general_cs is a case-sensitive collation'),
    ->   ('I\'d like a case of oranges'),
    ->   ('this is sensitive information'),
    ->   ('another row'),
    ->   ('yet another row');
Query OK, 5 rows affected (0.02 sec)
Records: 5  Duplicates: 0  Warnings: 0

mysql> SELECT c FROM t;
+-------------------------------------------------+
| c                                               |



Writing Plugins

2785

+-------------------------------------------------+
| latin1_general_cs is a case-sensitive collation |
| I'd like a case of oranges                      |
| this is sensitive information                   |
| another row                                     |
| yet another row                                 |
+-------------------------------------------------+
5 rows in set (0.00 sec)

mysql> SELECT MATCH(c) AGAINST('case') FROM t;
+--------------------------+
| MATCH(c) AGAINST('case') |
+--------------------------+
|                        0 |
|          1.2968142032623 |
|                        0 |
|                        0 |
|                        0 |
+--------------------------+
5 rows in set (0.00 sec)

mysql> SELECT MATCH(c) AGAINST('sensitive') FROM t;
+-------------------------------+
| MATCH(c) AGAINST('sensitive') |
+-------------------------------+
|                             0 |
|                             0 |
|               1.3253291845322 |
|                             0 |
|                             0 |
+-------------------------------+
5 rows in set (0.01 sec)

mysql> SELECT MATCH(c) AGAINST('case-sensitive') FROM t;
+------------------------------------+
| MATCH(c) AGAINST('case-sensitive') |
+------------------------------------+
|                    1.3109166622162 |
|                                  0 |
|                                  0 |
|                                  0 |
|                                  0 |
+------------------------------------+
5 rows in set (0.01 sec)

mysql> SELECT MATCH(c) AGAINST('I\'d') FROM t;
+--------------------------+
| MATCH(c) AGAINST('I\'d') |
+--------------------------+
|                        0 |
|          1.2968142032623 |
|                        0 |
|                        0 |
|                        0 |
+--------------------------+
5 rows in set (0.01 sec)

Neither “case” nor “insensitive” match “case-insensitive” the way that they would for the built-in
parser.

24.2.4.5 Writing Daemon Plugins

A daemon plugin is a simple type of plugin used for code that should be run by the server but
that does not communicate with it. This section describes how to write a daemon server plugin,
using the example plugin found in the plugin/daemon_example directory of MySQL source
distributions. That directory contains the daemon_example.cc source file for a daemon plugin
named daemon_example that writes a heartbeat string at regular intervals to a file named mysql-
heartbeat.log in the data directory.



Writing Plugins

2786

To write a daemon plugin, include the following header file in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

#include <mysql/plugin.h>

plugin.h defines the MYSQL_DAEMON_PLUGIN server plugin type and the data structures needed to
declare the plugin.

The daemon_example.cc file sets up the library descriptor as follows. The library descriptor includes
a single general server plugin descriptor.

mysql_declare_plugin(daemon_example)
{
  MYSQL_DAEMON_PLUGIN,
  &daemon_example_plugin,
  "daemon_example",
  "Brian Aker",
  "Daemon example, creates a heartbeat beat file in mysql-heartbeat.log",
  PLUGIN_LICENSE_GPL,
  daemon_example_plugin_init, /* Plugin Init */
  daemon_example_plugin_deinit, /* Plugin Deinit */
  0x0100 /* 1.0 */,
  NULL,                       /* status variables                */
  NULL,                       /* system variables                */
  NULL,                       /* config options                  */
  0,                          /* flags                           */
}
mysql_declare_plugin_end;

The name member (daemon_example) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

The second member of the plugin descriptor, daemon_example_plugin, points to the type-specific
daemon plugin descriptor. This structure consists only of the type-specific API version number:

struct st_mysql_daemon daemon_example_plugin=
{ MYSQL_DAEMON_INTERFACE_VERSION  };

The type-specific structure has no interface functions. There is no communication between the server
and the plugin, except that the server calls the initialization and deinitialization functions from the
general plugin descriptor to start and stop the plugin:

• daemon_example_plugin_init() opens the heartbeat file and spawns a thread that wakes up
periodically and writes the next message to the file.

• daemon_example_plugin_deinit() closes the file and performs other cleanup.

To compile and install a plugin library file, use the instructions in Section 24.2.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the
directory named by the plugin_dir system variable). For the daemon_example plugin, it is compiled
and installed when you build MySQL from source. It is also included in binary distributions. The build
process produces a shared object library with a name of libdaemon_example.so (the .so suffix
might differ depending on your platform).

To use the plugin, register it with the server. For example, to register the plugin at runtime, use this
statement (adjust the .so suffix for your platform as necessary):

INSTALL PLUGIN daemon_example SONAME 'libdaemon_example.so';

For additional information about plugin loading, see Section 5.5.2, “Installing and Uninstalling Plugins”.



Writing Plugins

2787

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement. See Section 5.5.3, “Obtaining Server Plugin Information”.

While the plugin is loaded, it writes a heartbeat string at regular intervals to a file named mysql-
heartbeat.log in the data directory. This file grows without limit, so after you have satistifed yourself
that the plugin operates correctly, unload it:

UNINSTALL PLUGIN daemon_example;

24.2.4.6 Writing INFORMATION_SCHEMA Plugins

This section describes how to write a server-side INFORMATION_SCHEMA table plugin. For example
code that implements such plugins, see the sql/sql_show.cc file of a MySQL source distribution.
You can also look at the example plugins found in the InnoDB source. See the handler/i_s.cc and
handler/ha_innodb.cc files within the InnoDB source tree (in the storage/innobase directory).

To write an INFORMATION_SCHEMA table plugin, include the following header files in the plugin source
file. Other MySQL or general header files might also be needed, depending on the plugin capabilities
and requirements.

#include <sql_class.h>
#include <table.h>

These header files are located in the sql directory of MySQL source distributions. They contain C++
structures, so the source file for an INFORMATION_SCHEMA plugin must be compiled as C++ (not C)
code.

The source file for the example plugin developed here is named simple_i_s_table.cc. It creates a
simple INFORMATION_SCHEMA table named SIMPLE_I_S_TABLE that has two columns named NAME
and VALUE. The general descriptor for a plugin library that implements the table looks like this:

mysql_declare_plugin(simple_i_s_library)
{
  MYSQL_INFORMATION_SCHEMA_PLUGIN,
  &simple_table_info,                /* type-specific descriptor */
  "SIMPLE_I_S_TABLE",                /* table name */
  "Author Name",                     /* author */
  "Simple INFORMATION_SCHEMA table", /* description */
  PLUGIN_LICENSE_GPL,                /* license type */
  simple_table_init,                 /* init function */
  NULL,
  0x0100,                            /* version = 1.0 */
  NULL,                              /* no status variables */
  NULL,                              /* no system variables */
  NULL,                              /* no reserved information */
  0                                  /* no flags */
}
mysql_declare_plugin_end;

The name member (SIMPLE_I_S_TABLE) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

The simple_table_info member of the general descriptor points to the type-specific descriptor,
which consists only of the type-specific API version number:

static struct st_mysql_information_schema simple_table_info =
{ MYSQL_INFORMATION_SCHEMA_INTERFACE_VERSION };

The general descriptor points to the initialization and deinitialization functions:



Writing Plugins

2788

• The initialization function provides information about the table structure and a function that populates
the table.

• The deinitialization function performs any required cleanup. If no cleanup is needed, this descriptor
member can be NULL (as in the example shown).

The initialization function should return 0 for success, 1 if an error occurs. The function receives a
generic pointer, which it should interpret as a pointer to the table structure:

static int table_init(void *ptr)
{
  ST_SCHEMA_TABLE *schema_table= (ST_SCHEMA_TABLE*)ptr;

  schema_table->fields_info= simple_table_fields;
  schema_table->fill_table= simple_fill_table;
  return 0;
}

The function should set these two members of the table structure:

• fields_info: An array of ST_FIELD_INFO structures that contain information about each column.

• fill_table: A function that populates the table.

The array pointed to by fields_info should contain one element per column of the
INFORMATION_SCHEMA plus a terminating element. The following simple_table_fields array for
the example plugin indicates that SIMPLE_I_S_TABLE has two columns. NAME is string-valued with a
length of 10 and VALUE is integer-valued with a display width of 20. The last structure marks the end of
the array.

static ST_FIELD_INFO simple_table_fields[]=
{
  {"NAME", 10, MYSQL_TYPE_STRING, 0, 0 0, 0},
  {"VALUE", 6, MYSQL_TYPE_LONG, 0, MY_I_S_UNSIGNED, 0, 0},
  {0, 0, MYSQL_TYPE_NULL, 0, 0, 0, 0}
};

For more information about the column information structure, see the definition of ST_FIELD_INFO in
the table.h header file. The permissible MYSQL_TYPE_xxx type values are those used in the C API;
see Section 23.8.5, “C API Data Structures”.

The fill_table member should be set to a function that populates the table and returns 0 for
success, 1 if an error occurs. For the example plugin, the simple_fill_table() function looks like
this:

static int simple_fill_table(THD *thd, TABLE_LIST *tables, COND *cond)
{
  TABLE *table= tables->table;

  table->field[0]->store("Name 1", 6, system_charset_info);
  table->field[1]->store(1);
  if (schema_table_store_record(thd, table))
    return 1;
  table->field[0]->store("Name 2", 6, system_charset_info);
  table->field[1]->store(2);
  if (schema_table_store_record(thd, table))
    return 1;
  return 0;
}

For each row of the INFORMATION_SCHEMA table, this function initializes each column, then calls
schema_table_store_record() to install the row. The store() method arguments depend on
the type of value to be stored. For column 0 (NAME, a string), store() takes a pointer to a string, its
length, and information about the character set of the string:



Writing Plugins

2789

store(const char *to, uint length, CHARSET_INFO *cs);

For column 1 (VALUE, an integer), store() takes the value and a flag indicating whether it is
unsigned:

store(longlong nr, bool unsigned_value);

For other examples of how to populate INFORMATION_SCHEMA tables, search for instances of
schema_table_store_record() in sql_show.cc.

To compile and install a plugin library file, use the instructions in Section 24.2.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the
directory named by the plugin_dir system variable).

To test the plugin, install it:

mysql> INSTALL PLUGIN SIMPLE_I_S_TABLE SONAME 'simple_i_s_table.so';

Verify that the table is present:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
    -> WHERE TABLE_NAME = 'SIMPLE_I_S_TABLE';
+------------------+
| TABLE_NAME       |
+------------------+
| SIMPLE_I_S_TABLE |
+------------------+

Try to select from it:

mysql> SELECT * FROM INFORMATION_SCHEMA.SIMPLE_I_S_TABLE;
+--------+-------+
| NAME   | VALUE |
+--------+-------+
| Name 1 |     1 |
| Name 2 |     2 |
+--------+-------+

Uninstall it:

mysql> UNINSTALL PLUGIN SIMPLE_I_S_TABLE;

24.2.4.7 Writing Semisynchronous Replication Plugins

This section describes how to write server-side semisynchronous replication plugins, using the
example plugins found in the plugin/semisync directory of MySQL source distributions. That
directory contains the source files for master and slave plugins named rpl_semi_sync_master and
rpl_semi_sync_slave. The information here covers only how to set up the plugin framework. For
details about how the plugins implement replication functions, see the source.

To write a semisynchronous replication plugin, include the following header file in the plugin source file.
Other MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#include <mysql/plugin.h>

plugin.h defines the MYSQL_REPLICATION_PLUGIN server plugin type and the data structures
needed to declare the plugin.



Writing Plugins

2790

For the master side, semisync_master_plugin.cc contains this general descriptor for a plugin
named rpl_semi_sync_master:

mysql_declare_plugin(semi_sync_master)
{
  MYSQL_REPLICATION_PLUGIN,
  &semi_sync_master_plugin,
  "rpl_semi_sync_master",
  "He Zhenxing",
  "Semi-synchronous replication master",
  PLUGIN_LICENSE_GPL,
  semi_sync_master_plugin_init, /* Plugin Init */
  semi_sync_master_plugin_deinit, /* Plugin Deinit */
  0x0100 /* 1.0 */,
  semi_sync_master_status_vars, /* status variables */
  semi_sync_master_system_vars, /* system variables */
  NULL,                         /* config options */
  0,                            /* flags */
}
mysql_declare_plugin_end;

For the slave side, semisync_slave_plugin.cc contains this general descriptor for a plugin named
rpl_semi_sync_slave:

mysql_declare_plugin(semi_sync_slave)
{
  MYSQL_REPLICATION_PLUGIN,
  &semi_sync_slave_plugin,
  "rpl_semi_sync_slave",
  "He Zhenxing",
  "Semi-synchronous replication slave",
  PLUGIN_LICENSE_GPL,
  semi_sync_slave_plugin_init, /* Plugin Init */
  semi_sync_slave_plugin_deinit, /* Plugin Deinit */
  0x0100 /* 1.0 */,
  semi_sync_slave_status_vars,  /* status variables */
  semi_sync_slave_system_vars,  /* system variables */
  NULL,                         /* config options */
  0,                            /* flags */
}
mysql_declare_plugin_end;

For both the master and slave plugins, the general descriptor has pointers to the type-specific
descriptor, the initialization and deinitialization functions, and to the status and system variables
implemented by the plugin. For information about variable setup, see Server Plugin Status and
System Variables. The following remarks discuss the type-specific descriptor and the initialization and
deinitialization functions for the master plugin but apply similarly to the slave plugin.

The semi_sync_master_plugin member of the master general descriptor points to the type-specific
descriptor, which consists only of the type-specific API version number:

struct Mysql_replication semi_sync_master_plugin= {
  MYSQL_REPLICATION_INTERFACE_VERSION
};

The initialization and deinitialization function declarations look like this:

static int semi_sync_master_plugin_init(void *p);
static int semi_sync_master_plugin_deinit(void *p);

The initialization function uses the pointer to register transaction and binary logging “observers”
with the server. After successful initialization, the server takes care of invoking the observers at the
appropriate times. (For details on the observers, see the source files.) The deinitialization function
cleans up by deregistering the observers. Each function returns 0 for success or 1 if an error occurs.



Writing Plugins

2791

To compile and install a plugin library file, use the instructions in Section 24.2.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the plugin_dir system variable). For the rpl_semi_sync_master and
rpl_semi_sync_slave plugins, they are compiled and installed when you build MySQL from source.
They are also included in binary distributions. The build process produces shared object libraries with
names of semisync_master.so and semisync_slave.so (the .so suffix might differ depending
on your platform).

24.2.4.8 Writing Audit Plugins

This section describes how to write a server-side audit plugin, using the example plugin found in the
plugin/audit_null directory of MySQL source distributions. The audit_null.c source file in that
directory implements a simple example audit plugin named NULL_AUDIT.

Within the server, the pluggable audit interface is implemented in the sql_audit.h and
sql_audit.cc files in the sql directory of MySQL source distributions. Additionally, several places
in the server call the audit interface when an auditable event occurs, so that registered audit plugins
can be notified about the event if necessary. To see where such calls occur, look for invocations of
functions with names of the form mysql_audit_xxx(). Audit notification occurs for server operations
such as these:

• Writing a message to the general query log (if the log is enabled)

• Writing a message to the error log

• Sending a query result to a client

• Client connect and disconnect events

To write an audit plugin, include the following header file in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

#include <mysql/plugin_audit.h>

plugin_audit.h includes plugin.h, so you need not include the latter file explicitly. plugin.h
defines the MYSQL_AUDIT_PLUGIN server plugin type and the data structures needed to declare the
plugin. plugin_audit.h defines data structures specific to audit plugins.

An audit plugin, like any MySQL server plugin, has a general plugin descriptor (see Server Plugin
Library and Plugin Descriptors). In audit_null.c, the general descriptor for audit_null looks like
this:

mysql_declare_plugin(audit_null)
{
  MYSQL_AUDIT_PLUGIN,         /* type                            */
  &audit_null_descriptor,     /* descriptor                      */
  "NULL_AUDIT",               /* name                            */
  "Oracle Corp",              /* author                          */
  "Simple NULL Audit",        /* description                     */
  PLUGIN_LICENSE_GPL,
  audit_null_plugin_init,     /* init function (when loaded)     */
  audit_null_plugin_deinit,   /* deinit function (when unloaded) */
  0x0002,                     /* version                         */
  simple_status,              /* status variables                */
  NULL,                       /* system variables                */
  NULL,
  0,
}
mysql_declare_plugin_end;

The name member (NULL_AUDIT) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.



Writing Plugins

2792

The general descriptor also refers to simple_status, a structure that exposes several status
variables to the SHOW STATUS statement:

static struct st_mysql_show_var simple_status[]=
{
  { "Audit_null_called", (char *) &number_of_calls, SHOW_INT },
  { "Audit_null_general_log", (char *) &number_of_calls_general_log,
    SHOW_INT },
  { "Audit_null_general_error", (char *) &number_of_calls_general_error,
    SHOW_INT },
  { "Audit_null_general_result", (char *) &number_of_calls_general_result,
    SHOW_INT },
  { 0, 0, 0}
};

The audit_null_plugin_init initialization function sets the status variables to zero when the
plugin is loaded. The audit_null_plugin_deinit function performs cleanup when the plugin
is unloaded. During operation, the plugin increments the first status variable for each notification it
receives. It also increments the others according to the event class and subclass. In effect, the first
variable is the aggregate of the counts for the event subclasses.

The audit_null_descriptor value in the general descriptor points to the type-specific descriptor.
For audit plugins, this descriptor has the following structure:

struct st_mysql_audit
{
  int interface_version;
  void (*release_thd)(MYSQL_THD);
  void (*event_notify)(MYSQL_THD, unsigned int, const void *);
  unsigned long class_mask[MYSQL_AUDIT_CLASS_MASK_SIZE];
};

The type-specific descriptor has these members:

• interface_version: By convention, type-specific plugin descriptors begin with the interface
version for the given plugin type. The server checks interface_version when it loads
the plugin to see whether the plugin is compatible with it. For audit plugins, the value of
the interface_version member is MYSQL_AUDIT_INTERFACE_VERSION (defined in
plugin_audit.h).

• release_thd: A function that the server calls to inform the plugin that it is being dissociated from its
thread context. This should be NULL if there is no such function.

• event_notify: A function that the server calls to notify the plugin that an auditable event has
occurred. This function should not be NULL; that would not make sense because no auditing would
occur.

• class_mask: A bitmask that indicates the event classes for which the plugin wants to receive
notification. If this value is 0, the server passes no events to the plugin.

The server uses the event_notify and release_thd functions together. They are called within
the context of a specific thread, and a thread might perform an activity that produces several event
notifications. The first time the server calls event_notify for a thread, it creates a binding of the
plugin to the thread. The plugin cannot be uninstalled while this binding exists. When no more events
for the thread will occur, the server informs the plugin of this by calling the release_thd function,
and then destroys the binding. For example, when a client issues a statement, the thread processing
the statement might notify audit plugins about the result set produced by the statement and about the
statement being logged. After these notifications occur, the server releases the plugin before putting
the thread to sleep until the client issues another statement.

This design enables the plugin to allocate resources needed for a given thread in the first call to the
event_notify function and release them in the release_thd function:



Writing Plugins

2793

event_notify function:
  if memory is needed to service the thread
    allocate memory
  ... rest of notification processing ...

release_thd function:
  if memory was allocated
    release memory
  ... rest of release processing ...

That is more efficient than allocating and releasing memory repeatedly in the notification function.

For the NULL_AUDIT example audit plugin, the type-specific descriptor looks like this:

static struct st_mysql_audit audit_null_descriptor=
{
  MYSQL_AUDIT_INTERFACE_VERSION,                    /* interface version    */
  NULL,                                             /* release_thd function */
  audit_null_notify,                                /* notify function      */
  { (unsigned long) MYSQL_AUDIT_GENERAL_CLASSMASK } /* class mask           */
};

The server calls audit_null_notify to pass audit event information to the plugin. There is no
release_thd function.

The event class mask indicates an interest in all events of the “general” class. plugin_audit.h
defines its symbol, MYSQL_AUDIT_GENERAL_CLASS, and a mask with a bit for this class:

#define MYSQL_AUDIT_GENERAL_CLASS 0
#define MYSQL_AUDIT_GENERAL_CLASSMASK (1 << MYSQL_AUDIT_GENERAL_CLASS)

plugin_audit.h also has defines for a “connection” event class, although the NULL_AUDIT plugin
does nothing with such events:

#define MYSQL_AUDIT_CONNECTION_CLASS 1
#define MYSQL_AUDIT_CONNECTION_CLASSMASK (1 << MYSQL_AUDIT_CONNECTION_CLASS)

A plugin could be written to receive both general and connection events by setting its type-specific
descriptor class mask like this:

  { (unsigned long) MYSQL_AUDIT_GENERAL_CLASSMASK |
                 MYSQL_AUDIT_CONNECTION_CLASSMASK } /* class mask        */

In the type-specific descriptor, the second and third parameters of the event_notify function
prototype represent the event class and a generic pointer to an event structure:

void (*event_notify)(MYSQL_THD, unsigned int, const void *);

Events in different classes may have different structures, so the notification function should use the
event class value to determine how to interpret the pointer to the event structure.

If the server calls the notification function with an event class of MYSQL_AUDIT_GENERAL_CLASS, it
passes the event structure as a pointer to a mysql_event_general structure:

struct mysql_event_general
{
  unsigned int event_subclass;
  int general_error_code;
  unsigned long general_thread_id;
  const char *general_user;
  unsigned int general_user_length;
  const char *general_command;



Writing Plugins

2794

  unsigned int general_command_length;
  const char *general_query;
  unsigned int general_query_length;
  struct charset_info_st *general_charset;
  unsigned long long general_time;
  unsigned long long general_rows;
};

Audit plugins can interpret mysql_event_general members as follows:

• event_subclass: The event subclass, one of the following values:

#define MYSQL_AUDIT_GENERAL_LOG 0
#define MYSQL_AUDIT_GENERAL_ERROR 1
#define MYSQL_AUDIT_GENERAL_RESULT 2
#define MYSQL_AUDIT_GENERAL_STATUS 3

• general_error_code: The error code. This is a value like that returned by the mysql_errno() C
API function; 0 means “no error.”

• general_thread_id: The ID of the thread for which the event occurred.

• general_user: The current user for the event.

• general_user_length: The length of general_user, in bytes.

• general_command: For general query log events, the type of operation. Examples: Connect,
Query, Shutdown. For error log events, the error message. This is a value like that returned by the
mysql_error() C API function; an empty string means “no error.” For result events, this is empty.

• general_command_length: The length of general_command, in bytes.

• general_query: The SQL statement that was logged or produced a result.

• general_query_length: The length of general_query, in bytes.

• general_charset: Character set information for the event.

• general_time: A TIMESTAMP value indicating the time just before the notification function was
called.

• general_rows: For general query log events, zero. For error log events, the row number at which
an error occurred. For result events, the number of rows in the result plus one. For statements that
produce no result set, the value is 0. This encoding enables statements that produce no result set to
be distinguished from those that produce an empty result set. For example, for a DELETE statement,
this value is 0. For a SELECT, the result is always 1 or more, where 1 represents an empty result set.

• general_host: For general query log events, a string representing the client host name.

• general_sql_command: For general query log events, a string that indicates the type of action
performed, such as connect or drop_table.

• general_external_user: For general query log events, a string representing the external user
(empty if none).

• general_ip: For general query log events, a string representing the client IP address.

The general_host, general_sql_command, general_external_user, and general_ip
members are new in MySQL 5.5.34. These are MYSQL_LEX_STRING structures that pair a string
and its length. For example, if event_general is a pointer to a general event, you can access the
members of the general_host value as follows:

event_general->general_host.length
event_general->general_host.str



Writing Plugins

2795

The NULL_AUDIT plugin notification function is quite simple. It increments a global event counter,
verifies that the event is of the “general” class, then looks at the event subclass to determine which
subclass counter to increment:

static void audit_null_notify(MYSQL_THD thd __attribute__((unused)),
                              unsigned int event_class,
                              const void *event)
{
  number_of_calls++;
  if (event_class == MYSQL_AUDIT_GENERAL_CLASS)
  {
    const struct mysql_event_general *event_general=
      (const struct mysql_event_general *) event;
    switch (event_general->event_subclass)
    {
    case MYSQL_AUDIT_GENERAL_LOG:
      number_of_calls_general_log++;
      break;
    case MYSQL_AUDIT_GENERAL_ERROR:
      number_of_calls_general_error++;
      break;
    case MYSQL_AUDIT_GENERAL_RESULT:
      number_of_calls_general_result++;
      break;
    default:
      break;
    }
  }
}

To compile and install a plugin library file, use the instructions in Section 24.2.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the plugin_dir system variable). For the NULL_AUDIT plugin, it is compiled
and installed when you build MySQL from source. It is also included in binary distributions. The build
process produces a shared object library with a name of adt_null.so (the .so suffix might differ
depending on your platform).

To register the plugin at runtime, use this statement (adjust the .so suffix for your platform as
necessary):

INSTALL PLUGIN NULL_AUDIT SONAME 'adt_null.so';

For additional information about plugin loading, see Section 5.5.2, “Installing and Uninstalling Plugins”.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement. See Section 5.5.3, “Obtaining Server Plugin Information”.

While the audit plugin is installed, it exposes status variables that indicate the events for which the
plugin has been called:

mysql> SHOW STATUS LIKE 'Audit_null%';
+---------------------------+-------+
| Variable_name             | Value |
+---------------------------+-------+
| Audit_null_called         | 1385  |
| Audit_null_general_error  | 1     |
| Audit_null_general_log    | 741   |
| Audit_null_general_result | 643   |
+---------------------------+-------+

Audit_null_called counts all events, and the other variables count instances of event subclasses.
For example, the preceding SHOW STATUS statement causes the server to send a result to the client
and to write a message to the general query log if that log is enabled. Thus, a client that issues the
statement repeatedly causes Audit_null_called and Audit_null_general_result to be
incremented each time, and Audit_null_general_log to be incremented if the log is enabled.



Writing Plugins

2796

To disable the plugin after testing it, use this statement to unload it:

UNINSTALL PLUGIN NULL_AUDIT;

24.2.4.9 Writing Authentication Plugins

MySQL supports pluggable authentication, in which plugins are invoked to authenticate client
connections. Authentication plugins enable the use of authentication methods other than the built-in
method of passwords stored in the mysql.user table. For example, plugins can be written to access
external authentication methods. Also, authentication plugins can support the proxy user capability,
such that the connecting user is a proxy for another user and is treated, for purposes of access control,
as having the privileges of a different user. For more information, see Section 6.3.6, “Pluggable
Authentication”, and Section 6.3.7, “Proxy Users”.

An authentication plugin can be written for the server side or the client side. Server-side plugins use the
same plugin API that is used for the other server plugin types such as full-text parser or audit plugins
(although with a different type-specific descriptor). Client-side plugins use the client plugin API.

Several header files contain information relevant to authentication plugins:

• plugin.h: Defines the MYSQL_AUTHENTICATION_PLUGIN server plugin type.

• client_plugin.h: Defines the API for client plugins. This includes the client plugin descriptor
and function prototypes for client plugin C API calls (see Section 23.8.14, “C API Client Plugin
Functions”).

• plugin_auth.h: Defines the part of the server plugin API specific to authentication plugins.
This includes the type-specific descriptor for server-side authentication plugins and the
MYSQL_SERVER_AUTH_INFO structure.

• plugin_auth_common.h: Contains common elements of client and server authentication plugins.
This includes return value definitions and the MYSQL_PLUGIN_VIO structure.

To write an authentication plugin, include the following header files in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

• For a source file that implements a server authentication plugin, include this file:

#include <mysql/plugin_auth.h>

• For a source file that implements a client authentication plugin, or both client and server plugins,
include these files:

#include <mysql/plugin_auth.h>
#include <mysql/client_plugin.h>
#include <mysql.h>

plugin_auth.h includes plugin.h and plugin_auth_common.h, so you need not include the
latter files explicitly.

This section describes how to write a pair of simple server and client authentication plugins that work
together.

Warning

These plugins accept any non-empty password and the password is sent in
clear text. This is insecure, so the plugins should not be used in production
environments.



Writing Plugins

2797

The server-side and client-side plugins developed here both are named auth_simple. As described
in Section 24.2.4.2, “Plugin Data Structures”, the plugin library file must have the same base name
as the client plugin, so the source file name is auth_simple.c and produces a library named
auth_simple.so (assuming that your system uses .so as the suffix for library files).

In MySQL source distributions, authentication plugin source is located in the plugin/auth directory
and can be examined as a guide to writing other authentication plugins. Also, to see how the built-
in authentication plugins are implemented, see sql/sql_acl.cc for plugins that are built in to the
MySQL server and sql-common/client.c for plugins that are built in to the libmysqlclient
client library. (For the built-in client plugins, note that the auth_plugin_t structures used there differ
from the structures used with the usual client plugin declaration macros. In particular, the first two
members are provided explicitly, not by declaration macros.)

Writing the Server-Side Authentication Plugin

Declare the server-side plugin with the usual general descriptor format that is used for all server plugin
types (see Server Plugin Library and Plugin Descriptors). For the auth_simple plugin, the descriptor
looks like this:

mysql_declare_plugin(auth_simple)
{
  MYSQL_AUTHENTICATION_PLUGIN,
  &auth_simple_handler,                 /* type-specific descriptor */
  "auth_simple",                        /* plugin name */
  "Author Name",                        /* author */
  "Any-password authentication plugin", /* description */
  PLUGIN_LICENSE_GPL,                   /* license type */
  NULL,                                 /* no init function */
  NULL,                                 /* no deinit function */
  0x0100,                               /* version = 1.0 */
  NULL,                                 /* no status variables */
  NULL,                                 /* no system variables */
  NULL,                                 /* no reserved information */
  0                                     /* no flags */
}
mysql_declare_plugin_end;

The name member (auth_simple) indicates the name to use for references to the plugin in
statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by
SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.

The auth_simple_handler member of the general descriptor points to the type-specific descriptor.
For an authentication plugin, the type-specific descriptor is an instance of the st_mysql_auth
structure (defined in plugin_auth.h):

struct st_mysql_auth
{
  int interface_version;
  const char *client_auth_plugin;
  int (*authenticate_user)(MYSQL_PLUGIN_VIO *vio, MYSQL_SERVER_AUTH_INFO *info);
};

The st_mysql_auth structure has these members:

• interface_version: The type-specific API version number, always
MYSQL_AUTHENTICATION_INTERFACE_VERSION

• client_auth_plugin: The client plugin name

• authenticate_user: A pointer to the main plugin function that communicates with the client

The client_auth_plugin member should indicate the name of the client plugin if a specific plugin is
required. A value of NULL means “any plugin.” In the latter case, whatever plugin the client uses will do.
This is useful if the server plugin does not care about the client plugin or what user name or password



Writing Plugins

2798

it sends. For example, this might be true if the server plugin authenticates only local clients and uses
some property of the operating system rather than the information sent by the client plugin.

For auth_simple, the type-specific descriptor looks like this:

static struct st_mysql_auth auth_simple_handler =
{
  MYSQL_AUTHENTICATION_INTERFACE_VERSION,
  "auth_simple",           /* required client-side plugin name */
  auth_simple_server       /* server-side plugin main function */
};

The main function, auth_simple_server(), takes two arguments representing an I/O structure and
a MYSQL_SERVER_AUTH_INFO structure. The structure definition, found in plugin_auth.h, looks
like this:

typedef struct st_mysql_server_auth_info
{
  char *user_name;
  unsigned int user_name_length;
  const char *auth_string;
  unsigned long auth_string_length;
  char authenticated_as[MYSQL_USERNAME_LENGTH+1];
  char external_user[512];
  int  password_used;
  const char *host_or_ip;
  unsigned int host_or_ip_length;
} MYSQL_SERVER_AUTH_INFO;

The character set for string members is UTF-8. If there is a _length member associated with a string,
it indicates the string length in bytes. Strings are also null-terminated.

When an authentication plugin is invoked by the server, it should interpret the
MYSQL_SERVER_AUTH_INFO structure members as follows. Some of these are used to set the value
of SQL functions or system variables within the client session, as indicated.

• user_name: The user name sent by the client. The value becomes the USER() function value.

• user_name_length: The length of user_name in bytes.

• auth_string: The value of the authentication_string column of the mysql.user table row
for the matching account name (that is, the row that matches the client user name and host name
and that the server uses to determine how to authenticate the client).

Suppose that you create an account using the following statement:

CREATE USER 'my_user'@'localhost'
  IDENTIFIED WITH my_plugin AS 'my_auth_string';

When my_user connects from the local host, the server invokes my_plugin and passes
'my_auth_string' to it as the auth_string value.

• auth_string_length: The length of auth_string in bytes.

• authenticated_as: The server sets this to the user name (the value of user_name). The plugin
can alter it to indicate that the client should have the privileges of a different user. For example, if
the plugin supports proxy users, the initial value is the name of the connecting (proxy) user, and
the plugin can change this member to the proxied user name. The server then treats the proxy
user as having the privileges of the proxied user (assuming that the other conditions for proxy user
support are satisfied; see Implementing Proxy User Support in Authentication Plugins). The value is
represented as a string at most MYSQL_USER_NAME_LENGTH bytes long, plus a terminating null. The
value becomes the CURRENT_USER() function value.



Writing Plugins

2799

• external_user: The server sets this to the empty string (null terminated). Its value becomes the
external_user system variable value. If the plugin wants that system variable to have a different
value, it should set this member accordingly; for example, to the connecting user name. The value is
represented as a string at most 511 bytes long, plus a terminating null.

• password_used: This member applies when authentication fails. The plugin can set it or ignore it.
The value is used to construct the failure error message of Authentication fails. Password
used: %s. The value of password_used determines how %s is handled, as shown in the following
table.

password_used %s Handling

0 NO

1 YES

2 There will be no %s

• host_or_ip: The name of the client host if it can be resolved, or the IP address otherwise.

• host_or_ip_length: The length of host_or_ip in bytes.

The auth_simple main function, auth_simple_server(), reads the password (a null-terminated
string) from the client and succeeds if the password is nonempty (first byte not null):

static int auth_simple_server (MYSQL_PLUGIN_VIO *vio,
                               MYSQL_SERVER_AUTH_INFO *info)
{
  unsigned char *pkt;
  int pkt_len;

  /* read the password as null-terminated string, fail on error */
  if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
    return CR_ERROR;

  /* fail on empty password */
  if (!pkt_len || *pkt == '\0')
  {
    info->password_used= PASSWORD_USED_NO;
    return CR_ERROR;
  }

  /* accept any nonempty password */
  info->password_used= PASSWORD_USED_YES;

  return CR_OK;
}

The main function should return one of the error codes shown in the following table.

Error Code Meaning

CR_OK Success

CR_OK_HANDSHAKE_COMPLETEDo not send a status packet back to client

CR_ERROR Error

For an example of how the handshake works, see the plugin/auth/dialog.c source file.

auth_simple_server() is so basic that it does not use the authentication information structure
except to set the member that indicates whether a password was received.

A plugin that supports proxy users must return to the server the name of the proxied user (the
MySQL user whose privileges the client user should get). To do this, the plugin must set the info-
>authenticated_as member to the proxied user name. For information about proxying, see
Section 6.3.7, “Proxy Users”, and Implementing Proxy User Support in Authentication Plugins.



Writing Plugins

2800

Writing the Client-Side Authentication Plugin

Declare the client-side plugin descriptor with the mysql_declare_client_plugin() and
mysql_end_client_plugin macros (see Client Plugin Descriptors). For the auth_simple plugin,
the descriptor looks like this:

mysql_declare_client_plugin(AUTHENTICATION)
  "auth_simple",                        /* plugin name */
  "Author Name",                        /* author */
  "Any-password authentication plugin", /* description */
  {1,0,0},                              /* version = 1.0.0 */
  "GPL",                                /* license type */
  NULL,                                 /* for internal use */
  NULL,                                 /* no init function */
  NULL,                                 /* no deinit function */
  NULL,                                 /* no option-handling function */
  auth_simple_client                    /* main function */
mysql_end_client_plugin;

The descriptor members from the plugin name through the option-handling function are common to all
client plugin types. (For descriptions, see Client Plugin Descriptors.) Following the common members,
the descriptor has an additional member specific to authentication plugins. This is the “main” function,
which handles communication with the server. The function takes two arguments representing an I/
O structure and a connection handler. For our simple any-password plugin, the main function does
nothing but write to the server the password provided by the user:

static int auth_simple_client (MYSQL_PLUGIN_VIO *vio, MYSQL *mysql)
{
  int res;

  /* send password as null-terminated string in clear text */
  res= vio->write_packet(vio, (const unsigned char *) mysql->passwd,
                         strlen(mysql->passwd) + 1);

  return res ? CR_ERROR : CR_OK;
}

The main function should return one of the error codes shown in the following table.

Error Code Meaning

CR_OK Success

CR_OK_HANDSHAKE_COMPLETESuccess, client done

CR_ERROR Error

CR_OK_HANDSHAKE_COMPLETE indicates that the client has done its part successfully and has read
the last packet. A client plugin may return CR_OK_HANDSHAKE_COMPLETE if the number of round
trips in the authentication protocol is not known in advance and the plugin must read another packet to
determine whether authentication is finished.

Using the Authentication Plugins

To compile and install a plugin library file, use the instructions in Section 24.2.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the
directory named by the plugin_dir system variable).

Register the server-side plugin with the server. For example, to load the plugin at server startup, use a
--plugin-load=auth_simple.so option (adjust the .so suffix for your platform as necessary).

Create a user for whom the server will use the auth_simple plugin for authentication:

mysql> CREATE USER 'x'@'localhost'



Writing Plugins

2801

    -> IDENTIFIED WITH auth_simple;

Use a client program to connect to the server as user x. The server-side auth_simple plugin
communicates with the client program that it should use the client-side auth_simple plugin, and
the latter sends the password to the server. The server plugin should reject connections that send an
empty password and accept connections that send a nonempty password. Invoke the client program
each way to verify this:

shell> mysql --user=x --skip-password
ERROR 1045 (28000): Access denied for user 'x'@'localhost' (using password: NO)

shell> mysql --user=x --password
Enter password: abc
mysql>

Because the server plugin accepts any nonempty password, it should be considered insecure. After
testing the plugin to verify that it works, restart the server without the --plugin-load option so as not
to indavertently leave the server running with an insecure authentication plugin loaded. Also, drop the
user with DROP USER 'x'@'localhost'.

For additional information about loading and using authentication plugins, see Section 5.5.2, “Installing
and Uninstalling Plugins”, and Section 6.3.6, “Pluggable Authentication”.

If you are writing a client program that supports the use of authentication plugins, normally
such a program causes a plugin to be loaded by calling mysql_options() to set the
MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);

Typically, the program will also accept --plugin-dir and --default-auth options that enable
users to override the default values.

Should a client program require lower-level plugin management, the client library contains functions
that take an st_mysql_client_plugin argument. See Section 23.8.14, “C API Client Plugin
Functions”.

Implementing Proxy User Support in Authentication Plugins

One of the capabilities that pluggable authentication makes possible is proxy users (see Section 6.3.7,
“Proxy Users”). For a server-side authentication plugin to participate in proxy user support, these
conditions must be satisfied:

• When a connecting client should be treated as a proxy user, the plugin must return a different name
in the authenticated_as member of the MYSQL_SERVER_AUTH_INFO structure, to indicate the
proxied user name. It may also optionally set the external_user member, to set the value of the
external_user system variable.

• Proxy user accounts must be set up to be authenticated by the plugin. Use the CREATE USER or
GRANT statement to associate accounts with plugins.

• Proxy user accounts must have the PROXY privilege for the proxied accounts. Use the GRANT
statement to grant this privilege.

In other words, the only aspect of proxy user support required of the plugin is that it set
authenticated_as to the proxied user name. The rest is optional (setting external_user) or done
by the DBA using SQL statements.



Writing Plugins

2802

How does an authentication plugin determine which proxied user to return when the proxy user
connects? That depends on the plugin. Typically, the plugin maps clients to proxied users based on the
authentication string passed to it by the server. This string comes from the AS part of the IDENTIFIED
WITH clause of the CREATE USER statement that specifies use of the plugin for authentication.

The plugin developer determines the syntax rules for the authentication string and implements the
plugin according to those rules. Suppose that a plugin takes a comma-separated list of pairs that map
external users to MySQL users. For example:

CREATE USER ''@'%.example.com'
  IDENTIFIED WITH my_plugin AS 'extuser1=mysqlusera, extuser2=mysqluserb'
CREATE USER ''@'%.example.org'
  IDENTIFIED WITH my_plugin AS 'extuser1=mysqluserc, extuser2=mysqluserd'

When the server invokes a plugin to authenticate a client, it passes the appropriate authentication
string to the plugin. The plugin is responsible to:

1. Parse the string into its components to determine the mapping to use

2. Compare the client user name to the mapping

3. Return the proper MySQL user name

For example, if extuser2 connects from an example.com host, the server passes
'extuser1=mysqlusera, extuser2=mysqluserb' to the plugin, and the plugin should copy
mysqluserb into authenticated_as, with a terminating null byte. If extuser2 connects from an
example.org host, the server passes 'extuser1=mysqluserc, extuser2=mysqluserd', and
the plugin should copy mysqluserd instead.

If there is no match in the mapping, the action depends on the plugin. If a match is required, the plugin
likely will return an error. Or the plugin might simply return the client name; in this case, it should not
change authenticated_as, and the server will not treat the client as a proxy.

The following example demonstrates how to handle proxy users using a plugin named
auth_simple_proxy. Like the auth_simple plugin described earlier, auth_simple_proxy
accepts any nonempty password as valid (and thus should not be used in production environments). In
addition, it examines the auth_string authentication string member and uses these very simple rules
for interpreting it:

• If the string is empty, the plugin returns the user name as given and no proxying occurs. That is, the
plugin leaves the value of authenticated_as unchanged.

• If the string is nonempty, the plugin treats it as the name of the proxied user and copies it to
authenticated_as so that proxying occurs.

For testing, set up one account that is not proxied according to the preceding rules, and one that is.
This means that one account has no AS clause, and one includes an AS clause that names the proxied
user:

CREATE USER 'plugin_user1'@'localhost'
  IDENTIFIED WITH auth_simple_proxy;
CREATE USER 'plugin_user2'@'localhost'
  IDENTIFIED WITH auth_simple_proxy AS 'proxied_user';

In addition, create an account for the proxied user and grant plugin_user2 the PROXY privilege for it:

CREATE USER 'proxied_user'@'localhost'
  IDENTIFIED BY 'proxied_user_pass';
GRANT PROXY
  ON 'proxied_user'@'localhost'
  TO 'plugin_user2'@'localhost';



Writing Plugins

2803

Before the server invokes an authentication plugin, it sets authenticated_as to the client user
name. To indicate that the user is a proxy, the plugin should set authenticated_as to the proxied
user name. For auth_simple_proxy, this means that it must examine the auth_string value, and,
if the value is nonempty, copy it to the authenticated_as member to return it as the name of the
proxied user. In addition, when proxying occurs, the plugin sets the external_user member to the
client user name; this becomes the value of the external_user system variable.

static int auth_simple_proxy_server (MYSQL_PLUGIN_VIO *vio,
                                     MYSQL_SERVER_AUTH_INFO *info)
{
  unsigned char *pkt;
  int pkt_len;

  /* read the password as null-terminated string, fail on error */
  if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
    return CR_ERROR;

  /* fail on empty password */
  if (!pkt_len || *pkt == '\0')
  {
    info->password_used= PASSWORD_USED_NO;
    return CR_ERROR;
  }

  /* accept any nonempty password */
  info->password_used= PASSWORD_USED_YES;

  /* if authentication string is nonempty, use as proxied user name */
  /* and use client name as external_user value */
  if (info->auth_string_length > 0)
  {
    strcpy (info->authenticated_as, info->auth_string);
    strcpy (info->external_user, info->user_name);
  }

  return CR_OK;
}

After a successful connection, the USER() function should indicate the connecting client user and host
name, and CURRENT_USER() should indicate the account whose privileges apply during the session.
The latter value should be the connecting user account if no proxying occurs or the proxied account if
proxying does occur.

Compile and install the plugin, then test it. First, connect as plugin_user1:

shell> mysql --user=plugin_user1 --password
Enter password: x

In this case, there should be no proxying:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user, @@external_user\G
*************************** 1. row ***************************
         USER(): plugin_user1@localhost
 CURRENT_USER(): plugin_user1@localhost
   @@proxy_user: NULL
@@external_user: NULL

Then connect as plugin_user2:

shell> mysql --user=plugin_user2 --password
Enter password: x

In this case, plugin_user2 should be proxied to proxied_user:



MySQL Services for Plugins

2804

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user, @@external_user\G
*************************** 1. row ***************************
         USER(): plugin_user2@localhost
 CURRENT_USER(): proxied_user@localhost
   @@proxy_user: 'plugin_user2'@'localhost'
@@external_user: 'plugin_user2'@'localhost'

24.3 MySQL Services for Plugins
MySQL server plugins have access to server “plugin services.” The plugin services interface exposes
server functionality that plugins can call. It complements the plugin API and has these characteristics:

• Services enable plugins to access code inside the server using ordinary function calls. Services are
also available to user-defined functions (UDFs).

• Services are portable and work on multiple platforms.

• The interface includes a versioning mechanism so that service versions supported by the server
can be checked at load time against plugin versions. Versioning protects against incompatibilities
between the version of a service that the server provides and the version of the service expected or
required by a plugin.

The plugin services interface differs from the plugin API as follows:

• The plugin API enables plugins to be used by the server. The calling initiative lies with the server to
invoke plugins. This enables plugins to extend server functionality or register to receive notifications
about server processing.

• The plugin services interface enables plugins to call code inside the server. The calling initiative lies
with plugins to invoke service functions. This enables functionality already implemented in the server
to be used by many plugins; they need not individually implement it themselves.

To determine what services exist and what functions they provide, look in the include/mysql
directory of a MySQL source distribution. The relevant files are:

• plugin.h includes services.h, which is the “umbrella” header that includes all available service-
specific header files.

• Service-specific headers have names of the form service_xxx.h.

Each service-specific header should contain comments that provide full usage documentation for a
given service, including what service functions are available, their calling sequences, and return values.

For developers who wish to modify the server to add a new service, see MySQL Internals: MySQL
Services for Plugins.

Available services include the following:

• my_snprintf: A string-formatting service that produces consistent results across platforms.

• my_thd_scheduler: A service for plugins to select a thread scheduler.

• thd_alloc: A memory-allocation service.

• thd_wait: A service for plugins to report when they are going to sleep or stall.

The remainder of this section describes how a plugin uses server functionality that is available as a
service. See also the source for the “daemon” example plugin, which uses the my_snprintf service.
Within a MySQL source distribution, that plugin is located in the plugin/daemon_example directory.

To use a service or services from within a plugin, the plugin source file must include the plugin.h
header file to access service-related information:

http://dev.mysql.com/doc/internals/en/mysql-services-for-plugins.html
http://dev.mysql.com/doc/internals/en/mysql-services-for-plugins.html


Adding New Functions to MySQL

2805

#include <mysql/plugin.h>

This does not represent any additional setup cost. A plugin must include that file anyway because it
contains definitions and structures that every plugin needs.

To access a service, a plugin calls service functions like any other function. For example, to format a
string into a buffer for printing, call the my_snprintf() function provided by the service of the same
name:

char buffer[BUFFER_SIZE];

my_snprintf(buffer, sizeof(buffer), format_string, argument_to_format, ...);

When you build your plugin, use the -lmysqlservices flag at link time to link in the
libmysqlservices library. For example, for CMake, put this in the top-level CMakeLists.txt file:

FIND_LIBRARY(MYSQLSERVICES_LIB mysqlservices
 PATHS "${MYSQL_SRCDIR}/libservices" NO_DEFAULT_PATH)

Put this in the CMakeLists.txt file in the directory containing the plugin source:

# the plugin needs the mysql services library for error logging
TARGET_LINK_LIBRARIES (your_plugin_library_name ${MYSQLSERVICES_LIB})

24.4 Adding New Functions to MySQL
There are three ways to add new functions to MySQL:

• You can add functions through the user-defined function (UDF) interface. User-defined functions
are compiled as library files and then added to and removed from the server dynamically using the
CREATE FUNCTION and DROP FUNCTION statements. See Section 13.7.3.1, “CREATE FUNCTION
Syntax for User-Defined Functions”.

• You can add functions as native (built-in) MySQL functions. Native functions are compiled into the
mysqld server and become available on a permanent basis.

• Another way to add functions is by creating stored functions. These are written using SQL
statements rather than by compiling object code. The syntax for writing stored functions is not
covered here. See Section 20.2, “Using Stored Routines (Procedures and Functions)”.

Each method of creating compiled functions has advantages and disadvantages:

• If you write user-defined functions, you must install object files in addition to the server itself. If you
compile your function into the server, you need not do that.

• Native functions require you to modify a source distribution. UDFs do not. You can add UDFs to a
binary MySQL distribution. No access to MySQL source is necessary.

• If you upgrade your MySQL distribution, you can continue to use your previously installed UDFs,
unless you upgrade to a newer version for which the UDF interface changes. For native functions,
you must repeat your modifications each time you upgrade.

Whichever method you use to add new functions, they can be invoked in SQL statements just like
native functions such as ABS() or SOUNDEX().

See Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

The following sections describe features of the UDF interface, provide instructions for writing UDFs,
discuss security precautions that MySQL takes to prevent UDF misuse, and describe how to add native
MySQL functions.



Features of the User-Defined Function Interface

2806

For example source code that illustrates how to write UDFs, take a look at the sql/udf_example.c
file that is provided in MySQL source distributions.

24.4.1 Features of the User-Defined Function Interface

The MySQL interface for user-defined functions provides the following features and capabilities:

• Functions can return string, integer, or real values and can accept arguments of those same types.

• You can define simple functions that operate on a single row at a time, or aggregate functions that
operate on groups of rows.

• Information is provided to functions that enables them to check the number, types, and names of the
arguments passed to them.

• You can tell MySQL to coerce arguments to a given type before passing them to a function.

• You can indicate that a function returns NULL or that an error occurred.

24.4.2 Adding a New User-Defined Function

For the UDF mechanism to work, functions must be written in C or C++ and your operating system
must support dynamic loading. MySQL source distributions include a file sql/udf_example.c that
defines five UDF functions. Consult this file to see how UDF calling conventions work. The include/
mysql_com.h header file defines UDF-related symbols and data structures, although you need not
include this header file directly; it is included by mysql.h.

A UDF contains code that becomes part of the running server, so when you write a UDF, you are
bound by any and all constraints that apply to writing server code. For example, you may have
problems if you attempt to use functions from the libstdc++ library. These constraints may change
in future versions of the server, so it is possible that server upgrades will require revisions to UDFs that
were originally written for older servers. For information about these constraints, see Section 2.9.4,
“MySQL Source-Configuration Options”, and Section 2.9.5, “Dealing with Problems Compiling MySQL”.

To be able to use UDFs, you must link mysqld dynamically. If you want to use a UDF that needs to
access symbols from mysqld (for example, the metaphone function in sql/udf_example.c uses
default_charset_info), you must link the program with -rdynamic (see man dlopen).

For each function that you want to use in SQL statements, you should define corresponding C (or C
++) functions. In the following discussion, the name “xxx” is used for an example function name. To
distinguish between SQL and C/C++ usage, XXX() (uppercase) indicates an SQL function call, and
xxx() (lowercase) indicates a C/C++ function call.

Note

When using C++ you can encapsulate your C functions within:

extern "C" { ... }

This ensures that your C++ function names remain readable in the completed
UDF.

The following list describes the C/C++ functions that you write to implement the interface for a function
named XXX(). The main function, xxx(), is required. In addition, a UDF requires at least one of the
other functions described here, for reasons discussed in Section 24.4.2.6, “UDF Security Precautions”.

• xxx()

The main function. This is where the function result is computed. The correspondence between the
SQL function data type and the return type of your C/C++ function is shown here.



Adding a New User-Defined Function

2807

SQL Type C/C++ Type

STRING char *

INTEGER long long

REAL double

It is also possible to declare a DECIMAL function, but currently the value is returned as a string, so
you should write the UDF as though it were a STRING function. ROW functions are not implemented.

• xxx_init()

The initialization function for xxx(). If present, it can be used for the following purposes:

• To check the number of arguments to XXX().

• To verify that the arguments are of a required type or, alternatively, to tell MySQL to coerce
arguments to the required types when the main function is called.

• To allocate any memory required by the main function.

• To specify the maximum length of the result.

• To specify (for REAL functions) the maximum number of decimal places in the result.

• To specify whether the result can be NULL.

• xxx_deinit()

The deinitialization function for xxx(). If present, it should deallocate any memory allocated by the
initialization function.

When an SQL statement invokes XXX(), MySQL calls the initialization function xxx_init() to let
it perform any required setup, such as argument checking or memory allocation. If xxx_init()
returns an error, MySQL aborts the SQL statement with an error message and does not call the main
or deinitialization functions. Otherwise, MySQL calls the main function xxx() once for each row. After
all rows have been processed, MySQL calls the deinitialization function xxx_deinit() so that it can
perform any required cleanup.

For aggregate functions that work like SUM(), you must also provide the following functions:

• xxx_clear()

Reset the current aggregate value but do not insert the argument as the initial aggregate value for a
new group.

• xxx_add()

Add the argument to the current aggregate value.

MySQL handles aggregate UDFs as follows:

1. Call xxx_init() to let the aggregate function allocate any memory it needs for storing results.

2. Sort the table according to the GROUP BY expression.

3. Call xxx_clear() for the first row in each new group.

4. Call xxx_add() for each row that belongs in the same group.

5. Call xxx() to get the result for the aggregate when the group changes or after the last row has
been processed.



Adding a New User-Defined Function

2808

6. Repeat steps 3 to 5 until all rows has been processed

7. Call xxx_deinit() to let the UDF free any memory it has allocated.

All functions must be thread-safe. This includes not just the main function, but the initialization and
deinitialization functions as well, and also the additional functions required by aggregate functions. A
consequence of this requirement is that you are not permitted to allocate any global or static variables
that change! If you need memory, you should allocate it in xxx_init() and free it in xxx_deinit().

24.4.2.1 UDF Calling Sequences for Simple Functions

This section describes the different functions that you need to define when you create a simple UDF.
Section 24.4.2, “Adding a New User-Defined Function”, describes the order in which MySQL calls
these functions.

The main xxx() function should be declared as shown in this section. Note that the return type and
parameters differ, depending on whether you declare the SQL function XXX() to return STRING,
INTEGER, or REAL in the CREATE FUNCTION statement:

For STRING functions:

char *xxx(UDF_INIT *initid, UDF_ARGS *args,
          char *result, unsigned long *length,
          char *is_null, char *error);

For INTEGER functions:

long long xxx(UDF_INIT *initid, UDF_ARGS *args,
              char *is_null, char *error);

For REAL functions:

double xxx(UDF_INIT *initid, UDF_ARGS *args,
              char *is_null, char *error);

DECIMAL functions return string values and should be declared the same way as STRING functions.
ROW functions are not implemented.

The initialization and deinitialization functions are declared like this:

my_bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *message);

void xxx_deinit(UDF_INIT *initid);

The initid parameter is passed to all three functions. It points to a UDF_INIT structure that is
used to communicate information between functions. The UDF_INIT structure members follow. The
initialization function should fill in any members that it wishes to change. (To use the default for a
member, leave it unchanged.)

• my_bool maybe_null

xxx_init() should set maybe_null to 1 if xxx() can return NULL. The default value is 1 if any of
the arguments are declared maybe_null.

• unsigned int decimals

The number of decimal digits to the right of the decimal point. The default value is the maximum
number of decimal digits in the arguments passed to the main function. For example, if the function is
passed 1.34, 1.345, and 1.3, the default would be 3, because 1.345 has 3 decimal digits.



Adding a New User-Defined Function

2809

For arguments that have no fixed number of decimals, the decimals value is set to 31, which is
1 more than the maximum number of decimals permitted for the DECIMAL, FLOAT, and DOUBLE
data types. As of MySQL 5.5.3, this value is available as the constant NOT_FIXED_DEC in the
mysql_com.h header file.

A decimals value of 31 is used for arguments in cases such as a FLOAT or DOUBLE column
declared without an explicit number of decimals (for example, FLOAT rather than FLOAT(10,3))
and for floating-point constants such as 1345E-3. It is also used for string and other nonnumber
arguments that might be converted within the function to numeric form.

The value to which the decimals member is initialized is only a default. It can be changed within the
function to reflect the actual calculation performed. The default is determined such that the largest
number of decimals of the arguments is used. If the number of decimals is NOT_FIXED_DEC for even
one of the arguments, that is the value used for decimals.

• unsigned int max_length

The maximum length of the result. The default max_length value differs depending on the result
type of the function. For string functions, the default is the length of the longest argument. For integer
functions, the default is 21 digits. For real functions, the default is 13 plus the number of decimal
digits indicated by initid->decimals. (For numeric functions, the length includes any sign or
decimal point characters.)

If you want to return a blob value, you can set max_length to 65KB or 16MB. This memory is not
allocated, but the value is used to decide which data type to use if there is a need to temporarily
store the data.

• char *ptr

A pointer that the function can use for its own purposes. For example, functions can use initid-
>ptr to communicate allocated memory among themselves. xxx_init() should allocate the
memory and assign it to this pointer:

initid->ptr = allocated_memory;

In xxx() and xxx_deinit(), refer to initid->ptr to use or deallocate the memory.

• my_bool const_item

xxx_init() should set const_item to 1 if xxx() always returns the same value and to 0
otherwise.

24.4.2.2 UDF Calling Sequences for Aggregate Functions

This section describes the different functions that you need to define when you create an aggregate
UDF. Section 24.4.2, “Adding a New User-Defined Function”, describes the order in which MySQL calls
these functions.

• xxx_reset()

This function is called when MySQL finds the first row in a new group. It should reset any internal
summary variables and then use the given UDF_ARGS argument as the first value in your internal
summary value for the group. Declare xxx_reset() as follows:

void xxx_reset(UDF_INIT *initid, UDF_ARGS *args,
               char *is_null, char *error);

xxx_reset() is not needed or used in MySQL 5.5, in which the UDF interface uses xxx_clear()
instead. However, you can define both xxx_reset() and xxx_clear() if you want to have your



Adding a New User-Defined Function

2810

UDF work with older versions of the server. (If you do include both functions, the xxx_reset()
function in many cases can be implemented internally by calling xxx_clear() to reset all variables,
and then calling xxx_add() to add the UDF_ARGS argument as the first value in the group.)

• xxx_clear()

This function is called when MySQL needs to reset the summary results. It is called at the beginning
for each new group but can also be called to reset the values for a query where there were no
matching rows. Declare xxx_clear() as follows:

void xxx_clear(UDF_INIT *initid, char *is_null, char *error);

is_null is set to point to CHAR(0) before calling xxx_clear().

If something went wrong, you can store a value in the variable to which the error argument points.
error points to a single-byte variable, not to a string buffer.

xxx_clear() is required by MySQL 5.5.

• xxx_add()

This function is called for all rows that belong to the same group. You should use it to add the value
in the UDF_ARGS argument to your internal summary variable.

void xxx_add(UDF_INIT *initid, UDF_ARGS *args,
             char *is_null, char *error);

The xxx() function for an aggregate UDF should be declared the same way as for a nonaggregate
UDF. See Section 24.4.2.1, “UDF Calling Sequences for Simple Functions”.

For an aggregate UDF, MySQL calls the xxx() function after all rows in the group have been
processed. You should normally never access its UDF_ARGS argument here but instead return a value
based on your internal summary variables.

Return value handling in xxx() should be done the same way as for a nonaggregate UDF. See
Section 24.4.2.4, “UDF Return Values and Error Handling”.

The xxx_reset() and xxx_add() functions handle their UDF_ARGS argument the same way as
functions for nonaggregate UDFs. See Section 24.4.2.3, “UDF Argument Processing”.

The pointer arguments to is_null and error are the same for all calls to xxx_reset(),
xxx_clear(), xxx_add() and xxx(). You can use this to remember that you got an error or
whether the xxx() function should return NULL. You should not store a string into *error! error
points to a single-byte variable, not to a string buffer.

*is_null is reset for each group (before calling xxx_clear()). *error is never reset.

If *is_null or *error are set when xxx() returns, MySQL returns NULL as the result for the group
function.

24.4.2.3 UDF Argument Processing

The args parameter points to a UDF_ARGS structure that has the members listed here:

• unsigned int arg_count

The number of arguments. Check this value in the initialization function if you require your function to
be called with a particular number of arguments. For example:

if (args->arg_count != 2)



Adding a New User-Defined Function

2811

{
    strcpy(message,"XXX() requires two arguments");
    return 1;
}

For other UDF_ARGS member values that are arrays, array references are zero-based. That is, refer
to array members using index values from 0 to args->arg_count − 1.

• enum Item_result *arg_type

A pointer to an array containing the types for each argument. The possible type values are
STRING_RESULT, INT_RESULT, REAL_RESULT, and DECIMAL_RESULT.

To make sure that arguments are of a given type and return an error if they are not, check the
arg_type array in the initialization function. For example:

if (args->arg_type[0] != STRING_RESULT ||
    args->arg_type[1] != INT_RESULT)
{
    strcpy(message,"XXX() requires a string and an integer");
    return 1;
}

Arguments of type DECIMAL_RESULT are passed as strings, so you should handle them the same
way as STRING_RESULT values.

As an alternative to requiring your function's arguments to be of particular types, you can use the
initialization function to set the arg_type elements to the types you want. This causes MySQL to
coerce arguments to those types for each call to xxx(). For example, to specify that the first two
arguments should be coerced to string and integer, respectively, do this in xxx_init():

args->arg_type[0] = STRING_RESULT;
args->arg_type[1] = INT_RESULT;

Exact-value decimal arguments such as 1.3 or DECIMAL column values are passed with a type of
DECIMAL_RESULT. However, the values are passed as strings. If you want to receive a number, use
the initialization function to specify that the argument should be coerced to a REAL_RESULT value:

args->arg_type[2] = REAL_RESULT;

• char **args

args->args communicates information to the initialization function about the general nature of
the arguments passed to your function. For a constant argument i, args->args[i] points to the
argument value. (See later for instructions on how to access the value properly.) For a nonconstant
argument, args->args[i] is 0. A constant argument is an expression that uses only constants,
such as 3 or 4*7-2 or SIN(3.14). A nonconstant argument is an expression that refers to
values that may change from row to row, such as column names or functions that are called with
nonconstant arguments.

For each invocation of the main function, args->args contains the actual arguments that are
passed for the row currently being processed.

If argument i represents NULL, args->args[i] is a null pointer (0). If the argument is not NULL,
functions can refer to it as follows:

• An argument of type STRING_RESULT is given as a string pointer plus a length, to enable handling
of binary data or data of arbitrary length. The string contents are available as args->args[i]
and the string length is args->lengths[i]. Do not assume that the string is null-terminated.

• For an argument of type INT_RESULT, you must cast args->args[i] to a long long value:



Adding a New User-Defined Function

2812

long long int_val;
int_val = *((long long*) args->args[i]);

• For an argument of type REAL_RESULT, you must cast args->args[i] to a double value:

double    real_val;
real_val = *((double*) args->args[i]);

• For an argument of type DECIMAL_RESULT, the value is passed as a string and should be
handled like a STRING_RESULT value.

• ROW_RESULT arguments are not implemented.

• unsigned long *lengths

For the initialization function, the lengths array indicates the maximum string length for each
argument. You should not change these. For each invocation of the main function, lengths
contains the actual lengths of any string arguments that are passed for the row currently being
processed. For arguments of types INT_RESULT or REAL_RESULT, lengths still contains the
maximum length of the argument (as for the initialization function).

• char *maybe_null

For the initialization function, the maybe_null array indicates for each argument whether the
argument value might be null (0 if no, 1 if yes).

• char **attributes

args->attributes communicates information about the names of the UDF arguments. For
argument i, the attribute name is available as a string in args->attributes[i] and the attribute
length is args->attribute_lengths[i]. Do not assume that the string is null-terminated.

By default, the name of a UDF argument is the text of the expression used to specify the argument.
For UDFs, an argument may also have an optional [AS] alias_name clause, in which case the
argument name is alias_name. The attributes value for each argument thus depends on
whether an alias was given.

Suppose that a UDF my_udf() is invoked as follows:

SELECT my_udf(expr1, expr2 AS alias1, expr3 alias2);

In this case, the attributes and attribute_lengths arrays will have these values:

args->attributes[0] = "expr1"
args->attribute_lengths[0] = 5

args->attributes[1] = "alias1"
args->attribute_lengths[1] = 6

args->attributes[2] = "alias2"
args->attribute_lengths[2] = 6

• unsigned long *attribute_lengths

The attribute_lengths array indicates the length of each argument name.

24.4.2.4 UDF Return Values and Error Handling

The initialization function should return 0 if no error occurred and 1 otherwise. If an error occurs,
xxx_init() should store a null-terminated error message in the message parameter. The message



Adding a New User-Defined Function

2813

is returned to the client. The message buffer is MYSQL_ERRMSG_SIZE characters long, but you should
try to keep the message to less than 80 characters so that it fits the width of a standard terminal
screen.

The return value of the main function xxx() is the function value, for long long and double
functions. A string function should return a pointer to the result and set *length to the length (in bytes)
of the return value. For example:

memcpy(result, "result string", 13);
*length = 13;

MySQL passes a buffer to the xxx() function using the result parameter. This buffer is sufficiently
long to hold 255 characters, which can be multibyte characters. The xxx() function can store the
result in this buffer if it fits, in which case the return value should be a pointer to the buffer. If the
function stores the result in a different buffer, it should return a pointer to that buffer.

If your string function does not use the supplied buffer (for example, if it needs to return a string
longer than 255 characters), you must allocate the space for your own buffer with malloc() in your
xxx_init() function or your xxx() function and free it in your xxx_deinit() function. You can
store the allocated memory in the ptr slot in the UDF_INIT structure for reuse by future xxx() calls.
See Section 24.4.2.1, “UDF Calling Sequences for Simple Functions”.

To indicate a return value of NULL in the main function, set *is_null to 1:

*is_null = 1;

To indicate an error return in the main function, set *error to 1:

*error = 1;

If xxx() sets *error to 1 for any row, the function value is NULL for the current row and for any
subsequent rows processed by the statement in which XXX() was invoked. (xxx() is not even called
for subsequent rows.)

24.4.2.5 UDF Compiling and Installing

Files implementing UDFs must be compiled and installed on the host where the server runs. This
process is described below for the example UDF file sql/udf_example.c that is included in MySQL
source distributions.

If a UDF will be referred to in statements that will be replicated to slave servers, you must ensure that
every slave also has the function available. Otherwise, replication will fail on the slaves when they
attempt to invoke the function.

The immediately following instructions are for Unix. Instructions for Windows are given later in this
section.

The udf_example.c file contains the following functions:

• metaphon() returns a metaphon string of the string argument. This is something like a soundex
string, but it is more tuned for English.

• myfunc_double() returns the sum of the ASCII values of the characters in its arguments, divided
by the sum of the length of its arguments.

• myfunc_int() returns the sum of the length of its arguments.

• sequence([const int]) returns a sequence starting from the given number or 1 if no number
has been given.



Adding a New User-Defined Function

2814

• lookup() returns the IP address for a host name.

• reverse_lookup() returns the host name for an IP address. The function may be called either
with a single string argument of the form 'xxx.xxx.xxx.xxx' or with four numbers.

• avgcost() returns an average cost. This is an aggregate function.

A dynamically loadable file should be compiled as a sharable library file, using a command something
like this:

shell> gcc -shared -o udf_example.so udf_example.c

If you are using gcc with CMake (which is how MySQL is configured), you should be able to create
udf_example.so with a simpler command:

shell> make udf_example

After you compile a shared object containing UDFs, you must install it and tell MySQL about
it. Compiling a shared object from udf_example.c using gcc directly produces a file named
udf_example.so. Copy the shared object to the server's plugin directory and name it
udf_example.so. This directory is given by the value of the plugin_dir system variable.

On some systems, the ldconfig program that configures the dynamic linker does not recognize
a shared object unless its name begins with lib. In this case you should rename a file such as
udf_example.so to libudf_example.so.

On Windows, you can compile user-defined functions by using the following procedure:

1. Obtain a MySQL source distribution. See Section 2.1.2, “How to Get MySQL”.

2. Obtain the CMake build utility, if necessary, from http://www.cmake.org. (Version 2.6 or later is
required).

3. In the source tree, look in the sql directory. There are files named udf_example.def
udf_example.c there. Copy both files from this directory to your working directory.

4. Create a CMake makefile (CMakeLists.txt) with these contents:

PROJECT(udf_example)

# Path for MySQL include directory
INCLUDE_DIRECTORIES("c:/mysql/include")

ADD_DEFINITIONS("-DHAVE_DLOPEN")
ADD_LIBRARY(udf_example MODULE udf_example.c udf_example.def)
TARGET_LINK_LIBRARIES(udf_example wsock32)

5. Create the VC project and solution files:

cmake -G "<Generator>"

Invoking cmake --help shows you a list of valid Generators.

6. Create udf_example.dll:

devenv udf_example.sln /build Release

After the shared library file has been installed, notify mysqld about the new functions with the following
statements. If library files have a suffix different from .so on your system, substitute the correct suffix
throughout (for example, .dll on Windows).

http://www.cmake.org


Adding a New Native Function

2815

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_double RETURNS REAL SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION sequence RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION lookup RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION reverse_lookup
    ->        RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE AGGREGATE FUNCTION avgcost
    ->        RETURNS REAL SONAME 'udf_example.so';

Once installed, a function remains installed until it is uninstalled.

To delete functions, use DROP FUNCTION:

mysql> DROP FUNCTION metaphon;
mysql> DROP FUNCTION myfunc_double;
mysql> DROP FUNCTION myfunc_int;
mysql> DROP FUNCTION sequence;
mysql> DROP FUNCTION lookup;
mysql> DROP FUNCTION reverse_lookup;
mysql> DROP FUNCTION avgcost;

The CREATE FUNCTION and DROP FUNCTION statements update the func system table in the
mysql database. The function's name, type and shared library name are saved in the table. You must
have the INSERT or DELETE privilege for the mysql database to create or drop functions, respectively.

You should not use CREATE FUNCTION to add a function that has previously been created. If you
need to reinstall a function, you should remove it with DROP FUNCTION and then reinstall it with
CREATE FUNCTION. You would need to do this, for example, if you recompile a new version of your
function, so that mysqld gets the new version. Otherwise, the server continues to use the old version.

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP
FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld
with the --skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are
unavailable.

24.4.2.6 UDF Security Precautions

MySQL takes several measures to prevent misuse of user-defined functions.

UDF library files cannot be placed in arbitrary directories. They must be located in the server's plugin
directory. This directory is given by the value of the plugin_dir system variable.

To use CREATE FUNCTION or DROP FUNCTION, you must have the INSERT or DELETE privilege,
respectively, for the mysql database. This is necessary because those statements add and delete
rows from the mysql.func table.

UDFs should have at least one symbol defined in addition to the xxx symbol that corresponds to the
main xxx() function. These auxiliary symbols correspond to the xxx_init(), xxx_deinit(),
xxx_reset(), xxx_clear(), and xxx_add() functions. mysqld also supports an --allow-
suspicious-udfs option that controls whether UDFs that have only an xxx symbol can be loaded.
By default, the option is off, to prevent attempts at loading functions from shared library files other than
those containing legitimate UDFs. If you have older UDFs that contain only the xxx symbol and that
cannot be recompiled to include an auxiliary symbol, it may be necessary to specify the --allow-
suspicious-udfs option. Otherwise, you should avoid enabling this capability.

24.4.3 Adding a New Native Function

To add a new native MySQL function, use the procedure described here, which requires that you use
a source distribution. You cannot add native functions to a binary distribution because it is necessary



Adding a New Native Function

2816

to modify MySQL source code and compile MySQL from the modified source. If you migrate to another
version of MySQL (for example, when a new version is released), you must repeat the procedure with
the new version.

If the new native function will be referred to in statements that will be replicated to slave servers, you
must ensure that every slave server also has the function available. Otherwise, replication will fail on
the slaves when they attempt to invoke the function.

To add a new native function, follow these steps to modify source files in the sql directory:

1. Create a subclass for the function in item_create.cc:

• If the function takes a fixed number of arguments, create a subclass of Create_func_arg0,
Create_func_arg1, Create_func_arg2, or Create_func_arg3, respectively, depending
on whether the function takes zero, one, two, or three arguments. For examples, see the
Create_func_uuid, Create_func_abs, Create_func_pow, and Create_func_lpad
classes.

• If the function takes a variable number of arguments, create a subclass of
Create_native_func. For an example, see Create_func_concat.

2. To provide a name by which the function can be referred to in SQL statements, register the name in
item_create.cc by adding a line to this array:

static Native_func_registry func_array[]

You can register several names for the same function. For example, see the lines for "LCASE" and
"LOWER", which are aliases for Create_func_lcase.

3. In item_func.h, declare a class inheriting from Item_num_func or Item_str_func, depending
on whether your function returns a number or a string.

4. In item_func.cc, add one of the following declarations, depending on whether you are defining a
numeric or string function:

double   Item_func_newname::val()
longlong Item_func_newname::val_int()
String  *Item_func_newname::Str(String *str)

If you inherit your object from any of the standard items (like Item_num_func), you probably only
have to define one of these functions and let the parent object take care of the other functions. For
example, the Item_str_func class defines a val() function that executes atof() on the value
returned by ::str().

5. If the function is nondeterministic, include the following statement in the item constructor to indicate
that function results should not be cached:

current_thd->lex->safe_to_cache_query=0;

A function is nondeterministic if, given fixed values for its arguments, it can return different results
for different invocations.

6. You should probably also define the following object function:

void Item_func_newname::fix_length_and_dec()

This function should at least calculate max_length based on the given arguments. max_length
is the maximum number of characters the function may return. This function should also set
maybe_null = 0 if the main function cannot return a NULL value. The function can check whether



Debugging and Porting MySQL

2817

any of the function arguments can return NULL by checking the arguments' maybe_null variable.
Look at Item_func_mod::fix_length_and_dec for a typical example of how to do this.

All functions must be thread-safe. In other words, do not use any global or static variables in the
functions without protecting them with mutexes.

If you want to return NULL from ::val(), ::val_int(), or ::str(), you should set null_value
to 1 and return 0.

For ::str() object functions, there are additional considerations to be aware of:

• The String *str argument provides a string buffer that may be used to hold the result. (For more
information about the String type, take a look at the sql_string.h file.)

• The ::str() function should return the string that holds the result, or (char*) 0 if the result is
NULL.

• All current string functions try to avoid allocating any memory unless absolutely necessary!

24.5 Debugging and Porting MySQL

This section helps you port MySQL to other operating systems. Do check the list of currently supported
operating systems first. See http://www.mysql.com/support/supportedplatforms/database.html. If you
have created a new port of MySQL, please let us know so that we can list it here and on our Web site
(http://www.mysql.com/), recommending it to other users.

Note

If you create a new port of MySQL, you are free to copy and distribute it under
the GPL license, but it does not make you a copyright holder of MySQL.

A working POSIX thread library is needed for the server.

To build MySQL from source, your system must satisfy the tool requirements listed at Section 2.9,
“Installing MySQL from Source”.

Important

If you are trying to build MySQL 5.5 with icc on the IA64 platform, and need
support for NDB Cluster, you should first ensure that you are using icc version
9.1.043 or later. (For details, see Bug #21875.)

If you run into problems with a new port, you may have to do some debugging of MySQL! See
Section 24.5.1, “Debugging a MySQL Server”.

Note

Before you start debugging mysqld, first get the test programs mysys/
thr_alarm and mysys/thr_lock to work. This ensures that your thread
installation has even a remote chance to work!

24.5.1 Debugging a MySQL Server

If you are using some functionality that is very new in MySQL, you can try to run mysqld with the --
skip-new (which disables all new, potentially unsafe functionality). See Section B.5.3.3, “What to Do If
MySQL Keeps Crashing”.

If mysqld does not want to start, verify that you have no my.cnf files that interfere with your setup!
You can check your my.cnf arguments with mysqld --print-defaults and avoid using them by
starting with mysqld --no-defaults ....

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/


Debugging a MySQL Server

2818

If mysqld starts to eat up CPU or memory or if it “hangs,” you can use mysqladmin processlist
status to find out if someone is executing a query that takes a long time. It may be a good idea to run
mysqladmin -i10 processlist status in some window if you are experiencing performance
problems or problems when new clients cannot connect.

The command mysqladmin debug dumps some information about locks in use, used memory and
query usage to the MySQL log file. This may help solve some problems. This command also provides
some useful information even if you have not compiled MySQL for debugging!

If the problem is that some tables are getting slower and slower you should try to optimize the table
with OPTIMIZE TABLE or myisamchk. See Chapter 5, MySQL Server Administration. You should also
check the slow queries with EXPLAIN.

You should also read the OS-specific section in this manual for problems that may be unique to your
environment. See Section 2.1, “General Installation Guidance”.

24.5.1.1 Compiling MySQL for Debugging

If you have some very specific problem, you can always try to debug MySQL. To do this you must
configure MySQL with the -DWITH_DEBUG=1 option. You can check whether MySQL was compiled
with debugging by doing: mysqld --help. If the --debug flag is listed with the options then you have
debugging enabled. mysqladmin ver also lists the mysqld version as mysql ... --debug in this
case.

If mysqld stops crashing when you configure it with the -DWITH_DEBUG=1 CMake option, you
probably have found a compiler bug or a timing bug within MySQL. In this case, you can try to add -g
using the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options and not use -DWITH_DEBUG=1.
If mysqld dies, you can at least attach to it with gdb or use gdb on the core file to find out what
happened.

When you configure MySQL for debugging you automatically enable a lot of extra safety check
functions that monitor the health of mysqld. If they find something “unexpected,” an entry is written
to stderr, which mysqld_safe directs to the error log! This also means that if you are having some
unexpected problems with MySQL and are using a source distribution, the first thing you should do is to
configure MySQL for debugging! (The second thing is to send mail to a MySQL mailing list and ask for
help. See Section 1.5.2, “MySQL Mailing Lists”. If you believe that you have found a bug, please use
the instructions at Section 1.6, “How to Report Bugs or Problems”.

In the Windows MySQL distribution, mysqld.exe is by default compiled with support for trace files.

24.5.1.2 Creating Trace Files

If the mysqld server does not start or it crashes easily, you can try to create a trace file to find the
problem.

To do this, you must have a mysqld that has been compiled with debugging support. You can check
this by executing mysqld -V. If the version number ends with -debug, it is compiled with support for
trace files. (On Windows, the debugging server is named mysqld-debug rather than mysqld.)

Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or \mysqld.trace on
Windows:

shell> mysqld --debug

On Windows, you should also use the --standalone flag to not start mysqld as a service. In a
console window, use this command:

C:\> mysqld-debug --debug --standalone



Debugging a MySQL Server

2819

After this, you can use the mysql.exe command-line tool in a second console window to reproduce
the problem. You can stop the mysqld server with mysqladmin shutdown.

The trace file can become very large! To generate a smaller trace file, you can use debugging options
something like this:

mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This only prints information with the most interesting tags to the trace file.

If you make a bug report about this, please only send the lines from the trace file to the appropriate
mailing list where something seems to go wrong! If you cannot locate the wrong place, you can open a
bug report and upload the trace file to the report, so that a MySQL developer can take a look at it. For
instructions, see Section 1.6, “How to Report Bugs or Problems”.

The trace file is made with the DBUG package by Fred Fish. See Section 24.5.3, “The DBUG
Package”.

24.5.1.3 Using WER with PDB to create a Windows crashdump

Program Database (PDB) files (with file name extension pdb) are included in ZIP Archive distributions
(but not MSI distributions) of MySQL. These files provide information for debugging your MySQL
installation in the event of a problem.

Note

As of MySQL 5.7.6, the PDB files are available in a separate file labeled "ZIP
Archive Debug Binaries & Test Suite".

The PDB file contains more detailed information about mysqld and other tools that enables more
detailed trace and dump files to be created. You can use these with WinDbg or Visual Studio to debug
mysqld.

Note

The older Dr. Watson debugging tool was removed in Microsoft Vista, with
WinDbg being a common alternative. Both methods are documented here.

For more information on PDB files, see Microsoft Knowledge Base Article 121366. For more
information on the debugging options available, see Debugging Tools for Windows.

Using WinDbg

To use WinDbg, either install the full Windows Driver Kit (WDK) or install the standalone version.

Important

The .exe and .pbd files must be an exact match (both version number and
MySQL server edition) or WinDBG will complain while attempting to load the
symbols.

1. To generate a minidump mysqld.dmp, enable the core-file option under the [mysqld] section in
my.ini. Restart the MySQL server after making these changes.

2. Create a directory to store the generated files, such as c:\symbols

3. Determine the path to your windbg.exe executable using the Find GUI or from the command line,
for example: dir /s /b windbg.exe -- a common default is C:\Program Files\Debugging Tools
for Windows (x64)\windbg.exe

4. Launch windbg.exe giving it the paths to mysqld.exe, mysqld.pdb, mysqld.dmp, and the
source code. Alternatively, pass in each path from the WinDbg GUI. For example:

http://support.microsoft.com/kb/121366/
http://www.microsoft.com/whdc/devtools/debugging/default.mspx


Debugging a MySQL Server

2820

windbg.exe -i "C:\mysql-5.5.58-winx64\bin\"^
 -z "C:\mysql-5.5.58-winx64\data\mysqld.dmp"^
 -srcpath "E:\ade\mysql_archives\5.5\5.5.58\mysql-5.5.58"^
 -y "C:\mysql-5.5.58-winx64\bin;SRV*c:\symbols*http://msdl.microsoft.com/download/symbols"^
 -v -n -c "!analyze -vvvvv"

Note

The ^ character and newline are removed by the Windows command line
processor, so be sure the spaces remain intact.

Using Dr. Watson

To generate a crash file using Dr Watson (for Microsoft Vista and below), follow these steps:

1. Start Dr Watson by running drwtsn32.exe interactively using the -i option:

C:\> drwtsn32 -i

2. Set the Log File Path to the directory where you want to store trace files.

3. Make sure Dump All Thread Contexts and Append To Existing Log File.

4. Uncheck Dump Symbol Table, Visual Notification, Sound Notification and Create Crash Dump
File.

5. Set the Number of Instructions to a suitable value to capture enough calls in the stacktrace. A
value of at 25 should be enough.

Note that the file generated can become very large.

24.5.1.4 Debugging mysqld under gdb

On most systems you can also start mysqld from gdb to get more information if mysqld crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be able
to debug mysqld threads. In this case, you can only have one thread active at a time. It is best to
upgrade to gdb 5.1 because thread debugging works much better with this version!

NPTL threads (the new thread library on Linux) may cause problems while running mysqld under gdb.
Some symptoms are:

• mysqld hangs during startup (before it writes ready for connections).

• mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.

In this case, you should set the following environment variable in the shell before starting gdb:

LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL

When running mysqld under gdb, you should disable the stack trace with --skip-stack-trace to
be able to catch segfaults within gdb.

Use the --gdb option to mysqld to install an interrupt handler for SIGINT (needed to stop mysqld
with ^C to set breakpoints) and disable stack tracing and core file handling.

It is very hard to debug MySQL under gdb if you do a lot of new connections the whole time as
gdb does not free the memory for old threads. You can avoid this problem by starting mysqld with



Debugging a MySQL Server

2821

thread_cache_size set to a value equal to max_connections + 1. In most cases just using --
thread_cache_size=5' helps a lot!

If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld
with the --core-file option. This core file can be used to make a backtrace that may help you find
out why mysqld died:

shell> gdb mysqld core
gdb>   backtrace full
gdb>   quit

See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

If you are using gdb 4.17.x or above on Linux, you should install a .gdb file, with the following
information, in your current directory:

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

If you have problems debugging threads with gdb, you should download gdb 5.x and try this instead.
The new gdb version has very improved thread handling!

Here is an example how to debug mysqld:

shell> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Include the preceding output in a bug report, which you can file using the instructions in Section 1.6,
“How to Report Bugs or Problems”.

If mysqld hangs, you can try to use some system tools like strace or /usr/proc/bin/pstack to
examine where mysqld has hung.

strace /tmp/log libexec/mysqld

If you are using the Perl DBI interface, you can turn on debugging information by using the trace
method or by setting the DBI_TRACE environment variable.

24.5.1.5 Using a Stack Trace

On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You can
use this to find out where (and maybe why) mysqld died. See Section 5.4.2, “The Error Log”. To get
a stack trace, you must not compile mysqld with the -fomit-frame-pointer option to gcc. See
Section 24.5.1.1, “Compiling MySQL for Debugging”.

A stack trace in the error log looks something like this:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...



Debugging a MySQL Server

2822

stack_bottom = 0x41fd0110 thread_stack 0x40000
mysqld(my_print_stacktrace+0x32)[0x9da402]
mysqld(handle_segfault+0x28a)[0x6648e9]
/lib/libpthread.so.0[0x7f1a5af000f0]
/lib/libc.so.6(strcmp+0x2)[0x7f1a5a10f0f2]
mysqld(_Z21check_change_passwordP3THDPKcS2_Pcj+0x7c)[0x7412cb]
mysqld(_ZN16set_var_password5checkEP3THD+0xd0)[0x688354]
mysqld(_Z17sql_set_variablesP3THDP4ListI12set_var_baseE+0x68)[0x688494]
mysqld(_Z21mysql_execute_commandP3THD+0x41a0)[0x67a170]
mysqld(_Z11mysql_parseP3THDPKcjPS2_+0x282)[0x67f0ad]
mysqld(_Z16dispatch_command19enum_server_commandP3THDPcj+0xbb7[0x67fdf8]
mysqld(_Z10do_commandP3THD+0x24d)[0x6811b6]
mysqld(handle_one_connection+0x11c)[0x66e05e]

If resolution of function names for the trace fails, the trace contains less information:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
[0x9da402]
[0x6648e9]
[0x7f1a5af000f0]
[0x7f1a5a10f0f2]
[0x7412cb]
[0x688354]
[0x688494]
[0x67a170]
[0x67f0ad]
[0x67fdf8]
[0x6811b6]
[0x66e05e]

In the latter case, you can use the resolve_stack_dump utility to determine where mysqld died by
using the following procedure:

1. Copy the numbers from the stack trace to a file, for example mysqld.stack. The numbers should
not include the surrounding square brackets:

0x9da402
0x6648e9
0x7f1a5af000f0
0x7f1a5a10f0f2
0x7412cb
0x688354
0x688494
0x67a170
0x67f0ad
0x67fdf8
0x6811b6
0x66e05e

2. Make a symbol file for the mysqld server:

shell> nm -n libexec/mysqld > /tmp/mysqld.sym

If mysqld is not linked statically, use the following command instead:

shell> nm -D -n libexec/mysqld > /tmp/mysqld.sym

If you want to decode C++ symbols, use the --demangle, if available, to nm. If your version of nm
does not have this option, you will need to use the c++filt command after the stack dump has
been produced to demangle the C++ names.



Debugging a MySQL Server

2823

3. Execute the following command:

shell> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack

If you were not able to include demangled C++ names in your symbol file, process the
resolve_stack_dump output using c++filt:

shell> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack | c++filt

This prints out where mysqld died. If that does not help you find out why mysqld died, you should
create a bug report and include the output from the preceding command with the bug report.

However, in most cases it does not help us to have just a stack trace to find the reason for the
problem. To be able to locate the bug or provide a workaround, in most cases we need to know the
statement that killed mysqld and preferably a test case so that we can repeat the problem! See
Section 1.6, “How to Report Bugs or Problems”.

Newer versions of glibc stack trace functions also print the address as relative to the object. On
glibc-based systems (Linux), the trace for a crash within a plugin looks something like:

plugin/auth/auth_test_plugin.so(+0x9a6)[0x7ff4d11c29a6]

To translate the relative address (+0x9a6) into a file name and line number, use this command:

shell> addr2line -fie auth_test_plugin.so 0x9a6
auth_test_plugin
mysql-trunk/plugin/auth/test_plugin.c:65

The addr2line utility is part of the binutils package on Linux.

On Solaris, the procedure is similar. The Solaris printstack() already prints relative addresses:

plugin/auth/auth_test_plugin.so:0x1510

To translate, use this command:

shell> gaddr2line -fie auth_test_plugin.so 0x1510
mysql-trunk/plugin/auth/test_plugin.c:88

Windows already prints the address, function name and line:

000007FEF07E10A4 auth_test_plugin.dll!auth_test_plugin()[test_plugin.c:72]

24.5.1.6 Using Server Logs to Find Causes of Errors in mysqld

Note that before starting mysqld with the general query log enabled, you should check all your tables
with myisamchk. See Chapter 5, MySQL Server Administration.

If mysqld dies or hangs, you should start mysqld with the general query log enabled. See
Section 5.4.3, “The General Query Log”. When mysqld dies again, you can examine the end of the log
file for the query that killed mysqld.

If you use the default general query log file, the log is stored in the database directory as
host_name.log In most cases it is the last query in the log file that killed mysqld, but if possible you
should verify this by restarting mysqld and executing the found query from the mysql command-line
tools. If this works, you should also test all complicated queries that did not complete.

You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure
that mysqld is using indexes properly. See Section 13.8.2, “EXPLAIN Syntax”.



Debugging a MySQL Server

2824

You can find the queries that take a long time to execute by starting mysqld with the slow query log
enabled. See Section 5.4.5, “The Slow Query Log”.

If you find the text mysqld restarted in the error log file (normally named hostname.err) you
probably have found a query that causes mysqld to fail. If this happens, you should check all your
tables with myisamchk (see Chapter 5, MySQL Server Administration), and test the queries in the
MySQL log files to see whether one fails. If you find such a query, try first upgrading to the newest
MySQL version. If this does not help and you cannot find anything in the mysql mail archive, you
should report the bug to a MySQL mailing list. The mailing lists are described at http://lists.mysql.com/,
which also has links to online list archives.

If you have started mysqld with --myisam-recover-options, MySQL automatically checks and
tries to repair MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens,
MySQL writes an entry in the hostname.err file 'Warning: Checking table ...' which is
followed by Warning: Repairing table if the table needs to be repaired. If you get a lot of these
errors, without mysqld having died unexpectedly just before, then something is wrong and needs to be
investigated further. See Section 5.1.4, “Server Command Options”.

As of MySQL 5.5.3, when the server detects MyISAM table corruption, it writes additional information
to the error log, such as the name and line number of the source file, and the list of threads accessing
the table. Example: Got an error from thread_id=1, mi_dynrec.c:368. This is useful
information to include in bug reports.

It is not a good sign if mysqld did die unexpectedly, but in this case, you should not investigate the
Checking table... messages, but instead try to find out why mysqld died.

24.5.1.7 Making a Test Case If You Experience Table Corruption

The following procedure applies to MyISAM tables. For information about steps to take when
encountering InnoDB table corruption, see Section 1.6, “How to Report Bugs or Problems”.

If you encounter corrupted MyISAM tables or if mysqld always fails after some update statements, you
can test whether the issue is reproducible by doing the following:

1. Stop the MySQL daemon with mysqladmin shutdown.

2. Make a backup of the tables to guard against the very unlikely case that the repair does something
bad.

3. Check all tables with myisamchk -s database/*.MYI. Repair any corrupted tables with
myisamchk -r database/table.MYI.

4. Make a second backup of the tables.

5. Remove (or move away) any old log files from the MySQL data directory if you need more space.

6. Start mysqld with the binary log enabled. If you want to find a statement that crashes mysqld, you
should start the server with the general query log enabled as well. See Section 5.4.3, “The General
Query Log”, and Section 5.4.4, “The Binary Log”.

7. When you have gotten a crashed table, stop the mysqld server.

8. Restore the backup.

9. Restart the mysqld server without the binary log enabled.

10. Re-execute the statements with mysqlbinlog binary-log-file | mysql. The binary log is
saved in the MySQL database directory with the name hostname-bin.NNNNNN.

11. If the tables are corrupted again or you can get mysqld to die with the above command, you
have found a reproducible bug. FTP the tables and the binary log to our bugs database using the

http://lists.mysql.com/


Debugging a MySQL Client

2825

instructions given in Section 1.6, “How to Report Bugs or Problems”. If you are a support customer,
you can use the MySQL Customer Support Center (http://www.mysql.com/support/) to alert the
MySQL team about the problem and have it fixed as soon as possible.

You can also use the script mysql_find_rows to just execute some of the update statements if you
want to narrow down the problem.

24.5.2 Debugging a MySQL Client

To be able to debug a MySQL client with the integrated debug package, you should configure MySQL
with -DWITH_DEBUG=1. See Section 2.9.4, “MySQL Source-Configuration Options”.

Before running a client, you should set the MYSQL_DEBUG environment variable:

shell> MYSQL_DEBUG=d:t:O,/tmp/client.trace
shell> export MYSQL_DEBUG

This causes clients to generate a trace file in /tmp/client.trace.

If you have problems with your own client code, you should attempt to connect to the server and
run your query using a client that is known to work. Do this by running mysql in debugging mode
(assuming that you have compiled MySQL with debugging on):

shell> mysql --debug=d:t:O,/tmp/client.trace

This provides useful information in case you mail a bug report. See Section 1.6, “How to Report Bugs
or Problems”.

If your client crashes at some 'legal' looking code, you should check that your mysql.h include file
matches your MySQL library file. A very common mistake is to use an old mysql.h file from an old
MySQL installation with new MySQL library.

24.5.3 The DBUG Package

The MySQL server and most MySQL clients are compiled with the DBUG package originally created by
Fred Fish. When you have configured MySQL for debugging, this package makes it possible to get a
trace file of what the program is doing. See Section 24.5.1.2, “Creating Trace Files”.

This section summarizes the argument values that you can specify in debug options on the command
line for MySQL programs that have been built with debugging support. For more information about
programming with the DBUG package, see the DBUG manual in the dbug directory of MySQL source
distributions. It's best to use a recent distribution to get the most updated DBUG manual.

The DBUG package can be used by invoking a program with the --debug[=debug_options] or -#
[debug_options] option. If you specify the --debug or -# option without a debug_options value,
most MySQL programs use a default value. The server default is d:t:i:o,/tmp/mysqld.trace on
Unix and d:t:i:O,\mysqld.trace on Windows. The effect of this default is:

• d: Enable output for all debug macros

• t: Trace function calls and exits

• i: Add PID to output lines

• o,/tmp/mysqld.trace, O,\mysqld.trace: Set the debug output file.

Most client programs use a default debug_options value of d:t:o,/tmp/program_name.trace,
regardless of platform.

Here are some example debug control strings as they might be specified on a shell command line:

http://www.mysql.com/support/


The DBUG Package

2826

--debug=d:t
--debug=d:f,main,subr1:F:L:t,20
--debug=d,input,output,files:n
--debug=d:t:i:O,\\mysqld.trace

For mysqld, it is also possible to change DBUG settings at runtime by setting the debug system
variable. This variable has global and session values:

mysql> SET GLOBAL debug = 'debug_options';
mysql> SET SESSION debug = 'debug_options';

Changes at runtime require the SUPER privilege, even for the session value.

The debug_options value is a sequence of colon-separated fields:

field_1:field_2:...:field_N

Each field within the value consists of a mandatory flag character, optionally preceded by a + or -
character, and optionally followed by a comma-delimited list of modifiers:

[+|-]flag[,modifier,modifier,...,modifier]

The following table describes the permitted flag characters. Unrecognized flag characters are silently
ignored.

Flag Description

d Enable output from DBUG_XXX macros for the current state. May be followed by a list of
keywords, which enables output only for the DBUG macros with that keyword. An empty list of
keywords enables output for all macros.

In MySQL, common debug macro keywords to enable are enter, exit, error, warning,
info, and loop.

D Delay after each debugger output line. The argument is the delay, in tenths of seconds,
subject to machine capabilities. For example, D,20 specifies a delay of two seconds.

f Limit debugging, tracing, and profiling to the list of named functions. An empty list enables all
functions. The appropriate d or t flags must still be given; this flag only limits their actions if
they are enabled.

F Identify the source file name for each line of debug or trace output.

i Identify the process with the PID or thread ID for each line of debug or trace output.

L Identify the source file line number for each line of debug or trace output.

n Print the current function nesting depth for each line of debug or trace output.

N Number each line of debug output.

o Redirect the debugger output stream to the specified file. The default output is stderr.

O Like o, but the file is really flushed between each write. When needed, the file is closed and
reopened between each write.

p Limit debugger actions to specified processes. A process must be identified with the
DBUG_PROCESS macro and match one in the list for debugger actions to occur.

P Print the current process name for each line of debug or trace output.

r When pushing a new state, do not inherit the previous state's function nesting level. Useful
when the output is to start at the left margin.

S Do function _sanity(_file_,_line_) at each debugged function until _sanity()
returns something that differs from 0.



The DBUG Package

2827

t Enable function call/exit trace lines. May be followed by a list (containing only one modifier)
giving a numeric maximum trace level, beyond which no output occurs for either debugging or
tracing macros. The default is a compile time option.

The leading + or - character and trailing list of modifiers are used for flag characters such as d or f
that can enable a debug operation for all applicable modifiers or just some of them:

• With no leading + or -, the flag value is set to exactly the modifier list as given.

• With a leading + or -, the modifiers in the list are added to or subtracted from the current modifier list.

The following examples show how this works for the d flag. An empty d list enabled output for all debug
macros. A nonempty list enables output only for the macro keywords in the list.

These statements set the d value to the modifier list as given:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d       |
+---------+
mysql> SET debug = 'd,error,warning';
mysql> SELECT @@debug;
+-----------------+
| @@debug         |
+-----------------+
| d,error,warning |
+-----------------+

A leading + or - adds to or subtracts from the current d value:

mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+----------------------+
| @@debug              |
+----------------------+
| d,error,warning,loop |
+----------------------+
mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+-----------+
| @@debug   |
+-----------+
| d,warning |
+-----------+

Adding to “all macros enabled” results in no change:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d       |
+---------+
mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d       |
+---------+

Disabling all enabled macros disables the d flag entirely:



The DBUG Package

2828

mysql> SET debug = 'd,error,loop';
mysql> SELECT @@debug;
+--------------+
| @@debug      |
+--------------+
| d,error,loop |
+--------------+
mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
|         |
+---------+

Note

The + and - modifiers are not always handled correctly and can leave a flag
value in an incorrect state. Verify your debug-setting sequence in advance or
set it without using + or -.



2829

Chapter 25 MySQL Enterprise Edition

Table of Contents
25.1 MySQL Enterprise Monitor Overview ................................................................................ 2829
25.2 MySQL Enterprise Backup Overview ................................................................................ 2830
25.3 MySQL Enterprise Security Overview ............................................................................... 2830
25.4 MySQL Enterprise Encryption Overview ........................................................................... 2831
25.5 MySQL Enterprise Audit Overview ................................................................................... 2831
25.6 MySQL Enterprise Firewall Overview ................................................................................ 2831
25.7 MySQL Enterprise Thread Pool Overview ......................................................................... 2832

MySQL Enterprise Edition is a commercial product. Like MySQL Community Edition, MySQL
Enterprise Edition includes MySQL Server, a fully integrated transaction-safe, ACID-compliant
database with full commit, rollback, crash-recovery, and row-level locking capabilities. In addition,
MySQL Enterprise Edition includes the following components designed to provide monitoring and
online backup, as well as improved security and scalability:

The following sections briefly discuss each of these components and indicate where to find more
detailed information. To learn more about commercial products, see http://www.mysql.com/products/.

• MySQL Enterprise Monitor

• MySQL Enterprise Backup

• MySQL Enterprise Security

• MySQL Enterprise Encryption

• MySQL Enterprise Audit

• MySQL Enterprise Firewall

• MySQL Enterprise Thread Pool

25.1 MySQL Enterprise Monitor Overview

MySQL Enterprise Monitor is an enterprise monitoring system for MySQL that keeps an eye on your
MySQL servers, notifies you of potential issues and problems, and advises you how to fix the issues.
MySQL Enterprise Monitor can monitor all kinds of configurations, from a single MySQL server that is
important to your business, all the way up to a huge farm of MySQL servers powering a busy web site.

The following discussion briefly summarizes the basic components that make up the MySQL Enterprise
Monitor product. For more information, see the MySQL Enterprise Monitor manual, available at http://
dev.mysql.com/doc/mysql-monitor/en/.

MySQL Enterprise Monitor components can be installed in various configurations depending on your
database and network topology, to give you the best combination of reliable and responsive monitoring
data, with minimal overhead on the database server machines. A typical MySQL Enterprise Monitor
installation consists of:

• One or more MySQL servers to monitor. MySQL Enterprise Monitor can monitor both Community
and Enterprise MySQL server releases.

• A MySQL Enterprise Monitor Agent for each monitored host.

• A single MySQL Enterprise Service Manager, which collates information from the agents and
provides the user interface to the collected data.

http://www.mysql.com/products/
http://dev.mysql.com/doc/mysql-monitor/en/
http://dev.mysql.com/doc/mysql-monitor/en/


MySQL Enterprise Backup Overview

2830

MySQL Enterprise Monitor is designed to monitor one or more MySQL servers. The monitoring
information is collected by using an agent, MySQL Enterprise Monitor Agent. The agent communicates
with the hosts and MySQL servers that it monitors, collecting variables, status and health information,
and sending this information to the MySQL Enterprise Service Manager.

The information collected by the agent about each MySQL server and host you are monitoring is sent
to the MySQL Enterprise Service Manager. This server collates all of the information from the agents.
As it collates the information sent by the agents, the MySQL Enterprise Service Manager continually
tests the collected data, comparing the status of the server to reasonable values. When thresholds are
reached, the server can trigger an event (including an alarm and notification) to highlight a potential
issue, such as low memory, high CPU usage, or more complex conditions such insufficient buffer sizes
and status information. We call each test, with its associated threshold value, a rule.

These rules, and the alarms and notifications, are each known as a MySQL Enterprise Advisors.
Advisors form a critical part of the MySQL Enterprise Service Manager, as they provide warning
information and troubleshooting advice about potential problems.

The MySQL Enterprise Service Manager includes a web server, and you interact with it through
any web browser. This interface, the MySQL Enterprise Monitor User Interface, displays all of the
information collected by the agents, and lets you view all of your servers and their current status as a
group or individually. You control and configure all aspects of the service using the MySQL Enterprise
Monitor User Interface.

The information supplied by the MySQL Enterprise Monitor Agent processes also includes statistical
and query information, which you can view in the form of graphs. For example, you can view aspects
such as server load, query numbers, or index usage information as a graph over time. The graph
lets you pinpoint problems or potential issues on your server, and can help diagnose the impact from
database or external problems (such as external system or network failure) by examining the data from
a specific time interval.

The MySQL Enterprise Monitor Agent can also be configured to collect detailed information about
the queries executed on your server, including the row counts and performance times for executing
each query. You can correlate the detailed query data with the graphical information to identify which
queries were executing when you experienced a particularly high load, index or other issue. The query
data is supported by a system called Query Analyzer, and the data can be presented in different ways
depending on your needs.

25.2 MySQL Enterprise Backup Overview
MySQL Enterprise Backup performs hot backup operations for MySQL databases. The product is
architected for efficient and reliable backups of tables created by the InnoDB storage engine. For
completeness, it can also back up tables from MyISAM and other storage engines.

The following discussion briefly summarizes MySQL Enterprise Backup. For more information, see the
MySQL Enterprise Backup manual, available at http://dev.mysql.com/doc/mysql-enterprise-backup/en/.

Hot backups are performed while the database is running and applications are reading and writing
to it. This type of backup does not block normal database operations, and it captures even changes
that occur while the backup is happening. For these reasons, hot backups are desirable when your
database “grows up” -- when the data is large enough that the backup takes significant time, and when
your data is important enough to your business that you must capture every last change, without taking
your application, web site, or web service offline.

MySQL Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For
tables using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where the
database continues to run, but those tables cannot be modified while being backed up. For efficient
backup operations, you can designate InnoDB as the default storage engine for new tables, or convert
existing tables to use the InnoDB storage engine.

25.3 MySQL Enterprise Security Overview

http://dev.mysql.com/doc/mysql-enterprise-backup/en/


MySQL Enterprise Encryption Overview

2831

MySQL Enterprise Edition provides plugins that implement authentication using external services:

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use PAM
(Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a
standard interface to access various kinds of authentication methods, such as Unix passwords or an
LDAP directory. For more information, see Section 6.5.1.4, “PAM Pluggable Authentication”.

• MySQL Enterprise Edition includes an authentication plugin that performs external authentication
on Windows, enabling MySQL Server to use native Windows services to authenticate client
connections. Users who have logged in to Windows can connect from MySQL client programs to the
server based on the information in their environment without specifying an additional password. For
more information, see Section 6.5.1.5, “Windows Pluggable Authentication”.

• MySQL Enterprise Edition includes a keyring plugin that uses Oracle Key Vault as a back end for
keyring storage. For more information, see The MySQL Keyring.

For other related Enterprise security features, see Section 25.4, “MySQL Enterprise Encryption
Overview”.

25.4 MySQL Enterprise Encryption Overview
MySQL Enterprise Edition includes a set of encryption functions based on the OpenSSL library that
expose OpenSSL capabilities at the SQL level. These functions enable Enterprise applications to
perform the following operations:

• Implement added data protection using public-key asymmetric cryptography

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

• Use cryptographic hashing for digital signing and data verification and validation

For more information, see MySQL Enterprise Encryption Functions.

For other related Enterprise security features, see Section 25.3, “MySQL Enterprise Security
Overview”.

25.5 MySQL Enterprise Audit Overview
MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin.
MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based monitoring
and logging of connection and query activity executed on specific MySQL servers. Designed to meet
the Oracle audit specification, MySQL Enterprise Audit provides an out of box, easy to use auditing
and compliance solution for applications that are governed by both internal and external regulatory
guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

For more information, see Section 6.5.2, “MySQL Enterprise Audit”.

25.6 MySQL Enterprise Firewall Overview
MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that
enables database administrators to permit or deny SQL statement execution based on matching
against whitelists of accepted statement patterns. This helps harden MySQL Server against attacks
such as SQL injection or attempts to exploit applications by using them outside of their legitimate query
workload characteristics.

http://dev.mysql.com/doc/refman/5.7/en/keyring.html
http://dev.mysql.com/doc/refman/5.6/en/enterprise-encryption.html


MySQL Enterprise Thread Pool Overview

2832

Each MySQL account registered with the firewall has its own statement whitelist, enabling protection to
be tailored per account. For a given account, the firewall can operate in recording or protecting mode,
for training in the accepted statement patterns or protection against unacceptable statements.

For more information, see MySQL Enterprise Firewall.

25.7 MySQL Enterprise Thread Pool Overview

MySQL Enterprise Edition includes MySQL Enterprise Thread Pool, implemented using a server
plugin. The default thread-handling model in MySQL Server executes statements using one thread per
client connection. As more clients connect to the server and execute statements, overall performance
degrades. In MySQL Enterprise Edition, a thread pool plugin provides an alternative thread-handling
model designed to reduce overhead and improve performance. The plugin implements a thread pool
that increases server performance by efficiently managing statement execution threads for large
numbers of client connections.

For more information, see Section 5.5.4, “MySQL Enterprise Thread Pool”.

http://dev.mysql.com/doc/refman/5.6/en/firewall.html


2833

Chapter 26 MySQL Workbench
MySQL Workbench provides a graphical tool for working with MySQL servers and databases. MySQL
Workbench fully supports MySQL versions 5.1 and above.

The following discussion briefly describes MySQL Workbench capabilities. For more information, see
the MySQL Workbench manual, available at http://dev.mysql.com/doc/workbench/en/.

MySQL Workbench provides five main areas of functionality:

• SQL Development: Enables you to create and manage connections to database servers. As well
as enabling you to configure connection parameters, MySQL Workbench provides the capability to
execute SQL queries on the database connections using the built-in SQL Editor. This functionality
replaces that previously provided by the Query Browser standalone application.

• Data Modeling: Enables you to create models of your database schema graphically, reverse and
forward engineer between a schema and a live database, and edit all aspects of your database using
the comprehensive Table Editor. The Table Editor provides easy-to-use facilities for editing Tables,
Columns, Indexes, Triggers, Partitioning, Options, Inserts and Privileges, Routines and Views.

• Server Administration: Enables you to create and administer server instances.

• Data Migration: Allows you to migrate from Microsoft SQL Server, Sybase ASE, SQLite, SQL
Anywhere, PostreSQL, and other RDBMS tables, objects and data to MySQL. Migration also
supports migrating from earlier versions of MySQL to the latest releases.

• MySQL Enterprise Support: Support for Enterprise products such as MySQL Enterprise Backup
and MySQL Audit.

MySQL Workbench is available in two editions, the Community Edition and the Commercial Edition.
The Community Edition is available free of charge. The Commercial Edition provides additional
Enterprise features, such as database documentation generation, at low cost.

http://dev.mysql.com/doc/workbench/en/


2834



2835

Appendix A MySQL 5.5 Frequently Asked Questions

Table of Contents
A.1 MySQL 5.5 FAQ: General ................................................................................................. 2835
A.2 MySQL 5.5 FAQ: Storage Engines .................................................................................... 2837
A.3 MySQL 5.5 FAQ: Server SQL Mode .................................................................................. 2837
A.4 MySQL 5.5 FAQ: Stored Procedures and Functions ........................................................... 2838
A.5 MySQL 5.5 FAQ: Triggers ................................................................................................. 2841
A.6 MySQL 5.5 FAQ: Views .................................................................................................... 2844
A.7 MySQL 5.5 FAQ: INFORMATION_SCHEMA ...................................................................... 2844
A.8 MySQL 5.5 FAQ: Migration ............................................................................................... 2845
A.9 MySQL 5.5 FAQ: Security ................................................................................................. 2845
A.10 MySQL FAQ: MySQL 5.5 and NDB Cluster ...................................................................... 2846
A.11 MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets ......................... 2859
A.12 MySQL 5.5 FAQ: Connectors & APIs ............................................................................... 2871
A.13 MySQL 5.5 FAQ: Replication ........................................................................................... 2871
A.14 MySQL 5.5 FAQ: MySQL Enterprise Thread Pool ............................................................. 2875
A.15 MySQL 5.5 FAQ: InnoDB Change Buffer ......................................................................... 2876
A.16 MySQL 5.5 FAQ: Virtualization Support ............................................................................ 2878

A.1 MySQL 5.5 FAQ: General
A.1.1 Which version of MySQL is production-ready (GA)? ......................................................... 2835
A.1.2 What is the state of development (non-GA) versions? ...................................................... 2835
A.1.3 Can MySQL 5.5 do subqueries? ..................................................................................... 2836
A.1.4 Can MySQL 5.5 perform multiple-table inserts, updates, and deletes? ............................... 2836
A.1.5 Does MySQL 5.5 have a Query Cache? Does it work on Server, Instance or Database? ..... 2836
A.1.6 Does MySQL 5.5 have Sequences? ............................................................................... 2836
A.1.7 Does MySQL 5.5 have a NOW() function with fractions of seconds? ................................. 2836
A.1.8 Does MySQL 5.5 work with multi-core processors? .......................................................... 2836
A.1.9 Why do I see multiple processes for mysqld? ................................................................ 2836
A.1.10 Can MySQL 5.5 perform ACID transactions? ................................................................. 2836

A.1.1. Which version of MySQL is production-ready (GA)?

MySQL 5.7 and MySQL 5.6 are supported for production use.

MySQL 5.7 achieved General Availability (GA) status with MySQL 5.7.9, which was released for
production use on 21 October 2015.

MySQL 5.6 achieved General Availability (GA) status with MySQL 5.6.10, which was released
for production use on 5 February 2013.

MySQL 5.5 achieved General Availability (GA) status with MySQL 5.5.8, which was released
for production use on 3 December 2010. The MySQL 5.5 series is no longer current, but still
supported in production.

MySQL 5.1 achieved General Availability (GA) status with MySQL 5.1.30, which was released
for production use on 14 November 2008. Active development for MySQL 5.1 has ended.

MySQL 5.0 achieved General Availability (GA) status with MySQL 5.0.15, which was released
for production use on 19 October 2005. Active development for MySQL 5.0 has ended.

A.1.2. What is the state of development (non-GA) versions?

MySQL follows a milestone release model that introduces pre-production-quality features and
stabilizes them to release quality (see http://dev.mysql.com/doc/mysql-development-cycle/en/

http://dev.mysql.com/doc/mysql-development-cycle/en/index.html


MySQL 5.5 FAQ: General

2836

index.html). This process then repeats, so releases cycle between pre-production and release
quality status. Please check the change logs to identify the status of a given release.

MySQL 8.0, a successor to MySQL 5.7, is being actively developed using the milestone release
methodology described above.

A.1.3. Can MySQL 5.5 do subqueries?

Yes. See Section 13.2.10, “Subquery Syntax”.

A.1.4. Can MySQL 5.5 perform multiple-table inserts, updates, and deletes?

Yes. For the syntax required to perform multiple-table updates, see Section 13.2.11, “UPDATE
Syntax”; for that required to perform multiple-table deletes, see Section 13.2.2, “DELETE
Syntax”.

A multiple-table insert can be accomplished using a trigger whose FOR EACH ROW clause
contains multiple INSERT statements within a BEGIN ... END block. See Section 20.3, “Using
Triggers”.

A.1.5. Does MySQL 5.5 have a Query Cache? Does it work on Server, Instance or Database?

Yes. The query cache operates on the server level, caching complete result sets matched with
the original query string. If an exactly identical query is made (which often happens, particularly
in web applications), no parsing or execution is necessary; the result is sent directly from the
cache. Various tuning options are available. See Section 8.10.3, “The MySQL Query Cache”.

A.1.6. Does MySQL 5.5 have Sequences?

No. However, MySQL has an AUTO_INCREMENT system, which in MySQL 5.5 can also handle
inserts in a multi-master replication setup. With the auto_increment_increment and
auto_increment_offset system variables, you can set each server to generate auto-
increment values that don't conflict with other servers. The auto_increment_increment
value should be greater than the number of servers, and each server should have a unique
offset.

A.1.7. Does MySQL 5.5 have a NOW() function with fractions of seconds?

No, but support was added in 5.6.4.

Also, MySQL does parse time strings with a fractional component. See Section 11.3.2, “The
TIME Type”.

A.1.8. Does MySQL 5.5 work with multi-core processors?

Yes. MySQL is fully multi-threaded, and will make use of multiple CPUs, provided that the
operating system supports them.

A.1.9. Why do I see multiple processes for mysqld?

When using LinuxThreads, you should see a minimum of three mysqld processes running.
These are in fact threads. There is one thread for the LinuxThreads manager, one thread to
handle connections, and one thread to handle alarms and signals.

A.1.10.Can MySQL 5.5 perform ACID transactions?

Yes. All current MySQL versions support transactions. The InnoDB storage engine offers full
ACID transactions with row-level locking, multi-versioning, nonlocking repeatable reads, and all
four SQL standard isolation levels.

The NDB storage engine supports the READ COMMITTED transaction isolation level only.

http://dev.mysql.com/doc/mysql-development-cycle/en/index.html


MySQL 5.5 FAQ: Storage Engines

2837

A.2 MySQL 5.5 FAQ: Storage Engines
A.2.1 Where can I obtain complete documentation for MySQL storage engines? ........................ 2837
A.2.2 Are there any new storage engines in MySQL 5.5? ......................................................... 2837
A.2.3 Have any storage engines been removed in MySQL 5.5? ................................................ 2837
A.2.4 What are the unique benefits of the ARCHIVE storage engine? ......................................... 2837

A.2.1. Where can I obtain complete documentation for MySQL storage engines?

See Chapter 15, Alternative Storage Engines. That chapter contains information about all
MySQL storage engines except for the InnoDB storage engine and the NDB storage engine
(used for MySQL Cluster). InnoDB is covered in Chapter 14, The InnoDB Storage Engine. NDB
is covered in Chapter 18, MySQL NDB Cluster 7.2.

A.2.2. Are there any new storage engines in MySQL 5.5?

The features from the optional InnoDB Plugin from MySQL 5.1 are folded into the built-in
InnoDB storage engine, so you can take advantage of features such as the Barracuda file
format, InnoDB table compression, and the new configuration options for performance. InnoDB
also becomes the default storage engine for new tables. See Section 14.1, “Introduction to
InnoDB” for details.

A.2.3. Have any storage engines been removed in MySQL 5.5?

No.

A.2.4. What are the unique benefits of the ARCHIVE storage engine?

The ARCHIVE storage engine stores large amounts of data without indexes; it has a small
footprint, and performs selects using table scans. See Section 15.6, “The ARCHIVE Storage
Engine”, for details.

A.3 MySQL 5.5 FAQ: Server SQL Mode
A.3.1 What are server SQL modes? ........................................................................................ 2837
A.3.2 How many server SQL modes are there? ....................................................................... 2837
A.3.3 How do you determine the server SQL mode? ................................................................ 2837
A.3.4 Is the mode dependent on the database or connection? ................................................... 2837
A.3.5 Can the rules for strict mode be extended? ..................................................................... 2838
A.3.6 Does strict mode impact performance? ........................................................................... 2838
A.3.7 What is the default server SQL mode when MySQL 5.5 is installed? ................................. 2838

A.3.1. What are server SQL modes?

Server SQL modes define what SQL syntax MySQL should support and what kind of data
validation checks it should perform. This makes it easier to use MySQL in different environments
and to use MySQL together with other database servers. The MySQL Server apply these modes
individually to different clients. For more information, see Section 5.1.8, “Server SQL Modes”.

A.3.2. How many server SQL modes are there?

Each mode can be independently switched on and off. See Section 5.1.8, “Server SQL Modes”,
for a complete list of available modes.

A.3.3. How do you determine the server SQL mode?

You can set the default SQL mode (for mysqld startup) with the --sql-mode option. Using the
statement SET [GLOBAL|SESSION] sql_mode='modes', you can change the settings from
within a connection, either locally to the connection, or to take effect globally. You can retrieve
the current mode by issuing a SELECT @@sql_mode statement.

A.3.4. Is the mode dependent on the database or connection?



MySQL 5.5 FAQ: Stored Procedures and Functions

2838

A mode is not linked to a particular database. Modes can be set locally to the session
(connection), or globally for the server. you can change these settings using SET [GLOBAL|
SESSION] sql_mode='modes'.

A.3.5. Can the rules for strict mode be extended?

When we refer to strict mode, we mean a mode where at least one of the modes TRADITIONAL,
STRICT_TRANS_TABLES, or STRICT_ALL_TABLES is enabled. Options can be combined,
so you can add restrictions to a mode. See Section 5.1.8, “Server SQL Modes”, for more
information.

A.3.6. Does strict mode impact performance?

The intensive validation of input data that some settings requires more time than if the validation
is not done. While the performance impact is not that great, if you do not require such validation
(perhaps your application already handles all of this), then MySQL gives you the option of
leaving strict mode disabled. However, if you do require it, strict mode can provide such
validation.

A.3.7. What is the default server SQL mode when MySQL 5.5 is installed?

By default, no special modes are enabled. For information about all available modes and default
MySQL behavior, see Section 5.1.8, “Server SQL Modes”.

A.4 MySQL 5.5 FAQ: Stored Procedures and Functions
A.4.1 Does MySQL 5.5 support stored procedures and functions? ............................................. 2838
A.4.2 Where can I find documentation for MySQL stored procedures and stored functions? ......... 2839
A.4.3 Is there a discussion forum for MySQL stored procedures? .............................................. 2839
A.4.4 Where can I find the ANSI SQL 2003 specification for stored procedures? ......................... 2839
A.4.5 How do you manage stored routines? ............................................................................. 2839
A.4.6 Is there a way to view all stored procedures and stored functions in a given database? ....... 2839
A.4.7 Where are stored procedures stored? ............................................................................. 2839
A.4.8 Is it possible to group stored procedures or stored functions into packages? ...................... 2839
A.4.9 Can a stored procedure call another stored procedure? ................................................... 2839
A.4.10 Can a stored procedure call a trigger? .......................................................................... 2839
A.4.11 Can a stored procedure access tables? ........................................................................ 2839
A.4.12 Do stored procedures have a statement for raising application errors? ............................. 2840
A.4.13 Do stored procedures provide exception handling? ........................................................ 2840
A.4.14 Can MySQL 5.5 stored routines return result sets? ........................................................ 2840
A.4.15 Is WITH RECOMPILE supported for stored procedures? ................................................. 2840
A.4.16 Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly

to a stored procedure in the database? .......................................................................... 2840
A.4.17 Can I pass an array as input to a stored procedure? ...................................................... 2840
A.4.18 Can I pass a cursor as an IN parameter to a stored procedure? ..................................... 2840
A.4.19 Can I return a cursor as an OUT parameter from a stored procedure? .............................. 2840
A.4.20 Can I print out a variable's value within a stored routine for debugging purposes? ............. 2840
A.4.21 Can I commit or roll back transactions inside a stored procedure? ................................... 2840
A.4.22 Do MySQL 5.5 stored procedures and functions work with replication? ............................ 2840
A.4.23 Are stored procedures and functions created on a master server replicated to a slave? ..... 2840
A.4.24 How are actions that take place inside stored procedures and functions replicated? .......... 2841
A.4.25 Are there special security requirements for using stored procedures and functions together

with replication? ............................................................................................................ 2841
A.4.26 What limitations exist for replicating stored procedure and function actions? .................... 2841
A.4.27 Do the preceding limitations affect the ability of MySQL to do point-in-time recovery? ........ 2841
A.4.28 What is being done to correct the aforementioned limitations? ........................................ 2841

A.4.1. Does MySQL 5.5 support stored procedures and functions?

Yes. MySQL 5.5 supports two types of stored routines, stored procedures and stored functions.



MySQL 5.5 FAQ: Stored Procedures and Functions

2839

A.4.2. Where can I find documentation for MySQL stored procedures and stored functions?

See Section 20.2, “Using Stored Routines (Procedures and Functions)”.

A.4.3. Is there a discussion forum for MySQL stored procedures?

Yes. See http://forums.mysql.com/list.php?98.

A.4.4. Where can I find the ANSI SQL 2003 specification for stored procedures?

Unfortunately, the official specifications are not freely available (ANSI makes them available for
purchase). However, there are books, such as SQL-99 Complete, Really by Peter Gulutzan and
Trudy Pelzer, that provide a comprehensive overview of the standard, including coverage of
stored procedures.

A.4.5. How do you manage stored routines?

It is always good practice to use a clear naming scheme for your stored routines. You can
manage stored procedures with CREATE [FUNCTION|PROCEDURE], ALTER [FUNCTION|
PROCEDURE], DROP [FUNCTION|PROCEDURE], and SHOW CREATE [FUNCTION|
PROCEDURE]. You can obtain information about existing stored procedures using the
ROUTINES table in the INFORMATION_SCHEMA database (see Section 21.17, “The
INFORMATION_SCHEMA ROUTINES Table”).

A.4.6. Is there a way to view all stored procedures and stored functions in a given database?

Yes. For a database named dbname, use this query on the INFORMATION_SCHEMA.ROUTINES
table:

SELECT ROUTINE_TYPE, ROUTINE_NAME
    FROM INFORMATION_SCHEMA.ROUTINES
    WHERE ROUTINE_SCHEMA='dbname';

For more information, see Section 21.17, “The INFORMATION_SCHEMA ROUTINES Table”.

The body of a stored routine can be viewed using SHOW CREATE FUNCTION (for a stored
function) or SHOW CREATE PROCEDURE (for a stored procedure). See Section 13.7.5.11,
“SHOW CREATE PROCEDURE Syntax”, for more information.

A.4.7. Where are stored procedures stored?

In the proc table of the mysql system database. However, you should not access the tables
in the system database directly. Instead, query the INFORMATION_SCHEMA ROUTINES and
PARAMETERS tables. See Section 21.17, “The INFORMATION_SCHEMA ROUTINES Table”,
and Section 21.11, “The INFORMATION_SCHEMA PARAMETERS Table”.

You can also use SHOW CREATE FUNCTION to obtain information about stored functions,
and SHOW CREATE PROCEDURE to obtain information about stored procedures. See
Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”.

A.4.8. Is it possible to group stored procedures or stored functions into packages?

No. This is not supported in MySQL 5.5.

A.4.9. Can a stored procedure call another stored procedure?

Yes.

A.4.10.Can a stored procedure call a trigger?

A stored procedure can execute an SQL statement, such as an UPDATE, that causes a trigger to
activate.

A.4.11.Can a stored procedure access tables?

http://forums.mysql.com/list.php?98


MySQL 5.5 FAQ: Stored Procedures and Functions

2840

Yes. A stored procedure can access one or more tables as required.

A.4.12.Do stored procedures have a statement for raising application errors?

Yes. MySQL 5.5 implements the SQL standard SIGNAL and RESIGNAL statements. See
Section 13.6.7, “Condition Handling”.

A.4.13.Do stored procedures provide exception handling?

MySQL implements HANDLER definitions according to the SQL standard. See Section 13.6.7.2,
“DECLARE ... HANDLER Syntax”, for details.

A.4.14.Can MySQL 5.5 stored routines return result sets?

Stored procedures can, but stored functions cannot. If you perform an ordinary SELECT inside a
stored procedure, the result set is returned directly to the client. You need to use the MySQL 4.1
(or higher) client/server protocol for this to work. This means that, for example, in PHP, you need
to use the mysqli extension rather than the old mysql extension.

A.4.15.Is WITH RECOMPILE supported for stored procedures?

Not in MySQL 5.5.

A.4.16.Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to a
stored procedure in the database?

There is no equivalent in MySQL 5.5.

A.4.17.Can I pass an array as input to a stored procedure?

Not in MySQL 5.5.

A.4.18.Can I pass a cursor as an IN parameter to a stored procedure?

In MySQL 5.5, cursors are available inside stored procedures only.

A.4.19.Can I return a cursor as an OUT parameter from a stored procedure?

In MySQL 5.5, cursors are available inside stored procedures only. However, if you do not open
a cursor on a SELECT, the result will be sent directly to the client. You can also SELECT INTO
variables. See Section 13.2.9, “SELECT Syntax”.

A.4.20.Can I print out a variable's value within a stored routine for debugging purposes?

Yes, you can do this in a stored procedure, but not in a stored function. If you perform an
ordinary SELECT inside a stored procedure, the result set is returned directly to the client. You
will need to use the MySQL 4.1 (or above) client/server protocol for this to work. This means
that, for example, in PHP, you need to use the mysqli extension rather than the old mysql
extension.

A.4.21.Can I commit or roll back transactions inside a stored procedure?

Yes. However, you cannot perform transactional operations within a stored function.

A.4.22.Do MySQL 5.5 stored procedures and functions work with replication?

Yes, standard actions carried out in stored procedures and functions are replicated from a
master MySQL server to a slave server. There are a few limitations that are described in detail in
Section 20.7, “Binary Logging of Stored Programs”.

A.4.23.Are stored procedures and functions created on a master server replicated to a slave?

Yes, creation of stored procedures and functions carried out through normal DDL statements on
a master server are replicated to a slave, so the objects will exist on both servers. ALTER and
DROP statements for stored procedures and functions are also replicated.



MySQL 5.5 FAQ: Triggers

2841

A.4.24.How are actions that take place inside stored procedures and functions replicated?

MySQL records each DML event that occurs in a stored procedure and replicates those
individual actions to a slave server. The actual calls made to execute stored procedures are not
replicated.

Stored functions that change data are logged as function invocations, not as the DML events
that occur inside each function.

A.4.25.Are there special security requirements for using stored procedures and functions together with
replication?

Yes. Because a slave server has authority to execute any statement read from a master's binary
log, special security constraints exist for using stored functions with replication. If replication or
binary logging in general (for the purpose of point-in-time recovery) is active, then MySQL DBAs
have two security options open to them:

1. Any user wishing to create stored functions must be granted the SUPER privilege.

2. Alternatively, a DBA can set the log_bin_trust_function_creators system variable
to 1, which enables anyone with the standard CREATE ROUTINE privilege to create stored
functions.

A.4.26.What limitations exist for replicating stored procedure and function actions?

Nondeterministic (random) or time-based actions embedded in stored procedures may not
replicate properly. By their very nature, randomly produced results are not predictable and
cannot be exactly reproduced, and therefore, random actions replicated to a slave will not mirror
those performed on a master. Declaring stored functions to be DETERMINISTIC or setting the
log_bin_trust_function_creators system variable to 0 will not allow random-valued
operations to be invoked.

In addition, time-based actions cannot be reproduced on a slave because the timing of such
actions in a stored procedure is not reproducible through the binary log used for replication. It
records only DML events and does not factor in timing constraints.

Finally, nontransactional tables for which errors occur during large DML actions (such as bulk
inserts) may experience replication issues in that a master may be partially updated from DML
activity, but no updates are done to the slave because of the errors that occurred. A workaround
is for a function's DML actions to be carried out with the IGNORE keyword so that updates on the
master that cause errors are ignored and updates that do not cause errors are replicated to the
slave.

A.4.27.Do the preceding limitations affect the ability of MySQL to do point-in-time recovery?

The same limitations that affect replication do affect point-in-time recovery.

A.4.28.What is being done to correct the aforementioned limitations?

You can choose either statement-based replication or row-based replication. The original
replication implementation is based on statement-based binary logging. Row-based binary
logging resolves the limitations mentioned earlier.

Mixed replication is also available (by starting the server with --binlog-format=mixed). This
hybrid, “smart” form of replication “knows” whether statement-level replication can safely be
used, or row-level replication is required.

For additional information, see Section 17.1.2, “Replication Formats”.

A.5 MySQL 5.5 FAQ: Triggers
A.5.1 Where can I find the documentation for MySQL 5.5 triggers? ........................................... 2842



MySQL 5.5 FAQ: Triggers

2842

A.5.2 Is there a discussion forum for MySQL Triggers? ............................................................ 2842
A.5.3 Does MySQL 5.5 have statement-level or row-level triggers? ............................................ 2842
A.5.4 Are there any default triggers? ....................................................................................... 2842
A.5.5 How are triggers managed in MySQL? ............................................................................ 2842
A.5.6 Is there a way to view all triggers in a given database? .................................................... 2842
A.5.7 Where are triggers stored? ............................................................................................. 2842
A.5.8 Can a trigger call a stored procedure? ............................................................................ 2842
A.5.9 Can triggers access tables? ........................................................................................... 2843
A.5.10 Can a table have multiple triggers with the same trigger event and action time? ............... 2843
A.5.11 Can triggers call an external application through a UDF? ............................................... 2843
A.5.12 Is it possible for a trigger to update tables on a remote server? ....................................... 2843
A.5.13 Do triggers work with replication? ................................................................................. 2843
A.5.14 How are actions carried out through triggers on a master replicated to a slave? ............... 2843

A.5.1. Where can I find the documentation for MySQL 5.5 triggers?

See Section 20.3, “Using Triggers”.

A.5.2. Is there a discussion forum for MySQL Triggers?

Yes. It is available at http://forums.mysql.com/list.php?99.

A.5.3. Does MySQL 5.5 have statement-level or row-level triggers?

In MySQL 5.5, all triggers are FOR EACH ROW; that is, the trigger is activated for each row
that is inserted, updated, or deleted. MySQL 5.5 does not support triggers using FOR EACH
STATEMENT.

A.5.4. Are there any default triggers?

Not explicitly. MySQL does have specific special behavior for some TIMESTAMP columns, as
well as for columns which are defined using AUTO_INCREMENT.

A.5.5. How are triggers managed in MySQL?

In MySQL 5.5, triggers can be created using the CREATE TRIGGER statement, and dropped
using DROP TRIGGER. See Section 13.1.19, “CREATE TRIGGER Syntax”, and Section 13.1.30,
“DROP TRIGGER Syntax”, for more about these statements.

Information about triggers can be obtained by querying the INFORMATION_SCHEMA.TRIGGERS
table. See Section 21.25, “The INFORMATION_SCHEMA TRIGGERS Table”.

A.5.6. Is there a way to view all triggers in a given database?

Yes. You can obtain a listing of all triggers defined on database dbname using a query on the
INFORMATION_SCHEMA.TRIGGERS table such as the one shown here:

SELECT TRIGGER_NAME, EVENT_MANIPULATION, EVENT_OBJECT_TABLE, ACTION_STATEMENT
    FROM INFORMATION_SCHEMA.TRIGGERS
    WHERE TRIGGER_SCHEMA='dbname';

For more information about this table, see Section 21.25, “The INFORMATION_SCHEMA
TRIGGERS Table”.

You can also use the SHOW TRIGGERS statement, which is specific to MySQL. See
Section 13.7.5.39, “SHOW TRIGGERS Syntax”.

A.5.7. Where are triggers stored?

Triggers are stored in .TRG files, with one such file one per table.

A.5.8. Can a trigger call a stored procedure?

http://forums.mysql.com/list.php?99


MySQL 5.5 FAQ: Triggers

2843

Yes.

A.5.9. Can triggers access tables?

A trigger can access both old and new data in its own table. A trigger can also affect other
tables, but it is not permitted to modify a table that is already being used (for reading or writing)
by the statement that invoked the function or trigger.

A.5.10.Can a table have multiple triggers with the same trigger event and action time?

In MySQL 5.5, there cannot be multiple triggers for a given table that have the same trigger
event and action time. For example, you cannot have two BEFORE UPDATE triggers for a table.
This limitation is lifted in MySQL 5.7.

A.5.11.Can triggers call an external application through a UDF?

Yes. For example, a trigger could invoke the sys_exec() UDF.

A.5.12.Is it possible for a trigger to update tables on a remote server?

Yes. A table on a remote server could be updated using the FEDERATED storage engine. (See
Section 15.9, “The FEDERATED Storage Engine”).

A.5.13.Do triggers work with replication?

Yes. However, the way in which they work depends whether you are using MySQL's “classic”
statement-based replication available in all versions of MySQL, or the row-based replication
format introduced in MySQL 5.1.

When using statement-based replication, triggers on the slave are executed by statements that
are executed on the master (and replicated to the slave).

When using row-based replication, triggers are not executed on the slave due to statements
that were run on the master and then replicated to the slave. Instead, when using row-based
replication, the changes caused by executing the trigger on the master are applied on the slave.

For more information, see Section 17.4.1.36, “Replication and Triggers”.

A.5.14.How are actions carried out through triggers on a master replicated to a slave?

Again, this depends on whether you are using statement-based or row-based replication.

Statement-based replication.  First, the triggers that exist on a master must be re-created
on the slave server. Once this is done, the replication flow works as any other standard DML
statement that participates in replication. For example, consider a table EMP that has an AFTER
insert trigger, which exists on a master MySQL server. The same EMP table and AFTER insert
trigger exist on the slave server as well. The replication flow would be:

1. An INSERT statement is made to EMP.

2. The AFTER trigger on EMP activates.

3. The INSERT statement is written to the binary log.

4. The replication slave picks up the INSERT statement to EMP and executes it.

5. The AFTER trigger on EMP that exists on the slave activates.

Row-based replication.  When you use row-based replication, the changes caused by
executing the trigger on the master are applied on the slave. However, the triggers themselves
are not actually executed on the slave under row-based replication. This is because, if both the
master and the slave applied the changes from the master and, in addition, the trigger causing



MySQL 5.5 FAQ: Views

2844

these changes were applied on the slave, the changes would in effect be applied twice on the
slave, leading to different data on the master and the slave.

In most cases, the outcome is the same for both row-based and statement-based replication.
However, if you use different triggers on the master and slave, you cannot use row-based
replication. (This is because the row-based format replicates the changes made by triggers
executing on the master to the slaves, rather than the statements that caused the triggers to
execute, and the corresponding triggers on the slave are not executed.) Instead, any statements
causing such triggers to be executed must be replicated using statement-based replication.

For more information, see Section 17.4.1.36, “Replication and Triggers”.

A.6 MySQL 5.5 FAQ: Views
A.6.1 Where can I find documentation covering MySQL Views? ................................................ 2844
A.6.2 Is there a discussion forum for MySQL Views? ................................................................ 2844
A.6.3 What happens to a view if an underlying table is dropped or renamed? ............................. 2844
A.6.4 Does MySQL 5.5 have table snapshots? ......................................................................... 2844
A.6.5 Does MySQL 5.5 have materialized views? ..................................................................... 2844
A.6.6 Can you insert into views that are based on joins? .......................................................... 2844

A.6.1. Where can I find documentation covering MySQL Views?

See Section 20.5, “Using Views”.

A.6.2. Is there a discussion forum for MySQL Views?

Yes. See http://forums.mysql.com/list.php?100

A.6.3. What happens to a view if an underlying table is dropped or renamed?

After a view has been created, it is possible to drop or alter a table or view to which the definition
refers. To check a view definition for problems of this kind, use the CHECK TABLE statement.
(See Section 13.7.2.2, “CHECK TABLE Syntax”.)

A.6.4. Does MySQL 5.5 have table snapshots?

No.

A.6.5. Does MySQL 5.5 have materialized views?

No.

A.6.6. Can you insert into views that are based on joins?

It is possible, provided that your INSERT statement has a column list that makes it clear there is
only one table involved.

You cannot insert into multiple tables with a single insert on a view.

A.7 MySQL 5.5 FAQ: INFORMATION_SCHEMA
A.7.1 Where can I find documentation for the MySQL INFORMATION_SCHEMA database? ........... 2844
A.7.2 Is there a discussion forum for INFORMATION_SCHEMA? ................................................. 2844
A.7.3 Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA? ................ 2845
A.7.4 What is the difference between the Oracle Data Dictionary and MySQL

INFORMATION_SCHEMA? ............................................................................................... 2845
A.7.5 Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database? 2845

A.7.1. Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

See Chapter 21, INFORMATION_SCHEMA Tables

A.7.2. Is there a discussion forum for INFORMATION_SCHEMA?

http://forums.mysql.com/list.php?100


MySQL 5.5 FAQ: Migration

2845

See http://forums.mysql.com/list.php?101.

A.7.3. Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

Unfortunately, the official specifications are not freely available. (ANSI makes them available
for purchase.) However, there are books available, such as SQL-99 Complete, Really by Peter
Gulutzan and Trudy Pelzer, that provide a comprehensive overview of the standard, including
INFORMATION_SCHEMA.

A.7.4. What is the difference between the Oracle Data Dictionary and MySQL
INFORMATION_SCHEMA?

Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different
table names and column names. The MySQL implementation is more similar to those found
in DB2 and SQL Server, which also support INFORMATION_SCHEMA as defined in the SQL
standard.

A.7.5. Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

No. Since applications may rely on a certain standard structure, this should not be modified.
For this reason, we cannot support bugs or other issues which result from modifying
INFORMATION_SCHEMA tables or data.

A.8 MySQL 5.5 FAQ: Migration
A.8.1 Where can I find information on how to migrate from MySQL 5.1 to MySQL 5.5? ................ 2845
A.8.2 How has storage engine (table type) support changed in MySQL 5.5 from previous

versions? ...................................................................................................................... 2845

A.8.1. Where can I find information on how to migrate from MySQL 5.1 to MySQL 5.5?

For detailed upgrade information, see Section 2.11.1, “Upgrading MySQL”. Do not skip a major
version when upgrading, but rather complete the process in steps, upgrading from one major
version to the next in each step. This may seem more complicated, but it will you save time
and trouble. If you encounter problems during the upgrade, their origin will be easier to identify,
either by you or, if you have a MySQL Enterprise subscription, by MySQL support.

A.8.2. How has storage engine (table type) support changed in MySQL 5.5 from previous versions?

Storage engine support has changed as follows:

• Support for ISAM tables was removed in MySQL 5.0 and you should now use the MyISAM
storage engine in place of ISAM. To convert a table tblname from ISAM to MyISAM, simply
issue a statement such as this one:

ALTER TABLE tblname ENGINE=MYISAM;

• Internal RAID for MyISAM tables was also removed in MySQL 5.0. This was formerly used to
allow large tables in file systems that did not support file sizes greater than 2GB. All modern
file systems allow for larger tables; in addition, there are now other solutions such as MERGE
tables and views.

• The VARCHAR column type now retains trailing spaces in all storage engines.

• MEMORY tables (formerly known as HEAP tables) can also contain VARCHAR columns.

A.9 MySQL 5.5 FAQ: Security
A.9.1 Where can I find documentation that addresses security issues for MySQL? ...................... 2846
A.9.2 Does MySQL 5.5 have native support for SSL? ............................................................... 2846
A.9.3 Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it? 2846
A.9.4 Does MySQL 5.5 have built-in authentication against LDAP directories? ............................ 2846
A.9.5 Does MySQL 5.5 include support for Roles Based Access Control (RBAC)? ...................... 2846

http://forums.mysql.com/list.php?101


MySQL FAQ: MySQL 5.5 and NDB Cluster

2846

A.9.1. Where can I find documentation that addresses security issues for MySQL?

The best place to start is Chapter 6, Security.

Other portions of the MySQL Documentation which you may find useful with regard to specific
security concerns include the following:

• Section 6.1.1, “Security Guidelines”.

• Section 6.1.3, “Making MySQL Secure Against Attackers”.

• Section B.5.3.2, “How to Reset the Root Password”.

• Section 6.1.5, “How to Run MySQL as a Normal User”.

• Section 24.4.2.6, “UDF Security Precautions”.

• Section 6.1.4, “Security-Related mysqld Options and Variables”.

• Section 6.1.6, “Security Issues with LOAD DATA LOCAL”.

• Section 2.10, “Postinstallation Setup and Testing”.

• Section 6.4, “Using Secure Connections”.

A.9.2. Does MySQL 5.5 have native support for SSL?

Most 5.5 binaries have support for SSL connections between the client and server. See
Section 6.4, “Using Secure Connections”.

You can also tunnel a connection using SSH, if (for example) the client application does not
support SSL connections. For an example, see Section 6.4.7, “Connecting to MySQL Remotely
from Windows with SSH”.

A.9.3. Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it?

Most 5.5 binaries have SSL enabled for client/server connections that are secured,
authenticated, or both. See Section 6.4, “Using Secure Connections”.

A.9.4. Does MySQL 5.5 have built-in authentication against LDAP directories?

The Enterprise edition includes a PAM Authentication Plugin that supports authentication
against an LDAP directory.

A.9.5. Does MySQL 5.5 include support for Roles Based Access Control (RBAC)?

Not at this time.

A.10 MySQL FAQ: MySQL 5.5 and NDB Cluster
In the following section, we answer questions that are frequently asked about NDB Cluster and the
NDBCLUSTER storage engine.

A.10.1 Which versions of the MySQL software support NDB Cluster? Do I have to compile from
source? ......................................................................................................................... 2847

A.10.2 What do “NDB” and “NDBCLUSTER” mean? ................................................................. 2848
A.10.3 What is the difference between using NDB Cluster versus using MySQL Replication? ....... 2848
A.10.4 Do I need any special networking to run NDB Cluster? How do computers in a cluster

communicate? ............................................................................................................... 2848
A.10.5 How many computers do I need to run an NDB Cluster, and why? .................................. 2849
A.10.6 What do the different computers do in an NDB Cluster? ................................................. 2849
A.10.7 When I run the SHOW command in the NDB Cluster management client, I see a line of

output that looks like this: .............................................................................................. 2849



MySQL FAQ: MySQL 5.5 and NDB Cluster

2847

A.10.8 With which operating systems can I use NDB Cluster? ................................................... 2850
A.10.9 What are the hardware requirements for running NDB Cluster? ...................................... 2850
A.10.10 How much RAM do I need to use NDB Cluster? Is it possible to use disk memory at all? . 2850
A.10.11 What file systems can I use with NDB Cluster? What about network file systems or

network shares? ............................................................................................................ 2851
A.10.12 Can I run NDB Cluster nodes inside virtual machines (such as those created by VMWare,

Parallels, or Xen)? ........................................................................................................ 2852
A.10.13 I am trying to populate an NDB Cluster database. The loading process terminates

prematurely and I get an error message like this one: ..................................................... 2852
A.10.14 NDB Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or

more nodes in remote locations? ................................................................................... 2852
A.10.15 Do I have to learn a new programming or query language to use NDB Cluster? .............. 2852
A.10.16 What programming languages and APIs are supported by NDB Cluster? ....................... 2853
A.10.17 Does NDB Cluster include any management tools? ...................................................... 2853
A.10.18 How do I find out what an error or warning message means when using NDB Cluster? ... 2853
A.10.19 Is NDB Cluster transaction-safe? What isolation levels are supported? .......................... 2853
A.10.20 What storage engines are supported by NDB Cluster? ................................................. 2854
A.10.21 In the event of a catastrophic failure— for example, the whole city loses power and my

UPS fails—would I lose all my data? ............................................................................. 2854
A.10.22 Is it possible to use FULLTEXT indexes with NDB Cluster? ........................................... 2854
A.10.23 Can I run multiple nodes on a single computer? .......................................................... 2854
A.10.24 Can I add data nodes to an NDB Cluster without restarting it? ...................................... 2854
A.10.25 Are there any limitations that I should be aware of when using NDB Cluster? ................. 2854
A.10.26 Does NDB Cluster support foreign keys? ..................................................................... 2855
A.10.27 How do I import an existing MySQL database into an NDB Cluster? .............................. 2855
A.10.28 How do NDB Cluster nodes communicate with one another? ........................................ 2855
A.10.29 What is an arbitrator? ................................................................................................. 2856
A.10.30 What data types are supported by NDB Cluster? ......................................................... 2856
A.10.31 How do I start and stop NDB Cluster? ......................................................................... 2856
A.10.32 What happens to NDB Cluster data when the NDB Cluster is shut down? ...................... 2857
A.10.33 Is it a good idea to have more than one management node for an NDB Cluster? ............ 2857
A.10.34 Can I mix different kinds of hardware and operating systems in one NDB Cluster? .......... 2857
A.10.35 Can I run two data nodes on a single host? Two SQL nodes? ...................................... 2857
A.10.36 Can I use host names with NDB Cluster? .................................................................... 2858
A.10.37 Does NDB Cluster support IPv6? ................................................................................ 2858
A.10.38 How do I handle MySQL users in an NDB Cluster having multiple MySQL servers? ........ 2858
A.10.39 How do I continue to send queries in the event that one of the SQL nodes fails? ............ 2858
A.10.40 How do I back up and restore an NDB Cluster? ........................................................... 2858
A.10.41 What is an “angel process”? ....................................................................................... 2858

A.10.1.Which versions of the MySQL software support NDB Cluster? Do I have to compile from
source?

NDB Cluster is not supported in standard MySQL Server 5.5 releases. Instead, MySQL NDB
Cluster is provided as a separate product. Currently, the following NDB Cluster release series
are available for production use:

• NDB Cluster 7.2.  This series is a previous General Availability (GA) version of NDB
Cluster, still available for production, although we recommend that new deployments use the
latest NDB Cluster 7.5 release. The most recent NDB Cluster 7.2 release can be obtained
from http://dev.mysql.com/downloads/cluster/.

• NDB Cluster 7.3.  This series is a General Availability (GA) version of NDB Cluster, still
available for production, although we recommend that new deployments use the latest NDB
Cluster 7.5 release. The most recent NDB Cluster 7.3 release can be obtained from http://
dev.mysql.com/downloads/cluster/.

• NDB Cluster 7.4.  This series is the latest Generally Available (GA) version of NDB Cluster,
based on version 7.4 of the NDB storage engine and MySQL Server 5.6, and still available for

http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/downloads/cluster/


MySQL FAQ: MySQL 5.5 and NDB Cluster

2848

production, although we recommend that new deployments use the latest NDB Cluster 7.5
release The most recent NDB Cluster 7.4 release can be obtained from http://dev.mysql.com/
downloads/cluster/.

• NDB Cluster 7.5.  This series is the most recent General Availability (GA) version of NDB
Cluster, based on version 7.5 of the NDB storage engine and MySQL Server 5.7. NDB Cluster
7.5 is available for production use; new deployments intended for production should use the
latest GA release in this series, which is currently NDB Cluster 7.5.7. The latest NDB Cluster
7.5 releases can be obtained from http://dev.mysql.com/downloads/cluster/.

• NDB Cluster 7.6.  This series, based on version 7.6 of the NDB storage engine, is currently
under development, but not yet considered ready for use in a production setting. It is available
as a Developer Preview release for evaluation and testing purposes. You can obtain the most
recent NDB Cluster 7.6 release from http://dev.mysql.com/downloads/cluster/. For information
about new features and other important changes in this series, see What is New in NDB
Cluster 7.6.

You should use NDB Cluster 7.5 for any new deployments; if you are using an older version
of NDB Cluster, you should upgrade to this version soon as possible. For an overview of
improvements made in NDB Cluster 7.5, see What is New in MySQL NDB Cluster 7.5. For an
overview of improvements made in NDB Cluster 7.4, see What is New in NDB Cluster 7.4; for
information about improvements made in NDB Cluster 7.3, see What is New in NDB Cluster
7.3. For information about improvements made in NDB Cluster 7.2, see Section 18.1.4, “What is
New in MySQL NDB Cluster 7.2”.

NDB Cluster 7.6, based on MySQL Server 5.7 and version 7.6 of the NDB storage engine, is
also now available as a Developer Preview release for evaluation and testing purposes. You can
obtain the most recent NDB Cluster 7.6 release from http://dev.mysql.com/downloads/cluster/.
For information about new features and other important changes in this series, see What is New
in NDB Cluster 7.6.

You can determine whether your MySQL Server has NDB support using one of the statements
SHOW VARIABLES LIKE 'have_%', SHOW ENGINES, or SHOW PLUGINS.

A.10.2.What do “NDB” and “NDBCLUSTER” mean?

“NDB” stands for “Network Database”. NDB and NDBCLUSTER are both names for the storage
engine that enables clustering support with MySQL. NDB is preferred, but either name is correct.

A.10.3.What is the difference between using NDB Cluster versus using MySQL Replication?

In traditional MySQL replication, a master MySQL server updates one or more slaves.
Transactions are committed sequentially, and a slow transaction can cause the slave to lag
behind the master. This means that if the master fails, it is possible that the slave might not
have recorded the last few transactions. If a transaction-safe engine such as InnoDB is being
used, a transaction will either be complete on the slave or not applied at all, but replication does
not guarantee that all data on the master and the slave will be consistent at all times. In NDB
Cluster, all data nodes are kept in synchrony, and a transaction committed by any one data
node is committed for all data nodes. In the event of a data node failure, all remaining data
nodes remain in a consistent state.

In short, whereas standard MySQL replication is asynchronous, NDB Cluster is synchronous.

Asynchronous replication is also available in NDB Cluster. NDB Cluster Replication (also
sometimes known as “geo-replication”) includes the capability to replicate both between two
NDB Clusters, and from an NDB Cluster to a non-Cluster MySQL server. See Section 18.6,
“NDB Cluster Replication”.

A.10.4.Do I need any special networking to run NDB Cluster? How do computers in a cluster
communicate?

http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
http://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html


MySQL FAQ: MySQL 5.5 and NDB Cluster

2849

NDB Cluster is intended to be used in a high-bandwidth environment, with computers
connecting using TCP/IP. Its performance depends directly upon the connection speed between
the cluster's computers. The minimum connectivity requirements for NDB Cluster include
a typical 100-megabit Ethernet network or the equivalent. We recommend you use gigabit
Ethernet whenever available.

A.10.5.How many computers do I need to run an NDB Cluster, and why?

A minimum of three computers is required to run a viable cluster. However, the minimum
recommended number of computers in an NDB Cluster is four: one each to run the management
and SQL nodes, and two computers to serve as data nodes. The purpose of the two data nodes
is to provide redundancy; the management node must run on a separate machine to guarantee
continued arbitration services in the event that one of the data nodes fails.

To provide increased throughput and high availability, you should use multiple SQL nodes
(MySQL Servers connected to the cluster). It is also possible (although not strictly necessary) to
run multiple management servers.

A.10.6.What do the different computers do in an NDB Cluster?

An NDB Cluster has both a physical and logical organization, with computers being the physical
elements. The logical or functional elements of a cluster are referred to as nodes, and a
computer housing a cluster node is sometimes referred to as a cluster host. There are three
types of nodes, each corresponding to a specific role within the cluster. These are:

• Management node.  This node provides management services for the cluster as a whole,
including startup, shutdown, backups, and configuration data for the other nodes. The
management node server is implemented as the application ndb_mgmd; the management
client used to control NDB Cluster is ndb_mgm. See Section 18.4.4, “ndb_mgmd — The NDB
Cluster Management Server Daemon”, and Section 18.4.5, “ndb_mgm — The NDB Cluster
Management Client”, for information about these programs.

• Data node.  This type of node stores and replicates data. Data node functionality is handled
by instances of the NDB data node process ndbd. For more information, see Section 18.4.1,
“ndbd — The NDB Cluster Data Node Daemon”.

• SQL node.  This is simply an instance of MySQL Server (mysqld) that is built with support
for the NDBCLUSTER storage engine and started with the --ndb-cluster option to enable
the engine and the --ndb-connectstring option to enable it to connect to an NDB Cluster
management server. For more about these options, see MySQL Server Options for NDB
Cluster.

Note

An API node is any application that makes direct use of Cluster
data nodes for data storage and retrieval. An SQL node can thus be
considered a type of API node that uses a MySQL Server to provide
an SQL interface to the Cluster. You can write such applications (that
do not depend on a MySQL Server) using the NDB API, which supplies
a direct, object-oriented transaction and scanning interface to NDB
Cluster data; see NDB Cluster API Overview: The NDB API, for more
information.

A.10.7.When I run the SHOW command in the NDB Cluster management client, I see a line of output that
looks like this:

id=2    @10.100.10.32  (Version: 5.6.36-ndb-7.3.18 Nodegroup: 0, *)

What does the * mean? How is this node different from the others?

http://dev.mysql.com/doc/ndbapi/en/overview-ndb-api.html


MySQL FAQ: MySQL 5.5 and NDB Cluster

2850

The simplest answer is, “It's not something you can control, and it's nothing that you need to
worry about in any case, unless you're a software engineer writing or analyzing the NDB Cluster
source code”.

If you don't find that answer satisfactory, here's a longer and more technical version:

A number of mechanisms in NDB Cluster require distributed coordination among the data
nodes. These distributed algorithms and protocols include global checkpointing, DDL (schema)
changes, and node restart handling. To make this coordination simpler, the data nodes “elect”
one of their number to act as leader. (This node was once referred to as a “master”, but this
terminology was dropped to avoid confusion with master server in MySQL Replication.) There is
no user-facing mechanism for influencing this selection, which is completely automatic; the fact
that it is automatic is a key part of NDB Cluster's internal architecture.

When a node acts as the “leader” for any of these mechanisms, it is usually the point of
coordination for the activity, and the other nodes act as “followers”, carrying out their parts of the
activity as directed by the leader. If the node acting as leader fails, then the remaining nodes
elect a new leader. Tasks in progress that were being coordinated by the old leader may either
fail or be continued by the new leader, depending on the actual mechanism involved.

It is possible for some of these different mechanisms and protocols to have different leader
nodes, but in general the same leader is chosen for all of them. The node indicated as the
leader in the output of SHOW in the management client is known internally as the DICT manager
(see The DBDICT Block, in the NDB Cluster API Developer Guide, for more information),
responsible for coordinating DDL and metadata activity.

NDB Cluster is designed in such a way that the choice of leader has no discernible effect
outside the cluster itself. For example, the current leader does not have significantly higher
CPU or resource usage than the other data nodes, and failure of the leader should not have a
significantly different impact on the cluster than the failure of any other data node.

A.10.8.With which operating systems can I use NDB Cluster?

NDB Cluster is supported on most Unix-like operating systems. NDB Cluster is also supported in
production settings on Microsoft Windows operating systems.

For more detailed information concerning the level of support which is offered for NDB Cluster
on various operating system versions, operating system distributions, and hardware platforms,
please refer to http://www.mysql.com/support/supportedplatforms/cluster.html.

A.10.9.What are the hardware requirements for running NDB Cluster?

NDB Cluster should run on any platform for which NDB-enabled binaries are available. For data
nodes and API nodes, faster CPUs and more memory are likely to improve performance, and
64-bit CPUs are likely to be more effective than 32-bit processors. There must be sufficient
memory on machines used for data nodes to hold each node's share of the database (see How
much RAM do I Need? for more information). For a computer which is used only for running the
NDB Cluster management server, the requirements are minimal; a common desktop PC (or the
equivalent) is generally sufficient for this task. Nodes can communicate through the standard
TCP/IP network and hardware. They can also use the high-speed SCI protocol; however,
special networking hardware and software are required to use SCI (see Section 18.3.4, “Using
High-Speed Interconnects with NDB Cluster”).

A.10.10.How much RAM do I need to use NDB Cluster? Is it possible to use disk memory at all?

Formerly NDB Cluster was in-memory only. MySQL 5.1 and later also provide the ability to
store NDB Cluster on disk. (Note that we have no plans to backport this capability to previous
releases.) See Section 18.5.12, “NDB Cluster Disk Data Tables”, for more information.

For in-memory NDB tables, you can use the following formula for obtaining a rough estimate of
how much RAM is needed for each data node in the cluster:

http://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
http://www.mysql.com/support/supportedplatforms/cluster.html


MySQL FAQ: MySQL 5.5 and NDB Cluster

2851

(SizeofDatabase × NumberOfReplicas × 1.1 ) / NumberOfDataNodes

To calculate the memory requirements more exactly requires determining, for each table
in the cluster database, the storage space required per row (see Section 11.7, “Data Type
Storage Requirements”, for details), and multiplying this by the number of rows. You must also
remember to account for any column indexes as follows:

• Each primary key or hash index created for an NDBCLUSTER table requires 21−25 bytes per
record. These indexes use IndexMemory.

• Each ordered index requires 10 bytes storage per record, using DataMemory.

• Creating a primary key or unique index also creates an ordered index, unless this index is
created with USING HASH. In other words:

• A primary key or unique index on a Cluster table normally takes up 31 to 35 bytes per
record.

• However, if the primary key or unique index is created with USING HASH, then it requires
only 21 to 25 bytes per record.

Creating NDB Cluster tables with USING HASH for all primary keys and unique indexes will
generally cause table updates to run more quickly—in some cases by a much as 20 to 30
percent faster than updates on tables where USING HASH was not used in creating primary and
unique keys. This is due to the fact that less memory is required (because no ordered indexes
are created), and that less CPU must be utilized (because fewer indexes must be read and
possibly updated). However, it also means that queries that could otherwise use range scans
must be satisfied by other means, which can result in slower selects.

When calculating Cluster memory requirements, you may find useful the ndb_size.pl utility
which is available in recent MySQL 5.5 releases. This Perl script connects to a current (non-
Cluster) MySQL database and creates a report on how much space that database would
require if it used the NDBCLUSTER storage engine. For more information, see Section 18.4.25,
“ndb_size.pl — NDBCLUSTER Size Requirement Estimator”.

It is especially important to keep in mind that every NDB Cluster table must have a primary key.
The NDB storage engine creates a primary key automatically if none is defined; this primary key
is created without USING HASH.

You can determine how much memory is being used for storage of NDB Cluster data and
indexes at any given time using the REPORT MEMORYUSAGE command in the ndb_mgm client;
see Section 18.5.2, “Commands in the NDB Cluster Management Client”, for more information.
In addition, warnings are written to the cluster log when 80% of available DataMemory or
IndexMemory is in use, and again when usage reaches 85%, 90%, and so on.

A.10.11.What file systems can I use with NDB Cluster? What about network file systems or network
shares?

Generally, any file system that is native to the host operating system should work well with NDB
Cluster. If you find that a given file system works particularly well (or not so especially well) with
NDB Cluster, we invite you to discuss your findings in the NDB Cluster Forums.

For Windows, we recommend that you use NTFS file systems for NDB Cluster, just as we do for
standard MySQL. We do not test NDB Cluster with FAT or VFAT file systems. Because of this,
we do not recommend their use with MySQL or NDB Cluster.

NDB Cluster is implemented as a shared-nothing solution; the idea behind this is that the failure
of a single piece of hardware should not cause the failure of multiple cluster nodes, or possibly
even the failure of the cluster as a whole. For this reason, the use of network shares or network

http://forums.mysql.com/list.php?25


MySQL FAQ: MySQL 5.5 and NDB Cluster

2852

file systems is not supported for NDB Cluster. This also applies to shared storage devices such
as SANs.

A.10.12.Can I run NDB Cluster nodes inside virtual machines (such as those created by VMWare,
Parallels, or Xen)?

NDB Cluster is supported for use in virtual machines beginning with NDB Cluster 7.2. We
currently support and test using Oracle VM.

Some NDB Cluster users have successfully deployed NDB Cluster using other virtualization
products; in such cases, Oracle can provide NDB Cluster support, but issues specific to the
virtual environment must be referred to that product's vendor.

A.10.13.I am trying to populate an NDB Cluster database. The loading process terminates prematurely
and I get an error message like this one:

ERROR 1114: The table 'my_cluster_table' is full

Why is this happening?

The cause is very likely to be that your setup does not provide sufficient RAM for all table data
and all indexes, including the primary key required by the NDB storage engine and automatically
created in the event that the table definition does not include the definition of a primary key.

It is also worth noting that all data nodes should have the same amount of RAM, since no data
node in a cluster can use more memory than the least amount available to any individual data
node. For example, if there are four computers hosting Cluster data nodes, and three of these
have 3GB of RAM available to store Cluster data while the remaining data node has only 1GB
RAM, then each data node can devote at most 1GB to NDB Cluster data and indexes.

In some cases it is possible to get Table is full errors in MySQL client applications even
when ndb_mgm -e "ALL REPORT MEMORYUSAGE" shows significant free DataMemory. You
can force NDB to create extra partitions for NDB Cluster tables and thus have more memory
available for hash indexes by using the MAX_ROWS option for CREATE TABLE. In general,
setting MAX_ROWS to twice the number of rows that you expect to store in the table should be
sufficient.

For similar reasons, you can also sometimes encounter problems with data node restarts
on nodes that are heavily loaded with data. In NDB Cluster 7.1 and later, the addition of
the MinFreePct parameter helps with this issue by reserving a portion (5% by default) of
DataMemory and IndexMemory for use in restarts. This reserved memory is not available for
storing NDB tables or data.

A.10.14.NDB Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or more
nodes in remote locations?

It is very unlikely that a cluster would perform reliably under such conditions, as NDB Cluster
was designed and implemented with the assumption that it would be run under conditions
guaranteeing dedicated high-speed connectivity such as that found in a LAN setting using 100
Mbps or gigabit Ethernet—preferably the latter. We neither test nor warrant its performance
using anything slower than this.

Also, it is extremely important to keep in mind that communications between the nodes in an
NDB Cluster are not secure; they are neither encrypted nor safeguarded by any other protective
mechanism. The most secure configuration for a cluster is in a private network behind a firewall,
with no direct access to any Cluster data or management nodes from outside. (For SQL nodes,
you should take the same precautions as you would with any other instance of the MySQL
server.) For more information, see Section 18.5.11, “NDB Cluster Security Issues”.

A.10.15.Do I have to learn a new programming or query language to use NDB Cluster?

http://www.oracle.com/technetwork/server-storage/vm/index.html


MySQL FAQ: MySQL 5.5 and NDB Cluster

2853

No. Although some specialized commands are used to manage and configure the cluster itself,
only standard (My)SQL statements are required for the following operations:

• Creating, altering, and dropping tables

• Inserting, updating, and deleting table data

• Creating, changing, and dropping primary and unique indexes

Some specialized configuration parameters and files are required to set up an NDB Cluster—
see Section 18.3.3, “NDB Cluster Configuration Files”, for information about these.

A few simple commands are used in the NDB Cluster management client (ndb_mgm) for tasks
such as starting and stopping cluster nodes. See Section 18.5.2, “Commands in the NDB
Cluster Management Client”.

A.10.16.What programming languages and APIs are supported by NDB Cluster?

NDB Cluster supports the same programming APIs and languages as the standard MySQL
Server, including ODBC, .Net, the MySQL C API, and numerous drivers for popular scripting
languages such as PHP, Perl, and Python. NDB Cluster applications written using these APIs
behave similarly to other MySQL applications; they transmit SQL statements to a MySQL Server
(in the case of NDB Cluster, an SQL node), and receive responses containing rows of data. For
more information about these APIs, see Chapter 23, Connectors and APIs.

NDB Cluster also supports application programming using the NDB API, which provides a low-
level C++ interface to NDB Cluster data without needing to go through a MySQL Server. See
The NDB API. In addition, many NDBCLUSTER management functions are exposed by the C-
language MGM API; see The MGM API, for more information.

NDB Cluster 7.1 and later also support Java application programming using ClusterJ, which
supports a domain object model of data using sessions and transactions. See Java and NDB
Cluster, for more information.

NDB Cluster 7.2 adds support for memcached, allowing developers to access data stored
in NDB Cluster using the memcached interface; for more information, see ndbmemcache—
Memcache API for NDB Cluster.

A.10.17.Does NDB Cluster include any management tools?

NDB Cluster includes a command line client for performing basic management functions.
See Section 18.4.5, “ndb_mgm — The NDB Cluster Management Client”, and Section 18.5.2,
“Commands in the NDB Cluster Management Client”.

NDB Cluster 7.2 and later is also supported by MySQL Cluster Manager, a separate product
providing an advanced command line interface that can automate many NDB Cluster
management tasks such as rolling restarts and configuration changes. For more information
about MySQL Cluster Manager, see MySQL™ Cluster Manager 1.3.6 User Manual.

A.10.18.How do I find out what an error or warning message means when using NDB Cluster?

There are two ways in which this can be done:

• From within the mysql client, use SHOW ERRORS or SHOW WARNINGS immediately upon
being notified of the error or warning condition.

• From a system shell prompt, use perror --ndb error_code.

A.10.19.Is NDB Cluster transaction-safe? What isolation levels are supported?

Yes. For tables created with the NDB storage engine, transactions are supported. Currently, NDB
Cluster supports only the READ COMMITTED transaction isolation level.

http://dev.mysql.com/doc/ndbapi/en/ndbapi.html
http://dev.mysql.com/doc/ndbapi/en/mgm-api.html
http://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
http://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
http://dev.mysql.com/doc/mysql-cluster-manager/1.3/en/


MySQL FAQ: MySQL 5.5 and NDB Cluster

2854

A.10.20.What storage engines are supported by NDB Cluster?

Clustering with MySQL is supported only by the NDB storage engine. That is, in order for a table
to be shared between nodes in an NDB Cluster, the table must be created using ENGINE=NDB
(or the equivalent option ENGINE=NDBCLUSTER).

It is possible to create tables using other storage engines (such as InnoDB or MyISAM) on a
MySQL server being used with an NDB Cluster, but since these tables do not use NDB, they
do not participate in clustering; each such table is strictly local to the individual MySQL server
instance on which it is created.

A.10.21.In the event of a catastrophic failure— for example, the whole city loses power and my UPS fails
—would I lose all my data?

All committed transactions are logged. Therefore, although it is possible that some data could be
lost in the event of a catastrophe, this should be quite limited. Data loss can be further reduced
by minimizing the number of operations per transaction. (It is not a good idea to perform large
numbers of operations per transaction in any case.)

A.10.22.Is it possible to use FULLTEXT indexes with NDB Cluster?

FULLTEXT indexing is currently supported only by the MyISAM storage engine. See
Section 12.9, “Full-Text Search Functions”, for more information.

A.10.23.Can I run multiple nodes on a single computer?

It is possible but not always advisable. One of the chief reasons to run a cluster is to provide
redundancy. To obtain the full benefits of this redundancy, each node should reside on a
separate machine. If you place multiple nodes on a single machine and that machine fails, you
lose all of those nodes. For this reason, if you do run multiple data nodes on a single machine, it
is extremely important that they be set up in such a way that the failure of this machine does not
cause the loss of all the data nodes in a given node group.

Given that NDB Cluster can be run on commodity hardware loaded with a low-cost (or even no-
cost) operating system, the expense of an extra machine or two is well worth it to safeguard
mission-critical data. It also worth noting that the requirements for a cluster host running a
management node are minimal. This task can be accomplished with a 300 MHz Pentium or
equivalent CPU and sufficient RAM for the operating system, plus a small amount of overhead
for the ndb_mgmd and ndb_mgm processes.

It is acceptable to run multiple cluster data nodes on a single host that has multiple CPUs, cores,
or both. NDB Cluster 7.0 and later also provide a multi-threaded version of the data node binary
intended for use on such systems. For more information, see Section 18.4.3, “ndbmtd — The
NDB Cluster Data Node Daemon (Multi-Threaded)”.

It is also possible in some cases to run data nodes and SQL nodes concurrently on the same
machine; how well such an arrangement performs is dependent on a number of factors such
as number of cores and CPUs as well as the amount of disk and memory available to the data
node and SQL node processes, and you must take these factors into account when planning
such a configuration.

A.10.24.Can I add data nodes to an NDB Cluster without restarting it?

It is possible to add new data nodes to a running NDB Cluster without taking the cluster offline.
For more information, see Section 18.5.13, “Adding NDB Cluster Data Nodes Online”.

For other types of NDB Cluster nodes, a rolling restart is all that is required (see Section 18.5.5,
“Performing a Rolling Restart of an NDB Cluster”).

A.10.25.Are there any limitations that I should be aware of when using NDB Cluster?

Limitations on NDB tables in MySQL NDB Cluster 7.2 include the following:



MySQL FAQ: MySQL 5.5 and NDB Cluster

2855

• Temporary tables are not supported; a CREATE TEMPORARY TABLE statement using
ENGINE=NDB or ENGINE=NDBCLUSTER fails with an error.

• The only types of user-defined partitioning supported for NDBCLUSTER tables are KEY and
LINEAR KEY. Trying to create an NDB table using any other partitioning type fails with an
error.

• FULLTEXT indexes are not supported.

• Index prefixes are not supported. Only complete columns may be indexed.

• Spatial indexes are not supported (although spatial columns can be used). See Section 11.5,
“Extensions for Spatial Data”.

• Support for partial transactions and partial rollbacks is comparable to that of other
transactional storage engines such as InnoDB that can roll back individual statements.

• The maximum number of attributes allowed per table is 512. Attribute names cannot be any
longer than 31 characters. For each table, the maximum combined length of the table and
database names is 122 characters.

• The maximum size for a table row is 14 kilobytes, not counting BLOB values.

There is no set limit for the number of rows per NDB table. Limits on table size depend on a
number of factors, in particular on the amount of RAM available to each data node.

• The NDBCLUSTER engine does not support foreign key constraints. As with MyISAM tables, if
these are specified in a CREATE TABLE or ALTER TABLE statement, they are ignored.

For a complete listing of limitations in NDB Cluster, see Section 18.1.6, “Known Limitations of
NDB Cluster”. See also Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL
5.1, NDB Cluster 6.x, and NDB Cluster 7.x”.

A.10.26.Does NDB Cluster support foreign keys?

NDB Cluster 7.2 does not support foreign key contraints, and ignores foreign keys in CREATE
TABLE statements (similarly to how MyISAM treats foreign key syntax).

Foreign key support comparable to that found in the InnoDB storage engine is provided by NDB
beginning with NDB 7.3. Applications requiring foreign key support should use NDB Cluster 7.3
or later.

A.10.27.How do I import an existing MySQL database into an NDB Cluster?

You can import databases into NDB Cluster much as you would with any other version of
MySQL. Other than the limitations mentioned elsewhere in this FAQ, the only other special
requirement is that any tables to be included in the cluster must use the NDB storage engine.
This means that the tables must be created with ENGINE=NDB or ENGINE=NDBCLUSTER.

It is also possible to convert existing tables that use other storage engines to NDBCLUSTER
using one or more ALTER TABLE statement. However, the definition of the table must be
compatible with the NDBCLUSTER storage engine prior to making the conversion. In MySQL
5.5, an additional workaround is also required; see Section 18.1.6, “Known Limitations of NDB
Cluster”, for details.

A.10.28.How do NDB Cluster nodes communicate with one another?

Cluster nodes can communicate through any of three different transport mechanisms: TCP/
IP, SHM (shared memory), and SCI (Scalable Coherent Interface). Where available, SHM is
used by default between nodes residing on the same cluster host; however, this is considered
experimental. SCI is a high-speed (1 gigabit per second and higher), high-availability protocol



MySQL FAQ: MySQL 5.5 and NDB Cluster

2856

used in building scalable multi-processor systems; it requires special hardware and drivers. See
Section 18.3.4, “Using High-Speed Interconnects with NDB Cluster”, for more about using SCI
as a transport mechanism for NDB Cluster.

A.10.29.What is an arbitrator?

If one or more data nodes in a cluster fail, it is possible that not all cluster data nodes will be able
to “see” one another. In fact, it is possible that two sets of data nodes might become isolated
from one another in a network partitioning, also known as a “split-brain” scenario. This type of
situation is undesirable because each set of data nodes tries to behave as though it is the entire
cluster. An arbitrator is required to decide between the competing sets of data nodes.

When all data nodes in at least one node group are alive, network partitioning is not an issue,
because no single subset of the cluster can form a functional cluster on its own. The real
problem arises when no single node group has all its nodes alive, in which case network
partitioning (the “split-brain” scenario) becomes possible. Then an arbitrator is required. All
cluster nodes recognize the same node as the arbitrator, which is normally the management
server; however, it is possible to configure any of the MySQL Servers in the cluster to act as
the arbitrator instead. The arbitrator accepts the first set of cluster nodes to contact it, and tells
the remaining set to shut down. Arbitrator selection is controlled by the ArbitrationRank
configuration parameter for MySQL Server and management server nodes. In NDB 7.0.7 and
later, you can also use the ArbitrationRank configuration parameter to control the arbitrator
selection process. For more information about these parameters, see Section 18.3.3.5, “Defining
an NDB Cluster Management Server”.

The role of arbitrator does not in and of itself impose any heavy demands upon the host so
designated, and thus the arbitrator host does not need to be particularly fast or to have extra
memory especially for this purpose.

A.10.30.What data types are supported by NDB Cluster?

NDB Cluster supports all of the usual MySQL data types, including those associated with
MySQL's spatial extensions; however, the NDB storage engine does not support spatial indexes.
(Spatial indexes are supported only by MyISAM; see Section 11.5, “Extensions for Spatial Data”,
for more information.) In addition, there are some differences with regard to indexes when used
with NDB tables.

Note

NDB Cluster Disk Data tables (that is, tables created with
TABLESPACE ... STORAGE DISK ENGINE=NDB or
TABLESPACE ... STORAGE DISK ENGINE=NDBCLUSTER) have only
fixed-width rows. This means that (for example) each Disk Data table
record containing a VARCHAR(255) column requires space for 255
characters (as required for the character set and collation being used for
the table), regardless of the actual number of characters stored therein.

See Section 18.1.6, “Known Limitations of NDB Cluster”, for more information about these
issues.

A.10.31.How do I start and stop NDB Cluster?

It is necessary to start each node in the cluster separately, in the following order:

1. Start the management node, using the ndb_mgmd command.

You must include the -f or --config-file option to tell the management node where its
configuration file can be found.

2. Start each data node with the ndbd command.



MySQL FAQ: MySQL 5.5 and NDB Cluster

2857

Each data node must be started with the -c or --ndb-connectstring option so that the
data node knows how to connect to the management server.

3. Start each MySQL Server (SQL node) using your preferred startup script, such as
mysqld_safe.

Each MySQL Server must be started with the --ndbcluster and --ndb-connectstring
options. These options cause mysqld to enable NDBCLUSTER storage engine support and
how to connect to the management server.

Each of these commands must be run from a system shell on the machine housing the
affected node. (You do not have to be physically present at the machine—a remote login shell
can be used for this purpose.) You can verify that the cluster is running by starting the NDB
management client ndb_mgm on the machine housing the management node and issuing the
SHOW or ALL STATUS command.

To shut down a running cluster, issue the command SHUTDOWN in the management client.
Alternatively, you may enter the following command in a system shell:

shell> ndb_mgm -e "SHUTDOWN"

(The quotation marks in this example are optional, since there are no spaces in the command
string following the -e option; in addition, the SHUTDOWN command, like other management
client commands, is not case-sensitive.)

Either of these commands causes the ndb_mgm, ndb_mgm, and any ndbd processes to
terminate gracefully. MySQL servers running as SQL nodes can be stopped using mysqladmin
shutdown.

For more information, see Section 18.5.2, “Commands in the NDB Cluster Management Client”,
and Section 18.2.6, “Safe Shutdown and Restart of NDB Cluster”.

A.10.32.What happens to NDB Cluster data when the NDB Cluster is shut down?

The data that was held in memory by the cluster's data nodes is written to disk, and is reloaded
into memory the next time that the cluster is started.

A.10.33.Is it a good idea to have more than one management node for an NDB Cluster?

It can be helpful as a fail-safe. Only one management node controls the cluster at any given
time, but it is possible to configure one management node as primary, and one or more
additional management nodes to take over in the event that the primary management node fails.

See Section 18.3.3, “NDB Cluster Configuration Files”, for information on how to configure NDB
Cluster management nodes.

A.10.34.Can I mix different kinds of hardware and operating systems in one NDB Cluster?

Yes, as long as all machines and operating systems have the same “endianness” (all big-endian
or all little-endian).

It is also possible to use software from different NDB Cluster releases on different nodes.
However, we support this only as part of a rolling upgrade procedure (see Section 18.5.5,
“Performing a Rolling Restart of an NDB Cluster”).

A.10.35.Can I run two data nodes on a single host? Two SQL nodes?

Yes, it is possible to do this. In the case of multiple data nodes, it is advisable (but not required)
for each node to use a different data directory. If you want to run multiple SQL nodes on one
machine, each instance of mysqld must use a different TCP/IP port.



MySQL FAQ: MySQL 5.5 and NDB Cluster

2858

Running data nodes and SQL nodes together on the same host is possible, but you should be
aware that the ndbd (or ndbmtd) and mysqld processes may compete for memory.

A.10.36.Can I use host names with NDB Cluster?

Yes, it is possible to use DNS and DHCP for cluster hosts. However, if your application
requires “five nines” availability, you should use fixed (numeric) IP addresses, since making
communication between Cluster hosts dependent on services such as DNS and DHCP
introduces additional potential points of failure.

A.10.37.Does NDB Cluster support IPv6?

IPv6 is supported for connections between SQL nodes (MySQL servers), but connections
between all other types of NDB Cluster nodes must use IPv4.

In practical terms, this means that you can use IPv6 for replication between NDB Clusters, but
connections between nodes in the same NDB Cluster must use IPv4. For more information, see
Section 18.6.3, “Known Issues in NDB Cluster Replication”.

A.10.38.How do I handle MySQL users in an NDB Cluster having multiple MySQL servers?

MySQL user accounts and privileges are normally not automatically propagated between
different MySQL servers accessing the same NDB Cluster. MySQL NDB Cluster 7.2 and
later provides support for distributed privileges. While privilege distribution is not enabled
automatically, you can activate it by following a procedure provided in the MySQL NDB Cluster
documentation. See Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”, for more
information.

A.10.39.How do I continue to send queries in the event that one of the SQL nodes fails?

MySQL NDB Cluster does not provide any sort of automatic failover between SQL nodes. Your
application must be prepared to handle the loss of SQL nodes and to fail over between them.

A.10.40.How do I back up and restore an NDB Cluster?

You can use the NDB Cluster native backup and restore functionality in the NDB management
client and the ndb_restore program. See Section 18.5.3, “Online Backup of NDB Cluster”,
and Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”.

You can also use the traditional functionality provided for this purpose in mysqldump and the
MySQL server. See Section 4.5.4, “mysqldump — A Database Backup Program”, for more
information.

A.10.41.What is an “angel process”?

This process monitors and, if necessary, attempts to restart the data node process. If you check
the list of active processes on your system after starting ndbd, you can see that there are
actually 2 processes running by that name, as shown here (we omit the output from ndb_mgmd
and ndbd for brevity):

shell> ./ndb_mgmd

shell> ps aux | grep ndb
me      23002  0.0  0.0 122948  3104 ?        Ssl  14:14   0:00 ./ndb_mgmd
me      23025  0.0  0.0   5284   820 pts/2    S+   14:14   0:00 grep ndb

shell> ./ndbd -c 127.0.0.1 --initial

shell> ps aux | grep ndb
me      23002  0.0  0.0 123080  3356 ?        Ssl  14:14   0:00 ./ndb_mgmd
me      23096  0.0  0.0  35876  2036 ?        Ss   14:14   0:00 ./ndbd -c 127.0.0.1 --initial
me      23097  1.0  2.4 524116 91096 ?        Sl   14:14   0:00 ./ndbd -c 127.0.0.1 --initial
me      23168  0.0  0.0   5284   812 pts/2    R+   14:15   0:00 grep ndb



MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2859

The ndbd process showing 0 memory and CPU usage is the angel process. It actually does use
a very small amount of each, of course. It simply checks to see if the main ndbd process (the
primary data node process that actually handles the data) is running. If permitted to do so (for
example, if the StopOnError configuration parameter is set to false—see Section 18.3.2.1,
“NDB Cluster Data Node Configuration Parameters”), the angel process tries to restart the
primary data node process.

A.11 MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean
Character Sets

This set of Frequently Asked Questions derives from the experience of MySQL's Support and
Development groups in handling many inquiries about CJK (Chinese-Japanese-Korean) issues.

A.11.1 What CJK character sets are available in MySQL? ........................................................ 2859
A.11.2 I have inserted CJK characters into my table. Why does SELECT display them as “?”

characters? ................................................................................................................... 2860
A.11.3 What problems should I be aware of when working with the Big5 Chinese character set? .. 2862
A.11.4 Why do Japanese character set conversions fail? .......................................................... 2862
A.11.5 What should I do if I want to convert SJIS 81CA to cp932? ............................................ 2863
A.11.6 How does MySQL represent the Yen (¥) sign? .............................................................. 2863
A.11.7 Of what issues should I be aware when working with Korean character sets in MySQL? .... 2863
A.11.8 Why do I get Incorrect string value error messages? ......................................... 2864
A.11.9 Why does my GUI front end or browser display CJK characters incorrectly in my

application using Access, PHP, or another API? ............................................................. 2864
A.11.10 I've upgraded to MySQL 5.5. How can I revert to behavior like that in MySQL 4.0 with

regard to character sets? .............................................................................................. 2865
A.11.11 Why do some LIKE and FULLTEXT searches with CJK characters fail? ........................ 2866
A.11.12 How do I know whether character X is available in all character sets? ............................ 2867
A.11.13 Why do CJK strings sort incorrectly in Unicode? (I) ...................................................... 2868
A.11.14 Why do CJK strings sort incorrectly in Unicode? (II) ..................................................... 2869
A.11.15 Why are my supplementary characters rejected by MySQL? ......................................... 2870
A.11.16 Should “CJK” be “CJKV”? ........................................................................................... 2870
A.11.17 Does MySQL permit CJK characters to be used in database and table names? .............. 2870
A.11.18 Where can I find translations of the MySQL Manual into Chinese, Japanese, and

Korean? ........................................................................................................................ 2870
A.11.19 Where can I get help with CJK and related issues in MySQL? ...................................... 2871

A.11.1.What CJK character sets are available in MySQL?

The list of CJK character sets may vary depending on your MySQL version. For example,
the gb18030 character set is not supported prior to MySQL 5.7.4. However, since the name
of the applicable language appears in the DESCRIPTION column for every entry in the
INFORMATION_SCHEMA.CHARACTER_SETS table, you can obtain a current list of all the non-
Unicode CJK character sets using this query:

mysql> SELECT CHARACTER_SET_NAME, DESCRIPTION
       FROM INFORMATION_SCHEMA.CHARACTER_SETS
       WHERE DESCRIPTION LIKE '%Chin%'
       OR DESCRIPTION LIKE '%Japanese%'
       OR DESCRIPTION LIKE '%Korean%'
       ORDER BY CHARACTER_SET_NAME;
+--------------------+---------------------------------+
| CHARACTER_SET_NAME | DESCRIPTION                     |
+--------------------+---------------------------------+
| big5               | Big5 Traditional Chinese        |
| cp932              | SJIS for Windows Japanese       |
| eucjpms            | UJIS for Windows Japanese       |
| euckr              | EUC-KR Korean                   |
| gb18030            | China National Standard GB18030 |
| gb2312             | GB2312 Simplified Chinese       |



MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2860

| gbk                | GBK Simplified Chinese          |
| sjis               | Shift-JIS Japanese              |
| ujis               | EUC-JP Japanese                 |
+--------------------+---------------------------------+

(For more information, see Section 21.1, “The INFORMATION_SCHEMA CHARACTER_SETS
Table”.)

MySQL supports three variants of the GB (Guojia Biaozhun, or National Standard, or Simplified
Chinese) character sets which are official in the People's Republic of China: gb2312, gbk, and
(as of MySQL 5.7.4) gb18030.

Sometimes people try to insert gbk characters into gb2312, and it works most of the time
because gbk is a superset of gb2312. But eventually they try to insert a rarer Chinese character
and it does not work. (For an example, see Bug #16072).

Here, we try to clarify exactly what characters are legitimate in gb2312 or gbk, with reference to
the official documents. Please check these references before reporting gb2312 or gbk bugs:

• The MySQL gbk character set is in reality “Microsoft code page 936”. This differs from the
official gbk for characters A1A4 (middle dot), A1AA (em dash), A6E0-A6F5, and A8BB-A8C0.

• For a listing of gbk/Unicode mappings, see http://www.unicode.org/Public/MAPPINGS/
VENDORS/MICSFT/WINDOWS/CP936.TXT.

It is also possible to store CJK characters in Unicode character sets, although the available
collations may not sort characters quite as you expect:

• The utf8 and ucs2 character sets support the characters from Unicode Basic Multilingual
Plane (BMP). These characters have code point values between U+0000 and U+FFFF.

• The utf8mb4, utf16, utf16le, and utf32 character sets support BMP characters, as well
as supplementary characters that lie outside the BMP. Supplementary characters have code
point values between U+10000 and U+10FFFF.

The collation used for a Unicode character set determines the ability to sort (that is, distinguish)
characters in the set:

• Collations based on Unicode Collation Algorithm (UCA) 4.0.0 distinguish only BMP
characters.

• Collations based on UCA 5.2.0 or 9.0.0 distinguish BMP and supplementary characters.

• Non-UCA collations may not distinguish all Unicode characters. For example, the utf8mb4
default collation is utf8mb4_general_ci, which distinguishes only BMP characters.

Moreover, distinguishing characters is not the same as ordering them per the conventions
of a given CJK language. Currently, MySQL has only one CJK-specific UCA collation,
gb18030_unicode_520_ci (which requires use of the non-Unicode gb18030 character set).

For information about Unicode collations and their differentiating properties, including collation
properties for supplementary characters, see Section 10.1.10.1, “Unicode Character Sets”.

A.11.2.I have inserted CJK characters into my table. Why does SELECT display them as “?” characters?

This problem is usually due to a setting in MySQL that does not match the settings for the
application program or the operating system. Here are some common steps for correcting these
types of issues:

• Be certain of what MySQL version you are using.

Use the statement SELECT VERSION(); to determine this.

http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT


MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2861

• Make sure that the database is actually using the desired character set.

People often think that the client character set is always the same as either the server
character set or the character set used for display purposes. However, both of these are
false assumptions. You can make sure by checking the result of SHOW CREATE TABLE
tablename or, better yet, by using this statement:

SELECT character_set_name, collation_name
    FROM information_schema.columns
    WHERE table_schema = your_database_name
        AND table_name = your_table_name
        AND column_name = your_column_name;

• Determine the hexadecimal value of the character or characters that are not being displayed
correctly.

You can obtain this information for a column column_name in the table table_name using
the following query:

SELECT HEX(column_name)
FROM table_name;

3F is the encoding for the ? character; this means that ? is the character actually stored in the
column. This most often happens because of a problem converting a particular character from
your client character set to the target character set.

• Make sure that a round trip is possible. When you select literal (or _introducer
hexadecimal-value), do you obtain literal as a result?

For example, the Japanese Katakana character Pe (ペ') exists in all CJK character sets, and
has the code point value (hexadecimal coding) 0x30da. To test a round trip for this character,
use this query:

SELECT 'ペ' AS `ペ`;         /* or SELECT _ucs2 0x30da; */

If the result is not also ペ, the round trip failed.

For bug reports regarding such failures, we might ask you to follow up with SELECT
HEX('ペ');. Then we can determine whether the client encoding is correct.

• Make sure that the problem is not with the browser or other application, rather than with
MySQL.

Use the mysql client program to accomplish this task. If mysql displays characters correctly
but your application does not, your problem is probably due to system settings.

To determine your settings, use the SHOW VARIABLES statement, whose output should
resemble what is shown here:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+----------------------------------------+
| Variable_name            | Value                                  |
+--------------------------+----------------------------------------+
| character_set_client     | utf8                                   |
| character_set_connection | utf8                                   |
| character_set_database   | latin1                                 |
| character_set_filesystem | binary                                 |
| character_set_results    | utf8                                   |
| character_set_server     | latin1                                 |
| character_set_system     | utf8                                   |



MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2862

| character_sets_dir       | /usr/local/mysql/share/mysql/charsets/ |
+--------------------------+----------------------------------------+

These are typical character-set settings for an international-oriented client (notice the use of
utf8 Unicode) connected to a server in the West (latin1 is a West Europe character set).

Although Unicode (usually the utf8 variant on Unix, and the ucs2 variant on Windows) is
preferable to Latin, it is often not what your operating system utilities support best. Many
Windows users find that a Microsoft character set, such as cp932 for Japanese Windows, is
suitable.

If you cannot control the server settings, and you have no idea what setting your underlying
computer uses, try changing to a common character set for the country that you're in (euckr
= Korea; gb18030, gb2312 or gbk = People's Republic of China; big5 = Taiwan; sjis,
ujis, cp932, or eucjpms = Japan; ucs2 or utf8 = anywhere). Usually it is necessary
to change only the client and connection and results settings. The SET NAMES. statement
changes all three at once. For example:

SET NAMES 'big5';

Once the setting is correct, you can make it permanent by editing my.cnf or my.ini. For
example you might add lines looking like these:

[mysqld]
character-set-server=big5
[client]
default-character-set=big5

It is also possible that there are issues with the API configuration setting being used in
your application; see Why does my GUI front end or browser not display CJK characters
correctly...? for more information.

A.11.3.What problems should I be aware of when working with the Big5 Chinese character set?

MySQL supports the Big5 character set which is common in Hong Kong and Taiwan (Republic
of China). The MySQL big5 character set is in reality Microsoft code page 950, which is very
similar to the original big5 character set.

A feature request for adding HKSCS extensions has been filed. People who need this extension
may find the suggested patch for Bug #13577 to be of interest.

A.11.4.Why do Japanese character set conversions fail?

MySQL supports the sjis, ujis, cp932, and eucjpms character sets, as well as Unicode. A
common need is to convert between character sets. For example, there might be a Unix server
(typically with sjis or ujis) and a Windows client (typically with cp932).

In the following conversion table, the ucs2 column represents the source, and the sjis, cp932,
ujis, and eucjpms columns represent the destinations; that is, the last 4 columns provide the
hexadecimal result when we use CONVERT(ucs2) or we assign a ucs2 column containing the
value to an sjis, cp932, ujis, or eucjpms column.

Character Name ucs2 sjis cp932 ujis eucjpms

BROKEN BAR 00A6 3F 3F 8FA2C3 3F

FULLWIDTH BROKEN BAR FFE4 3F FA55 3F 8FA2

YEN SIGN 00A5 3F 3F 20 3F

FULLWIDTH YEN SIGN FFE5 818F 818F A1EF 3F

TILDE 007E 7E 7E 7E 7E



MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2863

Character Name ucs2 sjis cp932 ujis eucjpms

OVERLINE 203E 3F 3F 20 3F

HORIZONTAL BAR 2015 815C 815C A1BD A1BD

EM DASH 2014 3F 3F 3F 3F

REVERSE SOLIDUS 005C 815F 5C 5C 5C

FULLWIDTH "" FF3C 3F 815F 3F A1C0

WAVE DASH 301C 8160 3F A1C1 3F

FULLWIDTH TILDE FF5E 3F 8160 3F A1C1

DOUBLE VERTICAL LINE 2016 8161 3F A1C2 3F

PARALLEL TO 2225 3F 8161 3F A1C2

MINUS SIGN 2212 817C 3F A1DD 3F

FULLWIDTH HYPHEN-MINUS FF0D 3F 817C 3F A1DD

CENT SIGN 00A2 8191 3F A1F1 3F

FULLWIDTH CENT SIGN FFE0 3F 8191 3F A1F1

POUND SIGN 00A3 8192 3F A1F2 3F

FULLWIDTH POUND SIGN FFE1 3F 8192 3F A1F2

NOT SIGN 00AC 81CA 3F A2CC 3F

FULLWIDTH NOT SIGN FFE2 3F 81CA 3F A2CC

Now consider the following portion of the table.

 ucs2 sjis cp932

NOT SIGN 00AC 81CA 3F

FULLWIDTH NOT SIGN FFE2 3F 81CA

This means that MySQL converts the NOT SIGN (Unicode U+00AC) to sjis code point 0x81CA
and to cp932 code point 3F. (3F is the question mark (“?”. This is what is always used when the
conversion cannot be performed.)

A.11.5.What should I do if I want to convert SJIS 81CA to cp932?

Our answer is: “?”. There are disadvantages to this, and many people would prefer a “loose”
conversion, so that 81CA (NOT SIGN) in sjis becomes 81CA (FULLWIDTH NOT SIGN) in
cp932.

A.11.6.How does MySQL represent the Yen (¥) sign?

A problem arises because some versions of Japanese character sets (both sjis and euc) treat
5C as a reverse solidus (\, also known as a backslash), whereas others treat it as a yen sign
(¥).

MySQL follows only one version of the JIS (Japanese Industrial Standards) standard
description. In MySQL, 5C is always the reverse solidus (\).

A.11.7.Of what issues should I be aware when working with Korean character sets in MySQL?

In theory, while there have been several versions of the euckr (Extended Unix Code Korea)
character set, only one problem has been noted. We use the “ASCII” variant of EUC-KR, in
which the code point 0x5c is REVERSE SOLIDUS, that is \, instead of the “KS-Roman” variant
of EUC-KR, in which the code point 0x5c is WON SIGN (₩). This means that you cannot convert
Unicode U+20A9 to euckr:



MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2864

mysql> SELECT
           CONVERT('₩' USING euckr) AS euckr,

           HEX(CONVERT('₩' USING euckr)) AS hexeuckr;
+-------+----------+
| euckr | hexeuckr |
+-------+----------+
| ?     | 3F       |
+-------+----------+

A.11.8.Why do I get Incorrect string value error messages?

To see the problem, create a table with one Unicode (ucs2) column and one Chinese (gb2312)
column.

mysql> CREATE TABLE ch
       (ucs2 CHAR(3) CHARACTER SET ucs2,
       gb2312 CHAR(3) CHARACTER SET gb2312);

In nonstrict SQL mode, try to place the rare character 汌 in both columns.

mysql> SET sql_mode = '';
mysql> INSERT INTO ch VALUES ('A汌B','A汌B');
Query OK, 1 row affected, 1 warning (0.00 sec)

The INSERT produces a warning. Use the following statement to see what it is:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Warning
   Code: 1366
Message: Incorrect string value: '\xE6\xB1\x8CB' for column 'gb2312' at row 1

So it is a warning about the gb2312 column only.

mysql> SELECT ucs2,HEX(ucs2),gb2312,HEX(gb2312) FROM ch;
+-------+--------------+--------+-------------+
| ucs2  | HEX(ucs2)    | gb2312 | HEX(gb2312) |
+-------+--------------+--------+-------------+
| A汌B | 00416C4C0042 | A?B    | 413F42      |
+-------+--------------+--------+-------------+

Several things need explanation here:

1. The 汌 character is not in the gb2312 character set, as described earlier.

2. If you are using an old version of MySQL, you may see a different message.

3. A warning occurs rather than an error because MySQL is not set to use strict SQL mode. In
nonstrict mode, MySQL tries to do what it can, to get the best fit, rather than give up. With
strict SQL mode, the Incorrect string value message occurs as an error rather than
a warning, and the INSERT fails.

A.11.9.Why does my GUI front end or browser display CJK characters incorrectly in my application
using Access, PHP, or another API?

Obtain a direct connection to the server using the mysql client, and try the same query
there. If mysql responds correctly, the trouble may be that your application interface requires
initialization. Use mysql to tell you what character set or sets it uses with the statement SHOW
VARIABLES LIKE 'char%';. If you are using Access, you are most likely connecting with
Connector/ODBC. In this case, you should check Configuring Connector/ODBC. If, for example,
you use big5, you would enter SET NAMES 'big5'. (In this case, no ; character is required.)

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration.html


MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2865

If you are using ASP, you might need to add SET NAMES in the code. Here is an example that
has worked in the past:

<%
Session.CodePage=0
Dim strConnection
Dim Conn
strConnection="driver={MySQL ODBC 3.51 Driver};server=server;uid=username;" \
               & "pwd=password;database=database;stmt=SET NAMES 'big5';"
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open strConnection
%>

In much the same way, if you are using any character set other than latin1 with Connector/
Net, you must specify the character set in the connection string. See Connecting to MySQL
Using Connector/Net, for more information.

If you are using PHP, try this:

<?php
  $link = new mysqli($host, $usr, $pwd, $db);

  if( mysqli_connect_errno() )
  {
    printf("Connect failed: %s\n", mysqli_connect_error());
    exit();
  }

  $link->query("SET NAMES 'utf8'");
?>

In this case, we used SET NAMES to change character_set_client,
character_set_connection, and character_set_results.

Another issue often encountered in PHP applications has to do with assumptions made by
the browser. Sometimes adding or changing a <meta> tag suffices to correct the problem: for
example, to insure that the user agent interprets page content as UTF-8, include <meta http-
equiv="Content-Type" content="text/html; charset=utf-8"> in the <head>
section of the HTML page.

If you are using Connector/J, see Using Character Sets and Unicode.

A.11.10.I've upgraded to MySQL 5.5. How can I revert to behavior like that in MySQL 4.0 with regard to
character sets?

In MySQL Version 4.0, there was a single “global” character set for both server and client,
and the decision as to which character to use was made by the server administrator. This
changed starting with MySQL Version 4.1. What happens now is a “handshake”, as described in
Section 10.1.4, “Connection Character Sets and Collations”:

When a client connects, it sends to the server the name of the character set that
it wants to use. The server uses the name to set the character_set_client,
character_set_results, and character_set_connection system
variables. In effect, the server performs a SET NAMES operation using the
character set name.

The effect of this is that you cannot control the client character set by starting mysqld with
--character-set-server=utf8. However, some Asian customers prefer the MySQL
4.0 behavior. To make it possible to retain this behavior, we added a mysqld switch, --
character-set-client-handshake, which can be turned off with --skip-character-
set-client-handshake. If you start mysqld with --skip-character-set-client-

http://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting.html
http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-charsets.html


MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2866

handshake, then, when a client connects, it sends to the server the name of the character set
that it wants to use. However, the server ignores this request from the client.

By way of example, suppose that your favorite server character set is latin1 (unlikely in a CJK
area, but this is the default value). Suppose further that the client uses utf8 because this is
what the client's operating system supports. Now, start the server with latin1 as its default
character set:

mysqld --character-set-server=latin1

And then start the client with the default character set utf8:

mysql --default-character-set=utf8

The resulting settings can be seen by viewing the output of SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+----------------------------------------+
| Variable_name            | Value                                  |
+--------------------------+----------------------------------------+
| character_set_client     | utf8                                   |
| character_set_connection | utf8                                   |
| character_set_database   | latin1                                 |
| character_set_filesystem | binary                                 |
| character_set_results    | utf8                                   |
| character_set_server     | latin1                                 |
| character_set_system     | utf8                                   |
| character_sets_dir       | /usr/local/mysql/share/mysql/charsets/ |
+--------------------------+----------------------------------------+

Now stop the client, and stop the server using mysqladmin. Then start the server again, but
this time tell it to skip the handshake like so:

mysqld --character-set-server=utf8 --skip-character-set-client-handshake

Start the client with utf8 once again as the default character set, then display the resulting
settings:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+----------------------------------------+
| Variable_name            | Value                                  |
+--------------------------+----------------------------------------+
| character_set_client     | latin1                                 |
| character_set_connection | latin1                                 |
| character_set_database   | latin1                                 |
| character_set_filesystem | binary                                 |
| character_set_results    | latin1                                 |
| character_set_server     | latin1                                 |
| character_set_system     | utf8                                   |
| character_sets_dir       | /usr/local/mysql/share/mysql/charsets/ |
+--------------------------+----------------------------------------+

As you can see by comparing the differing results from SHOW VARIABLES, the server ignores
the client's initial settings if the --skip-character-set-client-handshake option is used.

A.11.11.Why do some LIKE and FULLTEXT searches with CJK characters fail?

For LIKE searches, there is a very simple problem with binary string column types such as
BINARY and BLOB: we must know where characters end. With multibyte character sets, different
characters might have different octet lengths. For example, in utf8, A requires one byte but ペ
requires three bytes, as shown here:



MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2867

+-------------------------+---------------------------+
| OCTET_LENGTH(_utf8 'A') | OCTET_LENGTH(_utf8 'ペ') |
+-------------------------+---------------------------+
|                       1 |                         3 |
+-------------------------+---------------------------+

If we do not know where the first character in a string ends, we do not know where the second
character begins, in which case even very simple searches such as LIKE '_A%' fail. The
solution is to use a nonbinary string column type defined to have the proper CJK character set.
For example: mycol TEXT CHARACTER SET sjis. Alternatively, convert to a CJK character
set before comparing.

This is one reason why MySQL cannot permit encodings of nonexistent characters. If it is not
strict about rejecting bad input, it has no way of knowing where characters end.

For FULLTEXT searches, we must know where words begin and end. With Western languages,
this is rarely a problem because most (if not all) of these use an easy-to-identify word boundary:
the space character. However, this is not usually the case with Asian writing. We could use
arbitrary halfway measures, like assuming that all Han characters represent words, or (for
Japanese) depending on changes from Katakana to Hiragana due to grammatical endings.
However, the only sure solution requires a comprehensive word list, which means that we would
have to include a dictionary in the server for each Asian language supported. This is simply not
feasible.

A.11.12.How do I know whether character X is available in all character sets?

The majority of simplified Chinese and basic nonhalfwidth Japanese Kana characters appear
in all CJK character sets. The following stored procedure accepts a UCS-2 Unicode character,
converts it to other character sets, and displays the results in hexadecimal.

DELIMITER //

CREATE PROCEDURE p_convert(ucs2_char CHAR(1) CHARACTER SET ucs2)
BEGIN

CREATE TABLE tj
             (ucs2 CHAR(1) character set ucs2,
              utf8 CHAR(1) character set utf8,
              big5 CHAR(1) character set big5,
              cp932 CHAR(1) character set cp932,
              eucjpms CHAR(1) character set eucjpms,
              euckr CHAR(1) character set euckr,
              gb2312 CHAR(1) character set gb2312,
              gbk CHAR(1) character set gbk,
              sjis CHAR(1) character set sjis,
              ujis CHAR(1) character set ujis);

INSERT INTO tj (ucs2) VALUES (ucs2_char);

UPDATE tj SET utf8=ucs2,
              big5=ucs2,
              cp932=ucs2,
              eucjpms=ucs2,
              euckr=ucs2,
              gb2312=ucs2,
              gbk=ucs2,
              sjis=ucs2,
              ujis=ucs2;

/* If there are conversion problems, UPDATE produces warnings. */

SELECT hex(ucs2) AS ucs2,
       hex(utf8) AS utf8,
       hex(big5) AS big5,
       hex(cp932) AS cp932,



MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2868

       hex(eucjpms) AS eucjpms,
       hex(euckr) AS euckr,
       hex(gb2312) AS gb2312,
       hex(gbk) AS gbk,
       hex(sjis) AS sjis,
       hex(ujis) AS ujis
FROM tj;

DROP TABLE tj;

END//

DELIMITER ;

The input can be any single ucs2 character, or it can be the code value (hexadecimal
representation) of that character. For example, from Unicode's list of ucs2 encodings and
names (http://www.unicode.org/Public/UNIDATA/UnicodeData.txt), we know that the Katakana
character Pe appears in all CJK character sets, and that its code value is X'30DA'. If we use
this value as the argument to p_convert(), the result is as shown here:

mysql> CALL p_convert(X'30DA');
+------+--------+------+-------+---------+-------+--------+------+------+------+
| ucs2 | utf8   | big5 | cp932 | eucjpms | euckr | gb2312 | gbk  | sjis | ujis |
+------+--------+------+-------+---------+-------+--------+------+------+------+
| 30DA | E3839A | C772 | 8379  | A5DA    | ABDA  | A5DA   | A5DA | 8379 | A5DA |
+------+--------+------+-------+---------+-------+--------+------+------+------+

Since none of the column values is 3F (that is, the question mark character, ?), we know that
every conversion worked.

A.11.13.Why do CJK strings sort incorrectly in Unicode? (I)

Note

The CJK sorting problems described here can occur for MySQL versions
prior to MySQL 8.0. As of MySQL 8.0, they can be solved by using the
utf8mb4 character set and the utf8mb4_ja_0900_as_cs collation.

Sometimes people observe that the result of a utf8_unicode_ci or ucs2_unicode_ci
search, or of an ORDER BY sort is not what they think a native would expect. Although we never
rule out the possibility that there is a bug, we have found in the past that many people do not
correctly read the standard table of weights for the Unicode Collation Algorithm. MySQL uses
the tables found under http://www.unicode.org/Public/UCA/:

• UCA 4.0.0 table: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

This includes xxx_unicode_ci collations with no version number in the collation name.

• UCA 5.2.0 table: http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt

This includes collations with _520_ in the collation name.

• UCA 9.0.0 table: http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt

This includes collations with _0900_ in the collation name.

To handle newer UCA versions, we create new collations. We are very wary about changing
ordering of existing collations because that affects indexes, which can bring about situations
such as that reported in Bug #16526, illustrated as follows:

mysql> CREATE TABLE tj (s1 CHAR(1) CHARACTER SET utf8 COLLATE utf8_unicode_ci);
Query OK, 0 rows affected (0.05 sec)

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
http://www.unicode.org/Public/UCA/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt


MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2869

mysql> INSERT INTO tj VALUES ('が'),('か');
Query OK, 2 rows affected (0.00 sec)
Records: 2  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM tj WHERE s1 = 'か';
+------+
| s1   |
+------+
| が  |

| か  |
+------+

The character in the first result row is not the one that we searched for. Why did MySQL retrieve
it? First we look for the Unicode code point value, which is possible by reading the hexadecimal
number for the ucs2 version of the characters:

mysql> SELECT s1, HEX(CONVERT(s1 USING ucs2)) FROM tj;
+------+-----------------------------+
| s1   | HEX(CONVERT(s1 USING ucs2)) |
+------+-----------------------------+
| が  | 304C                        |

| か  | 304B                        |
+------+-----------------------------+

Now we search for 304B and 304C in the 4.0.0 allkeys table, and find these lines:

304B  ; [.1E57.0020.000E.304B] # HIRAGANA LETTER KA
304C  ; [.1E57.0020.000E.304B][.0000.0140.0002.3099] # HIRAGANA LETTER GA; QQCM

The official Unicode names (following the “#” mark) tell us the Japanese syllabary (Hiragana),
the informal classification (letter, digit, or punctuation mark), and the Western identifier (KA
or GA, which happen to be voiced and unvoiced components of the same letter pair). More
importantly, the primary weight (the first hexadecimal number inside the square brackets) is
1E57 on both lines. For comparisons in both searching and sorting, MySQL pays attention to
the primary weight only, ignoring all the other numbers. This means that we are sorting が and
か correctly according to the Unicode specification. If we wanted to distinguish them, we'd have
to use a non-UCA (Unicode Collation Algorithm) collation (utf8_bin or utf8_general_ci),
or to compare the HEX() values, or use ORDER BY CONVERT(s1 USING sjis). Being
correct “according to Unicode” is not enough, of course: the person who submitted the bug was
equally correct. To solve this, we need another collation for Japanese according to the JIS X
4061 standard, in which voiced/unvoiced letter pairs like KA/GA are distinguishable for ordering
purposes.

A.11.14.Why do CJK strings sort incorrectly in Unicode? (II)

Note

The CJK sorting problems described here can occur for MySQL versions
prior to MySQL 8.0. As of MySQL 8.0, they can be solved by using the
utf8mb4 character set and the utf8mb4_ja_0900_as_cs collation.

If you are using Unicode (ucs2 or utf8), and you know what the Unicode sort order is (see
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”),
but MySQL still seems to sort your table incorrectly, first verify the character set in the table
definition:

mysql> SHOW CREATE TABLE t\G
******************** 1. row ******************
Table: t
Create Table: CREATE TABLE `t` (
`s1` char(1) CHARACTER SET ucs2 DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1



MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

2870

Since the character set for the column s1 appears to be correct (ucs2), check what information
the INFORMATION_SCHEMA.COLUMNS table can provide about this column:

mysql> SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
       FROM INFORMATION_SCHEMA.COLUMNS
       WHERE COLUMN_NAME = 's1'
       AND TABLE_NAME = 't';
+-------------+--------------------+-----------------+
| COLUMN_NAME | CHARACTER_SET_NAME | COLLATION_NAME  |
+-------------+--------------------+-----------------+
| s1          | ucs2               | ucs2_general_ci |
+-------------+--------------------+-----------------+

(See Section 21.4, “The INFORMATION_SCHEMA COLUMNS Table”, for more information.)

You can see that the collation is ucs2_general_ci instead of ucs2_unicode_ci. The
reason why this is so can be found using SHOW CHARACTER SET, as shown here:

mysql> SHOW CHARSET LIKE 'ucs2%';
+---------+---------------+-------------------+--------+
| Charset | Description   | Default collation | Maxlen |
+---------+---------------+-------------------+--------+
| ucs2    | UCS-2 Unicode | ucs2_general_ci   |      2 |
+---------+---------------+-------------------+--------+

For ucs2 and utf8, the default collation is “general”. To specify a Unicode UCA collation, use
COLLATE ucs2_unicode_ci, as shown in the preceding item.

A.11.15.Why are my supplementary characters rejected by MySQL?

Supplementary characters lie outside the Unicode Basic Multilingual Plane / Plane 0. BMP
characters have code point values between U+0000 and U+FFFF. Supplementary characters
have code point values between U+10000 and U+10FFFF.

To store supplementary characters, you must use a character set that permits them:

• The utf8 and ucs2 character sets support BMP characters only.

The utf8 character set permits only UTF-8 characters that take up to three bytes. This has
led to reports such as that found in Bug #12600, which we rejected as “not a bug”. With utf8,
MySQL must truncate an input string when it encounters bytes that it does no understand.
Otherwise, it is unknown how long the bad multibyte character is.

One possible workaround is to use ucs2 instead of utf8, in which case the “bad” characters
are changed to question marks. However, no truncation takes place. You can also change the
data type to BLOB or BINARY, which perform no validity checking.

• The utf8mb4, utf16, utf16le, and utf32 character sets support BMP characters, as well
as supplementary characters outside the BMP.

A.11.16.Should “CJK” be “CJKV”?

No. The term “CJKV” (Chinese Japanese Korean Vietnamese) refers to Vietnamese character
sets which contain Han (originally Chinese) characters. MySQL supports the modern
Vietnamese script with Western characters, but does not support the old Vietnamese script
using Han characters.

A.11.17.Does MySQL permit CJK characters to be used in database and table names?

Yes.

A.11.18.Where can I find translations of the MySQL Manual into Chinese, Japanese, and Korean?



MySQL 5.5 FAQ: Connectors & APIs

2871

The Japanese translation of the MySQL 5.6 manual can be downloaded from http://
dev.mysql.com/doc/.

A.11.19.Where can I get help with CJK and related issues in MySQL?

The following resources are available:

• A listing of MySQL user groups can be found at https://wikis.oracle.com/display/mysql/List+of
+MySQL+User+Groups.

• View feature requests relating to character set issues at http://tinyurl.com/y6xcuf.

• Visit the MySQL Character Sets, Collation, Unicode Forum. http://forums.mysql.com/ also
provides foreign-language forums.

A.12 MySQL 5.5 FAQ: Connectors & APIs
For common questions, issues, and answers relating to the MySQL Connectors and other APIs, see
the following areas of the Manual:

• Section 23.8.15, “Common Questions and Problems When Using the C API”

• Common Problems with MySQL and PHP

• Connector/ODBC Notes and Tips

• Connector/Net Programming

• MySQL Connector/J 5.1 Developer Guide

A.13 MySQL 5.5 FAQ: Replication
In the following section, we provide answers to questions that are most frequently asked about MySQL
Replication.

A.13.1 Must the slave be connected to the master all the time? ................................................ 2871
A.13.2 Must I enable networking on my master and slave to enable replication? ......................... 2872
A.13.3 How do I know how late a slave is compared to the master? In other words, how do I know

the date of the last statement replicated by the slave? .................................................... 2872
A.13.4 How do I force the master to block updates until the slave catches up? ........................... 2872
A.13.5 What issues should I be aware of when setting up two-way replication? .......................... 2872
A.13.6 How can I use replication to improve performance of my system? ................................... 2873
A.13.7 What should I do to prepare client code in my own applications to use performance-

enhancing replication? ................................................................................................... 2873
A.13.8 When and how much can MySQL replication improve the performance of my system? ...... 2873
A.13.9 How can I use replication to provide redundancy or high availability? .............................. 2874
A.13.10 How do I tell whether a master server is using statement-based or row-based binary

logging format? ............................................................................................................. 2874
A.13.11 How do I tell a slave to use row-based replication? ...................................................... 2874
A.13.12 How do I prevent GRANT and REVOKE statements from replicating to slave machines? .... 2874
A.13.13 Does replication work on mixed operating systems (for example, the master runs on

Linux while slaves run on OS X and Windows)? ............................................................. 2875
A.13.14 Does replication work on mixed hardware architectures (for example, the master runs on

a 64-bit machine while slaves run on 32-bit machines)? .................................................. 2875

A.13.1.Must the slave be connected to the master all the time?

No, it does not. The slave can go down or stay disconnected for hours or even days, and then
reconnect and catch up on updates. For example, you can set up a master/slave relationship
over a dial-up link where the link is up only sporadically and for short periods of time. The
implication of this is that, at any given time, the slave is not guaranteed to be in synchrony with
the master unless you take some special measures.

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
http://tinyurl.com/y6xcuf
http://forums.mysql.com/list.php?103
http://forums.mysql.com/
http://dev.mysql.com/doc/apis-php/en/apis-php-problems.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming.html
http://dev.mysql.com/doc/connector-j/5.1/en/


MySQL 5.5 FAQ: Replication

2872

To ensure that catchup can occur for a slave that has been disconnected, you must not remove
binary log files from the master that contain information that has not yet been replicated to the
slaves. Asynchronous replication can work only if the slave is able to continue reading the binary
log from the point where it last read events.

A.13.2.Must I enable networking on my master and slave to enable replication?

Yes, networking must be enabled on the master and slave. If networking is not enabled,
the slave cannot connect to the master and transfer the binary log. Check that the skip-
networking option has not been enabled in the configuration file for either server.

A.13.3.How do I know how late a slave is compared to the master? In other words, how do I know the
date of the last statement replicated by the slave?

Check the Seconds_Behind_Master column in the output from SHOW SLAVE STATUS. See
Section 17.1.4.1, “Checking Replication Status”.

When the slave SQL thread executes an event read from the master, it modifies its own time
to the event timestamp. (This is why TIMESTAMP is well replicated.) In the Time column in the
output of SHOW PROCESSLIST, the number of seconds displayed for the slave SQL thread is
the number of seconds between the timestamp of the last replicated event and the real time
of the slave machine. You can use this to determine the date of the last replicated event. Note
that if your slave has been disconnected from the master for one hour, and then reconnects,
you may immediately see large Time values such as 3600 for the slave SQL thread in SHOW
PROCESSLIST. This is because the slave is executing statements that are one hour old. See
Section 17.2.1, “Replication Implementation Details”.

A.13.4.How do I force the master to block updates until the slave catches up?

Use the following procedure:

1. On the master, execute these statements:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Record the replication coordinates (the current binary log file name and position) from the
output of the SHOW statement.

2. On the slave, issue the following statement, where the arguments to the
MASTER_POS_WAIT() function are the replication coordinate values obtained in the
previous step:

mysql> SELECT MASTER_POS_WAIT('log_name', log_pos);

The SELECT statement blocks until the slave reaches the specified log file and position. At
that point, the slave is in synchrony with the master and the statement returns.

3. On the master, issue the following statement to enable the master to begin processing
updates again:

mysql> UNLOCK TABLES;

A.13.5.What issues should I be aware of when setting up two-way replication?

MySQL replication currently does not support any locking protocol between master and slave
to guarantee the atomicity of a distributed (cross-server) update. In other words, it is possible
for client A to make an update to co-master 1, and in the meantime, before it propagates to co-
master 2, client B could make an update to co-master 2 that makes the update of client A work



MySQL 5.5 FAQ: Replication

2873

differently than it did on co-master 1. Thus, when the update of client A makes it to co-master
2, it produces tables that are different from what you have on co-master 1, even after all the
updates from co-master 2 have also propagated. This means that you should not chain two
servers together in a two-way replication relationship unless you are sure that your updates can
safely happen in any order, or unless you take care of mis-ordered updates somehow in the
client code.

You should also realize that two-way replication actually does not improve performance very
much (if at all) as far as updates are concerned. Each server must do the same number of
updates, just as you would have a single server do. The only difference is that there is a little
less lock contention because the updates originating on another server are serialized in one
slave thread. Even this benefit might be offset by network delays.

A.13.6.How can I use replication to improve performance of my system?

Set up one server as the master and direct all writes to it. Then configure as many slaves as you
have the budget and rackspace for, and distribute the reads among the master and the slaves.
You can also start the slaves with the --skip-innodb, --low-priority-updates, and --
delay-key-write=ALL options to get speed improvements on the slave end. In this case,
the slave uses nontransactional MyISAM tables instead of InnoDB tables to get more speed by
eliminating transactional overhead.

A.13.7.What should I do to prepare client code in my own applications to use performance-enhancing
replication?

See the guide to using replication as a scale-out solution, Section 17.3.3, “Using Replication for
Scale-Out”.

A.13.8.When and how much can MySQL replication improve the performance of my system?

MySQL replication is most beneficial for a system that processes frequent reads and infrequent
writes. In theory, by using a single-master/multiple-slave setup, you can scale the system by
adding more slaves until you either run out of network bandwidth, or your update load grows to
the point that the master cannot handle it.

To determine how many slaves you can use before the added benefits begin to level out, and
how much you can improve performance of your site, you must know your query patterns, and
determine empirically by benchmarking the relationship between the throughput for reads and
writes on a typical master and a typical slave. The example here shows a rather simplified
calculation of what you can get with replication for a hypothetical system. Let reads and
writes denote the number of reads and writes per second, respectively.

Let's say that system load consists of 10% writes and 90% reads, and we have determined
by benchmarking that reads is 1200 - 2 * writes. In other words, the system can do 1,200
reads per second with no writes, the average write is twice as slow as the average read, and the
relationship is linear. Suppose that the master and each slave have the same capacity, and that
we have one master and N slaves. Then we have for each server (master or slave):

reads = 1200 - 2 * writes

reads = 9 * writes / (N + 1) (reads are split, but writes replicated to all slaves)

9 * writes / (N + 1) + 2 * writes = 1200

writes = 1200 / (2 + 9/(N + 1))

The last equation indicates the maximum number of writes for N slaves, given a maximum
possible read rate of 1,200 per second and a ratio of nine reads per write.

This analysis yields the following conclusions:



MySQL 5.5 FAQ: Replication

2874

• If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109
writes per second.

• If N = 1, we get up to 184 writes per second.

• If N = 8, we get up to 400 writes per second.

• If N = 17, we get up to 480 writes per second.

• Eventually, as N approaches infinity (and our budget negative infinity), we can get very close
to 600 writes per second, increasing system throughput about 5.5 times. However, with only
eight servers, we increase it nearly four times.

These computations assume infinite network bandwidth and neglect several other factors
that could be significant on your system. In many cases, you may not be able to perform a
computation similar to the one just shown that accurately predicts what will happen on your
system if you add N replication slaves. However, answering the following questions should help
you decide whether and by how much replication will improve the performance of your system:

• What is the read/write ratio on your system?

• How much more write load can one server handle if you reduce the reads?

• For how many slaves do you have bandwidth available on your network?

A.13.9.How can I use replication to provide redundancy or high availability?

How you implement redundancy is entirely dependent on your application and circumstances.
High-availability solutions (with automatic failover) require active monitoring and either custom
scripts or third party tools to provide the failover support from the original MySQL server to the
slave.

To handle the process manually, you should be able to switch from a failed master to a pre-
configured slave by altering your application to talk to the new server or by adjusting the DNS for
the MySQL server from the failed server to the new server.

For more information and some example solutions, see Section 17.3.6, “Switching Masters
During Failover”.

A.13.10.How do I tell whether a master server is using statement-based or row-based binary logging
format?

Check the value of the binlog_format system variable:

mysql> SHOW VARIABLES LIKE 'binlog_format';

The value shown will be one of STATEMENT, ROW, or MIXED. For MIXED mode, statement-based
logging is used by default but replication switches automatically to row-based logging under
certain conditions, such as unsafe statements. For information about when this may occur, see
Section 5.4.4.3, “Mixed Binary Logging Format”.

A.13.11.How do I tell a slave to use row-based replication?

Slaves automatically know which format to use.

A.13.12.How do I prevent GRANT and REVOKE statements from replicating to slave machines?

Start the server with the --replicate-wild-ignore-table=mysql.% option to ignore
replication for tables in the mysql database.



MySQL 5.5 FAQ: MySQL Enterprise Thread Pool

2875

A.13.13.Does replication work on mixed operating systems (for example, the master runs on Linux while
slaves run on OS X and Windows)?

Yes.

A.13.14.Does replication work on mixed hardware architectures (for example, the master runs on a 64-bit
machine while slaves run on 32-bit machines)?

Yes.

A.14 MySQL 5.5 FAQ: MySQL Enterprise Thread Pool

A.14.1 What is the Thread Pool and what problem does it solve? .............................................. 2875
A.14.2 How does the Thread Pool limit and manage concurrent sessions and transactions for

optimal performance and throughput? ............................................................................ 2875
A.14.3 How is the Thread Pool different from the client side Connection Pool? ........................... 2875
A.14.4 When should I use the Thread Pool? ............................................................................ 2876
A.14.5 Are there recommended Thread Pool configurations? .................................................... 2876

A.14.1.What is the Thread Pool and what problem does it solve?

The MySQL Thread Pool is a MySQL server plugin that extends the default connection-handling
capabilities of the MySQL server to limit the number of concurrently executing statements/
queries and transactions to ensure that each has sufficient CPU and memory resources to fulfill
its task. Commercial distributions of MySQL 5.5 include the Thread Pool plugin.

The default thread-handling model in MySQL Server executes statements using one thread
per client connection. As more clients connect to the server and execute statements, overall
performance degrades. The Thread Pool plugin provides an alternative thread-handling model
designed to reduce overhead and improve performance. The Thread Pool plugin increases
server performance by efficiently managing statement execution threads for large numbers of
client connections, especially on modern multi-CPU/Core systems.

For more information, see Section 5.5.4, “MySQL Enterprise Thread Pool”.

A.14.2.How does the Thread Pool limit and manage concurrent sessions and transactions for optimal
performance and throughput?

The Thread Pool uses a “divide and conquer” approach to limiting and balancing concurrency.
Unlike the default connection handling of the MySQL Server, the Thread Pool separates
connections and threads, so there is no fixed relationship between connections and the threads
that execute statements received from those connections. The Thread Pool then manages client
connections within configurable thread groups, where they are prioritized and queued based on
the nature of the work they were submitted to accomplish.

For more information, see Section 5.5.4.3, “Thread Pool Operation”.

A.14.3.How is the Thread Pool different from the client side Connection Pool?

The MySQL Connection Pool operates on the client side to ensure that a MySQL client does
not constantly connect to and disconnect from the MySQL server. It is designed to cache idle
connections in the MySQL client for use by other users as they are needed. This minimizes the
overhead and expense of establishing and tearing down connections as queries are submitted
to the MySQL server. The MySQL Connection Pool has no visibility as to the query handling
capabilities or load of the back-end MySQL server. By contrast, the Thread Pool operates on the
MySQL server side and is designed to manage the execution of inbound concurrent connections
and queries as they are received from the client connections accessing the back-end MySQL
database. Because of the separation of duties, the MySQL Connection Pool and Thread Pool
are orthogonal and can be used independent of each other.



MySQL 5.5 FAQ: InnoDB Change Buffer

2876

MySQL Connection Pooling via the MySQL Connectors is covered in Chapter 23, Connectors
and APIs.

A.14.4.When should I use the Thread Pool?

There are a few rules of thumb to consider for optimal Thread Pool use cases:

The MySQL Threads_running variable keeps track of the number of concurrent statements
currently executing in the MySQL Server. If this variable consistently exceeds a region where
the server won't operate optimally (usually going beyond 40 for InnoDB workloads), the Thread
Pool will be beneficial, especially in extreme parallel overload situations.

If you are using the innodb_thread_concurrency to limit the number of concurrently
executing statements, you will find the Thread Pool solves the same problem, only better,
by assigning connections to thread groups, then queuing executions based on transactional
content, user defined designations, and so forth.

Lastly, if your workload comprises mainly short queries, the Thread Pool will be beneficial.

To learn more, see Section 5.5.4.4, “Thread Pool Tuning”.

A.14.5.Are there recommended Thread Pool configurations?

The Thread Pool has a number of user case driven configuration parameters that affect its
performance. To learn about these and tips on tuning, see Section 5.5.4.4, “Thread Pool
Tuning”.

A.15 MySQL 5.5 FAQ: InnoDB Change Buffer
A.15.1 What types of operations modify secondary indexes and result in change buffering? ......... 2876
A.15.2 What is the benefit of the InnoDB change buffer? ......................................................... 2876
A.15.3 Does the change buffer support other types of indexes? ................................................ 2876
A.15.4 How much space does InnoDB use for the change buffer? ............................................ 2876
A.15.5 How do I determine the current size of the change buffer? ............................................. 2877
A.15.6 When does change buffer merging occur? .................................................................... 2877
A.15.7 When is the change buffer flushed? .............................................................................. 2877
A.15.8 When should the change buffer be used? ..................................................................... 2877
A.15.9 When should the change buffer not be used? ................................................................ 2877
A.15.10 Where can I find additional information about the change buffer? .................................. 2878

A.15.1.What types of operations modify secondary indexes and result in change buffering?

INSERT, UPDATE, and DELETE operations can modify secondary indexes. If an affected index
page is not in the buffer pool, the changes can be buffered in the change buffer.

A.15.2.What is the benefit of the InnoDB change buffer?

Buffering secondary index changes when secondary index pages are not in the buffer pool
avoids expensive random access I/O operations that would be required to immediately read in
affected index pages from disk. Buffered changes can be applied later, in batches, as pages are
read into the buffer pool by other read operations.

A.15.3.Does the change buffer support other types of indexes?

No. The change buffer only supports secondary indexes. Clustered indexes, full-text indexes,
and spatial indexes are not supported. Full-text indexes have their own caching mechanism.

A.15.4.How much space does InnoDB use for the change buffer?

The maximum size of the on-disk change buffer in the system tablespace is 1/3 of the InnoDB
buffer pool size. InnoDB does not buffer an operation if it would cause the on-disk change buffer
to exceed this limit.



MySQL 5.5 FAQ: InnoDB Change Buffer

2877

Change buffer pages are not required to persist in the buffer pool and may be evicted by LRU
operations.

A.15.5.How do I determine the current size of the change buffer?

The current size of the change buffer is reported by SHOW ENGINE INNODB STATUS \G,
under the INSERT BUFFER AND ADAPTIVE HASH INDEX heading. For example:

-------------------------------------
INSERT BUFFER AND ADAPTIVE HASH INDEX
-------------------------------------
Ibuf: size 1, free list len 0, seg size 2, 0 merges

Relevant data points include:

• size: The number of pages used within the change buffer. Change buffer size is equal to
seg size - (1 + free list len). The 1 + value represents the change buffer header
page.

• seg size: The size of the change buffer, in pages.

For information about monitoring change buffer status, see Section 14.7.2, “Change Buffer”.

A.15.6.When does change buffer merging occur?

• When a page is read into the buffer pool, buffered changes are merged upon completion of
the read, before the page is made available.

• Change buffer merging is performed as a background task. The innodb_io_capacity
parameter sets an upper limit on the I/O activity performed by InnoDB background tasks such
as merging data from the change buffer.

• A change buffer merge is performed during crash recovery. Changes are applied from the
change buffer (in the system tablespace) to leaf pages of secondary indexes as index pages
are read into the buffer pool.

• The change buffer is fully durable and will survive a system crash. Upon restart, change buffer
merge operations resume as part of normal operations.

• A full merge of the change buffer can be forced as part of a slow server shutdown using --
innodb-fast-shutdown=0.

A.15.7.When is the change buffer flushed?

Updated pages are flushed by the same flushing mechanism that flushes the other pages that
occupy the buffer pool.

A.15.8.When should the change buffer be used?

The change buffer is a feature designed to reduce random I/O to secondary indexes as indexes
grow larger and no longer fit in the InnoDB buffer pool. Generally, the change buffer should be
used when the entire data set does not fit into the buffer pool, when there is substantial DML
activity that modifies secondary index pages, or when there are lots of secondary indexes that
are regularly changed by DML activity.

A.15.9.When should the change buffer not be used?

You might consider disabling the change buffer if the entire data set fits within the InnoDB buffer
pool, if you have relatively few secondary indexes, or if you are using solid-state storage, where
random reads are about as fast as sequential reads. Before making configuration changes, it is
recommended that you run tests using a representative workload to determine if disabling the
change buffer provides any benefit.



MySQL 5.5 FAQ: Virtualization Support

2878

A.15.10.Where can I find additional information about the change buffer?

The following sections and blog post provide additional information about the InnoDB change
buffer:

• Section 14.7.2, “Change Buffer”

• Section 14.9.4, “Configuring InnoDB Change Buffering”

• MySQL 5.5: InnoDB Change Buffering

A.16 MySQL 5.5 FAQ: Virtualization Support

A.16.1 Is MySQL supported on virtualized environments such as Oracle VM, VMWare, Docker,
Microsoft Hyper-V, or others? ........................................................................................ 2878

A.16.1.Is MySQL supported on virtualized environments such as Oracle VM, VMWare, Docker,
Microsoft Hyper-V, or others?

MySQL is supported on virtualized environments, but is certified only for Oracle VM. Contact
Oracle Support for more information.

Be aware of potential problems when using virtualization software. The usual ones are related to
performance, performance degradations, slowness, or unpredictability of disk, I/O, network, and
memory.

https://blogs.oracle.com/mysqlinnodb/entry/mysql_5_5_innodb_change
http://www.oracle.com/technetwork/server-storage/vm/index.html


2879

Appendix B Errors, Error Codes, and Common Problems

Table of Contents
B.1 Sources of Error Information .............................................................................................. 2879
B.2 Types of Error Values ....................................................................................................... 2879
B.3 Server Error Codes and Messages .................................................................................... 2880
B.4 Client Error Codes and Messages ..................................................................................... 2932
B.5 Problems and Common Errors .......................................................................................... 2936

B.5.1 How to Determine What Is Causing a Problem ........................................................ 2936
B.5.2 Common Errors When Using MySQL Programs ....................................................... 2937
B.5.3 Administration-Related Issues ................................................................................. 2950
B.5.4 Query-Related Issues ............................................................................................. 2957
B.5.5 Optimizer-Related Issues ........................................................................................ 2965
B.5.6 Table Definition-Related Issues ............................................................................... 2965
B.5.7 Known Issues in MySQL ........................................................................................ 2966

This appendix lists common problems and errors that may occur and potential resolutions, in addition
to listing the errors that may appear when you call MySQL from any host language. The first section
covers problems and resolutions. Detailed information on errors is provided: One list displays server
error messages. Another list displays client program messages.

B.1 Sources of Error Information
There are several sources of error information in MySQL:

• Each SQL statement executed results in an error code, an SQLSTATE value, and an error message,
as described in Section B.2, “Types of Error Values”. These errors are returned from the server side;
see Section B.3, “Server Error Codes and Messages”.

• Errors can occur on the client side, usually involving problems communicating with the server; see
Section B.4, “Client Error Codes and Messages”.

• SQL statement warning and error information is available through the SHOW WARNINGS and
SHOW ERRORS statements. The warning_count system variable indicates the number of errors,
warnings, and notes. The error_count system variable indicates the number of errors. Its value
excludes warnings and notes.

• SHOW SLAVE STATUS statement output includes information about replication errors occurring on
the slave side.

• SHOW ENGINE INNODB STATUS statement output includes information about the most recent
foreign key error if a CREATE TABLE statement for an InnoDB table fails.

• The perror program provides information from the command line about error numbers. See
Section 4.8.1, “perror — Explain Error Codes”.

Descriptions of server and client errors are provided later in this Appendix. For information about errors
related to InnoDB, see Section 14.23.4, “InnoDB Error Handling”.

B.2 Types of Error Values
When an error occurs in MySQL, the server returns two types of error values:

• A MySQL-specific error code. This value is numeric. It is not portable to other database systems.

• An SQLSTATE value. The value is a five-character string (for example, '42S02'). The values are
taken from ANSI SQL and ODBC and are more standardized.



Server Error Codes and Messages

2880

A message string that provides a textual description of the error is also available.

When an error occurs, the MySQL error code, SQLSTATE value, and message string are available
using C API functions:

• MySQL error code: Call mysql_errno()

• SQLSTATE value: Call mysql_sqlstate()

• Error message: Call mysql_error()

For prepared statements, the corresponding error functions are mysql_stmt_errno(),
mysql_stmt_sqlstate(), and mysql_stmt_error(). All error functions are described in
Section 23.8, “MySQL C API”.

The number of errors, warnings, and notes for the previous statement can be obtained by calling
mysql_warning_count(). See Section 23.8.7.72, “mysql_warning_count()”.

The first two characters of an SQLSTATE value indicate the error class:

• Class = '00' indicates success.

• Class = '01' indicates a warning.

• Class = '02' indicates “not found.” This is relevant within the context of cursors and is used to
control what happens when a cursor reaches the end of a data set. This condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• Class > '02' indicates an exception.

B.3 Server Error Codes and Messages
MySQL programs have access to several types of error information when the server returns an error.
For example, the mysql client program displays errors using the following format:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

The message displayed contains three types of information:

• A numeric error code (1146). This number is MySQL-specific and is not portable to other database
systems.

• A five-character SQLSTATE value ('42S02'). The values are taken from ANSI SQL and ODBC and
are more standardized. Not all MySQL error numbers have corresponding SQLSTATE values. In
these cases, 'HY000' (general error) is used.

• A message string that provides a textual description of the error.

For error checking, use error codes, not error messages. Error messages do not change often, but it is
possible. Also if the database administrator changes the language setting, that affects the language of
error messages.

Error codes are stable across GA releases of a given MySQL series. Before a series reaches GA
status, new codes may still be under development and subject to change.

Server error information comes from the following source files. For details about the way that error
information is defined, see the MySQL Internals Manual.

• Error message information is listed in the share/errmsg-utf8.txt file. %d and %s represent
numbers and strings, respectively, that are substituted into the Message values when they are
displayed.

http://dev.mysql.com/doc/internals/en


Server Error Codes and Messages

2881

• The Error values listed in share/errmsg-utf8.txt are used to generate the definitions in the
include/mysqld_error.h and include/mysqld_ername.h MySQL source files.

• The SQLSTATE values listed in share/errmsg-utf8.txt are used to generate the definitions in
the include/sql_state.h MySQL source file.

Because updates are frequent, it is possible that those files will contain additional error information not
listed here.

•   Error: 1000 SQLSTATE: HY000 (ER_HASHCHK)

Message: hashchk

Unused.

•   Error: 1001 SQLSTATE: HY000 (ER_NISAMCHK)

Message: isamchk

Unused.

•   Error: 1002 SQLSTATE: HY000 (ER_NO)

Message: NO

Used in the construction of other messages.

•   Error: 1003 SQLSTATE: HY000 (ER_YES)

Message: YES

Used in the construction of other messages.

Extended EXPLAIN format generates Note messages. ER_YES is used in the Code column for these
messages in subsequent SHOW WARNINGS output.

•   Error: 1004 SQLSTATE: HY000 (ER_CANT_CREATE_FILE)

Message: Can't create file '%s' (errno: %d)

Occurs for failure to create or copy a file needed for some operation.

Possible causes: Permissions problem for source file; destination file already exists but is not
writeable.

•   Error: 1005 SQLSTATE: HY000 (ER_CANT_CREATE_TABLE)

Message: Can't create table '%s' (errno: %d)

InnoDB reports this error when a table cannot be created. If the error message refers to error 150,
table creation failed because a foreign key constraint was not correctly formed. If the error message
refers to error −1, table creation probably failed because the table includes a column name that
matched the name of an internal InnoDB table.

•   Error: 1006 SQLSTATE: HY000 (ER_CANT_CREATE_DB)

Message: Can't create database '%s' (errno: %d)

•   Error: 1007 SQLSTATE: HY000 (ER_DB_CREATE_EXISTS)

Message: Can't create database '%s'; database exists

An attempt to create a database failed because the database already exists.



Server Error Codes and Messages

2882

Drop the database first if you really want to replace an existing database, or add an IF NOT
EXISTS clause to the CREATE DATABASE statement if to retain an existing database without having
the statement produce an error.

•   Error: 1008 SQLSTATE: HY000 (ER_DB_DROP_EXISTS)

Message: Can't drop database '%s'; database doesn't exist

•   Error: 1009 SQLSTATE: HY000 (ER_DB_DROP_DELETE)

Message: Error dropping database (can't delete '%s', errno: %d)

•   Error: 1010 SQLSTATE: HY000 (ER_DB_DROP_RMDIR)

Message: Error dropping database (can't rmdir '%s', errno: %d)

•   Error: 1011 SQLSTATE: HY000 (ER_CANT_DELETE_FILE)

Message: Error on delete of '%s' (errno: %d)

•   Error: 1012 SQLSTATE: HY000 (ER_CANT_FIND_SYSTEM_REC)

Message: Can't read record in system table

Returned by InnoDB for attempts to access InnoDB INFORMATION_SCHEMA tables when InnoDB
is unavailable.

•   Error: 1013 SQLSTATE: HY000 (ER_CANT_GET_STAT)

Message: Can't get status of '%s' (errno: %d)

•   Error: 1014 SQLSTATE: HY000 (ER_CANT_GET_WD)

Message: Can't get working directory (errno: %d)

•   Error: 1015 SQLSTATE: HY000 (ER_CANT_LOCK)

Message: Can't lock file (errno: %d)

•   Error: 1016 SQLSTATE: HY000 (ER_CANT_OPEN_FILE)

Message: Can't open file: '%s' (errno: %d)

InnoDB reports this error when the table from the InnoDB data files cannot be found, even though
the .frm file for the table exists. See Section 14.23.3, “Troubleshooting InnoDB Data Dictionary
Operations”.

•   Error: 1017 SQLSTATE: HY000 (ER_FILE_NOT_FOUND)

Message: Can't find file: '%s' (errno: %d)

•   Error: 1018 SQLSTATE: HY000 (ER_CANT_READ_DIR)

Message: Can't read dir of '%s' (errno: %d)

•   Error: 1019 SQLSTATE: HY000 (ER_CANT_SET_WD)

Message: Can't change dir to '%s' (errno: %d)

•   Error: 1020 SQLSTATE: HY000 (ER_CHECKREAD)

Message: Record has changed since last read in table '%s'



Server Error Codes and Messages

2883

•   Error: 1021 SQLSTATE: HY000 (ER_DISK_FULL)

Message: Disk full (%s); waiting for someone to free some space...

•   Error: 1022 SQLSTATE: 23000 (ER_DUP_KEY)

Message: Can't write; duplicate key in table '%s'

•   Error: 1023 SQLSTATE: HY000 (ER_ERROR_ON_CLOSE)

Message: Error on close of '%s' (errno: %d)

•   Error: 1024 SQLSTATE: HY000 (ER_ERROR_ON_READ)

Message: Error reading file '%s' (errno: %d)

•   Error: 1025 SQLSTATE: HY000 (ER_ERROR_ON_RENAME)

Message: Error on rename of '%s' to '%s' (errno: %d)

InnoDB reports this error if you attempt to drop the last index that can enforce a particular referential
constraint. As of MySQL 5.5, this error message is replaced by ERROR 1553.

•   Error: 1026 SQLSTATE: HY000 (ER_ERROR_ON_WRITE)

Message: Error writing file '%s' (errno: %d)

•   Error: 1027 SQLSTATE: HY000 (ER_FILE_USED)

Message: '%s' is locked against change

•   Error: 1028 SQLSTATE: HY000 (ER_FILSORT_ABORT)

Message: Sort aborted

•   Error: 1029 SQLSTATE: HY000 (ER_FORM_NOT_FOUND)

Message: View '%s' doesn't exist for '%s'

•   Error: 1030 SQLSTATE: HY000 (ER_GET_ERRNO)

Message: Got error %d from storage engine

Check the %d value to see what the OS error means. For example, 28 indicates that you have run
out of disk space.

•   Error: 1031 SQLSTATE: HY000 (ER_ILLEGAL_HA)

Message: Table storage engine for '%s' doesn't have this option

•   Error: 1032 SQLSTATE: HY000 (ER_KEY_NOT_FOUND)

Message: Can't find record in '%s'

•   Error: 1033 SQLSTATE: HY000 (ER_NOT_FORM_FILE)

Message: Incorrect information in file: '%s'

•   Error: 1034 SQLSTATE: HY000 (ER_NOT_KEYFILE)

Message: Incorrect key file for table '%s'; try to repair it

•   Error: 1035 SQLSTATE: HY000 (ER_OLD_KEYFILE)

Message: Old key file for table '%s'; repair it!



Server Error Codes and Messages

2884

•   Error: 1036 SQLSTATE: HY000 (ER_OPEN_AS_READONLY)

Message: Table '%s' is read only

•   Error: 1037 SQLSTATE: HY001 (ER_OUTOFMEMORY)

Message: Out of memory; restart server and try again (needed %d bytes)

•   Error: 1038 SQLSTATE: HY001 (ER_OUT_OF_SORTMEMORY)

Message: Out of sort memory, consider increasing server sort buffer size

•   Error: 1039 SQLSTATE: HY000 (ER_UNEXPECTED_EOF)

Message: Unexpected EOF found when reading file '%s' (errno: %d)

•   Error: 1040 SQLSTATE: 08004 (ER_CON_COUNT_ERROR)

Message: Too many connections

•   Error: 1041 SQLSTATE: HY000 (ER_OUT_OF_RESOURCES)

Message: Out of memory; check if mysqld or some other process uses all available memory; if not,
you may have to use 'ulimit' to allow mysqld to use more memory or you can add more swap space

•   Error: 1042 SQLSTATE: 08S01 (ER_BAD_HOST_ERROR)

Message: Can't get hostname for your address

•   Error: 1043 SQLSTATE: 08S01 (ER_HANDSHAKE_ERROR)

Message: Bad handshake

•   Error: 1044 SQLSTATE: 42000 (ER_DBACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' to database '%s'

•   Error: 1045 SQLSTATE: 28000 (ER_ACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' (using password: %s)

•   Error: 1046 SQLSTATE: 3D000 (ER_NO_DB_ERROR)

Message: No database selected

•   Error: 1047 SQLSTATE: 08S01 (ER_UNKNOWN_COM_ERROR)

Message: Unknown command

•   Error: 1048 SQLSTATE: 23000 (ER_BAD_NULL_ERROR)

Message: Column '%s' cannot be null

•   Error: 1049 SQLSTATE: 42000 (ER_BAD_DB_ERROR)

Message: Unknown database '%s'

•   Error: 1050 SQLSTATE: 42S01 (ER_TABLE_EXISTS_ERROR)

Message: Table '%s' already exists

•   Error: 1051 SQLSTATE: 42S02 (ER_BAD_TABLE_ERROR)

Message: Unknown table '%s'

•   Error: 1052 SQLSTATE: 23000 (ER_NON_UNIQ_ERROR)



Server Error Codes and Messages

2885

Message: Column '%s' in %s is ambiguous

%s = column name
%s = location of column (for example, "field list")

Likely cause: A column appears in a query without appropriate qualification, such as in a select list or
ON clause.

Examples:

mysql> SELECT i FROM t INNER JOIN t AS t2;
ERROR 1052 (23000): Column 'i' in field list is ambiguous

mysql> SELECT * FROM t LEFT JOIN t AS t2 ON i = i;
ERROR 1052 (23000): Column 'i' in on clause is ambiguous

Resolution:

• Qualify the column with the appropriate table name:

mysql> SELECT t2.i FROM t INNER JOIN t AS t2;

• Modify the query to avoid the need for qualification:

mysql> SELECT * FROM t LEFT JOIN t AS t2 USING (i);

•   Error: 1053 SQLSTATE: 08S01 (ER_SERVER_SHUTDOWN)

Message: Server shutdown in progress

•   Error: 1054 SQLSTATE: 42S22 (ER_BAD_FIELD_ERROR)

Message: Unknown column '%s' in '%s'

•   Error: 1055 SQLSTATE: 42000 (ER_WRONG_FIELD_WITH_GROUP)

Message: '%s' isn't in GROUP BY

•   Error: 1056 SQLSTATE: 42000 (ER_WRONG_GROUP_FIELD)

Message: Can't group on '%s'

•   Error: 1057 SQLSTATE: 42000 (ER_WRONG_SUM_SELECT)

Message: Statement has sum functions and columns in same statement

•   Error: 1058 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT)

Message: Column count doesn't match value count

•   Error: 1059 SQLSTATE: 42000 (ER_TOO_LONG_IDENT)

Message: Identifier name '%s' is too long

•   Error: 1060 SQLSTATE: 42S21 (ER_DUP_FIELDNAME)

Message: Duplicate column name '%s'

•   Error: 1061 SQLSTATE: 42000 (ER_DUP_KEYNAME)

Message: Duplicate key name '%s'



Server Error Codes and Messages

2886

•   Error: 1062 SQLSTATE: 23000 (ER_DUP_ENTRY)

Message: Duplicate entry '%s' for key %d

The message returned with this error uses the format string for ER_DUP_ENTRY_WITH_KEY_NAME.

•   Error: 1063 SQLSTATE: 42000 (ER_WRONG_FIELD_SPEC)

Message: Incorrect column specifier for column '%s'

•   Error: 1064 SQLSTATE: 42000 (ER_PARSE_ERROR)

Message: %s near '%s' at line %d

•   Error: 1065 SQLSTATE: 42000 (ER_EMPTY_QUERY)

Message: Query was empty

•   Error: 1066 SQLSTATE: 42000 (ER_NONUNIQ_TABLE)

Message: Not unique table/alias: '%s'

•   Error: 1067 SQLSTATE: 42000 (ER_INVALID_DEFAULT)

Message: Invalid default value for '%s'

•   Error: 1068 SQLSTATE: 42000 (ER_MULTIPLE_PRI_KEY)

Message: Multiple primary key defined

•   Error: 1069 SQLSTATE: 42000 (ER_TOO_MANY_KEYS)

Message: Too many keys specified; max %d keys allowed

•   Error: 1070 SQLSTATE: 42000 (ER_TOO_MANY_KEY_PARTS)

Message: Too many key parts specified; max %d parts allowed

•   Error: 1071 SQLSTATE: 42000 (ER_TOO_LONG_KEY)

Message: Specified key was too long; max key length is %d bytes

•   Error: 1072 SQLSTATE: 42000 (ER_KEY_COLUMN_DOES_NOT_EXITS)

Message: Key column '%s' doesn't exist in table

•   Error: 1073 SQLSTATE: 42000 (ER_BLOB_USED_AS_KEY)

Message: BLOB column '%s' can't be used in key specification with the used table type

•   Error: 1074 SQLSTATE: 42000 (ER_TOO_BIG_FIELDLENGTH)

Message: Column length too big for column '%s' (max = %lu); use BLOB or TEXT instead

•   Error: 1075 SQLSTATE: 42000 (ER_WRONG_AUTO_KEY)

Message: Incorrect table definition; there can be only one auto column and it must be defined as a
key

•   Error: 1076 SQLSTATE: HY000 (ER_READY)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d

•   Error: 1077 SQLSTATE: HY000 (ER_NORMAL_SHUTDOWN)



Server Error Codes and Messages

2887

Message: %s: Normal shutdown

•   Error: 1078 SQLSTATE: HY000 (ER_GOT_SIGNAL)

Message: %s: Got signal %d. Aborting!

•   Error: 1079 SQLSTATE: HY000 (ER_SHUTDOWN_COMPLETE)

Message: %s: Shutdown complete

•   Error: 1080 SQLSTATE: 08S01 (ER_FORCING_CLOSE)

Message: %s: Forcing close of thread %ld user: '%s'

•   Error: 1081 SQLSTATE: 08S01 (ER_IPSOCK_ERROR)

Message: Can't create IP socket

•   Error: 1082 SQLSTATE: 42S12 (ER_NO_SUCH_INDEX)

Message: Table '%s' has no index like the one used in CREATE INDEX; recreate the table

•   Error: 1083 SQLSTATE: 42000 (ER_WRONG_FIELD_TERMINATORS)

Message: Field separator argument is not what is expected; check the manual

•   Error: 1084 SQLSTATE: 42000 (ER_BLOBS_AND_NO_TERMINATED)

Message: You can't use fixed rowlength with BLOBs; please use 'fields terminated by'

•   Error: 1085 SQLSTATE: HY000 (ER_TEXTFILE_NOT_READABLE)

Message: The file '%s' must be in the database directory or be readable by all

•   Error: 1086 SQLSTATE: HY000 (ER_FILE_EXISTS_ERROR)

Message: File '%s' already exists

•   Error: 1087 SQLSTATE: HY000 (ER_LOAD_INFO)

Message: Records: %ld Deleted: %ld Skipped: %ld Warnings: %ld

•   Error: 1088 SQLSTATE: HY000 (ER_ALTER_INFO)

Message: Records: %ld Duplicates: %ld

•   Error: 1089 SQLSTATE: HY000 (ER_WRONG_SUB_KEY)

Message: Incorrect prefix key; the used key part isn't a string, the used length is longer than the key
part, or the storage engine doesn't support unique prefix keys

•   Error: 1090 SQLSTATE: 42000 (ER_CANT_REMOVE_ALL_FIELDS)

Message: You can't delete all columns with ALTER TABLE; use DROP TABLE instead

•   Error: 1091 SQLSTATE: 42000 (ER_CANT_DROP_FIELD_OR_KEY)

Message: Can't DROP '%s'; check that column/key exists

•   Error: 1092 SQLSTATE: HY000 (ER_INSERT_INFO)

Message: Records: %ld Duplicates: %ld Warnings: %ld

•   Error: 1093 SQLSTATE: HY000 (ER_UPDATE_TABLE_USED)



Server Error Codes and Messages

2888

Message: You can't specify target table '%s' for update in FROM clause

This error occurs for attempts to select from and modify the same table within a single statement.
See Section C.4, “Restrictions on Subqueries”.

•   Error: 1094 SQLSTATE: HY000 (ER_NO_SUCH_THREAD)

Message: Unknown thread id: %lu

•   Error: 1095 SQLSTATE: HY000 (ER_KILL_DENIED_ERROR)

Message: You are not owner of thread %lu

•   Error: 1096 SQLSTATE: HY000 (ER_NO_TABLES_USED)

Message: No tables used

•   Error: 1097 SQLSTATE: HY000 (ER_TOO_BIG_SET)

Message: Too many strings for column %s and SET

•   Error: 1098 SQLSTATE: HY000 (ER_NO_UNIQUE_LOGFILE)

Message: Can't generate a unique log-filename %s.(1-999)

•   Error: 1099 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED_FOR_WRITE)

Message: Table '%s' was locked with a READ lock and can't be updated

•   Error: 1100 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED)

Message: Table '%s' was not locked with LOCK TABLES

•   Error: 1101 SQLSTATE: 42000 (ER_BLOB_CANT_HAVE_DEFAULT)

Message: BLOB/TEXT column '%s' can't have a default value

•   Error: 1102 SQLSTATE: 42000 (ER_WRONG_DB_NAME)

Message: Incorrect database name '%s'

•   Error: 1103 SQLSTATE: 42000 (ER_WRONG_TABLE_NAME)

Message: Incorrect table name '%s'

•   Error: 1104 SQLSTATE: 42000 (ER_TOO_BIG_SELECT)

Message: The SELECT would examine more than MAX_JOIN_SIZE rows; check your WHERE and
use SET SQL_BIG_SELECTS=1 or SET MAX_JOIN_SIZE=# if the SELECT is okay

•   Error: 1105 SQLSTATE: HY000 (ER_UNKNOWN_ERROR)

Message: Unknown error

•   Error: 1106 SQLSTATE: 42000 (ER_UNKNOWN_PROCEDURE)

Message: Unknown procedure '%s'

•   Error: 1107 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_PROCEDURE)

Message: Incorrect parameter count to procedure '%s'

•   Error: 1108 SQLSTATE: HY000 (ER_WRONG_PARAMETERS_TO_PROCEDURE)



Server Error Codes and Messages

2889

Message: Incorrect parameters to procedure '%s'

•   Error: 1109 SQLSTATE: 42S02 (ER_UNKNOWN_TABLE)

Message: Unknown table '%s' in %s

•   Error: 1110 SQLSTATE: 42000 (ER_FIELD_SPECIFIED_TWICE)

Message: Column '%s' specified twice

•   Error: 1111 SQLSTATE: HY000 (ER_INVALID_GROUP_FUNC_USE)

Message: Invalid use of group function

•   Error: 1112 SQLSTATE: 42000 (ER_UNSUPPORTED_EXTENSION)

Message: Table '%s' uses an extension that doesn't exist in this MySQL version

•   Error: 1113 SQLSTATE: 42000 (ER_TABLE_MUST_HAVE_COLUMNS)

Message: A table must have at least 1 column

•   Error: 1114 SQLSTATE: HY000 (ER_RECORD_FILE_FULL)

Message: The table '%s' is full

InnoDB reports this error when the system tablespace runs out of free space. Reconfigure the
system tablespace to add a new data file.

•   Error: 1115 SQLSTATE: 42000 (ER_UNKNOWN_CHARACTER_SET)

Message: Unknown character set: '%s'

•   Error: 1116 SQLSTATE: HY000 (ER_TOO_MANY_TABLES)

Message: Too many tables; MySQL can only use %d tables in a join

•   Error: 1117 SQLSTATE: HY000 (ER_TOO_MANY_FIELDS)

Message: Too many columns

•   Error: 1118 SQLSTATE: 42000 (ER_TOO_BIG_ROWSIZE)

Message: Row size too large. The maximum row size for the used table type, not counting BLOBs, is
%ld. You have to change some columns to TEXT or BLOBs

•   Error: 1119 SQLSTATE: HY000 (ER_STACK_OVERRUN)

Message: Thread stack overrun: Used: %ld of a %ld stack. Use 'mysqld --thread_stack=#' to specify
a bigger stack if needed

•   Error: 1120 SQLSTATE: 42000 (ER_WRONG_OUTER_JOIN)

Message: Cross dependency found in OUTER JOIN; examine your ON conditions

•   Error: 1121 SQLSTATE: 42000 (ER_NULL_COLUMN_IN_INDEX)

Message: Table handler doesn't support NULL in given index. Please change column '%s' to be NOT
NULL or use another handler

•   Error: 1122 SQLSTATE: HY000 (ER_CANT_FIND_UDF)

Message: Can't load function '%s'



Server Error Codes and Messages

2890

•   Error: 1123 SQLSTATE: HY000 (ER_CANT_INITIALIZE_UDF)

Message: Can't initialize function '%s'; %s

•   Error: 1124 SQLSTATE: HY000 (ER_UDF_NO_PATHS)

Message: No paths allowed for shared library

•   Error: 1125 SQLSTATE: HY000 (ER_UDF_EXISTS)

Message: Function '%s' already exists

•   Error: 1126 SQLSTATE: HY000 (ER_CANT_OPEN_LIBRARY)

Message: Can't open shared library '%s' (errno: %d %s)

•   Error: 1127 SQLSTATE: HY000 (ER_CANT_FIND_DL_ENTRY)

Message: Can't find symbol '%s' in library

•   Error: 1128 SQLSTATE: HY000 (ER_FUNCTION_NOT_DEFINED)

Message: Function '%s' is not defined

•   Error: 1129 SQLSTATE: HY000 (ER_HOST_IS_BLOCKED)

Message: Host '%s' is blocked because of many connection errors; unblock with 'mysqladmin flush-
hosts'

•   Error: 1130 SQLSTATE: HY000 (ER_HOST_NOT_PRIVILEGED)

Message: Host '%s' is not allowed to connect to this MySQL server

•   Error: 1131 SQLSTATE: 42000 (ER_PASSWORD_ANONYMOUS_USER)

Message: You are using MySQL as an anonymous user and anonymous users are not allowed to
change passwords

•   Error: 1132 SQLSTATE: 42000 (ER_PASSWORD_NOT_ALLOWED)

Message: You must have privileges to update tables in the mysql database to be able to change
passwords for others

•   Error: 1133 SQLSTATE: 42000 (ER_PASSWORD_NO_MATCH)

Message: Can't find any matching row in the user table

•   Error: 1134 SQLSTATE: HY000 (ER_UPDATE_INFO)

Message: Rows matched: %ld Changed: %ld Warnings: %ld

•   Error: 1135 SQLSTATE: HY000 (ER_CANT_CREATE_THREAD)

Message: Can't create a new thread (errno %d); if you are not out of available memory, you can
consult the manual for a possible OS-dependent bug

•   Error: 1136 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT_ON_ROW)

Message: Column count doesn't match value count at row %ld

•   Error: 1137 SQLSTATE: HY000 (ER_CANT_REOPEN_TABLE)

Message: Can't reopen table: '%s'

•   Error: 1138 SQLSTATE: 22004 (ER_INVALID_USE_OF_NULL)



Server Error Codes and Messages

2891

Message: Invalid use of NULL value

•   Error: 1139 SQLSTATE: 42000 (ER_REGEXP_ERROR)

Message: Got error '%s' from regexp

•   Error: 1140 SQLSTATE: 42000 (ER_MIX_OF_GROUP_FUNC_AND_FIELDS)

Message: Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no GROUP columns is illegal
if there is no GROUP BY clause

•   Error: 1141 SQLSTATE: 42000 (ER_NONEXISTING_GRANT)

Message: There is no such grant defined for user '%s' on host '%s'

•   Error: 1142 SQLSTATE: 42000 (ER_TABLEACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for table '%s'

•   Error: 1143 SQLSTATE: 42000 (ER_COLUMNACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for column '%s' in table '%s'

•   Error: 1144 SQLSTATE: 42000 (ER_ILLEGAL_GRANT_FOR_TABLE)

Message: Illegal GRANT/REVOKE command; please consult the manual to see which privileges can
be used

•   Error: 1145 SQLSTATE: 42000 (ER_GRANT_WRONG_HOST_OR_USER)

Message: The host or user argument to GRANT is too long

•   Error: 1146 SQLSTATE: 42S02 (ER_NO_SUCH_TABLE)

Message: Table '%s.%s' doesn't exist

•   Error: 1147 SQLSTATE: 42000 (ER_NONEXISTING_TABLE_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on table '%s'

•   Error: 1148 SQLSTATE: 42000 (ER_NOT_ALLOWED_COMMAND)

Message: The used command is not allowed with this MySQL version

•   Error: 1149 SQLSTATE: 42000 (ER_SYNTAX_ERROR)

Message: You have an error in your SQL syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use

•   Error: 1150 SQLSTATE: HY000 (ER_DELAYED_CANT_CHANGE_LOCK)

Message: Delayed insert thread couldn't get requested lock for table %s

•   Error: 1151 SQLSTATE: HY000 (ER_TOO_MANY_DELAYED_THREADS)

Message: Too many delayed threads in use

•   Error: 1152 SQLSTATE: 08S01 (ER_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' (%s)

•   Error: 1153 SQLSTATE: 08S01 (ER_NET_PACKET_TOO_LARGE)

Message: Got a packet bigger than 'max_allowed_packet' bytes



Server Error Codes and Messages

2892

•   Error: 1154 SQLSTATE: 08S01 (ER_NET_READ_ERROR_FROM_PIPE)

Message: Got a read error from the connection pipe

•   Error: 1155 SQLSTATE: 08S01 (ER_NET_FCNTL_ERROR)

Message: Got an error from fcntl()

•   Error: 1156 SQLSTATE: 08S01 (ER_NET_PACKETS_OUT_OF_ORDER)

Message: Got packets out of order

•   Error: 1157 SQLSTATE: 08S01 (ER_NET_UNCOMPRESS_ERROR)

Message: Couldn't uncompress communication packet

•   Error: 1158 SQLSTATE: 08S01 (ER_NET_READ_ERROR)

Message: Got an error reading communication packets

•   Error: 1159 SQLSTATE: 08S01 (ER_NET_READ_INTERRUPTED)

Message: Got timeout reading communication packets

•   Error: 1160 SQLSTATE: 08S01 (ER_NET_ERROR_ON_WRITE)

Message: Got an error writing communication packets

•   Error: 1161 SQLSTATE: 08S01 (ER_NET_WRITE_INTERRUPTED)

Message: Got timeout writing communication packets

•   Error: 1162 SQLSTATE: 42000 (ER_TOO_LONG_STRING)

Message: Result string is longer than 'max_allowed_packet' bytes

•   Error: 1163 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_BLOB)

Message: The used table type doesn't support BLOB/TEXT columns

•   Error: 1164 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_AUTO_INCREMENT)

Message: The used table type doesn't support AUTO_INCREMENT columns

•   Error: 1165 SQLSTATE: HY000 (ER_DELAYED_INSERT_TABLE_LOCKED)

Message: INSERT DELAYED can't be used with table '%s' because it is locked with LOCK TABLES

•   Error: 1166 SQLSTATE: 42000 (ER_WRONG_COLUMN_NAME)

Message: Incorrect column name '%s'

•   Error: 1167 SQLSTATE: 42000 (ER_WRONG_KEY_COLUMN)

Message: The used storage engine can't index column '%s'

•   Error: 1168 SQLSTATE: HY000 (ER_WRONG_MRG_TABLE)

Message: Unable to open underlying table which is differently defined or of non-MyISAM type or
doesn't exist

•   Error: 1169 SQLSTATE: 23000 (ER_DUP_UNIQUE)

Message: Can't write, because of unique constraint, to table '%s'



Server Error Codes and Messages

2893

•   Error: 1170 SQLSTATE: 42000 (ER_BLOB_KEY_WITHOUT_LENGTH)

Message: BLOB/TEXT column '%s' used in key specification without a key length

•   Error: 1171 SQLSTATE: 42000 (ER_PRIMARY_CANT_HAVE_NULL)

Message: All parts of a PRIMARY KEY must be NOT NULL; if you need NULL in a key, use UNIQUE
instead

•   Error: 1172 SQLSTATE: 42000 (ER_TOO_MANY_ROWS)

Message: Result consisted of more than one row

•   Error: 1173 SQLSTATE: 42000 (ER_REQUIRES_PRIMARY_KEY)

Message: This table type requires a primary key

InnoDB reports this error when you attempt to drop an implicit clustered index (the first UNIQUE NOT
NULL index) if the table did not contain a PRIMARY KEY.

InnoDB should no longer report this error as of MySQL 5.5. For tables without an explicit PRIMARY
KEY, InnoDB creates an implicit clustered index using the first columns of the table that are declared
UNIQUE and NOT NULL. When you drop such an index, InnoDB now automatically copies the
table and rebuilds the index using a different UNIQUE NOT NULL group of columns or a system-
generated key. Since this operation changes the primary key, it uses the slow method of copying the
table and re-creating the index, rather than the Fast Index Creation technique from Section 14.16.3,
“Implementation Details of Fast Index Creation”.

•   Error: 1174 SQLSTATE: HY000 (ER_NO_RAID_COMPILED)

Message: This version of MySQL is not compiled with RAID support

•   Error: 1175 SQLSTATE: HY000 (ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE)

Message: You are using safe update mode and you tried to update a table without a WHERE that
uses a KEY column

•   Error: 1176 SQLSTATE: 42000 (ER_KEY_DOES_NOT_EXITS)

Message: Key '%s' doesn't exist in table '%s'

•   Error: 1177 SQLSTATE: 42000 (ER_CHECK_NO_SUCH_TABLE)

Message: Can't open table

•   Error: 1178 SQLSTATE: 42000 (ER_CHECK_NOT_IMPLEMENTED)

Message: The storage engine for the table doesn't support %s

•   Error: 1179 SQLSTATE: 25000 (ER_CANT_DO_THIS_DURING_AN_TRANSACTION)

Message: You are not allowed to execute this command in a transaction

•   Error: 1180 SQLSTATE: HY000 (ER_ERROR_DURING_COMMIT)

Message: Got error %d during COMMIT

•   Error: 1181 SQLSTATE: HY000 (ER_ERROR_DURING_ROLLBACK)

Message: Got error %d during ROLLBACK

•   Error: 1182 SQLSTATE: HY000 (ER_ERROR_DURING_FLUSH_LOGS)

Message: Got error %d during FLUSH_LOGS



Server Error Codes and Messages

2894

•   Error: 1183 SQLSTATE: HY000 (ER_ERROR_DURING_CHECKPOINT)

Message: Got error %d during CHECKPOINT

•   Error: 1184 SQLSTATE: 08S01 (ER_NEW_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' host: '%s' (%s)

•   Error: 1185 SQLSTATE: HY000 (ER_DUMP_NOT_IMPLEMENTED)

Message: The storage engine for the table does not support binary table dump

•   Error: 1186 SQLSTATE: HY000 (ER_FLUSH_MASTER_BINLOG_CLOSED)

Message: Binlog closed, cannot RESET MASTER

•   Error: 1187 SQLSTATE: HY000 (ER_INDEX_REBUILD)

Message: Failed rebuilding the index of dumped table '%s'

•   Error: 1188 SQLSTATE: HY000 (ER_MASTER)

Message: Error from master: '%s'

•   Error: 1189 SQLSTATE: 08S01 (ER_MASTER_NET_READ)

Message: Net error reading from master

•   Error: 1190 SQLSTATE: 08S01 (ER_MASTER_NET_WRITE)

Message: Net error writing to master

•   Error: 1191 SQLSTATE: HY000 (ER_FT_MATCHING_KEY_NOT_FOUND)

Message: Can't find FULLTEXT index matching the column list

•   Error: 1192 SQLSTATE: HY000 (ER_LOCK_OR_ACTIVE_TRANSACTION)

Message: Can't execute the given command because you have active locked tables or an active
transaction

•   Error: 1193 SQLSTATE: HY000 (ER_UNKNOWN_SYSTEM_VARIABLE)

Message: Unknown system variable '%s'

•   Error: 1194 SQLSTATE: HY000 (ER_CRASHED_ON_USAGE)

Message: Table '%s' is marked as crashed and should be repaired

•   Error: 1195 SQLSTATE: HY000 (ER_CRASHED_ON_REPAIR)

Message: Table '%s' is marked as crashed and last (automatic?) repair failed

•   Error: 1196 SQLSTATE: HY000 (ER_WARNING_NOT_COMPLETE_ROLLBACK)

Message: Some non-transactional changed tables couldn't be rolled back

•   Error: 1197 SQLSTATE: HY000 (ER_TRANS_CACHE_FULL)

Message: Multi-statement transaction required more than 'max_binlog_cache_size' bytes of storage;
increase this mysqld variable and try again

•   Error: 1198 SQLSTATE: HY000 (ER_SLAVE_MUST_STOP)

Message: This operation cannot be performed with a running slave; run STOP SLAVE first



Server Error Codes and Messages

2895

•   Error: 1199 SQLSTATE: HY000 (ER_SLAVE_NOT_RUNNING)

Message: This operation requires a running slave; configure slave and do START SLAVE

•   Error: 1200 SQLSTATE: HY000 (ER_BAD_SLAVE)

Message: The server is not configured as slave; fix in config file or with CHANGE MASTER TO

•   Error: 1201 SQLSTATE: HY000 (ER_MASTER_INFO)

Message: Could not initialize master info structure; more error messages can be found in the MySQL
error log

•   Error: 1202 SQLSTATE: HY000 (ER_SLAVE_THREAD)

Message: Could not create slave thread; check system resources

•   Error: 1203 SQLSTATE: 42000 (ER_TOO_MANY_USER_CONNECTIONS)

Message: User %s already has more than 'max_user_connections' active connections

•   Error: 1204 SQLSTATE: HY000 (ER_SET_CONSTANTS_ONLY)

Message: You may only use constant expressions with SET

•   Error: 1205 SQLSTATE: HY000 (ER_LOCK_WAIT_TIMEOUT)

Message: Lock wait timeout exceeded; try restarting transaction

InnoDB reports this error when lock wait timeout expires. The statement that waited
too long was rolled back (not the entire transaction). You can increase the value of the
innodb_lock_wait_timeout configuration option if SQL statements should wait longer for other
transactions to complete, or decrease it if too many long-running transactions are causing locking
problems and reducing concurrency on a busy system.

•   Error: 1206 SQLSTATE: HY000 (ER_LOCK_TABLE_FULL)

Message: The total number of locks exceeds the lock table size

InnoDB reports this error when the total number of locks exceeds the amount of memory devoted
to managing locks. To avoid this error, increase the value of innodb_buffer_pool_size. Within
an individual application, a workaround may be to break a large operation into smaller pieces. For
example, if the error occurs for a large INSERT, perform several smaller INSERT operations.

•   Error: 1207 SQLSTATE: 25000 (ER_READ_ONLY_TRANSACTION)

Message: Update locks cannot be acquired during a READ UNCOMMITTED transaction

•   Error: 1208 SQLSTATE: HY000 (ER_DROP_DB_WITH_READ_LOCK)

Message: DROP DATABASE not allowed while thread is holding global read lock

•   Error: 1209 SQLSTATE: HY000 (ER_CREATE_DB_WITH_READ_LOCK)

Message: CREATE DATABASE not allowed while thread is holding global read lock

•   Error: 1210 SQLSTATE: HY000 (ER_WRONG_ARGUMENTS)

Message: Incorrect arguments to %s

•   Error: 1211 SQLSTATE: 42000 (ER_NO_PERMISSION_TO_CREATE_USER)

Message: '%s'@'%s' is not allowed to create new users



Server Error Codes and Messages

2896

•   Error: 1212 SQLSTATE: HY000 (ER_UNION_TABLES_IN_DIFFERENT_DIR)

Message: Incorrect table definition; all MERGE tables must be in the same database

•   Error: 1213 SQLSTATE: 40001 (ER_LOCK_DEADLOCK)

Message: Deadlock found when trying to get lock; try restarting transaction

InnoDB reports this error when a transaction encounters a deadlock and is automatically rolled back
so that your application can take corrective action. To recover from this error, run all the operations
in this transaction again. A deadlock occurs when requests for locks arrive in inconsistent order
between transactions. The transaction that was rolled back released all its locks, and the other
transaction can now get all the locks it requested. Thus, when you re-run the transaction that was
rolled back, it might have to wait for other transactions to complete, but typically the deadlock does
not recur. If you encounter frequent deadlocks, make the sequence of locking operations (LOCK
TABLES, SELECT ... FOR UPDATE, and so on) consistent between the different transactions or
applications that experience the issue. See Section 14.8.5, “Deadlocks in InnoDB” for details.

•   Error: 1214 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_FT)

Message: The used table type doesn't support FULLTEXT indexes

•   Error: 1215 SQLSTATE: HY000 (ER_CANNOT_ADD_FOREIGN)

Message: Cannot add foreign key constraint

•   Error: 1216 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW)

Message: Cannot add or update a child row: a foreign key constraint fails

InnoDB reports this error when you try to add a row but there is no parent row, and a foreign key
constraint fails. Add the parent row first.

•   Error: 1217 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED)

Message: Cannot delete or update a parent row: a foreign key constraint fails

InnoDB reports this error when you try to delete a parent row that has children, and a foreign key
constraint fails. Delete the children first.

•   Error: 1218 SQLSTATE: 08S01 (ER_CONNECT_TO_MASTER)

Message: Error connecting to master: %s

•   Error: 1219 SQLSTATE: HY000 (ER_QUERY_ON_MASTER)

Message: Error running query on master: %s

•   Error: 1220 SQLSTATE: HY000 (ER_ERROR_WHEN_EXECUTING_COMMAND)

Message: Error when executing command %s: %s

•   Error: 1221 SQLSTATE: HY000 (ER_WRONG_USAGE)

Message: Incorrect usage of %s and %s

•   Error: 1222 SQLSTATE: 21000 (ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT)

Message: The used SELECT statements have a different number of columns

•   Error: 1223 SQLSTATE: HY000 (ER_CANT_UPDATE_WITH_READLOCK)

Message: Can't execute the query because you have a conflicting read lock



Server Error Codes and Messages

2897

•   Error: 1224 SQLSTATE: HY000 (ER_MIXING_NOT_ALLOWED)

Message: Mixing of transactional and non-transactional tables is disabled

•   Error: 1225 SQLSTATE: HY000 (ER_DUP_ARGUMENT)

Message: Option '%s' used twice in statement

•   Error: 1226 SQLSTATE: 42000 (ER_USER_LIMIT_REACHED)

Message: User '%s' has exceeded the '%s' resource (current value: %ld)

•   Error: 1227 SQLSTATE: 42000 (ER_SPECIFIC_ACCESS_DENIED_ERROR)

Message: Access denied; you need (at least one of) the %s privilege(s) for this operation

•   Error: 1228 SQLSTATE: HY000 (ER_LOCAL_VARIABLE)

Message: Variable '%s' is a SESSION variable and can't be used with SET GLOBAL

•   Error: 1229 SQLSTATE: HY000 (ER_GLOBAL_VARIABLE)

Message: Variable '%s' is a GLOBAL variable and should be set with SET GLOBAL

•   Error: 1230 SQLSTATE: 42000 (ER_NO_DEFAULT)

Message: Variable '%s' doesn't have a default value

•   Error: 1231 SQLSTATE: 42000 (ER_WRONG_VALUE_FOR_VAR)

Message: Variable '%s' can't be set to the value of '%s'

•   Error: 1232 SQLSTATE: 42000 (ER_WRONG_TYPE_FOR_VAR)

Message: Incorrect argument type to variable '%s'

•   Error: 1233 SQLSTATE: HY000 (ER_VAR_CANT_BE_READ)

Message: Variable '%s' can only be set, not read

•   Error: 1234 SQLSTATE: 42000 (ER_CANT_USE_OPTION_HERE)

Message: Incorrect usage/placement of '%s'

•   Error: 1235 SQLSTATE: 42000 (ER_NOT_SUPPORTED_YET)

Message: This version of MySQL doesn't yet support '%s'

•   Error: 1236 SQLSTATE: HY000 (ER_MASTER_FATAL_ERROR_READING_BINLOG)

Message: Got fatal error %d from master when reading data from binary log: '%s'

•   Error: 1237 SQLSTATE: HY000 (ER_SLAVE_IGNORED_TABLE)

Message: Slave SQL thread ignored the query because of replicate-*-table rules

•   Error: 1238 SQLSTATE: HY000 (ER_INCORRECT_GLOBAL_LOCAL_VAR)

Message: Variable '%s' is a %s variable

•   Error: 1239 SQLSTATE: 42000 (ER_WRONG_FK_DEF)

Message: Incorrect foreign key definition for '%s': %s

•   Error: 1240 SQLSTATE: HY000 (ER_KEY_REF_DO_NOT_MATCH_TABLE_REF)



Server Error Codes and Messages

2898

Message: Key reference and table reference don't match

•   Error: 1241 SQLSTATE: 21000 (ER_OPERAND_COLUMNS)

Message: Operand should contain %d column(s)

•   Error: 1242 SQLSTATE: 21000 (ER_SUBQUERY_NO_1_ROW)

Message: Subquery returns more than 1 row

•   Error: 1243 SQLSTATE: HY000 (ER_UNKNOWN_STMT_HANDLER)

Message: Unknown prepared statement handler (%.*s) given to %s

•   Error: 1244 SQLSTATE: HY000 (ER_CORRUPT_HELP_DB)

Message: Help database is corrupt or does not exist

•   Error: 1245 SQLSTATE: HY000 (ER_CYCLIC_REFERENCE)

Message: Cyclic reference on subqueries

•   Error: 1246 SQLSTATE: HY000 (ER_AUTO_CONVERT)

Message: Converting column '%s' from %s to %s

•   Error: 1247 SQLSTATE: 42S22 (ER_ILLEGAL_REFERENCE)

Message: Reference '%s' not supported (%s)

•   Error: 1248 SQLSTATE: 42000 (ER_DERIVED_MUST_HAVE_ALIAS)

Message: Every derived table must have its own alias

•   Error: 1249 SQLSTATE: 01000 (ER_SELECT_REDUCED)

Message: Select %u was reduced during optimization

•   Error: 1250 SQLSTATE: 42000 (ER_TABLENAME_NOT_ALLOWED_HERE)

Message: Table '%s' from one of the SELECTs cannot be used in %s

•   Error: 1251 SQLSTATE: 08004 (ER_NOT_SUPPORTED_AUTH_MODE)

Message: Client does not support authentication protocol requested by server; consider upgrading
MySQL client

•   Error: 1252 SQLSTATE: 42000 (ER_SPATIAL_CANT_HAVE_NULL)

Message: All parts of a SPATIAL index must be NOT NULL

•   Error: 1253 SQLSTATE: 42000 (ER_COLLATION_CHARSET_MISMATCH)

Message: COLLATION '%s' is not valid for CHARACTER SET '%s'

•   Error: 1254 SQLSTATE: HY000 (ER_SLAVE_WAS_RUNNING)

Message: Slave is already running

•   Error: 1255 SQLSTATE: HY000 (ER_SLAVE_WAS_NOT_RUNNING)

Message: Slave already has been stopped

•   Error: 1256 SQLSTATE: HY000 (ER_TOO_BIG_FOR_UNCOMPRESS)



Server Error Codes and Messages

2899

Message: Uncompressed data size too large; the maximum size is %d (probably, length of
uncompressed data was corrupted)

•   Error: 1257 SQLSTATE: HY000 (ER_ZLIB_Z_MEM_ERROR)

Message: ZLIB: Not enough memory

•   Error: 1258 SQLSTATE: HY000 (ER_ZLIB_Z_BUF_ERROR)

Message: ZLIB: Not enough room in the output buffer (probably, length of uncompressed data was
corrupted)

•   Error: 1259 SQLSTATE: HY000 (ER_ZLIB_Z_DATA_ERROR)

Message: ZLIB: Input data corrupted

•   Error: 1260 SQLSTATE: HY000 (ER_CUT_VALUE_GROUP_CONCAT)

Message: Row %u was cut by GROUP_CONCAT()

•   Error: 1261 SQLSTATE: 01000 (ER_WARN_TOO_FEW_RECORDS)

Message: Row %ld doesn't contain data for all columns

•   Error: 1262 SQLSTATE: 01000 (ER_WARN_TOO_MANY_RECORDS)

Message: Row %ld was truncated; it contained more data than there were input columns

•   Error: 1263 SQLSTATE: 22004 (ER_WARN_NULL_TO_NOTNULL)

Message: Column set to default value; NULL supplied to NOT NULL column '%s' at row %ld

•   Error: 1264 SQLSTATE: 22003 (ER_WARN_DATA_OUT_OF_RANGE)

Message: Out of range value for column '%s' at row %ld

•   Error: 1265 SQLSTATE: 01000 (WARN_DATA_TRUNCATED)

Message: Data truncated for column '%s' at row %ld

•   Error: 1266 SQLSTATE: HY000 (ER_WARN_USING_OTHER_HANDLER)

Message: Using storage engine %s for table '%s'

•   Error: 1267 SQLSTATE: HY000 (ER_CANT_AGGREGATE_2COLLATIONS)

Message: Illegal mix of collations (%s,%s) and (%s,%s) for operation '%s'

•   Error: 1268 SQLSTATE: HY000 (ER_DROP_USER)

Message: Cannot drop one or more of the requested users

•   Error: 1269 SQLSTATE: HY000 (ER_REVOKE_GRANTS)

Message: Can't revoke all privileges for one or more of the requested users

•   Error: 1270 SQLSTATE: HY000 (ER_CANT_AGGREGATE_3COLLATIONS)

Message: Illegal mix of collations (%s,%s), (%s,%s), (%s,%s) for operation '%s'

•   Error: 1271 SQLSTATE: HY000 (ER_CANT_AGGREGATE_NCOLLATIONS)

Message: Illegal mix of collations for operation '%s'



Server Error Codes and Messages

2900

•   Error: 1272 SQLSTATE: HY000 (ER_VARIABLE_IS_NOT_STRUCT)

Message: Variable '%s' is not a variable component (can't be used as XXXX.variable_name)

•   Error: 1273 SQLSTATE: HY000 (ER_UNKNOWN_COLLATION)

Message: Unknown collation: '%s'

•   Error: 1274 SQLSTATE: HY000 (ER_SLAVE_IGNORED_SSL_PARAMS)

Message: SSL parameters in CHANGE MASTER are ignored because this MySQL slave was
compiled without SSL support; they can be used later if MySQL slave with SSL is started

•   Error: 1275 SQLSTATE: HY000 (ER_SERVER_IS_IN_SECURE_AUTH_MODE)

Message: Server is running in --secure-auth mode, but '%s'@'%s' has a password in the old format;
please change the password to the new format

•   Error: 1276 SQLSTATE: HY000 (ER_WARN_FIELD_RESOLVED)

Message: Field or reference '%s%s%s%s%s' of SELECT #%d was resolved in SELECT #%d

•   Error: 1277 SQLSTATE: HY000 (ER_BAD_SLAVE_UNTIL_COND)

Message: Incorrect parameter or combination of parameters for START SLAVE UNTIL

•   Error: 1278 SQLSTATE: HY000 (ER_MISSING_SKIP_SLAVE)

Message: It is recommended to use --skip-slave-start when doing step-by-step replication with
START SLAVE UNTIL; otherwise, you will get problems if you get an unexpected slave's mysqld
restart

•   Error: 1279 SQLSTATE: HY000 (ER_UNTIL_COND_IGNORED)

Message: SQL thread is not to be started so UNTIL options are ignored

•   Error: 1280 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_INDEX)

Message: Incorrect index name '%s'

•   Error: 1281 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_CATALOG)

Message: Incorrect catalog name '%s'

•   Error: 1282 SQLSTATE: HY000 (ER_WARN_QC_RESIZE)

Message: Query cache failed to set size %lu; new query cache size is %lu

•   Error: 1283 SQLSTATE: HY000 (ER_BAD_FT_COLUMN)

Message: Column '%s' cannot be part of FULLTEXT index

•   Error: 1284 SQLSTATE: HY000 (ER_UNKNOWN_KEY_CACHE)

Message: Unknown key cache '%s'

•   Error: 1285 SQLSTATE: HY000 (ER_WARN_HOSTNAME_WONT_WORK)

Message: MySQL is started in --skip-name-resolve mode; you must restart it without this switch for
this grant to work

•   Error: 1286 SQLSTATE: 42000 (ER_UNKNOWN_STORAGE_ENGINE)

Message: Unknown storage engine '%s'



Server Error Codes and Messages

2901

•   Error: 1287 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX)

Message: '%s' is deprecated and will be removed in a future release. Please use %s instead

•   Error: 1288 SQLSTATE: HY000 (ER_NON_UPDATABLE_TABLE)

Message: The target table %s of the %s is not updatable

•   Error: 1289 SQLSTATE: HY000 (ER_FEATURE_DISABLED)

Message: The '%s' feature is disabled; you need MySQL built with '%s' to have it working

•   Error: 1290 SQLSTATE: HY000 (ER_OPTION_PREVENTS_STATEMENT)

Message: The MySQL server is running with the %s option so it cannot execute this statement

•   Error: 1291 SQLSTATE: HY000 (ER_DUPLICATED_VALUE_IN_TYPE)

Message: Column '%s' has duplicated value '%s' in %s

•   Error: 1292 SQLSTATE: 22007 (ER_TRUNCATED_WRONG_VALUE)

Message: Truncated incorrect %s value: '%s'

•   Error: 1293 SQLSTATE: HY000 (ER_TOO_MUCH_AUTO_TIMESTAMP_COLS)

Message: Incorrect table definition; there can be only one TIMESTAMP column with
CURRENT_TIMESTAMP in DEFAULT or ON UPDATE clause

•   Error: 1294 SQLSTATE: HY000 (ER_INVALID_ON_UPDATE)

Message: Invalid ON UPDATE clause for '%s' column

•   Error: 1295 SQLSTATE: HY000 (ER_UNSUPPORTED_PS)

Message: This command is not supported in the prepared statement protocol yet

•   Error: 1296 SQLSTATE: HY000 (ER_GET_ERRMSG)

Message: Got error %d '%s' from %s

•   Error: 1297 SQLSTATE: HY000 (ER_GET_TEMPORARY_ERRMSG)

Message: Got temporary error %d '%s' from %s

•   Error: 1298 SQLSTATE: HY000 (ER_UNKNOWN_TIME_ZONE)

Message: Unknown or incorrect time zone: '%s'

•   Error: 1299 SQLSTATE: HY000 (ER_WARN_INVALID_TIMESTAMP)

Message: Invalid TIMESTAMP value in column '%s' at row %ld

•   Error: 1300 SQLSTATE: HY000 (ER_INVALID_CHARACTER_STRING)

Message: Invalid %s character string: '%s'

•   Error: 1301 SQLSTATE: HY000 (ER_WARN_ALLOWED_PACKET_OVERFLOWED)

Message: Result of %s() was larger than max_allowed_packet (%ld) - truncated

•   Error: 1302 SQLSTATE: HY000 (ER_CONFLICTING_DECLARATIONS)

Message: Conflicting declarations: '%s%s' and '%s%s'



Server Error Codes and Messages

2902

•   Error: 1303 SQLSTATE: 2F003 (ER_SP_NO_RECURSIVE_CREATE)

Message: Can't create a %s from within another stored routine

•   Error: 1304 SQLSTATE: 42000 (ER_SP_ALREADY_EXISTS)

Message: %s %s already exists

•   Error: 1305 SQLSTATE: 42000 (ER_SP_DOES_NOT_EXIST)

Message: %s %s does not exist

•   Error: 1306 SQLSTATE: HY000 (ER_SP_DROP_FAILED)

Message: Failed to DROP %s %s

•   Error: 1307 SQLSTATE: HY000 (ER_SP_STORE_FAILED)

Message: Failed to CREATE %s %s

•   Error: 1308 SQLSTATE: 42000 (ER_SP_LILABEL_MISMATCH)

Message: %s with no matching label: %s

•   Error: 1309 SQLSTATE: 42000 (ER_SP_LABEL_REDEFINE)

Message: Redefining label %s

•   Error: 1310 SQLSTATE: 42000 (ER_SP_LABEL_MISMATCH)

Message: End-label %s without match

•   Error: 1311 SQLSTATE: 01000 (ER_SP_UNINIT_VAR)

Message: Referring to uninitialized variable %s

•   Error: 1312 SQLSTATE: 0A000 (ER_SP_BADSELECT)

Message: PROCEDURE %s can't return a result set in the given context

•   Error: 1313 SQLSTATE: 42000 (ER_SP_BADRETURN)

Message: RETURN is only allowed in a FUNCTION

•   Error: 1314 SQLSTATE: 0A000 (ER_SP_BADSTATEMENT)

Message: %s is not allowed in stored procedures

•   Error: 1315 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_IGNORED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE
has been ignored. This option will be removed in MySQL 5.6.

•   Error: 1316 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_TRANSLATED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE
has been translated to SET SQL_LOG_BIN. This option will be removed in MySQL 5.6.

•   Error: 1317 SQLSTATE: 70100 (ER_QUERY_INTERRUPTED)

Message: Query execution was interrupted

•   Error: 1318 SQLSTATE: 42000 (ER_SP_WRONG_NO_OF_ARGS)

Message: Incorrect number of arguments for %s %s; expected %u, got %u



Server Error Codes and Messages

2903

•   Error: 1319 SQLSTATE: 42000 (ER_SP_COND_MISMATCH)

Message: Undefined CONDITION: %s

•   Error: 1320 SQLSTATE: 42000 (ER_SP_NORETURN)

Message: No RETURN found in FUNCTION %s

•   Error: 1321 SQLSTATE: 2F005 (ER_SP_NORETURNEND)

Message: FUNCTION %s ended without RETURN

•   Error: 1322 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_QUERY)

Message: Cursor statement must be a SELECT

•   Error: 1323 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_SELECT)

Message: Cursor SELECT must not have INTO

•   Error: 1324 SQLSTATE: 42000 (ER_SP_CURSOR_MISMATCH)

Message: Undefined CURSOR: %s

•   Error: 1325 SQLSTATE: 24000 (ER_SP_CURSOR_ALREADY_OPEN)

Message: Cursor is already open

•   Error: 1326 SQLSTATE: 24000 (ER_SP_CURSOR_NOT_OPEN)

Message: Cursor is not open

•   Error: 1327 SQLSTATE: 42000 (ER_SP_UNDECLARED_VAR)

Message: Undeclared variable: %s

•   Error: 1328 SQLSTATE: HY000 (ER_SP_WRONG_NO_OF_FETCH_ARGS)

Message: Incorrect number of FETCH variables

•   Error: 1329 SQLSTATE: 02000 (ER_SP_FETCH_NO_DATA)

Message: No data - zero rows fetched, selected, or processed

•   Error: 1330 SQLSTATE: 42000 (ER_SP_DUP_PARAM)

Message: Duplicate parameter: %s

•   Error: 1331 SQLSTATE: 42000 (ER_SP_DUP_VAR)

Message: Duplicate variable: %s

•   Error: 1332 SQLSTATE: 42000 (ER_SP_DUP_COND)

Message: Duplicate condition: %s

•   Error: 1333 SQLSTATE: 42000 (ER_SP_DUP_CURS)

Message: Duplicate cursor: %s

•   Error: 1334 SQLSTATE: HY000 (ER_SP_CANT_ALTER)

Message: Failed to ALTER %s %s

•   Error: 1335 SQLSTATE: 0A000 (ER_SP_SUBSELECT_NYI)



Server Error Codes and Messages

2904

Message: Subquery value not supported

•   Error: 1336 SQLSTATE: 0A000 (ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: %s is not allowed in stored function or trigger

•   Error: 1337 SQLSTATE: 42000 (ER_SP_VARCOND_AFTER_CURSHNDLR)

Message: Variable or condition declaration after cursor or handler declaration

•   Error: 1338 SQLSTATE: 42000 (ER_SP_CURSOR_AFTER_HANDLER)

Message: Cursor declaration after handler declaration

•   Error: 1339 SQLSTATE: 20000 (ER_SP_CASE_NOT_FOUND)

Message: Case not found for CASE statement

•   Error: 1340 SQLSTATE: HY000 (ER_FPARSER_TOO_BIG_FILE)

Message: Configuration file '%s' is too big

•   Error: 1341 SQLSTATE: HY000 (ER_FPARSER_BAD_HEADER)

Message: Malformed file type header in file '%s'

•   Error: 1342 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_COMMENT)

Message: Unexpected end of file while parsing comment '%s'

•   Error: 1343 SQLSTATE: HY000 (ER_FPARSER_ERROR_IN_PARAMETER)

Message: Error while parsing parameter '%s' (line: '%s')

•   Error: 1344 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER)

Message: Unexpected end of file while skipping unknown parameter '%s'

•   Error: 1345 SQLSTATE: HY000 (ER_VIEW_NO_EXPLAIN)

Message: EXPLAIN/SHOW can not be issued; lacking privileges for underlying table

•   Error: 1346 SQLSTATE: HY000 (ER_FRM_UNKNOWN_TYPE)

Message: File '%s' has unknown type '%s' in its header

•   Error: 1347 SQLSTATE: HY000 (ER_WRONG_OBJECT)

Message: '%s.%s' is not %s

The named object is incorrect for the type of operation attempted on it. It must be an object of the
named type.

•   Error: 1348 SQLSTATE: HY000 (ER_NONUPDATEABLE_COLUMN)

Message: Column '%s' is not updatable

•   Error: 1349 SQLSTATE: HY000 (ER_VIEW_SELECT_DERIVED)

Message: View's SELECT contains a subquery in the FROM clause

•   Error: 1350 SQLSTATE: HY000 (ER_VIEW_SELECT_CLAUSE)

Message: View's SELECT contains a '%s' clause



Server Error Codes and Messages

2905

•   Error: 1351 SQLSTATE: HY000 (ER_VIEW_SELECT_VARIABLE)

Message: View's SELECT contains a variable or parameter

•   Error: 1352 SQLSTATE: HY000 (ER_VIEW_SELECT_TMPTABLE)

Message: View's SELECT refers to a temporary table '%s'

•   Error: 1353 SQLSTATE: HY000 (ER_VIEW_WRONG_LIST)

Message: View's SELECT and view's field list have different column counts

•   Error: 1354 SQLSTATE: HY000 (ER_WARN_VIEW_MERGE)

Message: View merge algorithm can't be used here for now (assumed undefined algorithm)

•   Error: 1355 SQLSTATE: HY000 (ER_WARN_VIEW_WITHOUT_KEY)

Message: View being updated does not have complete key of underlying table in it

•   Error: 1356 SQLSTATE: HY000 (ER_VIEW_INVALID)

Message: View '%s.%s' references invalid table(s) or column(s) or function(s) or definer/invoker of
view lack rights to use them

•   Error: 1357 SQLSTATE: HY000 (ER_SP_NO_DROP_SP)

Message: Can't drop or alter a %s from within another stored routine

•   Error: 1358 SQLSTATE: HY000 (ER_SP_GOTO_IN_HNDLR)

Message: GOTO is not allowed in a stored procedure handler

•   Error: 1359 SQLSTATE: HY000 (ER_TRG_ALREADY_EXISTS)

Message: Trigger already exists

•   Error: 1360 SQLSTATE: HY000 (ER_TRG_DOES_NOT_EXIST)

Message: Trigger does not exist

•   Error: 1361 SQLSTATE: HY000 (ER_TRG_ON_VIEW_OR_TEMP_TABLE)

Message: Trigger's '%s' is view or temporary table

•   Error: 1362 SQLSTATE: HY000 (ER_TRG_CANT_CHANGE_ROW)

Message: Updating of %s row is not allowed in %strigger

•   Error: 1363 SQLSTATE: HY000 (ER_TRG_NO_SUCH_ROW_IN_TRG)

Message: There is no %s row in %s trigger

•   Error: 1364 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_FIELD)

Message: Field '%s' doesn't have a default value

•   Error: 1365 SQLSTATE: 22012 (ER_DIVISION_BY_ZERO)

Message: Division by 0

•   Error: 1366 SQLSTATE: HY000 (ER_TRUNCATED_WRONG_VALUE_FOR_FIELD)

Message: Incorrect %s value: '%s' for column '%s' at row %ld



Server Error Codes and Messages

2906

•   Error: 1367 SQLSTATE: 22007 (ER_ILLEGAL_VALUE_FOR_TYPE)

Message: Illegal %s '%s' value found during parsing

•   Error: 1368 SQLSTATE: HY000 (ER_VIEW_NONUPD_CHECK)

Message: CHECK OPTION on non-updatable view '%s.%s'

•   Error: 1369 SQLSTATE: HY000 (ER_VIEW_CHECK_FAILED)

Message: CHECK OPTION failed '%s.%s'

•   Error: 1370 SQLSTATE: 42000 (ER_PROCACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for routine '%s'

•   Error: 1371 SQLSTATE: HY000 (ER_RELAY_LOG_FAIL)

Message: Failed purging old relay logs: %s

•   Error: 1372 SQLSTATE: HY000 (ER_PASSWD_LENGTH)

Message: Password hash should be a %d-digit hexadecimal number

•   Error: 1373 SQLSTATE: HY000 (ER_UNKNOWN_TARGET_BINLOG)

Message: Target log not found in binlog index

•   Error: 1374 SQLSTATE: HY000 (ER_IO_ERR_LOG_INDEX_READ)

Message: I/O error reading log index file

•   Error: 1375 SQLSTATE: HY000 (ER_BINLOG_PURGE_PROHIBITED)

Message: Server configuration does not permit binlog purge

•   Error: 1376 SQLSTATE: HY000 (ER_FSEEK_FAIL)

Message: Failed on fseek()

•   Error: 1377 SQLSTATE: HY000 (ER_BINLOG_PURGE_FATAL_ERR)

Message: Fatal error during log purge

•   Error: 1378 SQLSTATE: HY000 (ER_LOG_IN_USE)

Message: A purgeable log is in use, will not purge

•   Error: 1379 SQLSTATE: HY000 (ER_LOG_PURGE_UNKNOWN_ERR)

Message: Unknown error during log purge

•   Error: 1380 SQLSTATE: HY000 (ER_RELAY_LOG_INIT)

Message: Failed initializing relay log position: %s

•   Error: 1381 SQLSTATE: HY000 (ER_NO_BINARY_LOGGING)

Message: You are not using binary logging

•   Error: 1382 SQLSTATE: HY000 (ER_RESERVED_SYNTAX)

Message: The '%s' syntax is reserved for purposes internal to the MySQL server

•   Error: 1383 SQLSTATE: HY000 (ER_WSAS_FAILED)



Server Error Codes and Messages

2907

Message: WSAStartup Failed

•   Error: 1384 SQLSTATE: HY000 (ER_DIFF_GROUPS_PROC)

Message: Can't handle procedures with different groups yet

•   Error: 1385 SQLSTATE: HY000 (ER_NO_GROUP_FOR_PROC)

Message: Select must have a group with this procedure

•   Error: 1386 SQLSTATE: HY000 (ER_ORDER_WITH_PROC)

Message: Can't use ORDER clause with this procedure

•   Error: 1387 SQLSTATE: HY000 (ER_LOGGING_PROHIBIT_CHANGING_OF)

Message: Binary logging and replication forbid changing the global server %s

•   Error: 1388 SQLSTATE: HY000 (ER_NO_FILE_MAPPING)

Message: Can't map file: %s, errno: %d

•   Error: 1389 SQLSTATE: HY000 (ER_WRONG_MAGIC)

Message: Wrong magic in %s

•   Error: 1390 SQLSTATE: HY000 (ER_PS_MANY_PARAM)

Message: Prepared statement contains too many placeholders

•   Error: 1391 SQLSTATE: HY000 (ER_KEY_PART_0)

Message: Key part '%s' length cannot be 0

•   Error: 1392 SQLSTATE: HY000 (ER_VIEW_CHECKSUM)

Message: View text checksum failed

•   Error: 1393 SQLSTATE: HY000 (ER_VIEW_MULTIUPDATE)

Message: Can not modify more than one base table through a join view '%s.%s'

•   Error: 1394 SQLSTATE: HY000 (ER_VIEW_NO_INSERT_FIELD_LIST)

Message: Can not insert into join view '%s.%s' without fields list

•   Error: 1395 SQLSTATE: HY000 (ER_VIEW_DELETE_MERGE_VIEW)

Message: Can not delete from join view '%s.%s'

•   Error: 1396 SQLSTATE: HY000 (ER_CANNOT_USER)

Message: Operation %s failed for %s

•   Error: 1397 SQLSTATE: XAE04 (ER_XAER_NOTA)

Message: XAER_NOTA: Unknown XID

•   Error: 1398 SQLSTATE: XAE05 (ER_XAER_INVAL)

Message: XAER_INVAL: Invalid arguments (or unsupported command)

•   Error: 1399 SQLSTATE: XAE07 (ER_XAER_RMFAIL)



Server Error Codes and Messages

2908

Message: XAER_RMFAIL: The command cannot be executed when global transaction is in the %s
state

•   Error: 1400 SQLSTATE: XAE09 (ER_XAER_OUTSIDE)

Message: XAER_OUTSIDE: Some work is done outside global transaction

•   Error: 1401 SQLSTATE: XAE03 (ER_XAER_RMERR)

Message: XAER_RMERR: Fatal error occurred in the transaction branch - check your data for
consistency

•   Error: 1402 SQLSTATE: XA100 (ER_XA_RBROLLBACK)

Message: XA_RBROLLBACK: Transaction branch was rolled back

•   Error: 1403 SQLSTATE: 42000 (ER_NONEXISTING_PROC_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on routine '%s'

•   Error: 1404 SQLSTATE: HY000 (ER_PROC_AUTO_GRANT_FAIL)

Message: Failed to grant EXECUTE and ALTER ROUTINE privileges

•   Error: 1405 SQLSTATE: HY000 (ER_PROC_AUTO_REVOKE_FAIL)

Message: Failed to revoke all privileges to dropped routine

•   Error: 1406 SQLSTATE: 22001 (ER_DATA_TOO_LONG)

Message: Data too long for column '%s' at row %ld

•   Error: 1407 SQLSTATE: 42000 (ER_SP_BAD_SQLSTATE)

Message: Bad SQLSTATE: '%s'

•   Error: 1408 SQLSTATE: HY000 (ER_STARTUP)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d %s

•   Error: 1409 SQLSTATE: HY000 (ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR)

Message: Can't load value from file with fixed size rows to variable

•   Error: 1410 SQLSTATE: 42000 (ER_CANT_CREATE_USER_WITH_GRANT)

Message: You are not allowed to create a user with GRANT

•   Error: 1411 SQLSTATE: HY000 (ER_WRONG_VALUE_FOR_TYPE)

Message: Incorrect %s value: '%s' for function %s

•   Error: 1412 SQLSTATE: HY000 (ER_TABLE_DEF_CHANGED)

Message: Table definition has changed, please retry transaction

•   Error: 1413 SQLSTATE: 42000 (ER_SP_DUP_HANDLER)

Message: Duplicate handler declared in the same block

•   Error: 1414 SQLSTATE: 42000 (ER_SP_NOT_VAR_ARG)

Message: OUT or INOUT argument %d for routine %s is not a variable or NEW pseudo-variable in
BEFORE trigger



Server Error Codes and Messages

2909

•   Error: 1415 SQLSTATE: 0A000 (ER_SP_NO_RETSET)

Message: Not allowed to return a result set from a %s

•   Error: 1416 SQLSTATE: 22003 (ER_CANT_CREATE_GEOMETRY_OBJECT)

Message: Cannot get geometry object from data you send to the GEOMETRY field

•   Error: 1417 SQLSTATE: HY000 (ER_FAILED_ROUTINE_BREAK_BINLOG)

Message: A routine failed and has neither NO SQL nor READS SQL DATA in its declaration and
binary logging is enabled; if non-transactional tables were updated, the binary log will miss their
changes

•   Error: 1418 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_ROUTINE)

Message: This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA
in its declaration and binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

•   Error: 1419 SQLSTATE: HY000 (ER_BINLOG_CREATE_ROUTINE_NEED_SUPER)

Message: You do not have the SUPER privilege and binary logging is enabled (you *might* want to
use the less safe log_bin_trust_function_creators variable)

•   Error: 1420 SQLSTATE: HY000 (ER_EXEC_STMT_WITH_OPEN_CURSOR)

Message: You can't execute a prepared statement which has an open cursor associated with it.
Reset the statement to re-execute it.

•   Error: 1421 SQLSTATE: HY000 (ER_STMT_HAS_NO_OPEN_CURSOR)

Message: The statement (%lu) has no open cursor.

•   Error: 1422 SQLSTATE: HY000 (ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: Explicit or implicit commit is not allowed in stored function or trigger.

•   Error: 1423 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_VIEW_FIELD)

Message: Field of view '%s.%s' underlying table doesn't have a default value

•   Error: 1424 SQLSTATE: HY000 (ER_SP_NO_RECURSION)

Message: Recursive stored functions and triggers are not allowed.

•   Error: 1425 SQLSTATE: 42000 (ER_TOO_BIG_SCALE)

Message: Too big scale %d specified for column '%s'. Maximum is %lu.

•   Error: 1426 SQLSTATE: 42000 (ER_TOO_BIG_PRECISION)

Message: Too big precision %d specified for column '%s'. Maximum is %lu.

•   Error: 1427 SQLSTATE: 42000 (ER_M_BIGGER_THAN_D)

Message: For float(M,D), double(M,D) or decimal(M,D), M must be >= D (column '%s').

•   Error: 1428 SQLSTATE: HY000 (ER_WRONG_LOCK_OF_SYSTEM_TABLE)

Message: You can't combine write-locking of system tables with other tables or lock types

•   Error: 1429 SQLSTATE: HY000 (ER_CONNECT_TO_FOREIGN_DATA_SOURCE)

Message: Unable to connect to foreign data source: %s



Server Error Codes and Messages

2910

•   Error: 1430 SQLSTATE: HY000 (ER_QUERY_ON_FOREIGN_DATA_SOURCE)

Message: There was a problem processing the query on the foreign data source. Data source error:
%s

•   Error: 1431 SQLSTATE: HY000 (ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST)

Message: The foreign data source you are trying to reference does not exist. Data source error: %s

•   Error: 1432 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE)

Message: Can't create federated table. The data source connection string '%s' is not in the correct
format

•   Error: 1433 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID)

Message: The data source connection string '%s' is not in the correct format

•   Error: 1434 SQLSTATE: HY000 (ER_CANT_CREATE_FEDERATED_TABLE)

Message: Can't create federated table. Foreign data src error: %s

•   Error: 1435 SQLSTATE: HY000 (ER_TRG_IN_WRONG_SCHEMA)

Message: Trigger in wrong schema

•   Error: 1436 SQLSTATE: HY000 (ER_STACK_OVERRUN_NEED_MORE)

Message: Thread stack overrun: %ld bytes used of a %ld byte stack, and %ld bytes needed. Use
'mysqld --thread_stack=#' to specify a bigger stack.

•   Error: 1437 SQLSTATE: 42000 (ER_TOO_LONG_BODY)

Message: Routine body for '%s' is too long

•   Error: 1438 SQLSTATE: HY000 (ER_WARN_CANT_DROP_DEFAULT_KEYCACHE)

Message: Cannot drop default keycache

•   Error: 1439 SQLSTATE: 42000 (ER_TOO_BIG_DISPLAYWIDTH)

Message: Display width out of range for column '%s' (max = %lu)

•   Error: 1440 SQLSTATE: XAE08 (ER_XAER_DUPID)

Message: XAER_DUPID: The XID already exists

•   Error: 1441 SQLSTATE: 22008 (ER_DATETIME_FUNCTION_OVERFLOW)

Message: Datetime function: %s field overflow

•   Error: 1442 SQLSTATE: HY000 (ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG)

Message: Can't update table '%s' in stored function/trigger because it is already used by statement
which invoked this stored function/trigger.

•   Error: 1443 SQLSTATE: HY000 (ER_VIEW_PREVENT_UPDATE)

Message: The definition of table '%s' prevents operation %s on table '%s'.

•   Error: 1444 SQLSTATE: HY000 (ER_PS_NO_RECURSION)

Message: The prepared statement contains a stored routine call that refers to that same statement.
It's not allowed to execute a prepared statement in such a recursive manner



Server Error Codes and Messages

2911

•   Error: 1445 SQLSTATE: HY000 (ER_SP_CANT_SET_AUTOCOMMIT)

Message: Not allowed to set autocommit from a stored function or trigger

•   Error: 1446 SQLSTATE: HY000 (ER_MALFORMED_DEFINER)

Message: Definer is not fully qualified

•   Error: 1447 SQLSTATE: HY000 (ER_VIEW_FRM_NO_USER)

Message: View '%s'.'%s' has no definer information (old table format). Current user is used as
definer. Please recreate the view!

•   Error: 1448 SQLSTATE: HY000 (ER_VIEW_OTHER_USER)

Message: You need the SUPER privilege for creation view with '%s'@'%s' definer

•   Error: 1449 SQLSTATE: HY000 (ER_NO_SUCH_USER)

Message: The user specified as a definer ('%s'@'%s') does not exist

•   Error: 1450 SQLSTATE: HY000 (ER_FORBID_SCHEMA_CHANGE)

Message: Changing schema from '%s' to '%s' is not allowed.

•   Error: 1451 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED_2)

Message: Cannot delete or update a parent row: a foreign key constraint fails (%s)

•   Error: 1452 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW_2)

Message: Cannot add or update a child row: a foreign key constraint fails (%s)

•   Error: 1453 SQLSTATE: 42000 (ER_SP_BAD_VAR_SHADOW)

Message: Variable '%s' must be quoted with `...`, or renamed

•   Error: 1454 SQLSTATE: HY000 (ER_TRG_NO_DEFINER)

Message: No definer attribute for trigger '%s'.'%s'. The trigger will be activated under the
authorization of the invoker, which may have insufficient privileges. Please recreate the trigger.

•   Error: 1455 SQLSTATE: HY000 (ER_OLD_FILE_FORMAT)

Message: '%s' has an old format, you should re-create the '%s' object(s)

•   Error: 1456 SQLSTATE: HY000 (ER_SP_RECURSION_LIMIT)

Message: Recursive limit %d (as set by the max_sp_recursion_depth variable) was exceeded for
routine %s

•   Error: 1457 SQLSTATE: HY000 (ER_SP_PROC_TABLE_CORRUPT)

Message: Failed to load routine %s. The table mysql.proc is missing, corrupt, or contains bad data
(internal code %d)

•   Error: 1458 SQLSTATE: 42000 (ER_SP_WRONG_NAME)

Message: Incorrect routine name '%s'

•   Error: 1459 SQLSTATE: HY000 (ER_TABLE_NEEDS_UPGRADE)

Message: Table upgrade required. Please do "REPAIR TABLE `%s`" or dump/reload to fix it!



Server Error Codes and Messages

2912

•   Error: 1460 SQLSTATE: 42000 (ER_SP_NO_AGGREGATE)

Message: AGGREGATE is not supported for stored functions

•   Error: 1461 SQLSTATE: 42000 (ER_MAX_PREPARED_STMT_COUNT_REACHED)

Message: Can't create more than max_prepared_stmt_count statements (current value: %lu)

•   Error: 1462 SQLSTATE: HY000 (ER_VIEW_RECURSIVE)

Message: `%s`.`%s` contains view recursion

•   Error: 1463 SQLSTATE: 42000 (ER_NON_GROUPING_FIELD_USED)

Message: Non-grouping field '%s' is used in %s clause

•   Error: 1464 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_SPKEYS)

Message: The used table type doesn't support SPATIAL indexes

•   Error: 1465 SQLSTATE: HY000 (ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA)

Message: Triggers can not be created on system tables

•   Error: 1466 SQLSTATE: HY000 (ER_REMOVED_SPACES)

Message: Leading spaces are removed from name '%s'

•   Error: 1467 SQLSTATE: HY000 (ER_AUTOINC_READ_FAILED)

Message: Failed to read auto-increment value from storage engine

•   Error: 1468 SQLSTATE: HY000 (ER_USERNAME)

Message: user name

•   Error: 1469 SQLSTATE: HY000 (ER_HOSTNAME)

Message: host name

•   Error: 1470 SQLSTATE: HY000 (ER_WRONG_STRING_LENGTH)

Message: String '%s' is too long for %s (should be no longer than %d)

•   Error: 1471 SQLSTATE: HY000 (ER_NON_INSERTABLE_TABLE)

Message: The target table %s of the %s is not insertable-into

•   Error: 1472 SQLSTATE: HY000 (ER_ADMIN_WRONG_MRG_TABLE)

Message: Table '%s' is differently defined or of non-MyISAM type or doesn't exist

•   Error: 1473 SQLSTATE: HY000 (ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT)

Message: Too high level of nesting for select

•   Error: 1474 SQLSTATE: HY000 (ER_NAME_BECOMES_EMPTY)

Message: Name '%s' has become ''

•   Error: 1475 SQLSTATE: HY000 (ER_AMBIGUOUS_FIELD_TERM)

Message: First character of the FIELDS TERMINATED string is ambiguous; please use non-optional
and non-empty FIELDS ENCLOSED BY



Server Error Codes and Messages

2913

•   Error: 1476 SQLSTATE: HY000 (ER_FOREIGN_SERVER_EXISTS)

Message: The foreign server, %s, you are trying to create already exists.

•   Error: 1477 SQLSTATE: HY000 (ER_FOREIGN_SERVER_DOESNT_EXIST)

Message: The foreign server name you are trying to reference does not exist. Data source error: %s

•   Error: 1478 SQLSTATE: HY000 (ER_ILLEGAL_HA_CREATE_OPTION)

Message: Table storage engine '%s' does not support the create option '%s'

•   Error: 1479 SQLSTATE: HY000 (ER_PARTITION_REQUIRES_VALUES_ERROR)

Message: Syntax error: %s PARTITIONING requires definition of VALUES %s for each partition

•   Error: 1480 SQLSTATE: HY000 (ER_PARTITION_WRONG_VALUES_ERROR)

Message: Only %s PARTITIONING can use VALUES %s in partition definition

•   Error: 1481 SQLSTATE: HY000 (ER_PARTITION_MAXVALUE_ERROR)

Message: MAXVALUE can only be used in last partition definition

•   Error: 1482 SQLSTATE: HY000 (ER_PARTITION_SUBPARTITION_ERROR)

Message: Subpartitions can only be hash partitions and by key

•   Error: 1483 SQLSTATE: HY000 (ER_PARTITION_SUBPART_MIX_ERROR)

Message: Must define subpartitions on all partitions if on one partition

•   Error: 1484 SQLSTATE: HY000 (ER_PARTITION_WRONG_NO_PART_ERROR)

Message: Wrong number of partitions defined, mismatch with previous setting

•   Error: 1485 SQLSTATE: HY000 (ER_PARTITION_WRONG_NO_SUBPART_ERROR)

Message: Wrong number of subpartitions defined, mismatch with previous setting

•   Error: 1486 SQLSTATE: HY000 (ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR)

Message: Constant/Random expression in (sub)partitioning function is not allowed

In 5.5.1: ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR was renamed to
ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR.

ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR was removed after 5.5.0.

•   Error: 1486 SQLSTATE: HY000 (ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR)

Message: Constant, random or timezone-dependent expressions in (sub)partitioning function are not
allowed

In 5.5.1: ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR was renamed to
ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR.

ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR was added in 5.5.1.

•   Error: 1487 SQLSTATE: HY000 (ER_NO_CONST_EXPR_IN_RANGE_OR_LIST_ERROR)

Message: Expression in RANGE/LIST VALUES must be constant

•   Error: 1488 SQLSTATE: HY000 (ER_FIELD_NOT_FOUND_PART_ERROR)



Server Error Codes and Messages

2914

Message: Field in list of fields for partition function not found in table

•   Error: 1489 SQLSTATE: HY000 (ER_LIST_OF_FIELDS_ONLY_IN_HASH_ERROR)

Message: List of fields is only allowed in KEY partitions

•   Error: 1490 SQLSTATE: HY000 (ER_INCONSISTENT_PARTITION_INFO_ERROR)

Message: The partition info in the frm file is not consistent with what can be written into the frm file

•   Error: 1491 SQLSTATE: HY000 (ER_PARTITION_FUNC_NOT_ALLOWED_ERROR)

Message: The %s function returns the wrong type

•   Error: 1492 SQLSTATE: HY000 (ER_PARTITIONS_MUST_BE_DEFINED_ERROR)

Message: For %s partitions each partition must be defined

•   Error: 1493 SQLSTATE: HY000 (ER_RANGE_NOT_INCREASING_ERROR)

Message: VALUES LESS THAN value must be strictly increasing for each partition

•   Error: 1494 SQLSTATE: HY000 (ER_INCONSISTENT_TYPE_OF_FUNCTIONS_ERROR)

Message: VALUES value must be of same type as partition function

•   Error: 1495 SQLSTATE: HY000 (ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR)

Message: Multiple definition of same constant in list partitioning

•   Error: 1496 SQLSTATE: HY000 (ER_PARTITION_ENTRY_ERROR)

Message: Partitioning can not be used stand-alone in query

•   Error: 1497 SQLSTATE: HY000 (ER_MIX_HANDLER_ERROR)

Message: The mix of handlers in the partitions is not allowed in this version of MySQL

•   Error: 1498 SQLSTATE: HY000 (ER_PARTITION_NOT_DEFINED_ERROR)

Message: For the partitioned engine it is necessary to define all %s

•   Error: 1499 SQLSTATE: HY000 (ER_TOO_MANY_PARTITIONS_ERROR)

Message: Too many partitions (including subpartitions) were defined

•   Error: 1500 SQLSTATE: HY000 (ER_SUBPARTITION_ERROR)

Message: It is only possible to mix RANGE/LIST partitioning with HASH/KEY partitioning for
subpartitioning

•   Error: 1501 SQLSTATE: HY000 (ER_CANT_CREATE_HANDLER_FILE)

Message: Failed to create specific handler file

•   Error: 1502 SQLSTATE: HY000 (ER_BLOB_FIELD_IN_PART_FUNC_ERROR)

Message: A BLOB field is not allowed in partition function

•   Error: 1503 SQLSTATE: HY000 (ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF)

Message: A %s must include all columns in the table's partitioning function

•   Error: 1504 SQLSTATE: HY000 (ER_NO_PARTS_ERROR)



Server Error Codes and Messages

2915

Message: Number of %s = 0 is not an allowed value

•   Error: 1505 SQLSTATE: HY000 (ER_PARTITION_MGMT_ON_NONPARTITIONED)

Message: Partition management on a not partitioned table is not possible

•   Error: 1506 SQLSTATE: HY000 (ER_FOREIGN_KEY_ON_PARTITIONED)

Message: Foreign key clause is not yet supported in conjunction with partitioning

•   Error: 1507 SQLSTATE: HY000 (ER_DROP_PARTITION_NON_EXISTENT)

Message: Error in list of partitions to %s

•   Error: 1508 SQLSTATE: HY000 (ER_DROP_LAST_PARTITION)

Message: Cannot remove all partitions, use DROP TABLE instead

•   Error: 1509 SQLSTATE: HY000 (ER_COALESCE_ONLY_ON_HASH_PARTITION)

Message: COALESCE PARTITION can only be used on HASH/KEY partitions

•   Error: 1510 SQLSTATE: HY000 (ER_REORG_HASH_ONLY_ON_SAME_NO)

Message: REORGANIZE PARTITION can only be used to reorganize partitions not to change their
numbers

•   Error: 1511 SQLSTATE: HY000 (ER_REORG_NO_PARAM_ERROR)

Message: REORGANIZE PARTITION without parameters can only be used on auto-partitioned
tables using HASH PARTITIONs

•   Error: 1512 SQLSTATE: HY000 (ER_ONLY_ON_RANGE_LIST_PARTITION)

Message: %s PARTITION can only be used on RANGE/LIST partitions

•   Error: 1513 SQLSTATE: HY000 (ER_ADD_PARTITION_SUBPART_ERROR)

Message: Trying to Add partition(s) with wrong number of subpartitions

•   Error: 1514 SQLSTATE: HY000 (ER_ADD_PARTITION_NO_NEW_PARTITION)

Message: At least one partition must be added

•   Error: 1515 SQLSTATE: HY000 (ER_COALESCE_PARTITION_NO_PARTITION)

Message: At least one partition must be coalesced

•   Error: 1516 SQLSTATE: HY000 (ER_REORG_PARTITION_NOT_EXIST)

Message: More partitions to reorganize than there are partitions

•   Error: 1517 SQLSTATE: HY000 (ER_SAME_NAME_PARTITION)

Message: Duplicate partition name %s

•   Error: 1518 SQLSTATE: HY000 (ER_NO_BINLOG_ERROR)

Message: It is not allowed to shut off binlog on this command

•   Error: 1519 SQLSTATE: HY000 (ER_CONSECUTIVE_REORG_PARTITIONS)

Message: When reorganizing a set of partitions they must be in consecutive order



Server Error Codes and Messages

2916

•   Error: 1520 SQLSTATE: HY000 (ER_REORG_OUTSIDE_RANGE)

Message: Reorganize of range partitions cannot change total ranges except for last partition where it
can extend the range

•   Error: 1521 SQLSTATE: HY000 (ER_PARTITION_FUNCTION_FAILURE)

Message: Partition function not supported in this version for this handler

•   Error: 1522 SQLSTATE: HY000 (ER_PART_STATE_ERROR)

Message: Partition state cannot be defined from CREATE/ALTER TABLE

•   Error: 1523 SQLSTATE: HY000 (ER_LIMITED_PART_RANGE)

Message: The %s handler only supports 32 bit integers in VALUES

•   Error: 1524 SQLSTATE: HY000 (ER_PLUGIN_IS_NOT_LOADED)

Message: Plugin '%s' is not loaded

•   Error: 1525 SQLSTATE: HY000 (ER_WRONG_VALUE)

Message: Incorrect %s value: '%s'

•   Error: 1526 SQLSTATE: HY000 (ER_NO_PARTITION_FOR_GIVEN_VALUE)

Message: Table has no partition for value %s

•   Error: 1527 SQLSTATE: HY000 (ER_FILEGROUP_OPTION_ONLY_ONCE)

Message: It is not allowed to specify %s more than once

•   Error: 1528 SQLSTATE: HY000 (ER_CREATE_FILEGROUP_FAILED)

Message: Failed to create %s

•   Error: 1529 SQLSTATE: HY000 (ER_DROP_FILEGROUP_FAILED)

Message: Failed to drop %s

•   Error: 1530 SQLSTATE: HY000 (ER_TABLESPACE_AUTO_EXTEND_ERROR)

Message: The handler doesn't support autoextend of tablespaces

•   Error: 1531 SQLSTATE: HY000 (ER_WRONG_SIZE_NUMBER)

Message: A size parameter was incorrectly specified, either number or on the form 10M

•   Error: 1532 SQLSTATE: HY000 (ER_SIZE_OVERFLOW_ERROR)

Message: The size number was correct but we don't allow the digit part to be more than 2 billion

•   Error: 1533 SQLSTATE: HY000 (ER_ALTER_FILEGROUP_FAILED)

Message: Failed to alter: %s

•   Error: 1534 SQLSTATE: HY000 (ER_BINLOG_ROW_LOGGING_FAILED)

Message: Writing one row to the row-based binary log failed

•   Error: 1535 SQLSTATE: HY000 (ER_BINLOG_ROW_WRONG_TABLE_DEF)

Message: Table definition on master and slave does not match: %s



Server Error Codes and Messages

2917

•   Error: 1536 SQLSTATE: HY000 (ER_BINLOG_ROW_RBR_TO_SBR)

Message: Slave running with --log-slave-updates must use row-based binary logging to be able to
replicate row-based binary log events

•   Error: 1537 SQLSTATE: HY000 (ER_EVENT_ALREADY_EXISTS)

Message: Event '%s' already exists

•   Error: 1538 SQLSTATE: HY000 (ER_EVENT_STORE_FAILED)

Message: Failed to store event %s. Error code %d from storage engine.

•   Error: 1539 SQLSTATE: HY000 (ER_EVENT_DOES_NOT_EXIST)

Message: Unknown event '%s'

•   Error: 1540 SQLSTATE: HY000 (ER_EVENT_CANT_ALTER)

Message: Failed to alter event '%s'

•   Error: 1541 SQLSTATE: HY000 (ER_EVENT_DROP_FAILED)

Message: Failed to drop %s

•   Error: 1542 SQLSTATE: HY000 (ER_EVENT_INTERVAL_NOT_POSITIVE_OR_TOO_BIG)

Message: INTERVAL is either not positive or too big

•   Error: 1543 SQLSTATE: HY000 (ER_EVENT_ENDS_BEFORE_STARTS)

Message: ENDS is either invalid or before STARTS

•   Error: 1544 SQLSTATE: HY000 (ER_EVENT_EXEC_TIME_IN_THE_PAST)

Message: Event execution time is in the past. Event has been disabled

•   Error: 1545 SQLSTATE: HY000 (ER_EVENT_OPEN_TABLE_FAILED)

Message: Failed to open mysql.event

•   Error: 1546 SQLSTATE: HY000 (ER_EVENT_NEITHER_M_EXPR_NOR_M_AT)

Message: No datetime expression provided

•   Error: 1547 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_CORRUPTED)

Message: Column count of mysql.%s is wrong. Expected %d, found %d. The table is probably
corrupted

•   Error: 1548 SQLSTATE: HY000 (ER_CANNOT_LOAD_FROM_TABLE)

Message: Cannot load from mysql.%s. The table is probably corrupted

•   Error: 1549 SQLSTATE: HY000 (ER_EVENT_CANNOT_DELETE)

Message: Failed to delete the event from mysql.event

•   Error: 1550 SQLSTATE: HY000 (ER_EVENT_COMPILE_ERROR)

Message: Error during compilation of event's body

•   Error: 1551 SQLSTATE: HY000 (ER_EVENT_SAME_NAME)

Message: Same old and new event name



Server Error Codes and Messages

2918

•   Error: 1552 SQLSTATE: HY000 (ER_EVENT_DATA_TOO_LONG)

Message: Data for column '%s' too long

•   Error: 1553 SQLSTATE: HY000 (ER_DROP_INDEX_FK)

Message: Cannot drop index '%s': needed in a foreign key constraint

InnoDB reports this error when you attempt to drop the last index that can enforce a particular
referential constraint.

For optimal performance with DML statements, InnoDB requires an index to exist on foreign key
columns, so that UPDATE and DELETE operations on a parent table can easily check whether
corresponding rows exist in the child table. MySQL creates or drops such indexes automatically
when needed, as a side-effect of CREATE TABLE, CREATE INDEX, and ALTER TABLE statements.

When you drop an index, InnoDB checks if the index is used for checking a foreign key constraint. It
is still OK to drop the index if there is another index that can be used to enforce the same constraint.
InnoDB prevents you from dropping the last index that can enforce a particular referential constraint.

•   Error: 1554 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX_WITH_VER)

Message: The syntax '%s' is deprecated and will be removed in MySQL %s. Please use %s instead

•   Error: 1555 SQLSTATE: HY000 (ER_CANT_WRITE_LOCK_LOG_TABLE)

Message: You can't write-lock a log table. Only read access is possible

•   Error: 1556 SQLSTATE: HY000 (ER_CANT_LOCK_LOG_TABLE)

Message: You can't use locks with log tables.

•   Error: 1557 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY)

Message: Upholding foreign key constraints for table '%s', entry '%s', key %d would lead to a
duplicate entry

•   Error: 1558 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE)

Message: Column count of mysql.%s is wrong. Expected %d, found %d. Created with MySQL %d,
now running %d. Please use mysql_upgrade to fix this error.

•   Error: 1559 SQLSTATE: HY000 (ER_TEMP_TABLE_PREVENTS_SWITCH_OUT_OF_RBR)

Message: Cannot switch out of the row-based binary log format when the session has open
temporary tables

•   Error: 1560 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_FORMAT)

Message: Cannot change the binary logging format inside a stored function or trigger

•   Error: 1561 SQLSTATE: HY000 (ER_NDB_CANT_SWITCH_BINLOG_FORMAT)

Message: The NDB cluster engine does not support changing the binlog format on the fly yet

•   Error: 1562 SQLSTATE: HY000 (ER_PARTITION_NO_TEMPORARY)

Message: Cannot create temporary table with partitions

•   Error: 1563 SQLSTATE: HY000 (ER_PARTITION_CONST_DOMAIN_ERROR)

Message: Partition constant is out of partition function domain

•   Error: 1564 SQLSTATE: HY000 (ER_PARTITION_FUNCTION_IS_NOT_ALLOWED)



Server Error Codes and Messages

2919

Message: This partition function is not allowed

•   Error: 1565 SQLSTATE: HY000 (ER_DDL_LOG_ERROR)

Message: Error in DDL log

•   Error: 1566 SQLSTATE: HY000 (ER_NULL_IN_VALUES_LESS_THAN)

Message: Not allowed to use NULL value in VALUES LESS THAN

•   Error: 1567 SQLSTATE: HY000 (ER_WRONG_PARTITION_NAME)

Message: Incorrect partition name

•   Error: 1568 SQLSTATE: 25001 (ER_CANT_CHANGE_TX_ISOLATION)

Message: Transaction isolation level can't be changed while a transaction is in progress

•   Error: 1569 SQLSTATE: HY000 (ER_DUP_ENTRY_AUTOINCREMENT_CASE)

Message: ALTER TABLE causes auto_increment resequencing, resulting in duplicate entry '%s' for
key '%s'

•   Error: 1570 SQLSTATE: HY000 (ER_EVENT_MODIFY_QUEUE_ERROR)

Message: Internal scheduler error %d

•   Error: 1571 SQLSTATE: HY000 (ER_EVENT_SET_VAR_ERROR)

Message: Error during starting/stopping of the scheduler. Error code %u

•   Error: 1572 SQLSTATE: HY000 (ER_PARTITION_MERGE_ERROR)

Message: Engine cannot be used in partitioned tables

•   Error: 1573 SQLSTATE: HY000 (ER_CANT_ACTIVATE_LOG)

Message: Cannot activate '%s' log

•   Error: 1574 SQLSTATE: HY000 (ER_RBR_NOT_AVAILABLE)

Message: The server was not built with row-based replication

•   Error: 1575 SQLSTATE: HY000 (ER_BASE64_DECODE_ERROR)

Message: Decoding of base64 string failed

•   Error: 1576 SQLSTATE: HY000 (ER_EVENT_RECURSION_FORBIDDEN)

Message: Recursion of EVENT DDL statements is forbidden when body is present

•   Error: 1577 SQLSTATE: HY000 (ER_EVENTS_DB_ERROR)

Message: Cannot proceed because system tables used by Event Scheduler were found damaged at
server start

To address this issue, try running mysql_upgrade.

•   Error: 1578 SQLSTATE: HY000 (ER_ONLY_INTEGERS_ALLOWED)

Message: Only integers allowed as number here

•   Error: 1579 SQLSTATE: HY000 (ER_UNSUPORTED_LOG_ENGINE)



Server Error Codes and Messages

2920

Message: This storage engine cannot be used for log tables"

•   Error: 1580 SQLSTATE: HY000 (ER_BAD_LOG_STATEMENT)

Message: You cannot '%s' a log table if logging is enabled

•   Error: 1581 SQLSTATE: HY000 (ER_CANT_RENAME_LOG_TABLE)

Message: Cannot rename '%s'. When logging enabled, rename to/from log table must rename two
tables: the log table to an archive table and another table back to '%s'

•   Error: 1582 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT)

Message: Incorrect parameter count in the call to native function '%s'

•   Error: 1583 SQLSTATE: 42000 (ER_WRONG_PARAMETERS_TO_NATIVE_FCT)

Message: Incorrect parameters in the call to native function '%s'

•   Error: 1584 SQLSTATE: 42000 (ER_WRONG_PARAMETERS_TO_STORED_FCT)

Message: Incorrect parameters in the call to stored function '%s'

•   Error: 1585 SQLSTATE: HY000 (ER_NATIVE_FCT_NAME_COLLISION)

Message: This function '%s' has the same name as a native function

•   Error: 1586 SQLSTATE: 23000 (ER_DUP_ENTRY_WITH_KEY_NAME)

Message: Duplicate entry '%s' for key '%s'

The format string for this error is also used with ER_DUP_ENTRY.

•   Error: 1587 SQLSTATE: HY000 (ER_BINLOG_PURGE_EMFILE)

Message: Too many files opened, please execute the command again

•   Error: 1588 SQLSTATE: HY000 (ER_EVENT_CANNOT_CREATE_IN_THE_PAST)

Message: Event execution time is in the past and ON COMPLETION NOT PRESERVE is set. The
event was dropped immediately after creation.

•   Error: 1589 SQLSTATE: HY000 (ER_EVENT_CANNOT_ALTER_IN_THE_PAST)

Message: Event execution time is in the past and ON COMPLETION NOT PRESERVE is set. The
event was dropped immediately after creation.

•   Error: 1590 SQLSTATE: HY000 (ER_SLAVE_INCIDENT)

Message: The incident %s occured on the master. Message: %s

•   Error: 1591 SQLSTATE: HY000 (ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT)

Message: Table has no partition for some existing values

•   Error: 1592 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_STATEMENT)

Message: Unsafe statement written to the binary log using statement format since
BINLOG_FORMAT = STATEMENT. %s

•   Error: 1593 SQLSTATE: HY000 (ER_SLAVE_FATAL_ERROR)

Message: Fatal error: %s



Server Error Codes and Messages

2921

•   Error: 1594 SQLSTATE: HY000 (ER_SLAVE_RELAY_LOG_READ_FAILURE)

Message: Relay log read failure: %s

•   Error: 1595 SQLSTATE: HY000 (ER_SLAVE_RELAY_LOG_WRITE_FAILURE)

Message: Relay log write failure: %s

•   Error: 1596 SQLSTATE: HY000 (ER_SLAVE_CREATE_EVENT_FAILURE)

Message: Failed to create %s

•   Error: 1597 SQLSTATE: HY000 (ER_SLAVE_MASTER_COM_FAILURE)

Message: Master command %s failed: %s

•   Error: 1598 SQLSTATE: HY000 (ER_BINLOG_LOGGING_IMPOSSIBLE)

Message: Binary logging not possible. Message: %s

•   Error: 1599 SQLSTATE: HY000 (ER_VIEW_NO_CREATION_CTX)

Message: View `%s`.`%s` has no creation context

•   Error: 1600 SQLSTATE: HY000 (ER_VIEW_INVALID_CREATION_CTX)

Message: Creation context of view `%s`.`%s' is invalid

•   Error: 1601 SQLSTATE: HY000 (ER_SR_INVALID_CREATION_CTX)

Message: Creation context of stored routine `%s`.`%s` is invalid

•   Error: 1602 SQLSTATE: HY000 (ER_TRG_CORRUPTED_FILE)

Message: Corrupted TRG file for table `%s`.`%s`

•   Error: 1603 SQLSTATE: HY000 (ER_TRG_NO_CREATION_CTX)

Message: Triggers for table `%s`.`%s` have no creation context

•   Error: 1604 SQLSTATE: HY000 (ER_TRG_INVALID_CREATION_CTX)

Message: Trigger creation context of table `%s`.`%s` is invalid

•   Error: 1605 SQLSTATE: HY000 (ER_EVENT_INVALID_CREATION_CTX)

Message: Creation context of event `%s`.`%s` is invalid

•   Error: 1606 SQLSTATE: HY000 (ER_TRG_CANT_OPEN_TABLE)

Message: Cannot open table for trigger `%s`.`%s`

•   Error: 1607 SQLSTATE: HY000 (ER_CANT_CREATE_SROUTINE)

Message: Cannot create stored routine `%s`. Check warnings

•   Error: 1608 SQLSTATE: HY000 (ER_SLAVE_AMBIGOUS_EXEC_MODE)

Message: Ambiguous slave modes combination. %s

In 5.5.3: ER_SLAVE_AMBIGOUS_EXEC_MODE was renamed to ER_NEVER_USED.

ER_SLAVE_AMBIGOUS_EXEC_MODE was removed after 5.5.2.

•   Error: 1608 SQLSTATE: HY000 (ER_NEVER_USED)



Server Error Codes and Messages

2922

Message: Ambiguous slave modes combination. %s

In 5.5.3: ER_SLAVE_AMBIGOUS_EXEC_MODE was renamed to ER_NEVER_USED.

ER_NEVER_USED was added in 5.5.3.

•   Error: 1609 SQLSTATE: HY000
(ER_NO_FORMAT_DESCRIPTION_EVENT_BEFORE_BINLOG_STATEMENT)

Message: The BINLOG statement of type `%s` was not preceded by a format description BINLOG
statement.

•   Error: 1610 SQLSTATE: HY000 (ER_SLAVE_CORRUPT_EVENT)

Message: Corrupted replication event was detected

•   Error: 1611 SQLSTATE: HY000 (ER_LOAD_DATA_INVALID_COLUMN)

Message: Invalid column reference (%s) in LOAD DATA

•   Error: 1612 SQLSTATE: HY000 (ER_LOG_PURGE_NO_FILE)

Message: Being purged log %s was not found

•   Error: 1613 SQLSTATE: XA106 (ER_XA_RBTIMEOUT)

Message: XA_RBTIMEOUT: Transaction branch was rolled back: took too long

•   Error: 1614 SQLSTATE: XA102 (ER_XA_RBDEADLOCK)

Message: XA_RBDEADLOCK: Transaction branch was rolled back: deadlock was detected

•   Error: 1615 SQLSTATE: HY000 (ER_NEED_REPREPARE)

Message: Prepared statement needs to be re-prepared

•   Error: 1616 SQLSTATE: HY000 (ER_DELAYED_NOT_SUPPORTED)

Message: DELAYED option not supported for table '%s'

•   Error: 1617 SQLSTATE: HY000 (WARN_NO_MASTER_INFO)

Message: The master info structure does not exist

•   Error: 1618 SQLSTATE: HY000 (WARN_OPTION_IGNORED)

Message: <%s> option ignored

•   Error: 1619 SQLSTATE: HY000 (WARN_PLUGIN_DELETE_BUILTIN)

Message: Built-in plugins cannot be deleted

•   Error: 1620 SQLSTATE: HY000 (WARN_PLUGIN_BUSY)

Message: Plugin is busy and will be uninstalled on shutdown

•   Error: 1621 SQLSTATE: HY000 (ER_VARIABLE_IS_READONLY)

Message: %s variable '%s' is read-only. Use SET %s to assign the value

•   Error: 1622 SQLSTATE: HY000 (ER_WARN_ENGINE_TRANSACTION_ROLLBACK)

Message: Storage engine %s does not support rollback for this statement. Transaction rolled back
and must be restarted



Server Error Codes and Messages

2923

•   Error: 1623 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_FAILURE)

Message: Unexpected master's heartbeat data: %s

•   Error: 1624 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE)

Message: The requested value for the heartbeat period is either negative or exceeds the maximum
allowed (%s seconds).

•   Error: 1625 SQLSTATE: HY000 (ER_NDB_REPLICATION_SCHEMA_ERROR)

Message: Bad schema for mysql.ndb_replication table. Message: %s

•   Error: 1626 SQLSTATE: HY000 (ER_CONFLICT_FN_PARSE_ERROR)

Message: Error in parsing conflict function. Message: %s

•   Error: 1627 SQLSTATE: HY000 (ER_EXCEPTIONS_WRITE_ERROR)

Message: Write to exceptions table failed. Message: %s"

•   Error: 1628 SQLSTATE: HY000 (ER_TOO_LONG_TABLE_COMMENT)

Message: Comment for table '%s' is too long (max = %lu)

•   Error: 1629 SQLSTATE: HY000 (ER_TOO_LONG_FIELD_COMMENT)

Message: Comment for field '%s' is too long (max = %lu)

•   Error: 1630 SQLSTATE: 42000 (ER_FUNC_INEXISTENT_NAME_COLLISION)

Message: FUNCTION %s does not exist. Check the 'Function Name Parsing and Resolution' section
in the Reference Manual

•   Error: 1631 SQLSTATE: HY000 (ER_DATABASE_NAME)

Message: Database

•   Error: 1632 SQLSTATE: HY000 (ER_TABLE_NAME)

Message: Table

•   Error: 1633 SQLSTATE: HY000 (ER_PARTITION_NAME)

Message: Partition

•   Error: 1634 SQLSTATE: HY000 (ER_SUBPARTITION_NAME)

Message: Subpartition

•   Error: 1635 SQLSTATE: HY000 (ER_TEMPORARY_NAME)

Message: Temporary

•   Error: 1636 SQLSTATE: HY000 (ER_RENAMED_NAME)

Message: Renamed

•   Error: 1637 SQLSTATE: HY000 (ER_TOO_MANY_CONCURRENT_TRXS)

Message: Too many active concurrent transactions

•   Error: 1638 SQLSTATE: HY000 (WARN_NON_ASCII_SEPARATOR_NOT_IMPLEMENTED)

Message: Non-ASCII separator arguments are not fully supported



Server Error Codes and Messages

2924

•   Error: 1639 SQLSTATE: HY000 (ER_DEBUG_SYNC_TIMEOUT)

Message: debug sync point wait timed out

•   Error: 1640 SQLSTATE: HY000 (ER_DEBUG_SYNC_HIT_LIMIT)

Message: debug sync point hit limit reached

•   Error: 1641 SQLSTATE: 42000 (ER_DUP_SIGNAL_SET)

Message: Duplicate condition information item '%s'

•   Error: 1642 SQLSTATE: 01000 (ER_SIGNAL_WARN)

Message: Unhandled user-defined warning condition

•   Error: 1643 SQLSTATE: 02000 (ER_SIGNAL_NOT_FOUND)

Message: Unhandled user-defined not found condition

•   Error: 1644 SQLSTATE: HY000 (ER_SIGNAL_EXCEPTION)

Message: Unhandled user-defined exception condition

•   Error: 1645 SQLSTATE: 0K000 (ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER)

Message: RESIGNAL when handler not active

•   Error: 1646 SQLSTATE: HY000 (ER_SIGNAL_BAD_CONDITION_TYPE)

Message: SIGNAL/RESIGNAL can only use a CONDITION defined with SQLSTATE

•   Error: 1647 SQLSTATE: HY000 (WARN_COND_ITEM_TRUNCATED)

Message: Data truncated for condition item '%s'

•   Error: 1648 SQLSTATE: HY000 (ER_COND_ITEM_TOO_LONG)

Message: Data too long for condition item '%s'

•   Error: 1649 SQLSTATE: HY000 (ER_UNKNOWN_LOCALE)

Message: Unknown locale: '%s'

•   Error: 1650 SQLSTATE: HY000 (ER_SLAVE_IGNORE_SERVER_IDS)

Message: The requested server id %d clashes with the slave startup option --replicate-same-server-
id

•   Error: 1651 SQLSTATE: HY000 (ER_QUERY_CACHE_DISABLED)

Message: Query cache is disabled; restart the server with query_cache_type=1 to enable it

•   Error: 1652 SQLSTATE: HY000 (ER_SAME_NAME_PARTITION_FIELD)

Message: Duplicate partition field name '%s'

•   Error: 1653 SQLSTATE: HY000 (ER_PARTITION_COLUMN_LIST_ERROR)

Message: Inconsistency in usage of column lists for partitioning

•   Error: 1654 SQLSTATE: HY000 (ER_WRONG_TYPE_COLUMN_VALUE_ERROR)

Message: Partition column values of incorrect type

•   Error: 1655 SQLSTATE: HY000 (ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR)



Server Error Codes and Messages

2925

Message: Too many fields in '%s'

•   Error: 1656 SQLSTATE: HY000 (ER_MAXVALUE_IN_VALUES_IN)

Message: Cannot use MAXVALUE as value in VALUES IN

•   Error: 1657 SQLSTATE: HY000 (ER_TOO_MANY_VALUES_ERROR)

Message: Cannot have more than one value for this type of %s partitioning

•   Error: 1658 SQLSTATE: HY000 (ER_ROW_SINGLE_PARTITION_FIELD_ERROR)

Message: Row expressions in VALUES IN only allowed for multi-field column partitioning

•   Error: 1659 SQLSTATE: HY000 (ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD)

Message: Field '%s' is of a not allowed type for this type of partitioning

•   Error: 1660 SQLSTATE: HY000 (ER_PARTITION_FIELDS_TOO_LONG)

Message: The total length of the partitioning fields is too large

•   Error: 1661 SQLSTATE: HY000 (ER_BINLOG_ROW_ENGINE_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since both row-incapable
engines and statement-incapable engines are involved.

ER_BINLOG_ROW_ENGINE_AND_STMT_ENGINE was added in 5.5.3.

•   Error: 1662 SQLSTATE: HY000 (ER_BINLOG_ROW_MODE_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT =
ROW and at least one table uses a storage engine limited to statement-based logging.

ER_BINLOG_ROW_MODE_AND_STMT_ENGINE was added in 5.5.3.

•   Error: 1663 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since statement is unsafe,
storage engine is limited to statement-based logging, and BINLOG_FORMAT = MIXED. %s

ER_BINLOG_UNSAFE_AND_STMT_ENGINE was added in 5.5.3.

•   Error: 1664 SQLSTATE: HY000 (ER_BINLOG_ROW_INJECTION_AND_STMT_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since statement is in row
format and at least one table uses a storage engine limited to statement-based logging.

ER_BINLOG_ROW_INJECTION_AND_STMT_ENGINE was added in 5.5.3.

•   Error: 1665 SQLSTATE: HY000 (ER_BINLOG_STMT_MODE_AND_ROW_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT =
STATEMENT and at least one table uses a storage engine limited to row-based logging.%s

ER_BINLOG_STMT_MODE_AND_ROW_ENGINE was added in 5.5.3.

•   Error: 1666 SQLSTATE: HY000 (ER_BINLOG_ROW_INJECTION_AND_STMT_MODE)

Message: Cannot execute statement: impossible to write to binary log since statement is in row
format and BINLOG_FORMAT = STATEMENT.

ER_BINLOG_ROW_INJECTION_AND_STMT_MODE was added in 5.5.3.



Server Error Codes and Messages

2926

•   Error: 1667 SQLSTATE: HY000
(ER_BINLOG_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE)

Message: Cannot execute statement: impossible to write to binary log since more than one engine is
involved and at least one engine is self-logging.

ER_BINLOG_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE was added in 5.5.3.

•   Error: 1668 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_LIMIT)

Message: The statement is unsafe because it uses a LIMIT clause. This is unsafe because the set of
rows included cannot be predicted.

ER_BINLOG_UNSAFE_LIMIT was added in 5.5.3.

•   Error: 1669 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_DELAYED)

Message: The statement is unsafe because it uses INSERT DELAYED. This is unsafe because the
times when rows are inserted cannot be predicted.

ER_BINLOG_UNSAFE_INSERT_DELAYED was added in 5.5.3.

•   Error: 1670 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_TABLE)

Message: The statement is unsafe because it uses the general log, slow query log, or
performance_schema table(s). This is unsafe because system tables may differ on slaves.

ER_BINLOG_UNSAFE_SYSTEM_TABLE was added in 5.5.3.

•   Error: 1671 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AUTOINC_COLUMNS)

Message: Statement is unsafe because it invokes a trigger or a stored function that inserts into an
AUTO_INCREMENT column. Inserted values cannot be logged correctly.

ER_BINLOG_UNSAFE_AUTOINC_COLUMNS was added in 5.5.3.

•   Error: 1672 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_UDF)

Message: Statement is unsafe because it uses a UDF which may not return the same value on the
slave.

ER_BINLOG_UNSAFE_UDF was added in 5.5.3.

•   Error: 1673 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_VARIABLE)

Message: Statement is unsafe because it uses a system variable that may have a different value on
the slave.

ER_BINLOG_UNSAFE_SYSTEM_VARIABLE was added in 5.5.3.

•   Error: 1674 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_FUNCTION)

Message: Statement is unsafe because it uses a system function that may return a different value on
the slave.

ER_BINLOG_UNSAFE_SYSTEM_FUNCTION was added in 5.5.3.

•   Error: 1675 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS)

Message: Statement is unsafe because it accesses a non-transactional table after accessing a
transactional table within the same transaction.

ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS was added in 5.5.3.



Server Error Codes and Messages

2927

•   Error: 1676 SQLSTATE: HY000 (ER_MESSAGE_AND_STATEMENT)

Message: %s Statement: %s

ER_MESSAGE_AND_STATEMENT was added in 5.5.3.

•   Error: 1677 SQLSTATE: HY000 (ER_SLAVE_CONVERSION_FAILED)

Message: Column %d of table '%s.%s' cannot be converted from type '%s' to type '%s'

ER_SLAVE_CONVERSION_FAILED was added in 5.5.3.

•   Error: 1678 SQLSTATE: HY000 (ER_SLAVE_CANT_CREATE_CONVERSION)

Message: Can't create conversion table for table '%s.%s'

ER_SLAVE_CANT_CREATE_CONVERSION was added in 5.5.3.

•   Error: 1679 SQLSTATE: HY000
(ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_FORMAT)

Message: Cannot modify @@session.binlog_format inside a transaction

ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_FORMAT was added in 5.5.3.

•   Error: 1680 SQLSTATE: HY000 (ER_PATH_LENGTH)

Message: The path specified for %s is too long.

ER_PATH_LENGTH was added in 5.5.3.

•   Error: 1681 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX_NO_REPLACEMENT)

Message: '%s' is deprecated and will be removed in a future release.

ER_WARN_DEPRECATED_SYNTAX_NO_REPLACEMENT was added in 5.5.3.

•   Error: 1682 SQLSTATE: HY000 (ER_WRONG_NATIVE_TABLE_STRUCTURE)

Message: Native table '%s'.'%s' has the wrong structure

ER_WRONG_NATIVE_TABLE_STRUCTURE was added in 5.5.3.

•   Error: 1683 SQLSTATE: HY000 (ER_WRONG_PERFSCHEMA_USAGE)

Message: Invalid performance_schema usage.

ER_WRONG_PERFSCHEMA_USAGE was added in 5.5.3.

•   Error: 1684 SQLSTATE: HY000 (ER_WARN_I_S_SKIPPED_TABLE)

Message: Table '%s'.'%s' was skipped since its definition is being modified by concurrent DDL
statement

ER_WARN_I_S_SKIPPED_TABLE was added in 5.5.3.

•   Error: 1685 SQLSTATE: HY000
(ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_DIRECT)

Message: Cannot modify @@session.binlog_direct_non_transactional_updates inside a transaction

ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_DIRECT was added in 5.5.3.

•   Error: 1686 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_DIRECT)



Server Error Codes and Messages

2928

Message: Cannot change the binlog direct flag inside a stored function or trigger

ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_DIRECT was added in 5.5.3.

•   Error: 1687 SQLSTATE: 42000 (ER_SPATIAL_MUST_HAVE_GEOM_COL)

Message: A SPATIAL index may only contain a geometrical type column

ER_SPATIAL_MUST_HAVE_GEOM_COL was added in 5.5.2.

•   Error: 1688 SQLSTATE: HY000 (ER_TOO_LONG_INDEX_COMMENT)

Message: Comment for index '%s' is too long (max = %lu)

ER_TOO_LONG_INDEX_COMMENT was added in 5.5.3.

•   Error: 1689 SQLSTATE: HY000 (ER_LOCK_ABORTED)

Message: Wait on a lock was aborted due to a pending exclusive lock

ER_LOCK_ABORTED was added in 5.5.4.

•   Error: 1690 SQLSTATE: 22003 (ER_DATA_OUT_OF_RANGE)

Message: %s value is out of range in '%s'

ER_DATA_OUT_OF_RANGE was added in 5.5.5.

•   Error: 1691 SQLSTATE: HY000 (ER_WRONG_SPVAR_TYPE_IN_LIMIT)

Message: A variable of a non-integer based type in LIMIT clause

ER_WRONG_SPVAR_TYPE_IN_LIMIT was added in 5.5.5.

•   Error: 1692 SQLSTATE: HY000
(ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE)

Message: Mixing self-logging and non-self-logging engines in a statement is unsafe.

ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE was added in 5.5.5.

•   Error: 1693 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_MIXED_STATEMENT)

Message: Statement accesses nontransactional table as well as transactional or temporary table,
and writes to any of them.

ER_BINLOG_UNSAFE_MIXED_STATEMENT was added in 5.5.5.

•   Error: 1694 SQLSTATE: HY000
(ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_SQL_LOG_BIN)

Message: Cannot modify @@session.sql_log_bin inside a transaction

ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_SQL_LOG_BIN was added in 5.5.5.

•   Error: 1695 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_SQL_LOG_BIN)

Message: Cannot change the sql_log_bin inside a stored function or trigger

ER_STORED_FUNCTION_PREVENTS_SWITCH_SQL_LOG_BIN was added in 5.5.5.

•   Error: 1696 SQLSTATE: HY000 (ER_FAILED_READ_FROM_PAR_FILE)



Server Error Codes and Messages

2929

Message: Failed to read from the .par file

ER_FAILED_READ_FROM_PAR_FILE was added in 5.5.5.

•   Error: 1697 SQLSTATE: HY000 (ER_VALUES_IS_NOT_INT_TYPE_ERROR)

Message: VALUES value for partition '%s' must have type INT

ER_VALUES_IS_NOT_INT_TYPE_ERROR was added in 5.5.7.

•   Error: 1698 SQLSTATE: 28000 (ER_ACCESS_DENIED_NO_PASSWORD_ERROR)

Message: Access denied for user '%s'@'%s'

ER_ACCESS_DENIED_NO_PASSWORD_ERROR was added in 5.5.7.

•   Error: 1699 SQLSTATE: HY000 (ER_SET_PASSWORD_AUTH_PLUGIN)

Message: SET PASSWORD has no significance for users authenticating via plugins

ER_SET_PASSWORD_AUTH_PLUGIN was added in 5.5.7.

•   Error: 1700 SQLSTATE: HY000 (ER_GRANT_PLUGIN_USER_EXISTS)

Message: GRANT with IDENTIFIED WITH is illegal because the user %-.*s already exists

ER_GRANT_PLUGIN_USER_EXISTS was added in 5.5.7.

•   Error: 1701 SQLSTATE: 42000 (ER_TRUNCATE_ILLEGAL_FK)

Message: Cannot truncate a table referenced in a foreign key constraint (%s)

ER_TRUNCATE_ILLEGAL_FK was added in 5.5.7.

•   Error: 1702 SQLSTATE: HY000 (ER_PLUGIN_IS_PERMANENT)

Message: Plugin '%s' is force_plus_permanent and can not be unloaded

ER_PLUGIN_IS_PERMANENT was added in 5.5.7.

•   Error: 1703 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MIN)

Message: The requested value for the heartbeat period is less than 1 millisecond. The value is reset
to 0, meaning that heartbeating will effectively be disabled.

ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MIN was added in 5.5.7.

•   Error: 1704 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MAX)

Message: The requested value for the heartbeat period exceeds the value of `slave_net_timeout'
seconds. A sensible value for the period should be less than the timeout.

ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MAX was added in 5.5.7.

•   Error: 1705 SQLSTATE: HY000 (ER_STMT_CACHE_FULL)

Message: Multi-row statements required more than 'max_binlog_stmt_cache_size' bytes of storage;
increase this mysqld variable and try again

ER_STMT_CACHE_FULL was added in 5.5.9.

•   Error: 1706 SQLSTATE: HY000 (ER_MULTI_UPDATE_KEY_CONFLICT)



Server Error Codes and Messages

2930

Message: Primary key/partition key update is not allowed since the table is updated both as '%s' and
'%s'.

ER_MULTI_UPDATE_KEY_CONFLICT was added in 5.5.11.

•   Error: 1707 SQLSTATE: HY000 (ER_TABLE_NEEDS_REBUILD)

Message: Table rebuild required. Please do "ALTER TABLE `%s` FORCE" or dump/reload to fix it!

ER_TABLE_NEEDS_REBUILD was added in 5.5.11.

•   Error: 1708 SQLSTATE: HY000 (WARN_OPTION_BELOW_LIMIT)

Message: The value of '%s' should be no less than the value of '%s'

WARN_OPTION_BELOW_LIMIT was added in 5.5.12.

•   Error: 1709 SQLSTATE: HY000 (ER_INDEX_COLUMN_TOO_LONG)

Message: Index column size too large. The maximum column size is %lu bytes.

ER_INDEX_COLUMN_TOO_LONG was added in 5.5.14.

•   Error: 1710 SQLSTATE: HY000 (ER_ERROR_IN_TRIGGER_BODY)

Message: Trigger '%s' has an error in its body: '%s'

ER_ERROR_IN_TRIGGER_BODY was added in 5.5.15.

•   Error: 1711 SQLSTATE: HY000 (ER_ERROR_IN_UNKNOWN_TRIGGER_BODY)

Message: Unknown trigger has an error in its body: '%s'

ER_ERROR_IN_UNKNOWN_TRIGGER_BODY was added in 5.5.15.

•   Error: 1712 SQLSTATE: HY000 (ER_INDEX_CORRUPT)

Message: Index %s is corrupted

ER_INDEX_CORRUPT was added in 5.5.17.

•   Error: 1713 SQLSTATE: HY000 (ER_UNDO_RECORD_TOO_BIG)

Message: Undo log record is too big.

ER_UNDO_RECORD_TOO_BIG was added in 5.5.17.

•   Error: 1714 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT)

Message: INSERT IGNORE... SELECT is unsafe because the order in which rows are retrieved by
the SELECT determines which (if any) rows are ignored. This order cannot be predicted and may
differ on master and the slave.

ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT was added in 5.5.18.

•   Error: 1715 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE)

Message: INSERT... SELECT... ON DUPLICATE KEY UPDATE is unsafe because the order in
which rows are retrieved by the SELECT determines which (if any) rows are updated. This order
cannot be predicted and may differ on master and the slave.

ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE was added in 5.5.18.



Server Error Codes and Messages

2931

•   Error: 1716 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_REPLACE_SELECT)

Message: REPLACE... SELECT is unsafe because the order in which rows are retrieved by the
SELECT determines which (if any) rows are replaced. This order cannot be predicted and may differ
on master and the slave.

ER_BINLOG_UNSAFE_REPLACE_SELECT was added in 5.5.18.

•   Error: 1717 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT)

Message: CREATE... IGNORE SELECT is unsafe because the order in which rows are retrieved by
the SELECT determines which (if any) rows are ignored. This order cannot be predicted and may
differ on master and the slave.

ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT was added in 5.5.18.

•   Error: 1718 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT)

Message: CREATE... REPLACE SELECT is unsafe because the order in which rows are retrieved
by the SELECT determines which (if any) rows are replaced. This order cannot be predicted and
may differ on master and the slave.

ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT was added in 5.5.18.

•   Error: 1719 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_UPDATE_IGNORE)

Message: UPDATE IGNORE is unsafe because the order in which rows are updated determines
which (if any) rows are ignored. This order cannot be predicted and may differ on master and the
slave.

ER_BINLOG_UNSAFE_UPDATE_IGNORE was added in 5.5.18.

•   Error: 1720 SQLSTATE: HY000 (ER_PLUGIN_NO_UNINSTALL)

Message: Plugin '%s' is marked as not dynamically uninstallable. You have to stop the server to
uninstall it.

ER_PLUGIN_NO_UNINSTALL was added in 5.5.16.

•   Error: 1721 SQLSTATE: HY000 (ER_PLUGIN_NO_INSTALL)

Message: Plugin '%s' is marked as not dynamically installable. You have to stop the server to install
it.

ER_PLUGIN_NO_INSTALL was added in 5.5.16.

•   Error: 1722 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT)

Message: Statements writing to a table with an auto-increment column after selecting from another
table are unsafe because the order in which rows are retrieved determines what (if any) rows will be
written. This order cannot be predicted and may differ on master and the slave.

ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT was added in 5.5.22.

•   Error: 1723 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC)

Message: CREATE TABLE... SELECT... on a table with an auto-increment column is unsafe
because the order in which rows are retrieved by the SELECT determines which (if any) rows are
inserted. This order cannot be predicted and may differ on master and the slave.

ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC was added in 5.5.22.

•   Error: 1724 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_TWO_KEYS)



Client Error Codes and Messages

2932

Message: INSERT... ON DUPLICATE KEY UPDATE on a table with more than one UNIQUE KEY is
unsafe

ER_BINLOG_UNSAFE_INSERT_TWO_KEYS was added in 5.5.24.

•   Error: 1725 SQLSTATE: HY000 (ER_TABLE_IN_FK_CHECK)

Message: Table is being used in foreign key check.

ER_TABLE_IN_FK_CHECK was added in 5.5.24.

•   Error: 1726 SQLSTATE: HY000 (ER_UNSUPPORTED_ENGINE)

Message: Storage engine '%s' does not support system tables. [%s.%s]

ER_UNSUPPORTED_ENGINE was added in 5.5.24.

•   Error: 1727 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST)

Message: INSERT into autoincrement field which is not the first part in the composed primary key is
unsafe.

ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST was added in 5.5.25.

B.4 Client Error Codes and Messages

Client error information comes from the following source files:

• The Error values and the symbols in parentheses correspond to definitions in the include/
errmsg.h MySQL source file.

• The Message values correspond to the error messages that are listed in the libmysql/errmsg.c
file. %d and %s represent numbers and strings, respectively, that are substituted into the messages
when they are displayed.

Because updates are frequent, it is possible that those files will contain additional error information not
listed here.

•   Error: 2000 (CR_UNKNOWN_ERROR)

Message: Unknown MySQL error

•   Error: 2001 (CR_SOCKET_CREATE_ERROR)

Message: Can't create UNIX socket (%d)

•   Error: 2002 (CR_CONNECTION_ERROR)

Message: Can't connect to local MySQL server through socket '%s' (%d)

•   Error: 2003 (CR_CONN_HOST_ERROR)

Message: Can't connect to MySQL server on '%s' (%d)

•   Error: 2004 (CR_IPSOCK_ERROR)

Message: Can't create TCP/IP socket (%d)

•   Error: 2005 (CR_UNKNOWN_HOST)

Message: Unknown MySQL server host '%s' (%d)



Client Error Codes and Messages

2933

•   Error: 2006 (CR_SERVER_GONE_ERROR)

Message: MySQL server has gone away

•   Error: 2007 (CR_VERSION_ERROR)

Message: Protocol mismatch; server version = %d, client version = %d

•   Error: 2008 (CR_OUT_OF_MEMORY)

Message: MySQL client ran out of memory

•   Error: 2009 (CR_WRONG_HOST_INFO)

Message: Wrong host info

•   Error: 2010 (CR_LOCALHOST_CONNECTION)

Message: Localhost via UNIX socket

•   Error: 2011 (CR_TCP_CONNECTION)

Message: %s via TCP/IP

•   Error: 2012 (CR_SERVER_HANDSHAKE_ERR)

Message: Error in server handshake

•   Error: 2013 (CR_SERVER_LOST)

Message: Lost connection to MySQL server during query

•   Error: 2014 (CR_COMMANDS_OUT_OF_SYNC)

Message: Commands out of sync; you can't run this command now

•   Error: 2015 (CR_NAMEDPIPE_CONNECTION)

Message: Named pipe: %s

•   Error: 2016 (CR_NAMEDPIPEWAIT_ERROR)

Message: Can't wait for named pipe to host: %s pipe: %s (%lu)

•   Error: 2017 (CR_NAMEDPIPEOPEN_ERROR)

Message: Can't open named pipe to host: %s pipe: %s (%lu)

•   Error: 2018 (CR_NAMEDPIPESETSTATE_ERROR)

Message: Can't set state of named pipe to host: %s pipe: %s (%lu)

•   Error: 2019 (CR_CANT_READ_CHARSET)

Message: Can't initialize character set %s (path: %s)

•   Error: 2020 (CR_NET_PACKET_TOO_LARGE)

Message: Got packet bigger than 'max_allowed_packet' bytes

•   Error: 2021 (CR_EMBEDDED_CONNECTION)

Message: Embedded server

•   Error: 2022 (CR_PROBE_SLAVE_STATUS)



Client Error Codes and Messages

2934

Message: Error on SHOW SLAVE STATUS:

•   Error: 2023 (CR_PROBE_SLAVE_HOSTS)

Message: Error on SHOW SLAVE HOSTS:

•   Error: 2024 (CR_PROBE_SLAVE_CONNECT)

Message: Error connecting to slave:

•   Error: 2025 (CR_PROBE_MASTER_CONNECT)

Message: Error connecting to master:

•   Error: 2026 (CR_SSL_CONNECTION_ERROR)

Message: SSL connection error: %s

•   Error: 2027 (CR_MALFORMED_PACKET)

Message: Malformed packet

•   Error: 2028 (CR_WRONG_LICENSE)

Message: This client library is licensed only for use with MySQL servers having '%s' license

•   Error: 2029 (CR_NULL_POINTER)

Message: Invalid use of null pointer

•   Error: 2030 (CR_NO_PREPARE_STMT)

Message: Statement not prepared

•   Error: 2031 (CR_PARAMS_NOT_BOUND)

Message: No data supplied for parameters in prepared statement

•   Error: 2032 (CR_DATA_TRUNCATED)

Message: Data truncated

•   Error: 2033 (CR_NO_PARAMETERS_EXISTS)

Message: No parameters exist in the statement

•   Error: 2034 (CR_INVALID_PARAMETER_NO)

Message: Invalid parameter number

The column number for mysql_stmt_fetch_column() was invalid.

The parameter number for mysql_stmt_send_long_data() was invalid.

•   Error: 2035 (CR_INVALID_BUFFER_USE)

Message: Can't send long data for non-string/non-binary data types (parameter: %d)

•   Error: 2036 (CR_UNSUPPORTED_PARAM_TYPE)

Message: Using unsupported buffer type: %d (parameter: %d)

•   Error: 2037 (CR_SHARED_MEMORY_CONNECTION)



Client Error Codes and Messages

2935

Message: Shared memory: %s

•   Error: 2038 (CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR)

Message: Can't open shared memory; client could not create request event (%lu)

•   Error: 2039 (CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR)

Message: Can't open shared memory; no answer event received from server (%lu)

•   Error: 2040 (CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR)

Message: Can't open shared memory; server could not allocate file mapping (%lu)

•   Error: 2041 (CR_SHARED_MEMORY_CONNECT_MAP_ERROR)

Message: Can't open shared memory; server could not get pointer to file mapping (%lu)

•   Error: 2042 (CR_SHARED_MEMORY_FILE_MAP_ERROR)

Message: Can't open shared memory; client could not allocate file mapping (%lu)

•   Error: 2043 (CR_SHARED_MEMORY_MAP_ERROR)

Message: Can't open shared memory; client could not get pointer to file mapping (%lu)

•   Error: 2044 (CR_SHARED_MEMORY_EVENT_ERROR)

Message: Can't open shared memory; client could not create %s event (%lu)

•   Error: 2045 (CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR)

Message: Can't open shared memory; no answer from server (%lu)

•   Error: 2046 (CR_SHARED_MEMORY_CONNECT_SET_ERROR)

Message: Can't open shared memory; cannot send request event to server (%lu)

•   Error: 2047 (CR_CONN_UNKNOW_PROTOCOL)

Message: Wrong or unknown protocol

•   Error: 2048 (CR_INVALID_CONN_HANDLE)

Message: Invalid connection handle

•   Error: 2049 (CR_SECURE_AUTH)

Message: Connection using old (pre-4.1.1) authentication protocol refused (client option
'secure_auth' enabled)

•   Error: 2050 (CR_FETCH_CANCELED)

Message: Row retrieval was canceled by mysql_stmt_close() call

•   Error: 2051 (CR_NO_DATA)

Message: Attempt to read column without prior row fetch

•   Error: 2052 (CR_NO_STMT_METADATA)

Message: Prepared statement contains no metadata

•   Error: 2053 (CR_NO_RESULT_SET)



Problems and Common Errors

2936

Message: Attempt to read a row while there is no result set associated with the statement

•   Error: 2054 (CR_NOT_IMPLEMENTED)

Message: This feature is not implemented yet

•   Error: 2055 (CR_SERVER_LOST_EXTENDED)

Message: Lost connection to MySQL server at '%s', system error: %d

•   Error: 2056 (CR_STMT_CLOSED)

Message: Statement closed indirectly because of a preceeding %s() call

•   Error: 2057 (CR_NEW_STMT_METADATA)

Message: The number of columns in the result set differs from the number of bound buffers. You
must reset the statement, rebind the result set columns, and execute the statement again

•   Error: 2058 (CR_ALREADY_CONNECTED)

Message: This handle is already connected. Use a separate handle for each connection.

•   Error: 2059 (CR_AUTH_PLUGIN_CANNOT_LOAD)

Message: Authentication plugin '%s' cannot be loaded: %s

CR_AUTH_PLUGIN_CANNOT_LOAD was added in 5.5.7.

B.5 Problems and Common Errors
This section lists some common problems and error messages that you may encounter. It describes
how to determine the causes of the problems and what to do to solve them.

B.5.1 How to Determine What Is Causing a Problem

When you run into a problem, the first thing you should do is to find out which program or piece of
equipment is causing it:

• If you have one of the following symptoms, then it is probably a hardware problems (such as
memory, motherboard, CPU, or hard disk) or kernel problem:

• The keyboard does not work. This can normally be checked by pressing the Caps Lock key. If
the Caps Lock light does not change, you have to replace your keyboard. (Before doing this, you
should try to restart your computer and check all cables to the keyboard.)

• The mouse pointer does not move.

• The machine does not answer to a remote machine's pings.

• Other programs that are not related to MySQL do not behave correctly.

• Your system restarted unexpectedly. (A faulty user-level program should never be able to take
down your system.)

In this case, you should start by checking all your cables and run some diagnostic tool to check your
hardware! You should also check whether there are any patches, updates, or service packs for your
operating system that could likely solve your problem. Check also that all your libraries (such as
glibc) are up to date.

It is always good to use a machine with ECC memory to discover memory problems early.



Common Errors When Using MySQL Programs

2937

• If your keyboard is locked up, you may be able to recover by logging in to your machine from another
machine and executing kbd_mode -a.

• Please examine your system log file (/var/log/messages or similar) for reasons for your problem.
If you think the problem is in MySQL, you should also examine MySQL's log files. See Section 5.4,
“MySQL Server Logs”.

• If you do not think you have hardware problems, you should try to find out which program is causing
problems. Try using top, ps, Task Manager, or some similar program, to check which program is
taking all CPU or is locking the machine.

• Use top, df, or a similar program to check whether you are out of memory, disk space, file
descriptors, or some other critical resource.

• If the problem is some runaway process, you can always try to kill it. If it does not want to die, there
is probably a bug in the operating system.

If after you have examined all other possibilities and you have concluded that the MySQL server or a
MySQL client is causing the problem, it is time to create a bug report for our mailing list or our support
team. In the bug report, try to give a very detailed description of how the system is behaving and what
you think is happening. You should also state why you think that MySQL is causing the problem. Take
into consideration all the situations in this chapter. State any problems exactly how they appear when
you examine your system. Use the “copy and paste” method for any output and error messages from
programs and log files.

Try to describe in detail which program is not working and all symptoms you see. We have in the
past received many bug reports that state only “the system does not work.” This provides us with no
information about what could be the problem.

If a program fails, it is always useful to know the following information:

• Has the program in question made a segmentation fault (did it dump core)?

• Is the program taking up all available CPU time? Check with top. Let the program run for a while, it
may simply be evaluating something computationally intensive.

• If the mysqld server is causing problems, can you get any response from it with mysqladmin -u
root ping or mysqladmin -u root processlist?

• What does a client program say when you try to connect to the MySQL server? (Try with mysql, for
example.) Does the client jam? Do you get any output from the program?

When sending a bug report, you should follow the outline described in Section 1.6, “How to Report
Bugs or Problems”.

B.5.2 Common Errors When Using MySQL Programs

This section lists some errors that users frequently encounter when running MySQL programs.
Although the problems show up when you try to run client programs, the solutions to many of the
problems involves changing the configuration of the MySQL server.

B.5.2.1 Access denied

An Access denied error can have many causes. Often the problem is related to the MySQL
accounts that the server permits client programs to use when connecting. See Section 6.2, “The
MySQL Access Privilege System”, and Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”.

B.5.2.2 Can't connect to [local] MySQL server

A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix
socket file to connect through a file in the file system (default /tmp/mysql.sock), or by using TCP/IP,



Common Errors When Using MySQL Programs

2938

which connects through a port number. A Unix socket file connection is faster than TCP/IP, but can be
used only when connecting to a server on the same computer. A Unix socket file is used if you do not
specify a host name or if you specify the special host name localhost.

If the MySQL server is running on Windows, you can connect using TCP/IP. If the server is started
with the --enable-named-pipe option, you can also connect with named pipes if you run the client
on the host where the server is running. The name of the named pipe is MySQL by default. If you do
not give a host name when connecting to mysqld, a MySQL client first tries to connect to the named
pipe. If that does not work, it connects to the TCP/IP port. You can force the use of named pipes on
Windows by using . as the host name.

The error (2002) Can't connect to ... normally means that there is no MySQL server running
on the system or that you are using an incorrect Unix socket file name or TCP/IP port number when
trying to connect to the server. You should also check that the TCP/IP port you are using has not been
blocked by a firewall or port blocking service.

The error (2003) Can't connect to MySQL server on 'server' (10061) indicates that the
network connection has been refused. You should check that there is a MySQL server running, that it
has network connections enabled, and that the network port you specified is the one configured on the
server.

Start by checking whether there is a process named mysqld running on your server host. (Use ps xa
| grep mysqld on Unix or the Task Manager on Windows.) If there is no such process, you should
start the server. See Section 2.10.2, “Starting the Server”.

If a mysqld process is running, you can check it by trying the following commands. The port number
or Unix socket file name might be different in your setup. host_ip represents the IP address of the
machine where the server is running.

shell> mysqladmin version
shell> mysqladmin variables
shell> mysqladmin -h `hostname` version variables
shell> mysqladmin -h `hostname` --port=3306 version
shell> mysqladmin -h host_ip version
shell> mysqladmin --protocol=SOCKET --socket=/tmp/mysql.sock version

Note the use of backticks rather than forward quotation marks with the hostname command; these
cause the output of hostname (that is, the current host name) to be substituted into the mysqladmin
command. If you have no hostname command or are running on Windows, you can manually type
the host name of your machine (without backticks) following the -h option. You can also try -h
127.0.0.1 to connect with TCP/IP to the local host.

Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with --skip-networking, it will not accept TCP/IP connections
at all. If the server was started with --bind-address=127.0.0.1, it will listen for TCP/IP
connections only locally on the loopback interface and will not accept remote connections.

Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be
configured on the basis of the application being executed, or the port number used by MySQL for
communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration
to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or the
Windows XP personal firewall may need to be configured not to block the MySQL port.

Here are some reasons the Can't connect to local MySQL server error might occur:

• mysqld is not running on the local host. Check your operating system's process list to ensure the
mysqld process is present.

• You're running a MySQL server on Windows with many TCP/IP connections to it. If you're
experiencing that quite often your clients get that error, you can find a workaround here: Connection
to MySQL Server Failing on Windows.



Common Errors When Using MySQL Programs

2939

• Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default). For
example, you might have a cron job that removes old files from the /tmp directory. You can always
run mysqladmin version to check whether the Unix socket file that mysqladmin is trying to use
really exists. The fix in this case is to change the cron job to not remove mysql.sock or to place
the socket file somewhere else. See Section B.5.3.6, “How to Protect or Change the MySQL Unix
Socket File”.

• You have started the mysqld server with the --socket=/path/to/socket option, but forgotten
to tell client programs the new name of the socket file. If you change the socket path name for the
server, you must also notify the MySQL clients. You can do this by providing the same --socket
option when you run client programs. You also need to ensure that clients have permission to access
the mysql.sock file. To find out where the socket file is, you can do:

shell> netstat -ln | grep mysql

See Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”.

• You are using Linux and one server thread has died (dumped core). In this case, you must kill the
other mysqld threads (for example, with kill or with the mysql_zap script) before you can restart
the MySQL server. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

• The server or client program might not have the proper access privileges for the directory that holds
the Unix socket file or the socket file itself. In this case, you must either change the access privileges
for the directory or socket file so that the server and clients can access them, or restart mysqld with
a --socket option that specifies a socket file name in a directory where the server can create it and
where client programs can access it.

If you get the error message Can't connect to MySQL server on some_host, you can try the
following things to find out what the problem is:

• Check whether the server is running on that host by executing telnet some_host 3306 and
pressing the Enter key a couple of times. (3306 is the default MySQL port number. Change the value
if your server is listening to a different port.) If there is a MySQL server running and listening to the
port, you should get a response that includes the server's version number. If you get an error such as
telnet: Unable to connect to remote host: Connection refused, then there is no
server running on the given port.

• If the server is running on the local host, try using mysqladmin -h localhost variables to
connect using the Unix socket file. Verify the TCP/IP port number that the server is configured to
listen to (it is the value of the port variable.)

• If you are running under Linux and Security-Enhanced Linux (SELinux) is enabled, make sure you
have disabled SELinux protection for the mysqld process.

Connection to MySQL Server Failing on Windows

When you're running a MySQL server on Windows with many TCP/IP connections to it, and you're
experiencing that quite often your clients get a Can't connect to MySQL server error, the
reason might be that Windows does not allow for enough ephemeral (short-lived) ports to serve those
connections.

The purpose of TIME_WAIT is to keep a connection accepting packets even after the connection has
been closed. This is because Internet routing can cause a packet to take a slow route to its destination
and it may arrive after both sides have agreed to close. If the port is in use for a new connection, that
packet from the old connection could break the protocol or compromise personal information from the
original connection. The TIME_WAIT delay prevents this by ensuring that the port cannot be reused
until after some time has been permitted for those delayed packets to arrive.

It is safe to reduce TIME_WAIT greatly on LAN connections because there is little chance of packets
arriving at very long delays, as they could through the Internet with its comparatively large distances
and latencies.



Common Errors When Using MySQL Programs

2940

Windows permits ephemeral (short-lived) TCP ports to the user. After any port is closed it will remain
in a TIME_WAIT status for 120 seconds. The port will not be available again until this time expires. The
default range of port numbers depends on the version of Windows, with a more limited number of ports
in older versions:

• Windows through Server 2003: Ports in range 1025–5000

• Windows Vista, Server 2008, and newer: Ports in range 49152–65535

With a small stack of available TCP ports (5000) and a high number of TCP ports being open and
closed over a short period of time along with the TIME_WAIT status you have a good chance for
running out of ports. There are two ways to address this problem:

• Reduce the number of TCP ports consumed quickly by investigating connection pooling or persistent
connections where possible

• Tune some settings in the Windows registry (see below)

Important

The following procedure involves modifying the Windows registry. Before
you modify the registry, make sure to back it up and make sure that you
understand how to restore it if a problem occurs. For information about how to
back up, restore, and edit the registry, view the following article in the Microsoft
Knowledge Base: http://support.microsoft.com/kb/256986/EN-US/.

1. Start Registry Editor (Regedt32.exe).

2. Locate the following key in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

3. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534

This sets the number of ephemeral ports available to any user. The valid range is between 5000
and 65534 (decimal). The default value is 0x1388 (5000 decimal).

4. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30

This sets the number of seconds to hold a TCP port connection in TIME_WAIT state before closing.
The valid range is between 30 and 300 decimal, although you may wish to check with Microsoft for
the latest permitted values. The default value is 0x78 (120 decimal).

5. Quit Registry Editor.

6. Reboot the machine.

Note: Undoing the above should be as simple as deleting the registry entries you've created.

B.5.2.3 Lost connection to MySQL server

There are three likely causes for this error message.

http://support.microsoft.com/kb/256986/EN-US/


Common Errors When Using MySQL Programs

2941

Usually it indicates network connectivity trouble and you should check the condition of your network if
this error occurs frequently. If the error message includes “during query,” this is probably the case you
are experiencing.

Sometimes the “during query” form happens when millions of rows are being sent as part of one or
more queries. If you know that this is happening, you should try increasing net_read_timeout from
its default of 30 seconds to 60 seconds or longer, sufficient for the data transfer to complete.

More rarely, it can happen when the client is attempting the initial connection to the server. In this case,
if your connect_timeout value is set to only a few seconds, you may be able to resolve the problem
by increasing it to ten seconds, perhaps more if you have a very long distance or slow connection.
You can determine whether you are experiencing this more uncommon cause by using SHOW GLOBAL
STATUS LIKE 'Aborted_connects'. It will increase by one for each initial connection attempt that
the server aborts. You may see “reading authorization packet” as part of the error message; if so, that
also suggests that this is the solution that you need.

If the cause is none of those just described, you may be experiencing a problem with BLOB values
that are larger than max_allowed_packet, which can cause this error with some clients. Sometime
you may see an ER_NET_PACKET_TOO_LARGE error, and that confirms that you need to increase
max_allowed_packet.

B.5.2.4 Client does not support authentication protocol

The current implementation of the authentication protocol uses a password hashing algorithm that is
incompatible with that used by older (pre-4.1) clients. Attempts to connect to a 4.1 or higher server with
an older client may fail with the following message:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

To deal with this problem, the preferred solution is to upgrade all client programs to use a 4.1.1 or
higher client library. If that is not possible, use one of the following approaches:

• To connect to the server with a pre-4.1 client program, use an account that still has a pre-4.1-style
password.

• Reset the password to pre-4.1 style for each user that needs to use a pre-4.1 client program. This
can be done using the SET PASSWORD statement and the OLD_PASSWORD() function:

mysql> SET PASSWORD FOR
    -> 'some_user'@'some_host' = OLD_PASSWORD('new_password');

Substitute the password you want to use for “new_password” in the preceding example. MySQL
cannot tell you what the original password was, so you'll need to pick a new one.

• Tell the server to use the older password hashing algorithm by default:

1. Start mysqld with the old_passwords system variable set to 1.

2. Assign an old-format password to each account that has had its password updated to the longer
4.1 format. You can identify these accounts with the following query:

mysql> SELECT Host, User, Password FROM mysql.user
    -> WHERE LENGTH(Password) > 16;

For each account record displayed by the query, use the Host and User values and assign a
password using one of the methods described previously.

The Client does not support authentication protocol error also can occur if multiple
versions of MySQL are installed but client programs are dynamically linked and link to an older



Common Errors When Using MySQL Programs

2942

library. Make sure that clients use the most recent library version with which they are compatible. The
procedure to do this will depend on your system.

Note

The PHP mysql extension does not support the authentication protocol in
MySQL 4.1.1 and higher. This is true regardless of the PHP version being used.
If you wish to use the mysql extension with MySQL 4.1 or higher, you may
need to follow one of the options discussed above for configuring MySQL to
work with old clients. The mysqli extension (stands for "MySQL, Improved";
added in PHP 5) is compatible with the improved password hashing employed
in MySQL 4.1 and higher, and no special configuration of MySQL need be
done to use this MySQL client library. For more information about the mysqli
extension, see http://php.net/mysqli.

For additional background on password hashing and authentication, see Section 6.1.2.4, “Password
Hashing in MySQL”.

B.5.2.5 Password Fails When Entered Interactively

MySQL client programs prompt for a password when invoked with a --password or -p option that has
no following password value:

shell> mysql -u user_name -p
Enter password:

On some systems, you may find that your password works when specified in an option file or on the
command line, but not when you enter it interactively at the Enter password: prompt. This occurs
when the library provided by the system to read passwords limits password values to a small number of
characters (typically eight). That is a problem with the system library, not with MySQL. To work around
it, change your MySQL password to a value that is eight or fewer characters long, or put your password
in an option file.

B.5.2.6 Host 'host_name' is blocked

If the following error occurs, it means that mysqld has received many connection requests from the
given host that were interrupted in the middle:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The value of the max_connect_errors system variable determines how many successive
interrupted connection requests are permitted. (See Section 5.1.5, “Server System Variables”.) After
max_connect_errors failed requests without a successful connection, mysqld assumes that
something is wrong (for example, that someone is trying to break in), and blocks the host from further
connections until you issue a FLUSH HOSTS statement or execute a mysqladmin flush-hosts
command.

By default, mysqld blocks a host after 10 connection errors. You can adjust the value by setting
max_connect_errors at server startup:

shell> mysqld_safe --max_connect_errors=10000 &

The value can also be set at runtime:

mysql> SET GLOBAL max_connect_errors=10000;

If you get the Host 'host_name' is blocked error message for a given host, you should first
verify that there is nothing wrong with TCP/IP connections from that host. If you are having network
problems, it does you no good to increase the value of the max_connect_errors variable.

http://php.net/mysqli


Common Errors When Using MySQL Programs

2943

B.5.2.7 Too many connections

If you get a Too many connections error when you try to connect to the mysqld server, this means
that all available connections are in use by other clients.

The number of connections permitted is controlled by the max_connections system variable. The
default value is 151 to improve performance when MySQL is used with the Apache Web server.
(Previously, the default was 100.) If you need to support more connections, you should set a larger
value for this variable.

mysqld actually permits max_connections+1 clients to connect. The extra connection is reserved
for use by accounts that have the SUPER privilege. By granting the SUPER privilege to administrators
and not to normal users (who should not need it), an administrator can connect to the server and use
SHOW PROCESSLIST to diagnose problems even if the maximum number of unprivileged clients are
connected. See Section 13.7.5.30, “SHOW PROCESSLIST Syntax”.

The maximum number of connections MySQL supports depends on the quality of the thread library
on a given platform, the amount of RAM available, how much RAM is used for each connection, the
workload from each connection, and the desired response time. Linux or Solaris should be able to
support at least 500 to 1000 simultaneous connections routinely and as many as 10,000 connections
if you have many gigabytes of RAM available and the workload from each is low or the response time
target undemanding. Windows is limited to (open tables × 2 + open connections) < 2048 due to the
Posix compatibility layer used on that platform.

Increasing open-files-limit may be necessary. Also see Section 2.5, “Installing MySQL on Linux”,
for how to raise the operating system limit on how many handles can be used by MySQL.

B.5.2.8 Out of memory

If you issue a query using the mysql client program and receive an error like the following one, it
means that mysql does not have enough memory to store the entire query result:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

To remedy the problem, first check whether your query is correct. Is it reasonable that it should return
so many rows? If not, correct the query and try again. Otherwise, you can invoke mysql with the --
quick option. This causes it to use the mysql_use_result() C API function to retrieve the result
set, which places less of a load on the client (but more on the server).

B.5.2.9 MySQL server has gone away

This section also covers the related Lost connection to server during query error.

The most common reason for the MySQL server has gone away error is that the server timed out
and closed the connection. In this case, you normally get one of the following error codes (which one
you get is operating system-dependent).

Error Code Description

CR_SERVER_GONE_ERROR The client couldn't send a question to the server.

CR_SERVER_LOST The client didn't get an error when writing to the server, but it
didn't get a full answer (or any answer) to the question.

By default, the server closes the connection after eight hours if nothing has happened. You can change
the time limit by setting the wait_timeout variable when you start mysqld. See Section 5.1.5,
“Server System Variables”.

If you have a script, you just have to issue the query again for the client to do an automatic
reconnection. This assumes that you have automatic reconnection in the client enabled (which is the
default for the mysql command-line client).



Common Errors When Using MySQL Programs

2944

Some other common reasons for the MySQL server has gone away error are:

• You (or the db administrator) has killed the running thread with a KILL statement or a mysqladmin
kill command.

• You tried to run a query after closing the connection to the server. This indicates a logic error in the
application that should be corrected.

• A client application running on a different host does not have the necessary privileges to connect to
the MySQL server from that host.

• You got a timeout from the TCP/IP connection on the client side. This may happen if you have
been using the commands: mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...) or
mysql_options(..., MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing the timeout
may help solve the problem.

• You have encountered a timeout on the server side and the automatic reconnection in the client is
disabled (the reconnect flag in the MYSQL structure is equal to 0).

• You are using a Windows client and the server had dropped the connection (probably because
wait_timeout expired) before the command was issued.

The problem on Windows is that in some cases MySQL does not get an error from the OS when
writing to the TCP/IP connection to the server, but instead gets the error when trying to read the
answer from the connection.

The solution to this is to either do a mysql_ping() on the connection if there has been a long time
since the last query (this is what Connector/ODBC does) or set wait_timeout on the mysqld
server so high that it in practice never times out.

• You can also get these errors if you send a query to the server that is incorrect or too large. If
mysqld receives a packet that is too large or out of order, it assumes that something has gone
wrong with the client and closes the connection. If you need big queries (for example, if you
are working with big BLOB columns), you can increase the query limit by setting the server's
max_allowed_packet variable, which has a default value of 1MB. You may also need to increase
the maximum packet size on the client end. More information on setting the packet size is given in
Section B.5.2.10, “Packet Too Large”.

An INSERT or REPLACE statement that inserts a great many rows can also cause these sorts of
errors. Either one of these statements sends a single request to the server irrespective of the number
of rows to be inserted; thus, you can often avoid the error by reducing the number of rows sent per
INSERT or REPLACE.

• You also get a lost connection if you are sending a packet 16MB or larger if your client is older than
4.0.8 and your server is 4.0.8 and above, or the other way around.

• It is also possible to see this error if host name lookups fail (for example, if the DNS server on which
your server or network relies goes down). This is because MySQL is dependent on the host system
for name resolution, but has no way of knowing whether it is working—from MySQL's point of view
the problem is indistinguishable from any other network timeout.

You may also see the MySQL server has gone away error if MySQL is started with the --
skip-networking option.

Another networking issue that can cause this error occurs if the MySQL port (default 3306) is blocked
by your firewall, thus preventing any connections at all to the MySQL server.

• You can also encounter this error with applications that fork child processes, all of which try to use
the same connection to the MySQL server. This can be avoided by using a separate connection for
each child process.

• You have encountered a bug where the server died while executing the query.



Common Errors When Using MySQL Programs

2945

You can check whether the MySQL server died and restarted by executing mysqladmin version
and examining the server's uptime. If the client connection was broken because mysqld crashed
and restarted, you should concentrate on finding the reason for the crash. Start by checking whether
issuing the query again kills the server again. See Section B.5.3.3, “What to Do If MySQL Keeps
Crashing”.

You can get more information about the lost connections by starting mysqld with the --log-
warnings=2 option. This logs some of the disconnected errors in the hostname.err file. See
Section 5.4.2, “The Error Log”.

If you want to create a bug report regarding this problem, be sure that you include the following
information:

• Indicate whether the MySQL server died. You can find information about this in the server error log.
See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

• If a specific query kills mysqld and the tables involved were checked with CHECK TABLE before you
ran the query, can you provide a reproducible test case? See Section 24.5, “Debugging and Porting
MySQL”.

• What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin
variables gives you the value of this variable.)

• Have you tried to run mysqld with the general query log enabled to determine whether the problem
query appears in the log? (See Section 5.4.3, “The General Query Log”.)

See also Section B.5.2.11, “Communication Errors and Aborted Connections”, and Section 1.6, “How
to Report Bugs or Problems”.

B.5.2.10 Packet Too Large

A communication packet is a single SQL statement sent to the MySQL server, a single row that is sent
to the client, or a binary log event sent from a master replication server to a slave.

The largest possible packet that can be transmitted to or from a MySQL 5.5 server or client is 1GB.

When a MySQL client or the mysqld server receives a packet bigger than max_allowed_packet
bytes, it issues an ER_NET_PACKET_TOO_LARGE error and closes the connection. With some
clients, you may also get a Lost connection to MySQL server during query error if the
communication packet is too large.

Both the client and the server have their own max_allowed_packet variable, so if you want to handle
big packets, you must increase this variable both in the client and in the server.

If you are using the mysql client program, its default max_allowed_packet variable is 16MB. To set
a larger value, start mysql like this:

shell> mysql --max_allowed_packet=32M

That sets the packet size to 32MB.

The server's default max_allowed_packet value is 1MB. You can increase this if the server needs
to handle big queries (for example, if you are working with big BLOB columns). For example, to set the
variable to 16MB, start the server like this:

shell> mysqld --max_allowed_packet=16M

You can also use an option file to set max_allowed_packet. For example, to set the size for the
server to 16MB, add the following lines in an option file:



Common Errors When Using MySQL Programs

2946

[mysqld]
max_allowed_packet=16M

It is safe to increase the value of this variable because the extra memory is allocated only when
needed. For example, mysqld allocates more memory only when you issue a long query or when
mysqld must return a large result row. The small default value of the variable is a precaution to catch
incorrect packets between the client and server and also to ensure that you do not run out of memory
by using large packets accidentally.

You can also get strange problems with large packets if you are using large BLOB values but have not
given mysqld access to enough memory to handle the query. If you suspect this is the case, try adding
ulimit -d 256000 to the beginning of the mysqld_safe script and restarting mysqld.

B.5.2.11 Communication Errors and Aborted Connections

If connection problems occur such as communication errors or aborted connections, use these sources
of information to diagnose problems:

• The error log. See Section 5.4.2, “The Error Log”.

• The general query log. See Section 5.4.3, “The General Query Log”.

• The Aborted_xxx status variables. See Section 5.1.7, “Server Status Variables”.

If you start the server with the --log-warnings option, you might find messages like this in your error
log:

Aborted connection 854 to db: 'employees' user: 'josh'

If a client is unable even to connect, the server increments the Aborted_connects status variable.
Unsuccessful connection attempts can occur for the following reasons:

• A client attempts to access a database but has no privileges for it.

• A client uses an incorrect password.

• A connection packet does not contain the right information.

• It takes more than connect_timeout seconds to obtain a connect packet. See Section 5.1.5,
“Server System Variables”.

If these kinds of things happen, it might indicate that someone is trying to break into your server! If the
general query log is enabled, messages for these types of problems are logged to it.

If a client successfully connects but later disconnects improperly or is terminated, the server increments
the Aborted_clients status variable, and logs an Aborted connection message to the error log.
The cause can be any of the following:

• The client program did not call mysql_close() before exiting.

• The client had been sleeping more than wait_timeout or interactive_timeout seconds
without issuing any requests to the server. See Section 5.1.5, “Server System Variables”.

• The client program ended abruptly in the middle of a data transfer.

Other reasons for problems with aborted connections or aborted clients:

• The max_allowed_packet variable value is too small or queries require more memory than you
have allocated for mysqld. See Section B.5.2.10, “Packet Too Large”.



Common Errors When Using MySQL Programs

2947

• Use of Ethernet protocol with Linux, both half and full duplex. Some Linux Ethernet drivers have this
bug. You should test for this bug by transferring a huge file using FTP between the client and server
machines. If a transfer goes in burst-pause-burst-pause mode, you are experiencing a Linux duplex
syndrome. Switch the duplex mode for both your network card and hub/switch to either full duplex or
to half duplex and test the results to determine the best setting.

• A problem with the thread library that causes interrupts on reads.

• Badly configured TCP/IP.

• Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by
replacing hardware.

See also Section B.5.2.9, “MySQL server has gone away”.

B.5.2.12 The table is full

If a table-full error occurs, it may be that the disk is full or that the table has reached its maximum size.
The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. See Section C.10.3, “Limits on Table Size”.

This error can occur sometimes for NDB Cluster tables even when there appears to be more than
sufficient data memory available. See the documentation for the DataMemory NDB Cluster data node
configuration parameter, as well as Section 18.1.2, “NDB Cluster Nodes, Node Groups, Replicas, and
Partitions”, for more information.

B.5.2.13 Can't create/write to file

If you get an error of the following type for some queries, it means that MySQL cannot create a
temporary file for the result set in the temporary directory:

Can't create/write to file '\\sqla3fe_0.ism'.

The preceding error is a typical message for Windows; the Unix message is similar.

One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] section of
your option file. For example, to specify a directory of C:\temp, use these lines:

[mysqld]
tmpdir=C:/temp

The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See
Section 4.2.6, “Using Option Files”.

Another cause of this error can be permissions issues. Make sure that the MySQL server can write to
the tmpdir directory.

Check also the error code that you get with perror. One reason the server cannot write to a table is
that the file system is full:

shell> perror 28
OS error code  28:  No space left on device

If you get an error of the following type during startup, it indicates that the file system or directory used
for storing data files is write protected. Provided that the write error is to a test file, the error is not
serious and can be safely ignored.

Can't create test file /usr/local/mysql/data/master.lower-test



Common Errors When Using MySQL Programs

2948

B.5.2.14 Commands out of sync

If you get Commands out of sync; you can't run this command now in your client code,
you are calling client functions in the wrong order.

This can happen, for example, if you are using mysql_use_result() and try to execute a new query
before you have called mysql_free_result(). It can also happen if you try to execute two queries
that return data without calling mysql_use_result() or mysql_store_result() in between.

B.5.2.15 Ignoring user

If you get the following error, it means that when mysqld was started or when it reloaded the grant
tables, it found an account in the user table that had an invalid password.

Found wrong password for user 'some_user'@'some_host'; ignoring user

As a result, the account is simply ignored by the permission system.

The following list indicates possible causes of and fixes for this problem:

• You may be running a new version of mysqld with an old user table. Check whether the
Password column of that table is shorter than 16 characters. If so, correct this condition by running
mysql_upgrade.

• The account has an old password (eight characters long). Update the account in the user table to
have a new password.

•  You have specified a password in the user table without using the PASSWORD() function. Use
mysql to update the account in the user table with a new password, making sure to use the
PASSWORD() function:

mysql> UPDATE user SET Password=PASSWORD('new_password')
    -> WHERE User='some_user' AND Host='some_host';

B.5.2.16 Table 'tbl_name' doesn't exist

If you get either of the following errors, it usually means that no table exists in the default database with
the given name:

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, it may be that the table does exist but that you are referring to it incorrectly:

• Because MySQL uses directories and files to store databases and tables, database and table names
are case sensitive if they are located on a file system that has case-sensitive file names.

• Even for file systems that are not case sensitive, such as on Windows, all references to a given table
within a query must use the same lettercase.

You can check which tables are in the default database with SHOW TABLES. See Section 13.7.5,
“SHOW Syntax”.

B.5.2.17 Can't initialize character set

You might see an error like this if you have character set problems:

MySQL Connection Failed: Can't initialize character set charset_name



Common Errors When Using MySQL Programs

2949

This error can have any of the following causes:

• The character set is a multibyte character set and you have no support for the character
set in the client. In this case, you need to recompile the client by running CMake with the -
DDEFAULT_CHARSET=charset_name or -DWITH_EXTRA_CHARSETS=charset_name option. See
Section 2.9.4, “MySQL Source-Configuration Options”.

All standard MySQL binaries are compiled with -DWITH_EXTRA_CHARSETS=all, which enables
support for all multibyte character sets. See Section 2.9.4, “MySQL Source-Configuration Options”.

• The character set is a simple character set that is not compiled into mysqld, and the character set
definition files are not in the place where the client expects to find them.

In this case, you need to use one of the following methods to solve the problem:

• Recompile the client with support for the character set. See Section 2.9.4, “MySQL Source-
Configuration Options”.

• Specify to the client the directory where the character set definition files are located. For many
clients, you can do this with the --character-sets-dir option.

• Copy the character definition files to the path where the client expects them to be.

B.5.2.18 File Not Found and Similar Errors

If you get ERROR 'file_name' not found (errno: 23), Can't open file: file_name
(errno: 24), or any other error with errno 23 or errno 24 from MySQL, it means that you have
not allocated enough file descriptors for the MySQL server. You can use the perror utility to get a
description of what the error number means:

shell> perror 23
OS error code  23:  File table overflow
shell> perror 24
OS error code  24:  Too many open files
shell> perror 11
OS error code  11:  Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You can either
tell mysqld not to open so many files at once or increase the number of file descriptors available to
mysqld.

To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing
the value of the table_open_cache system variable (the default value is 64). This may not entirely
prevent running out of file descriptors because in some circumstances the server may attempt to
extend the cache size temporarily, as described in Section 8.4.3.1, “How MySQL Opens and Closes
Tables”. Reducing the value of max_connections also reduces the number of open files (the default
value is 100).

To change the number of file descriptors available to mysqld, you can use the --open-files-
limit option to mysqld_safe or set the open_files_limit system variable. See Section 5.1.5,
“Server System Variables”. The easiest way to set these values is to add an option to your option file.
See Section 4.2.6, “Using Option Files”. If you have an old version of mysqld that does not support
setting the open files limit, you can edit the mysqld_safe script. There is a commented-out line
ulimit -n 256 in the script. You can remove the # character to uncomment this line, and change
the number 256 to set the number of file descriptors to be made available to mysqld.

--open-files-limit and ulimit can increase the number of file descriptors, but only up to the
limit imposed by the operating system. There is also a “hard” limit that can be overridden only if you
start mysqld_safe or mysqld as root (just remember that you also need to start the server with the
--user option in this case so that it does not continue to run as root after it starts up). If you need to



Administration-Related Issues

2950

increase the operating system limit on the number of file descriptors available to each process, consult
the documentation for your system.

Note

If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect
values when you ask for the current limits. In this case, you should start
mysqld_safe using sh.

B.5.2.19 Table-Corruption Issues

If you have started mysqld with --myisam-recover-options, MySQL automatically checks and
tries to repair MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens,
MySQL writes an entry in the hostname.err file 'Warning: Checking table ...' which is
followed by Warning: Repairing table if the table needs to be repaired. If you get a lot of these
errors, without mysqld having died unexpectedly just before, then something is wrong and needs to be
investigated further.

As of MySQL 5.5.3, when the server detects MyISAM table corruption, it writes additional information
to the error log, such as the name and line number of the source file, and the list of threads accessing
the table. Example: Got an error from thread_id=1, mi_dynrec.c:368. This is useful
information to include in bug reports.

See also Section 5.1.4, “Server Command Options”, and Section 24.5.1.7, “Making a Test Case If You
Experience Table Corruption”.

B.5.3 Administration-Related Issues

B.5.3.1 Problems with File Permissions

If you have problems with file permissions, the UMASK or UMASK_DIR environment variable might be
set incorrectly when mysqld starts. For example, MySQL might issue the following error message
when you create a table:

ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)

The default UMASK and UMASK_DIR values are 0660 and 0700, respectively. MySQL assumes that the
value for UMASK or UMASK_DIR is in octal if it starts with a zero. For example, setting UMASK=0600 is
equivalent to UMASK=384 because 0600 octal is 384 decimal.

To change the default UMASK value, start mysqld_safe as follows:

shell> UMASK=384  # = 600 in octal
shell> export UMASK
shell> mysqld_safe &

By default, MySQL creates database directories with an access permission value of 0700. To modify
this behavior, set the UMASK_DIR variable. If you set its value, new directories are created with the
combined UMASK and UMASK_DIR values. For example, to give group access to all new directories,
start mysqld_safe as follows:

shell> UMASK_DIR=504  # = 770 in octal
shell> export UMASK_DIR
shell> mysqld_safe &

For additional details, see Section 4.9, “MySQL Program Environment Variables”.

B.5.3.2 How to Reset the Root Password



Administration-Related Issues

2951

If you have never assigned a root password for MySQL, the server does not require a password at
all for connecting as root. However, this is insecure. For instructions on assigning passwords, see
Section 2.10.4, “Securing the Initial MySQL Accounts”.

If you know the root password and want to change it, see Section 13.7.1.6, “SET PASSWORD
Syntax”.

If you assigned a root password previously but have forgotten it, you can assign a new password. The
following sections provide instructions for Windows and Unix and Unix-like systems, as well as generic
instructions that apply to any system.

Resetting the Root Password: Windows Systems

On Windows, use the following procedure to reset the password for the MySQL
'root'@'localhost' account. To change the password for a root account with a different host
name part, modify the instructions to use that host name.

1. Log on to your system as Administrator.

2. Stop the MySQL server if it is running. For a server that is running as a Windows service, go to the
Services manager: From the Start menu, select Control Panel, then Administrative Tools, then
Services. Find the MySQL service in the list and stop it.

If your server is not running as a service, you may need to use the Task Manager to force it to stop.

3. Create a text file containing the following statement on a single line. Replace the password with the
password that you want to use.

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

4. Save the file. This example assumes that you name the file C:\mysql-init.txt.

5. Open a console window to get to the command prompt: From the Start menu, select Run, then
enter cmd as the command to be run.

6. Start the MySQL server with the special --init-file option (notice that the backslash in the
option value is doubled):

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.5\bin"
C:\> mysqld --init-file=C:\\mysql-init.txt

If you installed MySQL to a different location, adjust the cd command accordingly.

The server executes the contents of the file named by the --init-file option at startup,
changing the 'root'@'localhost' account password.

To have server output to appear in the console window rather than in a log file, add the --console
option to the mysqld command.

If you installed MySQL using the MySQL Installation Wizard, you may need to specify a --
defaults-file option. For example:

C:\> mysqld
         --defaults-file="C:\\ProgramData\\MySQL\\MySQL Server 5.5\\my.ini"
         --init-file=C:\\mysql-init.txt

The appropriate --defaults-file setting can be found using the Services Manager: From the
Start menu, select Control Panel, then Administrative Tools, then Services. Find the MySQL
service in the list, right-click it, and choose the Properties option. The Path to executable
field contains the --defaults-file setting.



Administration-Related Issues

2952

7. After the server has started successfully, delete C:\mysql-init.txt.

You should now be able to connect to the MySQL server as root using the new password. Stop the
MySQL server and restart it normally. If you run the server as a service, start it from the Windows
Services window. If you start the server manually, use whatever command you normally use.

Resetting the Root Password: Unix and Unix-Like Systems

On Unix, use the following procedure to reset the password for the MySQL 'root'@'localhost'
account. To change the password for a root account with a different host name part, modify the
instructions to use that host name.

The instructions assume that you will start the MySQL server from the Unix login account that you
normally use for running it. For example, if you run the server using the mysql login account, you
should log in as mysql before using the instructions. Alternatively, you can log in as root, but in this
case you must start mysqld with the --user=mysql option. If you start the server as root without
using --user=mysql, the server may create root-owned files in the data directory, such as log files,
and these may cause permission-related problems for future server startups. If that happens, you will
need to either change the ownership of the files to mysql or remove them.

1. Log on to your system as the Unix user that the MySQL server runs as (for example, mysql).

2. Stop the MySQL server if it is running. Locate the .pid file that contains the server's process ID.
The exact location and name of this file depend on your distribution, host name, and configuration.
Common locations are /var/lib/mysql/, /var/run/mysqld/, and /usr/local/mysql/
data/. Generally, the file name has an extension of .pid and begins with either mysqld or your
system's host name.

Stop the MySQL server by sending a normal kill (not kill -9) to the mysqld process. Use the
actual path name of the .pid file in the following command:

shell> kill `cat /mysql-data-directory/host_name.pid`

Use backticks (not forward quotation marks) with the cat command. These cause the output of
cat to be substituted into the kill command.

3. Create a text file containing the following statement on a single line. Replace the password with the
password that you want to use.

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

4. Save the file. This example assumes that you name the file /home/me/mysql-init. The file
contains the password, so do not save it where it can be read by other users. If you are not logged
in as mysql (the user the server runs as), make sure that the file has permissions that permit
mysql to read it.

5. Start the MySQL server with the special --init-file option:

shell> mysqld --init-file=/home/me/mysql-init &

The server executes the contents of the file named by the --init-file option at startup,
changing the 'root'@'localhost' account password.

Other options may be necessary as well, depending on how you normally start your server. For
example, --defaults-file may be needed before --init-file.

6. After the server has started successfully, delete /home/me/mysql-init.

You should now be able to connect to the MySQL server as root using the new password. Stop the
server and restart it normally.



Administration-Related Issues

2953

Resetting the Root Password: Generic Instructions

The preceding sections provide password-resetting instructions specifically for Windows and Unix and
Unix-like systems. Alternatively, on any platform, you can reset the password using the mysql client
(but this approach is less secure):

1. Stop the MySQL server if necessary, then restart it with the --skip-grant-tables option.
This enables anyone to connect without a password and with all privileges, and disables account-
management statements such as SET PASSWORD. Because this is insecure, you might want to use
--skip-grant-tables in conjunction with --skip-networking to prevent remote clients from
connecting.

2. Connect to the MySQL server using the mysql client; no password is necessary because the
server was started with --skip-grant-tables:

shell> mysql

3. In the mysql client, tell the server to reload the grant tables so that account-management
statements work:

mysql> FLUSH PRIVILEGES;

Then change the 'root'@'localhost' account password. Replace the password with the
password that you want to use. To change the password for a root account with a different host
name part, modify the instructions to use that host name.

mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

You should now be able to connect to the MySQL server as root using the new password. Stop
the server and restart it normally (without the --skip-grant-tables and --skip-networking
options).

B.5.3.3 What to Do If MySQL Keeps Crashing

Each MySQL version is tested on many platforms before it is released. This does not mean that there
are no bugs in MySQL, but if there are bugs, they should be very few and can be hard to find. If you
have a problem, it always helps if you try to find out exactly what crashes your system, because you
have a much better chance of getting the problem fixed quickly.

First, you should try to find out whether the problem is that the mysqld server dies or whether your
problem has to do with your client. You can check how long your mysqld server has been up by
executing mysqladmin version. If mysqld has died and restarted, you may find the reason by
looking in the server's error log. See Section 5.4.2, “The Error Log”.

On some systems, you can find in the error log a stack trace of where mysqld died that you can
resolve with the resolve_stack_dump program. See Section 24.5, “Debugging and Porting MySQL”.
Note that the variable values written in the error log may not always be 100% correct.

Many server crashes are caused by corrupted data files or index files. MySQL updates the files on
disk with the write() system call after every SQL statement and before the client is notified about
the result. (This is not true if you are running with --delay-key-write, in which case data files
are written but not index files.) This means that data file contents are safe even if mysqld crashes,
because the operating system ensures that the unflushed data is written to disk. You can force MySQL
to flush everything to disk after every SQL statement by starting mysqld with the --flush option.

The preceding means that normally you should not get corrupted tables unless one of the following
happens:

• The MySQL server or the server host was killed in the middle of an update.



Administration-Related Issues

2954

• You have found a bug in mysqld that caused it to die in the middle of an update.

• Some external program is manipulating data files or index files at the same time as mysqld without
locking the table properly.

• You are running many mysqld servers using the same data directory on a system that does not
support good file system locks (normally handled by the lockd lock manager), or you are running
multiple servers with external locking disabled.

• You have a crashed data file or index file that contains very corrupt data that confused mysqld.

• You have found a bug in the data storage code. This isn't likely, but it is at least possible. In this
case, you can try to change the storage engine to another engine by using ALTER TABLE on a
repaired copy of the table.

Because it is very difficult to know why something is crashing, first try to check whether things that work
for others crash for you. Please try the following things:

• Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent --force */
*.MYI from the data directory to check all MyISAM tables, and restart mysqld. This ensures that you
are running from a clean state. See Chapter 5, MySQL Server Administration.

• Start mysqld with the general query log enabled (see Section 5.4.3, “The General Query Log”).
Then try to determine from the information written to the log whether some specific query kills the
server. About 95% of all bugs are related to a particular query. Normally, this is one of the last
queries in the log file just before the server restarts. See Section 5.4.3, “The General Query Log”.
If you can repeatedly kill MySQL with a specific query, even when you have checked all tables just
before issuing it, then you have been able to locate the bug and should submit a bug report for it.
See Section 1.6, “How to Report Bugs or Problems”.

• Try to make a test case that we can use to repeat the problem. See Section 24.5, “Debugging and
Porting MySQL”.

• Try the fork_big.pl script. (It is located in the tests directory of source distributions.)

• If you configure MySQL for debugging, it is much easier to gather information about possible errors
if something goes wrong. Reconfigure MySQL with the -DWITH_DEBUG=1 option to CMake and then
recompile. See Section 24.5, “Debugging and Porting MySQL”.

• Make sure that you have applied the latest patches for your operating system.

• Use the --skip-external-locking option to mysqld. On some systems, the lockd lock
manager does not work properly; the --skip-external-locking option tells mysqld not to use
external locking. (This means that you cannot run two mysqld servers on the same data directory
and that you must be careful if you use myisamchk. Nevertheless, it may be instructive to try the
option as a test.)

• Have you tried mysqladmin -u root processlist when mysqld appears to be running but
not responding? Sometimes mysqld is not comatose even though you might think so. The problem
may be that all connections are in use, or there may be some internal lock problem. mysqladmin -
u root processlist usually is able to make a connection even in these cases, and can provide
useful information about the current number of connections and their status.

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a separate
window to produce statistics while you run your other queries.

• Try the following:

1. Start mysqld from gdb (or another debugger). See Section 24.5, “Debugging and Porting
MySQL”.

2. Run your test scripts.



Administration-Related Issues

2955

3. Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this with
the following commands when mysqld has crashed inside gdb:

backtrace
info local
up
info local
up
info local

With gdb, you can also examine which threads exist with info threads and switch to a
specific thread with thread N, where N is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to crash or misbehave.

• Send a normal bug report. See Section 1.6, “How to Report Bugs or Problems”. Be even more
detailed than usual. Because MySQL works for many people, it may be that the crash results from
something that exists only on your computer (for example, an error that is related to your particular
system libraries).

• If you have a problem with tables containing dynamic-length rows and you are using only VARCHAR
columns (not BLOB or TEXT columns), you can try to change all VARCHAR to CHAR with ALTER
TABLE. This forces MySQL to use fixed-size rows. Fixed-size rows take a little extra space, but are
much more tolerant to corruption.

The current dynamic row code has been in use for several years with very few problems, but
dynamic-length rows are by nature more prone to errors, so it may be a good idea to try this strategy
to see whether it helps.

• Do not rule out your server hardware when diagnosing problems. Defective hardware can be the
cause of data corruption. Particular attention should be paid to your memory and disk subsystems
when troubleshooting hardware.

B.5.3.4 How MySQL Handles a Full Disk

This section describes how MySQL responds to disk-full errors (such as “no space left on device”), and
to quota-exceeded errors (such as “write failed” or “user block limit reached”).

This section is relevant for writes to MyISAM tables. It also applies for writes to binary log files and
binary log index file, except that references to “row” and “record” should be understood to mean
“event.”

When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current row. If there is
enough space, it continues as if nothing had happened.

• Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.

To alleviate the problem, you can take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• To abort the thread, you must use mysqladmin kill. The thread is aborted the next time it checks
the disk (in one minute).

• Other threads might be waiting for the table that caused the disk-full condition. If you have several
“locked” threads, killing the one thread that is waiting on the disk-full condition enables the other
threads to continue.

Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE
or when the indexes are created in a batch after LOAD DATA INFILE or after an ALTER TABLE



Administration-Related Issues

2956

statement. All of these statements may create large temporary files that, if left to themselves, would
cause big problems for the rest of the system. If the disk becomes full while MySQL is doing any of
these operations, it removes the big temporary files and mark the table as crashed. The exception is
that for ALTER TABLE, the old table is left unchanged.

B.5.3.5 Where MySQL Stores Temporary Files

On Unix, MySQL uses the value of the TMPDIR environment variable as the path name of the directory
in which to store temporary files. If TMPDIR is not set, MySQL uses the system default, which is usually
/tmp, /var/tmp, or /usr/tmp.

On Windows, MySQL checks in order the values of the TMPDIR, TEMP, and TMP environment variables.
For the first one found to be set, MySQL uses it and does not check those remaining. If none of
TMPDIR, TEMP, or TMP are set, MySQL uses the Windows system default, which is usually C:
\windows\temp\.

If the file system containing your temporary file directory is too small, you can use the mysqld --
tmpdir option to specify a directory in a file system where you have enough space. On replication
slaves, you can use --slave-load-tmpdir to specify a separate directory for holding temporary
files when replicating LOAD DATA INFILE statements.

The --tmpdir option can be set to a list of several paths that are used in round-robin fashion. Paths
should be separated by colon characters (:) on Unix and semicolon characters (;) on Windows.

Note

To spread the load effectively, these paths should be located on different
physical disks, not different partitions of the same disk.

If the MySQL server is acting as a replication slave, you should be sure to set --slave-load-
tmpdir not to point to a directory that is on a memory-based file system or to a directory that is
cleared when the server host restarts. A replication slave needs some of its temporary files to survive a
machine restart so that it can replicate temporary tables or LOAD DATA INFILE operations. If files in
the slave temporary file directory are lost when the server restarts, replication fails.

MySQL arranges that temporary files are removed if mysqld is terminated. On platforms that support
it (such as Unix), this is done by unlinking the file after opening it. The disadvantage of this is that the
name does not appear in directory listings and you do not see a big temporary file that fills up the file
system in which the temporary file directory is located. (In such cases, lsof +L1 may be helpful in
identifying large files associated with mysqld.)

When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The
maximum disk space required is determined by the following expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

The row pointer size is usually four bytes, but may grow in the future for really big tables.

For some SELECT queries, MySQL also creates temporary SQL tables. These are not hidden and have
names of the form SQL_*.

ALTER TABLE creates a temporary copy of the original table in the same directory as the original table.

B.5.3.6 How to Protect or Change the MySQL Unix Socket File

The default location for the Unix socket file that the server uses for communication with local clients is
/tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /var/
lib/mysql for RPMs.)



Query-Related Issues

2957

On some versions of Unix, anyone can delete files in the /tmp directory or other similar directories
used for temporary files. If the socket file is located in such a directory on your system, this might cause
problems.

On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by their
owners or the superuser (root). To do this, set the sticky bit on the /tmp directory by logging in as
root and using the following command:

shell> chmod +t /tmp

You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission
character is t, the bit is set.

Another approach is to change the place where the server creates the Unix socket file. If you do this,
you should also let client programs know the new location of the file. You can specify the file location in
several ways:

• Specify the path in a global or local option file. For example, put the following lines in /etc/my.cnf:

[mysqld]
socket=/path/to/socket

[client]
socket=/path/to/socket

See Section 4.2.6, “Using Option Files”.

• Specify a --socket option on the command line to mysqld_safe and when you run client
programs.

• Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.

• Recompile MySQL from source to use a different default Unix socket file location. Define the path
to the file with the MYSQL_UNIX_ADDR option when you run CMake. See Section 2.9.4, “MySQL
Source-Configuration Options”.

You can test whether the new socket location works by attempting to connect to the server with this
command:

shell> mysqladmin --socket=/path/to/socket version

B.5.3.7 Time Zone Problems

If you have a problem with SELECT NOW() returning values in UTC and not your local time, you have
to tell the server your current time zone. The same applies if UNIX_TIMESTAMP() returns the wrong
value. This should be done for the environment in which the server runs; for example, in mysqld_safe
or mysql.server. See Section 4.9, “MySQL Program Environment Variables”.

You can set the time zone for the server with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld.

The permissible values for --timezone or TZ are system dependent. Consult your operating system
documentation to see what values are acceptable.

B.5.4 Query-Related Issues

B.5.4.1 Case Sensitivity in String Searches

For nonbinary strings (CHAR, VARCHAR, TEXT), string searches use the collation of the comparison
operands. For binary strings (BINARY, VARBINARY, BLOB), comparisons use the numeric values of the
bytes in the operands; this means that for alphabetic characters, comparisons will be case sensitive.



Query-Related Issues

2958

A comparison between a nonbinary string and binary string is treated as a comparison of binary strings.

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each
character's “sort value.” Characters with the same sort value are treated as the same character. For
example, if e and é have the same sort value in a given collation, they compare as equal.

The default character set and collation are latin1 and latin1_swedish_ci, so nonbinary string
comparisons are case insensitive by default. This means that if you search with col_name LIKE 'a
%', you get all column values that start with A or a. To make this search case sensitive, make sure
that one of the operands has a case sensitive or binary collation. For example, if you are comparing a
column and a string that both have the latin1 character set, you can use the COLLATE operator to
cause either operand to have the latin1_general_cs or latin1_bin collation:

col_name COLLATE latin1_general_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_general_cs
col_name COLLATE latin1_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_bin

If you want a column always to be treated in case-sensitive fashion, declare it with a case sensitive or
binary collation. See Section 13.1.17, “CREATE TABLE Syntax”.

To cause a case-sensitive comparison of nonbinary strings to be case insensitive, use COLLATE to
name a case-insensitive collation. The strings in the following example normally are case sensitive, but
COLLATE changes the comparison to be case insensitive:

mysql> SET @s1 = 'MySQL' COLLATE latin1_bin,
    ->     @s2 = 'mysql' COLLATE latin1_bin;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
|         0 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_swedish_ci = @s2;
+-------------------------------------+
| @s1 COLLATE latin1_swedish_ci = @s2 |
+-------------------------------------+
|                                   1 |
+-------------------------------------+

A binary string is case sensitive in comparisons. To compare the string as case insensitive, convert it to
a nonbinary string and use COLLATE to name a case-insensitive collation:

mysql> SET @s = BINARY 'MySQL';
mysql> SELECT @s = 'mysql';
+--------------+
| @s = 'mysql' |
+--------------+
|            0 |
+--------------+
mysql> SELECT CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql';
+--------------------------------------------------------------+
| CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql' |
+--------------------------------------------------------------+
|                                                            1 |
+--------------------------------------------------------------+

To determine whether a value will compare as a nonbinary or binary string, use the COLLATION()
function. This example shows that VERSION() returns a string that has a case-insensitive collation, so
comparisons are case insensitive:

mysql> SELECT COLLATION(VERSION());
+----------------------+



Query-Related Issues

2959

| COLLATION(VERSION()) |
+----------------------+
| utf8_general_ci      |
+----------------------+

For binary strings, the collation value is binary, so comparisons will be case sensitive. One context in
which you will see binary is for compression and encryption functions, which return binary strings as
a general rule: string:

mysql> SELECT COLLATION(ENCRYPT('x')), COLLATION(SHA1('x'));
+-------------------------+----------------------+
| COLLATION(ENCRYPT('x')) | COLLATION(SHA1('x')) |
+-------------------------+----------------------+
| binary                  | binary               |
+-------------------------+----------------------+

B.5.4.2 Problems Using DATE Columns

The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is
permitted. You should use this format in UPDATE expressions and in the WHERE clause of SELECT
statements. For example:

SELECT * FROM t1 WHERE date >= '2003-05-05';

As a convenience, MySQL automatically converts a date to a number if the date is used in a numeric
context and vice versa. MySQL also permits a “relaxed” string format when updating and in a WHERE
clause that compares a date to a DATE, DATETIME, or TIMESTAMP column. “Relaxed” format
means that any punctuation character may be used as the separator between parts. For example,
'2004-08-15' and '2004#08#15' are equivalent. MySQL can also convert a string containing no
separators (such as '20040815'), provided it makes sense as a date.

When you compare a DATE, TIME, DATETIME, or TIMESTAMP to a constant string with the <, <=, =,
>=, >, or BETWEEN operators, MySQL normally converts the string to an internal long integer for faster
comparison (and also for a bit more “relaxed” string checking). However, this conversion is subject to
the following exceptions:

• When you compare two columns

• When you compare a DATE, TIME, DATETIME, or TIMESTAMP column to an expression

• When you use any comparison method other than those just listed, such as IN or STRCMP().

For those exceptions, the comparison is done by converting the objects to strings and performing a
string comparison.

To be on the safe side, assume that strings are compared as strings and use the appropriate string
functions if you want to compare a temporal value to a string.

The special “zero” date '0000-00-00' can be stored and retrieved as '0000-00-00'. When a
'0000-00-00' date is used through Connector/ODBC, it is automatically converted to NULL because
ODBC cannot handle that kind of date.

Because MySQL performs the conversions just described, the following statements work (assume that
idate is a DATE column):

INSERT INTO t1 (idate) VALUES (19970505);
INSERT INTO t1 (idate) VALUES ('19970505');
INSERT INTO t1 (idate) VALUES ('97-05-05');
INSERT INTO t1 (idate) VALUES ('1997.05.05');
INSERT INTO t1 (idate) VALUES ('1997 05 05');
INSERT INTO t1 (idate) VALUES ('0000-00-00');



Query-Related Issues

2960

SELECT idate FROM t1 WHERE idate >= '1997-05-05';
SELECT idate FROM t1 WHERE idate >= 19970505;
SELECT MOD(idate,100) FROM t1 WHERE idate >= 19970505;
SELECT idate FROM t1 WHERE idate >= '19970505';

However, the following statement does not work:

SELECT idate FROM t1 WHERE STRCMP(idate,'20030505')=0;

STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and performs
a string comparison. It does not convert '20030505' to the date '2003-05-05' and perform a date
comparison.

If you enable the ALLOW_INVALID_DATES SQL mode, MySQL permits you to store dates that are
given only limited checking: MySQL requires only that the day is in the range from 1 to 31 and the
month is in the range from 1 to 12. This makes MySQL very convenient for Web applications where
you obtain year, month, and day in three different fields and you want to store exactly what the user
inserted (without date validation).

MySQL permits you to store dates where the day or month and day are zero. This is convenient if you
want to store a birthdate in a DATE column and you know only part of the date. To disallow zero month
or day parts in dates, enable the NO_ZERO_IN_DATE SQL mode.

MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some
cases more convenient than using NULL values. If a date to be stored in a DATE column cannot be
converted to any reasonable value, MySQL stores '0000-00-00'. To disallow '0000-00-00',
enable the NO_ZERO_DATE SQL mode.

To have MySQL check all dates and accept only legal dates (unless overridden by IGNORE), set the
sql_mode system variable to "NO_ZERO_IN_DATE,NO_ZERO_DATE".

B.5.4.3 Problems with NULL Values

The concept of the NULL value is a common source of confusion for newcomers to SQL, who often
think that NULL is the same thing as an empty string ''. This is not the case. For example, the
following statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

Both statements insert a value into the phone column, but the first inserts a NULL value and the
second inserts an empty string. The meaning of the first can be regarded as “phone number is not
known” and the meaning of the second can be regarded as “the person is known to have no phone,
and thus no phone number.”

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the
IFNULL() function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression that
contains NULL always produces a NULL value unless otherwise indicated in the documentation for the
operators and functions involved in the expression. All columns in the following example return NULL:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

To search for column values that are NULL, you cannot use an expr = NULL test. The following
statement returns no rows, because expr = NULL is never true for any expression:



Query-Related Issues

2961

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following statements show how to find
the NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

See Section 3.3.4.6, “Working with NULL Values”, for additional information and examples.

You can add an index on a column that can have NULL values if you are using the MyISAM, InnoDB,
or MEMORY storage engine. Otherwise, you must declare an indexed column NOT NULL, and you
cannot insert NULL into the column.

When reading data with LOAD DATA INFILE, empty or missing columns are updated with ''. To
load a NULL value into a column, use \N in the data file. The literal word NULL may also be used under
some circumstances. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in
descending order.

Aggregate (summary) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The
exception to this is COUNT(*), which counts rows and not individual column values. For example, the
following statement produces two counts. The first is a count of the number of rows in the table, and
the second is a count of the number of non-NULL values in the age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some data types, MySQL handles NULL values specially. If you insert NULL into a TIMESTAMP
column, the current date and time is inserted. If you insert NULL into an integer or floating-point column
that has the AUTO_INCREMENT attribute, the next number in the sequence is inserted.

B.5.4.4 Problems with Column Aliases

An alias can be used in a query select list to give a column a different name. You can use the alias in
GROUP BY, ORDER BY, or HAVING clauses to refer to the column:

SELECT SQRT(a*b) AS root FROM tbl_name
  GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name
  GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

Standard SQL disallows references to column aliases in a WHERE clause. This restriction is imposed
because when the WHERE clause is evaluated, the column value may not yet have been determined.
For example, the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name
  WHERE cnt > 0 GROUP BY id;

The WHERE clause determines which rows should be included in the GROUP BY clause, but it refers to
the alias of a column value that is not known until after the rows have been selected, and grouped by
the GROUP BY.

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:



Query-Related Issues

2962

SELECT 1 AS `one`, 2 AS 'two';

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference
is treated as a string literal. For example, this statement groups by the values in column id, referenced
using the alias `a`:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
  GROUP BY `a`;

But this statement groups by the literal string 'a' and will not work as expected:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
  GROUP BY 'a';

B.5.4.5 Rollback Failure for Nontransactional Tables

If you receive the following message when trying to perform a ROLLBACK, it means that one or more of
the tables you used in the transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

These nontransactional tables are not affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and nontransactional tables within the transaction, the
most likely cause for this message is that a table you thought was transactional actually is not. This
can happen if you try to create a table using a transactional storage engine that is not supported by
your mysqld server (or that was disabled with a startup option). If mysqld does not support a storage
engine, it instead creates the table as a MyISAM table, which is nontransactional.

You can check the storage engine for a table by using either of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;

See Section 13.7.5.37, “SHOW TABLE STATUS Syntax”, and Section 13.7.5.12, “SHOW CREATE
TABLE Syntax”.

You can check which storage engines your mysqld server supports by using this statement:

SHOW ENGINES;

You can also use the following statement, and check the value of the variable that is associated with
the storage engine in which you are interested:

SHOW VARIABLES LIKE 'have_%';

For example, to determine whether the InnoDB storage engine is available, check the value of the
have_innodb variable.

See Section 13.7.5.17, “SHOW ENGINES Syntax”, and Section 13.7.5.40, “SHOW VARIABLES
Syntax”.

B.5.4.6 Deleting Rows from Related Tables

If the total length of the DELETE statement for related_table is more than 1MB (the default value
of the max_allowed_packet system variable), you should split it into smaller parts and execute



Query-Related Issues

2963

multiple DELETE statements. You probably get the fastest DELETE by specifying only 100 to 1,000
related_column values per statement if the related_column is indexed. If the related_column
isn't indexed, the speed is independent of the number of arguments in the IN clause.

B.5.4.7 Solving Problems with No Matching Rows

If you have a complicated query that uses many tables but that returns no rows, you should use the
following procedure to find out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously wrong. See
Section 13.8.2, “EXPLAIN Syntax”.

2. Select only those columns that are used in the WHERE clause.

3. Remove one table at a time from the query until it returns some rows. If the tables are large, it is a
good idea to use LIMIT 10 with the query.

4. Issue a SELECT for the column that should have matched a row against the table that was last
removed from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you cannot use
equality (=) comparisons. This problem is common in most computer languages because not all
floating-point values can be stored with exact precision. In some cases, changing the FLOAT to a
DOUBLE fixes this. See Section B.5.4.8, “Problems with Floating-Point Values”.

6. If you still cannot figure out what is wrong, create a minimal test that can be run with mysql test
< query.sql that shows your problems. You can create a test file by dumping the tables with
mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql. Open the file
in an editor, remove some insert lines (if there are more than needed to demonstrate the problem),
and add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:

shell> mysqladmin create test2
shell> mysql test2 < query.sql

Attach the test file to a bug report, which you can file using the instructions in Section 1.6, “How to
Report Bugs or Problems”.

B.5.4.8 Problems with Floating-Point Values

Floating-point numbers sometimes cause confusion because they are approximate and not stored as
exact values. A floating-point value as written in an SQL statement may not be the same as the value
represented internally. Attempts to treat floating-point values as exact in comparisons may lead to
problems. They are also subject to platform or implementation dependencies. The FLOAT and DOUBLE
data types are subject to these issues. For DECIMAL columns, MySQL performs operations with a
precision of 65 decimal digits, which should solve most common inaccuracy problems.

The following example uses DOUBLE to demonstrate how calculations that are done using floating-point
operations are subject to floating-point error.

mysql> CREATE TABLE t1 (i INT, d1 DOUBLE, d2 DOUBLE);
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),
    -> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
    -> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
    -> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
    -> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
    -> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
    -> FROM t1 GROUP BY i HAVING a <> b;



Query-Related Issues

2964

+------+-------+------+
| i    | a     | b    |
+------+-------+------+
|    1 |  21.4 | 21.4 |
|    2 |  76.8 | 76.8 |
|    3 |   7.4 |  7.4 |
|    4 |  15.4 | 15.4 |
|    5 |   7.2 |  7.2 |
|    6 | -51.4 |    0 |
+------+-------+------+

The result is correct. Although the first five records look like they should not satisfy the comparison
(the values of a and b do not appear to be different), they may do so because the difference between
the numbers shows up around the tenth decimal or so, depending on factors such as computer
architecture or the compiler version or optimization level. For example, different CPUs may evaluate
floating-point numbers differently.

If columns d1 and d2 had been defined as DECIMAL rather than DOUBLE, the result of the SELECT
query would have contained only one row—the last one shown above.

The correct way to do floating-point number comparison is to first decide on an acceptable tolerance
for differences between the numbers and then do the comparison against the tolerance value. For
example, if we agree that floating-point numbers should be regarded the same if they are same within
a precision of one in ten thousand (0.0001), the comparison should be written to find differences larger
than the tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
    -> GROUP BY i HAVING ABS(a - b) > 0.0001;
+------+-------+------+
| i    | a     | b    |
+------+-------+------+
|    6 | -51.4 |    0 |
+------+-------+------+
1 row in set (0.00 sec)

Conversely, to get rows where the numbers are the same, the test should find differences within the
tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
    -> GROUP BY i HAVING ABS(a - b) <= 0.0001;
+------+------+------+
| i    | a    | b    |
+------+------+------+
|    1 | 21.4 | 21.4 |
|    2 | 76.8 | 76.8 |
|    3 |  7.4 |  7.4 |
|    4 | 15.4 | 15.4 |
|    5 |  7.2 |  7.2 |
+------+------+------+
5 rows in set (0.03 sec)

Floating-point values are subject to platform or implementation dependencies. Suppose that you
execute the following statements:

CREATE TABLE t1(c1 FLOAT(53,0), c2 FLOAT(53,0));
INSERT INTO t1 VALUES('1e+52','-1e+52');
SELECT * FROM t1;

On some platforms, the SELECT statement returns inf and -inf. On others, it returns 0 and -0.

An implication of the preceding issues is that if you attempt to create a replication slave by dumping
table contents with mysqldump on the master and reloading the dump file into the slave, tables
containing floating-point columns might differ between the two hosts.



Optimizer-Related Issues

2965

B.5.5 Optimizer-Related Issues

MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases,
MySQL can calculate the best possible query plan, but sometimes MySQL does not have enough
information about the data at hand and has to make “educated” guesses about the data.

For the cases when MySQL does not do the "right" thing, tools that you have available to help MySQL
are:

• Use the EXPLAIN statement to get information about how MySQL processes a query. To use it, just
add the keyword EXPLAIN to the front of your SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in Section 13.8.2, “EXPLAIN Syntax”.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Syntax”.

•  Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive
compared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful. See Section 8.9.3, “Index Hints”.

• Global and table-level STRAIGHT_JOIN. See Section 13.2.9, “SELECT Syntax”.

• You can tune global or thread-specific system variables. For example, start mysqld with the --max-
seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the optimizer to
assume that no key scan causes more than 1,000 key seeks. See Section 5.1.5, “Server System
Variables”.

B.5.6 Table Definition-Related Issues

B.5.6.1 Problems with ALTER TABLE

If you get a duplicate-key error when using ALTER TABLE to change the character set or collation of a
character column, the cause is either that the new column collation maps two keys to the same value
or that the table is corrupted. In the latter case, you should run REPAIR TABLE on the table. REPAIR
TABLE works for MyISAM, ARCHIVE, and CSV tables.

If ALTER TABLE dies with the following error, the problem may be that MySQL crashed during an
earlier ALTER TABLE operation and there is an old table named A-xxx or B-xxx lying around:

Error on rename of './database/name.frm'
to './database/B-xxx.frm' (Errcode: 17)

In this case, go to the MySQL data directory and delete all files that have names starting with A- or B-.
(You may want to move them elsewhere instead of deleting them.)

ALTER TABLE works in the following way:

• Create a new table named A-xxx with the requested structural changes.

• Copy all rows from the original table to A-xxx.

• Rename the original table to B-xxx.

• Rename A-xxx to your original table name.



Known Issues in MySQL

2966

• Delete B-xxx.

If something goes wrong with the renaming operation, MySQL tries to undo the changes. If something
goes seriously wrong (although this shouldn't happen), MySQL may leave the old table as B-xxx. A
simple rename of the table files at the system level should get your data back.

If you use ALTER TABLE on a transactional table or if you are using Windows, ALTER TABLE unlocks
the table if you had done a LOCK TABLE on it. This is done because InnoDB and these operating
systems cannot drop a table that is in use.

B.5.6.2 TEMPORARY Table Problems

Temporary tables created with CREATE TEMPORARY TABLE have the following limitations:

• TEMPORARY tables are supported only by the InnoDB, MEMORY, MyISAM, and MERGE storage
engines.

• Temporary tables are not supported for NDB Cluster.

• The SHOW TABLES statement does not list TEMPORARY tables.

• You cannot use RENAME TABLE to rename a TEMPORARY table. However, you can use ALTER
TABLE instead:

ALTER TABLE old_name RENAME new_name;

• You cannot refer to a TEMPORARY table more than once in the same query. For example, the
following does not work:

SELECT * FROM temp_table JOIN temp_table AS t2;

The statement produces this error:

ERROR 1137: Can't reopen table: 'temp_table'

• The Can't reopen table error also occurs if you refer to a temporary table multiple times in a
stored function under different aliases, even if the references occur in different statements within the
function.

• There are known issues in using temporary tables with replication. See Section 17.4.1.24,
“Replication and Temporary Tables”, for more information.

B.5.7 Known Issues in MySQL

This section lists known issues in recent versions of MySQL.

For information about platform-specific issues, see the installation and porting instructions in
Section 2.1, “General Installation Guidance”, and Section 24.5, “Debugging and Porting MySQL”.

The following problems are known:

• Subquery optimization for IN is not as effective as for =.

• Even if you use lower_case_table_names=2 (which enables MySQL to remember the case used
for databases and table names), MySQL does not remember the case used for database names for
the function DATABASE() or within the various logs (on case-insensitive systems).

• Dropping a FOREIGN KEY constraint does not work in replication because the constraint may have
another name on the slave.

• REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.



Known Issues in MySQL

2967

• DISTINCT with ORDER BY does not work inside GROUP_CONCAT() if you do not use all and only
those columns that are in the DISTINCT list.

• When inserting a big integer value (between 263 and 264−1) into a decimal or string column, it is
inserted as a negative value because the number is evaluated in a signed integer context.

• ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on tables for which
you are using INSERT DELAYED.

• With statement-based binary logging, the master writes the executed queries to the binary log. This
is a very fast, compact, and efficient logging method that works perfectly in most cases. However,
it is possible for the data on the master and slave to become different if a query is designed in such
a way that the data modification is nondeterministic (generally not a recommended practice, even
outside of replication).

For example:

• CREATE TABLE ... SELECT or INSERT ... SELECT statements that insert zero or NULL
values into an AUTO_INCREMENT column.

• DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CASCADE
properties.

• REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values in the
inserted data.

If and only if the preceding queries have no ORDER BY clause guaranteeing a deterministic
order.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a
different order (which results in a row having different ranks, hence getting a different number in the
AUTO_INCREMENT column), depending on the choices made by the optimizers on the master and
slave.

A query is optimized differently on the master and slave only if:

• The table is stored using a different storage engine on the master than on the slave. (It is possible
to use different storage engines on the master and slave. For example, you can use InnoDB on
the master, but MyISAM on the slave if the slave has less available disk space.)

• MySQL buffer sizes (key_buffer_size, and so on) are different on the master and slave.

• The master and slave run different MySQL versions, and the optimizer code differs between these
versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned
nondeterministic queries to ensure that the rows are always stored or modified in the same order.
Using row-based or mixed logging format also avoids the problem.

• Log file names are based on the server host name if you do not specify a file name with the startup
option. To retain the same log file names if you change your host name to something else, you
must explicitly use options such as --log-bin=old_host_name-bin. See Section 5.1.4, “Server
Command Options”. Alternatively, rename the old files to reflect your host name change. If these are
binary logs, you must edit the binary log index file and fix the binary log file names there as well. (The
same is true for the relay logs on a slave server.)

• mysqlbinlog does not delete temporary files left after a LOAD DATA INFILE statement. See
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.

• RENAME does not work with TEMPORARY tables or tables used in a MERGE table.



Known Issues in MySQL

2968

• When using SET CHARACTER SET, you cannot use translated characters in database, table, and
column names.

• You cannot use _ or % with ESCAPE in LIKE ... ESCAPE.

• The server uses only the first max_sort_length bytes when comparing data values. This means
that values cannot reliably be used in GROUP BY, ORDER BY, or DISTINCT if they differ only after
the first max_sort_length bytes. To work around this, increase the variable value. The default
value of max_sort_length is 1024 and can be changed at server startup time or at runtime.

• Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long). Which
precision you get depends on the function. The general rule is that bit functions are performed with
BIGINT precision, IF() and ELT() with BIGINT or DOUBLE precision, and the rest with DOUBLE
precision. You should try to avoid using unsigned long long values if they resolve to be larger than 63
bits (9223372036854775807) for anything other than bit fields.

• You can have up to 255 ENUM and SET columns in one table.

• In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET
columns by their string value rather than by the string's relative position in the set.

• In an UPDATE statement, columns are updated from left to right. If you refer to an updated column,
you get the updated value instead of the original value. For example, the following statement
increments KEY by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

• You can refer to multiple temporary tables in the same query, but you cannot refer to any given
temporary table more than once. For example, the following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The optimizer may handle DISTINCT differently when you are using “hidden” columns in a join than
when you are not. In a join, hidden columns are counted as part of the result (even if they are not
shown), whereas in normal queries, hidden columns do not participate in the DISTINCT comparison.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
       WHERE userid = 9 ORDER BY id DESC;

and

SELECT DISTINCT band_downloads.mp3id
       FROM band_downloads,band_mp3
       WHERE band_downloads.userid = 9
       AND band_mp3.id = band_downloads.mp3id
       ORDER BY band_downloads.id DESC;

In the second case, you may get two identical rows in the result set (because the values in the
hidden id column may differ).

Note that this happens only for queries that do not have the ORDER BY columns in the result.

• If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE
does not transform the columns.

• Creation of a table of type MERGE does not check whether the underlying tables are compatible
types.



Known Issues in MySQL

2969

• If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table and then add
a normal index on the MERGE table, the key order is different for the tables if there was an old,
non-UNIQUE key in the table. This is because ALTER TABLE puts UNIQUE indexes before normal
indexes to be able to detect duplicate keys as early as possible.



2970



2971

Appendix C Restrictions and Limits

Table of Contents
C.1 Restrictions on Stored Programs ....................................................................................... 2971
C.2 Restrictions on Condition Handling .................................................................................... 2975
C.3 Restrictions on Server-Side Cursors .................................................................................. 2975
C.4 Restrictions on Subqueries ................................................................................................ 2975
C.5 Restrictions on Views ........................................................................................................ 2977
C.6 Restrictions on XA Transactions ........................................................................................ 2978
C.7 Restrictions on Character Sets .......................................................................................... 2979
C.8 Restrictions on Performance Schema ................................................................................ 2979
C.9 Restrictions on Pluggable Authentication ............................................................................ 2980
C.10 Limits in MySQL ............................................................................................................. 2982

C.10.1 Limits on Joins ..................................................................................................... 2982
C.10.2 Limits on Number of Databases and Tables .......................................................... 2982
C.10.3 Limits on Table Size ............................................................................................ 2982
C.10.4 Limits on Table Column Count and Row Size ........................................................ 2983
C.10.5 Limits Imposed by .frm File Structure .................................................................... 2986
C.10.6 Windows Platform Limitations ............................................................................... 2987

The discussion here describes restrictions that apply to the use of MySQL features such as subqueries
or views.

C.1 Restrictions on Stored Programs

These restrictions apply to the features described in Chapter 20, Stored Programs and Views.

Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures
and stored functions. There are also some restrictions specific to stored functions but not to stored
procedures.

The restrictions for stored functions also apply to triggers. There are also some restrictions specific to
triggers.

The restrictions for stored procedures also apply to the DO clause of Event Scheduler event definitions.
There are also some restrictions specific to events.

SQL Statements Not Permitted in Stored Routines

Stored routines cannot contain arbitrary SQL statements. The following statements are not permitted:

• The locking statements LOCK TABLES and UNLOCK TABLES.

• ALTER VIEW.

• LOAD DATA and LOAD TABLE.

• SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) can be used in stored
procedures, but not stored functions or triggers. Thus, stored functions and triggers cannot use
dynamic SQL (where you construct statements as strings and then execute them).

• Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. For a list of statements supported as prepared statements, see Section 13.5, “Prepared
SQL Statement Syntax”. Exceptions are SIGNAL and RESIGNAL, which are not permissible as
prepared statements but are permitted in stored programs.



Restrictions for Stored Functions

2972

• Because local variables are in scope only during stored program execution, references to them
are not permitted in prepared statements created within a stored program. Prepared statement
scope is the current session, not the stored program, so the statement could be executed after the
program ends, at which point the variables would no longer be in scope. For example, SELECT ...
INTO local_var cannot be used as a prepared statement. This restriction also applies to stored
procedure and function parameters. See Section 13.5.1, “PREPARE Syntax”.

• Inserts cannot be delayed. INSERT DELAYED syntax is accepted, but the statement is handled as a
normal INSERT.

• Within all stored programs (stored procedures and functions, triggers, and events), the parser treats
BEGIN [WORK] as the beginning of a BEGIN ... END block. To begin a transaction in this context,
use START TRANSACTION instead.

Restrictions for Stored Functions

The following additional statements or operations are not permitted within stored functions. They are
permitted within stored procedures, except stored procedures that are invoked from within a stored
function or trigger. For example, if you use FLUSH in a stored procedure, that stored procedure cannot
be called from a stored function or trigger.

• Statements that perform explicit or implicit commit or rollback. Support for these statements is not
required by the SQL standard, which states that each DBMS vendor may decide whether to permit
them.

• Statements that return a result set. This includes SELECT statements that do not have an INTO
var_list clause and other statements such as SHOW, EXPLAIN, and CHECK TABLE. A function
can process a result set either with SELECT ... INTO var_list or by using a cursor and FETCH
statements. See Section 13.2.9.1, “SELECT ... INTO Syntax”, and Section 13.6.6, “Cursors”.

• FLUSH statements.

• Stored functions cannot be used recursively.

• A stored function or trigger cannot modify a table that is already being used (for reading or writing) by
the statement that invoked the function or trigger.

• If you refer to a temporary table multiple times in a stored function under different aliases, a Can't
reopen table: 'tbl_name' error occurs, even if the references occur in different statements
within the function.

• HANDLER ... READ statements that invoke stored functions can cause replication errors. As of
MySQL 5.5.7, such statements are disallowed.

Restrictions for Triggers

For triggers, the following additional restrictions apply:

• Triggers are not activated by foreign key actions.

• When using row-based replication, triggers on the slave are not activated by statements originating
on the master. The triggers on the slave are activated when using statement-based replication. For
more information, see Section 17.4.1.36, “Replication and Triggers”.

• The RETURN statement is not permitted in triggers, which cannot return a value. To exit a trigger
immediately, use the LEAVE statement.

• Triggers are not permitted on tables in the mysql database.

• The trigger cache does not detect when metadata of the underlying objects has changed. If a trigger
uses a table and the table has changed since the trigger was loaded into the cache, the trigger
operates using the outdated metadata.



Name Conflicts within Stored Routines

2973

Name Conflicts within Stored Routines

The same identifier might be used for a routine parameter, a local variable, and a table column. Also,
the same local variable name can be used in nested blocks. For example:

CREATE PROCEDURE p (i INT)
BEGIN
  DECLARE i INT DEFAULT 0;
  SELECT i FROM t;
  BEGIN
    DECLARE i INT DEFAULT 1;
    SELECT i FROM t;
  END;
END;

In such cases, the identifier is ambiguous and the following precedence rules apply:

• A local variable takes precedence over a routine parameter or table column.

• A routine parameter takes precedence over a table column.

• A local variable in an inner block takes precedence over a local variable in an outer block.

The behavior that variables take precedence over table columns is nonstandard.

Replication Considerations

Use of stored routines can cause replication problems. This issue is discussed further in Section 20.7,
“Binary Logging of Stored Programs”.

The --replicate-wild-do-table=db_name.tbl_name option applies to tables, views, and
triggers. It does not apply to stored procedures and functions, or events. To filter statements operating
on the latter objects, use one or more of the --replicate-*-db options.

Debugging Considerations

There are no stored routine debugging facilities.

Unsupported Syntax from the SQL:2003 Standard

The MySQL stored routine syntax is based on the SQL:2003 standard. The following items from that
standard are not currently supported:

• UNDO handlers

• FOR loops

Concurrency Considerations

To prevent problems of interaction between sessions, when a client issues a statement, the server
uses a snapshot of routines and triggers available for execution of the statement. That is, the server
calculates a list of procedures, functions, and triggers that may be used during execution of the
statement, loads them, and then proceeds to execute the statement. While the statement executes, it
does not see changes to routines performed by other sessions.

For maximum concurrency, stored functions should minimize their side-effects; in particular, updating
a table within a stored function can reduce concurrent operations on that table. A stored function
acquires table locks before executing, to avoid inconsistency in the binary log due to mismatch of the
order in which statements execute and when they appear in the log. When statement-based binary
logging is used, statements that invoke a function are recorded rather than the statements executed
within the function. Consequently, stored functions that update the same underlying tables do not
execute in parallel. In contrast, stored procedures do not acquire table-level locks. All statements



Event Scheduler Restrictions

2974

executed within stored procedures are written to the binary log, even for statement-based binary
logging. See Section 20.7, “Binary Logging of Stored Programs”.

Event Scheduler Restrictions

The following limitations are specific to the Event Scheduler:

• Event names are handled in case-insensitive fashion. For example, you cannot have two events in
the same database with the names anEvent and AnEvent.

• An event may not be created, altered, or dropped by a stored routine, trigger, or another event. An
event also may not create, alter, or drop stored routines or triggers. (Bug #16409, Bug #18896)

• As of MySQL 5.5.8, DDL statements on events are prohibited while a LOCK TABLES statement is in
effect.

• Event timings using the intervals YEAR, QUARTER, MONTH, and YEAR_MONTH are resolved in months;
those using any other interval are resolved in seconds. There is no way to cause events scheduled
to occur at the same second to execute in a given order. In addition—due to rounding, the nature
of threaded applications, and the fact that a nonzero length of time is required to create events
and to signal their execution—events may be delayed by as much as 1 or 2 seconds. However,
the time shown in the INFORMATION_SCHEMA.EVENTS table's LAST_EXECUTED column or the
mysql.event table's last_executed column is always accurate to within one second of the
actual event execution time. (See also Bug #16522.)

• Each execution of the statements contained in the body of an event takes place in a new connection;
thus, these statements has no effect in a given user session on the server's statement counts such
as Com_select and Com_insert that are displayed by SHOW STATUS. However, such counts are
updated in the global scope. (Bug #16422)

• Events do not support times later than the end of the Unix Epoch; this is approximately the beginning
of the year 2038. Such dates are specifically not permitted by the Event Scheduler. (Bug #16396)

• References to stored functions, user-defined functions, and tables in the ON SCHEDULE clauses of
CREATE EVENT and ALTER EVENT statements are not supported. These sorts of references are not
permitted. (See Bug #22830 for more information.)

Stored routines and triggers in NDB Cluster.  Stored procedures, stored functions, and triggers
are all supported by tables using the NDB storage engine; however, it is important to keep in mind that
they do not propagate automatically between MySQL Servers acting as Cluster SQL nodes. This is
because of the following:

• Stored routine definitions are kept in tables in the mysql system database using the MyISAM storage
engine, and so do not participate in clustering.

• The .TRN and .TRG files containing trigger definitions are not read by the NDB storage engine, and
are not copied between Cluster nodes.

Any stored routine or trigger that interacts with NDB Cluster tables must be re-created by running the
appropriate CREATE PROCEDURE, CREATE FUNCTION, or CREATE TRIGGER statements on each
MySQL Server that participates in the cluster where you wish to use the stored routine or trigger.
Similarly, any changes to existing stored routines or triggers must be carried out explicitly on all Cluster
SQL nodes, using the appropriate ALTER or DROP statements on each MySQL Server accessing the
cluster.

Warning

Do not attempt to work around the issue described in the first item mentioned
previously by converting any mysql database tables to use the NDB storage
engine. Altering the system tables in the mysql database is not supported and
is very likely to produce undesirable results.



Restrictions on Condition Handling

2975

C.2 Restrictions on Condition Handling
SIGNAL and RESIGNAL are not permissible as prepared statements. For example, this statement is
invalid:

PREPARE stmt1 FROM 'SIGNAL SQLSTATE "02000"';

SQLSTATE values in class '04' are not treated specially. They are handled the same as other
exceptions.

C.3 Restrictions on Server-Side Cursors
Server-side cursors are implemented in the C API using the mysql_stmt_attr_set() function. The
same implementation is used for cursors in stored routines. A server-side cursor enables a result set
to be generated on the server side, but not transferred to the client except for those rows that the client
requests. For example, if a client executes a query but is only interested in the first row, the remaining
rows are not transferred.

In MySQL, a server-side cursor is materialized into an internal temporary table. Initially, this is a
MEMORY table, but is converted to a MyISAM table when its size exceeds the minimum value of the
max_heap_table_size and tmp_table_size system variables. The same restrictions apply
to internal temporary tables created to hold the result set for a cursor as for other uses of internal
temporary tables. See Section 8.4.4, “Internal Temporary Table Use in MySQL”. One limitation of the
implementation is that for a large result set, retrieving its rows through a cursor might be slow.

Cursors are read only; you cannot use a cursor to update rows.

UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because
updatable cursors are not supported.

Cursors are nonholdable (not held open after a commit).

Cursors are asensitive.

Cursors are nonscrollable.

Cursors are not named. The statement handler acts as the cursor ID.

You can have open only a single cursor per prepared statement. If you need several cursors, you must
prepare several statements.

You cannot use a cursor for a statement that generates a result set if the statement is not supported
in prepared mode. This includes statements such as CHECK TABLE, HANDLER READ, and SHOW
BINLOG EVENTS.

C.4 Restrictions on Subqueries
• Subquery optimization for IN is not as effective as for the = operator or for the IN(value_list)

operator.

A typical case for poor IN subquery performance is when the subquery returns a small number of
rows but the outer query returns a large number of rows to be compared to the subquery result.

The problem is that, for a statement that uses an IN subquery, the optimizer rewrites it as a
correlated subquery. Consider the following statement that uses an uncorrelated subquery:

SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);

The optimizer rewrites the statement to a correlated subquery:



Restrictions on Subqueries

2976

SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);

If the inner and outer queries return M and N rows, respectively, the execution time becomes on the
order of O(M×N), rather than O(M+N) as it would be for an uncorrelated subquery.

An implication is that an IN subquery can be much slower than a query written using an
IN(value_list) operator that lists the same values that the subquery would return.

• In general, you cannot modify a table and select from the same table in a subquery. For example,
this limitation applies to statements of the following forms:

DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);

Exception: The preceding prohibition does not apply if for the modified table you are using a derived
table (subquery in the FROM clause) and that derived table is materialized rather than merged into the
outer query. Example:

UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROM t...) AS _t ...);

Here the result from the derived table is materialized as a temporary table, so the relevant rows in t
have already been selected by the time the update to t takes place.

• Row comparison operations are only partially supported:

• For expr [NOT] IN subquery, expr can be an n-tuple (specified using row constructor
syntax) and the subquery can return rows of n-tuples. The permitted syntax is therefore more
specifically expressed as row_constructor [NOT] IN table_subquery

• For expr op {ALL|ANY|SOME} subquery, expr must be a scalar value and the subquery
must be a column subquery; it cannot return multiple-column rows.

In other words, for a subquery that returns rows of n-tuples, this is supported:

(expr_1, ..., expr_n) [NOT] IN table_subquery

But this is not supported:

(expr_1, ..., expr_n) op {ALL|ANY|SOME} subquery

The reason for supporting row comparisons for IN but not for the others is that IN is implemented by
rewriting it as a sequence of = comparisons and AND operations. This approach cannot be used for
ALL, ANY, or SOME.

• Subqueries in the FROM clause cannot be correlated subqueries. They are materialized in whole
(evaluated to produce a result set) before evaluating the outer query, so they cannot be evaluated
per row of the outer query.

• MySQL does not support LIMIT in subqueries for certain subquery operators:

mysql> SELECT * FROM t1
    ->   WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1);
ERROR 1235 (42000): This version of MySQL doesn't yet support
 'LIMIT & IN/ALL/ANY/SOME subquery'

• The optimizer is more mature for joins than for subqueries, so in many cases a statement that uses a
subquery can be executed more efficiently if you rewrite it as a join.



Restrictions on Views

2977

An exception occurs for the case where an IN subquery can be rewritten as a SELECT DISTINCT
join. Example:

SELECT col FROM t1 WHERE id_col IN (SELECT id_col2 FROM t2 WHERE condition);

That statement can be rewritten as follows:

SELECT DISTINCT col FROM t1, t2 WHERE t1.id_col = t2.id_col AND condition;

But in this case, the join requires an extra DISTINCT operation and is not more efficient than the
subquery.

• MySQL permits a subquery to refer to a stored function that has data-modifying side effects such as
inserting rows into a table. For example, if f() inserts rows, the following query can modify data:

SELECT ... WHERE x IN (SELECT f() ...);

This behavior is an extension to the SQL standard. In MySQL, it can produce indeterminate results
because f() might be executed a different number of times for different executions of a given query
depending on how the optimizer chooses to handle it.

For statement-based or mixed-format replication, one implication of this indeterminism is that such a
query can produce different results on the master and its slaves.

C.5 Restrictions on Views

View processing is not optimized:

• It is not possible to create an index on a view.

• Indexes can be used for views processed using the merge algorithm. However, a view that is
processed with the temptable algorithm is unable to take advantage of indexes on its underlying
tables (although indexes can be used during generation of the temporary tables).

Subqueries cannot be used in the FROM clause of a view.

There is a general principle that you cannot modify a table and select from the same table in a
subquery. See Section C.4, “Restrictions on Subqueries”.

The same principle also applies if you select from a view that selects from the table, if the view selects
from the table in a subquery and the view is evaluated using the merge algorithm. Example:

CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);

UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;

If the view is evaluated using a temporary table, you can select from the table in the view subquery
and still modify that table in the outer query. In this case the view will be stored in a temporary table
and thus you are not really selecting from the table in a subquery and modifying it “at the same time.”
(This is another reason you might wish to force MySQL to use the temptable algorithm by specifying
ALGORITHM = TEMPTABLE in the view definition.)

You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition.
No warning results from the DROP or ALTER operation, even though this invalidates the view. Instead,
an error occurs later, when the view is used. CHECK TABLE can be used to check for views that have
been invalidated by DROP or ALTER operations.



Restrictions on XA Transactions

2978

A view definition is “frozen” by certain statements. If a statement prepared by PREPARE refers to a
view, the view definition seen each time the statement is executed later will be the definition of the
view at the time it was prepared. This is true even if the view definition is changed after the statement
is prepared and before it is executed. In the following example, the result returned by the EXECUTE
statement is a random number, not the current date and time:

CREATE VIEW v AS SELECT RAND();
PREPARE s FROM 'SELECT * FROM v';
ALTER VIEW v AS SELECT NOW();
EXECUTE s;

With regard to view updatability, the overall goal for views is that if any view is theoretically updatable, it
should be updatable in practice. MySQL as quickly as possible. Many theoretically updatable views can
be updated now, but limitations still exist. For details, see Section 20.5.3, “Updatable and Insertable
Views”.

There exists a shortcoming with the current implementation of views. If a user is granted the basic
privileges necessary to create a view (the CREATE VIEW and SELECT privileges), that user will be
unable to call SHOW CREATE VIEW on that object unless the user is also granted the SHOW VIEW
privilege.

That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to
insufficient privileges. This problem is described in Bug #22062.

The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to
users who are granted CREATE VIEW, since MySQL doesn't grant it implicitly when views are created.

Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view
is not permitted.

SHOW CREATE VIEW displays view definitions using an AS alias_name clause for each column. If a
column is created from an expression, the default alias is the expression text, which can be quite long.
Aliases for column names in CREATE VIEW statements are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters). As a result, views created
from the output of SHOW CREATE VIEW fail if any column alias exceeds 64 characters. This can cause
problems in the following circumstances for views with too-long aliases:

• View definitions fail to replicate to newer slaves that enforce the column-length restriction.

• Dump files created with mysqldump cannot be loaded into servers that enforce the column-length
restriction.

A workaround for either problem is to modify each problematic view definition to use aliases that
provide shorter column names. Then the view will replicate properly, and can be dumped and reloaded
without causing an error. To modify the definition, drop and create the view again with DROP VIEW and
CREATE VIEW, or replace the definition with CREATE OR REPLACE VIEW.

For problems that occur when reloading view definitions in dump files, another workaround is to edit
the dump file to modify its CREATE VIEW statements. However, this does not change the original view
definitions, which may cause problems for subsequent dump operations.

C.6 Restrictions on XA Transactions

XA transaction support is limited to the InnoDB storage engine.

For “external XA,” a MySQL server acts as a Resource Manager and client programs act as
Transaction Managers. For “Internal XA”, storage engines within a MySQL server act as RMs, and
the server itself acts as a TM. Internal XA support is limited by the capabilities of individual storage
engines. Internal XA is required for handling XA transactions that involve more than one storage



Restrictions on Character Sets

2979

engine. The implementation of internal XA requires that a storage engine support two-phase commit at
the table handler level, and currently this is true only for InnoDB.

For XA START, the JOIN and RESUME clauses are not supported.

For XA END, the SUSPEND [FOR MIGRATE] clause is not supported.

The requirement that the bqual part of the xid value be different for each XA transaction within
a global transaction is a limitation of the current MySQL XA implementation. It is not part of the XA
specification.

If an XA transaction has reached the PREPARED state and the MySQL server is killed (for example,
with kill -9 on Unix) or shuts down abnormally, the transaction can be continued after the server
restarts. However, if the client reconnects and commits the transaction, the transaction will be absent
from the binary log even though it has been committed. This means the data and the binary log have
gone out of synchrony. An implication is that XA cannot be used safely together with replication.

It is possible that the server will roll back a pending XA transaction, even one that has reached the
PREPARED state. This happens if a client connection terminates and the server continues to run, or if
clients are connected and the server shuts down gracefully. (In the latter case, the server marks each
connection to be terminated, and then rolls back the PREPARED XA transaction associated with it.) It
should be possible to commit or roll back a PREPARED XA transaction, but this cannot be done without
changes to the binary logging mechanism.

FLUSH TABLES WITH READ LOCK is not compatible with XA transactions.

C.7 Restrictions on Character Sets

• Identifiers are stored in mysql database tables (user, db, and so forth) using utf8, but identifiers
can contain only characters in the Basic Multilingual Plane (BMP). Supplementary characters are not
permitted in identifiers.

• The ucs2, utf16, and utf32 character sets have the following restrictions:

• They cannot be used as a client character set, which means that they do not work for SET NAMES
or SET CHARACTER SET. (See Section 10.1.4, “Connection Character Sets and Collations”.)

• It is currently not possible to use LOAD DATA INFILE to load data files that use these character
sets.

• FULLTEXT indexes cannot be created on a column that uses any of these character sets.
However, you can perform IN BOOLEAN MODE searches on the column without an index.

• The use of ENCRYPT() with these character sets is not recommended because the underlying
system call expects a string terminated by a zero byte.

• The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multibyte safe and
may produce unexpected results with multibyte character sets. In addition, these operators compare
characters by their byte values and accented characters may not compare as equal even if a given
collation treats them as equal.

C.8 Restrictions on Performance Schema

The Performance Schema avoids using mutexes to collect or produce data, so there are no guarantees
of consistency and results can sometimes be incorrect. Event values in performance_schema tables
are nondeterministic and nonrepeatable.

If you save event information in another table, you should not assume that the original events will
still be available later. For example, if you select events from a performance_schema table into a
temporary table, intending to join that table with the original table later, there might be no matches.



Restrictions on Pluggable Authentication

2980

mysqldump and BACKUP DATABASE ignore tables in the performance_schema database.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

Tables in the performance_schema database cannot be indexed.

Results for queries that refer to tables in the performance_schema database are not saved in the
query cache.

Tables in the performance_schema database are not replicated.

The Performance Schema is not available in libmysqld, the embedded server.

The types of timers might vary per platform. The performance_timers table shows which event
timers are available. If the values in this table for a given timer name are NULL, that timer is not
supported on your platform.

Instruments that apply to storage engines might not be implemented for all storage engines.
Instrumentation of each third-party engine is the responsibility of the engine maintainer.

C.9 Restrictions on Pluggable Authentication

The first part of this section describes general restrictions on the applicability of the pluggable
authentication framework described at Section 6.3.6, “Pluggable Authentication”. The second part
describes how third-party connector developers can determine the extent to which a connector can
take advantage of pluggable authentication capabilities and what steps to take to become more
compliant.

The term “native authentication” used here refers to authentication against passwords stored in
the Password column of the mysql.user table. This is the same authentication method provided
by MySQL servers older than 5.5.7, before pluggable authentication was implemented. It remains
the default method in 5.5.7 and up, although now it is implemented using plugins. “Windows native
authentication” refers to authentication using the credentials of a user who has already logged in to
Windows, as implemented by the Windows Native Authentication plugin (“Windows plugin” for short).

General Pluggable Authentication Restrictions

• Connector/C, Connector/C++: Clients that use these connectors can connect to the server only
through accounts that use native authentication.

Exception: A connector supports pluggable authentication if it was built to link to libmysqlclient
dynamically (rather than statically) and it loads the current version of libmysqlclient if that
version is installed, or if the connector is recompiled from source to link against the current
libmysqlclient.

• Connector/J: Clients that use this connector can connect to the server only through accounts that
use native authentication.

• Connector/Net: Before Connector/Net 6.4.4, clients that use this connector can connect to the
server only through accounts that use native authentication. As of 6.4.4, clients can also connect to
the server through accounts that use the Windows plugin.

• Connector/ODBC: Before Connector/ODBC 3.51.29 and 5.1.9, clients that use this connector
can connect to the server only through accounts that use native authentication. As of 3.51.29 and
5.1.9, clients that use binary releases of this connector for Windows can also connect to the server
through accounts that use the PAM or Windows plugins. (These capabilities result from linking the
Connector/ODBC binaries against the MySQL 5.5.16 libmysqlclient rather than the MySQL 5.1
libmysqlclient used previously. The newer libmysqlclient includes the client-side support
needed for the server-side PAM and Windows authentication plugins.)



Pluggable Authentication and Third-Party Connectors

2981

• Connector/PHP: Clients that use this connector can connect to the server only through accounts
that use native authentication, when compiled using the MySQL native driver for PHP (mysqlnd).

• MySQL Proxy: Before MySQL Proxy 0.8.2, clients can connect to the server only through accounts
that use native authentication. As of 0.8.2, clients can also connect to the server through accounts
that use the PAM plugin. As of 0.8.3, clients can also connect to the server through accounts that
use the Windows plugin.

• MySQL Enterprise Backup: MySQL Enterprise Backup before version 3.6.1 supports connections
to the server only through accounts that use native authentication. As of 3.6.1, MySQL Enterprise
Backup can connect to the server through accounts that use nonnative authentication.

• Windows native authentication: Connecting through an account that uses the Windows plugin
requires Windows Domain setup. Without it, NTLM authentication is used and then only local
connections are possible; that is, the client and server must run on the same computer.

• Proxy users: Proxy user support is available to the extent that clients can connect through accounts
authenticated with plugins that implement proxy user capability (that is, plugins that can return a user
name different from that of the connecting user). For example, the native authentication plugins do
not support proxy users, whereas the PAM and Windows plugins do.

• Replication: Before MySQL 5.5.17, replication slaves can connect to the master server only
through master accounts that use native authentication. As of 5.5.17 (or 5.5.19 for Windows
native authentication), replication slaves can also connect through master accounts that use
nonnative authentication if the required client-side plugin is available. If the plugin is built into
libmysqlclient, it is available by default. Otherwise, the plugin must be installed on the slave
side in the directory named by the slave plugin_dir system variable.

• FEDERATED tables: A FEDERATED table can access the remote table only through accounts on the
remote server that use native authentication.

Pluggable Authentication and Third-Party Connectors

Third-party connector developers can use the following guidelines to determine readiness of a
connector to take advantage of pluggable authentication capabilities and what steps to take to become
more compliant:

• An existing connector to which no changes have been made uses native authentication and
clients that use the connector can connect to the server only through accounts that use native
authentication. However, you should test the connector against a recent version of the server to
verify that such connections still work without problem.

Exception: A connector might work with pluggable authentication without any changes if it links
to libmysqlclient dynamically (rather than statically) and it loads the current version of
libmysqlclient if that version is installed.

• To take advantage of pluggable authentication capabilities, a connector that is libmysqlclient-
based should be relinked against the current version of libmysqlclient. This enables the
connector to support connections though accounts that require client-side plugins now built into
libmysqlclient (such as the cleartext plugin needed for PAM authentication and the Windows
plugin needed for Windows native authentication). Linking with a current libmysqlclient also
enables the connector to access client-side plugins installed in the default MySQL plugin directory
(typically the directory named by the default value of the local server's plugin_dir system
variable).

If a connector links to libmysqlclient dynamically, it must be ensured that the newer version of
libmysqlclient is installed on the client host and that the connector loads it at runtime.

• Another way for a connector to support a given authentication method is to implement it directly in
the client/server protocol. Connector/Net uses this approach to provide support for Windows native
authentication.



Limits in MySQL

2982

• If a connector should be able to load client-side plugins from a directory different from the default
plugin directory, it must implement some means for client users to specify the directory. Possibilities
for this include a command-line option or environment variable from which the connector can obtain
the directory name. Standard MySQL client programs such as mysql and mysqladmin implement a
--plugin-dir option. See also Section 23.8.14, “C API Client Plugin Functions”.

• Proxy user support by a connector depends, as described earlier in this section, on whether the
authentication methods that it supports permit proxy users.

C.10 Limits in MySQL

This section lists current limits in MySQL 5.5.

C.10.1 Limits on Joins

The maximum number of tables that can be referenced in a single join is 61. This also applies to the
number of tables that can be referenced in the definition of a view.

C.10.2 Limits on Number of Databases and Tables

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

MySQL has no limit on the number of tables. The underlying file system may have a limit on the
number of files that represent tables. Individual storage engines may impose engine-specific
constraints. InnoDB permits up to 4 billion tables.

C.10.3 Limits on Table Size

The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. For up-to-date information operating system file
size limits, refer to the documentation specific to your operating system.

Windows users, please note that FAT and VFAT (FAT32) are not considered suitable for production
use with MySQL. Use NTFS instead.

If you encounter a full-table error, there are several reasons why it might have occurred:

• The disk might be full.

• You are using InnoDB tables and have run out of room in an InnoDB tablespace file. The maximum
tablespace size is four billion pages (64TB), which is also the maximum size for a table. See
Section 14.11.1.7, “Limits on InnoDB Tables”.

Generally, partitioning of tables into multiple tablespace files is recommended for tables larger than
1TB in size.

• You have hit an operating system file size limit. For example, you are using MyISAM tables on an
operating system that supports files only up to 2GB in size and you have hit this limit for the data file
or index file.

• You are using a MyISAM table and the space required for the table exceeds what is permitted by the
internal pointer size. MyISAM permits data and index files to grow up to 256TB by default, but this
limit can be changed up to the maximum permissible size of 65,536TB (2567 − 1 bytes).

If you need a MyISAM table that is larger than the default limit and your operating system supports
large files, the CREATE TABLE statement supports AVG_ROW_LENGTH and MAX_ROWS options. See
Section 13.1.17, “CREATE TABLE Syntax”. The server uses these options to determine how large a
table to permit.



Limits on Table Column Count and Row Size

2983

If the pointer size is too small for an existing table, you can change the options with ALTER TABLE to
increase a table's maximum permissible size. See Section 13.1.7, “ALTER TABLE Syntax”.

ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this case,
MySQL can't optimize the space required based only on the number of rows.

To change the default size limit for MyISAM tables, set the myisam_data_pointer_size, which
sets the number of bytes used for internal row pointers. The value is used to set the pointer size for
new tables if you do not specify the MAX_ROWS option. The value of myisam_data_pointer_size
can be from 2 to 7. A value of 4 permits tables up to 4GB; a value of 6 permits tables up to 256TB.

You can check the maximum data and index sizes by using this statement:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';

You also can use myisamchk -dv /path/to/table-index-file. See Section 13.7.5, “SHOW
Syntax”, or Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

Other ways to work around file-size limits for MyISAM tables are as follows:

• If your large table is read only, you can use myisampack to compress it. myisampack usually
compresses a table by at least 50%, so you can have, in effect, much bigger tables. myisampack
also can merge multiple tables into a single table. See Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”.

• MySQL includes a MERGE library that enables you to handle a collection of MyISAM tables that
have identical structure as a single MERGE table. See Section 15.8, “The MERGE Storage Engine”.

• You are using the NDB storage engine, in which case you need to increase the values for the
DataMemory and IndexMemory configuration parameters in your config.ini file. See
Section 18.3.2.1, “NDB Cluster Data Node Configuration Parameters”.

• You are using the MEMORY (HEAP) storage engine; in this case you need to increase the value of the
max_heap_table_size system variable. See Section 5.1.5, “Server System Variables”.

C.10.4 Limits on Table Column Count and Row Size

Column Count Limits

MySQL has hard limit of 4096 columns per table, but the effective maximum may be less for a given
table. The exact column limit depends on several factors:

• The maximum row size for a table constrains the number (and possibly size) of columns because the
total length of all columns cannot exceed this size. See Row Size Limits.

• The storage requirements of individual columns constrain the number of columns that fit within
a given maximum row size. Storage requirements for some data types depend on factors such
as storage engine, storage format, and character set. See Section 11.7, “Data Type Storage
Requirements”.

• Storage engines may impose additional restrictions that limit table column count. For example,
InnoDB has a limit of 1000 columns per table. See Section 14.11.1.7, “Limits on InnoDB Tables”.
For information about other storage engines, see Chapter 15, Alternative Storage Engines.

• Each table has an .frm file that contains the table definition. The definition affects the content of this
file in ways that may affect the number of columns permitted in the table. See Section C.10.5, “Limits
Imposed by .frm File Structure”.



Limits on Table Column Count and Row Size

2984

Row Size Limits

The maximum row size for a given table is determined by several factors:

• The internal representation of a MySQL table has a maximum row size limit of 65,535 bytes, even if
the storage engine is capable of supporting larger rows. BLOB and TEXT columns only contribute 9
to 12 bytes toward the row size limit because their contents are stored separately from the rest of the
row.

• The maximum row size for an InnoDB table, which applies to data stored locally within a database
page, is slightly less than half a page. For example, the maximum row size is slightly less than 8KB
for the default 16KB InnoDB page size. See Section 14.11.1.7, “Limits on InnoDB Tables”.

If a row containing variable-length columns exceeds the InnoDB maximum row size, InnoDB selects
variable-length columns for external off-page storage until the row fits within the InnoDB row size
limit. The amount of data stored locally for variable-length columns that are stored off-page differs by
row format. For more information, see Section 14.14, “InnoDB Row Storage and Row Formats”.

• Different storage formats use different amounts of page header and trailer data, which affects the
amount of storage available for rows.

• For information about InnoDB row formats, see Section 14.14, “InnoDB Row Storage and Row
Formats”, and Section 14.11.1.2, “The Physical Row Structure of an InnoDB Table”.

• For information about MyISAM storage formats, see Section 15.3.3, “MyISAM Table Storage
Formats”.

Row Size Limit Examples

• The MySQL maximum row size limit of 65,535 bytes is demonstrated in the following InnoDB and
MyISAM examples. The limit is enforced regardless of storage engine, even though the storage
engine may be capable of supporting larger rows.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
       c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
       f VARCHAR(10000), g VARCHAR(6000)) ENGINE=InnoDB CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used 
table type, not counting BLOBs, is 65535. You have to change some columns 
to TEXT or BLOBs 

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
       c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
       f VARCHAR(10000), g VARCHAR(6000)) ENGINE=MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used 
table type, not counting BLOBs, is 65535. You have to change some columns 
to TEXT or BLOBs 

In the following MyISAM example, changing a column to TEXT avoids the 65,535-byte row size limit
and permits the operation to succeed because BLOB and TEXT columns only contribute 9 to 12 bytes
toward the row size.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
       c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
       f VARCHAR(10000), g TEXT(6000)) ENGINE=MyISAM CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The operation succeeds for an InnoDB table because changing a column to TEXT avoids the
MySQL 65,535-byte row size limit, and InnoDB off-page storage of variable-length columns avoids
the InnoDB row size limit.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),



Limits on Table Column Count and Row Size

2985

       c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
       f VARCHAR(10000), g TEXT(6000)) ENGINE=InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

• Storage for variable-length columns includes length bytes, which are counted toward the row size.
For example, a VARCHAR(255) CHARACTER SET utf8mb3 column takes two bytes to store the
length of the value, so each value can take up to 767 bytes.

The statement to create table t1 succeeds because the columns require 32,765 + 2 bytes and
32,766 + 2 bytes, which falls within the maximum row size of 65,535 bytes:

mysql> CREATE TABLE t1
       (c1 VARCHAR(32765) NOT NULL, c2 VARCHAR(32766) NOT NULL)
       ENGINE = InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The statement to create table t2 fails because, although the column length is within the maximum
length of 65,535 bytes, two additional bytes are required to record the length, which causes the row
size to exceed 65,535 bytes:

mysql> CREATE TABLE t2
       (c1 VARCHAR(65535) NOT NULL)
       ENGINE = InnoDB CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

Reducing the column length to 65,533 or less permits the statement to succeed.

mysql> CREATE TABLE t2
       (c1 VARCHAR(65533) NOT NULL)
       ENGINE = InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.01 sec)

• For MyISAM tables, NULL columns require additional space in the row to record whether their values
are NULL. Each NULL column takes one bit extra, rounded up to the nearest byte.

The statement to create table t3 fails because MyISAM requires space for NULL columns in addition
to the space required for variable-length column length bytes, causing the row size to exceed 65,535
bytes:

mysql> CREATE TABLE t3
       (c1 VARCHAR(32765) NULL, c2 VARCHAR(32766) NULL)
       ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs 

For information about InnoDB NULL column storage, see Section 14.11.1.2, “The Physical Row
Structure of an InnoDB Table”.

• InnoDB restricts row size (for data stored locally within the database page) to slightly less than half
a database page. For example, the maximum row size is slightly less than 8KB for the 16KB InnoDB
page size.

The statement to create table t4 fails because the defined columns exceed the row size limit for a
16KB InnoDB page.

Note

innodb_strict_mode is enabled in the following example to ensure that
InnoDB returns an error if the defined columns exceed the InnoDB row size



Limits Imposed by .frm File Structure

2986

limit. When innodb_strict_mode is disabled (the default), creating a table
that uses REDUNDANT or COMPACT row format succeeds with a warning if the
InnoDB row size limit is exceeded.

DYNAMIC and COMPRESSED row formats are more restrictive in this regard.
Creating a table that uses DYNAMIC or COMRESSED row format fails
with an error if the InnoDB row size limit is exceeded, regardless of the
innodb_strict_mode setting.

mysql> SET SESSION innodb_strict_mode=1;  
mysql> CREATE TABLE t4 (
       c1 CHAR(255),c2 CHAR(255),c3 CHAR(255),
       c4 CHAR(255),c5 CHAR(255),c6 CHAR(255),
       c7 CHAR(255),c8 CHAR(255),c9 CHAR(255),
       c10 CHAR(255),c11 CHAR(255),c12 CHAR(255),
       c13 CHAR(255),c14 CHAR(255),c15 CHAR(255),
       c16 CHAR(255),c17 CHAR(255),c18 CHAR(255),
       c19 CHAR(255),c20 CHAR(255),c21 CHAR(255),
       c22 CHAR(255),c23 CHAR(255),c24 CHAR(255),
       c25 CHAR(255),c26 CHAR(255),c27 CHAR(255),
       c28 CHAR(255),c29 CHAR(255),c30 CHAR(255),
       c31 CHAR(255),c32 CHAR(255),c33 CHAR(255)
       ) ENGINE=InnoDB ROW_FORMAT=COMPACT DEFAULT CHARSET latin1;
ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to TEXT or BLOB or using 
ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED may help. In current row format, BLOB prefix of 768 
bytes is stored inline.

C.10.5 Limits Imposed by .frm File Structure

Each table has an .frm file that contains the table definition. The server uses the following expression
to check some of the table information stored in the file against an upper limit of 64KB:

if (info_length+(ulong) create_fields.elements*FCOMP+288+
    n_length+int_length+com_length > 65535L || int_count > 255)

The portion of the information stored in the .frm file that is checked against the expression cannot
grow beyond the 64KB limit, so if the table definition reaches this size, no more columns can be added.

The relevant factors in the expression are:

• info_length is space needed for “screens.” This is related to MySQL's Unireg heritage.

• create_fields.elements is the number of columns.

• FCOMP is 17.

• n_length is the total length of all column names, including one byte per name as a separator.

• int_length is related to the list of values for ENUM and SET columns. In this context, “int” does not
mean “integer.” It means “interval,” a term that refers collectively to ENUM and SET columns.

• int_count is the number of unique ENUM and SET definitions.

• com_length is the total length of column comments.

The expression just described has several implications for permitted table definitions:

• Using long column names can reduce the maximum number of columns, as can the inclusion of
ENUM or SET columns, or use of column comments.

• A table can have no more than 255 unique ENUM and SET definitions. Columns with identical element
lists are considered the same against this limt. For example, if a table contains these two columns,
they count as one (not two) toward this limit because the definitions are identical:



Windows Platform Limitations

2987

e1 ENUM('a','b','c')
e2 ENUM('a','b','c')

• The sum of the length of element names in the unique ENUM and SET definitions counts toward the
64KB limit, so although the theoretical limit on number of elements in a given ENUM column is 65,535,
the practical limit is less than 3000.

C.10.6 Windows Platform Limitations

The following limitations apply to use of MySQL on the Windows platform:

• Process memory

On Windows 32-bit platforms, it is not possible by default to use more than 2GB of RAM within a
single process, including MySQL. This is because the physical address limit on Windows 32-bit
is 4GB and the default setting within Windows is to split the virtual address space between kernel
(2GB) and user/applications (2GB).

Some versions of Windows have a boot time setting to enable larger applications by reducing the
kernel application. Alternatively, to use more than 2GB, use a 64-bit version of Windows.

• File system aliases

When using MyISAM tables, you cannot use aliases within Windows link to the data files on another
volume and then link back to the main MySQL datadir location.

This facility is often used to move the data and index files to a RAID or other fast solution, while
retaining the main .frm files in the default data directory configured with the datadir option.

• Limited number of ports

Windows systems have about 4,000 ports available for client connections, and after a connection on
a port closes, it takes two to four minutes before the port can be reused. In situations where clients
connect to and disconnect from the server at a high rate, it is possible for all available ports to be
used up before closed ports become available again. If this happens, the MySQL server appears to
be unresponsive even though it is running. Ports may be used by other applications running on the
machine as well, in which case the number of ports available to MySQL is lower.

For more information about this problem, see http://support.microsoft.com/default.aspx?scid=kb;en-
us;196271.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ignored on
Windows, because MySQL does not support Windows symbolic links. These options also are
ignored on systems that have a nonfunctional realpath() call.

• DROP DATABASE

You cannot drop a database that is in use by another session.

• Case-insensitive names

File names are not case sensitive on Windows, so MySQL database and table names are also not
case sensitive on Windows. The only restriction is that database and table names must be specified
using the same case throughout a given statement. See Section 9.2.2, “Identifier Case Sensitivity”.

• Directory and file names

On Windows, MySQL Server supports only directory and file names that are compatible with the
current ANSI code pages. For example, the following Japanese directory name will not work in the
Western locale (code page 1252):

http://support.microsoft.com/default.aspx?scid=kb;en-us;196271
http://support.microsoft.com/default.aspx?scid=kb;en-us;196271


Windows Platform Limitations

2988

datadir="C:/私たちのプロジェクトのデータ"

The same limitation applies to directory and file names referred to in SQL statements, such as the
data file path name in LOAD DATA INFILE.

• The \ path name separator character

Path name components in Windows are separated by the \ character, which is also the escape
character in MySQL. If you are using LOAD DATA INFILE or SELECT ... INTO OUTFILE, use
Unix-style file names with / characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the \ character:

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

• Problems with pipes

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character
^Z / CHAR(24), Windows thinks that it has encountered end-of-file and aborts the program.

This is mainly a problem when you try to apply a binary log as follows:

C:\> mysqlbinlog binary_log_file | mysql --user=root

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character,
you can use the following workaround:

C:\> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read in any SQL file that may contain binary data.



2989

Appendix D Indexes

Table of Contents
General Index ......................................................................................................................... 2989
C Function Index ..................................................................................................................... 3177
Command Index ...................................................................................................................... 3191
Function Index ........................................................................................................................ 3230
INFORMATION_SCHEMA Index .............................................................................................. 3260
Join Types Index ..................................................................................................................... 3267
Operator Index ........................................................................................................................ 3269
Option Index ........................................................................................................................... 3276
Privileges Index ....................................................................................................................... 3358
SQL Modes Index ................................................................................................................... 3367
Statement/Syntax Index ........................................................................................................... 3370
Status Variable Index .............................................................................................................. 3438
System Variable Index ............................................................................................................ 3457
Transaction Isolation Level Index ............................................................................................. 3497

General Index

Symbols
! (logical NOT), 1148
!= (not equal), 1143
", 978
#mysql50 identifier prefix, 979, 985
%, 1177
% (modulo), 1181
% (wildcard character), 970
& (bitwise AND), 1239
&& (logical AND), 1148
() (parentheses), 1141
(Control+Z) \Z, 970, 1404
* (multiplication), 1176
+ (addition), 1175
- (subtraction), 1176
- (unary minus), 1176
--password option, 708
-? option (NDB Cluster programs), 2300
-c option (NDB Cluster programs), 2301
-c option (ndb_mgmd) (OBSOLETE), 2236
-d option (ndb_index_stat), 2263
-d option (ndb_mgmd), 2237
-e option (ndb_mgm), 2242
-f option (ndb_mgmd), 2236
-l option (ndbinfo_select_all), 2232
-n option (ndbd), 2228
-n option (ndbmtd), 2228
-p option, 708
-P option (ndb_mgmd), 2238
-V option (NDB Cluster programs), 2302
.my.cnf file, 252, 256, 257, 687, 708, 740
.mysql_history file, 306, 709
.pid (process ID) file, 831
/ (division), 1176



2990

/etc/passwd, 716, 1424
:= (assignment operator), 1149
:= (assignment), 995
< (less than), 1143
<< (left shift), 239, 1239
<= (less than or equal), 1143
<=> (equal to), 1143
<> (not equal), 1143
= (assignment operator), 1150
= (assignment), 995
= (equal), 1142
> (greater than), 1144
>= (greater than or equal), 1143
>> (right shift), 1240
[api] (NDB Cluster), 2076
[computer] (NDB Cluster), 2079
[mgm] (NDB Cluster), 2074
[mysqld] (NDB Cluster), 2076
[ndbd default] (NDB Cluster), 2059
[ndbd] (NDB Cluster), 2059
[ndb_mgmd] (NDB Cluster), 2074
[sci] (NDB Cluster), 2079
[shm] (NDB Cluster), 2079
[tcp] (NDB Cluster), 2079
\" (double quote), 970
\' (single quote), 970
\. (mysql client command), 234, 308
\0 (ASCII NUL), 970, 1404
\b (backspace), 970, 1404
\n (linefeed), 970, 1404
\n (newline), 970, 1404
\N (NULL), 1404
\r (carriage return), 970, 1404
\t (tab), 970, 1404
\Z (Control+Z) ASCII 26, 970, 1404
\\ (escape), 970
^ (bitwise XOR), 1239
_ (wildcard character), 971
_ai collation sufffix, 1010
_as collation sufffix, 1010
_bin collation sufffix, 1010, 1028
_ci collation sufffix, 1010
_cs collation sufffix, 1010
_rowid, 1344
`, 978
| (bitwise OR), 1239
|| (logical OR), 1148
~ (invert bits), 1240

A
abort-on-error option

ndb_move_data, 2267
abort-slave-event-count option

mysqld, 1904
aborted clients, 2946
aborted connection, 2946
ABS(), 1178
access control, 734



2991

access denied errors, 2937
access privileges, 721
account names, 732
accounts

adding privileges, 746
anonymous user, 183
default, 183
root, 183

ACID, 1586, 1594, 3499
ACLs, 721
ACOS(), 1178
activating plugins, 669
ActiveState Perl, 207
adaptive flushing, 3499
adaptive hash index, 1598, 3499
add-drop-database option

mysqldump, 331
add-drop-table option

mysqldump, 331
add-drop-trigger option

mysqldump, 331
add-locks option

mysqldump, 331
ADDDATE(), 1188
adding

character sets, 1053
native functions, 2815
new account privileges, 746
new functions, 2805
new user privileges, 746
new users, 179
user-defined functions, 2806

addition (+), 1175
ADDTIME(), 1188
addtodest option

mysqlhotcopy, 406
administration

server, 311
administration of NDB Cluster, 2241
administrative programs, 246
AES_DECRYPT(), 1242
AES_ENCRYPT(), 1242
After create

thread state, 957
age

calculating, 223
AHI, 3500
AIO, 3500
alias names

case sensitivity, 982
aliases

for expressions, 1278
for tables, 1419
in GROUP BY clauses, 1278
names, 978
on expressions, 1418

ALL, 1435
SELECT modifier, 1422



2992

ALL join type
optimizer, 913

all-databases option
mysqlcheck, 321
mysqldump, 331

all-in-1 option
mysqlcheck, 321

all-tablespaces option
mysqldump, 331

allocating local table
thread state, 963

allow-keywords option
mysqldump, 331

allow-suspicious-udfs option
mysqld, 451

allowold option
mysqlhotcopy, 406

ALLOW_INVALID_DATES SQL mode, 632
ALTER COLUMN, 1304
ALTER DATABASE, 1294
ALTER EVENT, 1295

and replication, 1981
ALTER FUNCTION, 1297
ALTER LOGFILE GROUP, 1297

(see also NDB Cluster Disk Data)
ALTER PROCEDURE, 1298
ALTER SCHEMA, 1294
ALTER SERVER, 1299
ALTER TABLE, 1299, 1305, 2965

ROW_FORMAT, 1682
ALTER TABLESPACE, 1319

(see also NDB Cluster Disk Data)
ALTER VIEW, 1320
altering

database, 1294
schema, 1294

ANALYSE()
PROCEDURE, 892

analyze option
myisamchk, 371
mysqlcheck, 321

ANALYZE TABLE
and partitioning, 2483

ANALYZE TABLE statement, 1515
Analyzing

thread state, 958
AND

bitwise, 1239
logical, 1148

anonymous user, 183, 184, 734, 736
ANSI mode

running, 25
ansi option

mysqld, 451
ANSI SQL mode, 631, 636
ANSI_QUOTES SQL mode, 632
answering questions

etiquette, 19



2993

Antelope, 3500
Antelope file format, 1677, 1683, 1703
ANY, 1434
Apache, 242
API node (NDB Cluster)

defined, 2006
API nodes (see SQL nodes)
APIs, 2631

list of, 39
Perl, 2753

append option (ndb_restore), 2282
application programming interface (API), 3500
apply, 3500
apply-slave-statements option

mysqldump, 332
apply_status table (OBSOLETE), 2414

(see also NDB Cluster replication)
approximate-value literals, 972, 1283
Arbitration, 2142
ArbitrationDelay, 2111, 2166
ArbitrationRank, 2111, 2165
ArbitrationTimeout, 2142
arbitrator_validity_detail

ndbinfo table, 2348
arbitrator_validity_summary

ndbinfo table, 2348
ARCHIVE storage engine, 1769, 1789
Area(), 1265
argument processing, 2810
arithmetic expressions, 1175
arithmetic functions, 1239
arithmetic operators, 1239
.ARM file, 3499
.ARZ file, 3499
AS, 1419, 1425
AsBinary(), 1261
ASCII(), 1154
ASIN(), 1178
assignment operator

:=, 1149
=, 1150

assignment operators, 1149
AsText(), 1261
asynchronous I/O, 1636, 3500
asynchronous replication (see NDB Cluster replication)
ATAN(), 1178
ATAN2(), 1178
atomic, 3500
atomic instruction, 3500
attackers

security against, 715
attribute demotion

replication, 1977
attribute promotion

ndb_restore, 2279
replication, 1977

audit plugins, 2761
audit-log option



2994

mysqld, 804
audit_log plugin, 791

installing, 793
startup failure, 802

audit_log_buffer_size system variable, 805
audit_log_file system variable, 805
audit_log_flush system variable, 806
audit_log_format system variable, 806
audit_log_policy system variable, 807
audit_log_rotate_on_size system variable, 807
audit_log_strategy system variable, 808
authentication plugin

authentication_pam, 775
authentication_windows, 783
authentication_windows_client, 783
auth_socket, 788
auth_test_plugin, 790
mysql_clear_password, 774
mysql_native_password, 772
mysql_old_password, 773
test_plugin_server, 790

authentication plugins, 2762
authentication_pam authentication plugin, 775
AUTHENTICATION_PAM_LOG environment variable, 783
authentication_windows authentication plugin, 783
authentication_windows_client authentication plugin, 783
authentication_windows_log_level system variable, 497
authentication_windows_use_principal_name system variable, 497
auth_socket authentication plugin, 788
auth_test_plugin authentication plugin, 790
auto-generate-sql option

mysqlslap, 356
auto-generate-sql-add-autoincrement option

mysqlslap, 356
auto-generate-sql-execute-number option

mysqlslap, 356
auto-generate-sql-guid-primary option

mysqlslap, 356
auto-generate-sql-load-type option

mysqlslap, 356
auto-generate-sql-secondary-indexes option

mysqlslap, 357
auto-generate-sql-unique-query-number option

mysqlslap, 357
auto-generate-sql-unique-write-number option

mysqlslap, 357
auto-generate-sql-write-number option

mysqlslap, 357
auto-inc lock, 1601
auto-increment, 1655, 1655, 1661, 3500
auto-increment locking, 3501
auto-rehash option

mysql, 293
auto-repair option

mysqlcheck, 321
auto-vertical-output option

mysql, 293
autocommit, 3501



2995

autocommit mode, 1608
autocommit system variable, 498
automatic_sp_privileges system variable, 498
AutoReconnect

API and SQL nodes, 2167
AUTO_INCREMENT, 240, 1081

and NULL values, 2961
and replication, 1972

auto_increment_increment system variable, 1900
auto_increment_offset system variable, 1903
availability, 3501
AVG(), 1270
AVG(DISTINCT), 1270

B
B-tree, 3501
B-tree indexes, 887, 1666
background threads

master, 1629, 1636
read, 1635
write, 1635

backslash
escape character, 969

backspace (\b), 970, 1404
backticks, 3502
backup, 3502
BACKUP Events (NDB Cluster), 2324
backup identifiers

native backup and restore, 2310
backup option

myisamchk, 369
myisampack, 380

BackupDataBufferSize, 2147, 2312
BackupDataDir, 2117
backupid option (ndb_restore), 2280
BackupLogBufferSize, 2148, 2312
BackupMaxWriteSize, 2149, 2312
BackupMemory, 2148, 2312
BackupReportFrequency, 2148
backups, 809, 2830

databases and tables, 325, 404
in NDB Cluster, 2273, 2308, 2308, 2309, 2312
in NDB Cluster replication, 2422
InnoDB, 1759
with mysqldump, 818

backups, troubleshooting
in NDB Cluster, 2312

BackupWriteSize, 2149, 2312
backup_path option (ndb_restore), 2280
back_log system variable, 499
Barracuda, 3502
Barracuda file format, 1667, 1677, 1682, 1703
base64-output option

mysqlbinlog, 391
basedir option

mysql.server, 273
mysqld, 452
mysqld_safe, 268



2996

mysql_install_db, 280
mysql_plugin, 282
mysql_upgrade, 287

basedir system variable, 499
batch mode, 233
batch option

mysql, 293
batch SQL files, 289
BatchByteSize, 2166
batched updates (NDB Cluster Replication), 2418
BatchSize, 2166
BatchSizePerLocalScan, 2125
BEGIN, 1446, 1474

labels, 1475
XA transactions, 1459

BENCHMARK(), 1247
benchmarks, 953, 954
beta, 3502
BETWEEN ... AND, 1145
big-tables option

mysqld, 452
big5, 2859
BIGINT data type, 1075
big_tables system variable, 500
BIN(), 1154
BINARY, 1225
binary collation, 1028
BINARY data type, 1080, 1097
binary distributions

installing, 59
binary log, 653, 3502

event groups, 1468
binary logging

and NDB Cluster, 2025
binary-as-hex option

mysql, 293
bind-address option

mysql, 293
mysqladmin, 315
mysqlbinlog, 391
mysqlcheck, 321
mysqld, 452
mysqldump, 332
mysqlimport, 345
mysqlshow, 351

bind-address option (ndb_mgmd), 2235
binlog, 3503
Binlog Dump

thread command, 955
BINLOG statement, 1572

mysqlbinlog output, 400
binlog-do-db option

mysqld, 1929
binlog-format option

mysqld, 453
binlog-ignore-db option

mysqld, 1931
binlog-row-event-max-size option



2997

mysqld, 1927
binlog_cache_size system variable, 1932
binlog_direct_non_transactional_updates system variable, 1933
binlog_format

BLACKHOLE, 1973
binlog_format system variable, 1934

NDB Cluster, 1935, 1935
binlog_index table (OBSOLETE) (see NDB Cluster replication)
binlog_stmt_cache_size system variable, 1935
BIT data type, 1074
bit functions, 1239

example, 239
bit operators, 1239
bit-value literal introducer, 976
bit-value literals, 976
BIT_AND(), 1270
BIT_COUNT, 239
BIT_COUNT(), 1240
BIT_LENGTH(), 1154
BIT_OR, 239
BIT_OR(), 1271
BIT_XOR(), 1271
BLACKHOLE

binlog_format, 1973
replication, 1973

BLACKHOLE storage engine, 1769, 1790
blind query expansion, 3503
BLOB

size, 1124
BLOB columns

default values, 1099
indexing, 883, 1342
inserting binary data, 971

BLOB data type, 1080, 1099
blob-info option

ndb_desc, 2257
Block Nested-Loop join algorithm, 846
block-search option

myisamchk, 371
blocks

ndbinfo table, 2349
BOOL data type, 1074
BOOLEAN data type, 1074
boolean literals, 977
boolean options, 255
bootstrap option

mysqld, 454
bottleneck, 3503
bounce, 3503
brackets

square, 1073
brief option

mysqlaccess, 387
buddy allocator, 1731, 3503
buffer, 3503
buffer pool, 925, 1624, 1627, 1629, 1629, 3503

and compressed tables, 1674
monitoring, 1630



2998

buffer pool instance, 3503
buffer sizes, 925, 1624

client, 2631
bugs

known, 2966
NDB Cluster

reporting, 2259
reporting, 2, 20

bugs database, 20
bugs.mysql.com, 20
builddir option

mysql_install_db, 280
BuildIndexThreads, 2150
building

client programs, 2643
BUILD_CONFIG option

CMake, 164
built-in, 3504
bulk loading

for InnoDB tables, 897
for MyISAM tables, 904

bulk_insert_buffer_size system variable, 500
business rules, 3504

C
C API, 2631

data structures, 2647
data types, 2640
example programs, 2643
functions, 2652
linking problems, 2645

C prepared statement API
data structures, 2707
functions, 2712, 2713
type codes, 2711

C++, 2634
C:\my.cnf file, 687
cache, 3504
CACHE INDEX

and partitioning, 2493
CACHE INDEX statement, 1572
caches

clearing, 1574
calculating

aggregate value for a set of rows, 1269
cardinality, 1549
dates, 223

calendar, 1207
CALL, 1383
calling sequences for aggregate functions

UDF, 2809
calling sequences for simple functions

UDF, 2808
can't create/write to file, 2947
Can't reopen table

error message, 2966
cardinality, 869, 3504
carriage return (\r), 970, 1404



2999

CASE, 1150, 1478
case sensitivity

access checking, 731
account names, 732
in identifiers, 982
in names, 982
in searches, 2957
in string comparisons, 1164
of database names, 26
of replication filtering options, 1948
of table names, 26

CAST, 1226
cast functions, 1222
cast operators, 1222
casts, 1137, 1142, 1222
CC environment variable, 173, 417
CEIL(), 1179
CEILING(), 1179
Centroid(), 1265
.cfg file, 3504
cflags option

mysql_config, 412
change buffer, 1597, 3505

monitoring, 1597
change buffering, 3505

disabling, 1633
CHANGE MASTER TO, 1463

in NDB Cluster, 2416
Change user

thread command, 955
changes to privileges, 738
changing

column, 1304
field, 1304
socket location, 273, 2957
table, 1299, 1305, 2965

Changing master
thread state, 967

CHAR data type, 1079, 1096
CHAR VARYING data type, 1080
CHAR(), 1154
CHARACTER data type, 1079
character set introducer, 1016
character set repertoire, 1035
character sets, 1003

adding, 1053
and replication, 1973
Asian, 1047
Baltic, 1047
binary, 1051
Central European, 1045
Cyrillic, 1047
Middle East, 1046
repertoire, 1006
restrictions, 2979
South European, 1046
Unicode, 1040
West European, 1044



3000

CHARACTER VARYING data type, 1080
character-set-client-handshake option

mysqld, 454
character-set-filesystem option

mysqld, 454
character-set-server option

mysqld, 454
character-sets-dir option

myisamchk, 370
myisampack, 380
mysql, 293
mysqladmin, 315
mysqlbinlog, 391
mysqlcheck, 321
mysqld, 454
mysqldump, 332
mysqlimport, 345
mysqlshow, 351
mysql_upgrade, 287
ndb_move_data, 2267

character-sets-dir option (NDB Cluster programs), 2300, 2300
characters

multibyte, 1056
CHARACTER_LENGTH(), 1155
CHARACTER_SETS

INFORMATION_SCHEMA table, 2536
character_sets_dir system variable, 503
character_set_client system variable, 501
character_set_connection system variable, 501
character_set_database system variable, 501
character_set_filesystem system variable, 502
character_set_results system variable, 502
character_set_server system variable, 502
character_set_system system variable, 503
charset command

mysql, 301
charset option

comp_err, 278
CHARSET(), 1248
CHAR_LENGTH(), 1155
check option

myisamchk, 369
mysqlcheck, 321

check options
myisamchk, 368

CHECK TABLE
and partitioning, 2483

CHECK TABLE statement, 1516
check-only-changed option

myisamchk, 369
mysqlcheck, 321

check-orphans option
ndb_blob_tool, 2243

check-upgrade option
mysqlcheck, 321

checking
tables for errors, 828

Checking master version



3001

thread state, 965
checking permissions

thread state, 958
checking privileges on cached query

thread state, 964
checking query cache for query

thread state, 965
Checking table

thread state, 958
checkpoint, 3505
CHECKPOINT Events (NDB Cluster), 2320
checkpoint option

mysqlhotcopy, 406
Checksum, 2216, 2222
checksum, 3505
Checksum (NDB Cluster), 2220
checksum errors, 150
CHECKSUM TABLE

and replication, 1973
CHECKSUM TABLE statement, 1519
child table, 3505
Chinese, Japanese, Korean character sets

frequently asked questions, 2859
choosing

a MySQL version, 43
data types, 1125

chroot option
mysqld, 455
mysqlhotcopy, 406

circular replication
in NDB Cluster, 2407, 2428, 2432

CJK (Chinese, Japanese, Korean)
Access, PHP, etc., 2859
availability of specific characters, 2859
big5, 2859
character sets available, 2859
characters displayed as question marks, 2859
CJKV, 2859
collations, 2859, 2859
conversion problems with Japanese character sets, 2859
data truncation, 2859
Database and table names, 2859
documentation in Chinese, 2859
documentation in Japanese, 2859
documentation in Korean, 2859
FAQ, 2859
gb2312, gbk, 2859
Japanese character sets, 2859
Korean character set, 2859
LIKE and FULLTEXT, 2859
MySQL 4.0 behavior, 2859
ORDER BY treatment, 2859, 2859
problems with Access, PHP, etc., 2859
problems with Big5 character sets (Chinese), 2859
problems with data truncation, 2859
problems with euckr character set (Korean), 2859
problems with GB character sets (Chinese), 2859
problems with LIKE and FULLTEXT, 2859



3002

problems with Yen sign (Japanese), 2859
rejected characters, 2859
sort order problems, 2859, 2859
sorting problems, 2859, 2859
testing availability of characters, 2859
Unicode collations, 2859
Vietnamese, 2859
Yen sign, 2859

clean page, 3506
clean shutdown, 644, 3506
cleaning up

thread state, 958
clear command

mysql, 301
Clearing

thread state, 968
clearing

caches, 1574
client, 3506
client connection threads, 951
client programs, 245

building, 2643
client tools, 2631
clients

debugging, 2825
threaded, 2646

cloning tables, 1360
CLOSE, 1483
Close stmt

thread command, 956
closing

tables, 892
closing tables

thread state, 958
cluster database (OBSOLETE) (see NDB Cluster replication)
cluster logs, 2316, 2318
cluster.binlog_index table (OBSOLETE) (see NDB Cluster replication)
clustered index, 3506

InnoDB, 1666
Clustering (see NDB Cluster)
CLUSTERLOG commands (NDB Cluster), 2318
CLUSTERLOG STATISTICS command (NDB Cluster), 2324
cluster_operations

ndbinfo table, 2349
cluster_replication database (OBSOLETE) (see NDB Cluster replication)
cluster_transactions

ndbinfo table, 2350
CMake

BUILD_CONFIG option, 164
CMAKE_BUILD_TYPE option, 164
CMAKE_CXX_FLAGS option, 171
CMAKE_C_FLAGS option, 171
CMAKE_INSTALL_PREFIX option, 165
COMPILATION_COMMENT option, 167
CPACK_MONOLITHIC_INSTALL option, 164
DEFAULT_CHARSET option, 167
DEFAULT_COLLATION option, 168
ENABLED_LOCAL_INFILE option, 168



3003

ENABLED_PROFILING option, 169
ENABLE_DEBUG_SYNC option, 168
ENABLE_DOWNLOADS option, 168
ENABLE_DTRACE option, 168
ENABLE_GCOV option, 168
IGNORE_AIO_CHECK option, 169
INSTALL_BINDIR option, 165
INSTALL_DOCDIR option, 165
INSTALL_DOCREADMEDIR option, 165
INSTALL_INCLUDEDIR option, 165
INSTALL_INFODIR option, 165
INSTALL_LAYOUT option, 165
INSTALL_LIBDIR option, 165
INSTALL_MANDIR option, 165
INSTALL_MYSQLSHAREDIR option, 166
INSTALL_MYSQLTESTDIR option, 166
INSTALL_PLUGINDIR option, 166
INSTALL_SBINDIR option, 166
INSTALL_SCRIPTDIR option, 166
INSTALL_SECURE_FILE_PRIVDIR option, 166
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR option, 166
INSTALL_SHAREDIR option, 166
INSTALL_SQLBENCHDIR option, 166
INSTALL_SUPPORTFILESDIR option, 166
MEMCACHED_HOME option, 171
MYSQL_DATADIR option, 166
MYSQL_MAINTAINER_MODE option, 169
MYSQL_PROJECT_NAME option, 169
MYSQL_TCP_PORT option, 169
MYSQL_UNIX_ADDR option, 169
ODBC_INCLUDES option, 166
ODBC_LIB_DIR option, 166
options, 161
running after prior invocation, 158, 173
SYSCONFDIR option, 167
TMPDIR option, 167
VERSION file, 174
WITHOUT_SERVER option, 171
WITH_ASAN option, 169
WITH_BUNDLED_LIBEVENT option, 171
WITH_BUNDLED_MEMCACHED option, 172
WITH_CLASSPATH option, 172
WITH_DEBUG option, 169
WITH_EMBEDDED_SERVER option, 169
WITH_EMBEDDED_SHARED_LIBRARY option, 169
WITH_ERROR_INSERT option, 172
WITH_EXTRA_CHARSETS option, 170
WITH_LIBEDIT option, 170
WITH_LIBWRAP option, 170
WITH_NDBCLUSTER option, 172
WITH_NDBCLUSTER_STORAGE_ENGINE option, 172
WITH_NDBMTD option, 172
WITH_NDB_BINLOG option, 172
WITH_NDB_DEBUG option, 172
WITH_NDB_JAVA option, 172
WITH_NDB_PORT option, 172
WITH_NDB_TEST option, 172
WITH_READLINE option, 170



3004

WITH_SSL option, 170
WITH_UNIXODBC option, 170
WITH_VALGRIND option, 170
WITH_ZLIB option, 170

CMakeCache.txt file, 172
CMAKE_BUILD_TYPE option

CMake, 164
CMAKE_CXX_FLAGS option

CMake, 171
CMAKE_C_FLAGS option

CMake, 171
CMAKE_INSTALL_PREFIX option

CMake, 165
COALESCE(), 1145
coercibility

collation, 1026
COERCIBILITY(), 1248
cold backup, 3506
collating

strings, 1055
collation

adding, 1056
coercibility, 1026
INFORMATION_SCHEMA, 1031
modifying, 1056

COLLATION(), 1249
collation-server option

mysqld, 455
collations

Asian, 1048
Baltic, 1047
binary, 1028, 1051
Central European, 1045
Cyrillic, 1047
Middle East, 1046
naming conventions, 1009
PAD SPACE, 1029, 1097
South European, 1046
Unicode, 1040
West European, 1044
_ai suffix, 1010
_as suffix, 1010
_bin suffix, 1010, 1028
_ci suffix, 1010
_ss suffix, 1010

COLLATIONS
INFORMATION_SCHEMA table, 2537

COLLATION_CHARACTER_SET_APPLICABILITY
INFORMATION_SCHEMA table, 2537

collation_connection system variable, 503
collation_database system variable, 503
collation_server system variable, 504
column, 3506

changing, 1304
types, 1073

column alias
problems, 2961
quoting, 979, 2961



3005

column comments, 1343
column format, 1343
column index, 3506
column names

case sensitivity, 982
column prefix, 3506
column storage, 1343
column-names option

mysql, 293
column-type-info option

mysql, 293
columns

displaying, 349
indexes, 883
names, 978
other types, 1126
selecting, 221
storage requirements, 1122

COLUMNS
INFORMATION_SCHEMA table, 2538

columns option
mysqlimport, 346

columns partitioning, 2456
columns per table

maximum, 2983
columns_priv table

system table, 646, 727
COLUMN_PRIVILEGES

INFORMATION_SCHEMA table, 2538
comma-separated values data, reading, 1402, 1425
command option precedence, 253
command options

mysql, 290
mysqladmin, 314
mysqld, 450

command options (NDB Cluster)
mysqld, 2170
ndbd, 2225
ndbinfo_select_all, 2232
ndb_mgm, 2241
ndb_mgmd, 2234

command syntax, 4
command-line history

mysql, 306
command-line options (NDB Cluster), 2298
command-line tool, 80, 289
commands

for binary distribution, 60
commands out of sync, 2948
comment syntax, 1000
comments

adding, 1000
starting, 30

comments option
mysql, 293
mysqldump, 332

COMMIT, 1446
XA transactions, 1459



3006

commit, 3507
commit option

mysqlaccess, 387
mysqlslap, 357

Committing events to binlog
thread state, 967

compact option
mysqldump, 332

compact row format, 1683, 3507
comparison operators, 1141
comparisons

access checking, 731
account names, 732

compatibility
between MySQL versions, 193
with mSQL, 1168
with ODBC, 572, 981, 1077, 1137, 1144, 1343, 1427
with Oracle, 27, 1273, 1304, 1581
with PostgreSQL, 28
with standard SQL, 24

compatible option
mysqldump, 332

COMPILATION_COMMENT option
CMake, 167

compiling
optimizing, 942
problems, 172
user-defined functions, 2813

compiling clients
on Unix, 2643
on Windows, 2644

complete-insert option
mysqldump, 332

completion_type system variable, 504
composite index, 3507
composite partitioning, 2468
compound statements, 1474
compress option

mysql, 294
mysqladmin, 315
mysqlcheck, 322
mysqldump, 332
mysqlimport, 346
mysqlshow, 351
mysqlslap, 357
mysql_upgrade, 287

COMPRESS(), 1242
compressed backup, 3507
compressed row format, 1682, 3507
compressed table, 3507
compressed tables, 380, 1781
CompressedBackup, 2134
CompressedLCP, 2134
compression, 1667, 3508

algorithms, 1672
application and schema design, 1670
BLOBs, VARCHAR and TEXT, 1674
buffer pool considerations, 1674



3007

compressed page size, 1671
configuration characteristics, 1671
data and indexes, 1673
data characteristics, 1669
enabling for a table, 1667
implementation, 1672
information schema, 1730, 1730
KEY_BLOCK_SIZE, 1671
log file format, 1675
modification log, 1673
monitoring, 1672
overflow pages, 1674
overview, 1667
tuning, 1668
workload characteristics, 1671

compression failure, 3508
comp_err, 245, 278

charset option, 278
debug option, 278
debug-info option, 278
header_file option, 278
help option, 278
in_file option, 278
name_file option, 278
out_dir option, 278
out_file option, 278
statefile option, 279
version option, 279

CONCAT(), 1155
concatenation

string, 969, 1155
CONCAT_WS(), 1155
concurrency, 1586, 3508

of commits, 1700
of threads, 1726
tickets, 1700

concurrency option
mysqlslap, 357

concurrent inserts, 937, 940
concurrent_insert system variable, 505
Conditions, 1485
conditions, 1544, 1570
cond_instances table

performance_schema, 2611
config-cache option (ndb_mgmd), 2235
config-file option

mysqld_multi, 275
my_print_defaults, 413
ndb_config, 2247

config-file option (ndb_mgmd), 2236
config.ini (NDB Cluster), 2047, 2100, 2101, 2240
configdir option (ndb_mgmd), 2235
configinfo option

ndb_config, 2246
configuration

NDB Cluster, 2058
server, 420

configuration file, 3508



3008

configuration files, 740
configure option

MySQLInstallerConsole, 81
configuring backups

in NDB Cluster, 2312
configuring NDB Cluster, 2030, 2056, 2240, 2313
Configuring NDB Cluster (concepts), 2006
config_from_node option

ndb_config, 2247
config_params

ndbinfo table, 2351
conflict detection status variables

NDB Cluster Replication, 2438
conflict resolution

and ndb_replication system table, 2434
enabling, 2434
in NDB Cluster Replication, 2432
mysqld startup options, 2433

Connect
thread command, 956

connect command
mysql, 301

CONNECT command (NDB Cluster), 2305
Connect Out

thread command, 956
connect-delay option (ndbd), 2229
connect-delay option (ndbmtd), 2229
connect-retries option (ndbd), 2229
connect-retries option (ndbmtd), 2229
connect-string option (NDB Cluster programs), 2301
ConnectBackoffMaxTime, 2169
ConnectCheckIntervalDelay, 2138
connecting

remotely with SSH, 772
to the server, 211, 249
verification, 734

Connecting to master
thread state, 965

connection
aborted, 2946

CONNECTION Events (NDB Cluster), 2320
connection string (see NDB Cluster)
connection-timeout option (ndb_error_reporter), 2260
ConnectionMap, 2164
connections option

ndb_config, 2247
CONNECTION_ID(), 1249
Connector/C, 2631, 2634
Connector/C++, 2631, 2634
Connector/J, 2631, 2634
Connector/Net, 2631, 2635
Connector/ODBC, 2631, 2635
Connector/Python, 2631, 2635
Connectors, 2631
connect_timeout system variable, 506
connect_timeout variable, 300, 318
consistent read, 3509
consistent reads, 1609



3009

console option
mysqld, 455

const table
optimizer, 911, 1422

constant table, 838
constraint, 3509
constraints, 30

foreign keys, 1363
Contains(), 1268
contributing companies

list of, 40
contributors

list of, 33
control flow functions, 1150
Control+C

statement termination, 290, 298
CONV(), 1179
conventions

syntax, 2
typographical, 2

CONVERT, 1226
CONVERT TO, 1306
converting HEAP to MyISAM

thread state, 958
CONVERT_TZ(), 1188
copy option

mysqlaccess, 387
copy to tmp table

thread state, 958
copying databases, 205
copying tables, 1360
Copying to group table

thread state, 958
Copying to tmp table

thread state, 958
Copying to tmp table on disk

thread state, 958
core-file option

mysqld, 455
core-file option (NDB Cluster programs), 2300
core-file-size option

mysqld_safe, 268
correct-checksum option

myisamchk, 370
correlated subqueries, 1437
corruption, 1764

InnoDB, 1760
COS(), 1179
COT(), 1179
count option

myisam_ftdump, 362
mysqladmin, 315
mysqlshow, 351

COUNT(), 1271
COUNT(DISTINCT), 1271
counter, 3509
counters

ndbinfo table, 2351



3010

counting
table rows, 229

covering index, 3509
CPACK_MONOLITHIC_INSTALL option

CMake, 164
CPU-bound, 3509
crash, 2817, 3509

recovery, 827
repeated, 2953
replication, 1986

crash recovery, 3510
InnoDB, 1760

crash-me, 954
crash-me program, 953
CrashOnCorruptedTuple, 2133
CRC32(), 1179
CREATE ... IF NOT EXISTS

and replication, 1973
CREATE DATABASE, 1321
Create DB

thread command, 956
CREATE EVENT, 1321

and replication, 1981
CREATE FUNCTION, 1332
CREATE FUNCTION statement, 1523
CREATE INDEX, 1326, 1687
CREATE LOGFILE GROUP, 1330

(see also NDB Cluster Disk Data)
CREATE NODEGROUP command (NDB Cluster), 2307
create option

mysqlslap, 357
CREATE PROCEDURE, 1332
CREATE SCHEMA, 1321
CREATE SERVER, 1337
CREATE TABLE, 1338

DIRECTORY options
and replication, 1981

KEY_BLOCK_SIZE, 1671
options for table compression, 1667
ROW_FORMAT, 1682
statement retention, 1358
table definition, 1358

CREATE TABLE ... SELECT
and replication, 1973

CREATE TABLESPACE, 1368
(see also NDB Cluster Disk Data)

CREATE TRIGGER, 1370
CREATE USER statement, 749, 1498
CREATE VIEW, 1372
create-options option

mysqldump, 332
create-schema option

mysqlslap, 357
creating

bug reports, 20
database, 1321
databases, 215
default startup options, 256



3011

function, 1523
schema, 1321
tables, 217

Creating delayed handler
thread state, 963

Creating index
thread state, 958

Creating sort index
thread state, 958

creating table
thread state, 958

Creating tmp table
thread state, 958

creating user accounts, 1498
CROSS JOIN, 1425
cross-bootstrap option

mysql_install_db, 280
Crosses(), 1267
CRUD, 3510
CR_ALREADY_CONNECTED error code, 2936
CR_AUTH_PLUGIN_CANNOT_LOAD error code, 2936
CR_CANT_READ_CHARSET error code, 2933
CR_COMMANDS_OUT_OF_SYNC error code, 2933
CR_CONNECTION_ERROR error code, 2932
CR_CONN_HOST_ERROR error code, 2932
CR_CONN_UNKNOW_PROTOCOL error code, 2935
CR_DATA_TRUNCATED error code, 2934
CR_EMBEDDED_CONNECTION error code, 2933
CR_FETCH_CANCELED error code, 2935
CR_INVALID_BUFFER_USE error code, 2934
CR_INVALID_CONN_HANDLE error code, 2935
CR_INVALID_PARAMETER_NO error code, 2934
CR_IPSOCK_ERROR error code, 2932
CR_LOCALHOST_CONNECTION error code, 2933
CR_MALFORMED_PACKET error code, 2934
CR_NAMEDPIPEOPEN_ERROR error code, 2933
CR_NAMEDPIPESETSTATE_ERROR error code, 2933
CR_NAMEDPIPEWAIT_ERROR error code, 2933
CR_NAMEDPIPE_CONNECTION error code, 2933
CR_NET_PACKET_TOO_LARGE error code, 2933
CR_NEW_STMT_METADATA error code, 2936
CR_NOT_IMPLEMENTED error code, 2936
CR_NO_DATA error code, 2935
CR_NO_PARAMETERS_EXISTS error code, 2934
CR_NO_PREPARE_STMT error code, 2934
CR_NO_RESULT_SET error code, 2935
CR_NO_STMT_METADATA error code, 2935
CR_NULL_POINTER error code, 2934
CR_OUT_OF_MEMORY error code, 2933
CR_PARAMS_NOT_BOUND error code, 2934
CR_PROBE_MASTER_CONNECT error code, 2934
CR_PROBE_SLAVE_CONNECT error code, 2934
CR_PROBE_SLAVE_HOSTS error code, 2934
CR_PROBE_SLAVE_STATUS error code, 2933
CR_SECURE_AUTH error code, 2935
CR_SERVER_GONE_ERROR, 2943
CR_SERVER_GONE_ERROR error code, 2933
CR_SERVER_HANDSHAKE_ERR error code, 2933



3012

CR_SERVER_LOST error code, 2933
CR_SERVER_LOST_ERROR, 2943
CR_SERVER_LOST_EXTENDED error code, 2936
CR_SHARED_MEMORY_CONNECTION error code, 2934
CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR error code, 2935
CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR error code, 2935
CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR error code, 2935
CR_SHARED_MEMORY_CONNECT_MAP_ERROR error code, 2935
CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR error code, 2935
CR_SHARED_MEMORY_CONNECT_SET_ERROR error code, 2935
CR_SHARED_MEMORY_EVENT_ERROR error code, 2935
CR_SHARED_MEMORY_FILE_MAP_ERROR error code, 2935
CR_SHARED_MEMORY_MAP_ERROR error code, 2935
CR_SOCKET_CREATE_ERROR error code, 2932
CR_SSL_CONNECTION_ERROR error code, 2934
CR_STMT_CLOSED error code, 2936
CR_TCP_CONNECTION error code, 2933
CR_UNKNOWN_ERROR error code, 2932
CR_UNKNOWN_HOST error code, 2932
CR_UNSUPPORTED_PARAM_TYPE error code, 2934
CR_VERSION_ERROR error code, 2933
CR_WRONG_HOST_INFO error code, 2933
CR_WRONG_LICENSE error code, 2934
CSV data, reading, 1402, 1425
csv option

mysqlslap, 357
CSV storage engine, 1769, 1787
CURDATE(), 1189
CURRENT_DATE, 1189
CURRENT_TIME, 1189
CURRENT_TIMESTAMP, 1189
CURRENT_USER(), 1249
cursor, 3510
Cursors, 1482
CURTIME(), 1189
CXX environment variable, 173, 417

D
Daemon

thread command, 956
daemon option (ndb_mgmd), 2237
daemon plugins, 2761
data

importing, 308, 343
loading into tables, 218
retrieving, 219
size, 889

data dictionary, 1642, 3510
DATA DIRECTORY

and replication, 1981
data directory, 3510
data files, 3510
data node (NDB Cluster)

defined, 2006
data nodes

memory allocation, 2151
data nodes (NDB Cluster), 2225, 2232
Data on disk (NDB Cluster)



3013

and INFORMATION_SCHEMA.FILES table, 2573
data structures

C API, 2647
C prepared statement API, 2707

Data truncation with CJK characters, 2859
data type

BIGINT, 1075
BINARY, 1080, 1097
BIT, 1074
BLOB, 1080, 1099
BOOL, 1074, 1126
BOOLEAN, 1074, 1126
CHAR, 1079, 1096
CHAR VARYING, 1080
CHARACTER, 1079
CHARACTER VARYING, 1080
DATE, 1077, 1087
DATETIME, 1077, 1087
DEC, 1076
DECIMAL, 1076, 1283
DOUBLE, 1076
DOUBLE PRECISION, 1077
ENUM, 1081, 1100
FIXED, 1076
FLOAT, 1076, 1076, 1077
GEOMETRY, 1107
GEOMETRYCOLLECTION, 1107
INT, 1075
INTEGER, 1075
LINESTRING, 1107
LONG, 1099
LONGBLOB, 1081
LONGTEXT, 1081
MEDIUMBLOB, 1081
MEDIUMINT, 1075
MEDIUMTEXT, 1081
MULTILINESTRING, 1107
MULTIPOINT, 1107
MULTIPOLYGON, 1107
NATIONAL CHAR, 1079
NATIONAL VARCHAR, 1080
NCHAR, 1079
NUMERIC, 1076
NVARCHAR, 1080
POINT, 1107
POLYGON, 1107
REAL, 1077
SET, 1081, 1103
SMALLINT, 1075
TEXT, 1081, 1099
TIME, 1077, 1088
TIMESTAMP, 1077, 1087
TINYBLOB, 1080
TINYINT, 1074
TINYTEXT, 1080
VARBINARY, 1080, 1097
VARCHAR, 1080, 1096
VARCHARACTER, 1080



3014

YEAR, 1078, 1089
data types, 1073

C API, 2640
overview, 1074

data warehouse, 3511
data-file-length option

myisamchk, 370
database, 3511

altering, 1294
creating, 1321
deleting, 1376

Database information
obtaining, 1530

database metadata, 2533
database names

case sensitivity, 26, 982
database objects

metadata, 1008
database option

mysql, 294
mysqlbinlog, 391
ndb_blob_tool, 2243
ndb_desc, 2257
ndb_move_data, 2267
ndb_show_tables, 2292

database option (ndb_index_stat), 2263
DATABASE(), 1250
databases

backups, 809
copying, 205
creating, 215, 1321
defined, 4
displaying, 349
dumping, 325, 404
information about, 232
names, 978
replicating, 1869
selecting, 216
symbolic links, 944
using, 215

databases option
mysqlcheck, 322
mysqldump, 332

DataDir, 2112, 2116
datadir option

mysql.server, 273
mysqld, 456
mysqld_safe, 268
mysql_install_db, 280
mysql_plugin, 282
mysql_upgrade, 287

datadir system variable, 506
DataMemory, 2117
DATE, 2959
date and time functions, 1185
Date and Time types, 1086
date calculations, 223
DATE columns



3015

problems, 2959
DATE data type, 1077, 1087
date data types

storage requirements, 1123
date literals, 972
date values

problems, 1088
DATE(), 1189
DATEDIFF(), 1189
dates

used with partitioning, 2448
used with partitioning (examples), 2451, 2464, 2468, 2487

DATETIME data type, 1077, 1087
datetime_format system variable, 506
DATE_ADD(), 1189
date_format system variable, 506
DATE_FORMAT(), 1192
DATE_SUB(), 1189, 1193
DAY(), 1193
DAYNAME(), 1193
DAYOFMONTH(), 1194
DAYOFWEEK(), 1194
DAYOFYEAR(), 1194
db option

mysqlaccess, 387
db table

sorting, 737
system table, 183, 646, 727

DB2 SQL mode, 637
DBI interface, 2753
DBI->quote, 971
DBI->trace, 2821
DBI/DBD interface, 2753
DBI_TRACE environment variable, 417, 2821
DBI_USER environment variable, 417
DBUG package, 2825
DCL, 1501, 1512, 3511
DDL, 1294, 3511
DDL log, 667
deadlock, 936, 1613, 1616, 1617, 1618, 1618, 1718, 3511
deadlock detection, 3512
DEALLOCATE PREPARE, 1470, 1474
Debug

thread command, 956
debug option

comp_err, 278
myisamchk, 366
myisampack, 381
mysql, 294
mysqlaccess, 387
mysqladmin, 315
mysqlbinlog, 393
mysqlcheck, 322
mysqld, 456
mysqldump, 333
mysqldumpslow, 403
mysqlhotcopy, 406
mysqlimport, 346



3016

mysqlshow, 351
mysqlslap, 357
mysql_upgrade, 287
my_print_defaults, 414

debug option (NDB Cluster programs), 2300
debug system variable, 506
debug-check option

mysql, 294
mysqladmin, 315
mysqlbinlog, 393
mysqlcheck, 322
mysqldump, 333
mysqlimport, 346
mysqlshow, 351
mysqlslap, 357
mysql_upgrade, 287

debug-info option
comp_err, 278
mysql, 294
mysqladmin, 315
mysqlbinlog, 393
mysqlcheck, 322
mysqldump, 333
mysqlimport, 346
mysqlshow, 351
mysqlslap, 358
mysql_upgrade, 287

debug-sync-timeout option
mysqld, 456

debugging
client, 2825
server, 2817

debugging support, 161
debug_sync system variable, 507
DEC data type, 1076
decimal arithmetic, 1283
DECIMAL data type, 1076, 1283
decimal point, 1073
DECLARE, 1476
DECODE(), 1243
decode_bits myisamchk variable, 367
DEFAULT

constraint, 31
default

privileges, 183
default accounts, 183
default host name, 249
default installation location, 59
default options, 255
default proxy user, 755
DEFAULT value clause, 1120, 1342
default values, 1120, 1342, 1391

BLOB and TEXT columns, 1099
explicit, 1120
implicit, 1120
suppression, 31

DEFAULT(), 1278
default-auth option



3017

mysql, 294
mysqladmin, 316
mysqlbinlog, 393
mysqlcheck, 322
mysqldump, 333
mysqlimport, 346
mysqlshow, 351
mysqlslap, 358
mysql_upgrade, 287

default-character-set option
mysql, 294
mysqladmin, 316
mysqlcheck, 322
mysqld, 457
mysqldump, 333
mysqlimport, 346
mysqlshow, 351
mysql_upgrade, 287

default-collation option
mysqld, 457

default-storage-engine option
mysqld, 457

default-time-zone option
mysqld, 458

DefaultHashMapSize, 2125, 2168
DefaultOperationRedoProblemAction

API and SQL nodes, 2167
defaults

embedded, 2637
defaults-extra-file option, 260, 280

myisamchk, 366
mysql, 294
mysqladmin, 316
mysqlbinlog, 393
mysqlcheck, 322
mysqld, 458
mysqldump, 333
mysqld_multi, 275
mysqld_safe, 268
mysqlimport, 346
mysqlshow, 351
mysqlslap, 358
mysql_upgrade, 287
my_print_defaults, 414
NDB client programs, 2300

defaults-file option, 260, 280
myisamchk, 366
mysql, 294
mysqladmin, 316
mysqlbinlog, 393
mysqlcheck, 322
mysqld, 458
mysqldump, 333
mysqld_multi, 275
mysqld_safe, 268
mysqlimport, 346
mysqlshow, 352
mysqlslap, 358



3018

mysql_upgrade, 288
my_print_defaults, 413
NDB client programs, 2300

defaults-group-suffix option, 261
myisamchk, 366
mysql, 294
mysqladmin, 316
mysqlbinlog, 393
mysqlcheck, 322
mysqld, 458
mysqldump, 333
mysqlimport, 346
mysqlshow, 352
mysqlslap, 358
mysql_upgrade, 288
my_print_defaults, 414

DEFAULT_CHARSET option
CMake, 167

DEFAULT_COLLATION option
CMake, 168

default_storage_engine system variable, 508
default_week_format system variable, 508
DEGREES(), 1180
delay option (ndbinfo_select_all), 2232
delay-key-write option

mysqld, 458, 1778
DELAYED, 1395

INSERT modifier, 1393
when ignored, 1393

Delayed insert
thread command, 956

delayed inserts
thread states, 963

delayed-insert option
mysqldump, 333

delayed_insert_limit, 1397
delayed_insert_limit system variable, 509
delayed_insert_timeout system variable, 510
delayed_queue_size system variable, 510
delay_key_write system variable, 509
DELETE, 1385

and NDB Cluster, 2020
delete, 3512
delete buffering, 3512
delete option

mysqlimport, 346
delete option (ndb_index_stat), 2263
delete-master-logs option

mysqldump, 333
delete-orphans option

ndb_blob_tool, 2243
deleting

database, 1376
foreign key, 1306, 1366
function, 1524
index, 1305, 1377
primary key, 1304
rows, 2962



3019

schema, 1376
table, 1379
user, 747, 1501
users, 747, 1501

deleting from main table
thread state, 959

deleting from reference tables
thread state, 959

deletion
mysql.sock, 2956

delimiter command
mysql, 301

delimiter option
mysql, 295
mysqlslap, 358
ndb_select_all, 2290

denormalized, 3512
deprecated features in MySQL 5.5, 9
derived tables, 1438
des-key-file option

mysqld, 459
DESC, 1580
descending index, 3512
descending option

ndb_select_all, 2289
DESCRIBE, 232, 1580
description option

myisamchk, 371
design

issues, 2966
DES_DECRYPT(), 1243
DES_ENCRYPT(), 1243
detach option

mysqlslap, 358
development of NDB Cluster, 2012
development source tree, 159
dictionary collation, German, 1005, 1045, 1045
digits, 1073
Dimension(), 1262
directory structure

default, 59
dirty page, 1629, 1695, 3512
dirty read, 3512
disable named command

mysql, 295
--disable option prefix, 255
disable-indexes option (ndb_restore), 2286
disable-keys option

mysqldump, 333
disable-log-bin option

mysqlbinlog, 393
DISCARD TABLESPACE, 1307, 1644
discard_or_import_tablespace

thread state, 959
disconnect-slave-event-count option

mysqld, 1904
disconnecting

from the server, 211



3020

Disjoint(), 1268
Disk Data tables (NDB Cluster) (see NDB Cluster Disk Data)
disk failure

InnoDB, 1760
disk full, 2955
disk I/O, 899
disk option

ndb_select_all, 2290
disk performance, 943
disk-based, 3512
disk-bound, 3512
DiskCheckpointSpeed, 2141
DiskCheckpointSpeedInRestart, 2142
DiskIOThreadPool, 2157, 2160
Diskless, 2133
diskpagebuffer

ndbinfo table, 2352
DiskPageBufferEntries, 2156
DiskPageBufferMemory, 2156, 2160
disks

splitting data across, 946
DiskSyncSize, 2141
display size, 1073
display triggers, 1567
display width, 1073
displaying

database information, 349
information

Cardinality, 1549
Collation, 1548
SHOW, 1530, 1533, 1567
SHOW statement, 1547, 1550

table status, 1564
DISTINCT, 222, 864

AVG(), 1270
COUNT(), 1271
MAX(), 1272
MIN(), 1272
SELECT modifier, 1422
SUM(), 1273

DISTINCTROW
SELECT modifier, 1422

distributed privileges (NDB Cluster), 2389
and NDB API applications, 2392

DIV, 1176
division (/), 1176
div_precision_increment system variable, 511
DML, 3513
DNS, 952
DO, 1388
DocBook XML

documentation source format, 2
document id, 3513
Documentation

in Chinese, 2859
in Japanese, 2859
in Korean, 2859

Documenters



3021

list of, 38
dont_ignore_systab_0 option (ndb_restore), 2283
DOUBLE data type, 1076
DOUBLE PRECISION data type, 1077
double quote (\"), 970
doublewrite buffer, 1684, 3513
downgrades

NDB Cluster, 2054, 2314
downgrading, 188, 199, 1594
downloading, 45
drop, 3513
DROP ... IF EXISTS

and replication, 1975
DROP DATABASE, 1376
Drop DB

thread command, 956
DROP EVENT, 1377
DROP FOREIGN KEY, 1306, 1366
DROP FUNCTION, 1378
DROP FUNCTION statement, 1524
DROP INDEX, 1305, 1377, 1687
DROP LOGFILE GROUP, 1378

(see also NDB Cluster Disk Data)
DROP NODEGROUP command (NDB Cluster), 2307
DROP PREPARE, 1474
DROP PRIMARY KEY, 1304
DROP PROCEDURE, 1378
DROP SCHEMA, 1376
DROP SERVER, 1379
DROP TABLE, 1379

and NDB Cluster, 2020
DROP TABLESPACE, 1379

(see also NDB Cluster Disk Data)
DROP TRIGGER, 1380
DROP USER statement, 1501
DROP VIEW, 1380
drop-source option

ndb_move_data, 2267
dropping

user, 747, 1501
dry-scp option (ndb_error_reporter), 2260
dryrun option

mysqlhotcopy, 406
DTrace, 687

and memcached, 1821
DUAL, 1418
dump option

myisam_ftdump, 362
ndb_redo_log_reader, 2271

dump option (ndb_index_stat), 2263
dump-date option

mysqldump, 334
dump-file option

ndb_blob_tool, 2244
dump-slave option

mysqldump, 334
DUMPFILE, 1425
dumping



3022

databases and tables, 325, 404
DYLD_LIBRARY_PATH environment variable, 2647
dynamic row format, 1682, 3513
dynamic table characteristics, 1780

E
early adopter, 3513
edit command

mysql, 302
ego command

mysql, 302
Eiffel Wrapper, 2755
ELT(), 1156
email lists, 17
embedded MySQL server library, 2635
embedded option

mysql_config, 412
embedded-libs option

mysql_config, 412
--enable option prefix, 255
enable-cleartext-plugin option

mysql, 295
mysqladmin, 316
mysqlcheck, 323
mysqldump, 335
mysqlimport, 346
mysqlshow, 352
mysqlslap, 358

enable-named-pipe option
mysqld, 459

enable-pstack option
mysqld, 459

ENABLED_LOCAL_INFILE option
CMake, 168

ENABLED_PROFILING option
CMake, 169

ENABLE_DEBUG_SYNC option
CMake, 168

ENABLE_DOWNLOADS option
CMake, 168

ENABLE_DTRACE option
CMake, 168

ENABLE_GCOV option
CMake, 168

ENCODE(), 1244
ENCRYPT(), 1244
encrypted connections, 759
encryption, 759
encryption functions, 1240
end

thread state, 959
END, 1474
EndPoint(), 1263
engine option

mysqlslap, 358
ENGINES

INFORMATION_SCHEMA table, 2539
engine_condition_pushdown system variable, 512



3023

ENTER SINGLE USER MODE command (NDB Cluster), 2307
entering

queries, 212
enterprise components

MySQL Enterprise Audit, 791, 2831
MySQL Enterprise Backup, 2830
MySQL Enterprise Encryption, 2831
MySQL Enterprise Firewall, 2831
MySQL Enterprise Monitor, 2829
MySQL Enterprise Security, 775, 783, 2830
MySQL Enterprise Thread Pool, 674, 2832

ENUM
size, 1125

ENUM data type, 1081, 1100
Envelope(), 1262
environment variable

AUTHENTICATION_PAM_LOG, 783
CC, 173, 417
CXX, 173, 417
DBI_TRACE, 417, 2821
DBI_USER, 417
DYLD_LIBRARY_PATH, 2647
HOME, 306, 417
LD_LIBRARY_PATH, 208, 2647
LD_RUN_PATH, 208, 417
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN, 417
LIBMYSQL_PLUGINS, 2742
MYSQL_DEBUG, 248, 417, 2825
MYSQL_GROUP_SUFFIX, 417
MYSQL_HISTFILE, 306, 417
MYSQL_HOME, 417
MYSQL_HOST, 252, 417
MYSQL_PS1, 417
MYSQL_PWD, 248, 252, 417
MYSQL_TCP_PORT, 248, 417, 686, 686
MYSQL_UNIX_PORT, 178, 248, 417, 686, 686
PATH, 118, 124, 182, 249, 417
TMPDIR, 178, 248, 417, 2956
TZ, 417, 2957
UMASK, 417, 2950
UMASK_DIR, 417, 2950
USER, 252, 417

environment variables, 248, 265, 740
list of, 417

equal (=), 1142
Equals(), 1268
eq_ref join type

optimizer, 911
Errcode, 415
errno, 415
Error

thread command, 956
error code

CR_ALREADY_CONNECTED, 2936
CR_AUTH_PLUGIN_CANNOT_LOAD, 2936
CR_CANT_READ_CHARSET, 2933
CR_COMMANDS_OUT_OF_SYNC, 2933
CR_CONNECTION_ERROR, 2932



3024

CR_CONN_HOST_ERROR, 2932
CR_CONN_UNKNOW_PROTOCOL, 2935
CR_DATA_TRUNCATED, 2934
CR_EMBEDDED_CONNECTION, 2933
CR_FETCH_CANCELED, 2935
CR_INVALID_BUFFER_USE, 2934
CR_INVALID_CONN_HANDLE, 2935
CR_INVALID_PARAMETER_NO, 2934
CR_IPSOCK_ERROR, 2932
CR_LOCALHOST_CONNECTION, 2933
CR_MALFORMED_PACKET, 2934
CR_NAMEDPIPEOPEN_ERROR, 2933
CR_NAMEDPIPESETSTATE_ERROR, 2933
CR_NAMEDPIPEWAIT_ERROR, 2933
CR_NAMEDPIPE_CONNECTION, 2933
CR_NET_PACKET_TOO_LARGE, 2933
CR_NEW_STMT_METADATA, 2936
CR_NOT_IMPLEMENTED, 2936
CR_NO_DATA, 2935
CR_NO_PARAMETERS_EXISTS, 2934
CR_NO_PREPARE_STMT, 2934
CR_NO_RESULT_SET, 2935
CR_NO_STMT_METADATA, 2935
CR_NULL_POINTER, 2934
CR_OUT_OF_MEMORY, 2933
CR_PARAMS_NOT_BOUND, 2934
CR_PROBE_MASTER_CONNECT, 2934
CR_PROBE_SLAVE_CONNECT, 2934
CR_PROBE_SLAVE_HOSTS, 2934
CR_PROBE_SLAVE_STATUS, 2933
CR_SECURE_AUTH, 2935
CR_SERVER_GONE_ERROR, 2933
CR_SERVER_HANDSHAKE_ERR, 2933
CR_SERVER_LOST, 2933
CR_SERVER_LOST_EXTENDED, 2936
CR_SHARED_MEMORY_CONNECTION, 2934
CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR, 2935
CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR, 2935
CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR, 2935
CR_SHARED_MEMORY_CONNECT_MAP_ERROR, 2935
CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR, 2935
CR_SHARED_MEMORY_CONNECT_SET_ERROR, 2935
CR_SHARED_MEMORY_EVENT_ERROR, 2935
CR_SHARED_MEMORY_FILE_MAP_ERROR, 2935
CR_SHARED_MEMORY_MAP_ERROR, 2935
CR_SOCKET_CREATE_ERROR, 2932
CR_SSL_CONNECTION_ERROR, 2934
CR_STMT_CLOSED, 2936
CR_TCP_CONNECTION, 2933
CR_UNKNOWN_ERROR, 2932
CR_UNKNOWN_HOST, 2932
CR_UNSUPPORTED_PARAM_TYPE, 2934
CR_VERSION_ERROR, 2933
CR_WRONG_HOST_INFO, 2933
CR_WRONG_LICENSE, 2934
ER_ABORTING_CONNECTION, 2891
ER_ACCESS_DENIED_ERROR, 2884
ER_ACCESS_DENIED_NO_PASSWORD_ERROR, 2929



3025

ER_ADD_PARTITION_NO_NEW_PARTITION, 2915
ER_ADD_PARTITION_SUBPART_ERROR, 2915
ER_ADMIN_WRONG_MRG_TABLE, 2912
ER_ALTER_FILEGROUP_FAILED, 2916
ER_ALTER_INFO, 2887
ER_AMBIGUOUS_FIELD_TERM, 2912
ER_AUTOINC_READ_FAILED, 2912
ER_AUTO_CONVERT, 2898
ER_BAD_DB_ERROR, 2884
ER_BAD_FIELD_ERROR, 2885
ER_BAD_FT_COLUMN, 2900
ER_BAD_HOST_ERROR, 2884
ER_BAD_LOG_STATEMENT, 2920
ER_BAD_NULL_ERROR, 2884
ER_BAD_SLAVE, 2895
ER_BAD_SLAVE_UNTIL_COND, 2900
ER_BAD_TABLE_ERROR, 2884
ER_BASE64_DECODE_ERROR, 2919
ER_BINLOG_CREATE_ROUTINE_NEED_SUPER, 2909
ER_BINLOG_LOGGING_IMPOSSIBLE, 2921
ER_BINLOG_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE, 2926
ER_BINLOG_PURGE_EMFILE, 2920
ER_BINLOG_PURGE_FATAL_ERR, 2906
ER_BINLOG_PURGE_PROHIBITED, 2906
ER_BINLOG_ROW_ENGINE_AND_STMT_ENGINE, 2925
ER_BINLOG_ROW_INJECTION_AND_STMT_ENGINE, 2925
ER_BINLOG_ROW_INJECTION_AND_STMT_MODE, 2925
ER_BINLOG_ROW_LOGGING_FAILED, 2916
ER_BINLOG_ROW_MODE_AND_STMT_ENGINE, 2925
ER_BINLOG_ROW_RBR_TO_SBR, 2917
ER_BINLOG_ROW_WRONG_TABLE_DEF, 2916
ER_BINLOG_STMT_MODE_AND_ROW_ENGINE, 2925
ER_BINLOG_UNSAFE_AND_STMT_ENGINE, 2925
ER_BINLOG_UNSAFE_AUTOINC_COLUMNS, 2926
ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST, 2932
ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT, 2931
ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT, 2931
ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC, 2931
ER_BINLOG_UNSAFE_INSERT_DELAYED, 2926
ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT, 2930
ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE, 2930
ER_BINLOG_UNSAFE_INSERT_TWO_KEYS, 2931
ER_BINLOG_UNSAFE_LIMIT, 2926
ER_BINLOG_UNSAFE_MIXED_STATEMENT, 2928
ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE, 2928
ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS, 2926
ER_BINLOG_UNSAFE_REPLACE_SELECT, 2931
ER_BINLOG_UNSAFE_ROUTINE, 2909
ER_BINLOG_UNSAFE_STATEMENT, 2920
ER_BINLOG_UNSAFE_SYSTEM_FUNCTION, 2926
ER_BINLOG_UNSAFE_SYSTEM_TABLE, 2926
ER_BINLOG_UNSAFE_SYSTEM_VARIABLE, 2926
ER_BINLOG_UNSAFE_UDF, 2926
ER_BINLOG_UNSAFE_UPDATE_IGNORE, 2931
ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT, 2931
ER_BLOBS_AND_NO_TERMINATED, 2887
ER_BLOB_CANT_HAVE_DEFAULT, 2888
ER_BLOB_FIELD_IN_PART_FUNC_ERROR, 2914



3026

ER_BLOB_KEY_WITHOUT_LENGTH, 2893
ER_BLOB_USED_AS_KEY, 2886
ER_CANNOT_ADD_FOREIGN, 2896
ER_CANNOT_LOAD_FROM_TABLE, 2917
ER_CANNOT_USER, 2907
ER_CANT_ACTIVATE_LOG, 2919
ER_CANT_AGGREGATE_2COLLATIONS, 2899
ER_CANT_AGGREGATE_3COLLATIONS, 2899
ER_CANT_AGGREGATE_NCOLLATIONS, 2899
ER_CANT_CHANGE_TX_ISOLATION, 2919
ER_CANT_CREATE_DB, 2881
ER_CANT_CREATE_FEDERATED_TABLE, 2910
ER_CANT_CREATE_FILE, 2881
ER_CANT_CREATE_GEOMETRY_OBJECT, 2909
ER_CANT_CREATE_HANDLER_FILE, 2914
ER_CANT_CREATE_SROUTINE, 2921
ER_CANT_CREATE_TABLE, 2881
ER_CANT_CREATE_THREAD, 2890
ER_CANT_CREATE_USER_WITH_GRANT, 2908
ER_CANT_DELETE_FILE, 2882
ER_CANT_DO_THIS_DURING_AN_TRANSACTION, 2893
ER_CANT_DROP_FIELD_OR_KEY, 2887
ER_CANT_FIND_DL_ENTRY, 2890
ER_CANT_FIND_SYSTEM_REC, 2882
ER_CANT_FIND_UDF, 2889
ER_CANT_GET_STAT, 2882
ER_CANT_GET_WD, 2882
ER_CANT_INITIALIZE_UDF, 2890
ER_CANT_LOCK, 2882
ER_CANT_LOCK_LOG_TABLE, 2918
ER_CANT_OPEN_FILE, 2882
ER_CANT_OPEN_LIBRARY, 2890
ER_CANT_READ_DIR, 2882
ER_CANT_REMOVE_ALL_FIELDS, 2887
ER_CANT_RENAME_LOG_TABLE, 2920
ER_CANT_REOPEN_TABLE, 2890
ER_CANT_SET_WD, 2882
ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG, 2910
ER_CANT_UPDATE_WITH_READLOCK, 2896
ER_CANT_USE_OPTION_HERE, 2897
ER_CANT_WRITE_LOCK_LOG_TABLE, 2918
ER_CHECKREAD, 2882
ER_CHECK_NOT_IMPLEMENTED, 2893
ER_CHECK_NO_SUCH_TABLE, 2893
ER_COALESCE_ONLY_ON_HASH_PARTITION, 2915
ER_COALESCE_PARTITION_NO_PARTITION, 2915
ER_COLLATION_CHARSET_MISMATCH, 2898
ER_COLUMNACCESS_DENIED_ERROR, 2891
ER_COL_COUNT_DOESNT_MATCH_CORRUPTED, 2917
ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE, 2918
ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG, 2909
ER_COND_ITEM_TOO_LONG, 2924
ER_CONFLICTING_DECLARATIONS, 2901
ER_CONFLICT_FN_PARSE_ERROR, 2923
ER_CONNECT_TO_FOREIGN_DATA_SOURCE, 2909
ER_CONNECT_TO_MASTER, 2896
ER_CONSECUTIVE_REORG_PARTITIONS, 2915
ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR, 2913



3027

ER_CON_COUNT_ERROR, 2884
ER_CORRUPT_HELP_DB, 2898
ER_CRASHED_ON_REPAIR, 2894
ER_CRASHED_ON_USAGE, 2894
ER_CREATE_DB_WITH_READ_LOCK, 2895
ER_CREATE_FILEGROUP_FAILED, 2916
ER_CUT_VALUE_GROUP_CONCAT, 2899
ER_CYCLIC_REFERENCE, 2898
ER_DATABASE_NAME, 2923
ER_DATA_OUT_OF_RANGE, 2928
ER_DATA_TOO_LONG, 2908
ER_DATETIME_FUNCTION_OVERFLOW, 2910
ER_DBACCESS_DENIED_ERROR, 2884
ER_DB_CREATE_EXISTS, 2881
ER_DB_DROP_DELETE, 2882
ER_DB_DROP_EXISTS, 2882
ER_DB_DROP_RMDIR, 2882
ER_DDL_LOG_ERROR, 2919
ER_DEBUG_SYNC_HIT_LIMIT, 2924
ER_DEBUG_SYNC_TIMEOUT, 2924
ER_DELAYED_CANT_CHANGE_LOCK, 2891
ER_DELAYED_INSERT_TABLE_LOCKED, 2892
ER_DELAYED_NOT_SUPPORTED, 2922
ER_DERIVED_MUST_HAVE_ALIAS, 2898
ER_DIFF_GROUPS_PROC, 2907
ER_DISK_FULL, 2883
ER_DIVISION_BY_ZERO, 2905
ER_DROP_DB_WITH_READ_LOCK, 2895
ER_DROP_FILEGROUP_FAILED, 2916
ER_DROP_INDEX_FK, 2918
ER_DROP_LAST_PARTITION, 2915
ER_DROP_PARTITION_NON_EXISTENT, 2915
ER_DROP_USER, 2899
ER_DUMP_NOT_IMPLEMENTED, 2894
ER_DUPLICATED_VALUE_IN_TYPE, 2901
ER_DUP_ARGUMENT, 2897
ER_DUP_ENTRY, 2886
ER_DUP_ENTRY_AUTOINCREMENT_CASE, 2919
ER_DUP_ENTRY_WITH_KEY_NAME, 2920
ER_DUP_FIELDNAME, 2885
ER_DUP_KEY, 2883
ER_DUP_KEYNAME, 2885
ER_DUP_SIGNAL_SET, 2924
ER_DUP_UNIQUE, 2892
ER_EMPTY_QUERY, 2886
ER_ERROR_DURING_CHECKPOINT, 2894
ER_ERROR_DURING_COMMIT, 2893
ER_ERROR_DURING_FLUSH_LOGS, 2893
ER_ERROR_DURING_ROLLBACK, 2893
ER_ERROR_IN_TRIGGER_BODY, 2930
ER_ERROR_IN_UNKNOWN_TRIGGER_BODY, 2930
ER_ERROR_ON_CLOSE, 2883
ER_ERROR_ON_READ, 2883
ER_ERROR_ON_RENAME, 2883
ER_ERROR_ON_WRITE, 2883
ER_ERROR_WHEN_EXECUTING_COMMAND, 2896
ER_EVENTS_DB_ERROR, 2919
ER_EVENT_ALREADY_EXISTS, 2917



3028

ER_EVENT_CANNOT_ALTER_IN_THE_PAST, 2920
ER_EVENT_CANNOT_CREATE_IN_THE_PAST, 2920
ER_EVENT_CANNOT_DELETE, 2917
ER_EVENT_CANT_ALTER, 2917
ER_EVENT_COMPILE_ERROR, 2917
ER_EVENT_DATA_TOO_LONG, 2918
ER_EVENT_DOES_NOT_EXIST, 2917
ER_EVENT_DROP_FAILED, 2917
ER_EVENT_ENDS_BEFORE_STARTS, 2917
ER_EVENT_EXEC_TIME_IN_THE_PAST, 2917
ER_EVENT_INTERVAL_NOT_POSITIVE_OR_TOO_BIG, 2917
ER_EVENT_INVALID_CREATION_CTX, 2921
ER_EVENT_MODIFY_QUEUE_ERROR, 2919
ER_EVENT_NEITHER_M_EXPR_NOR_M_AT, 2917
ER_EVENT_OPEN_TABLE_FAILED, 2917
ER_EVENT_RECURSION_FORBIDDEN, 2919
ER_EVENT_SAME_NAME, 2917
ER_EVENT_SET_VAR_ERROR, 2919
ER_EVENT_STORE_FAILED, 2917
ER_EXCEPTIONS_WRITE_ERROR, 2923
ER_EXEC_STMT_WITH_OPEN_CURSOR, 2909
ER_FAILED_READ_FROM_PAR_FILE, 2928
ER_FAILED_ROUTINE_BREAK_BINLOG, 2909
ER_FEATURE_DISABLED, 2901
ER_FIELD_NOT_FOUND_PART_ERROR, 2913
ER_FIELD_SPECIFIED_TWICE, 2889
ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD, 2925
ER_FILEGROUP_OPTION_ONLY_ONCE, 2916
ER_FILE_EXISTS_ERROR, 2887
ER_FILE_NOT_FOUND, 2882
ER_FILE_USED, 2883
ER_FILSORT_ABORT, 2883
ER_FLUSH_MASTER_BINLOG_CLOSED, 2894
ER_FORBID_SCHEMA_CHANGE, 2911
ER_FORCING_CLOSE, 2887
ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST, 2910
ER_FOREIGN_DATA_STRING_INVALID, 2910
ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE, 2910
ER_FOREIGN_DUPLICATE_KEY, 2918
ER_FOREIGN_KEY_ON_PARTITIONED, 2915
ER_FOREIGN_SERVER_DOESNT_EXIST, 2913
ER_FOREIGN_SERVER_EXISTS, 2913
ER_FORM_NOT_FOUND, 2883
ER_FPARSER_BAD_HEADER, 2904
ER_FPARSER_EOF_IN_COMMENT, 2904
ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER, 2904
ER_FPARSER_ERROR_IN_PARAMETER, 2904
ER_FPARSER_TOO_BIG_FILE, 2904
ER_FRM_UNKNOWN_TYPE, 2904
ER_FSEEK_FAIL, 2906
ER_FT_MATCHING_KEY_NOT_FOUND, 2894
ER_FUNCTION_NOT_DEFINED, 2890
ER_FUNC_INEXISTENT_NAME_COLLISION, 2923
ER_GET_ERRMSG, 2901
ER_GET_ERRNO, 2883
ER_GET_TEMPORARY_ERRMSG, 2901
ER_GLOBAL_VARIABLE, 2897
ER_GOT_SIGNAL, 2887



3029

ER_GRANT_PLUGIN_USER_EXISTS, 2929
ER_GRANT_WRONG_HOST_OR_USER, 2891
ER_HANDSHAKE_ERROR, 2884
ER_HASHCHK, 2881
ER_HOSTNAME, 2912
ER_HOST_IS_BLOCKED, 2890
ER_HOST_NOT_PRIVILEGED, 2890
ER_ILLEGAL_GRANT_FOR_TABLE, 2891
ER_ILLEGAL_HA, 2883
ER_ILLEGAL_HA_CREATE_OPTION, 2913
ER_ILLEGAL_REFERENCE, 2898
ER_ILLEGAL_VALUE_FOR_TYPE, 2906
ER_INCONSISTENT_PARTITION_INFO_ERROR, 2914
ER_INCONSISTENT_TYPE_OF_FUNCTIONS_ERROR, 2914
ER_INCORRECT_GLOBAL_LOCAL_VAR, 2897
ER_INDEX_COLUMN_TOO_LONG, 2930
ER_INDEX_CORRUPT, 2930
ER_INDEX_REBUILD, 2894
ER_INSERT_INFO, 2887
ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_DIRECT, 2927
ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_FORMAT, 2927
ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_SQL_LOG_BIN, 2928
ER_INVALID_CHARACTER_STRING, 2901
ER_INVALID_DEFAULT, 2886
ER_INVALID_GROUP_FUNC_USE, 2889
ER_INVALID_ON_UPDATE, 2901
ER_INVALID_USE_OF_NULL, 2890
ER_IO_ERR_LOG_INDEX_READ, 2906
ER_IPSOCK_ERROR, 2887
ER_KEY_COLUMN_DOES_NOT_EXITS, 2886
ER_KEY_DOES_NOT_EXITS, 2893
ER_KEY_NOT_FOUND, 2883
ER_KEY_PART_0, 2907
ER_KEY_REF_DO_NOT_MATCH_TABLE_REF, 2897
ER_KILL_DENIED_ERROR, 2888
ER_LIMITED_PART_RANGE, 2916
ER_LIST_OF_FIELDS_ONLY_IN_HASH_ERROR, 2914
ER_LOAD_DATA_INVALID_COLUMN, 2922
ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR, 2908
ER_LOAD_INFO, 2887
ER_LOCAL_VARIABLE, 2897
ER_LOCK_ABORTED, 2928
ER_LOCK_DEADLOCK, 2896
ER_LOCK_OR_ACTIVE_TRANSACTION, 2894
ER_LOCK_TABLE_FULL, 2895
ER_LOCK_WAIT_TIMEOUT, 2895
ER_LOGGING_PROHIBIT_CHANGING_OF, 2907
ER_LOG_IN_USE, 2906
ER_LOG_PURGE_NO_FILE, 2922
ER_LOG_PURGE_UNKNOWN_ERR, 2906
ER_MALFORMED_DEFINER, 2911
ER_MASTER, 2894
ER_MASTER_FATAL_ERROR_READING_BINLOG, 2897
ER_MASTER_INFO, 2895
ER_MASTER_NET_READ, 2894
ER_MASTER_NET_WRITE, 2894
ER_MAXVALUE_IN_VALUES_IN, 2925
ER_MAX_PREPARED_STMT_COUNT_REACHED, 2912



3030

ER_MESSAGE_AND_STATEMENT, 2927
ER_MISSING_SKIP_SLAVE, 2900
ER_MIXING_NOT_ALLOWED, 2897
ER_MIX_HANDLER_ERROR, 2914
ER_MIX_OF_GROUP_FUNC_AND_FIELDS, 2891
ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, 2914
ER_MULTIPLE_PRI_KEY, 2886
ER_MULTI_UPDATE_KEY_CONFLICT, 2929
ER_M_BIGGER_THAN_D, 2909
ER_NAME_BECOMES_EMPTY, 2912
ER_NATIVE_FCT_NAME_COLLISION, 2920
ER_NDB_CANT_SWITCH_BINLOG_FORMAT, 2918
ER_NDB_REPLICATION_SCHEMA_ERROR, 2923
ER_NEED_REPREPARE, 2922
ER_NET_ERROR_ON_WRITE, 2892
ER_NET_FCNTL_ERROR, 2892
ER_NET_PACKETS_OUT_OF_ORDER, 2892
ER_NET_PACKET_TOO_LARGE, 2891
ER_NET_READ_ERROR, 2892
ER_NET_READ_ERROR_FROM_PIPE, 2892
ER_NET_READ_INTERRUPTED, 2892
ER_NET_UNCOMPRESS_ERROR, 2892
ER_NET_WRITE_INTERRUPTED, 2892
ER_NEVER_USED, 2921
ER_NEW_ABORTING_CONNECTION, 2894
ER_NISAMCHK, 2881
ER_NO, 2881
ER_NONEXISTING_GRANT, 2891
ER_NONEXISTING_PROC_GRANT, 2908
ER_NONEXISTING_TABLE_GRANT, 2891
ER_NONUNIQ_TABLE, 2886
ER_NONUPDATEABLE_COLUMN, 2904
ER_NON_GROUPING_FIELD_USED, 2912
ER_NON_INSERTABLE_TABLE, 2912
ER_NON_UNIQ_ERROR, 2884
ER_NON_UPDATABLE_TABLE, 2901
ER_NORMAL_SHUTDOWN, 2886
ER_NOT_ALLOWED_COMMAND, 2891
ER_NOT_FORM_FILE, 2883
ER_NOT_KEYFILE, 2883
ER_NOT_SUPPORTED_AUTH_MODE, 2898
ER_NOT_SUPPORTED_YET, 2897
ER_NO_BINARY_LOGGING, 2906
ER_NO_BINLOG_ERROR, 2915
ER_NO_CONST_EXPR_IN_RANGE_OR_LIST_ERROR, 2913
ER_NO_DB_ERROR, 2884
ER_NO_DEFAULT, 2897
ER_NO_DEFAULT_FOR_FIELD, 2905
ER_NO_DEFAULT_FOR_VIEW_FIELD, 2909
ER_NO_FILE_MAPPING, 2907
ER_NO_FORMAT_DESCRIPTION_EVENT_BEFORE_BINLOG_STATEMENT, 2922
ER_NO_GROUP_FOR_PROC, 2907
ER_NO_PARTITION_FOR_GIVEN_VALUE, 2916
ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT, 2920
ER_NO_PARTS_ERROR, 2914
ER_NO_PERMISSION_TO_CREATE_USER, 2895
ER_NO_RAID_COMPILED, 2893
ER_NO_REFERENCED_ROW, 2896



3031

ER_NO_REFERENCED_ROW_2, 2911
ER_NO_SUCH_INDEX, 2887
ER_NO_SUCH_TABLE, 2891
ER_NO_SUCH_THREAD, 2888
ER_NO_SUCH_USER, 2911
ER_NO_TABLES_USED, 2888
ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA, 2912
ER_NO_UNIQUE_LOGFILE, 2888
ER_NULL_COLUMN_IN_INDEX, 2889
ER_NULL_IN_VALUES_LESS_THAN, 2919
ER_OLD_FILE_FORMAT, 2911
ER_OLD_KEYFILE, 2883
ER_ONLY_INTEGERS_ALLOWED, 2919
ER_ONLY_ON_RANGE_LIST_PARTITION, 2915
ER_OPEN_AS_READONLY, 2884
ER_OPERAND_COLUMNS, 2898
ER_OPTION_PREVENTS_STATEMENT, 2901
ER_ORDER_WITH_PROC, 2907
ER_OUTOFMEMORY, 2884
ER_OUT_OF_RESOURCES, 2884
ER_OUT_OF_SORTMEMORY, 2884
ER_PARSE_ERROR, 2886
ER_PARTITIONS_MUST_BE_DEFINED_ERROR, 2914
ER_PARTITION_COLUMN_LIST_ERROR, 2924
ER_PARTITION_CONST_DOMAIN_ERROR, 2918
ER_PARTITION_ENTRY_ERROR, 2914
ER_PARTITION_FIELDS_TOO_LONG, 2925
ER_PARTITION_FUNCTION_FAILURE, 2916
ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, 2918
ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, 2914
ER_PARTITION_MAXVALUE_ERROR, 2913
ER_PARTITION_MERGE_ERROR, 2919
ER_PARTITION_MGMT_ON_NONPARTITIONED, 2915
ER_PARTITION_NAME, 2923
ER_PARTITION_NOT_DEFINED_ERROR, 2914
ER_PARTITION_NO_TEMPORARY, 2918
ER_PARTITION_REQUIRES_VALUES_ERROR, 2913
ER_PARTITION_SUBPARTITION_ERROR, 2913
ER_PARTITION_SUBPART_MIX_ERROR, 2913
ER_PARTITION_WRONG_NO_PART_ERROR, 2913
ER_PARTITION_WRONG_NO_SUBPART_ERROR, 2913
ER_PARTITION_WRONG_VALUES_ERROR, 2913
ER_PART_STATE_ERROR, 2916
ER_PASSWD_LENGTH, 2906
ER_PASSWORD_ANONYMOUS_USER, 2890
ER_PASSWORD_NOT_ALLOWED, 2890
ER_PASSWORD_NO_MATCH, 2890
ER_PATH_LENGTH, 2927
ER_PLUGIN_IS_NOT_LOADED, 2916
ER_PLUGIN_IS_PERMANENT, 2929
ER_PLUGIN_NO_INSTALL, 2931
ER_PLUGIN_NO_UNINSTALL, 2931
ER_PRIMARY_CANT_HAVE_NULL, 2893
ER_PROCACCESS_DENIED_ERROR, 2906
ER_PROC_AUTO_GRANT_FAIL, 2908
ER_PROC_AUTO_REVOKE_FAIL, 2908
ER_PS_MANY_PARAM, 2907
ER_PS_NO_RECURSION, 2910



3032

ER_QUERY_CACHE_DISABLED, 2924
ER_QUERY_INTERRUPTED, 2902
ER_QUERY_ON_FOREIGN_DATA_SOURCE, 2910
ER_QUERY_ON_MASTER, 2896
ER_RANGE_NOT_INCREASING_ERROR, 2914
ER_RBR_NOT_AVAILABLE, 2919
ER_READY, 2886
ER_READ_ONLY_TRANSACTION, 2895
ER_RECORD_FILE_FULL, 2889
ER_REGEXP_ERROR, 2891
ER_RELAY_LOG_FAIL, 2906
ER_RELAY_LOG_INIT, 2906
ER_REMOVED_SPACES, 2912
ER_RENAMED_NAME, 2923
ER_REORG_HASH_ONLY_ON_SAME_NO, 2915
ER_REORG_NO_PARAM_ERROR, 2915
ER_REORG_OUTSIDE_RANGE, 2916
ER_REORG_PARTITION_NOT_EXIST, 2915
ER_REQUIRES_PRIMARY_KEY, 2893
ER_RESERVED_SYNTAX, 2906
ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER, 2924
ER_REVOKE_GRANTS, 2899
ER_ROW_IS_REFERENCED, 2896
ER_ROW_IS_REFERENCED_2, 2911
ER_ROW_SINGLE_PARTITION_FIELD_ERROR, 2925
ER_SAME_NAME_PARTITION, 2915
ER_SAME_NAME_PARTITION_FIELD, 2924
ER_SELECT_REDUCED, 2898
ER_SERVER_IS_IN_SECURE_AUTH_MODE, 2900
ER_SERVER_SHUTDOWN, 2885
ER_SET_CONSTANTS_ONLY, 2895
ER_SET_PASSWORD_AUTH_PLUGIN, 2929
ER_SHUTDOWN_COMPLETE, 2887
ER_SIGNAL_BAD_CONDITION_TYPE, 2924
ER_SIGNAL_EXCEPTION, 2924
ER_SIGNAL_NOT_FOUND, 2924
ER_SIGNAL_WARN, 2924
ER_SIZE_OVERFLOW_ERROR, 2916
ER_SLAVE_AMBIGOUS_EXEC_MODE, 2921
ER_SLAVE_CANT_CREATE_CONVERSION, 2927
ER_SLAVE_CONVERSION_FAILED, 2927
ER_SLAVE_CORRUPT_EVENT, 2922
ER_SLAVE_CREATE_EVENT_FAILURE, 2921
ER_SLAVE_FATAL_ERROR, 2920
ER_SLAVE_HEARTBEAT_FAILURE, 2923
ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE, 2923
ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MAX, 2929
ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MIN, 2929
ER_SLAVE_IGNORED_SSL_PARAMS, 2900
ER_SLAVE_IGNORED_TABLE, 2897
ER_SLAVE_IGNORE_SERVER_IDS, 2924
ER_SLAVE_INCIDENT, 2920
ER_SLAVE_MASTER_COM_FAILURE, 2921
ER_SLAVE_MUST_STOP, 2894
ER_SLAVE_NOT_RUNNING, 2895
ER_SLAVE_RELAY_LOG_READ_FAILURE, 2921
ER_SLAVE_RELAY_LOG_WRITE_FAILURE, 2921
ER_SLAVE_THREAD, 2895



3033

ER_SLAVE_WAS_NOT_RUNNING, 2898
ER_SLAVE_WAS_RUNNING, 2898
ER_SPATIAL_CANT_HAVE_NULL, 2898
ER_SPATIAL_MUST_HAVE_GEOM_COL, 2928
ER_SPECIFIC_ACCESS_DENIED_ERROR, 2897
ER_SP_ALREADY_EXISTS, 2902
ER_SP_BADRETURN, 2902
ER_SP_BADSELECT, 2902
ER_SP_BADSTATEMENT, 2902
ER_SP_BAD_CURSOR_QUERY, 2903
ER_SP_BAD_CURSOR_SELECT, 2903
ER_SP_BAD_SQLSTATE, 2908
ER_SP_BAD_VAR_SHADOW, 2911
ER_SP_CANT_ALTER, 2903
ER_SP_CANT_SET_AUTOCOMMIT, 2911
ER_SP_CASE_NOT_FOUND, 2904
ER_SP_COND_MISMATCH, 2903
ER_SP_CURSOR_AFTER_HANDLER, 2904
ER_SP_CURSOR_ALREADY_OPEN, 2903
ER_SP_CURSOR_MISMATCH, 2903
ER_SP_CURSOR_NOT_OPEN, 2903
ER_SP_DOES_NOT_EXIST, 2902
ER_SP_DROP_FAILED, 2902
ER_SP_DUP_COND, 2903
ER_SP_DUP_CURS, 2903
ER_SP_DUP_HANDLER, 2908
ER_SP_DUP_PARAM, 2903
ER_SP_DUP_VAR, 2903
ER_SP_FETCH_NO_DATA, 2903
ER_SP_GOTO_IN_HNDLR, 2905
ER_SP_LABEL_MISMATCH, 2902
ER_SP_LABEL_REDEFINE, 2902
ER_SP_LILABEL_MISMATCH, 2902
ER_SP_NORETURN, 2903
ER_SP_NORETURNEND, 2903
ER_SP_NOT_VAR_ARG, 2908
ER_SP_NO_AGGREGATE, 2912
ER_SP_NO_DROP_SP, 2905
ER_SP_NO_RECURSION, 2909
ER_SP_NO_RECURSIVE_CREATE, 2902
ER_SP_NO_RETSET, 2909
ER_SP_PROC_TABLE_CORRUPT, 2911
ER_SP_RECURSION_LIMIT, 2911
ER_SP_STORE_FAILED, 2902
ER_SP_SUBSELECT_NYI, 2903
ER_SP_UNDECLARED_VAR, 2903
ER_SP_UNINIT_VAR, 2902
ER_SP_VARCOND_AFTER_CURSHNDLR, 2904
ER_SP_WRONG_NAME, 2911
ER_SP_WRONG_NO_OF_ARGS, 2902
ER_SP_WRONG_NO_OF_FETCH_ARGS, 2903
ER_SR_INVALID_CREATION_CTX, 2921
ER_STACK_OVERRUN, 2889
ER_STACK_OVERRUN_NEED_MORE, 2910
ER_STARTUP, 2908
ER_STMT_CACHE_FULL, 2929
ER_STMT_HAS_NO_OPEN_CURSOR, 2909
ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG, 2904



3034

ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_DIRECT, 2927
ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_FORMAT, 2918
ER_STORED_FUNCTION_PREVENTS_SWITCH_SQL_LOG_BIN, 2928
ER_SUBPARTITION_ERROR, 2914
ER_SUBPARTITION_NAME, 2923
ER_SUBQUERY_NO_1_ROW, 2898
ER_SYNTAX_ERROR, 2891
ER_TABLEACCESS_DENIED_ERROR, 2891
ER_TABLENAME_NOT_ALLOWED_HERE, 2898
ER_TABLESPACE_AUTO_EXTEND_ERROR, 2916
ER_TABLE_CANT_HANDLE_AUTO_INCREMENT, 2892
ER_TABLE_CANT_HANDLE_BLOB, 2892
ER_TABLE_CANT_HANDLE_FT, 2896
ER_TABLE_CANT_HANDLE_SPKEYS, 2912
ER_TABLE_DEF_CHANGED, 2908
ER_TABLE_EXISTS_ERROR, 2884
ER_TABLE_IN_FK_CHECK, 2932
ER_TABLE_MUST_HAVE_COLUMNS, 2889
ER_TABLE_NAME, 2923
ER_TABLE_NEEDS_REBUILD, 2930
ER_TABLE_NEEDS_UPGRADE, 2911
ER_TABLE_NOT_LOCKED, 2888
ER_TABLE_NOT_LOCKED_FOR_WRITE, 2888
ER_TEMPORARY_NAME, 2923
ER_TEMP_TABLE_PREVENTS_SWITCH_OUT_OF_RBR, 2918
ER_TEXTFILE_NOT_READABLE, 2887
ER_TOO_BIG_DISPLAYWIDTH, 2910
ER_TOO_BIG_FIELDLENGTH, 2886
ER_TOO_BIG_FOR_UNCOMPRESS, 2898
ER_TOO_BIG_PRECISION, 2909
ER_TOO_BIG_ROWSIZE, 2889
ER_TOO_BIG_SCALE, 2909
ER_TOO_BIG_SELECT, 2888
ER_TOO_BIG_SET, 2888
ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT, 2912
ER_TOO_LONG_BODY, 2910
ER_TOO_LONG_FIELD_COMMENT, 2923
ER_TOO_LONG_IDENT, 2885
ER_TOO_LONG_INDEX_COMMENT, 2928
ER_TOO_LONG_KEY, 2886
ER_TOO_LONG_STRING, 2892
ER_TOO_LONG_TABLE_COMMENT, 2923
ER_TOO_MANY_CONCURRENT_TRXS, 2923
ER_TOO_MANY_DELAYED_THREADS, 2891
ER_TOO_MANY_FIELDS, 2889
ER_TOO_MANY_KEYS, 2886
ER_TOO_MANY_KEY_PARTS, 2886
ER_TOO_MANY_PARTITIONS_ERROR, 2914
ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR, 2924
ER_TOO_MANY_ROWS, 2893
ER_TOO_MANY_TABLES, 2889
ER_TOO_MANY_USER_CONNECTIONS, 2895
ER_TOO_MANY_VALUES_ERROR, 2925
ER_TOO_MUCH_AUTO_TIMESTAMP_COLS, 2901
ER_TRANS_CACHE_FULL, 2894
ER_TRG_ALREADY_EXISTS, 2905
ER_TRG_CANT_CHANGE_ROW, 2905
ER_TRG_CANT_OPEN_TABLE, 2921



3035

ER_TRG_CORRUPTED_FILE, 2921
ER_TRG_DOES_NOT_EXIST, 2905
ER_TRG_INVALID_CREATION_CTX, 2921
ER_TRG_IN_WRONG_SCHEMA, 2910
ER_TRG_NO_CREATION_CTX, 2921
ER_TRG_NO_DEFINER, 2911
ER_TRG_NO_SUCH_ROW_IN_TRG, 2905
ER_TRG_ON_VIEW_OR_TEMP_TABLE, 2905
ER_TRUNCATED_WRONG_VALUE, 2901
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD, 2905
ER_TRUNCATE_ILLEGAL_FK, 2929
ER_UDF_EXISTS, 2890
ER_UDF_NO_PATHS, 2890
ER_UNDO_RECORD_TOO_BIG, 2930
ER_UNEXPECTED_EOF, 2884
ER_UNION_TABLES_IN_DIFFERENT_DIR, 2896
ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF, 2914
ER_UNKNOWN_CHARACTER_SET, 2889
ER_UNKNOWN_COLLATION, 2900
ER_UNKNOWN_COM_ERROR, 2884
ER_UNKNOWN_ERROR, 2888
ER_UNKNOWN_KEY_CACHE, 2900
ER_UNKNOWN_LOCALE, 2924
ER_UNKNOWN_PROCEDURE, 2888
ER_UNKNOWN_STMT_HANDLER, 2898
ER_UNKNOWN_STORAGE_ENGINE, 2900
ER_UNKNOWN_SYSTEM_VARIABLE, 2894
ER_UNKNOWN_TABLE, 2889
ER_UNKNOWN_TARGET_BINLOG, 2906
ER_UNKNOWN_TIME_ZONE, 2901
ER_UNSUPORTED_LOG_ENGINE, 2919
ER_UNSUPPORTED_ENGINE, 2932
ER_UNSUPPORTED_EXTENSION, 2889
ER_UNSUPPORTED_PS, 2901
ER_UNTIL_COND_IGNORED, 2900
ER_UPDATE_INFO, 2890
ER_UPDATE_LOG_DEPRECATED_IGNORED, 2902
ER_UPDATE_LOG_DEPRECATED_TRANSLATED, 2902
ER_UPDATE_TABLE_USED, 2887
ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE, 2893
ER_USERNAME, 2912
ER_USER_LIMIT_REACHED, 2897
ER_VALUES_IS_NOT_INT_TYPE_ERROR, 2929
ER_VARIABLE_IS_NOT_STRUCT, 2900
ER_VARIABLE_IS_READONLY, 2922
ER_VAR_CANT_BE_READ, 2897
ER_VIEW_CHECKSUM, 2907
ER_VIEW_CHECK_FAILED, 2906
ER_VIEW_DELETE_MERGE_VIEW, 2907
ER_VIEW_FRM_NO_USER, 2911
ER_VIEW_INVALID, 2905
ER_VIEW_INVALID_CREATION_CTX, 2921
ER_VIEW_MULTIUPDATE, 2907
ER_VIEW_NONUPD_CHECK, 2906
ER_VIEW_NO_CREATION_CTX, 2921
ER_VIEW_NO_EXPLAIN, 2904
ER_VIEW_NO_INSERT_FIELD_LIST, 2907
ER_VIEW_OTHER_USER, 2911



3036

ER_VIEW_PREVENT_UPDATE, 2910
ER_VIEW_RECURSIVE, 2912
ER_VIEW_SELECT_CLAUSE, 2904
ER_VIEW_SELECT_DERIVED, 2904
ER_VIEW_SELECT_TMPTABLE, 2905
ER_VIEW_SELECT_VARIABLE, 2905
ER_VIEW_WRONG_LIST, 2905
ER_WARNING_NOT_COMPLETE_ROLLBACK, 2894
ER_WARN_ALLOWED_PACKET_OVERFLOWED, 2901
ER_WARN_CANT_DROP_DEFAULT_KEYCACHE, 2910
ER_WARN_DATA_OUT_OF_RANGE, 2899
ER_WARN_DEPRECATED_SYNTAX, 2901
ER_WARN_DEPRECATED_SYNTAX_NO_REPLACEMENT, 2927
ER_WARN_DEPRECATED_SYNTAX_WITH_VER, 2918
ER_WARN_ENGINE_TRANSACTION_ROLLBACK, 2922
ER_WARN_FIELD_RESOLVED, 2900
ER_WARN_HOSTNAME_WONT_WORK, 2900
ER_WARN_INVALID_TIMESTAMP, 2901
ER_WARN_I_S_SKIPPED_TABLE, 2927
ER_WARN_NULL_TO_NOTNULL, 2899
ER_WARN_QC_RESIZE, 2900
ER_WARN_TOO_FEW_RECORDS, 2899
ER_WARN_TOO_MANY_RECORDS, 2899
ER_WARN_USING_OTHER_HANDLER, 2899
ER_WARN_VIEW_MERGE, 2905
ER_WARN_VIEW_WITHOUT_KEY, 2905
ER_WRONG_ARGUMENTS, 2895
ER_WRONG_AUTO_KEY, 2886
ER_WRONG_COLUMN_NAME, 2892
ER_WRONG_DB_NAME, 2888
ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, 2913
ER_WRONG_FIELD_SPEC, 2886
ER_WRONG_FIELD_TERMINATORS, 2887
ER_WRONG_FIELD_WITH_GROUP, 2885
ER_WRONG_FK_DEF, 2897
ER_WRONG_GROUP_FIELD, 2885
ER_WRONG_KEY_COLUMN, 2892
ER_WRONG_LOCK_OF_SYSTEM_TABLE, 2909
ER_WRONG_MAGIC, 2907
ER_WRONG_MRG_TABLE, 2892
ER_WRONG_NAME_FOR_CATALOG, 2900
ER_WRONG_NAME_FOR_INDEX, 2900
ER_WRONG_NATIVE_TABLE_STRUCTURE, 2927
ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT, 2896
ER_WRONG_OBJECT, 2904
ER_WRONG_OUTER_JOIN, 2889
ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT, 2920
ER_WRONG_PARAMCOUNT_TO_PROCEDURE, 2888
ER_WRONG_PARAMETERS_TO_NATIVE_FCT, 2920
ER_WRONG_PARAMETERS_TO_PROCEDURE, 2888
ER_WRONG_PARAMETERS_TO_STORED_FCT, 2920
ER_WRONG_PARTITION_NAME, 2919
ER_WRONG_PERFSCHEMA_USAGE, 2927
ER_WRONG_SIZE_NUMBER, 2916
ER_WRONG_SPVAR_TYPE_IN_LIMIT, 2928
ER_WRONG_STRING_LENGTH, 2912
ER_WRONG_SUB_KEY, 2887
ER_WRONG_SUM_SELECT, 2885



3037

ER_WRONG_TABLE_NAME, 2888
ER_WRONG_TYPE_COLUMN_VALUE_ERROR, 2924
ER_WRONG_TYPE_FOR_VAR, 2897
ER_WRONG_USAGE, 2896
ER_WRONG_VALUE, 2916
ER_WRONG_VALUE_COUNT, 2885
ER_WRONG_VALUE_COUNT_ON_ROW, 2890
ER_WRONG_VALUE_FOR_TYPE, 2908
ER_WRONG_VALUE_FOR_VAR, 2897
ER_WSAS_FAILED, 2906
ER_XAER_DUPID, 2910
ER_XAER_INVAL, 2907
ER_XAER_NOTA, 2907
ER_XAER_OUTSIDE, 2908
ER_XAER_RMERR, 2908
ER_XAER_RMFAIL, 2907
ER_XA_RBDEADLOCK, 2922
ER_XA_RBROLLBACK, 2908
ER_XA_RBTIMEOUT, 2922
ER_YES, 2881
ER_ZLIB_Z_BUF_ERROR, 2899
ER_ZLIB_Z_DATA_ERROR, 2899
ER_ZLIB_Z_MEM_ERROR, 2899
WARN_COND_ITEM_TRUNCATED, 2924
WARN_DATA_TRUNCATED, 2899
WARN_NON_ASCII_SEPARATOR_NOT_IMPLEMENTED, 2923
WARN_NO_MASTER_INFO, 2922
WARN_OPTION_BELOW_LIMIT, 2930
WARN_OPTION_IGNORED, 2922
WARN_PLUGIN_BUSY, 2922
WARN_PLUGIN_DELETE_BUILTIN, 2922

ERROR Events (NDB Cluster), 2323
error log, 3514
error logs (NDB Cluster), 2230
error messages

can't find file, 2950
Can't reopen table, 2966
displaying, 415
languages, 1052, 1052
The used command is not allowed with this MySQL version, 719

error-insert option
ndb_move_data, 2267

errors
access denied, 2937
and replication, 1989
checking tables for, 828
common, 2936
directory checksum, 150
handling for UDFs, 2812
in subqueries, 1441
known, 2966
linking, 2645
list of, 2937
lost connection, 2940
reporting, 20, 20
sources of information, 2879

error_count system variable, 512
ERROR_FOR_DIVISION_BY_ZERO SQL mode, 632



3038

ER_ABORTING_CONNECTION error code, 2891
ER_ACCESS_DENIED_ERROR error code, 2884
ER_ACCESS_DENIED_NO_PASSWORD_ERROR error code, 2929
ER_ADD_PARTITION_NO_NEW_PARTITION error code, 2915
ER_ADD_PARTITION_SUBPART_ERROR error code, 2915
ER_ADMIN_WRONG_MRG_TABLE error code, 2912
ER_ALTER_FILEGROUP_FAILED error code, 2916
ER_ALTER_INFO error code, 2887
ER_AMBIGUOUS_FIELD_TERM error code, 2912
ER_AUTOINC_READ_FAILED error code, 2912
ER_AUTO_CONVERT error code, 2898
ER_BAD_DB_ERROR error code, 2884
ER_BAD_FIELD_ERROR error code, 2885
ER_BAD_FT_COLUMN error code, 2900
ER_BAD_HOST_ERROR error code, 2884
ER_BAD_LOG_STATEMENT error code, 2920
ER_BAD_NULL_ERROR error code, 2884
ER_BAD_SLAVE error code, 2895
ER_BAD_SLAVE_UNTIL_COND error code, 2900
ER_BAD_TABLE_ERROR error code, 2884
ER_BASE64_DECODE_ERROR error code, 2919
ER_BINLOG_CREATE_ROUTINE_NEED_SUPER error code, 2909
ER_BINLOG_LOGGING_IMPOSSIBLE error code, 2921
ER_BINLOG_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE error code, 2926
ER_BINLOG_PURGE_EMFILE error code, 2920
ER_BINLOG_PURGE_FATAL_ERR error code, 2906
ER_BINLOG_PURGE_PROHIBITED error code, 2906
ER_BINLOG_ROW_ENGINE_AND_STMT_ENGINE error code, 2925
ER_BINLOG_ROW_INJECTION_AND_STMT_ENGINE error code, 2925
ER_BINLOG_ROW_INJECTION_AND_STMT_MODE error code, 2925
ER_BINLOG_ROW_LOGGING_FAILED error code, 2916
ER_BINLOG_ROW_MODE_AND_STMT_ENGINE error code, 2925
ER_BINLOG_ROW_RBR_TO_SBR error code, 2917
ER_BINLOG_ROW_WRONG_TABLE_DEF error code, 2916
ER_BINLOG_STMT_MODE_AND_ROW_ENGINE error code, 2925
ER_BINLOG_UNSAFE_AND_STMT_ENGINE error code, 2925
ER_BINLOG_UNSAFE_AUTOINC_COLUMNS error code, 2926
ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST error code, 2932
ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT error code, 2931
ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT error code, 2931
ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC error code, 2931
ER_BINLOG_UNSAFE_INSERT_DELAYED error code, 2926
ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT error code, 2930
ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE error code, 2930
ER_BINLOG_UNSAFE_INSERT_TWO_KEYS error code, 2931
ER_BINLOG_UNSAFE_LIMIT error code, 2926
ER_BINLOG_UNSAFE_MIXED_STATEMENT error code, 2928
ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE error code, 2928
ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS error code, 2926
ER_BINLOG_UNSAFE_REPLACE_SELECT error code, 2931
ER_BINLOG_UNSAFE_ROUTINE error code, 2909
ER_BINLOG_UNSAFE_STATEMENT error code, 2920
ER_BINLOG_UNSAFE_SYSTEM_FUNCTION error code, 2926
ER_BINLOG_UNSAFE_SYSTEM_TABLE error code, 2926
ER_BINLOG_UNSAFE_SYSTEM_VARIABLE error code, 2926
ER_BINLOG_UNSAFE_UDF error code, 2926
ER_BINLOG_UNSAFE_UPDATE_IGNORE error code, 2931
ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT error code, 2931



3039

ER_BLOBS_AND_NO_TERMINATED error code, 2887
ER_BLOB_CANT_HAVE_DEFAULT error code, 2888
ER_BLOB_FIELD_IN_PART_FUNC_ERROR error code, 2914
ER_BLOB_KEY_WITHOUT_LENGTH error code, 2893
ER_BLOB_USED_AS_KEY error code, 2886
ER_CANNOT_ADD_FOREIGN error code, 2896
ER_CANNOT_LOAD_FROM_TABLE error code, 2917
ER_CANNOT_USER error code, 2907
ER_CANT_ACTIVATE_LOG error code, 2919
ER_CANT_AGGREGATE_2COLLATIONS error code, 2899
ER_CANT_AGGREGATE_3COLLATIONS error code, 2899
ER_CANT_AGGREGATE_NCOLLATIONS error code, 2899
ER_CANT_CHANGE_TX_ISOLATION error code, 2919
ER_CANT_CREATE_DB error code, 2881
ER_CANT_CREATE_FEDERATED_TABLE error code, 2910
ER_CANT_CREATE_FILE error code, 2881
ER_CANT_CREATE_GEOMETRY_OBJECT error code, 2909
ER_CANT_CREATE_HANDLER_FILE error code, 2914
ER_CANT_CREATE_SROUTINE error code, 2921
ER_CANT_CREATE_TABLE error code, 2881
ER_CANT_CREATE_THREAD error code, 2890
ER_CANT_CREATE_USER_WITH_GRANT error code, 2908
ER_CANT_DELETE_FILE error code, 2882
ER_CANT_DO_THIS_DURING_AN_TRANSACTION error code, 2893
ER_CANT_DROP_FIELD_OR_KEY error code, 2887
ER_CANT_FIND_DL_ENTRY error code, 2890
ER_CANT_FIND_SYSTEM_REC error code, 2882
ER_CANT_FIND_UDF error code, 2889
ER_CANT_GET_STAT error code, 2882
ER_CANT_GET_WD error code, 2882
ER_CANT_INITIALIZE_UDF error code, 2890
ER_CANT_LOCK error code, 2882
ER_CANT_LOCK_LOG_TABLE error code, 2918
ER_CANT_OPEN_FILE error code, 2882
ER_CANT_OPEN_LIBRARY error code, 2890
ER_CANT_READ_DIR error code, 2882
ER_CANT_REMOVE_ALL_FIELDS error code, 2887
ER_CANT_RENAME_LOG_TABLE error code, 2920
ER_CANT_REOPEN_TABLE error code, 2890
ER_CANT_SET_WD error code, 2882
ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG error code, 2910
ER_CANT_UPDATE_WITH_READLOCK error code, 2896
ER_CANT_USE_OPTION_HERE error code, 2897
ER_CANT_WRITE_LOCK_LOG_TABLE error code, 2918
ER_CHECKREAD error code, 2882
ER_CHECK_NOT_IMPLEMENTED error code, 2893
ER_CHECK_NO_SUCH_TABLE error code, 2893
ER_COALESCE_ONLY_ON_HASH_PARTITION error code, 2915
ER_COALESCE_PARTITION_NO_PARTITION error code, 2915
ER_COLLATION_CHARSET_MISMATCH error code, 2898
ER_COLUMNACCESS_DENIED_ERROR error code, 2891
ER_COL_COUNT_DOESNT_MATCH_CORRUPTED error code, 2917
ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE error code, 2918
ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG error code, 2909
ER_COND_ITEM_TOO_LONG error code, 2924
ER_CONFLICTING_DECLARATIONS error code, 2901
ER_CONFLICT_FN_PARSE_ERROR error code, 2923
ER_CONNECT_TO_FOREIGN_DATA_SOURCE error code, 2909



3040

ER_CONNECT_TO_MASTER error code, 2896
ER_CONSECUTIVE_REORG_PARTITIONS error code, 2915
ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR error code, 2913
ER_CON_COUNT_ERROR error code, 2884
ER_CORRUPT_HELP_DB error code, 2898
ER_CRASHED_ON_REPAIR error code, 2894
ER_CRASHED_ON_USAGE error code, 2894
ER_CREATE_DB_WITH_READ_LOCK error code, 2895
ER_CREATE_FILEGROUP_FAILED error code, 2916
ER_CUT_VALUE_GROUP_CONCAT error code, 2899
ER_CYCLIC_REFERENCE error code, 2898
ER_DATABASE_NAME error code, 2923
ER_DATA_OUT_OF_RANGE error code, 2928
ER_DATA_TOO_LONG error code, 2908
ER_DATETIME_FUNCTION_OVERFLOW error code, 2910
ER_DBACCESS_DENIED_ERROR error code, 2884
ER_DB_CREATE_EXISTS error code, 2881
ER_DB_DROP_DELETE error code, 2882
ER_DB_DROP_EXISTS error code, 2882
ER_DB_DROP_RMDIR error code, 2882
ER_DDL_LOG_ERROR error code, 2919
ER_DEBUG_SYNC_HIT_LIMIT error code, 2924
ER_DEBUG_SYNC_TIMEOUT error code, 2924
ER_DELAYED_CANT_CHANGE_LOCK error code, 2891
ER_DELAYED_INSERT_TABLE_LOCKED error code, 2892
ER_DELAYED_NOT_SUPPORTED error code, 2922
ER_DERIVED_MUST_HAVE_ALIAS error code, 2898
ER_DIFF_GROUPS_PROC error code, 2907
ER_DISK_FULL error code, 2883
ER_DIVISION_BY_ZERO error code, 2905
ER_DROP_DB_WITH_READ_LOCK error code, 2895
ER_DROP_FILEGROUP_FAILED error code, 2916
ER_DROP_INDEX_FK error code, 2918
ER_DROP_LAST_PARTITION error code, 2915
ER_DROP_PARTITION_NON_EXISTENT error code, 2915
ER_DROP_USER error code, 2899
ER_DUMP_NOT_IMPLEMENTED error code, 2894
ER_DUPLICATED_VALUE_IN_TYPE error code, 2901
ER_DUP_ARGUMENT error code, 2897
ER_DUP_ENTRY error code, 2886
ER_DUP_ENTRY_AUTOINCREMENT_CASE error code, 2919
ER_DUP_ENTRY_WITH_KEY_NAME error code, 2920
ER_DUP_FIELDNAME error code, 2885
ER_DUP_KEY error code, 2883
ER_DUP_KEYNAME error code, 2885
ER_DUP_SIGNAL_SET error code, 2924
ER_DUP_UNIQUE error code, 2892
ER_EMPTY_QUERY error code, 2886
ER_ERROR_DURING_CHECKPOINT error code, 2894
ER_ERROR_DURING_COMMIT error code, 2893
ER_ERROR_DURING_FLUSH_LOGS error code, 2893
ER_ERROR_DURING_ROLLBACK error code, 2893
ER_ERROR_IN_TRIGGER_BODY error code, 2930
ER_ERROR_IN_UNKNOWN_TRIGGER_BODY error code, 2930
ER_ERROR_ON_CLOSE error code, 2883
ER_ERROR_ON_READ error code, 2883
ER_ERROR_ON_RENAME error code, 2883
ER_ERROR_ON_WRITE error code, 2883



3041

ER_ERROR_WHEN_EXECUTING_COMMAND error code, 2896
ER_EVENTS_DB_ERROR error code, 2919
ER_EVENT_ALREADY_EXISTS error code, 2917
ER_EVENT_CANNOT_ALTER_IN_THE_PAST error code, 2920
ER_EVENT_CANNOT_CREATE_IN_THE_PAST error code, 2920
ER_EVENT_CANNOT_DELETE error code, 2917
ER_EVENT_CANT_ALTER error code, 2917
ER_EVENT_COMPILE_ERROR error code, 2917
ER_EVENT_DATA_TOO_LONG error code, 2918
ER_EVENT_DOES_NOT_EXIST error code, 2917
ER_EVENT_DROP_FAILED error code, 2917
ER_EVENT_ENDS_BEFORE_STARTS error code, 2917
ER_EVENT_EXEC_TIME_IN_THE_PAST error code, 2917
ER_EVENT_INTERVAL_NOT_POSITIVE_OR_TOO_BIG error code, 2917
ER_EVENT_INVALID_CREATION_CTX error code, 2921
ER_EVENT_MODIFY_QUEUE_ERROR error code, 2919
ER_EVENT_NEITHER_M_EXPR_NOR_M_AT error code, 2917
ER_EVENT_OPEN_TABLE_FAILED error code, 2917
ER_EVENT_RECURSION_FORBIDDEN error code, 2919
ER_EVENT_SAME_NAME error code, 2917
ER_EVENT_SET_VAR_ERROR error code, 2919
ER_EVENT_STORE_FAILED error code, 2917
ER_EXCEPTIONS_WRITE_ERROR error code, 2923
ER_EXEC_STMT_WITH_OPEN_CURSOR error code, 2909
ER_FAILED_READ_FROM_PAR_FILE error code, 2928
ER_FAILED_ROUTINE_BREAK_BINLOG error code, 2909
ER_FEATURE_DISABLED error code, 2901
ER_FIELD_NOT_FOUND_PART_ERROR error code, 2913
ER_FIELD_SPECIFIED_TWICE error code, 2889
ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD error code, 2925
ER_FILEGROUP_OPTION_ONLY_ONCE error code, 2916
ER_FILE_EXISTS_ERROR error code, 2887
ER_FILE_NOT_FOUND error code, 2882
ER_FILE_USED error code, 2883
ER_FILSORT_ABORT error code, 2883
ER_FLUSH_MASTER_BINLOG_CLOSED error code, 2894
ER_FORBID_SCHEMA_CHANGE error code, 2911
ER_FORCING_CLOSE error code, 2887
ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST error code, 2910
ER_FOREIGN_DATA_STRING_INVALID error code, 2910
ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE error code, 2910
ER_FOREIGN_DUPLICATE_KEY error code, 2918
ER_FOREIGN_KEY_ON_PARTITIONED error code, 2915
ER_FOREIGN_SERVER_DOESNT_EXIST error code, 2913
ER_FOREIGN_SERVER_EXISTS error code, 2913
ER_FORM_NOT_FOUND error code, 2883
ER_FPARSER_BAD_HEADER error code, 2904
ER_FPARSER_EOF_IN_COMMENT error code, 2904
ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER error code, 2904
ER_FPARSER_ERROR_IN_PARAMETER error code, 2904
ER_FPARSER_TOO_BIG_FILE error code, 2904
ER_FRM_UNKNOWN_TYPE error code, 2904
ER_FSEEK_FAIL error code, 2906
ER_FT_MATCHING_KEY_NOT_FOUND error code, 2894
ER_FUNCTION_NOT_DEFINED error code, 2890
ER_FUNC_INEXISTENT_NAME_COLLISION error code, 2923
ER_GET_ERRMSG error code, 2901
ER_GET_ERRNO error code, 2883



3042

ER_GET_TEMPORARY_ERRMSG error code, 2901
ER_GLOBAL_VARIABLE error code, 2897
ER_GOT_SIGNAL error code, 2887
ER_GRANT_PLUGIN_USER_EXISTS error code, 2929
ER_GRANT_WRONG_HOST_OR_USER error code, 2891
ER_HANDSHAKE_ERROR error code, 2884
ER_HASHCHK error code, 2881
ER_HOSTNAME error code, 2912
ER_HOST_IS_BLOCKED error code, 2890
ER_HOST_NOT_PRIVILEGED error code, 2890
ER_ILLEGAL_GRANT_FOR_TABLE error code, 2891
ER_ILLEGAL_HA error code, 2883
ER_ILLEGAL_HA_CREATE_OPTION error code, 2913
ER_ILLEGAL_REFERENCE error code, 2898
ER_ILLEGAL_VALUE_FOR_TYPE error code, 2906
ER_INCONSISTENT_PARTITION_INFO_ERROR error code, 2914
ER_INCONSISTENT_TYPE_OF_FUNCTIONS_ERROR error code, 2914
ER_INCORRECT_GLOBAL_LOCAL_VAR error code, 2897
ER_INDEX_COLUMN_TOO_LONG error code, 2930
ER_INDEX_CORRUPT error code, 2930
ER_INDEX_REBUILD error code, 2894
ER_INSERT_INFO error code, 2887
ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_DIRECT error code, 2927
ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_FORMAT error code, 2927
ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_SQL_LOG_BIN error code, 2928
ER_INVALID_CHARACTER_STRING error code, 2901
ER_INVALID_DEFAULT error code, 2886
ER_INVALID_GROUP_FUNC_USE error code, 2889
ER_INVALID_ON_UPDATE error code, 2901
ER_INVALID_USE_OF_NULL error code, 2890
ER_IO_ERR_LOG_INDEX_READ error code, 2906
ER_IPSOCK_ERROR error code, 2887
ER_KEY_COLUMN_DOES_NOT_EXITS error code, 2886
ER_KEY_DOES_NOT_EXITS error code, 2893
ER_KEY_NOT_FOUND error code, 2883
ER_KEY_PART_0 error code, 2907
ER_KEY_REF_DO_NOT_MATCH_TABLE_REF error code, 2897
ER_KILL_DENIED_ERROR error code, 2888
ER_LIMITED_PART_RANGE error code, 2916
ER_LIST_OF_FIELDS_ONLY_IN_HASH_ERROR error code, 2914
ER_LOAD_DATA_INVALID_COLUMN error code, 2922
ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR error code, 2908
ER_LOAD_INFO error code, 2887
ER_LOCAL_VARIABLE error code, 2897
ER_LOCK_ABORTED error code, 2928
ER_LOCK_DEADLOCK error code, 2896
ER_LOCK_OR_ACTIVE_TRANSACTION error code, 2894
ER_LOCK_TABLE_FULL error code, 2895
ER_LOCK_WAIT_TIMEOUT error code, 2895
ER_LOGGING_PROHIBIT_CHANGING_OF error code, 2907
ER_LOG_IN_USE error code, 2906
ER_LOG_PURGE_NO_FILE error code, 2922
ER_LOG_PURGE_UNKNOWN_ERR error code, 2906
ER_MALFORMED_DEFINER error code, 2911
ER_MASTER error code, 2894
ER_MASTER_FATAL_ERROR_READING_BINLOG error code, 2897
ER_MASTER_INFO error code, 2895
ER_MASTER_NET_READ error code, 2894



3043

ER_MASTER_NET_WRITE error code, 2894
ER_MAXVALUE_IN_VALUES_IN error code, 2925
ER_MAX_PREPARED_STMT_COUNT_REACHED error code, 2912
ER_MESSAGE_AND_STATEMENT error code, 2927
ER_MISSING_SKIP_SLAVE error code, 2900
ER_MIXING_NOT_ALLOWED error code, 2897
ER_MIX_HANDLER_ERROR error code, 2914
ER_MIX_OF_GROUP_FUNC_AND_FIELDS error code, 2891
ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR error code, 2914
ER_MULTIPLE_PRI_KEY error code, 2886
ER_MULTI_UPDATE_KEY_CONFLICT error code, 2929
ER_M_BIGGER_THAN_D error code, 2909
ER_NAME_BECOMES_EMPTY error code, 2912
ER_NATIVE_FCT_NAME_COLLISION error code, 2920
ER_NDB_CANT_SWITCH_BINLOG_FORMAT error code, 2918
ER_NDB_REPLICATION_SCHEMA_ERROR error code, 2923
ER_NEED_REPREPARE error code, 2922
ER_NET_ERROR_ON_WRITE error code, 2892
ER_NET_FCNTL_ERROR error code, 2892
ER_NET_PACKETS_OUT_OF_ORDER error code, 2892
ER_NET_PACKET_TOO_LARGE error code, 2891
ER_NET_READ_ERROR error code, 2892
ER_NET_READ_ERROR_FROM_PIPE error code, 2892
ER_NET_READ_INTERRUPTED error code, 2892
ER_NET_UNCOMPRESS_ERROR error code, 2892
ER_NET_WRITE_INTERRUPTED error code, 2892
ER_NEVER_USED error code, 2921
ER_NEW_ABORTING_CONNECTION error code, 2894
ER_NISAMCHK error code, 2881
ER_NO error code, 2881
ER_NONEXISTING_GRANT error code, 2891
ER_NONEXISTING_PROC_GRANT error code, 2908
ER_NONEXISTING_TABLE_GRANT error code, 2891
ER_NONUNIQ_TABLE error code, 2886
ER_NONUPDATEABLE_COLUMN error code, 2904
ER_NON_GROUPING_FIELD_USED error code, 2912
ER_NON_INSERTABLE_TABLE error code, 2912
ER_NON_UNIQ_ERROR error code, 2884
ER_NON_UPDATABLE_TABLE error code, 2901
ER_NORMAL_SHUTDOWN error code, 2886
ER_NOT_ALLOWED_COMMAND error code, 2891
ER_NOT_FORM_FILE error code, 2883
ER_NOT_KEYFILE error code, 2883
ER_NOT_SUPPORTED_AUTH_MODE error code, 2898
ER_NOT_SUPPORTED_YET error code, 2897
ER_NO_BINARY_LOGGING error code, 2906
ER_NO_BINLOG_ERROR error code, 2915
ER_NO_CONST_EXPR_IN_RANGE_OR_LIST_ERROR error code, 2913
ER_NO_DB_ERROR error code, 2884
ER_NO_DEFAULT error code, 2897
ER_NO_DEFAULT_FOR_FIELD error code, 2905
ER_NO_DEFAULT_FOR_VIEW_FIELD error code, 2909
ER_NO_FILE_MAPPING error code, 2907
ER_NO_FORMAT_DESCRIPTION_EVENT_BEFORE_BINLOG_STATEMENT error code, 2922
ER_NO_GROUP_FOR_PROC error code, 2907
ER_NO_PARTITION_FOR_GIVEN_VALUE error code, 2916
ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT error code, 2920
ER_NO_PARTS_ERROR error code, 2914



3044

ER_NO_PERMISSION_TO_CREATE_USER error code, 2895
ER_NO_RAID_COMPILED error code, 2893
ER_NO_REFERENCED_ROW error code, 2896
ER_NO_REFERENCED_ROW_2 error code, 2911
ER_NO_SUCH_INDEX error code, 2887
ER_NO_SUCH_TABLE error code, 2891
ER_NO_SUCH_THREAD error code, 2888
ER_NO_SUCH_USER error code, 2911
ER_NO_TABLES_USED error code, 2888
ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA error code, 2912
ER_NO_UNIQUE_LOGFILE error code, 2888
ER_NULL_COLUMN_IN_INDEX error code, 2889
ER_NULL_IN_VALUES_LESS_THAN error code, 2919
ER_OLD_FILE_FORMAT error code, 2911
ER_OLD_KEYFILE error code, 2883
ER_ONLY_INTEGERS_ALLOWED error code, 2919
ER_ONLY_ON_RANGE_LIST_PARTITION error code, 2915
ER_OPEN_AS_READONLY error code, 2884
ER_OPERAND_COLUMNS error code, 2898
ER_OPTION_PREVENTS_STATEMENT error code, 2901
ER_ORDER_WITH_PROC error code, 2907
ER_OUTOFMEMORY error code, 2884
ER_OUT_OF_RESOURCES error code, 2884
ER_OUT_OF_SORTMEMORY error code, 2884
ER_PARSE_ERROR error code, 2886
ER_PARTITIONS_MUST_BE_DEFINED_ERROR error code, 2914
ER_PARTITION_COLUMN_LIST_ERROR error code, 2924
ER_PARTITION_CONST_DOMAIN_ERROR error code, 2918
ER_PARTITION_ENTRY_ERROR error code, 2914
ER_PARTITION_FIELDS_TOO_LONG error code, 2925
ER_PARTITION_FUNCTION_FAILURE error code, 2916
ER_PARTITION_FUNCTION_IS_NOT_ALLOWED error code, 2918
ER_PARTITION_FUNC_NOT_ALLOWED_ERROR error code, 2914
ER_PARTITION_MAXVALUE_ERROR error code, 2913
ER_PARTITION_MERGE_ERROR error code, 2919
ER_PARTITION_MGMT_ON_NONPARTITIONED error code, 2915
ER_PARTITION_NAME error code, 2923
ER_PARTITION_NOT_DEFINED_ERROR error code, 2914
ER_PARTITION_NO_TEMPORARY error code, 2918
ER_PARTITION_REQUIRES_VALUES_ERROR error code, 2913
ER_PARTITION_SUBPARTITION_ERROR error code, 2913
ER_PARTITION_SUBPART_MIX_ERROR error code, 2913
ER_PARTITION_WRONG_NO_PART_ERROR error code, 2913
ER_PARTITION_WRONG_NO_SUBPART_ERROR error code, 2913
ER_PARTITION_WRONG_VALUES_ERROR error code, 2913
ER_PART_STATE_ERROR error code, 2916
ER_PASSWD_LENGTH error code, 2906
ER_PASSWORD_ANONYMOUS_USER error code, 2890
ER_PASSWORD_NOT_ALLOWED error code, 2890
ER_PASSWORD_NO_MATCH error code, 2890
ER_PATH_LENGTH error code, 2927
ER_PLUGIN_IS_NOT_LOADED error code, 2916
ER_PLUGIN_IS_PERMANENT error code, 2929
ER_PLUGIN_NO_INSTALL error code, 2931
ER_PLUGIN_NO_UNINSTALL error code, 2931
ER_PRIMARY_CANT_HAVE_NULL error code, 2893
ER_PROCACCESS_DENIED_ERROR error code, 2906
ER_PROC_AUTO_GRANT_FAIL error code, 2908



3045

ER_PROC_AUTO_REVOKE_FAIL error code, 2908
ER_PS_MANY_PARAM error code, 2907
ER_PS_NO_RECURSION error code, 2910
ER_QUERY_CACHE_DISABLED error code, 2924
ER_QUERY_INTERRUPTED error code, 2902
ER_QUERY_ON_FOREIGN_DATA_SOURCE error code, 2910
ER_QUERY_ON_MASTER error code, 2896
ER_RANGE_NOT_INCREASING_ERROR error code, 2914
ER_RBR_NOT_AVAILABLE error code, 2919
ER_READY error code, 2886
ER_READ_ONLY_TRANSACTION error code, 2895
ER_RECORD_FILE_FULL error code, 2889
ER_REGEXP_ERROR error code, 2891
ER_RELAY_LOG_FAIL error code, 2906
ER_RELAY_LOG_INIT error code, 2906
ER_REMOVED_SPACES error code, 2912
ER_RENAMED_NAME error code, 2923
ER_REORG_HASH_ONLY_ON_SAME_NO error code, 2915
ER_REORG_NO_PARAM_ERROR error code, 2915
ER_REORG_OUTSIDE_RANGE error code, 2916
ER_REORG_PARTITION_NOT_EXIST error code, 2915
ER_REQUIRES_PRIMARY_KEY error code, 2893
ER_RESERVED_SYNTAX error code, 2906
ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER error code, 2924
ER_REVOKE_GRANTS error code, 2899
ER_ROW_IS_REFERENCED error code, 2896
ER_ROW_IS_REFERENCED_2 error code, 2911
ER_ROW_SINGLE_PARTITION_FIELD_ERROR error code, 2925
ER_SAME_NAME_PARTITION error code, 2915
ER_SAME_NAME_PARTITION_FIELD error code, 2924
ER_SELECT_REDUCED error code, 2898
ER_SERVER_IS_IN_SECURE_AUTH_MODE error code, 2900
ER_SERVER_SHUTDOWN error code, 2885
ER_SET_CONSTANTS_ONLY error code, 2895
ER_SET_PASSWORD_AUTH_PLUGIN error code, 2929
ER_SHUTDOWN_COMPLETE error code, 2887
ER_SIGNAL_BAD_CONDITION_TYPE error code, 2924
ER_SIGNAL_EXCEPTION error code, 2924
ER_SIGNAL_NOT_FOUND error code, 2924
ER_SIGNAL_WARN error code, 2924
ER_SIZE_OVERFLOW_ERROR error code, 2916
ER_SLAVE_AMBIGOUS_EXEC_MODE error code, 2921
ER_SLAVE_CANT_CREATE_CONVERSION error code, 2927
ER_SLAVE_CONVERSION_FAILED error code, 2927
ER_SLAVE_CORRUPT_EVENT error code, 2922
ER_SLAVE_CREATE_EVENT_FAILURE error code, 2921
ER_SLAVE_FATAL_ERROR error code, 2920
ER_SLAVE_HEARTBEAT_FAILURE error code, 2923
ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE error code, 2923
ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MAX error code, 2929
ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MIN error code, 2929
ER_SLAVE_IGNORED_SSL_PARAMS error code, 2900
ER_SLAVE_IGNORED_TABLE error code, 2897
ER_SLAVE_IGNORE_SERVER_IDS error code, 2924
ER_SLAVE_INCIDENT error code, 2920
ER_SLAVE_MASTER_COM_FAILURE error code, 2921
ER_SLAVE_MUST_STOP error code, 2894
ER_SLAVE_NOT_RUNNING error code, 2895



3046

ER_SLAVE_RELAY_LOG_READ_FAILURE error code, 2921
ER_SLAVE_RELAY_LOG_WRITE_FAILURE error code, 2921
ER_SLAVE_THREAD error code, 2895
ER_SLAVE_WAS_NOT_RUNNING error code, 2898
ER_SLAVE_WAS_RUNNING error code, 2898
ER_SPATIAL_CANT_HAVE_NULL error code, 2898
ER_SPATIAL_MUST_HAVE_GEOM_COL error code, 2928
ER_SPECIFIC_ACCESS_DENIED_ERROR error code, 2897
ER_SP_ALREADY_EXISTS error code, 2902
ER_SP_BADRETURN error code, 2902
ER_SP_BADSELECT error code, 2902
ER_SP_BADSTATEMENT error code, 2902
ER_SP_BAD_CURSOR_QUERY error code, 2903
ER_SP_BAD_CURSOR_SELECT error code, 2903
ER_SP_BAD_SQLSTATE error code, 2908
ER_SP_BAD_VAR_SHADOW error code, 2911
ER_SP_CANT_ALTER error code, 2903
ER_SP_CANT_SET_AUTOCOMMIT error code, 2911
ER_SP_CASE_NOT_FOUND error code, 2904
ER_SP_COND_MISMATCH error code, 2903
ER_SP_CURSOR_AFTER_HANDLER error code, 2904
ER_SP_CURSOR_ALREADY_OPEN error code, 2903
ER_SP_CURSOR_MISMATCH error code, 2903
ER_SP_CURSOR_NOT_OPEN error code, 2903
ER_SP_DOES_NOT_EXIST error code, 2902
ER_SP_DROP_FAILED error code, 2902
ER_SP_DUP_COND error code, 2903
ER_SP_DUP_CURS error code, 2903
ER_SP_DUP_HANDLER error code, 2908
ER_SP_DUP_PARAM error code, 2903
ER_SP_DUP_VAR error code, 2903
ER_SP_FETCH_NO_DATA error code, 2903
ER_SP_GOTO_IN_HNDLR error code, 2905
ER_SP_LABEL_MISMATCH error code, 2902
ER_SP_LABEL_REDEFINE error code, 2902
ER_SP_LILABEL_MISMATCH error code, 2902
ER_SP_NORETURN error code, 2903
ER_SP_NORETURNEND error code, 2903
ER_SP_NOT_VAR_ARG error code, 2908
ER_SP_NO_AGGREGATE error code, 2912
ER_SP_NO_DROP_SP error code, 2905
ER_SP_NO_RECURSION error code, 2909
ER_SP_NO_RECURSIVE_CREATE error code, 2902
ER_SP_NO_RETSET error code, 2909
ER_SP_PROC_TABLE_CORRUPT error code, 2911
ER_SP_RECURSION_LIMIT error code, 2911
ER_SP_STORE_FAILED error code, 2902
ER_SP_SUBSELECT_NYI error code, 2903
ER_SP_UNDECLARED_VAR error code, 2903
ER_SP_UNINIT_VAR error code, 2902
ER_SP_VARCOND_AFTER_CURSHNDLR error code, 2904
ER_SP_WRONG_NAME error code, 2911
ER_SP_WRONG_NO_OF_ARGS error code, 2902
ER_SP_WRONG_NO_OF_FETCH_ARGS error code, 2903
ER_SR_INVALID_CREATION_CTX error code, 2921
ER_STACK_OVERRUN error code, 2889
ER_STACK_OVERRUN_NEED_MORE error code, 2910
ER_STARTUP error code, 2908



3047

ER_STMT_CACHE_FULL error code, 2929
ER_STMT_HAS_NO_OPEN_CURSOR error code, 2909
ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG error code, 2904
ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_DIRECT error code, 2927
ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_FORMAT error code, 2918
ER_STORED_FUNCTION_PREVENTS_SWITCH_SQL_LOG_BIN error code, 2928
ER_SUBPARTITION_ERROR error code, 2914
ER_SUBPARTITION_NAME error code, 2923
ER_SUBQUERY_NO_1_ROW error code, 2898
ER_SYNTAX_ERROR error code, 2891
ER_TABLEACCESS_DENIED_ERROR error code, 2891
ER_TABLENAME_NOT_ALLOWED_HERE error code, 2898
ER_TABLESPACE_AUTO_EXTEND_ERROR error code, 2916
ER_TABLE_CANT_HANDLE_AUTO_INCREMENT error code, 2892
ER_TABLE_CANT_HANDLE_BLOB error code, 2892
ER_TABLE_CANT_HANDLE_FT error code, 2896
ER_TABLE_CANT_HANDLE_SPKEYS error code, 2912
ER_TABLE_DEF_CHANGED error code, 2908
ER_TABLE_EXISTS_ERROR error code, 2884
ER_TABLE_IN_FK_CHECK error code, 2932
ER_TABLE_MUST_HAVE_COLUMNS error code, 2889
ER_TABLE_NAME error code, 2923
ER_TABLE_NEEDS_REBUILD error code, 2930
ER_TABLE_NEEDS_UPGRADE error code, 2911
ER_TABLE_NOT_LOCKED error code, 2888
ER_TABLE_NOT_LOCKED_FOR_WRITE error code, 2888
ER_TEMPORARY_NAME error code, 2923
ER_TEMP_TABLE_PREVENTS_SWITCH_OUT_OF_RBR error code, 2918
ER_TEXTFILE_NOT_READABLE error code, 2887
ER_TOO_BIG_DISPLAYWIDTH error code, 2910
ER_TOO_BIG_FIELDLENGTH error code, 2886
ER_TOO_BIG_FOR_UNCOMPRESS error code, 2898
ER_TOO_BIG_PRECISION error code, 2909
ER_TOO_BIG_ROWSIZE error code, 2889
ER_TOO_BIG_SCALE error code, 2909
ER_TOO_BIG_SELECT error code, 2888
ER_TOO_BIG_SET error code, 2888
ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT error code, 2912
ER_TOO_LONG_BODY error code, 2910
ER_TOO_LONG_FIELD_COMMENT error code, 2923
ER_TOO_LONG_IDENT error code, 2885
ER_TOO_LONG_INDEX_COMMENT error code, 2928
ER_TOO_LONG_KEY error code, 2886
ER_TOO_LONG_STRING error code, 2892
ER_TOO_LONG_TABLE_COMMENT error code, 2923
ER_TOO_MANY_CONCURRENT_TRXS error code, 2923
ER_TOO_MANY_DELAYED_THREADS error code, 2891
ER_TOO_MANY_FIELDS error code, 2889
ER_TOO_MANY_KEYS error code, 2886
ER_TOO_MANY_KEY_PARTS error code, 2886
ER_TOO_MANY_PARTITIONS_ERROR error code, 2914
ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR error code, 2924
ER_TOO_MANY_ROWS error code, 2893
ER_TOO_MANY_TABLES error code, 2889
ER_TOO_MANY_USER_CONNECTIONS error code, 2895
ER_TOO_MANY_VALUES_ERROR error code, 2925
ER_TOO_MUCH_AUTO_TIMESTAMP_COLS error code, 2901
ER_TRANS_CACHE_FULL error code, 2894



3048

ER_TRG_ALREADY_EXISTS error code, 2905
ER_TRG_CANT_CHANGE_ROW error code, 2905
ER_TRG_CANT_OPEN_TABLE error code, 2921
ER_TRG_CORRUPTED_FILE error code, 2921
ER_TRG_DOES_NOT_EXIST error code, 2905
ER_TRG_INVALID_CREATION_CTX error code, 2921
ER_TRG_IN_WRONG_SCHEMA error code, 2910
ER_TRG_NO_CREATION_CTX error code, 2921
ER_TRG_NO_DEFINER error code, 2911
ER_TRG_NO_SUCH_ROW_IN_TRG error code, 2905
ER_TRG_ON_VIEW_OR_TEMP_TABLE error code, 2905
ER_TRUNCATED_WRONG_VALUE error code, 2901
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD error code, 2905
ER_TRUNCATE_ILLEGAL_FK error code, 2929
ER_UDF_EXISTS error code, 2890
ER_UDF_NO_PATHS error code, 2890
ER_UNDO_RECORD_TOO_BIG error code, 2930
ER_UNEXPECTED_EOF error code, 2884
ER_UNION_TABLES_IN_DIFFERENT_DIR error code, 2896
ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF error code, 2914
ER_UNKNOWN_CHARACTER_SET error code, 2889
ER_UNKNOWN_COLLATION error code, 2900
ER_UNKNOWN_COM_ERROR error code, 2884
ER_UNKNOWN_ERROR error code, 2888
ER_UNKNOWN_KEY_CACHE error code, 2900
ER_UNKNOWN_LOCALE error code, 2924
ER_UNKNOWN_PROCEDURE error code, 2888
ER_UNKNOWN_STMT_HANDLER error code, 2898
ER_UNKNOWN_STORAGE_ENGINE error code, 2900
ER_UNKNOWN_SYSTEM_VARIABLE error code, 2894
ER_UNKNOWN_TABLE error code, 2889
ER_UNKNOWN_TARGET_BINLOG error code, 2906
ER_UNKNOWN_TIME_ZONE error code, 2901
ER_UNSUPORTED_LOG_ENGINE error code, 2919
ER_UNSUPPORTED_ENGINE error code, 2932
ER_UNSUPPORTED_EXTENSION error code, 2889
ER_UNSUPPORTED_PS error code, 2901
ER_UNTIL_COND_IGNORED error code, 2900
ER_UPDATE_INFO error code, 2890
ER_UPDATE_LOG_DEPRECATED_IGNORED error code, 2902
ER_UPDATE_LOG_DEPRECATED_TRANSLATED error code, 2902
ER_UPDATE_TABLE_USED error code, 2887
ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE error code, 2893
ER_USERNAME error code, 2912
ER_USER_LIMIT_REACHED error code, 2897
ER_VALUES_IS_NOT_INT_TYPE_ERROR error code, 2929
ER_VARIABLE_IS_NOT_STRUCT error code, 2900
ER_VARIABLE_IS_READONLY error code, 2922
ER_VAR_CANT_BE_READ error code, 2897
ER_VIEW_CHECKSUM error code, 2907
ER_VIEW_CHECK_FAILED error code, 2906
ER_VIEW_DELETE_MERGE_VIEW error code, 2907
ER_VIEW_FRM_NO_USER error code, 2911
ER_VIEW_INVALID error code, 2905
ER_VIEW_INVALID_CREATION_CTX error code, 2921
ER_VIEW_MULTIUPDATE error code, 2907
ER_VIEW_NONUPD_CHECK error code, 2906
ER_VIEW_NO_CREATION_CTX error code, 2921



3049

ER_VIEW_NO_EXPLAIN error code, 2904
ER_VIEW_NO_INSERT_FIELD_LIST error code, 2907
ER_VIEW_OTHER_USER error code, 2911
ER_VIEW_PREVENT_UPDATE error code, 2910
ER_VIEW_RECURSIVE error code, 2912
ER_VIEW_SELECT_CLAUSE error code, 2904
ER_VIEW_SELECT_DERIVED error code, 2904
ER_VIEW_SELECT_TMPTABLE error code, 2905
ER_VIEW_SELECT_VARIABLE error code, 2905
ER_VIEW_WRONG_LIST error code, 2905
ER_WARNING_NOT_COMPLETE_ROLLBACK error code, 2894
ER_WARN_ALLOWED_PACKET_OVERFLOWED error code, 2901
ER_WARN_CANT_DROP_DEFAULT_KEYCACHE error code, 2910
ER_WARN_DATA_OUT_OF_RANGE error code, 2899
ER_WARN_DEPRECATED_SYNTAX error code, 2901
ER_WARN_DEPRECATED_SYNTAX_NO_REPLACEMENT error code, 2927
ER_WARN_DEPRECATED_SYNTAX_WITH_VER error code, 2918
ER_WARN_ENGINE_TRANSACTION_ROLLBACK error code, 2922
ER_WARN_FIELD_RESOLVED error code, 2900
ER_WARN_HOSTNAME_WONT_WORK error code, 2900
ER_WARN_INVALID_TIMESTAMP error code, 2901
ER_WARN_I_S_SKIPPED_TABLE error code, 2927
ER_WARN_NULL_TO_NOTNULL error code, 2899
ER_WARN_QC_RESIZE error code, 2900
ER_WARN_TOO_FEW_RECORDS error code, 2899
ER_WARN_TOO_MANY_RECORDS error code, 2899
ER_WARN_USING_OTHER_HANDLER error code, 2899
ER_WARN_VIEW_MERGE error code, 2905
ER_WARN_VIEW_WITHOUT_KEY error code, 2905
ER_WRONG_ARGUMENTS error code, 2895
ER_WRONG_AUTO_KEY error code, 2886
ER_WRONG_COLUMN_NAME error code, 2892
ER_WRONG_DB_NAME error code, 2888
ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR error code, 2913
ER_WRONG_FIELD_SPEC error code, 2886
ER_WRONG_FIELD_TERMINATORS error code, 2887
ER_WRONG_FIELD_WITH_GROUP error code, 2885
ER_WRONG_FK_DEF error code, 2897
ER_WRONG_GROUP_FIELD error code, 2885
ER_WRONG_KEY_COLUMN error code, 2892
ER_WRONG_LOCK_OF_SYSTEM_TABLE error code, 2909
ER_WRONG_MAGIC error code, 2907
ER_WRONG_MRG_TABLE error code, 2892
ER_WRONG_NAME_FOR_CATALOG error code, 2900
ER_WRONG_NAME_FOR_INDEX error code, 2900
ER_WRONG_NATIVE_TABLE_STRUCTURE error code, 2927
ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT error code, 2896
ER_WRONG_OBJECT error code, 2904
ER_WRONG_OUTER_JOIN error code, 2889
ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT error code, 2920
ER_WRONG_PARAMCOUNT_TO_PROCEDURE error code, 2888
ER_WRONG_PARAMETERS_TO_NATIVE_FCT error code, 2920
ER_WRONG_PARAMETERS_TO_PROCEDURE error code, 2888
ER_WRONG_PARAMETERS_TO_STORED_FCT error code, 2920
ER_WRONG_PARTITION_NAME error code, 2919
ER_WRONG_PERFSCHEMA_USAGE error code, 2927
ER_WRONG_SIZE_NUMBER error code, 2916
ER_WRONG_SPVAR_TYPE_IN_LIMIT error code, 2928



3050

ER_WRONG_STRING_LENGTH error code, 2912
ER_WRONG_SUB_KEY error code, 2887
ER_WRONG_SUM_SELECT error code, 2885
ER_WRONG_TABLE_NAME error code, 2888
ER_WRONG_TYPE_COLUMN_VALUE_ERROR error code, 2924
ER_WRONG_TYPE_FOR_VAR error code, 2897
ER_WRONG_USAGE error code, 2896
ER_WRONG_VALUE error code, 2916
ER_WRONG_VALUE_COUNT error code, 2885
ER_WRONG_VALUE_COUNT_ON_ROW error code, 2890
ER_WRONG_VALUE_FOR_TYPE error code, 2908
ER_WRONG_VALUE_FOR_VAR error code, 2897
ER_WSAS_FAILED error code, 2906
ER_XAER_DUPID error code, 2910
ER_XAER_INVAL error code, 2907
ER_XAER_NOTA error code, 2907
ER_XAER_OUTSIDE error code, 2908
ER_XAER_RMERR error code, 2908
ER_XAER_RMFAIL error code, 2907
ER_XA_RBDEADLOCK error code, 2922
ER_XA_RBROLLBACK error code, 2908
ER_XA_RBTIMEOUT error code, 2922
ER_YES error code, 2881
ER_ZLIB_Z_BUF_ERROR error code, 2899
ER_ZLIB_Z_DATA_ERROR error code, 2899
ER_ZLIB_Z_MEM_ERROR error code, 2899
escape (\\), 970
escape sequences

option files, 258
strings, 969

establishing secure connections, 762
estimating

query performance, 920
event groups, 1468
event log format (NDB Cluster), 2319
event logs (NDB Cluster), 2316, 2318, 2318
event scheduler, 2503

thread states, 968
Event Scheduler, 2511

altering events, 1295
and MySQL privileges, 2516
and mysqladmin debug, 2516
and replication, 1981, 1981
and SHOW PROCESSLIST, 2513
concepts, 2512
creating events, 1321
dropping events, 1377
enabling and disabling, 2513
event metadata, 2515
obtaining status information, 2516
SQL statements, 2515
starting and stopping, 2513
time representation, 2515

event severity levels (NDB Cluster), 2319
event table

system table, 646
event types (NDB Cluster), 2317, 2320
event-scheduler option



3051

mysqld, 460
EventLogBufferSize, 2145
events, 2503, 2511

altering, 1295
creating, 1321
dropping, 1377
metadata, 2515
restrictions, 2971
status variables, 2519

EVENTS
INFORMATION_SCHEMA table, 2517, 2539

events option
mysqldump, 334

events_waits_current table
performance_schema, 2615

events_waits_history table
performance_schema, 2617

events_waits_history_long table
performance_schema, 2617

events_waits_summary_by_instance table
performance_schema, 2618

events_waits_summary_by_thread_by_event_name table
performance_schema, 2618

events_waits_summary_global_by_event_name table
performance_schema, 2618

event_scheduler system variable, 512
eviction, 3514
exact-value literals, 972, 1283
example option

mysqld_multi, 275
example programs

C API, 2643
EXAMPLE storage engine, 1769, 1803
examples

compressed tables, 381
myisamchk output, 372
queries, 235

exceptions table
NDB Cluster Replication, 2439

exclude-databases option (ndb_restore), 2284
exclude-intermediate-sql-tables option (ndb_restore), 2288
exclude-missing-columns option

ndb_move_data, 2267
exclude-missing-columns option (ndb_restore), 2286
exclude-missing-tables option (ndb_restore), 2286
exclude-tables option (ndb_restore), 2284
exclusive lock, 1601, 3514
Execute

thread command, 956
EXECUTE, 1470, 1473
execute option

mysql, 295
execute option (ndb_mgm), 2242
ExecuteOnComputer, 2110, 2114, 2165
executing

thread state, 959
executing SQL statements from text files, 233, 308
Execution of init_command



3052

thread state, 959
execution plan, 907
execution threads (NDB Cluster), 2152
EXISTS

with subqueries, 1437
exit command

mysql, 302
EXIT command (NDB Cluster), 2307
EXIT SINGLE USER MODE command (NDB Cluster), 2307
exit-info option

mysqld, 460
EXP(), 1180
expire_logs_days system variable, 513
EXPLAIN, 907, 1580
EXPLAIN PARTITIONS, 2484, 2485
EXPLAIN used with partitioned tables, 2484
explicit default values, 1120
EXPORT_SET(), 1156
expression aliases, 1278, 1418
expression syntax, 998
expressions

extended, 226
extend-check option

myisamchk, 369, 370
extended option

mysqlcheck, 322
extended-insert option

mysqldump, 334
extensions

to standard SQL, 24
extent, 3514
ExteriorRing(), 1266
external locking, 460, 569, 827, 941, 961
external-locking option

mysqld, 460
external_user system variable, 513
extra-file option

my_print_defaults, 414
extra-node-info option

ndb_desc, 2257
extra-partition-info option

ndb_desc, 2257
EXTRACT(), 1194
extracting

dates, 223
ExtractValue(), 1230
ExtraSendBufferMemory

API nodes, 2166
data nodes, 2161
management nodes, 2112

F
failover

in NDB Cluster replication, 2420
Java clients, 2007

FALSE, 972, 977
testing for, 1144, 1144

fanout, 3514



3053

FAQs
Virtualization Support, 2878

Fast Index Creation, 3515
concurrency, 1688
crash recovery, 1689
examples, 1687
implementation, 1688
limitations, 1689
overview, 1687

fast option
myisamchk, 369
mysqlcheck, 323

fast shutdown, 3515
features of MySQL, 5
FEDERATED storage engine, 1769, 1797
Fetch

thread command, 956
FETCH, 1483
field

changing, 1304
Field List

thread command, 956
FIELD(), 1156
fields option

ndb_config, 2248
fields-enclosed-by option

mysqldump, 334, 347
fields-enclosed-by option (ndb_restore), 2281
fields-escaped-by option

mysqldump, 334, 347
fields-optionally-enclosed-by option

mysqldump, 334, 347
fields-optionally-enclosed-by option (ndb_restore), 2281
fields-terminated-by option

mysqldump, 334, 347
fields-terminated-by option (ndb_restore), 2282, 2282
FILE, 1158
file format, 1677, 3515

Antelope, 1674
Barracuda, 1667
downgrading, 1681
identifying, 1681

file format management
downgrading, 1594

file-per-table, 3515
files

binary log, 653
created by CREATE TABLE, 1359
DDL log, 667
error messages, 1052
general query log, 652
log, 667
metadata log, 667
my.cnf, 1971
not found message, 2950
permissions, 2950
repairing, 369
script, 233



3054

size limits, 2982
slow query log, 666
text, 308, 343
tmp, 178

FILES
INFORMATION_SCHEMA table, 2573

filesort optimization, 860
FileSystemPath, 2116
FileSystemPathDataFiles, 2158
FileSystemPathDD, 2158
FileSystemPathUndoFiles, 2158
file_instances table

performance_schema, 2612
file_summary_by_event_name table

performance_schema, 2619
file_summary_by_instance table

performance_schema, 2619
fill factor, 1666, 3515
FIND_IN_SET(), 1156
Finished reading one binlog; switching to next binlog

thread state, 965
firewalls (software)

and NDB Cluster, 2367, 2368
first-slave option

mysqldump, 334
fix-db-names option

mysqlcheck, 323
fix-table-names option

mysqlcheck, 323
FIXED data type, 1076
fixed row format, 3516
fixed-point arithmetic, 1283
FLOAT data type, 1076, 1076, 1077
floating-point number, 1077
floating-point values

and replication, 1982
floats, 972
FLOOR(), 1180
FLUSH

and replication, 1983
flush, 3516
flush list, 3516
flush option

mysqld, 460
FLUSH statement, 1574
flush system variable, 513
flush tables, 313
flush-logs option

mysqldump, 335
flush-privileges option

mysqldump, 335
flushlog option

mysqlhotcopy, 406
flush_time system variable, 513
FOR UPDATE, 1422
FORCE

plugin activation option, 671
FORCE INDEX, 922, 2965



3055

FORCE KEY, 922
force option

myisamchk, 369, 370
myisampack, 381
mysql, 295
mysqladmin, 316
mysqlcheck, 323
mysqldump, 335
mysqlimport, 347
mysql_convert_table_format, 408
mysql_install_db, 280
mysql_upgrade, 288

force-if-open option
mysqlbinlog, 393

force-read option
mysqlbinlog, 393

FORCE_PLUS_PERMANENT
plugin activation option, 671

foreign key, 3516
constraint, 31, 31
deleting, 1306, 1366

FOREIGN KEY constraint, 3516
foreign key constraints, 1363

InnoDB, 1661
restrictions, 1661

FOREIGN KEY constraints
and fast index creation, 1689

foreign keys, 29, 237, 1305
foreign_key_checks system variable, 514
FORMAT(), 1157
forums, 19
FOUND_ROWS(), 1250
FragmentLogFileSize, 2127
FreeBSD troubleshooting, 174
freeing items

thread state, 959
frequently-asked questions about NDB Cluster, 2846
.frm file, 3514
FROM, 1419
FROM_DAYS(), 1194
FROM_UNIXTIME(), 1194
fs option (ndb_error_reporter), 2260
FTS, 3516
ft_boolean_syntax system variable, 514
ft_max_word_len myisamchk variable, 367
ft_max_word_len system variable, 515
ft_min_word_len myisamchk variable, 367
ft_min_word_len system variable, 515
ft_query_expansion_limit system variable, 516
ft_stopword_file myisamchk variable, 367
ft_stopword_file system variable, 516
full backup, 3516
full disk, 2955
full table scan, 3517
full table scans

avoiding, 869
full-text parser plugins, 2760
full-text queries



3056

optimization, 884, 898
full-text search, 1207, 3517
FULLTEXT, 1207
fulltext

stopword list, 1219
FULLTEXT index, 3517
FULLTEXT initialization

thread state, 959
fulltext join type

optimizer, 912
func table

system table, 646
function

creating, 1523
deleting, 1524

function names
parsing, 986
resolving ambiguity, 986

functions, 1127
and replication, 1983
arithmetic, 1239
bit, 1239
C API, 2652
C prepared statement API, 2712, 2713
cast, 1222
control flow, 1150
date and time, 1185
encryption, 1240
for SELECT and WHERE clauses, 1127
GROUP BY, 1269
grouping, 1141
information, 1247
mathematical, 1178
miscellaneous, 1278
native

adding, 2815
new, 2805
stored, 2505
string, 1152
string comparison, 1164
user-defined, 1523, 1524, 2805

adding, 2806
fuzzy checkpointing, 3517

G
GA, 3517

MySQL releases, 44
gap, 3517
gap event, 2407
gap lock, 1601, 3517

InnoDB, 1616, 1711
gb2312, gbk, 2859
gci option

ndb_select_all, 2290
gci64 option

ndb_select_all, 2290
GCP Stop errors (NDB Cluster), 2160
gdb



3057

using, 2820
gdb option

mysqld, 461
general information, 1
General Public License, 5
general query log, 652, 3518
general tablespace, 3518
general-log option

mysqld, 461
general_log system variable, 516
general_log table

system table, 646
general_log_file system variable, 517
geographic feature, 1106
GeomCollFromText(), 1259
GeomCollFromWKB(), 1260
geometry, 1106
GEOMETRY data type, 1107
geometry values

internal storage format, 1115
WKB format, 1114
WKT format, 1113

GEOMETRYCOLLECTION data type, 1107
GeometryCollection(), 1261
GeometryCollectionFromText(), 1259
GeometryCollectionFromWKB(), 1260
GeometryFromText(), 1259
GeometryFromWKB(), 1260
GeometryN(), 1266
GeometryType(), 1262
GeomFromText(), 1259
GeomFromWKB(), 1260
geospatial feature, 1106
German dictionary collation, 1005, 1045, 1045
German phone book collation, 1005, 1045, 1045
getting MySQL, 45
GET_FORMAT(), 1195
GET_LOCK(), 1279
GIS, 1105
GIS data types

storage requirements, 1125
Git tree, 159
GLength(), 1264
global privileges, 1501, 1512
global transaction, 3518
globalization, 1003
GLOBAL_STATUS

INFORMATION_SCHEMA table, 2543
GLOBAL_VARIABLES

INFORMATION_SCHEMA table, 2543
go command

mysql, 302
Google Test, 168
got handler lock

thread state, 964
got old table

thread state, 964
GRANT statement, 746, 1501



3058

grant table distribution (NDB Cluster), 2389
grant tables

columns_priv table, 646, 727
db table, 183, 646, 727
host table, 646, 727
procs_priv table, 646, 727
proxies_priv, 754
proxies_priv table, 183, 646, 727
re-creating, 178
sorting, 735, 737
structure, 726
tables_priv table, 646, 727
user table, 183, 646, 727

granting
privileges, 1501

grants
display, 1547

greater than (>), 1144
greater than or equal (>=), 1143
greatest timestamp wins (conflict resolution), 2436
greatest timestamp, delete wins (conflict resolution), 2436
GREATEST(), 1145
GROUP BY

aliases in, 1278
extensions to standard SQL, 1277, 1420
implicit sorting, 860
maximum sort length, 1420
WITH ROLLUP, 1274

GROUP BY functions, 1269
GROUP BY optimizing, 862
group commit, 1601, 3518
grouping

expressions, 1141
GROUP_CONCAT(), 1271
group_concat_max_len system variable, 517

H
HANDLER, 1389
Handlers, 1486
handling

errors, 2812
hash index, 3518
hash indexes, 887
hash partitioning, 2463
hash partitions

managing, 2482
splitting and merging, 2482

have_compress system variable, 518
have_crypt system variable, 518
have_csv system variable, 518
have_dynamic_loading system variable, 518
have_geometry system variable, 518
have_innodb system variable, 518
have_openssl system variable, 518
have_partitioning system variable, 518
have_profiling system variable, 518
have_query_cache system variable, 518
have_rtree_keys system variable, 518



3059

have_ssl system variable, 518
have_symlink system variable, 519
HAVING, 1420
HDD, 3518
header option

ndb_select_all, 2289
header_file option

comp_err, 278
HEAP storage engine, 1769, 1783
heartbeat, 3518
HeartbeatIntervalDbApi, 2136
HeartbeatIntervalDbDb, 2136
HeartbeatIntervalMgmdMgmd

management nodes, 2113
HeartbeatOrder, 2137
HeartbeatThreadPriority, 2112, 2166
help command

mysql, 301
HELP command (NDB Cluster), 2305
help option

comp_err, 278
myisamchk, 366
myisampack, 380
myisam_ftdump, 362
mysql, 293
mysqlaccess, 386
mysqladmin, 315
mysqlbinlog, 391
mysqlcheck, 321
mysqld, 451
mysqldump, 331
mysqldumpslow, 403
mysqld_multi, 275
mysqld_safe, 268
mysqlhotcopy, 406
mysqlimport, 345
MySQLInstallerConsole, 81
mysqlshow, 351
mysqlslap, 356
mysql_convert_table_format, 408
mysql_find_rows, 409
mysql_install_db, 280
mysql_plugin, 282
mysql_setpermission, 410
mysql_upgrade, 287
mysql_waitpid, 410
my_print_defaults, 413
perror, 415
resolveip, 416
resolve_stack_dump, 414

HELP option
myisamchk, 366

help option (NDB Cluster programs), 2300
HELP statement, 1581
help tables

system tables, 646
help_category table

system table, 646



3060

help_keyword table
system table, 646

help_relation table
system table, 647

help_topic table
system table, 647

hex option (ndb_restore), 2282
HEX(), 1157, 1180
hex-blob option

mysqldump, 335
hexadecimal literal introducer, 975
hexadecimal literals, 974
hexdump option

mysqlbinlog, 393
high-water mark, 3519
HIGH_NOT_PRECEDENCE SQL mode, 632
HIGH_PRIORITY

INSERT modifier, 1394
SELECT modifier, 1422

hints, 26
index, 922, 1419

history list, 3519
history of MySQL, 8
hole punching, 3519
HOME environment variable, 306, 417
host name

default, 249
host name caching, 952
host name resolution, 952
host names

in account names, 732
in default accounts, 183

host option, 251
mysql, 295
mysqlaccess, 387
mysqladmin, 316
mysqlbinlog, 394
mysqlcheck, 323
mysqldump, 335
mysqlhotcopy, 406
mysqlimport, 347
mysqlshow, 352
mysqlslap, 358
mysql_convert_table_format, 408
mysql_setpermission, 410
mysql_upgrade, 288
ndb_config, 2248

host table, 738
sorting, 737
system table, 646, 727

Host*SciId* parameters, 2221
HostName, 2110, 2114, 2165
HostName (NDB Cluster), 2365
hostname system variable, 519
HostName1, 2215, 2219, 2221
HostName2, 2215, 2219, 2221
hot, 3519
hot backup, 3519



3061

HOUR(), 1195
howto option

mysqlaccess, 387
html option

mysql, 295

I
i-am-a-dummy option

mysql, 298
ib-file set, 1678, 3520
ibbackup_logfile, 3520
.ibd file, 3519
ibdata file, 3520
ibtmp file, 3520
.ibz file, 3520
ib_logfile, 3521
icc

and NDB Cluster support>, 2817
MySQL builds, 59

Id, 2109, 2114, 2164
ID

unique, 2744
identifiers, 978

case sensitivity, 982
quoting, 978

identity system variable, 519
IF, 1479
IF(), 1151
IFNULL(), 1151
IGNORE

DELETE modifier, 1386, 1401
INSERT modifier, 1394
UPDATE modifier, 1445
with partitioned tables, 1394

IGNORE INDEX, 922
IGNORE KEY, 922
ignore option

mysqlimport, 347
ignore-builtin-innodb option

mysqld, 1694
ignore-lines option

mysqlimport, 347
ignore-spaces option

mysql, 295
ignore-table option

mysqldump, 335
IGNORE_AIO_CHECK option

CMake, 169
ignore_builtin_innodb system variable, 1695
IGNORE_SPACE SQL mode, 632
ilist, 3521
implicit default values, 1120
implicit GROUP BY sorting, 860
implicit row lock, 3521
IMPORT TABLESPACE, 1307, 1644
importing

data, 308, 343
IN, 1146, 1434



3062

in-memory database, 3521
include option

mysql_config, 412
include-databases option (ndb_restore), 2283
include-master-host-port option

mysqldump, 335
include-tables option (ndb_restore), 2284
increasing with replication

speed, 1869
incremental backup, 3521
incremental recovery, 824

using NDB Cluster replication, 2427
index, 3521

deleting, 1305, 1377
rebuilding, 204

index cache, 3522
index condition pushdown, 3522
INDEX DIRECTORY

and replication, 1981
index dives (for statistics estimation), 1638
index hint, 3522
index hints, 922, 1419
index join type

optimizer, 913
index prefix, 3522
index statistics

NDB, 2162
index-record lock

InnoDB, 1616, 1711
indexes, 1326

and BLOB columns, 883, 1342
and IS NULL, 888
and LIKE, 887
and ndb_restore, 2286
and NULL values, 1342
and TEXT columns, 883, 1342
assigning to key cache, 1572
block size, 522
column prefixes, 883
columns, 883
creating and dropping, 1688
leftmost prefix of, 882, 885
multi-column, 884
multiple-part, 1326
names, 978
primary (clustered) and secondary, 1688
use of, 881

IndexMemory, 2118
IndexStatAutoCreate

data nodes, 2162
IndexStatAutoUpdate

data nodes, 2163
IndexStatSaveScale

data nodes, 2163
IndexStatSaveSize

data nodes, 2163
IndexStatTriggerPct

data nodes, 2163



3063

IndexStatTriggerScale
data nodes, 2163

IndexStatUpdateDelay
data nodes, 2164

index_merge join type
optimizer, 912

index_subquery join type
optimizer, 912

INET_ATON(), 1280
INET_NTOA(), 1280
infimum record, 3522
INFO Events (NDB Cluster), 2323
information functions, 1247
information option

myisamchk, 369
INFORMATION SCHEMA

InnoDB tables, 1730
INFORMATION_SCHEMA, 2533, 3522

and security issues, 2370
collation and searching, 1031
InnoDB tables, 2561
INNODB_CMP table, 1731
INNODB_CMPMEM table, 1731
INNODB_CMPMEM_RESET table, 1731
INNODB_CMP_RESET table, 1731
INNODB_LOCKS table, 1732
INNODB_LOCK_WAITS table, 1732
INNODB_TRX table, 1732
NDB Cluster tables, 2573
Thread Pool tables, 2580

INFORMATION_SCHEMA plugins, 2761
INFORMATION_SCHEMA queries

optimization, 874
INFORMATION_SCHEMA.ENGINES table

and NDB Cluster, 2342
INFORMATION_SCHEMA.GLOBAL_STATUS table

and NDB Cluster, 2344
INFORMATION_SCHEMA.GLOBAL_VARIABLES table

and NDB Cluster, 2343
init

thread state, 959
Init DB

thread command, 956
init-command option

mysql, 295
init-file option

mysqld, 461
InitFragmentLogFiles, 2127
initial option (ndbd), 2226
initial option (ndbmtd), 2226
initial option (ndb_mgmd), 2237
initial-start option (ndbd), 2227
initial-start option (ndbmtd), 2227
Initialized

thread state, 968
InitialLogFileGroup, 2159
InitialNoOfOpenFiles, 2127
InitialTablespace, 2159



3064

init_connect system variable, 519
init_file system variable, 520
init_slave system variable, 1919
INNER JOIN, 1425
innochecksum, 246, 360
InnoDB, 1586, 3522

.frm files, 1646
adaptive hash index, 1598
and application feature requirements, 2017
application performance, 1655
applications supported, 2017
asynchronous I/O, 1636
auto-inc lock, 1601
auto-increment columns, 1655
autocommit mode, 1608, 1609
availability, 2015
backups, 1759
change buffer, 1597
checkpoints, 1686
clustered index, 1666
COMPACT row format, 1649
compared to NDB Cluster, 2015, 2016, 2017, 2017
COMPRESSED row format, 1650
configuration parameters, 1690
consistent reads, 1609
corruption, 1760
crash recovery, 1760, 1760
creating tables, 1646
data files, 1639
deadlock detection, 1618
deadlock example, 1617
deadlocks, 1616, 1618, 1652
disk failure, 1760
disk I/O, 1684
disk I/O optimization, 899
DYNAMIC row format, 1650
exclusive lock, 1601
file space management, 1684
file-per-table setting, 1642
files, 1655
foreign key constraints, 1661
gap lock, 1601, 1616, 1711
index-record lock, 1616, 1711
indexes, 1645
insert-intention lock, 1601
intention lock, 1601
limits and restrictions, 1662
Linux, 1636
lock modes, 1601
locking, 1601, 1601, 1613
locking reads, 1611
log files, 1640
memory usage, 1651
migrating tables, 1650
Monitors, 1685, 1760, 1763
multi-versioning, 1595
next-key lock, 1601, 1616, 1711
NFS, 1621, 1662



3065

page size, 1664, 1666
physical index structure, 1666
point-in-time recovery, 1759
primary keys, 1647, 1654
raw partitions, 1640
record-level locks, 1616, 1711
recovery, 1759
REDUNDANT row format, 1648
replication, 1761
row format, 1646, 1648
row structure, 1647
secondary index, 1666
semi-consistent read, 1711
shared lock, 1601
Solaris issues, 150
storage, 1654
storage layout, 1652
system variables, 1690
table properties, 1647
tables, 1645, 1645

converting from other storage engines, 1650
transaction model, 1601, 1605
transactions, 1651
transferring data, 1653
troubleshooting, 1763

CREATE TABLE failure, 1766
data dictionary problems, 1766
deadlocks, 1616, 1618
defragmenting tables, 1686
fast index creation, 1689
I/O problems, 1764
open file error, 1766
orphan temporary tables, 1766
performance problems, 895
recovery problems, 1764
SQL errors, 1767
tablespace does not exist, 1767

InnoDB buffer pool, 925, 1624, 1627, 1629, 1629, 1630
InnoDB Monitors, 1746

enabling, 1746
output, 1748

innodb option
mysqld, 1694

InnoDB parameters, deprecated
innodb_file_io_threads, 1635

InnoDB parameters, new
innodb_file_format_check, 1679
innodb_large_prefix, 1709

InnoDB parameters, with new defaults
innodb_max_dirty_pages_pct, 1629

InnoDB storage engine, 1586, 1769
compatibility, 1590

InnoDB tables
storage requirements, 1122

innodb-status-file option
mysqld, 1694

innodb_ system variable
innodb_rollback_segments, 1722



3066

innodb_adaptive_flushing, 1629
innodb_adaptive_flushing system variable, 1695
innodb_adaptive_hash_index

and innodb_thread_concurrency, 1634
innodb_adaptive_hash_index system variable, 1695
innodb_additional_mem_pool_size system variable, 1696

and innodb_use_sys_malloc, 1632
innodb_autoextend_increment system variable, 1696
innodb_autoinc_lock_mode, 3523
innodb_autoinc_lock_mode system variable, 1697
INNODB_BUFFER_PAGE

INFORMATION_SCHEMA table, 2561
INNODB_BUFFER_PAGE_LRU

INFORMATION_SCHEMA table, 2563
innodb_buffer_pool_instances system variable, 1697
innodb_buffer_pool_size system variable, 1698
INNODB_BUFFER_POOL_STATS

INFORMATION_SCHEMA table, 2565
innodb_change_buffering, 1633
innodb_change_buffering system variable, 1698
innodb_change_buffering_debug, 1699
innodb_checksums system variable, 1700
INNODB_CMP

INFORMATION_SCHEMA table, 2567
INNODB_CMPMEM

INFORMATION_SCHEMA table, 2568
INNODB_CMPMEM_RESET

INFORMATION_SCHEMA table, 2568
INNODB_CMP_RESET

INFORMATION_SCHEMA table, 2567
innodb_commit_concurrency system variable, 1700
innodb_concurrency_tickets, 1634
innodb_concurrency_tickets system variable, 1700
innodb_data_file_path system variable, 1701
innodb_data_home_dir system variable, 1701
innodb_doublewrite system variable, 1702
innodb_fast_shutdown system variable, 1702
innodb_file_format, 1677, 3523

Antelope, 1674
Barracuda, 1667
downgrading, 1594
identifying, 1681

innodb_file_format system variable, 1703
innodb_file_format_check, 1679
innodb_file_format_check system variable, 1703
innodb_file_format_max system variable, 1704
innodb_file_io_threads, 1635
innodb_file_per_table, 1667, 3523
innodb_file_per_table system variable, 1705
innodb_flush_log_at_trx_commit system variable, 1705
innodb_flush_method system variable, 1706
innodb_force_load_corrupted system variable, 1708
innodb_force_recovery system variable, 1708
innodb_io_capacity, 1636
innodb_io_capacity system variable, 1708
innodb_large_prefix system variable, 1709
innodb_limit_optimistic_insert_debug, 1710
INNODB_LOCKS



3067

INFORMATION_SCHEMA table, 2569
innodb_locks_unsafe_for_binlog system variable, 1711
INNODB_LOCK_WAITS

INFORMATION_SCHEMA table, 2570
innodb_lock_wait_timeout, 3523
innodb_lock_wait_timeout system variable, 1710
innodb_log_buffer_size system variable, 1713
innodb_log_files_in_group system variable, 1714
innodb_log_file_size system variable, 1714
innodb_log_group_home_dir system variable, 1715
innodb_max_dirty_pages_pct, 1629
innodb_max_dirty_pages_pct system variable, 1715
innodb_max_purge_lag system variable, 1715
innodb_mirrored_log_groups system variable, 1716
innodb_old_blocks_pct, 1627
innodb_old_blocks_pct system variable, 1716
innodb_old_blocks_time, 1627
innodb_old_blocks_time system variable, 1717
innodb_open_files system variable, 1717
innodb_print_all_deadlocks system variable, 1718

innodb_print_all_deadlocks, 1718
innodb_purge_batch_size system variable, 1718
innodb_purge_threads system variable, 1719
innodb_random_read_ahead system variable, 1719
innodb_read_ahead_threshold, 1629
innodb_read_ahead_threshold system variable, 1720
innodb_read_io_threads, 1635
innodb_read_io_threads system variable, 1720
innodb_replication_delay system variable, 1721
innodb_rollback_on_timeout system variable, 1721
innodb_rollback_segments system variable, 1722
innodb_spin_wait_delay, 1637
innodb_spin_wait_delay system variable, 1722
innodb_stats_method system variable, 1722
innodb_stats_on_metadata system variable, 1723
innodb_stats_sample_pages, 1638
innodb_stats_sample_pages system variable, 1723
innodb_strict_mode, 2983, 3523
innodb_strict_mode system variable, 1724
innodb_support_xa system variable, 1725
innodb_sync_spin_loops system variable, 1725
innodb_table_locks system variable, 1725
innodb_thread_concurrency, 1634
innodb_thread_concurrency system variable, 1726
innodb_thread_sleep_delay, 1634
innodb_thread_sleep_delay system variable, 1727
INNODB_TRX

INFORMATION_SCHEMA table, 2571
innodb_trx_purge_view_update_only_debug, 1728
innodb_trx_rseg_n_slots_debug, 1729
innodb_use_native_aio, 1636
innodb_use_native_aio system variable, 1728
innodb_use_sys_malloc

and innodb_thread_concurrency, 1634
innodb_use_sys_malloc system variable, 1632, 1729
innodb_version system variable, 1729
innodb_write_io_threads, 1635
innodb_write_io_threads system variable, 1729



3068

INSERT, 879, 1391
insert, 3523

thread state, 964
INSERT ... SELECT, 1394
insert buffer, 3524
insert buffering, 3524

disabling, 1633
INSERT DELAYED, 1395, 1395
insert intention lock, 3524
INSERT(), 1157
insert-ignore option

mysqldump, 335
insert-intention lock, 1601
insertable views

insertable, 2521
inserting

speed of, 879
inserts

concurrent, 937, 940
insert_id system variable, 520
install option

mysqld, 462
MySQLInstallerConsole, 81

install option (ndbd), 2228
install option (ndbmtd), 2228
install option (ndb_mgmd), 2241
INSTALL PLUGIN statement, 1524
install-manual option

mysqld, 462
Installation, 80
installation layouts, 59
installation overview, 153
installing

binary distribution, 59
Linux RPM packages, 141
OS X DMG packages, 127
overview, 42
Perl, 206
Perl on Windows, 207
Solaris PKG packages, 150
source distribution, 153
user-defined functions, 2813

installing NDB Cluster, 2030
Debian Linux, 2036
Linux, 2032
Linux binary release, 2032
Linux RPM, 2035
Linux source release, 2037
Ubuntu Linux, 2036
Windows, 2038
Windows binary release, 2038
Windows source, 2041

installing plugins, 669, 1524
INSTALL_BINDIR option

CMake, 165
INSTALL_DOCDIR option

CMake, 165
INSTALL_DOCREADMEDIR option



3069

CMake, 165
INSTALL_INCLUDEDIR option

CMake, 165
INSTALL_INFODIR option

CMake, 165
INSTALL_LAYOUT option

CMake, 165
INSTALL_LIBDIR option

CMake, 165
INSTALL_MANDIR option

CMake, 165
INSTALL_MYSQLSHAREDIR option

CMake, 166
INSTALL_MYSQLTESTDIR option

CMake, 166
INSTALL_PLUGINDIR option

CMake, 166
INSTALL_SBINDIR option

CMake, 166
INSTALL_SCRIPTDIR option

CMake, 166
INSTALL_SECURE_FILE_PRIVDIR option

CMake, 166
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR option

CMake, 166
INSTALL_SHAREDIR option

CMake, 166
INSTALL_SQLBENCHDIR option

CMake, 166
INSTALL_SUPPORTFILESDIR option

CMake, 166
instance, 3524
INSTR(), 1157
instrumentation, 3524
INT data type, 1075
integer arithmetic, 1283
INTEGER data type, 1075
integers, 972
intention lock, 1601, 3524
interactive option (ndb_mgmd), 2237
interactive_timeout system variable, 520
InteriorRingN(), 1266
internal locking, 936
internal memory allocator

disabling, 1632
internal storage format

geometry values, 1115
internals, 2757
internationalization, 1003
Internet Relay Chat, 20
Intersects(), 1268
INTERVAL(), 1147
INTO

SELECT, 1423
introducer

binary character set, 1051
bit-value literal, 976
character set, 1016



3070

hexadecimal literal, 975
string literal, 970, 1014

invalid data
constraint, 31

invalidating query cache entries
thread state, 965

inverted index, 3524
invisible index, 1326
in_file option

comp_err, 278
IOPS, 3525
IP addresses

in account names, 732
in default accounts, 183

IPv6 addresses
in account names, 732
in default accounts, 183

IPv6 connections, 184, 477
IRC, 20
IS boolean_value, 1144
IS NOT boolean_value, 1144
IS NOT DISTINCT FROM operator, 1143
IS NOT NULL, 1145
IS NULL, 857, 1144

and indexes, 888
IsClosed(), 1264
IsEmpty(), 1262
.isl file, 3520
ISNULL(), 1146
ISOLATION LEVEL, 1456
isolation level, 1606, 3525
IsSimple(), 1263
IS_FREE_LOCK(), 1280
IS_USED_LOCK(), 1280
ITERATE, 1480
iterations option

mysqlslap, 358

J
Japanese character sets

conversion, 2859
Japanese, Korean, Chinese character sets

frequently asked questions, 2859
Java, 2634
JDBC, 2631
jdbc:mysql:loadbalance://, 2007
join, 3525

nested-loop algorithm, 850
JOIN, 1425
join algorithm

Block Nested-Loop, 846
Nested-Loop, 846

join option
myisampack, 381

join type
ALL, 913
const, 911
eq_ref, 911



3071

fulltext, 912
index, 913
index_merge, 912
index_subquery, 912
range, 912
ref, 911
ref_or_null, 912
system, 911
unique_subquery, 912

joins
USING versus ON, 1429

join_buffer_size system variable, 520

K
keepold option

mysqlhotcopy, 406
keep_files_on_create system variable, 522
Key cache

MyISAM, 925
key cache

assigning indexes to, 1572
key partitioning, 2466
key partitions

managing, 2482
splitting and merging, 2482

key space
MyISAM, 1779

key-value store, 888
keys, 883

foreign, 29, 237
multi-column, 884
searching on two, 239

keys option
mysqlshow, 352

keys-used option
myisamchk, 370

keywords, 989
KEY_BLOCK_SIZE, 1667, 1671, 3525
key_buffer_size myisamchk variable, 367
key_buffer_size system variable, 522
key_cache_age_threshold system variable, 523
key_cache_block_size system variable, 524
key_cache_division_limit system variable, 524
KEY_COLUMN_USAGE

INFORMATION_SCHEMA table, 2543
Kill

thread command, 956
KILL statement, 1577
Killed

thread state, 959
Killing slave

thread state, 967
known errors, 2966
Korean, 2859
Korean, Chinese, Japanese character sets

frequently asked questions, 2859



3072

L
labels

stored program block, 1475
language option

mysqld, 462
language support

error messages, 1052
language system variable, 525
lap option

ndb_redo_log_reader, 2271
large page support, 949
large tables

and NDB Cluster, 1350
creating in NDB, 1350

large-pages option
mysqld, 462

large_files_support system variable, 525
large_pages system variable, 525
large_page_size system variable, 526
last row

unique ID, 2744
LAST_DAY(), 1196
last_insert_id system variable, 526
LAST_INSERT_ID(), 1251, 1393

and replication, 1972
and stored routines, 2507
and triggers, 2507

latch, 3525
LateAlloc, 2131
layout of installation, 59
lc-messages option

mysqld, 463
lc-messages-dir option

mysqld, 463
LCASE(), 1158
LcpScanProgressTimeout, 2128
lc_messages system variable, 526
lc_messages_dir system variable, 526
lc_time_names system variable, 527
ldata option

mysql_install_db, 280
LDML syntax, 1062
LD_LIBRARY_PATH environment variable, 208, 2647
LD_RUN_PATH environment variable, 208, 417
LEAST(), 1147
LEAVE, 1480
ledir option

mysqld_safe, 268
LEFT JOIN, 853, 1425
LEFT OUTER JOIN, 1425
LEFT(), 1158
leftmost prefix of indexes, 882, 885
legal names, 978
length option

myisam_ftdump, 362
LENGTH(), 1158
less than (<), 1143



3073

less than or equal (<=), 1143
libaio, 60, 146, 169, 194
libmysqlclient library, 2631
libmysqld, 2635

options, 2637
libmysqld library, 2631
libmysqld-libs option

mysql_config, 412
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable, 417
LIBMYSQL_PLUGINS environment variable, 2742
library

libmysqlclient, 2631
libmysqld, 2631

libs option
mysql_config, 412

libs_r option
mysql_config, 412

license system variable, 527
LIKE, 1164

and indexes, 887
and wildcards, 887

LIMIT, 1250, 1421
and replication, 1985
optimizations, 865

limitations
MySQL Limitations, 2982
replication, 1971

limitations of NDB Cluster, 2018
limits

file-size, 2982
InnoDB, 1662
MySQL Limits, limits in MySQL, 2982

line-numbers option
mysql, 295

linear hash partitioning, 2465
linear key partitioning, 2468
linefeed (\n), 970, 1404
LineFromText(), 1259
LineFromWKB(), 1260
lines-terminated-by option

mysqldump, 335, 347
LINESTRING data type, 1107
LineString(), 1261
LineStringFromText(), 1259
LineStringFromWKB(), 1260
linking, 2643

errors, 2645
problems, 2645

links
symbolic, 944

list, 3525
list option

MySQLInstallerConsole, 82
list partitioning, 2454, 2456
list partitions

adding and dropping, 2476
managing, 2476

literals, 969



3074

bit value, 976
boolean, 977
date, 972
hexadecimal, 974
number, 972
string, 969
time, 972

LN(), 1180
LOAD DATA

and replication, 1985
LOAD DATA INFILE, 1399, 2961
load emulation, 353
LOAD INDEX INTO CACHE

and partitioning, 2493
LOAD XML, 1408
loading

tables, 218
LOAD_FILE(), 1158
local option

mysqlimport, 347
local-infile option

mysql, 295
local-load option

mysqlbinlog, 394
local-service option

mysqld, 463
localhost

special treatment of, 250
localization, 1003
LOCALTIME, 1196
LOCALTIMESTAMP, 1196
local_infile system variable, 527
LOCATE(), 1158
lock, 3526
lock escalation, 3526
LOCK IN SHARE MODE, 1422
lock mode, 3526
Lock Monitor, 1746, 1748
lock option

ndb_select_all, 2289
LOCK TABLES, 1451
lock-all-tables option

mysqldump, 336
lock-tables option

mysqldump, 336
mysqlimport, 347

locked_in_memory system variable, 528
LockExecuteThreadToCPU, 2149
locking, 942, 1601, 3526

external, 460, 569, 827, 941, 961
information schema, 1730, 1732
InnoDB, 1601
internal, 936
metadata, 940
row-level, 936
table-level, 936

locking methods, 936
locking read, 3526



3075

LockMaintThreadsToCPU, 2150
LockPagesInMainMemory, 2132
lock_wait_timeout system variable, 527
log, 3526
log buffer, 3526
log file, 3527
log files

maintaining, 667
log files (NDB Cluster), 2230

ndbmtd, 2233
log group, 3527
log option

mysqld, 464
mysqld_multi, 275

log system variable, 528
LOG(), 1180
log-bin option

mysqld, 1928
log-bin-index option

mysqld, 1928
log-bin-trust-function-creators option

mysqld, 1928
log-bin-use-v1-row-events option

mysqld, 1929
log-error option

mysqld, 464
mysqldump, 336
mysqld_safe, 268

log-isam option
mysqld, 464

log-long-format option
mysqld, 464

log-name option (ndb_mgmd), 2237
log-output option

mysqld, 465
log-queries-not-using-indexes option

mysqld, 465
log-short-format option

mysqld, 465
log-slave-updates option

mysqld, 1904
log-slow-admin-statements option

mysqld, 466
log-slow-queries option

mysqld, 466
log-slow-slave-statements option

mysqld, 1905
log-tc option

mysqld, 466
log-tc-size option

mysqld, 466
log-warnings option

mysqld, 467, 1905
LOG10(), 1181
LOG2(), 1181
logbuffers

ndbinfo table, 2354
LogDestination, 2110



3076

logging
passwords, 709

logging commands (NDB Cluster), 2318
logging slow query

thread state, 959
logical, 3527
logical backup, 3527
logical operators, 1147
login

thread state, 959
LogLevelCheckpoint, 2145
LogLevelCongestion, 2146
LogLevelConnection, 2146
LogLevelError, 2146
LogLevelInfo, 2146
LogLevelNodeRestart, 2146
LogLevelShutdown, 2145
LogLevelStartup, 2145
LogLevelStatistic, 2145
logs

and TIMESTAMP, 196
flushing, 647
server, 647

logspaces
ndbinfo table, 2354

log_bin system variable, 1936
log_bin_trust_function_creators system variable, 529
log_bin_trust_routine_creators system variable, 529
log_bin_use_v1_row_events system variable, 1936
log_error system variable, 529
log_output system variable, 529
log_queries_not_using_indexes system variable, 530
log_slave_updates system variable, 1937
log_slow_queries system variable, 530
log_warnings system variable, 530
Long Data

thread command, 956
LONG data type, 1099
LONGBLOB data type, 1081
LongMessageBuffer, 2125
LONGTEXT data type, 1081
long_query_time system variable, 531
LOOP, 1480

labels, 1475
loops option

ndb_show_tables, 2292
loops option (ndbinfo_select_all), 2232
loops option (ndb_index_stat), 2266
Loose Index Scan

GROUP BY optimizing, 863
--loose option prefix, 255
loose_, 3527
lossy-conversions option

ndb_move_data, 2268
lossy-conversions option (ndb_restore), 2279
lost connection errors, 2940
low-priority option

mysqlimport, 347



3077

low-priority-updates option
mysqld, 467

low-water mark, 3527
LOWER(), 1158
lower_case_file_system system variable, 532
lower_case_table_names system variable, 532
LOW_PRIORITY

DELETE modifier, 1386
INSERT modifier, 1393
UPDATE modifier, 1445

low_priority_updates system variable, 531
LPAD(), 1159
LRU, 3527
LRU page replacement, 1627
LSN, 3527
LTRIM(), 1159

M
mailing lists, 17

archive location, 17
guidelines, 19

main features of MySQL, 5
maintaining

log files, 667
tables, 831

maintenance
tables, 318

MAKEDATE(), 1196
MAKETIME(), 1196
MAKE_SET(), 1159
Making temp file

thread state, 967
malicious SQL statements

and NDB Cluster, 2369
manage keys

thread state, 960
management client (NDB Cluster), 2241

(see also mgm)
management node (NDB Cluster)

defined, 2006
management nodes (NDB Cluster), 2233

(see also mgmd)
managing NDB Cluster, 2302
managing NDB Cluster processes, 2224
manual

available formats, 2
online location, 2
syntax conventions, 2
typographical conventions, 2

Master has sent all binlog to slave; waiting for binlog to be updated
thread state, 965

master server, 3528
master thread, 3528
master-data option

mysqldump, 336
master-info-file option

mysqld, 1906
master-retry-count option



3078

mysqld, 1906
MASTER_POS_WAIT(), 1280, 1467
MATCH ... AGAINST(), 1207
matching

patterns, 226
math, 1283
mathematical functions, 1178
MAX(), 1272
MAX(DISTINCT), 1272
max-binlog-dump-events option

mysqld, 1932
max-record-length option

myisamchk, 370
max-relay-log-size option

mysqld, 1907
MaxAllocate, 2125
MaxBufferedEpochBytes, 2140
MaxBufferedEpochs, 2140
MAXDB SQL mode, 637
MaxDMLOperationsPerTransaction, 2123
maximum memory used, 314
--maximum option prefix, 255
maximums

maximum columns per table, 2983
maximum number of databases, 2982
maximum number of tables, 2982
maximum row size, 2983
maximum tables per join, 2982
table size, 2982

MaxLCPStartDelay, 2128
MaxNoOfAttributes, 2128
MaxNoOfConcurrentIndexOperations, 2123
MaxNoOfConcurrentOperations, 2121
MaxNoOfConcurrentScans, 2124
MaxNoOfConcurrentSubOperations, 2131
MaxNoOfConcurrentTransactions, 2121
MaxNoOfExecutionThreads

ndbmtd, 2152
MaxNoOfFiredTriggers, 2123
MaxNoOfIndexes, 2130
MaxNoOfLocalOperations, 2122
MaxNoOfLocalScans, 2124
MaxNoOfOpenFiles, 2127
MaxNoOfOrderedIndexes, 2130
MaxNoOfSavedMessages, 2128
MaxNoOfSubscribers, 2131
MaxNoOfSubscriptions, 2131
MaxNoOfTables, 2129
MaxNoOfTriggers, 2130
MaxNoOfUniqueHashIndexes, 2130
MaxParallelScansPerFragment, 2125
MaxScanBatchSize, 2167
MaxStartFailRetries, 2162
max_allowed_packet

and replication, 1986
max_allowed_packet system variable, 533
max_allowed_packet variable, 300
max_binlog_cache_size system variable, 1937



3079

max_binlog_size system variable, 1938
max_binlog_stmt_cache_size system variable, 1939
max_connections system variable, 534
MAX_CONNECTIONS_PER_HOUR, 747
max_connect_errors system variable, 533
max_delayed_threads system variable, 535
max_error_count system variable, 535
max_heap_table_size system variable, 535
max_insert_delayed_threads system variable, 536
max_join_size system variable, 536
max_join_size variable, 300
max_length_for_sort_data system variable, 537
max_long_data_size system variable, 537
max_prepared_stmt_count system variable, 538
MAX_QUERIES_PER_HOUR, 747
max_relay_log_size system variable, 538
MAX_ROWS

and DataMemory (NDB Cluster), 2117
and NDB, 1350
and NDB Cluster, 1350, 2447

max_seeks_for_key system variable, 538
max_sort_length system variable, 539
max_sp_recursion_depth system variable, 540
max_tmp_tables system variable, 540
MAX_UPDATES_PER_HOUR, 747
MAX_USER_CONNECTIONS, 747
max_user_connections system variable, 540
max_write_lock_count system variable, 541
MBR, 1268, 1268
MBRContains(), 1268
MBRDisjoint(), 1269
MBREqual(), 1269
MBRIntersects(), 1269
MBROverlaps(), 1269
MBRTouches(), 1269
MBRWithin(), 1269
MD5(), 1244
MDL, 3528
medium-check option

myisamchk, 369
mysqlcheck, 323

MEDIUMBLOB data type, 1081
MEDIUMINT data type, 1075
MEDIUMTEXT data type, 1081
membership

ndbinfo table, 2354
memcached, 3528
MEMCACHED_HOME option

CMake, 171
memlock option

mysqld, 468
memory allocation library, 268
memory allocator

innodb_use_sys_malloc, 1632
MEMORY storage engine, 1769, 1783

and replication, 1987
optimization, 884

memory usage



3080

myisamchk, 378
memory use, 313, 947

in NDB Cluster, 2020
Performance Schema, 2595

memoryusage
ndbinfo table, 2356

MemReportFrequency, 2146
merge, 3528
MERGE storage engine, 1769, 1792
MERGE tables

defined, 1793
metadata

database, 2533
database object, 1008
InnoDB, 2561
stored routines, 2506
triggers, 2511
views, 2523

metadata lock, 3529
metadata locking

transactions, 940
metadata log, 667
metadata_locks_cache_size system variable, 541
method option

mysqlhotcopy, 406
methods

locking, 936
metrics counter, 3529
mgmd (NDB Cluster)

defined, 2006
(see also management node (NDB Cluster))

MICROSECOND(), 1196
MID(), 1159
midpoint insertion, 1627
midpoint insertion strategy, 3529
milestone

MySQL releases, 44
MIN(), 1272
MIN(DISTINCT), 1272
min-examined-row-limit option

mysqld, 468
MinFreePct, 2117, 2120
mini-transaction, 3529
minimum bounding rectangle, 1268, 1268
minus

unary (-), 1176
MINUTE(), 1196
min_examined_row_limit system variable, 542
mirror sites, 45
miscellaneous functions, 1278
mixed statements (Replication), 1992
mixed-mode insert, 3529
MLineFromText(), 1259
MLineFromWKB(), 1260
MOD (modulo), 1181
MOD(), 1181
modes

batch, 233



3081

modify option
MySQLInstallerConsole, 82

modulo (%), 1181
modulo (MOD), 1181
monitor

terminal, 211
monitoring, 1597, 1630, 1672, 1743, 2829

threads, 955
Monitors, 1746

enabling, 1746
InnoDB, 1685, 1760, 1763
output, 1748

MONTH(), 1196
MONTHNAME(), 1197
MPointFromText(), 1259
MPointFromWKB(), 1260
MPolyFromText(), 1259
MPolyFromWKB(), 1260
.MRG file, 3528
mSQL compatibility, 1168
msql2mysql, 411
MSSQL SQL mode, 637
multi mysqld, 274
multi-column indexes, 884
multi-core, 3529
multi-master replication

in NDB Cluster, 2428, 2432
multibyte character sets, 2948
multibyte characters, 1056
MULTILINESTRING data type, 1107
MultiLineString(), 1261
MultiLineStringFromText(), 1259
MultiLineStringFromWKB(), 1260
multiple buffer pools, 1627
multiple servers, 680
multiple-part index, 1326
multiplication (*), 1176
MULTIPOINT data type, 1107
MultiPoint(), 1261
MultiPointFromText(), 1259
MultiPointFromWKB(), 1260
MULTIPOLYGON data type, 1107
MultiPolygon(), 1261
MultiPolygonFromText(), 1259
MultiPolygonFromWKB(), 1260
mutex, 3529
mutex wait

monitoring, 1743
mutex_instances table

performance_schema, 2612
MVCC, 3530
MVCC (multi-version concurrency control), 1595
My

derivation, 8
my-print-defaults option

mysql_plugin, 282
my.cnf, 3530

and NDB Cluster, 2047, 2100, 2101



3082

in NDB Cluster, 2313
my.cnf file, 1971
my.ini, 3530
mycnf option

ndb_config, 2248
ndb_mgmd, 2236

.MYD file, 3528

.MYI file, 3528
MyISAM

compressed tables, 380, 1781
converting tables to InnoDB, 1651

MyISAM key cache, 925
MyISAM storage engine, 1769, 1775
myisam-block-size option

mysqld, 469
myisam-recover option

mysqld, 469
myisam-recover-options option

mysqld, 469, 1778
myisamchk, 246, 362

analyze option, 371
backup option, 369
block-search option, 371
character-sets-dir option, 370
check option, 369
check-only-changed option, 369
correct-checksum option, 370
data-file-length option, 370
debug option, 366
defaults-extra-file option, 366
defaults-file option, 366
defaults-group-suffix option, 366
description option, 371
example output, 372
extend-check option, 369, 370
fast option, 369
force option, 369, 370
help option, 366
HELP option, 366
information option, 369
keys-used option, 370
max-record-length option, 370
medium-check option, 369
no-defaults option, 367
no-symlinks option, 370
options, 366
parallel-recover option, 370
print-defaults option, 367
quick option, 370
read-only option, 369
recover option, 370
safe-recover option, 370
set-auto-increment[ option, 371
set-collation option, 371
silent option, 367
sort-index option, 371
sort-records option, 371
sort-recover option, 371



3083

tmpdir option, 371
unpack option, 371
update-state option, 369
verbose option, 367
version option, 367
wait option, 367

myisamlog, 246, 379
myisampack, 246, 380, 1368, 1781

backup option, 380
character-sets-dir option, 380
debug option, 381
force option, 381
help option, 380
join option, 381
silent option, 381
test option, 381
tmpdir option, 381
verbose option, 381
version option, 381
wait option, 381

myisam_block_size myisamchk variable, 367
myisam_data_pointer_size system variable, 543
myisam_ftdump, 246, 361

count option, 362
dump option, 362
help option, 362
length option, 362
stats option, 362
verbose option, 362

myisam_max_sort_file_size system variable, 543
myisam_mmap_size system variable, 543
myisam_recover_options system variable, 544
myisam_repair_threads system variable, 544
myisam_sort_buffer_size myisamchk variable, 367
myisam_sort_buffer_size system variable, 545
myisam_stats_method system variable, 546
myisam_use_mmap system variable, 547
MySQL

defined, 4
forums, 19
introduction, 4
pronunciation, 5
upgrading, 284
web sites, 17

mysql, 245, 289, 3530
auto-rehash option, 293
auto-vertical-output option, 293
batch option, 293
binary-as-hex option, 293
bind-address option, 293
character-sets-dir option, 293
charset command, 301
clear command, 301
column-names option, 293
column-type-info option, 293
comments option, 293
compress option, 294
connect command, 301



3084

database option, 294
debug option, 294
debug-check option, 294
debug-info option, 294
default-auth option, 294
default-character-set option, 294
defaults-extra-file option, 294
defaults-file option, 294
defaults-group-suffix option, 294
delimiter command, 301
delimiter option, 295
disable named commands, 295
edit command, 302
ego command, 302
enable-cleartext-plugin option, 295
execute option, 295
exit command, 302
force option, 295
go command, 302
help command, 301
help option, 293
host option, 295
html option, 295
i-am-a-dummy option, 298
ignore-spaces option, 295
init-command option, 295
line-numbers option, 295
local-infile option, 295
named-commands option, 295
no-auto-rehash option, 296
no-beep option, 296
no-defaults option, 296
no-named-commands option, 296
no-pager option, 296
no-tee option, 296
nopager command, 302
notee command, 302
nowarning command, 302
one-database option, 296
pager command, 302
pager option, 296
password option, 297
pipe option, 297
plugin-dir option, 297
port option, 297
print command, 303
print-defaults option, 297
prompt command, 303
prompt option, 297
protocol option, 297
quick option, 297
quit command, 303
raw option, 297
reconnect option, 298
rehash command, 303
safe-updates option, 298
secure-auth option, 298
shared-memory-base-name option, 298



3085

show-warnings option, 298
sigint-ignore option, 298
silent option, 298
skip-column-names option, 299
skip-line-numbers option, 299
socket option, 299
source command, 303
SSL options, 299
ssl-mode option, 766
status command, 303
system command, 303
table option, 299
tee command, 303
tee option, 299
unbuffered option, 299
use command, 303
user option, 299
verbose option, 299
version option, 299
vertical option, 299
wait option, 299
warnings command, 303
xml option, 299

MySQL binary distribution, 43
MYSQL C type, 2647
MySQL Cluster Manager

and ndb_mgm, 2305
mysql command options, 290
mysql commands

list of, 300
MySQL Dolphin name, 8
MySQL Enterprise Audit, 791, 2831
MySQL Enterprise Backup, 2830, 3530
MySQL Enterprise Encryption, 2831
MySQL Enterprise Firewall, 2831
MySQL Enterprise Monitor, 2829
MySQL Enterprise Security, 775, 783, 2830
MySQL Enterprise Thread Pool, 674, 2832

components, 674
installing, 675

MySQL history, 8
mysql history file, 306
MySQL Installer, 66
MySQL mailing lists, 17
MySQL name, 8
MySQL Notifier, 83
MySQL privileges

and NDB Cluster, 2369
mysql prompt command, 304
MySQL server

mysqld, 266, 420
mysql source (command for reading from text files), 234, 308
MySQL source distribution, 43
MySQL storage engines, 1769
MySQL system tables

and NDB Cluster, 2369
and replication, 1988

MySQL version, 45



3086

mysql \. (command for reading from text files), 234, 308
mysql.event table, 2518
mysql.ndb_binlog_index table, 2413

(see also NDB Cluster replication)
mysql.server, 244, 272

basedir option, 273
datadir option, 273
pid-file option, 273
service-startup-timeout option, 274

mysql.sock
protection, 2956

MYSQL323 SQL mode, 637
MYSQL40 SQL mode, 637
mysqlaccess, 246, 386

brief option, 387
commit option, 387
copy option, 387
db option, 387
debug option, 387
help option, 386
host option, 387
howto option, 387
old_server option, 387
password option, 387
plan option, 387
preview option, 387
relnotes option, 387
rhost option, 387
rollback option, 387
spassword option, 387
superuser option, 388
table option, 388
user option, 388
version option, 388

mysqladmin, 245, 311, 1321, 1377, 1563, 1568, 1574, 1577
bind-address option, 315
character-sets-dir option, 315
compress option, 315
count option, 315
debug option, 315
debug-check option, 315
debug-info option, 315
default-auth option, 316
default-character-set option, 316
defaults-extra-file option, 316
defaults-file option, 316
defaults-group-suffix option, 316
enable-cleartext-plugin option, 316
force option, 316
help option, 315
host option, 316
no-beep option, 316
no-defaults option, 316
password option, 316
pipe option, 317
plugin-dir option, 317
port option, 317
print-defaults option, 317



3087

protocol option, 317
relative option, 317
shared-memory-base-name option, 317
silent option, 317
sleep option, 317
socket option, 317
SSL options, 317
user option, 318
verbose option, 318
version option, 318
vertical option, 318
wait option, 318

mysqladmin command options, 314
mysqladmin option

mysqld_multi, 275
mysqlbackup command, 3530
mysqlbinlog, 246, 388

base64-output option, 391
bind-address option, 391
character-sets-dir option, 391
database option, 391
debug option, 393
debug-check option, 393
debug-info option, 393
default-auth option, 393
defaults-extra-file option, 393
defaults-file option, 393
defaults-group-suffix option, 393
disable-log-bin option, 393
force-if-open option, 393
force-read option, 393
help option, 391
hexdump option, 393
host option, 394
local-load option, 394
no-defaults option, 394
offset option, 394
password option, 394
plugin-dir option, 394
port option, 394
position option, 394
print-defaults option, 394
protocol option, 394
read-from-remote-server option, 394
result-file option, 395
server-id option, 395
server-id-bits option, 395
set-charset option, 395
shared-memory-base-name option, 395
short-form option, 395
socket option, 395
SSL options, 395
start-datetime option, 395
start-position option, 396
stop-datetime option, 396
stop-position option, 396
to-last-log option, 396
user option, 396



3088

verbose option, 396
version option, 396

mysqlbug, 279
mysqlcheck, 245, 318

all-databases option, 321
all-in-1 option, 321
analyze option, 321
auto-repair option, 321
bind-address option, 321
character-sets-dir option, 321
check option, 321
check-only-changed option, 321
check-upgrade option, 321
compress option, 322
databases option, 322
debug option, 322
debug-check option, 322
debug-info option, 322
default-auth option, 322
default-character-set option, 322
defaults-extra-file option, 322
defaults-file option, 322
defaults-group-suffix option, 322
enable-cleartext-plugin option, 323
extended option, 322
fast option, 323
fix-db-names option, 323
fix-table-names option, 323
force option, 323
help option, 321
host option, 323
medium-check option, 323
no-defaults option, 323
optimize option, 323
password option, 323
pipe option, 323
plugin-dir option, 324
port option, 324
print-defaults option, 324
protocol option, 324
quick option, 324
repair option, 324
shared-memory-base-name option, 324
silent option, 324
socket option, 324
SSL options, 324
tables option, 324
use-frm option, 324
user option, 325
verbose option, 325
version option, 325
write-binlog option, 325

mysqld, 244, 3530
abort-slave-event-count option, 1904
allow-suspicious-udfs option, 451
ansi option, 451
as NDB Cluster process, 2170, 2313
audit-log option, 804



3089

basedir option, 452
big-tables option, 452
bind-address option, 452
binlog-do-db option, 1929
binlog-format option, 453
binlog-ignore-db option, 1931
binlog-row-event-max-size option, 1927
bootstrap option, 454
character-set-client-handshake option, 454
character-set-filesystem option, 454
character-set-server option, 454
character-sets-dir option, 454
chroot option, 455
collation-server option, 455
command options, 450
console option, 455
core-file option, 455
datadir option, 456
debug option, 456
debug-sync-timeout option, 456
default-character-set option, 457
default-collation option, 457
default-storage-engine option, 457
default-time-zone option, 458
defaults-extra-file option, 458
defaults-file option, 458
defaults-group-suffix option, 458
delay-key-write option, 458, 1778
des-key-file option, 459
disconnect-slave-event-count option, 1904
enable-named-pipe option, 459
enable-pstack option, 459
event-scheduler option, 460
exit-info option, 460
external-locking option, 460
flush option, 460
gdb option, 461
general-log option, 461
help option, 451
ignore-builtin-innodb option, 1694
init-file option, 461
innodb option, 1694
innodb-status-file option, 1694
install option, 462
install-manual option, 462
language option, 462
large-pages option, 462
lc-messages option, 463
lc-messages-dir option, 463
local-service option, 463
log option, 464
log-bin option, 1928
log-bin-index option, 1928
log-bin-trust-function-creators option, 1928
log-bin-use-v1-row-events option, 1929
log-error option, 464
log-isam option, 464
log-long-format option, 464



3090

log-output option, 465
log-queries-not-using-indexes option, 465
log-short-format option, 465
log-slave-updates option, 1904
log-slow-admin-statements option, 466
log-slow-queries option, 466
log-slow-slave-statements option, 1905
log-tc option, 466
log-tc-size option, 466
log-warnings option, 467, 1905
low-priority-updates option, 467
master-info-file option, 1906
master-retry-count option, 1906
max-binlog-dump-events option, 1932
max-relay-log-size option, 1907
memlock option, 468
min-examined-row-limit option, 468
myisam-block-size option, 469
myisam-recover option, 469
myisam-recover-options option, 469, 1778
MySQL server, 266, 420
ndb-batch-size option, 2171
ndb-blob-read-batch-bytes option, 2172
ndb-blob-write-batch-bytes option, 2172
ndb-cluster-connection-pool option, 2171
ndb-connectstring option, 2173
ndb-log-apply-status, 2174
ndb-log-empty-epochs, 2175
ndb-log-empty-update, 2175
ndb-log-orig, 2176
ndb-log-transaction-id, 2176
ndb-nodeid, 2177
ndbcluster option, 2170
no-defaults option, 470
old-alter-table option, 470
old-style-user-limits option, 471
one-thread option, 471
open-files-limit option, 471
partition option, 472
pid-file option, 472
plugin option prefix, 472
plugin-load option, 472
port option, 473
port-open-timeout option, 473
print-defaults option, 473
relay-log option, 1907
relay-log-index option, 1908
relay-log-info-file option, 1908
relay-log-purge option, 1908
relay-log-recovery option, 1909
relay-log-space-limit option, 1909
remove option, 474
replicate-do-db option, 1910
replicate-do-table option, 1912
replicate-ignore-db option, 1911
replicate-ignore-table option, 1912
replicate-rewrite-db option, 1913
replicate-same-server-id option, 1913



3091

replicate-wild-do-table option, 1913
replicate-wild-ignore-table option, 1914
report-host option, 1914
report-password option, 1914
report-port option, 1915
report-user option, 1915
role in NDB Cluster (see SQL Node (NDB Cluster))
safe-mode option, 474
safe-show-database option, 474
safe-user-create option, 474
secure-auth option, 474
secure-file-priv option, 475
server-id option, 1887
server-id-bits option, 2180
shared-memory option, 475
shared-memory-base-name option, 476
show-slave-auth-info option, 1916
skip-concurrent-insert option, 476
skip-event-scheduler option, 476
skip-grant-tables option, 476
skip-host-cache option, 476
skip-innodb option, 477, 1695
skip-name-resolve option, 477
skip-ndbcluster option, 2181
skip-networking option, 477
skip-partition option, 477
skip-safemalloc option, 478
skip-show-database option, 478
skip-slave-start option, 1916
skip-stack-trace option, 479
skip-symbolic-links option, 478
skip-thread-priority option, 479
slave-load-tmpdir option, 1916
slave-max-allowed-packet, 1906
slave-net-timeout option, 1917
slave-skip-errors option, 1917
slave_compressed_protocol option, 1916
slow-query-log option, 479
slow-start-timeout option, 479
socket option, 479
sporadic-binlog-dump-fail option, 1932
sql-mode option, 480
SSL options, 477
standalone option, 477
starting, 717
super-large-pages option, 478
symbolic-links option, 478
sysdate-is-now option, 481
tc-heuristic-recover option, 481
temp-pool option, 481
tmpdir option, 482
transaction-isolation option, 481
user option, 482
verbose option, 482
version option, 482

mysqld (NDB Cluster), 2224
mysqld option

malloc-lib, 268



3092

mysqld_multi, 275
mysqld_safe, 269
mysql_plugin, 283

mysqld options, 420
mysqld options and variables

NDB Cluster, 2170
mysqld system variables, 420
mysqld-version option

mysqld_safe, 269
mysqldump, 206, 245, 325, 3530

add-drop-database option, 331
add-drop-table option, 331
add-drop-trigger option, 331
add-locks option, 331
all-databases option, 331
all-tablespaces option, 331
allow-keywords option, 331
apply-slave-statements option, 332
bind-address option, 332
character-sets-dir option, 332
comments option, 332
compact option, 332
compatible option, 332
complete-insert option, 332
compress option, 332
create-options option, 332
databases option, 332
debug option, 333
debug-check option, 333
debug-info option, 333
default-auth option, 333
default-character-set option, 333
defaults-extra-file option, 333
defaults-file option, 333
defaults-group-suffix option, 333
delayed-insert option, 333
delete-master-logs option, 333
disable-keys option, 333
dump-date option, 334
dump-slave option, 334
enable-cleartext-plugin option, 335
events option, 334
extended-insert option, 334
fields-enclosed-by option, 334, 347
fields-escaped-by option, 334, 347
fields-optionally-enclosed-by option, 334, 347
fields-terminated-by option, 334, 347
first-slave option, 334
flush-logs option, 335
flush-privileges option, 335
force option, 335
help option, 331
hex-blob option, 335
host option, 335
ignore-table option, 335
include-master-host-port option, 335
insert-ignore option, 335
lines-terminated-by option, 335, 347



3093

lock-all-tables option, 336
lock-tables option, 336
log-error option, 336
master-data option, 336
no-autocommit option, 337
no-create-db option, 337
no-create-info option, 337
no-data option, 337
no-defaults option, 337
no-set-names option, 338
no-tablespaces option, 338
opt option, 338
order-by-primary option, 338
password option, 338
pipe option, 338
plugin-dir option, 338
port option, 338
print-defaults option, 338
problems, 343, 2978
protocol option, 338
quick option, 339
quote-names option, 339
replace option, 339
result-file option, 339
routines option, 339
set-charset option, 339
shared-memory-base-name option, 339
single-transaction option, 339
skip-comments option, 340
skip-opt option, 340
socket option, 340
SSL options, 340
tab option, 340
tables option, 341
triggers option, 341
tz-utc option, 341
user option, 341
using for backups, 818
verbose option, 341
version option, 341
views, 343, 2978
where option, 341
workarounds, 343, 2978
xml option, 341

mysqldumpslow, 246, 403
debug option, 403
help option, 403
verbose option, 404

mysqld_multi, 244, 274
config-file option, 275
defaults-extra-file option, 275
defaults-file option, 275
example option, 275
help option, 275
log option, 275
mysqladmin option, 275
mysqld option, 275
no-defaults option, 274



3094

no-log option, 275
password option, 275
silent option, 275
tcp-ip option, 276
user option, 276
verbose option, 276
version option, 276

mysqld_safe, 244, 266
basedir option, 268
core-file-size option, 268
datadir option, 268
defaults-extra-file option, 268
defaults-file option, 268
help option, 268
ledir option, 268
log-error option, 268
malloc-lib option, 268
mysqld option, 269
mysqld-version option, 269
nice option, 269
no-defaults option, 269
open-files-limit option, 270
pid-file option, 270
plugin-dir option, 270
port option, 270
skip-kill-mysqld option, 270
skip-syslog option, 270
socket option, 270
syslog option, 270
syslog-tag option, 270
timezone option, 270
user option, 270

mysqlhotcopy, 246, 404
addtodest option, 406
allowold option, 406
checkpoint option, 406
chroot option, 406
debug option, 406
dryrun option, 406
flushlog option, 406
help option, 406
host option, 406
keepold option, 406
method option, 406
noindices option, 406
old_server option, 407
password option, 406
port option, 407
quiet option, 407
record_log_pos option, 407
regexp option, 407
resetmaster option, 407
resetslave option, 407
socket option, 407
suffix option, 407
tmpdir option, 407
user option, 407

mysqlimport, 206, 245, 343, 1399



3095

bind-address option, 345
character-sets-dir option, 345
columns option, 346
compress option, 346
debug option, 346
debug-check option, 346
debug-info option, 346
default-auth option, 346
default-character-set option, 346
defaults-extra-file option, 346
defaults-file option, 346
defaults-group-suffix option, 346
delete option, 346
enable-cleartext-plugin option, 346
force option, 347
help option, 345
host option, 347
ignore option, 347
ignore-lines option, 347
local option, 347
lock-tables option, 347
low-priority option, 347
no-defaults option, 347
password option, 347
pipe option, 348
plugin-dir option, 348
port option, 348
print-defaults option, 348
protocol option, 348
replace option, 348
shared-memory-base-name option, 348
silent option, 348
socket option, 348
SSL options, 348
use-threads option, 349
user option, 349
verbose option, 349
version option, 349

MySQLInstallerConsole, 80
configure option, 81
help option, 81
install option, 81
list option, 82
modify option, 82
remove option, 83
status option, 83
update option, 83
upgrade option, 83

mysqlshow, 246, 349
bind-address option, 351
character-sets-dir option, 351
compress option, 351
count option, 351
debug option, 351
debug-check option, 351
debug-info option, 351
default-auth option, 351
default-character-set option, 351



3096

defaults-extra-file option, 351
defaults-file option, 352
defaults-group-suffix option, 352
enable-cleartext-plugin option, 352
help option, 351
host option, 352
keys option, 352
no-defaults option, 352
password option, 352
pipe option, 352
plugin-dir option, 352
port option, 352
print-defaults option, 353
protocol option, 353
shared-memory-base-name option, 353
show-table-type option, 353
socket option, 353
SSL options, 353
status option, 353
user option, 353
verbose option, 353
version option, 353

mysqlslap, 246, 353
auto-generate-sql option, 356
auto-generate-sql-add-autoincrement option, 356
auto-generate-sql-execute-number option, 356
auto-generate-sql-guid-primary option, 356
auto-generate-sql-load-type option, 356
auto-generate-sql-secondary-indexes option, 357
auto-generate-sql-unique-query-number option, 357
auto-generate-sql-unique-write-number option, 357
auto-generate-sql-write-number option, 357
commit option, 357
compress option, 357
concurrency option, 357
create option, 357
create-schema option, 357
csv option, 357
debug option, 357
debug-check option, 357
debug-info option, 358
default-auth option, 358
defaults-extra-file option, 358
defaults-file option, 358
defaults-group-suffix option, 358
delimiter option, 358
detach option, 358
enable-cleartext-plugin option, 358
engine option, 358
help option, 356
host option, 358
iterations option, 358
no-defaults option, 358
no-drop option, 358
number-char-cols option, 359
number-int-cols option, 359
number-of-queries option, 359
only-print option, 359



3097

password option, 359
pipe option, 359
plugin-dir option, 359
port option, 359
post-query option, 359
post-system option, 359
pre-query option, 360
pre-system option, 360
print-defaults option, 360
protocol option, 360
query option, 360
shared-memory-base-name option, 360
silent option, 360
socket option, 360
SSL options, 360
user option, 360
verbose option, 360
version option, 360

mysqltest
MySQL Test Suite, 2758

mysql_affected_rows(), 2657
mysql_autocommit(), 2658
MYSQL_BIND C type, 2708
mysql_change_user(), 2658
mysql_character_set_name(), 2659
mysql_clear_password authentication plugin, 774
mysql_client_find_plugin(), 2741
mysql_client_register_plugin(), 2741
mysql_close(), 2660
mysql_cluster_backup_privileges, 2389
mysql_cluster_move_grant_tables, 2390
mysql_cluster_move_privileges, 2389
mysql_cluster_privileges_are_distributed, 2390
mysql_cluster_restore_local_privileges, 2391
mysql_cluster_restore_privileges, 2391
mysql_cluster_restore_privileges_from_local, 2392
mysql_commit(), 2660
mysql_config, 412

cflags option, 412
embedded option, 412
embedded-libs option, 412
include option, 412
libmysqld-libs option, 412
libs option, 412
libs_r option, 412
plugindir option, 412
port option, 412
socket option, 412
variable option, 412
version option, 413

mysql_connect(), 2660
mysql_convert_table_format, 246, 407

force option, 408
help option, 408
host option, 408
password option, 408
port option, 408
socket option, 408



3098

type option, 408
user option, 408
verbose option, 408
version option, 408

mysql_create_db(), 2661
MYSQL_DATADIR option

CMake, 166
mysql_data_seek(), 2661
MYSQL_DEBUG environment variable, 248, 417, 2825
mysql_debug(), 2662
mysql_drop_db(), 2662
mysql_dump_debug_info(), 2663
mysql_eof(), 2663
mysql_errno(), 2664
mysql_error(), 2665
mysql_escape_string(), 2665
mysql_fetch_field(), 2665
mysql_fetch_fields(), 2667
mysql_fetch_field_direct(), 2666
mysql_fetch_lengths(), 2667
mysql_fetch_row(), 2668
MYSQL_FIELD C type, 2648
mysql_field_count(), 2669, 2682
MYSQL_FIELD_OFFSET C type, 2648
mysql_field_seek(), 2669
mysql_field_tell(), 2670
mysql_find_rows, 247, 408

help option, 409
regexp option, 409
rows option, 409
skip-use-db option, 409
start_row option, 409

mysql_fix_extensions, 247, 409
mysql_free_result(), 2670
mysql_get_character_set_info(), 2670
mysql_get_client_info(), 2671
mysql_get_client_version(), 2671
mysql_get_host_info(), 2672
mysql_get_proto_info(), 2672
mysql_get_server_info(), 2672
mysql_get_server_version(), 2672
mysql_get_ssl_cipher(), 2673
MYSQL_GROUP_SUFFIX environment variable, 417
mysql_hex_string(), 2673
MYSQL_HISTFILE environment variable, 306, 417
MYSQL_HOME environment variable, 417
MYSQL_HOST environment variable, 252, 417
mysql_info(), 1301, 1393, 1407, 1445, 2674
mysql_init(), 2674
mysql_insert_id(), 1393, 2675
mysql_install_db, 177, 245, 279

basedir option, 280
builddir option, 280
cross-bootstrap option, 280
datadir option, 280
force option, 280
help option, 280
ldata option, 280



3099

rpm option, 281
skip-name-resolve option, 281
srcdir option, 281
user option, 281
verbose option, 281
windows option, 281

mysql_kill(), 2676
mysql_library_end(), 2677
mysql_library_init(), 2677
mysql_list_dbs(), 2678
mysql_list_fields(), 2679
mysql_list_processes(), 2680
mysql_list_tables(), 2680
mysql_load_plugin(), 2742
mysql_load_plugin_v(), 2743
MYSQL_MAINTAINER_MODE option

CMake, 169
mysql_more_results(), 2681
mysql_native_password authentication plugin, 772
mysql_next_result(), 2681
mysql_num_fields(), 2682
mysql_num_rows(), 2683
mysql_old_password authentication plugin, 773
mysql_options(), 2684
mysql_ping(), 2688
mysql_plugin, 245, 281

basedir option, 282
datadir option, 282
help option, 282
my-print-defaults option, 282
mysqld option, 283
no-defaults option, 283
plugin-dir option, 283
plugin-ini option, 283
print-defaults option, 283
verbose option, 283
version option, 283

mysql_plugin_options(), 2743
MYSQL_PROJECT_NAME option

CMake, 169
MYSQL_PS1 environment variable, 417
MYSQL_PWD environment variable, 248, 252, 417
mysql_query(), 2689, 2743
mysql_real_connect(), 2690
mysql_real_escape_string(), 971, 1160, 2693
mysql_real_query(), 2694
mysql_refresh(), 2695
mysql_reload(), 2696
MYSQL_RES C type, 2648
mysql_rollback(), 2697
MYSQL_ROW C type, 2648
mysql_row_seek(), 2697
mysql_row_tell(), 2697
mysql_secure_installation, 245, 283
mysql_select_db(), 2697
MYSQL_SERVER_AUTH_INFO plugin structure, 2798
mysql_server_end(), 2740
mysql_server_init(), 2740



3100

mysql_setpermission, 247, 409
help option, 410
host option, 410
password option, 410
port option, 410
socket option, 410
user option, 410

mysql_set_character_set(), 2698
mysql_set_local_infile_default(), 2699, 2699
mysql_set_server_option(), 2700
mysql_shutdown(), 2701
mysql_sqlstate(), 2701
mysql_ssl_set(), 2702
mysql_stat(), 2703
MYSQL_STMT C type, 2708
mysql_stmt_affected_rows(), 2716
mysql_stmt_attr_get(), 2716
mysql_stmt_attr_set(), 2717
mysql_stmt_bind_param(), 2718
mysql_stmt_bind_result(), 2718
mysql_stmt_close(), 2719
mysql_stmt_data_seek(), 2720
mysql_stmt_errno(), 2720
mysql_stmt_error(), 2721
mysql_stmt_execute(), 2721
mysql_stmt_fetch(), 2724
mysql_stmt_fetch_column(), 2729
mysql_stmt_field_count(), 2729
mysql_stmt_free_result(), 2730
mysql_stmt_init(), 2730
mysql_stmt_insert_id(), 2730
mysql_stmt_next_result(), 2731
mysql_stmt_num_rows(), 2732
mysql_stmt_param_count(), 2732
mysql_stmt_param_metadata(), 2732
mysql_stmt_prepare(), 2732
mysql_stmt_reset(), 2733
mysql_stmt_result_metadata, 2734
mysql_stmt_row_seek(), 2735
mysql_stmt_row_tell(), 2735
mysql_stmt_send_long_data(), 2735
mysql_stmt_sqlstate(), 2737
mysql_stmt_store_result(), 2738
mysql_store_result(), 2704, 2743
MYSQL_TCP_PORT environment variable, 248, 417, 686, 686
MYSQL_TCP_PORT option

CMake, 169
mysql_thread_end(), 2739
mysql_thread_id(), 2705
mysql_thread_init(), 2739
mysql_thread_safe(), 2739
MYSQL_TIME C type, 2710
mysql_tzinfo_to_sql, 245, 284
MYSQL_UNIX_ADDR option

CMake, 169
MYSQL_UNIX_PORT environment variable, 178, 248, 417, 686, 686
mysql_upgrade, 245, 284, 740

basedir option, 287



3101

character-sets-dir option, 287
compress option, 287
datadir option, 287
debug option, 287
debug-check option, 287
debug-info option, 287
default-auth option, 287
default-character-set option, 287
defaults-extra-file option, 287
defaults-file option, 288
defaults-group-suffix option, 288
force option, 288
help option, 287
host option, 288
mysql_upgrade_info file, 285
no-defaults option, 288
password option, 288
pipe option, 288
plugin-dir option, 288
port option, 288
print-defaults option, 288
protocol option, 288
shared-memory-base-name option, 289
socket option, 289
SSL options, 289
tmpdir option, 289
upgrade-system-tables option, 289
user option, 289
verbose option, 289
version-check option, 289
write-binlog option, 289

mysql_upgrade_info file
mysql_upgrade, 285

mysql_use_result(), 2705
mysql_waitpid, 247, 410

help option, 410
verbose option, 410
version option, 410

mysql_warning_count(), 2707
mysql_zap, 247, 411
my_bool C type, 2648
my_bool values

printing, 2648
my_init(), 2739
my_print_defaults, 247, 413

config-file option, 413
debug option, 414
defaults-extra-file option, 414
defaults-file option, 413
defaults-group-suffix option, 414
extra-file option, 414
help option, 413
no-defaults option, 414
verbose option, 414
version option, 414

my_snprintf service, 2804
my_thd_scheduler service, 2804
my_ulonglong C type, 2648



3102

my_ulonglong values
printing, 2648

N
named pipes, 116, 122
named-commands option

mysql, 295
named_pipe system variable, 547
names, 978

case sensitivity, 982
variables, 995

NAME_CONST(), 1281, 2529
name_file option

comp_err, 278
naming

releases of MySQL, 44
NATIONAL CHAR data type, 1079
NATIONAL VARCHAR data type, 1080
native backup and restore

backup identifiers, 2310
native functions

adding, 2815
NATURAL JOIN, 1425
natural key, 3530
NATURAL LEFT JOIN, 1425
NATURAL LEFT OUTER JOIN, 1425
NATURAL RIGHT JOIN, 1425
NATURAL RIGHT OUTER JOIN, 1425
NCHAR data type, 1079
NDB

creating large tables using, 1350
MAX_ROWS, 1350

NDB API
and distributed grant tables, 2392
and distributed privileges, 2392

NDB API counters (NDB Cluster), 2392
scope, 2395
status variables associated with, 2397
types, 2395

NDB API database objects
and NDB Cluster replication, 2406

NDB API _slave status variables
and NDB Cluster Replication, 2404

NDB client programs
defaults-extra-file option, 2300
defaults-file option, 2300
no-defaults option, 2301
print-defaults option, 2301

NDB Cluster, 2002
"quick" configuration, 2056
administration, 2170, 2225, 2234, 2241, 2241, 2298, 2304, 2324
and application feature requirements, 2017
and DNS, 2031
and INFORMATION_SCHEMA, 2370
and IP addressing, 2031
and MySQL privileges, 2369
and MySQL root user, 2369, 2371
and networking, 2011



3103

and transactions, 2118
API node, 2006, 2164
applications supported, 2017
availability, 2015
available platforms, 2002
BACKUP Events, 2323
backups, 2273, 2308, 2308, 2309, 2312, 2312
binlog_format system variable, 1935, 1935
CHECKPOINT Events, 2320
cluster logs, 2316, 2318
CLUSTERLOG commands, 2318
CLUSTERLOG STATISTICS command, 2324
commands, 2170, 2225, 2234, 2241, 2304
compared to InnoDB, 2015, 2016, 2017, 2017
compared to standalone MySQL Server, 2015, 2016, 2017, 2017
compiling with icc, 2817
concepts, 2006
configuration, 2030, 2056, 2056, 2108, 2109, 2113, 2164, 2240, 2313
configuration (example), 2101
configuration changes, 2314
configuration files, 2047, 2100
configuration parameters, 2058, 2059, 2074, 2076, 2079
configuring, 2312
CONNECT command, 2305
CONNECTION Events, 2320
connection string, 2107
CREATE NODEGROUP command, 2307
creating large tables, 1350
data node, 2006, 2113
data nodes, 2225, 2232
defining node hosts, 2108
direct connections between nodes, 2217
Disk Data tables (see NDB Cluster Disk Data)
DROP NODEGROUP command, 2307
ENTER SINGLE USER MODE command, 2307
ERROR Events, 2323
error logs, 2230
event log format, 2319
event logging thresholds, 2318
event logs, 2316, 2318
event severity levels, 2319
event types, 2317, 2320
execution threads, 2152
EXIT command, 2307
EXIT SINGLE USER MODE command, 2307
FAQ, 2846
GCP Stop errors, 2160
general description, 2004
HELP command, 2305
HostName parameter

and security, 2365
INFO Events, 2323
information sources, 2004
insecurity of communication protocols, 2365
installation, 2030
installation (Linux), 2032
installation (Windows), 2038
installing .deb file (Linux), 2036



3104

installing binary (Windows), 2038
installing binary release (Linux), 2032
installing from source (Linux), 2037
installing from source (Windows), 2041
installing RPM (Linux), 2035
interconnects, 2224
Java clients, 2007
log files, 2230, 2233
logging commands, 2318
management client (ndb_mgm), 2241
management commands, 2324
management node, 2006, 2109
management nodes, 2233
managing, 2302
MAX_ROWS, 1350
memory usage and recovery, 2020, 2315
mgm, 2298
mgm client, 2304
mgm management client, 2324
mgm process, 2241
mgmd, 2298
mgmd process, 2234
monitoring, 2392
multiple management servers, 2316
mysqld options and variables for, 2170
mysqld process, 2170, 2313
ndbd, 2225, 2298
ndbd process, 2225, 2326
ndbinfo_select_all, 2231
ndbmtd, 2232
ndb_mgm, 2049, 2241
ndb_mgmd process, 2233
network configuration

and security, 2366
network transporters, 2224
networking, 2217, 2218, 2220
node failure (single user mode), 2341
node identifiers, 2218, 2218, 2220, 2220
node logs, 2316
NODERESTART Events, 2321
nodes and node groups, 2008
nodes and types, 2006
partitioning support, 2019
partitions, 2008
performing queries, 2050
preparing for replication, 2416
process management, 2224
QUIT command, 2307
replicas, 2008
replication, 2403

(see also NDB Cluster replication)
REPORT command, 2306
requirements, 2011
resetting, 2315
RESTART command, 2306
restarting, 2053
restoring backups, 2273
rolling restarts (multiple management servers), 2316



3105

runtime statistics, 2324
SCHEMA Events, 2323
SCI (Scalable Coherent Interface), 2220
security, 2365

and firewalls, 2367, 2368
and HostName parameter, 2365
and network configuration, 2366
and network ports, 2368
and remote administration, 2368
networking, 2365

security procedures, 2371
shared memory transport, 2218
SHOW command, 2305
SHUTDOWN command, 2307
shutting down, 2053
single user mode, 2307, 2341
SINGLEUSER Events, 2323
SQL node, 2006, 2164
SQL nodes, 2313
SQL statements for monitoring, 2342
START BACKUP command, 2423
START command, 2305
start phases (summary), 2303
starting, 2056
starting nodes, 2042, 2049
starting or restarting, 2303
STARTUP Events, 2320
STATISTICS Events, 2322
STATUS command, 2306
status variables, 2202
STOP command, 2305
storage requirements, 1122
thread states, 967
trace files, 2230
transaction handling, 2023
transaction isolation level, 2021
transporters

Scalable Coherent Interface (SCI), 2220
shared memory (SHM), 2218
TCP/IP, 2217

troubleshooting backups, 2312
upgrades and downgrades, 2054, 2314
USING HASH, 1328
using tables and data, 2050

NDB Cluster 7.2, 2012
NDB Cluster Disk Data, 2372

creating log file groups, 2373
creating tables, 2372, 2374
creating tablespaces, 2373
dropping Disk Data objects, 2375
storage requirements, 2377

NDB Cluster How-To, 2030
NDB Cluster limitations, 2018

and differences from standard MySQL limits, 2020
binary logging, 2025
CREATE TABLE statements, 2028
database objects, 2024
Disk Data storage, 2026



3106

error handling and reporting, 2023
geometry data types, 2019
implementation, 2025
imposed by configuration, 2020
INSERT IGNORE, UPDATE IGNORE, and REPLACE statements, 2028
memory usage and transaction handling, 2023
multiple data nodes, 2028
multiple management servers, 2026
multiple MySQL servers, 2026
partitioning, 2019
performance, 2025
replication, 2020, 2027
resolved in current version from previous versions, 2027
syntax, 2018
transactions, 2021
unsupported features, 2024

NDB Cluster processes, 2224
NDB Cluster programs, 2224
NDB Cluster replication, 2403

and --initial option, 2410
and circular replication, 2407
and NDB API database objects, 2406
and primary key, 2409
and single point of failure, 2419
and unique keys, 2409
backups, 2422
circular replication, 2428
concepts, 2404, 2405
conflict resolution, 2432
failover, 2419, 2420
gap event, 2407
known issues, 2406
loss of connection, 2406
multi-master replication, 2428
point-in-time recovery, 2427
preparing, 2416
requirements, 2405
reset-slave.pl backup automation script, 2425
restoring from backup, 2422
starting, 2417
storage engines other than NDB on slave, 2411
synchronization of master and slave, 2425
system tables used, 2413

NDB Cluster Replication
and NDB API _slave status variables, 2404

NDB Cluster replication conflict resolution
exceptions table, 2439

ndb option
perror, 415

NDB statistics variables
and NDB API counters, 2397

NDB statistics variables (NDB Cluster), 2392
scope, 2395
types, 2395

NDB storage engine (see NDB Cluster)
FAQ, 2846

NDB tables
and MySQL root user, 2369



3107

NDB utilities
security issues, 2371

NDB$EPOCH(), 2436
limitations, 2438

NDB$EPOCH_TRANS(), 2436, 2438
NDB$MAX(), 2436
NDB$MAX_DELETE_WIN(), 2436
NDB$OLD, 2435
ndb-batch-size option

mysqld, 2171
ndb-blob-read-batch-bytes option

mysqld, 2172
ndb-blob-write-batch-bytes option

mysqld, 2172
ndb-cluster-connection-pool option

mysqld, 2171
ndb-connectstring option

mysqld, 2173
ndb_config, 2248

ndb-connectstring option (NDB Cluster programs), 2301
ndb-deferred-constraints option (NDB Cluster), 2173
ndb-distribution option (NDB Cluster), 2174
ndb-log-apply-status option

mysqld, 2174
ndb-log-empty-epochs option

mysqld, 2175
ndb-log-empty-update option

mysqld, 2175
ndb-log-orig option

mysqld, 2176
ndb-log-transaction-id option

mysqld, 2176
ndb-log-update-as-write (mysqld option), 2433
ndb-mgmd-host option (NDB Cluster programs), 2301
ndb-mgmd-host option (NDB Cluster), 2177
ndb-nodegroup-map option (ndb_restore), 2283
ndb-nodeid option

mysqld, 2177
ndb-nodeid option (NDB Cluster programs), 2301
ndb-optimized-node-selection option (NDB Cluster), 2301
ndbcluster option

mysqld, 2170
NDBCLUSTER storage engine (see NDB Cluster)
ndbd, 2224, 2224
ndbd (NDB Cluster)

defined, 2006
(see also data node (NDB Cluster))

ndbinfo database, 2344
and query cache, 2346
basic usage, 2347
determining support for, 2344

ndbinfo_select_all, 2224, 2231
ndbmtd, 2224, 2232

configuration, 2154, 2154
MaxNoOfExecutionThreads, 2152
trace files, 2233, 2233

ndb_apply_status table (NDB Cluster replication), 2414, 2414, 2420
(see also NDB Cluster replication)



3108

ndb_binlog_index table
system table, 647, 2413

ndb_binlog_index table (NDB Cluster replication), 2413, 2421
(see also NDB Cluster replication)

ndb_blob_tool, 2224, 2242
check-orphans option, 2243
database option, 2243
delete-orphans option, 2243
dump-file option, 2244
verbose option, 2244

ndb_config, 2224, 2245
config-file option, 2247
configinfo option, 2246
config_from_node option, 2247
connections option, 2247
fields option, 2248
host option, 2248
mycnf option, 2248
ndb-connectstring option, 2248
nodeid option, 2248
nodes option, 2249
query option, 2249, 2249
rows option, 2249
system option, 2249
type option, 2250
usage option, 2250
version option, 2250
xml option, 2250

ndb_cpcd, 2224, 2252
ndb_delete_all, 2224, 2252

transactional option, 2253
ndb_desc, 2224, 2253

blob-info option, 2257
database option, 2257
extra-node-info option, 2257
extra-partition-info option, 2257
retries option, 2257
table option, 2257
unqualified option, 2257

ndb_dist_priv.sql, 2389
ndb_drop_index, 2224, 2258
ndb_drop_table, 2224, 2259
ndb_error_reporter, 2224, 2259

options, 2260
ndb_index_stat, 2224, 2260

example, 2261
interpreting output, 2261

ndb_log_apply_status variable (NDB Cluster replication), 2420
ndb_log_empty_epochs system variable, 2191
ndb_log_empty_update system variable, 2191
ndb_log_orig system variable, 2192
ndb_log_transaction_id system variable, 2192
ndb_mgm, 2224, 2241 (see mgm)

using with MySQL Cluster Manager, 2305
ndb_mgm (NDB Cluster management node client), 2049
ndb_mgmd, 2224 (see mgmd)

mycnf option, 2236
ndb_mgmd (NDB Cluster process), 2233



3109

ndb_mgmd (NDB Cluster)
defined, 2006

(see also management node (NDB Cluster))
ndb_move_data, 2224, 2266

abort-on-error option, 2267
character-sets-dir option, 2267
database option, 2267
drop-source option, 2267
error-insert option, 2267
exclude-missing-columns option, 2267
lossy-conversions option, 2268
promote-attributes option, 2268
staging-tries option, 2268
verbose option, 2268

ndb_print_backup_file, 2224, 2268
ndb_print_file, 2224, 2269
ndb_print_frag_file, 2224
ndb_print_schema_file, 2224, 2269
ndb_print_sys_file, 2224, 2269
ndb_redo_log_reader, 2270

dump option, 2271
lap option, 2271
twiddle option, 2273

ndb_replication system table, 2434
ndb_restore, 2273

and circular replication, 2430
and distributed privileges, 2391
append option, 2282
attribute promotion, 2279
backup_path option, 2280
disable-indexes option, 2286
dont_ignore_systab_0 option, 2283
errors, 2288
exclude-databases option, 2284
exclude-intermediate-sql-tables option, 2288
exclude-missing-columns option, 2286
exclude-missing-tables option, 2286
exclude-tables option, 2284
fields-enclosed-by option, 2281
fields-optionally-enclosed-by option, 2281
fields-terminated-by option, 2282, 2282
hex option, 2282
include-databases option, 2283
include-tables option, 2284
lossy-conversions option, 2279
ndb-nodegroup-map option, 2283
no-binlog option, 2283
no-restore-disk-objects option, 2283
no-upgrade option, 2281
parallelism option, 2283
print option, 2282
print_data option, 2281
print_log option, 2282
print_meta option, 2282
progress-frequency option, 2283
rebuild-indexes option, 2286
restore-privilege-tables option, 2280
rewrite-database option, 2287



3110

skip-broken-objects option, 2287
skip-unknown-objects option, 2287
tab option, 2281
typical and required options, 2276
verbose option, 2283

ndb_schema table (NDB Cluster replication), 2415
(see also NDB Cluster replication)

ndb_select_all, 2224, 2288
database option, 2289
delimiter option, 2290
descending option, 2289
disk option, 2290
gci option, 2290
gci64 option, 2290
header option, 2289
lock option, 2289
nodata option, 2290
order option, 2289
parallelism option, 2289
rowid option, 2290
tupscan option, 2290
useHexFormat option, 2290

ndb_select_count, 2224, 2291
ndb_show_tables, 2224, 2292

database option, 2292
loops option, 2292
parsable option, 2293
show-temp-status option, 2293
type option, 2293
unqualified option, 2293

ndb_size.pl, 2224, 2293
ndb_transid_mysql_connection_map

INFORMATION_SCHEMA table, 2579
ndb_waiter, 2224, 2296

no-contact option, 2297
not-started option, 2297
nowait-nodes option, 2297
single-user option, 2297
timeout option, 2297
wait-nodes option, 2297

negative values, 972
neighbor page, 3531
nested queries, 1432
Nested-Loop join algorithm, 846
nested-loop join algorithm, 850
net etiquette, 19
netmask notation

in account names, 733
network ports

and NDB Cluster, 2368
net_buffer_length system variable, 547
net_buffer_length variable, 300
net_read_timeout system variable, 547
net_retry_count system variable, 548
net_write_timeout system variable, 548
new features in MySQL 5.5, 9
new features in NDB Cluster, 2012
new system variable, 549



3111

new users
adding, 179

newline (\n), 970, 1404
next-key lock, 1601, 3531

InnoDB, 1616, 1711
NFS

InnoDB, 1620, 1662
nice option

mysqld_safe, 269
no matching rows, 2963
no-auto-rehash option

mysql, 296
no-autocommit option

mysqldump, 337
no-beep option

mysql, 296
mysqladmin, 316

no-binlog option (ndb_restore), 2283
no-contact option

ndb_waiter, 2297
no-create-db option

mysqldump, 337
no-create-info option

mysqldump, 337
no-data option

mysqldump, 337
no-defaults option, 261, 280

myisamchk, 367
mysql, 296
mysqladmin, 316
mysqlbinlog, 394
mysqlcheck, 323
mysqld, 470
mysqldump, 337
mysqld_multi, 274
mysqld_safe, 269
mysqlimport, 347
mysqlshow, 352
mysqlslap, 358
mysql_plugin, 283
mysql_upgrade, 288
my_print_defaults, 414
NDB client programs, 2301

no-drop option
mysqlslap, 358

no-log option
mysqld_multi, 275

no-named-commands option
mysql, 296

no-nodeid-checks option (ndb_mgmd), 2235
no-pager option

mysql, 296
no-restore-disk-objects option (ndb_restore), 2283
no-set-names option

mysqldump, 338
no-symlinks option

myisamchk, 370
no-tablespaces option



3112

mysqldump, 338
no-tee option

mysql, 296
no-upgrade option (ndb_restore), 2281
nodaemon option (ndb_mgmd), 2238
nodata option

ndb_select_all, 2290
node groups (NDB Cluster), 2008
node logs (NDB Cluster), 2316
NodeGroup, 2115
NodeId, 2109, 2114, 2165
nodeid option

ndb_config, 2248
nodeid option (ndb_restore), 2276
NodeId1, 2215, 2218, 2220
NodeId2, 2215, 2218, 2220
NODERESTART Events (NDB Cluster), 2321
nodes

ndbinfo table, 2357
nodes option

ndb_config, 2249
noindices option

mysqlhotcopy, 406
non-blocking I/O, 3531
non-locking read, 3531
non-repeatable read, 3531
nondelimited strings, 974
nondeterministic functions

optimization, 867
replication, 867

Nontransactional tables, 2962
NoOfDiskPagesToDiskAfterRestartACC (DEPRECATED), 2142
NoOfDiskPagesToDiskAfterRestartTUP (DEPRECATED), 2142
NoOfDiskPagesToDiskDuringRestartACC, 2142
NoOfDiskPagesToDiskDuringRestartTUP, 2142
NoOfFragmentLogFiles, 2126
NoOfFragmentLogParts, 2154
NoOfReplicas, 2115
nopager command

mysql, 302
normalized, 3531
NoSQL, 3532
nostart option (ndbd), 2228
nostart option (ndbmtd), 2228
NOT

logical, 1148
NOT BETWEEN, 1145
not equal (!=), 1143
not equal (<>), 1143
NOT EXISTS

with subqueries, 1437
NOT IN, 1146
NOT LIKE, 1166
NOT NULL

constraint, 31
NOT NULL constraint, 3532
NOT REGEXP, 1168
not-started option



3113

ndb_waiter, 2297
notee command

mysql, 302
Notifier, 83
NOW(), 1197
NOWAIT (START BACKUP command), 2309
nowait-nodes option

ndb_waiter, 2297
nowait-nodes option (ndbd), 2228
nowait-nodes option (ndbmtd), 2228
nowait-nodes option (ndb_mgmd), 2238
nowarning command

mysql, 302
NO_AUTO_CREATE_USER SQL mode, 633
NO_AUTO_VALUE_ON_ZERO SQL mode, 633
NO_BACKSLASH_ESCAPES SQL mode, 633
NO_DIR_IN_CREATE SQL mode, 633
NO_ENGINE_SUBSTITUTION SQL mode, 633
NO_FIELD_OPTIONS SQL mode, 634
NO_KEY_OPTIONS SQL mode, 634
NO_TABLE_OPTIONS SQL mode, 634
NO_UNSIGNED_SUBTRACTION SQL mode, 634
NO_ZERO_DATE SQL mode, 635
NO_ZERO_IN_DATE SQL mode, 635
NUL, 970, 1404
NULL, 225, 2960, 3532

ORDER BY, 859, 1420
testing for null, 1143, 1144, 1145, 1145, 1151
thread state, 960

NULL value, 225, 978
NULL values

and AUTO_INCREMENT columns, 2961
and indexes, 1342
and TIMESTAMP columns, 2961
vs. empty values, 2960

NULL-complemented row, 851, 855
null-rejected condition, 855
NULLIF(), 1152
Numa, 2151
number literals, 972
number-char-cols option

mysqlslap, 359
number-int-cols option

mysqlslap, 359
number-of-queries option

mysqlslap, 359
numbers, 972
NUMERIC data type, 1076
numeric data types

storage requirements, 1123
numeric precision, 1073
numeric scale, 1073
numeric-dump-file option

resolve_stack_dump, 414
NumGeometries(), 1267
NumInteriorRings(), 1266
NumPoints(), 1264
NVARCHAR data type, 1080



3114

O
obtaining information about partitions, 2484
OCT(), 1159
OCTET_LENGTH(), 1160
ODBC compatibility, 572, 981, 1077, 1137, 1144, 1343, 1427
ODBC_INCLUDES= option

CMake, 166
ODBC_LIB_DIR option

CMake, 166
ODirect, 2133
OFF

plugin activation option, 671
off-page column, 3532
offset option

mysqlbinlog, 394
OGC (see Open Geospatial Consortium)
OLAP, 1274
old system variable, 549
old-alter-table option

mysqld, 470
old-style-user-limits option

mysqld, 471
old_alter_table system variable, 549
OLD_PASSWORD(), 1245
old_passwords system variable, 550
old_server option

mysqlaccess, 387
mysqlhotcopy, 407

OLTP, 3532
ON

plugin activation option, 671
ON DUPLICATE KEY

INSERT modifier, 1394
ON DUPLICATE KEY UPDATE, 1391
ON versus USING

joins, 1429
one-database option

mysql, 296
one-thread option

mysqld, 471
one_shot system variable, 550
online, 3533
online DDL, 3533
online location of manual, 2
online upgrades and downgrades (NDB Cluster), 2314

order of node updates, 2316
only-print option

mysqlslap, 359
ONLY_FULL_GROUP_BY

SQL mode, 1277
ONLY_FULL_GROUP_BY SQL mode, 635
OPEN, 1483
Open Geospatial Consortium, 1105
Open Source

defined, 5
open tables, 313, 892
open-files-limit option



3115

mysqld, 471
mysqld_safe, 270

OpenGIS, 1105
opening

tables, 892
Opening master dump table

thread state, 967
Opening mysql.ndb_apply_status

thread state, 967
Opening table

thread state, 960
Opening tables

thread state, 960
opens, 313
OpenSSL, 759, 760

compared to yaSSL, 760
open_files_limit system variable, 550
open_files_limit variable, 396
operating systems

file-size limits, 2982
supported, 43

operations
arithmetic, 1175

operators, 1127
arithmetic, 1239
assignment, 995, 1149
bit, 1239
cast, 1175, 1222
logical, 1147
precedence, 1140

.OPT file, 3532
opt option

mysqldump, 338
optimistic, 3533
optimization, 834, 899

benchmarking, 953
BLOB types, 891
buffering and caching, 925
character and string types, 891
data change statements, 879
data size, 889
DELETE statements, 880
disk I/O, 943
foreign keys, 883
full table scans, 869
full-text queries, 884, 898
indexes, 881
INFORMATION_SCHEMA queries, 874
InnoDB tables, 895
INSERT statements, 879
locking, 936
many tables, 892
MEMORY storage engine, 884
MEMORY tables, 907
memory usage, 947
MyISAM tables, 902
network usage, 951
nondeterministic functions, 867



3116

numeric types, 891
Performance Schema queries, 892
PERFORMANCE_SCHEMA, 955
primary keys, 883
privileges, 881
REPAIR TABLE statements, 905
SELECT statements, 836
spatial queries, 884
SQL statements, 836
subqueries, 870
tips, 881
UPDATE statements, 880
WHERE clauses, 837

optimizations, 842
LIMIT clause, 865
row constructors, 868

optimize option
mysqlcheck, 323

OPTIMIZE TABLE
and partitioning, 2483

OPTIMIZE TABLE statement, 1519
optimizer, 3533

and replication, 1988
controlling, 920
query plan evaluation, 920
switchable optimizations, 921

Optimizer Statistics, 1638
optimizer_prune_level system variable, 551
optimizer_search_depth system variable, 551
optimizer_switch system variable, 552, 921
optimizing

DISTINCT, 864
filesort, 860
GROUP BY, 862
LEFT JOIN, 853
ORDER BY, 858
RIGHT JOIN, 853
server configuration, 942
tables, 831
thread state, 960

option, 3533
option file, 3533
option files, 256, 740

escape sequences, 258
option prefix

--disable, 255
--enable, 255
--loose, 255
--maximum, 255
--skip, 255

options
boolean, 255
CMake, 161
command-line

mysql, 290
mysqladmin, 314

embedded server, 2637
libmysqld, 2637



3117

myisamchk, 366
mysqld, 420
provided by MySQL, 211
replication, 1971

OR, 239, 842
bitwise, 1239
logical, 1148

OR Index Merge optimization, 842
Oracle compatibility, 27, 1273, 1304, 1581
ORACLE SQL mode, 637
ORD(), 1160
ORDER BY, 222, 1308, 1419

maximum sort length, 1420
NULL, 859, 1420

ORDER BY optimization, 858
order option

ndb_select_all, 2289
order-by-primary option

mysqldump, 338
OS X

installation, 127
Out of resources error

and partitioned tables, 2493
out-of-range handling, 1084
OUTFILE, 1424
out_dir option

comp_err, 278
out_file option

comp_err, 278
overflow handling, 1084
overflow page, 3534
Overlaps(), 1268
OverloadLimit, 2215, 2219, 2222
overview, 1

P
packages

list of, 39
PAD SPACE collations, 1029, 1097
PAD_CHAR_TO_FULL_LENGTH SQL mode, 635
page, 3534
page cleaner, 3534
page size, 3534

InnoDB, 1664, 1666
pager command

mysql, 302
pager option

mysql, 296
PAM

pluggable authentication, 775
.PAR file, 3534
parallel-recover option

myisamchk, 370
parallelism option (ndb_restore), 2283
parameters

server, 420
PARAMETERS

INFORMATION_SCHEMA table, 2544



3118

parent table, 3534
parentheses ( and ), 1141
parsable option

ndb_show_tables, 2293
partial backup, 3535
partial index, 3535
partial updates

and replication, 1989
PARTITION, 2443
PARTITION BY LIST COLUMNS, 2456
PARTITION BY RANGE COLUMNS, 2456
partition management, 2475
partition option

mysqld, 472
partition pruning, 2486
partitioning, 2443

advantages, 2447
and dates, 2448
and foreign keys, 2493
and FULLTEXT indexes, 2493
and key cache, 2493
and query cache, 2493
and replication, 1985, 1991
and SQL mode, 1991, 2490
and subqueries, 2494
and temporary tables, 2494, 2496
by hash, 2463
by key, 2466
by linear hash, 2465
by linear key, 2468
by list, 2454
by range, 2450
COLUMNS, 2456
concepts, 2445
data type of partitioning key, 2494
enabling, 2443
functions allowed in partitioning expressions, 2500
keys, 2447
limitations, 2490
operators not permitted in partitioning expressions, 2490
operators supported in partitioning expressions, 2490
optimization, 2485, 2486
partitioning expression, 2447
resources, 2445
storage engines (limitations), 2499
subpartitioning, 2494
support, 2443
support in NDB Cluster, 2019
types, 2448

Partitioning
maximum number of partitions, 2493

partitioning information statements, 2484
partitioning keys and primary keys, 2496
partitioning keys and unique keys, 2496
partitions

adding and dropping, 2475
analyzing, 2483
checking, 2483



3119

managing, 2475
modifying, 2475
optimizing, 2483
repairing, 2483
splitting and merging, 2475
truncating, 2475

PARTITIONS
INFORMATION_SCHEMA table, 2545

partitions (NDB Cluster), 2008
password

root user, 183
password encryption

reversibility of, 1246
password option, 251

mysql, 297
mysqlaccess, 387
mysqladmin, 316
mysqlbinlog, 394
mysqlcheck, 323
mysqldump, 338
mysqld_multi, 275
mysqlhotcopy, 406
mysqlimport, 347
mysqlshow, 352
mysqlslap, 359
mysql_convert_table_format, 408
mysql_setpermission, 410
mysql_upgrade, 288

PASSWORD(), 734, 749, 1245, 2948
passwords

administrator guidelines, 709
for users, 744
forgotten, 2950
hashing, 709
logging, 709
lost, 2950
resetting, 2950
security, 707, 721
setting, 749, 1508, 1513
user guidelines, 707

PATH environment variable, 118, 124, 182, 249, 417
path name separators

Windows, 258
pattern matching, 226, 1167
performance, 834

benchmarks, 954
disk I/O, 943
estimating, 920

Performance Schema, 1742, 2587, 3535
event filtering, 2599
memory use, 2595

Performance Schema queries
optimization, 892

performance_schema
cond_instances table, 2611
events_waits_current table, 2615
events_waits_history table, 2617
events_waits_history_long table, 2617



3120

events_waits_summary_by_instance table, 2618
events_waits_summary_by_thread_by_event_name table, 2618
events_waits_summary_global_by_event_name table, 2618
file_instances table, 2612
file_summary_by_event_name table, 2619
file_summary_by_instance table, 2619
mutex_instances table, 2612
performance_timers table, 2620
rwlock_instances table, 2613
setup_consumers table, 2609
setup_instruments table, 2610
setup_timers table, 2610
threads table, 2621

performance_schema database, 2587
restrictions, 2979
TRUNCATE TABLE, 2607, 2979

PERFORMANCE_SCHEMA storage engine, 2587
performance_schema system variable, 2623
Performance_schema_cond_classes_lost status variable, 2628
Performance_schema_cond_instances_lost status variable, 2628
performance_schema_events_waits_history_long_size system variable, 2623
performance_schema_events_waits_history_size system variable, 2623
Performance_schema_file_classes_lost status variable, 2628
Performance_schema_file_handles_lost status variable, 2628
Performance_schema_file_instances_lost status variable, 2628
Performance_schema_locker_lost status variable, 2628
performance_schema_max_cond_classes system variable, 2624
performance_schema_max_cond_instances system variable, 2624
performance_schema_max_file_classes system variable, 2624
performance_schema_max_file_handles system variable, 2624
performance_schema_max_file_instances system variable, 2625
performance_schema_max_mutex_classes system variable, 2625
performance_schema_max_mutex_instances system variable, 2625
performance_schema_max_rwlock_classes system variable, 2626
performance_schema_max_rwlock_instances system variable, 2626
performance_schema_max_table_handles system variable, 2626
performance_schema_max_table_instances system variable, 2626
performance_schema_max_thread_classes system variable, 2627
performance_schema_max_thread_instances system variable, 2627
Performance_schema_mutex_classes_lost status variable, 2628
Performance_schema_mutex_instances_lost status variable, 2628
Performance_schema_rwlock_classes_lost status variable, 2629
Performance_schema_rwlock_instances_lost status variable, 2629
Performance_schema_table_handles_lost status variable, 2629
Performance_schema_table_instances_lost status variable, 2629
Performance_schema_thread_classes_lost status variable, 2629
Performance_schema_thread_instances_lost status variable, 2629
performance_timers table

performance_schema, 2620
PERIOD_ADD(), 1197
PERIOD_DIFF(), 1197
Perl

installing, 206
installing on Windows, 207

Perl API, 2753
Perl DBI/DBD

installation problems, 208
permission checks



3121

effect on speed, 881
perror, 247, 414

help option, 415
ndb option, 415
silent option, 415
verbose option, 415
version option, 415

persistent statistics, 3535
pessimistic, 3535
phantom, 3535
phantom rows, 1616
phone book collation, German, 1005, 1045, 1045
physical, 3535
physical backup, 3535
PI(), 1182
pid-file option

mysql.server, 273
mysqld, 472
mysqld_safe, 270

pid_file system variable, 552
Ping

thread command, 956
pipe option, 251

mysql, 297, 323
mysqladmin, 317
mysqldump, 338
mysqlimport, 348
mysqlshow, 352
mysqlslap, 359
mysql_upgrade, 288

PIPES_AS_CONCAT SQL mode, 636
PITR, 3536
plan option

mysqlaccess, 387
plan stability, 3536
pluggable authentication

PAM, 775
restrictions, 2980
Windows, 783

plugin
audit_log, 791

plugin activation options
FORCE, 671
FORCE_PLUS_PERMANENT, 671
OFF, 671
ON, 671

plugin API, 669, 2759
plugin installing

audit_log, 793
MySQL Enterprise Thread Pool, 675

plugin option prefix
mysqld, 472

plugin service
my_snprintf, 2804
my_thd_scheduler, 2804
thd_alloc, 2804
thd_wait, 2804

plugin services, 2804



3122

plugin table
system table, 646

plugin-dir option
mysql, 297
mysqladmin, 317
mysqlbinlog, 394
mysqlcheck, 324
mysqldump, 338
mysqld_safe, 270
mysqlimport, 348
mysqlshow, 352
mysqlslap, 359
mysql_plugin, 283
mysql_upgrade, 288

plugin-ini option
mysql_plugin, 283

plugin-load option
mysqld, 472

plugindir option
mysql_config, 412

plugins
activating, 669
adding, 2759
audit, 2761
authentication, 2762
daemon, 2761
full-text parser, 2760
INFORMATION_SCHEMA, 2761
installing, 669, 1524
security, 772
semisynchronous replication, 2761
server, 669
storage engine, 2760
uninstalling, 669, 1526

PLUGINS
INFORMATION_SCHEMA table, 2548

plugin_dir system variable, 553
POINT data type, 1107
Point(), 1261
point-in-time recovery, 824, 3536

InnoDB, 1759
using NDB Cluster replication, 2427

PointFromText(), 1260
PointFromWKB(), 1260
PointN(), 1265
PolyFromText(), 1260
PolyFromWKB(), 1260
POLYGON data type, 1107
Polygon(), 1261
PolygonFromText(), 1260
PolygonFromWKB(), 1260
port option, 251

mysql, 297
mysqladmin, 317
mysqlbinlog, 394
mysqlcheck, 324
mysqld, 473
mysqldump, 338



3123

mysqld_safe, 270
mysqlhotcopy, 407
mysqlimport, 348
mysqlshow, 352
mysqlslap, 359
mysql_config, 412
mysql_convert_table_format, 408
mysql_setpermission, 410
mysql_upgrade, 288

port system variable, 553
port-open-timeout option

mysqld, 473
portability, 835

types, 1126
porting

to other systems, 2817
PortNumber, 2110
PortNumber (OBSOLETE), 2216
PortNumberStats, 2112
ports, 706
position option

mysqlbinlog, 394
POSITION(), 1160
post-filtering

Performance Schema, 2599
post-query option

mysqlslap, 359
post-system option

mysqlslap, 359
PostgreSQL compatibility, 28
POSTGRESQL SQL mode, 637
postinstall

multiple servers, 680
postinstallation

setup and testing, 174
POW(), 1182
POWER(), 1182
pre-filtering

Performance Schema, 2599
pre-query option

mysqlslap, 360
pre-system option

mysqlslap, 360
precedence

command options, 253
operator, 1140

precision
arithmetic, 1283
numeric, 1073

precision math, 1283
preload_buffer_size system variable, 553
Prepare

thread command, 957
PREPARE, 1470, 1473

XA transactions, 1459
prepared backup, 3536
prepared statements, 1470, 1473, 1473, 1474, 2707

repreparation, 1474



3124

preparing
thread state, 960

preserve-trailing-spaces option (ndb_restore), 2279
preview option

mysqlaccess, 387
primary key, 3536

constraint, 30
deleting, 1304

PRIMARY KEY, 1304, 1344
primary keys

and partitioning keys, 2496
print command

mysql, 303
print option (ndb_restore), 2282
print-defaults option, 261

myisamchk, 367
mysql, 297
mysqladmin, 317
mysqlbinlog, 394
mysqlcheck, 324
mysqld, 473
mysqldump, 338
mysqlimport, 348
mysqlshow, 353
mysqlslap, 360
mysql_plugin, 283
mysql_upgrade, 288
NDB client programs, 2301

print-full-config option (ndb_mgmd), 2238
print_data option (ndb_restore), 2281
print_log option (ndb_restore), 2282
print_meta option (ndb_restore), 2282
privilege

changes, 738
privilege checks

effect on speed, 881
privilege information

location, 726
privilege system, 721
privileges

access, 721
adding, 746
and replication, 1988
default, 183
deleting, 747, 1501
display, 1547
dropping, 747, 1501
granting, 1501
revoking, 1512
TEMPORARY tables, 723, 1359

problems
access denied errors, 2937
common errors, 2936
compiling, 172
DATE columns, 2959
date values, 1088
installing on Solaris, 150
installing Perl, 208



3125

linking, 2645
lost connection errors, 2940
reporting, 2, 20
starting the server, 179
table locking, 938
time zone, 2957

proc table
system table, 646

PROCEDURE, 1422
PROCEDURE ANALYSE(), 892
procedures

stored, 2505
process, 3536
process management (NDB Cluster), 2224
processes

display, 1553
processing

arguments, 2810
Processing events

thread state, 967
Processing events from schema table

thread state, 967
Processlist

thread command, 957
PROCESSLIST, 1553

INFORMATION_SCHEMA table, 2549
possible inconsistency with INFORMATION_SCHEMA tables, 1737

procs_priv table
system table, 646, 727

PROFILING
INFORMATION_SCHEMA table, 2550

profiling system variable, 554
profiling_history_size system variable, 554
program options (NDB Cluster), 2298
program variables

setting, 261
program-development utilities, 247
programs

administrative, 246
client, 245, 2643
stored, 1474, 2503
utility, 246

progress-frequency option (ndb_restore), 2283
promote-attributes option

ndb_move_data, 2268
promote-attributes option (ndb_restore), 2279
prompt command

mysql, 303
prompt option

mysql, 297
prompts

meanings, 214
pronunciation

MySQL, 5
protocol option, 251

mysql, 297
mysqladmin, 317
mysqlbinlog, 394



3126

mysqlcheck, 324
mysqldump, 338
mysqlimport, 348
mysqlshow, 353
mysqlslap, 360
mysql_upgrade, 288

protocol_version system variable, 554
proxies_priv

grant table, 754
proxies_priv table

system table, 183, 646, 727
proxy users, 753

conflict with anonymous users, 756
default proxy user, 755
PAM authentication, 781
PROXY privilege, 754
system variables, 757
Windows authentication, 787

proxy_user system variable, 554
pseudo-record, 3536
pseudo_slave_mode system variable, 554
pseudo_thread_id system variable, 555
Pthreads, 3536
purge, 3536
PURGE BINARY LOGS, 1461
purge buffering, 3537
purge lag, 3537
PURGE MASTER LOGS, 1461
purge scheduling, 1637
purge thread, 3537
Purging old relay logs

thread state, 960
Python, 2635

third-party driver, 2754

Q
QUARTER(), 1198
queries

entering, 212
estimating performance, 920
examples, 235
speed of, 836

Query
thread command, 957

query, 3537
Query Cache, 929
query cache

and ndbinfo database tables, 2346
and partitioned tables, 2493
thread states, 964

query end
thread state, 960

query execution plan, 907, 3537
query option

mysqlslap, 360
ndb_config, 2249, 2249

query option (ndb_index_stat), 2263
query_alloc_block_size system variable, 555



3127

query_cache_limit system variable, 556
query_cache_min_res_unit system variable, 556
query_cache_size system variable, 557
query_cache_type system variable, 558
query_cache_wlock_invalidate system variable, 558
query_prealloc_size system variable, 559
questions, 313

answering, 19
Queueing master event to the relay log

thread state, 965
QUICK

DELETE modifier, 1386
quick option

myisamchk, 370
mysql, 297
mysqlcheck, 324
mysqldump, 339

quiesce, 3537
quiet option

mysqlhotcopy, 407
Quit

thread command, 957
quit command

mysql, 303
QUIT command (NDB Cluster), 2307
quotation marks

in strings, 971
QUOTE(), 971, 1160, 2693
quote-names option

mysqldump, 339
quoting, 971

column alias, 979, 2961
quoting binary data, 971
quoting of identifiers, 978

R
R-tree, 3537
RADIANS(), 1182
RAID, 3537
RAND(), 1182
random dive, 3538
rand_seed1 system variable, 559
rand_seed2 system variable, 560
range join type

optimizer, 912
range partitioning, 2450, 2456
range partitions

adding and dropping, 2476
managing, 2476

range_alloc_block_size system variable, 560
raw backup, 3538
raw option

mysql, 297
raw partitions, 1640
RC

MySQL releases, 44
re-creating

grant tables, 178



3128

READ COMMITTED, 3538
implementation in NDB Cluster, 2021
transaction isolation level, 1606

read phenomena, 3538
READ UNCOMMITTED, 3538

transaction isolation level, 1608
read view, 3538
read-ahead, 3538

linear, 1629
random, 1629

read-from-remote-server option
mysqlbinlog, 394

read-only option
myisamchk, 369

read-only transaction, 3539
Reading event from the relay log

thread state, 967
Reading from net

thread state, 960
Reading master dump table data

thread state, 967
read_buffer_size myisamchk variable, 367
read_buffer_size system variable, 560
read_only system variable, 561
read_rnd_buffer_size system variable, 562
REAL data type, 1077
RealtimeScheduler, 2150
REAL_AS_FLOAT SQL mode, 636
rebuild-indexes option (ndb_restore), 2286
Rebuilding the index on master dump table

thread state, 967
ReceiveBufferMemory, 2216
reconfiguring, 172
reconnect option

mysql, 298
Reconnecting after a failed binlog dump request

thread state, 966
Reconnecting after a failed master event read

thread state, 966
reconnection

automatic, 2745
record lock, 3539
record-level locks

InnoDB, 1616, 1711
record_log_pos option

mysqlhotcopy, 407
RECOVER

XA transactions, 1459
recover option

myisamchk, 370
recovery

from crash, 827
incremental, 824
InnoDB, 1759
point in time, 824

redo, 3539
redo log, 1640, 3539
RedoBuffer, 2144



3129

RedoOverCommitCounter
data nodes, 2161

RedoOverCommitLimit
data nodes, 2162

reducing
data size, 889

redundant row format, 1683, 3539
ref join type

optimizer, 911
references, 1305
referential integrity, 1586, 3539
REFERENTIAL_CONSTRAINTS

INFORMATION_SCHEMA table, 2551
Refresh

thread command, 957
ref_or_null, 857
ref_or_null join type

optimizer, 912
REGEXP, 1168
REGEXP operator, 1167
regexp option

mysqlhotcopy, 407
mysql_find_rows, 409

Register Slave
thread command, 957

Registering slave on master
thread state, 966

regular expression syntax, 1167
rehash command

mysql, 303
relational, 3539
relational databases

defined, 5
relative option

mysqladmin, 317
relay-log option

mysqld, 1907
relay-log-index option

mysqld, 1908
relay-log-info-file option

mysqld, 1908
relay-log-purge option

mysqld, 1908
relay-log-recovery option

mysqld, 1909
relay-log-space-limit option

mysqld, 1909
relay_log system variable, 1919
relay_log_index system variable, 1920
relay_log_info_file system variable, 1920
relay_log_purge system variable, 562
relay_log_recovery system variable, 1920
relay_log_space_limit system variable, 563
release numbers, 43
RELEASE SAVEPOINT, 1450
releases

GA, 44
milestone, 44



3130

naming scheme, 44
RC, 44

RELEASE_LOCK(), 1281
relevance, 3540
relnotes option

mysqlaccess, 387
reload option (ndb_mgmd), 2238
remote administration (NDB Cluster)

and security issues, 2368
remove option

mysqld, 474
MySQLInstallerConsole, 83

remove option (ndbd), 2229
remove option (ndbmtd), 2229
remove option (ndb_mgmd), 2241
removed features in MySQL 5.5, 9
Removing duplicates

thread state, 960
removing tmp table

thread state, 960
rename

thread state, 960
rename result table

thread state, 960
RENAME TABLE, 1380
RENAME USER statement, 1512
renaming user accounts, 1512
Reopen tables

thread state, 960
repair

tables, 318
Repair by sorting

thread state, 960
Repair done

thread state, 961
repair option

mysqlcheck, 324
repair options

myisamchk, 369
REPAIR TABLE

and partitioning, 2483
and replication, 1986

REPAIR TABLE statement, 1521
and replication, 1523

Repair with keycache
thread state, 961

repairing
tables, 828

REPEAT, 1481
labels, 1475

REPEAT(), 1160
REPEATABLE READ, 3540

transaction isolation level, 1606
repertoire

character set, 1006, 1035
string, 1006

replace, 247
REPLACE, 1415



3131

replace option
mysqldump, 339
mysqlimport, 348

replace utility, 415
REPLACE(), 1160
replicas (NDB Cluster), 2008
replicate-do-db option

mysqld, 1910
replicate-do-table option

mysqld, 1912
replicate-ignore-db option

mysqld, 1911
replicate-ignore-table option

mysqld, 1912
replicate-rewrite-db option

mysqld, 1913
replicate-same-server-id option

mysqld, 1913
replicate-wild-do-table option

mysqld, 1913
replicate-wild-ignore-table option

mysqld, 1914
replication, 1869, 3540

and AUTO_INCREMENT, 1972
and character sets, 1973
and CHECKSUM TABLE statement, 1973
and CREATE ... IF NOT EXISTS, 1973
and CREATE TABLE ... SELECT, 1973
and DATA DIRECTORY, 1981
and DROP ... IF EXISTS, 1975
and errors on slave, 1989
and floating-point values, 1982
and FLUSH, 1983
and functions, 1983
and INDEX DIRECTORY, 1981
and invoked features, 1981
and LAST_INSERT_ID(), 1972
and LIMIT, 1985
and LOAD DATA, 1985
and max_allowed_packet, 1986
and MEMORY tables, 1987
and mysql (system) database, 1988
and partial updates, 1989
and partitioned tables, 1985
and partitioning, 1991
and privileges, 1988
and query optimizer, 1988
and REPAIR TABLE statement, 1523, 1986
and reserved words, 1988
and scheduled events, 1981, 1981
and slow query log, 1985
and SQL mode, 1991
and stored routines, 1981
and temporary tables, 1987
and time zones, 1992
and TIMESTAMP, 196, 1972, 1991
and transactions, 1991, 1992
and triggers, 1981, 1993



3132

and TRUNCATE TABLE, 1994
and variables, 1994
and views, 1996
attribute demotion, 1977
attribute promotion, 1977
between MySQL server versions, 196, 1991
BLACKHOLE, 1973
circular, 2407
crashes, 1986
in NDB Cluster, 2403

(see also NDB Cluster replication)
nondeterministic functions, 867
row-based vs statement-based, 1880
safe and unsafe statements, 1885
semisynchronous, 1966
shutdown and restart, 1986, 1987
statements incompatible with STATEMENT format, 1881
timeouts, 1991
with differing tables on master and slave, 1975
with ZFS, 1807

replication filtering options
and case sensitivity, 1948

replication formats
compared, 1880

replication implementation, 1943
replication limitations, 1971
replication master

thread states, 965
replication masters

statements, 1461
replication options, 1971
replication slave

thread states, 965, 966, 967
replication slaves

statements, 1463
replication, asynchronous (see NDB Cluster replication)
REPORT command (NDB Cluster), 2306
report-host option

mysqld, 1914
report-password option

mysqld, 1914
report-port option

mysqld, 1915
report-user option

mysqld, 1915
reporting

bugs, 2, 20
errors, 20
problems, 2

report_host system variable, 563
report_password system variable, 563
report_port system variable, 564
report_user system variable, 564
Requesting binlog dump

thread state, 966
REQUIRE option

GRANT statement, 1509
reschedule



3133

thread state, 964
reserved words, 989

and replication, 1988
ReservedSendBufferMemory, 2161
RESET MASTER, 1462
RESET SLAVE, 1467
RESET SLAVE ALL, 1467
Reset stmt

thread command, 957
reset-slave.pl (see NDB Cluster replication)
resetmaster option

mysqlhotcopy, 407
resetslave option

mysqlhotcopy, 407
RESIGNAL, 1489
resolveip, 248, 416

help option, 416
silent option, 416
version option, 416

resolve_stack_dump, 247, 414
help option, 414
numeric-dump-file option, 414
symbols-file option, 414
version option, 414

resource limits
user accounts, 540, 747, 1511

resources
ndbinfo table, 2358

RESTART command (NDB Cluster), 2306
restarting

the server, 182
RestartOnErrorInsert, 2134
RestartSubscriberConnectTimeout, 2143
restore, 3540
restore-privilege-tables option (ndb_restore), 2280
restore_connect option (ndb_restore), 2276
restore_data option (ndb_restore), 2280
restore_epoch option (ndb_restore), 2280
restore_meta option (ndb_restore), 2280
restore_skip-table-check option (ndb_restore), 2278
restoring backups

in NDB Cluster, 2273
restoring from backup

in NDB Cluster replication, 2422
restrictions

character sets, 2979
events, 2971
InnoDB, 1662
performance_schema database, 2979
pluggable authentication, 2980
server-side cursors, 2975
signals, 2975
stored routines, 2971
subqueries, 2975
triggers, 2971
views, 2977
XA transactions, 2978

result-file option



3134

mysqlbinlog, 395
mysqldump, 339

retries option
ndb_desc, 2257

retrieving
data from tables, 219

RETURN, 1481
return (\r), 970, 1404
return values

UDFs, 2812
REVERSE(), 1161
REVOKE statement, 1512
revoking

privileges, 1512
rewrite-database option (ndb_restore), 2287
rhost option

mysqlaccess, 387
RIGHT JOIN, 853, 1425
RIGHT OUTER JOIN, 1425
RIGHT(), 1161
RLIKE, 1168
ROLLBACK, 1446

XA transactions, 1459
rollback, 3540
rollback option

mysqlaccess, 387
rollback segment, 3540
ROLLBACK TO SAVEPOINT, 1450
Rolling back

thread state, 961
rolling restart (NDB Cluster), 2314
ROLLUP, 1274
root password, 183
root user, 706

password resetting, 2950
ROUND(), 1183
rounding, 1283
rounding errors, 1075
ROUTINES

INFORMATION_SCHEMA table, 2551
routines option

mysqldump, 339
ROW, 1436
row, 3541
row constructors, 1436

optimizations, 868
row format, 3541
row lock, 3541
row size

maximum, 2983
row subqueries, 1436
row-based replication, 3541

advantages, 1882
disadvantages, 1883

row-level locking, 936, 3541
rowid option

ndb_select_all, 2290
rows



3135

counting, 229
deleting, 2962
matching problems, 2963
selecting, 220
sorting, 222

rows option
mysql_find_rows, 409
ndb_config, 2249

ROW_COUNT(), 1255
ROW_FORMAT

COMPACT, 1683, 2983
COMPRESSED, 1667, 1682, 2983
DYNAMIC, 1682, 2983
REDUNDANT, 1683, 2983

RPAD(), 1161
Rpl_semi_sync_master_clients status variable, 625
rpl_semi_sync_master_enabled system variable, 564
Rpl_semi_sync_master_net_avg_wait_time status variable, 625
Rpl_semi_sync_master_net_waits status variable, 625
Rpl_semi_sync_master_net_wait_time status variable, 625
Rpl_semi_sync_master_no_times status variable, 625
Rpl_semi_sync_master_no_tx status variable, 625
Rpl_semi_sync_master_status status variable, 625
Rpl_semi_sync_master_timefunc_failures status variable, 625
rpl_semi_sync_master_timeout system variable, 565
rpl_semi_sync_master_trace_level system variable, 565
Rpl_semi_sync_master_tx_avg_wait_time status variable, 625
Rpl_semi_sync_master_tx_waits status variable, 626
Rpl_semi_sync_master_tx_wait_time status variable, 626
rpl_semi_sync_master_wait_no_slave system variable, 565
Rpl_semi_sync_master_wait_pos_backtraverse status variable, 626
Rpl_semi_sync_master_wait_sessions status variable, 626
Rpl_semi_sync_master_yes_tx status variable, 626
rpl_semi_sync_slave_enabled system variable, 566
Rpl_semi_sync_slave_status status variable, 626
rpl_semi_sync_slave_trace_level system variable, 566
Rpl_status status variable, 626
RPM file, 141
rpm option

mysql_install_db, 281
RPM Package Manager, 141
RTRIM(), 1161
Ruby API, 2755
running

ANSI mode, 25
batch mode, 233
multiple servers, 680
queries, 212

running CMake after prior invocation, 158, 173
rw-lock, 3541
rwlock_instances table

performance_schema, 2613

S
safe statement (replication)

defined, 1885
safe-mode option

mysqld, 474



3136

safe-recover option
myisamchk, 370

safe-show-database option
mysqld, 474

safe-updates option, 309
mysql, 298

safe-user-create option
mysqld, 474

Sakila, 8
same value wins (conflict resolution), 2436
SAVEPOINT, 1450
savepoint, 3542
Saving state

thread state, 961
scalability, 3542
scale

arithmetic, 1283
numeric, 1073

scale out, 3542
scale up, 3542
SchedulerExecutionTimer, 2150
SchedulerSpinTimer, 2150
schema, 3542

altering, 1294
creating, 1321
deleting, 1376

SCHEMA Events (NDB Cluster), 2323
SCHEMA(), 1256
SCHEMATA

INFORMATION_SCHEMA table, 2553
SCHEMA_PRIVILEGES

INFORMATION_SCHEMA table, 2553
SCI (Scalable Coherent Interface) (see NDB Cluster)
script files, 233
scripts, 266, 274

mysql_install_db, 177
SQL, 289

search index, 3542
searching

and case sensitivity, 2957
full-text, 1207
MySQL Web pages, 20
two keys, 239

Searching rows for update
thread state, 961

SECOND(), 1198
secondary index, 3543

InnoDB, 1666
secure connections, 759

command options, 764
secure-auth option

mysql, 298
mysqld, 474

secure-file-priv option
mysqld, 475

secure_auth system variable, 566
secure_file_priv system variable, 567
securing an NDB Cluster, 2371



3137

security
against attackers, 715
and malicious SQL statements, 2369
and NDB utilities, 2371
plugins, 772

security system, 721
SEC_TO_TIME(), 1198
segment, 3543
SELECT

INTO, 1423
LIMIT, 1417
optimizing, 907, 1580
Query Cache, 929

SELECT INTO TABLE, 29
selecting

databases, 216
selectivity, 3543
select_limit variable, 300
semi-consistent read, 3543

InnoDB, 1711
semisynchronous replication, 1966

administrative interface, 1968
configuration, 1969
installation, 1968
monitoring, 1971

semisynchronous replication plugins, 2761
SendBufferMemory, 2216
Sending binlog event to slave

thread state, 965
sending cached result to client

thread state, 965
SendLimit, 2222
SendSignalId, 2216, 2220, 2222
SEQUENCE, 240
sequence emulation, 1255
sequences, 240
SERIAL, 1074, 1075
SERIAL DEFAULT VALUE, 1121
SERIALIZABLE, 3543

transaction isolation level, 1608
server, 3543

connecting, 211, 249
debugging, 2817
disconnecting, 211
logs, 647
restart, 182
shutdown, 182
signal handling, 643
starting, 175
starting and stopping, 187
starting problems, 179

server administration, 311
server configuration, 420
server plugins, 669
server variable (see system variable)
server variables (see system variables)
server-id option

mysqlbinlog, 395



3138

mysqld, 1887
server-id-bits option

mysqlbinlog, 395
mysqld, 2180

server-side cursors
restrictions, 2975

ServerPort, 2115
servers

multiple, 680
servers table

system table, 647
server_id system variable, 568
server_id_bits system variable, 2198
server_operations

ndbinfo table, 2359
server_transactions

ndbinfo table, 2361
service-startup-timeout option

mysql.server, 274
services

for plugins, 2804
session variables

and replication, 1994
SESSION_STATUS

INFORMATION_SCHEMA table, 2543
SESSION_USER(), 1256
SESSION_VARIABLES

INFORMATION_SCHEMA table, 2543
SET

CHARACTER SET, 1019
NAMES, 1019
ONE_SHOT, 1529
size, 1125

SET CHARACTER SET statement, 1529
SET CHARSET statement, 1529
SET data type, 1081, 1103
SET GLOBAL sql_slave_skip_counter, 1468
SET NAMES, 1021
SET NAMES statement, 1530
Set option

thread command, 957
SET OPTION, 1526
SET PASSWORD statement, 749, 1513
SET sql_log_bin, 1463
SET statement

assignment operator, 1150
CHARACTER SET, 1529
CHARSET, 1529
NAMES, 1530
variable assignment, 1526

SET TRANSACTION, 1456
set-auto-increment[ option

myisamchk, 371
set-charset option

mysqlbinlog, 395
mysqldump, 339

set-collation option
myisamchk, 371



3139

setting
passwords, 749

setting passwords, 1513
setting program variables, 261
setup

postinstallation, 174
thread state, 961

setup_consumers table
performance_schema, 2609

setup_instruments table
performance_schema, 2610

setup_timers table
performance_schema, 2610

SHA(), 1246
SHA1(), 1246
SHA2(), 1246
shared lock, 1601, 3544
shared memory transporter (see NDB Cluster)
shared tablespace, 3544
shared-memory option

mysqld, 475
shared-memory-base-name option, 251

mysql, 298
mysqladmin, 317
mysqlbinlog, 395
mysqlcheck, 324
mysqld, 476
mysqldump, 339
mysqlimport, 348
mysqlshow, 353
mysqlslap, 360
mysql_upgrade, 289

SharedBufferSize, 2222
SharedGlobalMemory, 2157
shared_memory system variable, 568
shared_memory_base_name system variable, 569
sharp checkpoint, 3544
shell syntax, 4
ShmKey, 2219
ShmSize, 2219
short-form option

mysqlbinlog, 395
SHOW

in NDB Cluster management client, 2058
SHOW AUTHORS, 1531
SHOW AUTHORS statement, 1530
SHOW BINARY LOGS statement, 1530, 1531
SHOW BINLOG EVENTS statement, 1530, 1532
SHOW CHARACTER SET statement, 1530, 1532
SHOW COLLATION statement, 1530, 1533
SHOW COLUMNS statement, 1530, 1533
SHOW command (NDB Cluster), 2305
SHOW CONTRIBUTORS, 1535
SHOW CONTRIBUTORS statement, 1530
SHOW CREATE DATABASE statement, 1530, 1535
SHOW CREATE EVENT statement, 1530
SHOW CREATE FUNCTION statement, 1530, 1536
SHOW CREATE PROCEDURE statement, 1530, 1536



3140

SHOW CREATE SCHEMA statement, 1530, 1535
SHOW CREATE TABLE statement, 1530, 1537
SHOW CREATE TRIGGER statement, 1530, 1537
SHOW CREATE VIEW statement, 1530, 1538
SHOW DATABASES statement, 1530, 1539
SHOW ENGINE

and NDB Cluster, 2342
SHOW ENGINE INNODB STATUS

and innodb_use_sys_malloc, 1632
SHOW ENGINE INNODB STATUS statement, 1539
SHOW ENGINE NDB STATUS, 1539, 2342
SHOW ENGINE NDBCLUSTER STATUS, 1539, 2342
SHOW ENGINE statement, 1530, 1539
SHOW ENGINES

and NDB Cluster, 2342
SHOW ENGINES statement, 1530, 1543
SHOW ERRORS statement, 1530, 1544
SHOW EVENTS statement, 1530, 1545
SHOW extensions, 2584
SHOW FIELDS statement, 1530, 1533
SHOW FUNCTION CODE statement, 1530, 1546
SHOW FUNCTION STATUS statement, 1530, 1547
SHOW GRANTS statement, 1530, 1547
SHOW INDEX statement, 1530, 1547
SHOW KEYS statement, 1530, 1547
SHOW MASTER LOGS statement, 1530, 1531
SHOW MASTER STATUS statement, 1530, 1549
SHOW OPEN TABLES statement, 1530, 1550
SHOW PLUGINS statement, 1530, 1550
SHOW PRIVILEGES statement, 1530, 1551
SHOW PROCEDURE CODE statement, 1530, 1552
SHOW PROCEDURE STATUS statement, 1530, 1552
SHOW PROCESSLIST statement, 1530, 1553
SHOW PROFILE statement, 1530, 1555
SHOW PROFILES statement, 1530, 1555, 1557
SHOW RELAYLOG EVENTS statement, 1530, 1557
SHOW SCHEDULER STATUS, 2516
SHOW SCHEMAS statement, 1539
SHOW SLAVE HOSTS statement, 1530, 1558
SHOW SLAVE STATUS statement, 1530, 1559
SHOW STATUS

and NDB Cluster, 2343
SHOW STATUS statement, 1530, 1563
SHOW STORAGE ENGINES statement, 1543
SHOW TABLE STATUS statement, 1530, 1564
SHOW TABLES statement, 1530, 1567
SHOW TRIGGERS statement, 1530, 1567
SHOW VARIABLES

and NDB Cluster, 2342
SHOW VARIABLES statement, 1530, 1568
SHOW WARNINGS statement, 1530, 1570
SHOW with WHERE, 2533, 2584
show-slave-auth-info option

mysqld, 1916
show-table-type option

mysqlshow, 353
show-temp-status option

ndb_show_tables, 2293



3141

show-warnings option
mysql, 298

showing
database information, 349

shutdown, 3544
server, 643

Shutdown
thread command, 957

SHUTDOWN command (NDB Cluster), 2307
shutdown_timeout variable, 318
shutting down

the server, 182
Shutting down

thread state, 967
sigint-ignore option

mysql, 298
SIGN(), 1184
SIGNAL, 1493
signals

restrictions, 2975
server response, 643

SigNum, 2220
silent column changes, 1368
silent option

myisamchk, 367
myisampack, 381
mysql, 298
mysqladmin, 317
mysqlcheck, 324
mysqld_multi, 275
mysqlimport, 348
mysqlslap, 360
perror, 415
resolveip, 416

SIN(), 1184
single quote (\'), 970
single user mode (NDB Cluster), 2307, 2341

and ndb_restore, 2273
single-transaction option

mysqldump, 339
single-user option

ndb_waiter, 2297
SINGLEUSER Events (NDB Cluster), 2323
size of tables, 2982
sizes

display, 1073
--skip option prefix, 255
skip-broken-objects option (ndb_restore), 2287
skip-column-names option

mysql, 299
skip-comments option

mysqldump, 340
skip-concurrent-insert option

mysqld, 476
skip-event-scheduler option

mysqld, 476
skip-grant-tables option

mysqld, 476



3142

skip-host-cache option
mysqld, 476

skip-innodb option
mysqld, 477, 1695

skip-kill-mysqld option
mysqld_safe, 270

skip-line-numbers option
mysql, 299

skip-name-resolve option
mysqld, 477
mysql_install_db, 281

skip-ndbcluster option
mysqld, 2181

skip-networking option
mysqld, 477

skip-nodegroup option (ndb_error_reporter), 2260
skip-opt option

mysqldump, 340
skip-partition option

mysqld, 477
skip-safemalloc option

mysqld, 478
skip-show-database option

mysqld, 478
skip-slave-start option

mysqld, 1916
skip-ssl option, 764
skip-stack-trace option

mysqld, 479
skip-symbolic-links option

mysqld, 478
skip-syslog option

mysqld_safe, 270
skip-thread-priority option

mysqld, 479
skip-unknown-objects option (ndb_restore), 2287
skip-use-db option

mysql_find_rows, 409
skip_external_locking system variable, 569
skip_name_resolve system variable, 569
skip_networking system variable, 569
skip_show_database system variable, 570
Slave has read all relay log; waiting for the slave I/O thread to update it

thread state, 967
slave server, 3544
slave-load-tmpdir option

mysqld, 1916
slave-max-allowed-packet (mysqld), 1906
slave-net-timeout option

mysqld, 1917
slave-skip-errors option

mysqld, 1917
slave_allow_batching, 2419
slave_compressed_protocol option

mysqld, 1916
slave_compressed_protocol system variable, 1921
slave_exec_mode system variable, 1921
slave_load_tmpdir system variable, 1921



3143

slave_max_allowed_packet system variable, 1922
slave_net_timeout system variable, 1922
slave_skip_errors system variable, 1922
slave_transaction_retries system variable, 1923
slave_type_conversions system variable, 1924
Sleep

thread command, 957
sleep option

mysqladmin, 317
SLEEP(), 1281
slow queries, 313
slow query log, 665, 3544

and replication, 1985
slow shutdown, 3544
slow-query-log option

mysqld, 479
slow-start-timeout option

mysqld, 479
slow_launch_time system variable, 570
slow_log table

system table, 646
slow_query_log system variable, 570
slow_query_log_file system variable, 571
SMALLINT data type, 1075
snapshot, 3544
SNAPSHOTEND (START BACKUP command), 2310
SNAPSHOTSTART (START BACKUP command), 2310
socket option, 252

mysql, 299
mysqladmin, 317
mysqlbinlog, 395
mysqlcheck, 324
mysqld, 479
mysqldump, 340
mysqld_safe, 270
mysqlhotcopy, 407
mysqlimport, 348
mysqlshow, 353
mysqlslap, 360
mysql_config, 412
mysql_convert_table_format, 408
mysql_setpermission, 410
mysql_upgrade, 289

socket system variable, 571
Solaris

installation, 150
Solaris installation problems, 150
Solaris troubleshooting, 174
Solaris x86_64 issues, 899
SOME, 1434
sort buffer, 3545
sort-index option

myisamchk, 371
sort-records option

myisamchk, 371
sort-recover option

myisamchk, 371
sorting



3144

data, 222
grant tables, 735, 737
table rows, 222

Sorting for group
thread state, 961

Sorting for order
thread state, 961

Sorting index
thread state, 961

Sorting result
thread state, 961

sort_buffer_size myisamchk variable, 367
sort_buffer_size system variable, 571
sort_key_blocks myisamchk variable, 367
SOUNDEX(), 1161
SOUNDS LIKE, 1162
source (mysql client command), 234, 308
source command

mysql, 303
source distribution

installing, 153
space ID, 3545
SPACE(), 1162
sparse file, 3545
spassword option

mysqlaccess, 387
spatial data types

storage requirements, 1125
Spatial Extensions in MySQL, 1105
spatial functions, 1257
spatial queries

optimization, 884
speed

increasing with replication, 1869
inserting, 879
of queries, 836

spin, 3545
sporadic-binlog-dump-fail option

mysqld, 1932
SQL, 3545

defined, 5
SQL mode, 630

ALLOW_INVALID_DATES, 632
and partitioning, 1991, 2490
and replication, 1991
ANSI, 631, 636
ANSI_QUOTES, 632
DB2, 637
ERROR_FOR_DIVISION_BY_ZERO, 632
HIGH_NOT_PRECEDENCE, 632
IGNORE_SPACE, 632
MAXDB, 637
MSSQL, 637
MYSQL323, 637
MYSQL40, 637
NO_AUTO_CREATE_USER, 633
NO_AUTO_VALUE_ON_ZERO, 633
NO_BACKSLASH_ESCAPES, 633



3145

NO_DIR_IN_CREATE, 633
NO_ENGINE_SUBSTITUTION, 633
NO_FIELD_OPTIONS, 634
NO_KEY_OPTIONS, 634
NO_TABLE_OPTIONS, 634
NO_UNSIGNED_SUBTRACTION, 634
NO_ZERO_DATE, 635
NO_ZERO_IN_DATE, 635
ONLY_FULL_GROUP_BY, 635, 1277
ORACLE, 637
PAD_CHAR_TO_FULL_LENGTH, 635
PIPES_AS_CONCAT, 636
POSTGRESQL, 637
REAL_AS_FLOAT, 636
strict, 631
STRICT_ALL_TABLES, 636
STRICT_TRANS_TABLES, 631, 636
TRADITIONAL, 631, 637

SQL node (NDB Cluster)
defined, 2006

SQL nodes (NDB Cluster), 2313
SQL scripts, 289
SQL statements

replication masters, 1461
replication slaves, 1463

SQL statements relating to NDB Cluster, 2342
SQL-92

extensions to, 24
sql-mode option

mysqld, 480
sql_auto_is_null system variable, 572
SQL_BIG_RESULT

SELECT modifier, 1423
sql_big_selects system variable, 573
SQL_BUFFER_RESULT

SELECT modifier, 1423
sql_buffer_result system variable, 573
SQL_CACHE, 932

SELECT modifier, 1423
SQL_CALC_FOUND_ROWS, 865

SELECT modifier, 1423
sql_log_bin system variable, 574
sql_log_off system variable, 574
sql_log_update system variable, 575
sql_mode system variable, 575
sql_notes system variable, 576
SQL_NO_CACHE, 932

SELECT modifier, 1423
sql_quote_show_create system variable, 576
sql_safe_updates system variable, 576
sql_select_limit system variable, 576
sql_slave_skip_counter, 1468
sql_slave_skip_counter system variable, 1924
SQL_SMALL_RESULT

SELECT modifier, 1423
sql_warnings system variable, 576
SQRT(), 1185
square brackets, 1073



3146

srcdir option
mysql_install_db, 281

SRID values
handling by spatial functions, 1259

SRID(), 1263
SSD, 1667, 3545
SSH, 772
SSL, 759

command options, 764
configuring, 760
establishing connections, 762
OpenSSL compared to yaSSL, 760
X509 Basics, 759

ssl option, 764
SSL options, 252

mysql, 299
mysqladmin, 317
mysqlbinlog, 395
mysqlcheck, 324
mysqld, 477
mysqldump, 340
mysqlimport, 348
mysqlshow, 353
mysqlslap, 360
mysql_upgrade, 289

SSL related options
GRANT statement, 1509

ssl-ca option, 765
ssl-capath option, 765
ssl-cert option, 765
ssl-cipher option, 765
ssl-key option, 766
ssl-mode option

mysql, 766
ssl-verify-server-cert option, 766
ssl_ca system variable, 576
ssl_capath system variable, 577
ssl_cert system variable, 577
ssl_cipher system variable, 577
ssl_key system variable, 577
staging-tries option

ndb_move_data, 2268
standalone option

mysqld, 477
Standard Monitor, 1746, 1748, 1752
Standard SQL

differences from, 28, 1511
extensions to, 24, 26

standards compatibility, 24
START

XA transactions, 1459
START BACKUP

NOWAIT, 2309
SNAPSHOTEND, 2310
SNAPSHOTSTART, 2310
syntax, 2309
WAIT COMPLETED, 2310
WAIT STARTED, 2310



3147

START command (NDB Cluster), 2305
START SLAVE, 1468
START TRANSACTION, 1446
start-datetime option

mysqlbinlog, 395
start-position option

mysqlbinlog, 396
StartConnectBackoffMaxTime, 2169
StartFailRetryDelay, 2162
StartFailureTimeout, 2135
starting

comments, 30
mysqld, 717
the server, 175
the server automatically, 187

Starting many servers, 680
StartNoNodeGroupTimeout, 2136
StartPartialTimeout, 2135
StartPartitionedTimeout, 2135
StartPoint(), 1265
startup, 3545
STARTUP Events (NDB Cluster), 2320
startup options

default, 256
startup parameters, 420

mysql, 290
mysqladmin, 314
tuning, 942

StartupStatusReportFrequency, 2147
start_row option

mysql_find_rows, 409
statefile option

comp_err, 279
statement termination

Control+C, 290, 298
statement-based replication, 3545

advantages, 1881
disadvantages, 1881
unsafe statements, 1881

statements
compound, 1474
GRANT, 746
replication masters, 1461
replication slaves, 1463

Statistics
thread command, 957

statistics, 3546
thread state, 961

STATISTICS
INFORMATION_SCHEMA table, 2554

STATISTICS Events (NDB Cluster), 2322
stats option

myisam_ftdump, 362
stats_method myisamchk variable, 367
status

tables, 1564
status command

mysql, 303



3148

results, 313
STATUS command (NDB Cluster), 2306
status option

MySQLInstallerConsole, 83
mysqlshow, 353

status variable
Performance_schema_cond_classes_lost, 2628
Performance_schema_cond_instances_lost, 2628
Performance_schema_file_classes_lost, 2628
Performance_schema_file_handles_lost, 2628
Performance_schema_file_instances_lost, 2628
Performance_schema_locker_lost, 2628
Performance_schema_mutex_classes_lost, 2628
Performance_schema_mutex_instances_lost, 2628
Performance_schema_rwlock_classes_lost, 2629
Performance_schema_rwlock_instances_lost, 2629
Performance_schema_table_handles_lost, 2629
Performance_schema_table_instances_lost, 2629
Performance_schema_thread_classes_lost, 2629
Performance_schema_thread_instances_lost, 2629
Rpl_semi_sync_master_clients, 625
Rpl_semi_sync_master_net_avg_wait_time, 625
Rpl_semi_sync_master_net_waits, 625
Rpl_semi_sync_master_net_wait_time, 625
Rpl_semi_sync_master_no_times, 625
Rpl_semi_sync_master_no_tx, 625
Rpl_semi_sync_master_status, 625
Rpl_semi_sync_master_timefunc_failures, 625
Rpl_semi_sync_master_tx_avg_wait_time, 625
Rpl_semi_sync_master_tx_waits, 626
Rpl_semi_sync_master_tx_wait_time, 626
Rpl_semi_sync_master_wait_pos_backtraverse, 626
Rpl_semi_sync_master_wait_sessions, 626
Rpl_semi_sync_master_yes_tx, 626
Rpl_semi_sync_slave_status, 626
Rpl_status, 626

status variables, 605, 1563
NDB Cluster, 2202
NDB Cluster replication conflict detection, 2438

STD(), 1273
STDDEV(), 1273
STDDEV_POP(), 1273
STDDEV_SAMP(), 1273
stemming, 3546
STOP command (NDB Cluster), 2305
STOP SLAVE, 1469
stop-datetime option

mysqlbinlog, 396
stop-position option

mysqlbinlog, 396
StopOnError, 2132
stopping

the server, 187
stopword, 3546
stopword list

user-defined, 1219
storage engine, 3546

ARCHIVE, 1789



3149

InnoDB, 1586
PERFORMANCE_SCHEMA, 2587

storage engine plugins, 2759
storage engines

and application feature requirements, 2017
applications supported, 2017
availability, 2015
choosing, 1769
differences between NDB and InnoDB, 2016
usage scenarios, 2017

storage nodes - see data nodes, ndbd (see data nodes, ndbd)
storage nodes - see data nodes, ndbd, ndbmtd (see data nodes, ndbd, ndbmtd)
storage requirements

data types, 1122
date data types, 1124
InnoDB tables, 1122
NDB Cluster, 1122
numeric data types, 1123
spatial data types, 1125
string data types, 1124
time data types, 1124

storage space
minimizing, 889

storage_engine system variable, 578
stored functions, 2505

and INSERT DELAYED, 1393
stored procedures, 2505
stored programs, 1474, 2503
stored routines

and replication, 1981
LAST_INSERT_ID(), 2507
metadata, 2506
restrictions, 2971

storing result in query cache
thread state, 965

storing row into queue
thread state, 964

STRAIGHT_JOIN, 854, 854, 907, 918, 1425, 1581
SELECT modifier, 1422

STRCMP(), 1167
strict mode, 3546
strict SQL mode, 631
STRICT_ALL_TABLES SQL mode, 636
STRICT_TRANS_TABLES SQL mode, 631, 636
string collating, 1055
string comparison functions, 1164
string comparisons

case sensitivity, 1164
string concatenation, 969, 1155
string data types

storage requirements, 1124
string functions, 1152
string literal introducer, 970, 1014
string literals, 969
string replacement

replace utility, 415
string types, 1096
StringMemory, 2119



3150

strings
defined, 969
escape sequences, 969
nondelimited, 974
repertoire, 1006

striping
defined, 943

STR_TO_DATE(), 1198
SUBDATE(), 1199
sublist, 3546
SUBPARTITION BY KEY

known issues, 2494
subpartitioning, 2468
subpartitions, 2468

known issues, 2494
subqueries, 1432

correlated, 1437
errors, 1441
in FROM clause (see derived tables)
optimization, 870
restrictions, 2975
rewriting as joins, 1444
with ALL, 1435
with ANY, IN, SOME, 1434
with EXISTS, 1437
with NOT EXISTS, 1437
with row constructors, 1436

subquery (see subqueries)
subselects, 1432
SUBSTR(), 1162
SUBSTRING(), 1162
SUBSTRING_INDEX(), 1162
SUBTIME(), 1200
subtraction (-), 1176
suffix option

mysqlhotcopy, 407
SUM(), 1273
SUM(DISTINCT), 1273
super-large-pages option

mysqld, 478
superuser, 183
superuser option

mysqlaccess, 388
support

for operating systems, 43
suppression

default values, 31
supremum record, 3546
surrogate key, 3547
symbolic links, 944, 946

databases, 944
tables, 944
Windows, 946

symbolic-links option
mysqld, 478

symbols-file option
resolve_stack_dump, 414

synchronization of master and slave



3151

in NDB Cluster Replication, 2425
Syncing ndb table schema operation and binlog

thread state, 968
sync_binlog system variable, 1939
sync_frm system variable, 578
sync_master_info system variable, 1925
sync_relay_log system variable, 1925
sync_relay_log_info system variable, 1926
syntax

regular expression, 1167
syntax conventions, 2
synthetic key, 3547
sys-check option (ndb_index_stat), 2265
sys-create option (ndb_index_stat), 2264
sys-create-if-not-exist option (ndb_index_stat), 2264
sys-create-if-not-valid option (ndb_index_stat), 2264
sys-drop option (ndb_index_stat), 2264
sys-skip-events option (ndb_index_stat), 2265
sys-skip-tables option (ndb_index_stat), 2265
SYSCONFDIR option

CMake, 167
SYSDATE(), 1200
sysdate-is-now option

mysqld, 481
syslog option

mysqld_safe, 270
syslog-tag option

mysqld_safe, 270
system

privilege, 721
security, 706

system command
mysql, 303

System lock
thread state, 961

system optimization, 942
system option

ndb_config, 2249
system table

optimizer, 911, 1422
system tables

columns_priv table, 646, 727
db table, 183, 646, 727
event table, 646
func table, 646
general_log table, 646
help tables, 646
help_category table, 646
help_keyword table, 646
help_relation table, 647
help_topic table, 647
host table, 646, 727
ndb_binlog_index table, 647, 2413
plugin table, 646
proc table, 646
procs_priv table, 646, 727
proxies_priv table, 183, 646, 727
servers table, 647



3152

slow_log table, 646
tables_priv table, 646, 727
time zone tables, 647
time_zone table, 647
time_zone_leap_second table, 647
time_zone_name table, 647
time_zone_transition table, 647
time_zone_transition_type table, 647
user table, 183, 646, 727

system tablespace, 3547
system variable, 1568

and replication, 1994
audit_log_buffer_size, 805
audit_log_file, 805
audit_log_flush, 806
audit_log_format, 806
audit_log_policy, 807
audit_log_rotate_on_size, 807
audit_log_strategy, 808
authentication_windows_log_level, 497
authentication_windows_use_principal_name, 497
autocommit, 498
automatic_sp_privileges, 498
auto_increment_increment, 1900
auto_increment_offset, 1903
back_log, 499
basedir, 499
big_tables, 500
binlog_cache_size, 1932
binlog_direct_non_transactional_updates, 1933
binlog_format, 1934
binlog_stmt_cache_size, 1935
bulk_insert_buffer_size, 500
character_sets_dir, 503
character_set_client, 501
character_set_connection, 501
character_set_database, 501
character_set_filesystem, 502
character_set_results, 502
character_set_server, 502
character_set_system, 503
collation_connection, 503
collation_database, 503
collation_server, 504
completion_type, 504
concurrent_insert, 505
connect_timeout, 506
datadir, 506
datetime_format, 506
date_format, 506
debug, 506
debug_sync, 507
default_storage_engine, 508
default_week_format, 508
delayed_insert_limit, 509
delayed_insert_timeout, 510
delayed_queue_size, 510
delay_key_write, 509



3153

div_precision_increment, 511
engine_condition_pushdown, 512
error_count, 512
event_scheduler, 512
expire_logs_days, 513
external_user, 513
flush, 513
flush_time, 513
foreign_key_checks, 514
ft_boolean_syntax, 514
ft_max_word_len, 515
ft_min_word_len, 515
ft_query_expansion_limit, 516
ft_stopword_file, 516
general_log, 516
general_log_file, 517
group_concat_max_len, 517
have_compress, 518
have_crypt, 518
have_csv, 518
have_dynamic_loading, 518
have_geometry, 518
have_innodb, 518
have_openssl, 518
have_partitioning, 518
have_profiling, 518
have_query_cache, 518
have_rtree_keys, 518
have_ssl, 518
have_symlink, 519
hostname, 519
identity, 519
ignore_builtin_innodb, 1695
init_connect, 519
init_file, 520
init_slave, 1919
innodb_adaptive_flushing, 1695
innodb_adaptive_hash_index, 1695
innodb_additional_mem_pool_size, 1696
innodb_autoextend_increment, 1696
innodb_autoinc_lock_mode, 1697
innodb_buffer_pool_instances, 1697
innodb_buffer_pool_size, 1698
innodb_change_buffering, 1698
innodb_change_buffering_debug, 1699
innodb_checksums, 1700
innodb_commit_concurrency, 1700
innodb_concurrency_tickets, 1700
innodb_data_file_path, 1701
innodb_data_home_dir, 1701
innodb_doublewrite, 1702
innodb_fast_shutdown, 1702
innodb_file_format, 1703
innodb_file_format_check, 1703
innodb_file_format_max, 1704
innodb_file_per_table, 1705
innodb_flush_log_at_trx_commit, 1705
innodb_flush_method, 1706



3154

innodb_force_recovery, 1708
innodb_io_capacity, 1708
innodb_limit_optimistic_insert_debug, 1710
innodb_locks_unsafe_for_binlog, 1711
innodb_lock_wait_timeout, 1710
innodb_log_buffer_size, 1713
innodb_log_files_in_group, 1714
innodb_log_file_size, 1714
innodb_log_group_home_dir, 1715
innodb_max_dirty_pages_pct, 1715
innodb_max_purge_lag, 1715
innodb_mirrored_log_groups, 1716
innodb_old_blocks_pct, 1716
innodb_old_blocks_time, 1717
innodb_open_files, 1717
innodb_purge_batch_size, 1718
innodb_purge_threads, 1719
innodb_read_ahead_threshold, 1720
innodb_read_io_threads, 1720
innodb_replication_delay, 1721
innodb_rollback_on_timeout, 1721
innodb_spin_wait_delay, 1722
innodb_stats_method, 1722
innodb_stats_on_metadata, 1723
innodb_stats_sample_pages, 1723
innodb_strict_mode, 1724
innodb_support_xa, 1725
innodb_sync_spin_loops, 1725
innodb_table_locks, 1725
innodb_thread_concurrency, 1726
innodb_thread_sleep_delay, 1727
innodb_trx_purge_view_update_only_debug, 1728
innodb_trx_rseg_n_slots_debug, 1729
innodb_use_native_aio, 1728
innodb_use_sys_malloc, 1729
innodb_version, 1729
innodb_write_io_threads, 1729
insert_id, 520
interactive_timeout, 520
join_buffer_size, 520
keep_files_on_create, 522
key_buffer_size, 522
key_cache_age_threshold, 523
key_cache_block_size, 524
key_cache_division_limit, 524
language, 525
large_files_support, 525
large_pages, 525
large_page_size, 526
last_insert_id, 526
lc_messages, 526
lc_messages_dir, 526
lc_time_names, 527
license, 527
local_infile, 527
locked_in_memory, 528
lock_wait_timeout, 527
log, 528



3155

log_bin, 1936
log_bin_trust_function_creators, 529
log_bin_trust_routine_creators, 529
log_bin_use_v1_row_events, 1936
log_error, 529
log_output, 529
log_queries_not_using_indexes, 530
log_slave_updates, 1937
log_slow_queries, 530
log_warnings, 530
long_query_time, 531
lower_case_file_system, 532
lower_case_table_names, 532
low_priority_updates, 531
max_allowed_packet, 533
max_binlog_cache_size, 1937
max_binlog_size, 1938
max_binlog_stmt_cache_size, 1939
max_connections, 534
max_connect_errors, 533
max_delayed_threads, 535
max_error_count, 535
max_heap_table_size, 535
max_insert_delayed_threads, 536
max_join_size, 536
max_length_for_sort_data, 537
max_long_data_size, 537
max_prepared_stmt_count, 538
max_relay_log_size, 538
max_seeks_for_key, 538
max_sort_length, 539
max_sp_recursion_depth, 540
max_tmp_tables, 540
max_user_connections, 540
max_write_lock_count, 541
metadata_locks_cache_size, 541
min_examined_row_limit, 542
myisam_data_pointer_size, 543
myisam_max_sort_file_size, 543
myisam_mmap_size, 543
myisam_recover_options, 544
myisam_repair_threads, 544
myisam_sort_buffer_size, 545
myisam_stats_method, 546
myisam_use_mmap, 547
named_pipe, 547
ndb_log_empty_epochs, 2191
ndb_log_empty_update, 2191
ndb_log_orig, 2192
ndb_log_transaction_id, 2192
net_buffer_length, 547
net_read_timeout, 547
net_retry_count, 548
net_write_timeout, 548
new, 549
old, 549
old_alter_table, 549
old_passwords, 550



3156

one_shot, 550
open_files_limit, 550
optimizer_prune_level, 551
optimizer_search_depth, 551
optimizer_switch, 552
performance_schema, 2623
performance_schema_events_waits_history_long_size, 2623
performance_schema_events_waits_history_size, 2623
performance_schema_max_cond_classes, 2624
performance_schema_max_cond_instances, 2624
performance_schema_max_file_classes, 2624
performance_schema_max_file_handles, 2624
performance_schema_max_file_instances, 2625
performance_schema_max_mutex_classes, 2625
performance_schema_max_mutex_instances, 2625
performance_schema_max_rwlock_classes, 2626
performance_schema_max_rwlock_instances, 2626
performance_schema_max_table_handles, 2626
performance_schema_max_table_instances, 2626
performance_schema_max_thread_classes, 2627
performance_schema_max_thread_instances, 2627
pid_file, 552
plugin_dir, 553
port, 553
preload_buffer_size, 553
profiling, 554
profiling_history_size, 554
protocol_version, 554
proxy_user, 554
pseudo_slave_mode, 554
pseudo_thread_id, 555
query_alloc_block_size, 555
query_cache_limit, 556
query_cache_min_res_unit, 556
query_cache_size, 557
query_cache_type, 558
query_cache_wlock_invalidate, 558
query_prealloc_size, 559
rand_seed1, 559
rand_seed2, 560
range_alloc_block_size, 560
read_buffer_size, 560
read_only, 561
read_rnd_buffer_size, 562
relay_log, 1919
relay_log_index, 1920
relay_log_info_file, 1920
relay_log_purge, 562
relay_log_recovery, 1920
relay_log_space_limit, 563
report_host, 563
report_password, 563
report_port, 564
report_user, 564
rpl_semi_sync_master_enabled, 564
rpl_semi_sync_master_timeout, 565
rpl_semi_sync_master_trace_level, 565
rpl_semi_sync_master_wait_no_slave, 565



3157

rpl_semi_sync_slave_enabled, 566
rpl_semi_sync_slave_trace_level, 566
secure_auth, 566
secure_file_priv, 567
server_id, 568
server_id_bits, 2198
shared_memory, 568
shared_memory_base_name, 569
skip_external_locking, 569
skip_name_resolve, 569
skip_networking, 569
skip_show_database, 570
slave_compressed_protocol, 1921
slave_exec_mode, 1921
slave_load_tmpdir, 1921
slave_max_allowed_packet, 1922
slave_net_timeout, 1922
slave_skip_errors, 1922
slave_transaction_retries, 1923
slave_type_conversions, 1924
slow_launch_time, 570
slow_query_log, 570
slow_query_log_file, 571
socket, 571
sort_buffer_size, 571
sql_auto_is_null, 572
sql_big_selects, 573
sql_buffer_result, 573
sql_log_bin, 574
sql_log_off, 574
sql_log_update, 575
sql_mode, 575
sql_notes, 576
sql_quote_show_create, 576
sql_safe_updates, 576
sql_select_limit, 576
sql_slave_skip_counter, 1924
sql_warnings, 576
ssl_ca, 576
ssl_capath, 577
ssl_cert, 577
ssl_cipher, 577
ssl_key, 577
storage_engine, 578
sync_binlog, 1939
sync_frm, 578
sync_master_info, 1925
sync_relay_log, 1925
sync_relay_log_info, 1926
system_time_zone, 579
sysvar_stored_program_cache, 578
table_definition_cache, 579
table_lock_wait_timeout, 579
table_open_cache, 580
table_type, 580
thread_cache_size, 580
thread_concurrency, 581
thread_handling, 581



3158

thread_pool_algorithm, 582
thread_pool_high_priority_connection, 582
thread_pool_max_unused_threads, 583
thread_pool_prio_kickup_timer, 583
thread_pool_size, 584
thread_pool_stall_limit, 584
thread_stack, 585
timed_mutexes, 586
timestamp, 586
time_format, 586
time_zone, 586
tmpdir, 587
tmp_table_size, 587
transaction_alloc_block_size, 588
transaction_allow_batching, 2199
transaction_prealloc_size, 588
tx_isolation, 589
unique_checks, 590
updatable_views_with_limit, 590
version, 591
version_comment, 591
version_compile_machine, 591
version_compile_os, 591
wait_timeout, 592
warning_count, 592

system variables, 482, 592
mysqld, 420

system_time_zone system variable, 579
SYSTEM_USER(), 1256
sysvar_stored_program_cache system variable, 578

T
tab (\t), 970, 1404
tab option

mysqldump, 340
tab option (ndb_restore), 2281
table, 3547

changing, 1299, 1305, 2965
deleting, 1379
rebuilding, 204
repair, 204
row size, 1122

Table 'mysql.proxies_priv' doesn't exist, 194
table aliases, 1419
table cache, 892
table definition

retention, 1358
table description

myisamchk, 372
Table Dump

thread command, 957
table is full, 500, 2947
Table is full errors (NDB Cluster), 2117
table lock, 3548
Table Monitor, 1746, 1755
table names

case sensitivity, 26, 982
table option



3159

mysql, 299
mysqlaccess, 388
ndb_desc, 2257

table scan, 1627
table type, 3548

choosing, 1769
table-level locking, 936
tables

BLACKHOLE, 1790
checking, 368
cloning, 1360
closing, 892
compressed, 380
compressed format, 1781
const, 911
constant, 838
copying, 1360
counting rows, 229
creating, 217
CSV, 1787
defragment, 1781
defragmenting, 832, 1519
deleting rows, 2962
displaying, 349
displaying status, 1564
dumping, 325, 404
dynamic, 1780
error checking, 828
EXAMPLE, 1803
FEDERATED, 1797
flush, 313
fragmentation, 1519
HEAP, 1783
host, 738
improving performance, 889
information, 372
information about, 232
InnoDB, 1586
loading data, 218
maintenance, 318
maintenance schedule, 831
maximum size, 2982
MEMORY, 1783
MERGE, 1793
merging, 1793
multiple, 231
MyISAM, 1775
names, 978
open, 892
opening, 892
optimizing, 831
partitioning, 1793
repair, 318
repairing, 828
retrieving data, 219
selecting columns, 221
selecting rows, 220
sorting rows, 222



3160

symbolic links, 944
system, 911
TEMPORARY, 1359
too many, 894
unique ID for last row, 2744

TABLES
INFORMATION_SCHEMA table, 2554

tables option
mysqlcheck, 324
mysqldump, 341

tablespace, 3548
tablespace dictionary, 3548
Tablespace Monitor, 1746, 1753

InnoDB, 1685, 1760
TABLESPACES

INFORMATION_SCHEMA table, 2556
tables_priv table

system table, 646, 727
TABLE_CONSTRAINTS

INFORMATION_SCHEMA table, 2556
table_definition_cache system variable, 579
table_lock_wait_timeout system variable, 579
table_open_cache, 892
table_open_cache system variable, 580
TABLE_PRIVILEGES

INFORMATION_SCHEMA table, 2557
table_type system variable, 580
TAN(), 1185
tar

problems on Solaris, 150, 150
tc-heuristic-recover option

mysqld, 481
Tcl API, 2755
tcmalloc

memory allocation library, 268
tcp-ip option

mysqld_multi, 276
TCP/IP, 116, 122, 297
TCP_MAXSEG_SIZE, 2217
TCP_RCV_BUF_SIZE, 2217
TCP_SND_BUF_SIZE, 2217
tee command

mysql, 303
tee option

mysql, 299
temp-pool option

mysqld, 481
temporary file

write access, 178
temporary files, 2956
temporary table, 3549
TEMPORARY table privileges, 723, 1359
temporary tables

and replication, 1987
internal, 894
problems, 2966

TEMPORARY tables, 1359
temporary tablespace, 3549



3161

terminal monitor
defined, 211

test option
myisampack, 381

testing
connection to the server, 734
installation, 175
postinstallation, 174

testing mysqld
mysqltest, 2758

test_plugin_server authentication plugin, 790
TEXT

size, 1124
text collection, 3549
TEXT columns

default values, 1099
indexing, 883, 1342

TEXT data type, 1081, 1099
text files

importing, 308, 343, 1399
thd_alloc service, 2804
thd_wait service, 2804
The used command is not allowed with this MySQL version

error message, 719
thread, 3549
thread cache, 951
thread command

Binlog Dump, 955
Change user, 955
Close stmt, 956
Connect, 956
Connect Out, 956
Create DB, 956
Daemon, 956
Debug, 956
Delayed insert, 956
Drop DB, 956
Error, 956
Execute, 956
Fetch, 956
Field List, 956
Init DB, 956
Kill, 956
Long Data, 956
Ping, 956
Prepare, 957
Processlist, 957
Query, 957
Quit, 957
Refresh, 957
Register Slave, 957
Reset stmt, 957
Set option, 957
Shutdown, 957
Sleep, 957
Statistics, 957
Table Dump, 957
Time, 957



3162

thread commands, 955
thread state

After create, 957
allocating local table, 963
Analyzing, 958
Changing master, 967
Checking master version, 965
checking permissions, 958
checking privileges on cached query, 964
checking query cache for query, 965
Checking table, 958
cleaning up, 958
Clearing, 968
closing tables, 958
Committing events to binlog, 967
Connecting to master, 965
converting HEAP to MyISAM, 958
copy to tmp table, 958
Copying to group table, 958
Copying to tmp table, 958
Copying to tmp table on disk, 958
Creating delayed handler, 963
Creating index, 958
Creating sort index, 958
creating table, 958
Creating tmp table, 958
deleting from main table, 959
deleting from reference tables, 959
discard_or_import_tablespace, 959
end, 959
executing, 959
Execution of init_command, 959
Finished reading one binlog; switching to next binlog, 965
freeing items, 959
FULLTEXT initialization, 959
got handler lock, 964
got old table, 964
init, 959
Initialized, 968
insert, 964
invalidating query cache entries, 965
Killed, 959
Killing slave, 967
logging slow query, 959
login, 959
Making temp file, 967
manage keys, 960
Master has sent all binlog to slave; waiting for binlog to be updated, 965
NULL, 960
Opening master dump table, 967
Opening mysql.ndb_apply_status, 967
Opening table, 960
Opening tables, 960
optimizing, 960
preparing, 960
Processing events, 967
Processing events from schema table, 967
Purging old relay logs, 960



3163

query end, 960
Queueing master event to the relay log, 965
Reading event from the relay log, 967
Reading from net, 960
Reading master dump table data, 967
Rebuilding the index on master dump table, 967
Reconnecting after a failed binlog dump request, 966
Reconnecting after a failed master event read, 966
Registering slave on master, 966
Removing duplicates, 960
removing tmp table, 960
rename, 960
rename result table, 960
Reopen tables, 960
Repair by sorting, 960
Repair done, 961
Repair with keycache, 961
Requesting binlog dump, 966
reschedule, 964
Rolling back, 961
Saving state, 961
Searching rows for update, 961
Sending binlog event to slave, 965
sending cached result to client, 965
setup, 961
Shutting down, 967
Slave has read all relay log; waiting for the slave I/O thread to update it, 967
Sorting for group, 961
Sorting for order, 961
Sorting index, 961
Sorting result, 961
statistics, 961
storing result in query cache, 965
storing row into queue, 964
Syncing ndb table schema operation and binlog, 968
System lock, 961
update, 962
Updating, 962
updating main table, 962
updating reference tables, 962
upgrading lock, 964
User lock, 962
User sleep, 962
Waiting for allowed to take ndbcluster global schema lock, 968
Waiting for commit lock, 962
waiting for delay_list, 964
Waiting for event from ndbcluster, 968
Waiting for first event from ndbcluster, 968
Waiting for global metadata lock, 963
Waiting for global read lock, 962, 963
waiting for handler insert, 964
waiting for handler lock, 964
waiting for handler open, 964
Waiting for INSERT, 964
Waiting for master to send event, 966
Waiting for master update, 966
Waiting for ndbcluster binlog update to reach current position, 968
Waiting for ndbcluster global schema lock, 968



3164

Waiting for ndbcluster to start, 968
Waiting for next activation, 968
Waiting for query cache lock, 965
Waiting for scheduler to stop, 968
Waiting for schema epoch, 968
Waiting for schema metadata lock, 963
Waiting for slave mutex on exit, 966, 967
Waiting for stored function metadata lock, 963
Waiting for stored procedure metadata lock, 963
Waiting for table, 962
Waiting for table flush, 962
Waiting for table level lock, 963
Waiting for table metadata lock, 963
Waiting for tables, 962
Waiting for the next event in relay log, 966
Waiting for the slave SQL thread to free enough relay log space, 966
Waiting for trigger metadata lock, 963
Waiting on cond, 963
Waiting on empty queue, 968
Waiting to finalize termination, 965
Waiting to reconnect after a failed binlog dump request, 966
Waiting to reconnect after a failed master event read, 966
Writing to net, 963

thread states, 955
delayed inserts, 963
event scheduler, 968
general, 957
NDB Cluster, 967
query cache, 964
replication master, 965
replication slave, 965, 966, 967

threadblocks
ndbinfo table, 2361

ThreadConfig, 2154
threaded clients, 2646
ThreadPool (see DiskIOThreadPool)
threads, 313, 1553, 2757

display, 1553
monitoring, 955, 1553, 1553, 2549

threads table
performance_schema, 2621

threadstat
ndbinfo table, 2362

thread_cache_size system variable, 580
thread_concurrency system variable, 581
thread_handling system variable, 581
thread_pool_algorithm system variable, 582
thread_pool_high_priority_connection system variable, 582
thread_pool_max_unused_threads system variable, 583
thread_pool_prio_kickup_timer system variable, 583
thread_pool_size system variable, 584
thread_pool_stall_limit system variable, 584
thread_stack system variable, 585
Time

thread command, 957
TIME data type, 1077, 1088
time data types

storage requirements, 1124



3165

time literals, 972
time representation

Event Scheduler, 2515
time zone problems, 2957
time zone tables, 284

system tables, 647
time zones

and replication, 1992
leap seconds, 1068
support, 1064
upgrading, 1067

TIME(), 1200
TimeBetweenEpochs, 2139
TimeBetweenEpochsTimeout, 2139
TimeBetweenGlobalCheckpoints, 2138, 2160
TimeBetweenGlobalCheckpointsTimeout, 2139
TimeBetweenInactiveTransactionAbortCheck, 2140
TimeBetweenLocalCheckpoints, 2138
TimeBetweenWatchDogCheck, 2134
TimeBetweenWatchDogCheckInitial, 2135
TIMEDIFF(), 1201
timed_mutexes system variable, 586
timeout, 506, 1279, 1397

connect_timeout variable, 300, 318
shutdown_timeout variable, 318

timeout option
ndb_waiter, 2297

timeouts (replication), 1991
TIMESTAMP

and logs, 196
and NULL values, 2961
and replication, 196, 1972, 1991
initialization and updating, 1091

TIMESTAMP data type, 1077, 1087
timestamp system variable, 586
TIMESTAMP(), 1201
TIMESTAMPADD(), 1201
TIMESTAMPDIFF(), 1201
timezone option

mysqld_safe, 270
time_format system variable, 586
TIME_FORMAT(), 1202
TIME_TO_SEC(), 1202
time_zone system variable, 586
time_zone table

system table, 647
time_zone_leap_second table

system table, 647
time_zone_name table

system table, 647
time_zone_transition table

system table, 647
time_zone_transition_type table

system table, 647
TINYBLOB data type, 1080
TINYINT data type, 1074
TINYTEXT data type, 1080
tips



3166

optimization, 881
TLS, 759

command options, 764
establishing connections, 762

TMPDIR environment variable, 178, 248, 417, 2956
TMPDIR option

CMake, 167
tmpdir option

myisamchk, 371
myisampack, 381
mysqld, 482
mysqlhotcopy, 407
mysql_upgrade, 289

tmpdir system variable, 587
tmp_table_size system variable, 587
to-last-log option

mysqlbinlog, 396
tools

command-line, 80, 289
list of, 40
mysqld_multi, 274
mysqld_safe, 266

torn page, 1684, 3549
TotalSendBufferMemory

API and SQL nodes, 2167
data nodes, 2161
management nodes, 2113

Touches(), 1268
TO_DAYS(), 1202
TO_SECONDS(), 1203
TPS, 3549
TP_THREAD_GROUP_STATE

INFORMATION_SCHEMA table, 2580
TP_THREAD_GROUP_STATS

INFORMATION_SCHEMA table, 2582
TP_THREAD_STATE

INFORMATION_SCHEMA table, 2583
trace DBI method, 2821
trace files

ndbmtd, 2233
trace files (NDB Cluster), 2230
TRADITIONAL SQL mode, 631, 637
trailing spaces

CHAR, 1079, 1096
ENUM, 1101
in comparisons, 1096
SET, 1103
VARCHAR, 1080, 1096

transaction, 3549
transaction ID, 3550
transaction isolation level, 1456

NDB Cluster, 2021
READ COMMITTED, 1606
READ UNCOMMITTED, 1608
REPEATABLE READ, 1606
SERIALIZABLE, 1608

transaction-isolation option
mysqld, 481



3167

transaction-safe tables, 1586
transactional option

ndb_delete_all, 2253
TransactionBufferMemory, 2124
TransactionDeadlockDetectionTimeout, 2141
TransactionInactiveTimeout, 2140
transactions, 1601

and replication, 1991, 1992
isolation levels, 1606
metadata locking, 940
support, 1586

transaction_alloc_block_size system variable, 588
transaction_allow_batching session variable (NDB Cluster), 2199
transaction_prealloc_size system variable, 588
Translators

list of, 38
transparent page compression, 3550
transportable tablespace, 3550
transporters

ndbinfo table, 2363
.TRG file, 3547
triggers, 1370, 1380, 1567, 2503, 2507

and INSERT DELAYED, 1393
and replication, 1981, 1993
LAST_INSERT_ID(), 2507
metadata, 2511
restrictions, 2971

TRIGGERS
INFORMATION_SCHEMA table, 2557

triggers option
mysqldump, 341

TRIM(), 1163
.TRN file, 3547
troubleshooting, 3550

FreeBSD, 174
InnoDB deadlocks, 1616, 1618
InnoDB errors, 1767
InnoDB recovery problems, 1764
InnoDB table fragmentation, 1686
Solaris, 174
with MySQL Enterprise Monitor, 2829

TRUE, 972, 977
testing for, 1144, 1144

truncate, 3550
TRUNCATE TABLE, 1382

and NDB Cluster, 2020
and replication, 1994
performance_schema database, 2607, 2979

TRUNCATE(), 1185
tuning, 834

InnoDB compressed tables, 1668
tuple, 3550
tupscan option

ndb_select_all, 2290
tutorial, 211
twiddle option

ndb_redo_log_reader, 2273
two-phase commit, 1725, 3550



3168

TwoPassInitialNodeRestartCopy, 2151
tx_isolation system variable, 589
type codes

C prepared statement API, 2711
type conversions, 1137, 1142
type option

mysql_convert_table_format, 408
ndb_config, 2250
ndb_show_tables, 2293

types
columns, 1073, 1125
data, 1073
Date and Time, 1086
of tables, 1769
portability, 1126
strings, 1096

typographical conventions, 2
TZ environment variable, 417, 2957
tz-utc option

mysqldump, 341

U
UCASE(), 1163
UCS-2, 1003
ucs2 character set, 1036
UDFs, 1523, 1524

compiling, 2813
defined, 2805
return values, 2812

ulimit, 2949
UMASK environment variable, 417, 2950
UMASK_DIR environment variable, 417, 2950
unary minus (-), 1176
unbuffered option

mysql, 299
UNCOMPRESS(), 1247
UNCOMPRESSED_LENGTH(), 1247
undo, 3551
undo log, 1642, 3551
undo log segment, 3551
undo tablespace, 3551
UndoDataBuffer, 2144
UndoIndexBuffer, 2143
UNHEX(), 1163
Unicode, 1003
Unicode Collation Algorithm, 1042
UNINSTALL PLUGIN statement, 1526
uninstalling plugins, 669, 1526
UNION, 239, 1430
UNIQUE, 1304
unique constraint, 3551
unique ID, 2744
unique index, 3551
unique key, 3552

constraint, 31
unique keys

and partitioning keys, 2496
unique_checks system variable, 590



3169

unique_subquery join type
optimizer, 912

Unix
compiling clients on, 2643

UNIX_TIMESTAMP(), 1204
UNKNOWN

testing for, 1144, 1144
Unknown column ... in 'on clause', 1430, 1430
unloading

tables, 219
UNLOCK TABLES, 1451
unnamed views, 1438
unpack option

myisamchk, 371
unqualified option

ndb_desc, 2257
ndb_show_tables, 2293

unsafe statement (replication)
defined, 1885

unsafe statements (replication), 1886
UNSIGNED, 1074, 1081
UNTIL, 1481
updatable views, 2521
updatable_views_with_limit system variable, 590
UPDATE, 29, 1444
update

thread state, 962
update option

MySQLInstallerConsole, 83
update option (ndb_index_stat), 2263
update-state option

myisamchk, 369
UpdateXML(), 1231
Updating

thread state, 962
updating main table

thread state, 962
updating reference tables

thread state, 962
upgrade option

MySQLInstallerConsole, 83
upgrade-system-tables option

mysql_upgrade, 289
upgrades

NDB Cluster, 2054, 2314
upgrades and downgrades (NDB Cluster)

compatibility between versions, 2054
upgrading, 188, 188

different architecture, 205
to &current-series;, 193

upgrading lock
thread state, 964

upgrading MySQL, 284
UPPER(), 1164
uptime, 313
URLs for downloading MySQL, 45
usage option

ndb_config, 2250



3170

usage option (NDB Cluster programs), 2300
USE, 1583
use command

mysql, 303
USE INDEX, 922
USE KEY, 922
use-frm option

mysqlcheck, 324
use-threads option

mysqlimport, 349
useHexFormat option

ndb_select_all, 2290
user accounts

creating, 1498
renaming, 1512
resource limits, 540, 747, 1511

USER environment variable, 252, 417
User lock

thread state, 962
user names

and passwords, 744
in account names, 732
in default accounts, 183

user option, 252
mysql, 299
mysqlaccess, 388
mysqladmin, 318
mysqlbinlog, 396
mysqlcheck, 325
mysqld, 482
mysqldump, 341
mysqld_multi, 276
mysqld_safe, 270
mysqlhotcopy, 407
mysqlimport, 349
mysqlshow, 353
mysqlslap, 360
mysql_convert_table_format, 408
mysql_install_db, 281
mysql_setpermission, 410
mysql_upgrade, 289

user privileges
adding, 746
deleting, 747, 1501
dropping, 747, 1501

User sleep
thread state, 962

user table
sorting, 735
system table, 183, 646, 727

user variables
and replication, 1994

USER(), 1256
User-defined functions, 1523, 1524
user-defined functions

adding, 2805, 2806
user-defined variables, 995
users



3171

adding, 179
deleting, 747, 1501
root, 183

USER_PRIVILEGES
INFORMATION_SCHEMA table, 2559

USING HASH
with NDB tables, 1328

using multiple disks to start data, 946
using NDB Cluster programs, 2224
USING versus ON

joins, 1429
UTC_DATE(), 1204
UTC_TIME(), 1205
UTC_TIMESTAMP(), 1205
UTF-8, 1003

database object metadata, 1008
utf16 character set, 1036
utf16_bin collation, 1043
utf32 character set, 1037
utf8 character set, 1034
utf8mb3 character set, 1035
utf8mb4 character set, 1035
utilities

program-development, 247
utility programs, 246
UUID(), 1282
UUID_SHORT(), 1283

V
valid numbers

examples, 972
VALUES(), 1283
VARBINARY data type, 1080, 1097
VARCHAR

size, 1124
VARCHAR data type, 1080, 1096
VARCHARACTER data type, 1080
variable option

mysql_config, 412
variable-length type, 3552
variables

and replication, 1994
environment, 248
server, 1568
status, 605, 1563
system, 482, 592, 1568
user defined, 995

VARIANCE(), 1273
VAR_POP(), 1273
VAR_SAMP(), 1273
verbose option

myisamchk, 367
myisampack, 381
myisam_ftdump, 362
mysql, 299
mysqladmin, 318
mysqlbinlog, 396
mysqlcheck, 325



3172

mysqld, 482
mysqldump, 341
mysqldumpslow, 404
mysqld_multi, 276
mysqlimport, 349
mysqlshow, 353
mysqlslap, 360
mysql_convert_table_format, 408
mysql_install_db, 281
mysql_plugin, 283
mysql_upgrade, 289
mysql_waitpid, 410
my_print_defaults, 414
ndb_blob_tool, 2244
ndb_move_data, 2268
perror, 415

verbose option (ndb_index_stat), 2265
verbose option (ndb_restore), 2283
version

choosing, 43
latest, 45

VERSION file
CMake, 174

version option
comp_err, 279
myisamchk, 367
myisampack, 381
mysql, 299
mysqlaccess, 388
mysqladmin, 318
mysqlbinlog, 396
mysqlcheck, 325
mysqld, 482
mysqldump, 341
mysqld_multi, 276
mysqlimport, 349
mysqlshow, 353
mysqlslap, 360
mysql_config, 413
mysql_convert_table_format, 408
mysql_plugin, 283
mysql_waitpid, 410
my_print_defaults, 414
ndb_config, 2250
perror, 415
resolveip, 416
resolve_stack_dump, 414

version option (NDB Cluster programs), 2302
version system variable, 591
VERSION(), 1256
version-check option

mysql_upgrade, 289
version_comment system variable, 591
version_compile_machine system variable, 591
version_compile_os system variable, 591
vertical option

mysql, 299
mysqladmin, 318



3173

victim, 3552
Vietnamese, 2859
views, 1372, 2503, 2519

algorithms, 2520
and replication, 1996
limitations, 2978
metadata, 2523
privileges, 2978
problems, 2978
restrictions, 2977
updatable, 1372, 2521

VIEWS
INFORMATION_SCHEMA table, 2559

W
wait, 3552
WAIT COMPLETED (START BACKUP command), 2310
wait option

myisamchk, 367
myisampack, 381
mysql, 299
mysqladmin, 318

WAIT STARTED (START BACKUP command), 2310
wait-nodes option

ndb_waiter, 2297
Waiting for allowed to take ndbcluster global schema lock

thread state, 968
Waiting for commit lock

thread state, 962
waiting for delay_list

thread state, 964
Waiting for event from ndbcluster

thread state, 968
Waiting for event metadata lock

thread state, 963
Waiting for event read lock

thread state, 963
Waiting for first event from ndbcluster

thread state, 968
Waiting for global metadata lock

thread state, 963
Waiting for global read lock

thread state, 962, 963
waiting for handler insert

thread state, 964
waiting for handler lock

thread state, 964
waiting for handler open

thread state, 964
Waiting for INSERT

thread state, 964
Waiting for master to send event

thread state, 966
Waiting for master update

thread state, 966
Waiting for ndbcluster binlog update to reach current position

thread state, 968
Waiting for ndbcluster global schema lock



3174

thread state, 968
Waiting for ndbcluster to start

thread state, 968
Waiting for next activation

thread state, 968
Waiting for query cache lock

thread state, 965
Waiting for scheduler to stop

thread state, 968
Waiting for schema epoch

thread state, 968
Waiting for schema metadata lock

thread state, 963
Waiting for slave mutex on exit

thread state, 966, 967
Waiting for stored function metadata lock

thread state, 963
Waiting for stored procedure metadata lock

thread state, 963
Waiting for table

thread state, 962
Waiting for table flush

thread state, 962
Waiting for table level lock

thread state, 963
Waiting for table metadata lock

thread state, 963
Waiting for tables

thread state, 962
Waiting for the next event in relay log

thread state, 966
Waiting for the slave SQL thread to free enough relay log space

thread state, 966
Waiting for trigger metadata lock

thread state, 963
Waiting on cond

thread state, 963
Waiting on empty queue

thread state, 968
Waiting to finalize termination

thread state, 965
Waiting to reconnect after a failed binlog dump request

thread state, 966
Waiting to reconnect after a failed master event read

thread state, 966
wait_timeout system variable, 592
Wan, 2112, 2168
warm backup, 3552
warm up, 3552
warnings command

mysql, 303
warning_count system variable, 592
WARN_COND_ITEM_TRUNCATED error code, 2924
WARN_DATA_TRUNCATED error code, 2899
WARN_NON_ASCII_SEPARATOR_NOT_IMPLEMENTED error code, 2923
WARN_NO_MASTER_INFO error code, 2922
WARN_OPTION_BELOW_LIMIT error code, 2930
WARN_OPTION_IGNORED error code, 2922



3175

WARN_PLUGIN_BUSY error code, 2922
WARN_PLUGIN_DELETE_BUILTIN error code, 2922
web sites, 17
WEEK(), 1205
WEEKDAY(), 1206
WEEKOFYEAR(), 1206
Well-Known Binary format

geometry values, 1114
Well-Known Text format

geometry values, 1113
WHERE, 837

with SHOW, 2533, 2584
where option

mysqldump, 341
WHILE, 1481

labels, 1475
widths

display, 1073
Wildcard character (%), 970
Wildcard character (_), 971
wildcards

and LIKE, 887
in account names, 733
in mysql.columns_priv table, 737
in mysql.db table, 736
in mysql.host table, 736
in mysql.procs_priv table, 737
in mysql.tables_priv table, 737

Windows
compiling clients on, 2644
MySQL limitations, 2986, 2987
path name separators, 258
pluggable authentication, 783
upgrading, 125

windows option
mysql_install_db, 281

WITH ROLLUP, 1274
Within(), 1268
WITHOUT_SERVER option

CMake, 171
WITH_ASAN option

CMake, 169
WITH_BUNDLED_LIBEVENT option

CMake, 171
WITH_BUNDLED_MEMCACHED option

CMake, 172
WITH_CLASSPATH option

CMake, 172
WITH_DEBUG option

CMake, 169
WITH_EMBEDDED_SERVER option

CMake, 169
WITH_EMBEDDED_SHARED_LIBRARY option

CMake, 169
WITH_ERROR_INSERT option

CMake, 172
WITH_EXTRA_CHARSETS option

CMake, 170



3176

WITH_LIBEDIT option
CMake, 170

WITH_LIBWRAP option
CMake, 170

WITH_NDBCLUSTER option
CMake, 172

WITH_NDBCLUSTER_STORAGE_ENGINE option
CMake, 172

WITH_NDBMTD option
CMake, 172

WITH_NDB_BINLOG option
CMake, 172

WITH_NDB_DEBUG option
CMake, 172

WITH_NDB_JAVA option
CMake, 172

WITH_NDB_PORT option
CMake, 172

WITH_NDB_TEST option
CMake, 172

WITH_READLINE option
CMake, 170

WITH_SSL option
CMake, 170

WITH_UNIXODBC option
CMake, 170

WITH_VALGRIND option
CMake, 170

WITH_ZLIB option
CMake, 170

WKB format
geometry values, 1114

WKT format
geometry values, 1113

workload, 3553
wrappers

Eiffel, 2755
write access

tmp, 178
write combining, 3553
write-binlog option

mysqlcheck, 325
mysql_upgrade, 289

write_buffer_size myisamchk variable, 367
Writing to net

thread state, 963

X
X(), 1263
X509/Certificate, 759
XA, 3553
XA BEGIN, 1459
XA COMMIT, 1459
XA PREPARE, 1459
XA RECOVER, 1459
XA ROLLBACK, 1459
XA START, 1459
XA transactions, 1457



3177

restrictions, 2978
transaction identifiers, 1459

xid
XA transaction identifier, 1459

xml option
mysql, 299
mysqldump, 341
ndb_config, 2250

XOR
bitwise, 1239
logical, 1148

Y
Y(), 1263
yaSSL, 759, 760

compared to OpenSSL, 760
YEAR data type, 1078, 1089
YEAR(), 1206
YEARWEEK(), 1206
Yen sign (Japanese), 2859
young, 3553

Z
ZEROFILL, 1074, 1081, 2748
ZFS, 1807

C Function Index

my_init()
Section 23.8.6, “C API Function Overview”
Section 23.8.12.1, “my_init()”
Section 23.8.12.3, “mysql_thread_init()”

mysql_affected_rows()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 13.2.1, “CALL Syntax”
Section 12.14, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.46, “mysql_next_result()”
Section 23.8.7.48, “mysql_num_rows()”
Section 23.8.11.1, “mysql_stmt_affected_rows()”
Section 23.8.7.71, “mysql_use_result()”
Section 13.2.8, “REPLACE Syntax”
Section 23.8.15.2, “What Results You Can Get from a Query”

mysql_autocommit()
Section 23.8.6, “C API Function Overview”

mysql_change_user()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.3, “mysql_change_user()”

mysql_character_set_name()
Section 23.8.6, “C API Function Overview”



3178

mysql_client_find_plugin()
Section 23.8.6, “C API Function Overview”

mysql_client_register_plugin()
Section 23.8.6, “C API Function Overview”

mysql_close()
Section 23.8.6, “C API Function Overview”
Section B.5.2.11, “Communication Errors and Aborted Connections”
Section 23.8.7.5, “mysql_close()”
Section 23.8.7.6, “mysql_commit()”
Section 23.8.7.7, “mysql_connect()”
Section 23.8.7.36, “mysql_init()”
Section 23.8.7.57, “mysql_rollback()”

mysql_commit()
Section 23.8.6, “C API Function Overview”

mysql_connect()
Section 23.8.6, “C API Function Overview”
Section 23.8.12.1, “my_init()”
Section 23.8.7.5, “mysql_close()”
Section 23.8.7.7, “mysql_connect()”
Section 23.8.7.49, “mysql_options()”
Section 23.8.12.3, “mysql_thread_init()”
Section 23.8.4.2, “Writing C API Threaded Client Programs”

mysql_create_db()
Section 23.8.6, “C API Function Overview”

mysql_data_seek()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.9, “mysql_data_seek()”
Section 23.8.7.58, “mysql_row_seek()”
Section 23.8.7.71, “mysql_use_result()”

mysql_debug()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.10, “mysql_debug()”

mysql_drop_db()
Section 23.8.6, “C API Function Overview”

mysql_dump_debug_info()
Section 23.8.6, “C API Function Overview”

mysql_eof()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.13, “mysql_eof()”

mysql_errno()
Section 23.8.7, “C API Function Descriptions”
Section 23.8.6, “C API Function Overview”
Section 23.8.14.1, “mysql_client_find_plugin()”
Section 23.8.14.2, “mysql_client_register_plugin()”



3179

Section 23.8.7.7, “mysql_connect()”
Section 23.8.7.13, “mysql_eof()”
Section 23.8.7.14, “mysql_errno()”
Section 23.8.7.22, “mysql_field_count()”
Section 23.8.14.3, “mysql_load_plugin()”
Section 23.8.7.47, “mysql_num_fields()”
Section 23.8.7.66, “mysql_sqlstate()”
Section 23.8.11.6, “mysql_stmt_close()”
Section 23.8.11.8, “mysql_stmt_errno()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
Signal Condition Information Items
Section 6.5.2.3, “The Audit Log File”
Section B.2, “Types of Error Values”
Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”
Section 24.2.4.8, “Writing Audit Plugins”

mysql_error()
Section 23.8.7, “C API Function Descriptions”
Section 23.8.6, “C API Function Overview”
Section 23.8.14.1, “mysql_client_find_plugin()”
Section 23.8.14.2, “mysql_client_register_plugin()”
Section 23.8.7.7, “mysql_connect()”
Section 23.8.7.13, “mysql_eof()”
Section 23.8.7.15, “mysql_error()”
Section 23.8.14.3, “mysql_load_plugin()”
Section 23.8.11.6, “mysql_stmt_close()”
Section 23.8.11.9, “mysql_stmt_error()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
Signal Condition Information Items
Section B.2, “Types of Error Values”
Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”
Section 24.2.4.8, “Writing Audit Plugins”

mysql_escape_string()
Section 23.8.6, “C API Function Overview”
Section 6.1.7, “Client Programming Security Guidelines”
Section 23.8.7.16, “mysql_escape_string()”

mysql_fetch_field()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 23.8.7.17, “mysql_fetch_field()”
Section 23.8.7.23, “mysql_field_seek()”
Section 23.8.7.24, “mysql_field_tell()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_fetch_field_direct()
Section 23.8.6, “C API Function Overview”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_fetch_fields()
Section 23.8.6, “C API Function Overview”
Section 23.8.11.23, “mysql_stmt_result_metadata()”



3180

mysql_fetch_lengths()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.20, “mysql_fetch_lengths()”
Section 23.8.7.21, “mysql_fetch_row()”

mysql_fetch_row()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 15.9.1, “FEDERATED Storage Engine Overview”
Section 23.8.7.13, “mysql_eof()”
Section 23.8.7.14, “mysql_errno()”
Section 23.8.7.20, “mysql_fetch_lengths()”
Section 23.8.7.21, “mysql_fetch_row()”
Section 23.8.7.59, “mysql_row_tell()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
Section 23.8.15.2, “What Results You Can Get from a Query”

mysql_field_count()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.22, “mysql_field_count()”
Section 23.8.7.47, “mysql_num_fields()”
Section 23.8.7.51, “mysql_query()”
Section 23.8.7.54, “mysql_real_query()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”

mysql_field_seek()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 23.8.7.17, “mysql_fetch_field()”
Section 23.8.7.24, “mysql_field_tell()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_field_tell()
Section 23.8.6, “C API Function Overview”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_free_result()
Section 23.8.6, “C API Function Overview”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section B.5.2.14, “Commands out of sync”
Section 23.8.7.25, “mysql_free_result()”
Section 23.8.7.41, “mysql_list_dbs()”
Section 23.8.7.42, “mysql_list_fields()”
Section 23.8.7.43, “mysql_list_processes()”
Section 23.8.7.44, “mysql_list_tables()”
Section 23.8.7.46, “mysql_next_result()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”

mysql_get_character_set_info()
Section 23.8.6, “C API Function Overview”
Section 10.4.2, “Choosing a Collation ID”



3181

mysql_get_client_info()
Section 23.8.6, “C API Function Overview”
Section 23.8.4.4, “C API Server and Client Library Versions”
Section 23.8.7.7, “mysql_connect()”

mysql_get_client_version()
Section 23.8.6, “C API Function Overview”
Section 23.8.4.4, “C API Server and Client Library Versions”

mysql_get_host_info()
Section 23.8.6, “C API Function Overview”

mysql_get_proto_info()
Section 23.8.6, “C API Function Overview”

mysql_get_server_info()
Section 23.8.6, “C API Function Overview”
Section 23.8.4.4, “C API Server and Client Library Versions”

mysql_get_server_version()
Section 23.8.6, “C API Function Overview”
Section 23.8.4.4, “C API Server and Client Library Versions”

mysql_get_ssl_cipher()
Section 23.8.6, “C API Function Overview”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Section 23.8.7.33, “mysql_get_ssl_cipher()”
Section 23.8.7.67, “mysql_ssl_set()”

mysql_hex_string()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.34, “mysql_hex_string()”

mysql_info()
Section 13.1.7, “ALTER TABLE Syntax”
Section 23.8.6, “C API Function Overview”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 23.8.7.35, “mysql_info()”
Section 23.8.7.49, “mysql_options()”
Section 1.7.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 13.2.11, “UPDATE Syntax”
Section 23.8.15.2, “What Results You Can Get from a Query”

mysql_init()
Section 23.8.6, “C API Function Overview”
Section 23.8.12.1, “my_init()”
Section 23.8.7.5, “mysql_close()”
Section 23.8.7.33, “mysql_get_ssl_cipher()”
Section 23.8.7.36, “mysql_init()”
Section 23.8.7.40, “mysql_library_init()”
Section 23.8.7.49, “mysql_options()”
Section 23.8.7.52, “mysql_real_connect()”
Section 23.8.7.67, “mysql_ssl_set()”
Section 23.8.12.3, “mysql_thread_init()”



3182

Section 23.8.4.2, “Writing C API Threaded Client Programs”

mysql_insert_id()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 13.1.17, “CREATE TABLE Syntax”
Section 23.8.15.3, “How to Get the Unique ID for the Last Inserted Row”
Section 12.14, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 23.8.7.37, “mysql_insert_id()”
Section 5.1.5, “Server System Variables”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 23.8.15.2, “What Results You Can Get from a Query”

mysql_kill()
Section 23.8.6, “C API Function Overview”
Section 23.8.16, “Controlling Automatic Reconnection Behavior”
Section 23.8.7.70, “mysql_thread_id()”

mysql_library_end()
Section 23.8.13, “C API Embedded Server Function Descriptions”
Section 23.8.6, “C API Function Overview”
Section 23.7, “libmysqld, the Embedded MySQL Server Library”
Section 23.8.7.39, “mysql_library_end()”
Section 23.8.7.40, “mysql_library_init()”
Section 23.8.13.2, “mysql_server_end()”

mysql_library_init()
Section 23.8.13, “C API Embedded Server Function Descriptions”
Section 23.8.6, “C API Function Overview”
Section 23.7, “libmysqld, the Embedded MySQL Server Library”
Section 23.8.12.1, “my_init()”
Section 23.8.7.36, “mysql_init()”
Section 23.8.7.40, “mysql_library_init()”
Section 23.8.14.3, “mysql_load_plugin()”
Section 23.8.13.1, “mysql_server_init()”
Section 23.8.12.3, “mysql_thread_init()”
Section 23.7.3, “Options with the Embedded Server”
Section 23.8.4.2, “Writing C API Threaded Client Programs”

mysql_list_dbs()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.25, “mysql_free_result()”
Section 23.8.7.41, “mysql_list_dbs()”

mysql_list_fields()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 23.8.7.42, “mysql_list_fields()”

mysql_list_processes()
Section 23.8.6, “C API Function Overview”

mysql_list_tables()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.44, “mysql_list_tables()”



3183

mysql_load_plugin()
Section 23.8.6, “C API Function Overview”
Client Plugin Descriptors
Section 23.8.14.4, “mysql_load_plugin_v()”

mysql_load_plugin_v()
Section 23.8.6, “C API Function Overview”

mysql_more_results()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement Execution”
Section 23.8.7.45, “mysql_more_results()”
Section 23.8.7.46, “mysql_next_result()”
Section 23.8.11.17, “mysql_stmt_next_result()”

mysql_next_result()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement Execution”
Section 13.2.1, “CALL Syntax”
Section 23.8.7.45, “mysql_more_results()”
Section 23.8.7.46, “mysql_next_result()”
Section 23.8.7.52, “mysql_real_connect()”
Section 23.8.7.64, “mysql_set_server_option()”
Section 23.8.7.69, “mysql_store_result()”

mysql_num_fields()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.18, “mysql_fetch_field_direct()”
Section 23.8.7.21, “mysql_fetch_row()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”

mysql_num_rows()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.9, “mysql_data_seek()”
Section 23.8.7.48, “mysql_num_rows()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
Section 23.8.15.2, “What Results You Can Get from a Query”

mysql_options()
Section 23.8.14, “C API Client Plugin Functions”
Section 23.8.6, “C API Function Overview”
Section 23.8.9, “C API Prepared Statement Data Structures”
Client Plugin Descriptors
Section 6.5.1.3, “Client-Side Cleartext Pluggable Authentication”
Section 10.1.4, “Connection Character Sets and Collations”
Section 23.8.16, “Controlling Automatic Reconnection Behavior”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.49, “mysql_options()”
Section 23.8.7.50, “mysql_ping()”
Section 23.8.7.52, “mysql_real_connect()”
Section 23.8.7.67, “mysql_ssl_set()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 24.2.3, “Plugin API Components”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”



3184

Section 6.3.1, “User Names and Passwords”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”
Section 6.4, “Using Secure Connections”
Using the Authentication Plugins

mysql_ping()
Section 23.8.6, “C API Function Overview”
Section 23.8.16, “Controlling Automatic Reconnection Behavior”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.50, “mysql_ping()”
Section 23.8.7.70, “mysql_thread_id()”

mysql_plugin_options()
Section 23.8.6, “C API Function Overview”

mysql_query()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement Execution”
Section 13.2.1, “CALL Syntax”
Section 23.8.15.3, “How to Get the Unique ID for the Last Inserted Row”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.8, “mysql_create_db()”
Section 23.8.7.11, “mysql_drop_db()”
Section 23.8.7.17, “mysql_fetch_field()”
Section 23.8.7.38, “mysql_kill()”
Section 23.8.7.46, “mysql_next_result()”
Section 23.8.7.51, “mysql_query()”
Section 23.8.7.52, “mysql_real_connect()”
Section 23.8.7.54, “mysql_real_query()”
Section 23.8.7.56, “mysql_reload()”
Section 23.8.7.63, “mysql_set_local_infile_handler()”
Section 23.8.7.64, “mysql_set_server_option()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”
Section 23.8.4.2, “Writing C API Threaded Client Programs”

mysql_real_connect()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement Execution”
Section 13.2.1, “CALL Syntax”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Chapter 12, Functions and Operators
Section 12.14, “Information Functions”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.3, “mysql_change_user()”
Section 23.8.7.7, “mysql_connect()”
Section 23.8.7.36, “mysql_init()”
Section 23.8.7.46, “mysql_next_result()”
Section 23.8.7.49, “mysql_options()”
Section 23.8.7.52, “mysql_real_connect()”
Section 23.8.7.64, “mysql_set_server_option()”
Section 23.8.7.66, “mysql_sqlstate()”
Section 23.8.7.67, “mysql_ssl_set()”



3185

Section 13.5, “Prepared SQL Statement Syntax”
Section 5.1.5, “Server System Variables”
Section 20.2.1, “Stored Routine Syntax”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”

mysql_real_escape_string()
Section 23.8.6, “C API Function Overview”
Section 6.1.7, “Client Programming Security Guidelines”
Section 23.8.7.16, “mysql_escape_string()”
Section 23.8.7.53, “mysql_real_escape_string()”
Section 23.8.7.61, “mysql_set_character_set()”
Section 11.5.3.3, “Populating Spatial Columns”
Section 9.1.1, “String Literals”

mysql_real_query()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement Execution”
Section 13.2.1, “CALL Syntax”
Section 15.9.1, “FEDERATED Storage Engine Overview”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.46, “mysql_next_result()”
Section 23.8.7.51, “mysql_query()”
Section 23.8.7.52, “mysql_real_connect()”
Section 23.8.7.54, “mysql_real_query()”
Section 23.8.7.64, “mysql_set_server_option()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”

mysql_refresh()
Section 23.8.6, “C API Function Overview”

mysql_reload()
Section 23.8.6, “C API Function Overview”

mysql_rollback()
Section 23.8.6, “C API Function Overview”

mysql_row_seek()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.58, “mysql_row_seek()”
Section 23.8.7.59, “mysql_row_tell()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”

mysql_row_tell()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.58, “mysql_row_seek()”
Section 23.8.7.59, “mysql_row_tell()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”

mysql_select_db()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.60, “mysql_select_db()”

mysql_server_end()
Section 23.8.6, “C API Function Overview”



3186

Section 23.8.13.2, “mysql_server_end()”

mysql_server_init()
Section 23.8.6, “C API Function Overview”
Section 23.8.12.1, “my_init()”
Section 23.8.13.1, “mysql_server_init()”
Section 23.8.12.3, “mysql_thread_init()”

mysql_set_character_set()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.26, “mysql_get_character_set_info()”
Section 23.8.7.53, “mysql_real_escape_string()”

mysql_set_local_infile_default()
Section 23.8.6, “C API Function Overview”

mysql_set_local_infile_handler()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.62, “mysql_set_local_infile_default()”
Section 23.8.7.63, “mysql_set_local_infile_handler()”

mysql_set_server_option()
Section 23.8.6, “C API Function Overview”
Section 23.8.17, “C API Support for Multiple Statement Execution”
Section 23.8.7.64, “mysql_set_server_option()”

mysql_shutdown()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.65, “mysql_shutdown()”
Section 6.2.1, “Privileges Provided by MySQL”

mysql_sqlstate()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.14, “mysql_errno()”
Section 23.8.7.66, “mysql_sqlstate()”
Section 23.8.11.6, “mysql_stmt_close()”
Section 23.8.11.27, “mysql_stmt_sqlstate()”
Signal Condition Information Items
Section B.2, “Types of Error Values”

mysql_ssl_set()
Section 23.8.6, “C API Function Overview”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Section 23.8.7.52, “mysql_real_connect()”
Section 23.8.7.67, “mysql_ssl_set()”
Section 6.4, “Using Secure Connections”

mysql_stat()
Section 23.8.6, “C API Function Overview”

mysql_stmt_affected_rows()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.1, “mysql_stmt_affected_rows()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.17, “mysql_stmt_next_result()”
Section 23.8.11.18, “mysql_stmt_num_rows()”



3187

mysql_stmt_attr_get()
Section 23.8.10, “C API Prepared Statement Function Overview”

mysql_stmt_attr_set()
Section 23.8.5, “C API Data Structures”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.9.2, “C API Prepared Statement Type Conversions”
Section 23.8.11.3, “mysql_stmt_attr_set()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.28, “mysql_stmt_store_result()”
Section C.3, “Restrictions on Server-Side Cursors”

mysql_stmt_bind_param()
Section 23.8.9, “C API Prepared Statement Data Structures”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.19, “C API Prepared Statement Handling of Date and Time Values”
Section 23.8.11.4, “mysql_stmt_bind_param()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.21, “mysql_stmt_prepare()”
Section 23.8.11.26, “mysql_stmt_send_long_data()”

mysql_stmt_bind_result()
Section 23.8.9, “C API Prepared Statement Data Structures”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.19, “C API Prepared Statement Handling of Date and Time Values”
Section 23.8.11.5, “mysql_stmt_bind_result()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.12, “mysql_stmt_fetch_column()”
Section 23.8.11.17, “mysql_stmt_next_result()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_close()
Section 23.8.9, “C API Prepared Statement Data Structures”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.6, “mysql_stmt_close()”
Section 23.8.11.8, “mysql_stmt_errno()”
Section 23.8.11.9, “mysql_stmt_error()”
Section 23.8.11.15, “mysql_stmt_init()”
Section 23.8.11.27, “mysql_stmt_sqlstate()”

mysql_stmt_data_seek()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.7, “mysql_stmt_data_seek()”
Section 23.8.11.24, “mysql_stmt_row_seek()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_errno()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.6, “mysql_stmt_close()”
Section 23.8.11.8, “mysql_stmt_errno()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section B.2, “Types of Error Values”

mysql_stmt_error()
Section 23.8.10, “C API Prepared Statement Function Overview”



3188

Section 23.8.11.6, “mysql_stmt_close()”
Section 23.8.11.9, “mysql_stmt_error()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.21, “mysql_stmt_prepare()”
Section B.2, “Types of Error Values”

mysql_stmt_execute()
Section 23.8.9, “C API Prepared Statement Data Structures”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.19, “C API Prepared Statement Handling of Date and Time Values”
Section 23.8.9.2, “C API Prepared Statement Type Conversions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 23.8.11.1, “mysql_stmt_affected_rows()”
Section 23.8.11.3, “mysql_stmt_attr_set()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.17, “mysql_stmt_next_result()”
Section 23.8.11.26, “mysql_stmt_send_long_data()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_fetch()
Section 23.8.9, “C API Prepared Statement Data Structures”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.9.2, “C API Prepared Statement Type Conversions”
Section 23.8.11.5, “mysql_stmt_bind_result()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 23.8.11.25, “mysql_stmt_row_tell()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_fetch_column()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section B.4, “Client Error Codes and Messages”
Section 23.8.11.11, “mysql_stmt_fetch()”

mysql_stmt_field_count()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.13, “mysql_stmt_field_count()”

mysql_stmt_free_result()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.3, “mysql_stmt_attr_set()”
Section 23.8.11.14, “mysql_stmt_free_result()”
Section 23.8.11.17, “mysql_stmt_next_result()”

mysql_stmt_init()
Section 23.8.9, “C API Prepared Statement Data Structures”
Section 23.8.11, “C API Prepared Statement Function Descriptions”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.8, “C API Prepared Statements”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.21, “mysql_stmt_prepare()”

mysql_stmt_insert_id()
Section 23.8.10, “C API Prepared Statement Function Overview”



3189

mysql_stmt_next_result()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.20, “C API Support for Prepared CALL Statements”
Section 13.2.1, “CALL Syntax”
Section 23.8.11.17, “mysql_stmt_next_result()”

mysql_stmt_num_rows()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.7, “mysql_stmt_data_seek()”
Section 23.8.11.18, “mysql_stmt_num_rows()”

mysql_stmt_param_count()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.10, “mysql_stmt_execute()”

mysql_stmt_param_metadata()
Section 23.8.10, “C API Prepared Statement Function Overview”

mysql_stmt_prepare()
Section 13.5.4, “Automatic Prepared Statement Repreparation”
Section 23.8.9, “C API Prepared Statement Data Structures”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.19, “C API Prepared Statement Handling of Date and Time Values”
Section 8.10.3.1, “How the Query Cache Operates”
Section 23.8.11.4, “mysql_stmt_bind_param()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.13, “mysql_stmt_field_count()”
Section 23.8.11.21, “mysql_stmt_prepare()”
Section 23.8.11.22, “mysql_stmt_reset()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 13.5, “Prepared SQL Statement Syntax”

mysql_stmt_reset()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.3, “mysql_stmt_attr_set()”
Section 23.8.11.26, “mysql_stmt_send_long_data()”

mysql_stmt_result_metadata()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.9.2, “C API Prepared Statement Type Conversions”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_row_seek()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.24, “mysql_stmt_row_seek()”
Section 23.8.11.25, “mysql_stmt_row_tell()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_stmt_row_tell()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.24, “mysql_stmt_row_seek()”
Section 23.8.11.25, “mysql_stmt_row_tell()”
Section 23.8.11.28, “mysql_stmt_store_result()”



3190

mysql_stmt_send_long_data()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section B.4, “Client Error Codes and Messages”
Section 23.8.11.22, “mysql_stmt_reset()”
Section 23.8.11.26, “mysql_stmt_send_long_data()”
Section 5.1.5, “Server System Variables”

mysql_stmt_sqlstate()
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.6, “mysql_stmt_close()”
Section 23.8.11.27, “mysql_stmt_sqlstate()”
Section B.2, “Types of Error Values”

mysql_stmt_store_result()
Section 23.8.5, “C API Data Structures”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.11.3, “mysql_stmt_attr_set()”
Section 23.8.11.7, “mysql_stmt_data_seek()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.18, “mysql_stmt_num_rows()”
Section 23.8.11.24, “mysql_stmt_row_seek()”
Section 23.8.11.25, “mysql_stmt_row_tell()”
Section 23.8.11.28, “mysql_stmt_store_result()”

mysql_store_result()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section B.5.2.14, “Commands out of sync”
Section 15.9.1, “FEDERATED Storage Engine Overview”
Section 4.5.1, “mysql — The MySQL Command-Line Tool”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.9, “mysql_data_seek()”
Section 23.8.7.13, “mysql_eof()”
Section 23.8.7.17, “mysql_fetch_field()”
Section 23.8.7.21, “mysql_fetch_row()”
Section 23.8.7.22, “mysql_field_count()”
Section 23.8.7.25, “mysql_free_result()”
Section 23.8.7.46, “mysql_next_result()”
Section 23.8.7.47, “mysql_num_fields()”
Section 23.8.7.48, “mysql_num_rows()”
Section 23.8.7.58, “mysql_row_seek()”
Section 23.8.7.59, “mysql_row_tell()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.23, “mysql_stmt_result_metadata()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
Section 23.8.15.2, “What Results You Can Get from a Query”
Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”
Section 23.8.4.2, “Writing C API Threaded Client Programs”

mysql_thread_end()
Section 23.8.6, “C API Function Overview”
Section 23.7, “libmysqld, the Embedded MySQL Server Library”
Section 23.8.12.2, “mysql_thread_end()”
Section 23.8.4.2, “Writing C API Threaded Client Programs”



3191

mysql_thread_id()
Section 23.8.6, “C API Function Overview”
Section 23.8.16, “Controlling Automatic Reconnection Behavior”
Section 23.8.7.50, “mysql_ping()”
Section 23.8.7.70, “mysql_thread_id()”

mysql_thread_init()
Section 23.8.6, “C API Function Overview”
Section 23.7, “libmysqld, the Embedded MySQL Server Library”
Section 23.8.12.1, “my_init()”
Section 23.8.12.2, “mysql_thread_end()”
Section 23.8.12.3, “mysql_thread_init()”
Section 23.8.4.2, “Writing C API Threaded Client Programs”

mysql_thread_safe()
Section 23.8.6, “C API Function Overview”

mysql_use_result()
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section B.5.2.14, “Commands out of sync”
Section 4.5.1, “mysql — The MySQL Command-Line Tool”
Section 23.8.7.9, “mysql_data_seek()”
Section 23.8.7.13, “mysql_eof()”
Section 23.8.7.21, “mysql_fetch_row()”
Section 23.8.7.25, “mysql_free_result()”
Section 23.8.7.46, “mysql_next_result()”
Section 23.8.7.47, “mysql_num_fields()”
Section 23.8.7.48, “mysql_num_rows()”
Section 23.8.7.58, “mysql_row_seek()”
Section 23.8.7.59, “mysql_row_tell()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
Section B.5.2.8, “Out of memory”
Section 23.8.15.2, “What Results You Can Get from a Query”
Section 23.8.4.2, “Writing C API Threaded Client Programs”

mysql_warning_count()
Section 23.8.6, “C API Function Overview”
Section 23.8.7.46, “mysql_next_result()”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section B.2, “Types of Error Values”

Command Index
A | B | C | D | E | G | H | I | K | L | M | N | O | P | R | S | T | U | V | W | Y | Z

A

[index top]

Access
Section 13.2.2, “DELETE Syntax”

addgroup
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”



3192

Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

addr2line
Section 24.5.1.5, “Using a Stack Trace”

adduser
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

ALL STATUS
Section 18.5.8, “NDB Cluster Single User Mode”

APF
Section 18.5.11.1, “NDB Cluster Security and Networking Issues”

apt-get
Section 16.2.1, “Installing memcached”
Section 2.5.3, “Installing MySQL on Linux Using Native Package Managers”
Section 16.2.3.3, “Using libmemcached with C and C++”

B

[index top]

bash
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 2.4.1, “General Notes on Installing MySQL on OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

bison
Section 1.8.1, “Contributors to MySQL”
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 2.9, “Installing MySQL from Source”

C

[index top]

c++filt
Section 24.5.1.5, “Using a Stack Trace”

cat
Section 4.5.1.1, “mysql Options”

cd
Resetting the Root Password: Windows Systems

chkconfig
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.5.3, “Installing MySQL on Linux Using Native Package Managers”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

chroot
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”



3193

clang
Section 23.8.4.1, “Building C API Client Programs”

CMake
Section 10.3, “Adding a Character Set”
Section 6.4.2, “Building MySQL with Support for Secure Connections”
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section B.5.2.17, “Can't initialize character set”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 18.2.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 24.2.4.3, “Compiling and Installing Plugin Libraries”
Section 10.1.5, “Configuring Application Character Set and Collation”
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 2.9, “Installing MySQL from Source”
Section 2.9.3, “Installing MySQL Using a Development Source Tree”
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”
Chapter 18, MySQL NDB Cluster 7.2
Section 4.9, “MySQL Program Environment Variables”
Section 18.5.4, “MySQL Server Usage for NDB Cluster”
Section 24.3, “MySQL Services for Plugins”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 22.2, “Performance Schema Build Configuration”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 10.1.3.2, “Server Character Set and Collation”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 15.6, “The ARCHIVE Storage Engine”
Section 15.7, “The BLACKHOLE Storage Engine”
Section 15.10, “The EXAMPLE Storage Engine”
Section 15.9, “The FEDERATED Storage Engine”
Section 1.3.2, “The Main Features of MySQL”
Section 5.7, “Tracing mysqld Using DTrace”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 4.2.6, “Using Option Files”
Section 1.4, “What Is New in MySQL 5.5”
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

cmake
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”
Section 24.4.2.5, “UDF Compiling and Installing”

cmd
Resetting the Root Password: Windows Systems

cmd.exe
Section 4.2.1, “Invoking MySQL Programs”
Section 1.2, “Typographical and Syntax Conventions”

command.com
Section 4.2.1, “Invoking MySQL Programs”
Section 1.2, “Typographical and Syntax Conventions”



3194

comp_err
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.1, “Overview of MySQL Programs”

configure
Section 1.6, “How to Report Bugs or Problems”
Section 16.2.1, “Installing memcached”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 1.2, “Typographical and Syntax Conventions”
Section 16.2.3.3, “Using libmemcached with C and C++”
Section 16.2.3.6, “Using MySQL and memcached with PHP”
Section 1.4, “What Is New in MySQL 5.5”

copy
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”

coreadm
Section 2.7, “Installing MySQL on Solaris”
Section 5.1.4, “Server Command Options”

cp
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 17.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”

crash-me
Section 8.13.2, “The MySQL Benchmark Suite”

cron
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 15.3.1, “MyISAM Startup Options”
Section 5.4.7, “Server Log Maintenance”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 3.5, “Using mysql in Batch Mode”

csh
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

D

[index top]

date
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

df
Section B.5.1, “How to Determine What Is Causing a Problem”

Directory Utility
Section 2.4.1, “General Notes on Installing MySQL on OS X”



3195

drwtsn32.exe
Section 24.5.1.3, “Using WER with PDB to create a Windows crashdump”

dump
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”

E

[index top]

emerge
Section 16.2.1, “Installing memcached”
Section 2.5.3, “Installing MySQL on Linux Using Native Package Managers”

EXIT SINGLE USER MODE
Section 18.5.8, “NDB Cluster Single User Mode”

G

[index top]

gcc
Section 23.8.4.1, “Building C API Client Programs”
Section 23.7.1, “Compiling Programs with libmysqld”
Section 2.12.3, “Problems Using the Perl DBI/DBD Interface”
Section 1.8.4, “Tools that were used to create MySQL”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 1.4, “What Is New in MySQL 5.5”

gdb
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 24.5.1.4, “Debugging mysqld under gdb”
Section 1.8.4, “Tools that were used to create MySQL”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

git branch
Section 2.9.3, “Installing MySQL Using a Development Source Tree”

git checkout
Section 2.9.3, “Installing MySQL Using a Development Source Tree”

git checkout 5.7
Section 2.9.3, “Installing MySQL Using a Development Source Tree”

gmake
Section 2.9, “Installing MySQL from Source”
Section 2.8, “Installing MySQL on FreeBSD”
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”

GnuPG
Section 2.1.3.2, “Signature Checking Using GnuPG”

gnutar
Section 2.9, “Installing MySQL from Source”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”



3196

gogoc
Section 5.1.9.5, “Obtaining an IPv6 Address from a Broker”

gpg
Section 2.1.3.2, “Signature Checking Using GnuPG”

grep
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 3.3.4.7, “Pattern Matching”

groupadd
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

gtar
Section 2.9, “Installing MySQL from Source”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

gunzip
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”

gzip
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 1.6, “How to Report Bugs or Problems”
Section 2.4, “Installing MySQL on OS X”

H

[index top]

help contents
Section 4.5.1.4, “mysql Server-Side Help”

hostname
Section B.5.2.2, “Can't connect to [local] MySQL server”

I

[index top]

icc
Section 2.1.5, “Compiler-Specific Build Characteristics”
Section 24.5, “Debugging and Porting MySQL”

ifconfig
Section 5.1.9.1, “Verifying System Support for IPv6”

innochecksum
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
MySQL Glossary



3197

Section 4.1, “Overview of MySQL Programs”

install.rb
Section 16.2.3.7, “Using MySQL and memcached with Ruby”

iptables
Section 18.5.11.1, “NDB Cluster Security and Networking Issues”

K

[index top]

kill
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section C.6, “Restrictions on XA Transactions”

ksh
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”

kswapd
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”

L

[index top]

ldconfig
Section 24.4.2.5, “UDF Compiling and Installing”

ldd libmysqlclient.so
Section 23.8.4.1, “Building C API Client Programs”

less
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

libmemcached
libmemcached Command-Line Utilities

ln
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

logger
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

lsof +L1
Section B.5.3.5, “Where MySQL Stores Temporary Files”

M

[index top]



3198

m4
Section 2.9, “Installing MySQL from Source”

make
Section 24.2.4.3, “Compiling and Installing Plugin Libraries”
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 16.2.1, “Installing memcached”
Section 2.9, “Installing MySQL from Source”
Section 2.8, “Installing MySQL on FreeBSD”
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”
Section 2.12.3, “Problems Using the Perl DBI/DBD Interface”

make && make install
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”

make install
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section 24.2.4.3, “Compiling and Installing Plugin Libraries”
Section 16.2.1, “Installing memcached”
Section 2.9.4, “MySQL Source-Configuration Options”

make package
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”
Section 2.9.4, “MySQL Source-Configuration Options”

make test
Section 2.9.3, “Installing MySQL Using a Development Source Tree”
Section 2.12.1, “Installing Perl on Unix”
Section 24.1.2, “The MySQL Test Suite”

make VERBOSE=1
Section 2.9.5, “Dealing with Problems Compiling MySQL”

md5
Section 2.1.3.1, “Verifying the MD5 Checksum”

md5.exe
Section 2.1.3.1, “Verifying the MD5 Checksum”

md5sum
Section 2.1.3.1, “Verifying the MD5 Checksum”

memcache
Section 16.2.2.5, “memcached Hashing/Distribution Types”
Section 16.2.3.5, “Using MySQL and memcached with Python”

memcached
Section 16.2.3.1, “Basic memcached Operations”
Section 16.2.2.4, “Data Expiry”
Section 16.2.3, “Developing a memcached Application”
Section 16.2.4, “Getting memcached Statistics”
Section 16.2.1, “Installing memcached”
libmemcached Command-Line Utilities
libmemcached Set Functions
Section 16.2.2.1, “memcached Command-Line Options”



3199

Section 16.2.2.2, “memcached Deployment”
Section 16.2.4.5, “memcached Detail Statistics”
Section 16.2.5, “memcached FAQ”
Section 16.2.4.1, “memcached General Statistics”
Section 16.2.2.5, “memcached Hashing/Distribution Types”
Section 16.2.4.3, “memcached Item Statistics”
Section 16.2.2.9, “memcached Logs”
Section 16.2.4.4, “memcached Size Statistics”
Section 16.2.4.2, “memcached Slabs Statistics”
Section 16.2.2.8, “memcached Thread Support”
Section 16.2.2.7, “Memory Allocation within memcached”
MySQL Glossary
Section 2.9.4, “MySQL Source-Configuration Options”
Section 18.1.1, “NDB Cluster Core Concepts”
Section 16.2.3.3, “Using libmemcached with C and C++”
Section 16.2.2, “Using memcached”
Section 16.2.2.6, “Using memcached and DTrace”
Section 16.2.3.2, “Using memcached as a MySQL Caching Layer”
Section 16.2.4.6, “Using memcached-tool”
Section 16.2.3.8, “Using MySQL and memcached with Java”
Section 16.2.3.4, “Using MySQL and memcached with Perl”
Section 16.2.3.6, “Using MySQL and memcached with PHP”
Section 16.2.3.5, “Using MySQL and memcached with Python”
Section 16.2.3.7, “Using MySQL and memcached with Ruby”
Section 16.2, “Using MySQL with memcached”
Section 16.2.2.3, “Using Namespaces”
Section 16.2.3.9, “Using the memcached TCP Text Protocol”
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”

memcached-1.2.5 directory:
Section 16.2.1, “Installing memcached”

memcached-tool
Section 16.2.4, “Getting memcached Statistics”
Section 16.2.4.6, “Using memcached-tool”

memcat
libmemcached Command-Line Utilities

memcp
libmemcached Command-Line Utilities

memflush
libmemcached Command-Line Utilities

memrm
libmemcached Command-Line Utilities

memslap
libmemcached Command-Line Utilities

mgmd
Section 18.2, “NDB Cluster Installation and Upgrades”

mkdir
Section 13.1.10, “CREATE DATABASE Syntax”



3200

mklink
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”

more
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

msiexec.exe
Section 2.3.5.2, “Automating MySQL Installation on Microsoft Windows Using the MSI Package”

msql2mysql
Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with MySQL”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.2, “replace — A String-Replacement Utility”

mv
Section 5.4.7, “Server Log Maintenance”
Section 5.4.2, “The Error Log”
Section 5.4.3, “The General Query Log”

my_print_defaults
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.7, “MySQL Program Development Utilities”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.1, “Overview of MySQL Programs”

myisam_ftdump
Section 12.9, “Full-Text Search Functions”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.1, “Overview of MySQL Programs”

myisamchk
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 10.5, “Character Set Configuration”
Section 13.7.2.2, “CHECK TABLE Syntax”
Choosing an Install Type
Section 15.3.3.3, “Compressed Table Characteristics”
Section 15.3.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 24.5.1, “Debugging a MySQL Server”
Section 13.2.2, “DELETE Syntax”
Section 15.3.3.2, “Dynamic Table Characteristics”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.11.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.6, “How to Report Bugs or Problems”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section C.10.3, “Limits on Table Size”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 19.3.3, “Maintenance of Partitions”
Section 24.5.1.7, “Making a Test Case If You Experience Table Corruption”
Section 15.3.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”



3201

Section 7.6.4, “MyISAM Table Optimization”
Section 15.3.3, “MyISAM Table Storage Formats”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.1, “Overview of MySQL Programs”
Section 15.3.4.2, “Problems from Tables Not Being Closed Properly”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 15.3.3.1, “Static (Fixed-Length) Table Characteristics”
Section 8.12.1, “System Factors”
Section 1.3.2, “The Main Features of MySQL”
Section 15.3, “The MyISAM Storage Engine”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 24.5.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

myisamchk *.MYI
Section 7.6.3, “How to Repair MyISAM Tables”

myisamchk tbl_name
Section 7.6.2, “How to Check MyISAM Tables for Errors”

myisamlog
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.1, “Overview of MySQL Programs”

myisampack
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 15.3.3.3, “Compressed Table Characteristics”
Section 13.1.17, “CREATE TABLE Syntax”
Section 8.11.5, “External Locking”
Section C.10.3, “Limits on Table Size”
Section 15.8.1, “MERGE Table Advantages and Disadvantages”
Section 15.3.3, “MyISAM Table Storage Formats”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 8.4.1, “Optimizing Data Size”
Section 4.1, “Overview of MySQL Programs”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 13.1.17.7, “Silent Column Specification Changes”
Section 15.8, “The MERGE Storage Engine”



3202

Section 15.3, “The MyISAM Storage Engine”

mysql
Section 1.7.2.4, “'--' as the Start of a Comment”
Section 18.5.13.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.5.13.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 6.3.2, “Adding User Accounts”
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 7.1, “Backup and Recovery Types”
Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”
Changes Made by MySQL Installation Wizard
Choosing an Install Type
Section 6.5.1.3, “Client-Side Cleartext Pluggable Authentication”
Section 4.2.7, “Command-Line Options that Affect Option-File Handling”
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 9.6, “Comment Syntax”
Section 18.3, “Configuration of NDB Cluster”
Section 10.1.5, “Configuring Application Character Set and Collation”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”
Section 3.1, “Connecting to and Disconnecting from the Server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 5.1.9.4, “Connecting Using IPv6 Nonlocal Host Addresses”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host Address”
Section 10.1.4, “Connection Character Sets and Collations”
Section 1.8.1, “Contributors to MySQL”
Section 23.8.16, “Controlling Automatic Reconnection Behavior”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 2.11.4, “Copying MySQL Databases to Another Machine”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 3.3.1, “Creating and Selecting a Database”
Section 2.3.7.6, “Customizing the PATH for MySQL Tools”
Section 24.5.2, “Debugging a MySQL Client”
Section 18.3.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 20.1, “Defining Stored Programs”
Disabling mysql Auto-Reconnect
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”
Section 2.11.2, “Downgrading MySQL”
Section 14.20.2, “Enabling InnoDB Monitors”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 3.2, “Entering Queries”
Section 20.4.2, “Event Scheduler Configuration”
Section 7.3, “Example Backup and Recovery Strategy”
Section 23.8.3, “Example C API Client Programs”
Section 3.6, “Examples of Common Queries”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Chapter 12, Functions and Operators
Section 2.4.1, “General Notes on Installing MySQL on OS X”
Section 13.7.1.3, “GRANT Syntax”
Section 13.8.3, “HELP Syntax”
Section B.5.1, “How to Determine What Is Causing a Problem”
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”
Section 1.6, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section B.5.2.15, “Ignoring user”
Section 12.14, “Information Functions”
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”



3203

Section 14.21.2, “InnoDB Recovery”
Input-Line Editing
Section 18.2.1.2, “Installing NDB Cluster from RPM”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 4.2.1, “Invoking MySQL Programs”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 8.2.1.13, “LIMIT Query Optimization”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 7.4.5.1, “Making a Copy of a Database”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 18.5, “Management of NDB Cluster”
Section 8.13.1, “Measuring the Speed of Expressions and Functions”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 4.5.1.2, “mysql Commands”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
MySQL Glossary
Section 2.3.3.1, “MySQL Installer Initial Setup”
Section 4.5.1.3, “mysql Logging”
Chapter 18, MySQL NDB Cluster 7.2
Section 4.5.1.1, “mysql Options”
Section 4.9, “MySQL Program Environment Variables”
Section 10.6, “MySQL Server Time Zone Support”
Section 18.5.4, “MySQL Server Usage for NDB Cluster”
Section 4.5.1.4, “mysql Server-Side Help”
Section 4.5.1.6, “mysql Tips”
Section 4.5.1, “mysql — The MySQL Command-Line Tool”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 23.8.7.14, “mysql_errno()”
Section 23.8.7.66, “mysql_sqlstate()”
Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 18.5.15, “NDB API Statistics Counters and Variables”
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 18.2.5, “NDB Cluster Example with Tables and Data”
Section 18.6, “NDB Cluster Replication”
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
Section 18.4.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 18.4.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 4.2.9, “Option Defaults, Options Expecting Values, and the = Sign”
Section B.5.2.8, “Out of memory”
Section 4.1, “Overview of MySQL Programs”
Section B.5.2.10, “Packet Too Large”
Section 6.5.1.4, “PAM Pluggable Authentication”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.3.6, “Pluggable Authentication”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 13.5, “Prepared SQL Statement Syntax”
Section 18.6.5, “Preparing the NDB Cluster for Replication”
Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB
Cluster 7.x”
Section 4.2.5, “Program Option Modifiers”
Section 19.2.3.1, “RANGE COLUMNS partitioning”



3204

Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 17.4.1.30, “Replication of Server-Side Help Tables”
Resetting the Root Password: Generic Instructions
Section C.9, “Restrictions on Pluggable Authentication”
Section 13.7.1.5, “REVOKE Syntax”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.4, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 5.1.5, “Server System Variables”
Section 5.1.10, “Server-Side Help”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.6.7.4, “SIGNAL Syntax”
Section 6.5.1.6, “Socket Peer-Credential Pluggable Authentication”
Section 4.2.3, “Specifying Program Options”
Section 2.3.7.7, “Starting MySQL as a Windows Service”
Section 18.6.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 2.3.6.1, “Starting the MySQL Server Instance Configuration Wizard”
Section 2.10.2, “Starting the Server”
Section 9.1.1, “String Literals”
Section 2.10.3, “Testing the Server”
Section 11.4.3, “The BLOB and TEXT Types”
Section 18.5.10.19, “The ndbinfo transporters Table”
Section 20.3.1, “Trigger Syntax and Examples”
Section 14.23.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Chapter 3, Tutorial
Section 1.2, “Typographical and Syntax Conventions”
Section 2.11.1, “Upgrading MySQL”
Section 7.3.2, “Using Backups for Recovery”
Section 3.5, “Using mysql in Batch Mode”
Section 7.4, “Using mysqldump for Backups”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”
Section 4.2.8, “Using Options to Set Program Variables”
Section 24.5.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 18.5.12.2, “Using Symbolic Links with Disk Data Objects”
Using the --safe-updates Option
Section 1.4, “What Is New in MySQL 5.5”
Section 2.3.9, “Windows Postinstallation Procedures”
Section 12.11, “XML Functions”

mysql ...
Section 24.5.1.1, “Compiling MySQL for Debugging”

mysql-server
Section 2.8, “Installing MySQL on FreeBSD”

mysql-test-run.pl
Section 24.1.2, “The MySQL Test Suite”

mysql-test-run.pl test_name
Section 24.1.2, “The MySQL Test Suite”



3205

mysql.exe
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”

mysql.server
Section 2.5, “Installing MySQL on Linux”
Section 18.2.1.2, “Installing NDB Cluster from RPM”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.1.4, “Server Command Options”
Section 2.10.5, “Starting and Stopping MySQL Automatically”
Section B.5.3.7, “Time Zone Problems”

mysql.server stop
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

mysql_config
Section 23.8.4.1, “Building C API Client Programs”
Section 23.7.1, “Compiling Programs with libmysqld”
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 23.8.1, “MySQL C API Implementations”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.1, “Overview of MySQL Programs”
Section 24.2.3, “Plugin API Components”

mysql_config_editor
Section 4.2.6, “Using Option Files”

mysql_convert_table_format
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.1, “Overview of MySQL Programs”

mysql_find_rows
Section 24.5.1.7, “Making a Test Case If You Experience Table Corruption”
Section 4.6.11, “mysql_find_rows — Extract SQL Statements from Files”
Section 4.1, “Overview of MySQL Programs”

mysql_fix_extensions
Section 4.6.12, “mysql_fix_extensions — Normalize Table File Name Extensions”
Section 4.1, “Overview of MySQL Programs”

mysql_install_db
Section 2.10.1, “Initializing the Data Directory”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 5.1.4, “Server Command Options”

mysql_plugin
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.1, “Overview of MySQL Programs”



3206

mysql_secure_installation
Section 2.5.3, “Installing MySQL on Linux Using Native Package Managers”
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”
Section 4.4.5, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.4, “Securing the Initial MySQL Accounts”

mysql_setpermission
Section 1.8.1, “Contributors to MySQL”
Section 4.6.13, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.2, “Starting the Server”

mysql_setpermissions
Section 4.6.13, “mysql_setpermission — Interactively Set Permissions in Grant Tables”

mysql_stmt_execute()
Section 5.1.7, “Server Status Variables”

mysql_stmt_prepare()
Section 5.1.7, “Server Status Variables”

mysql_tzinfo_to_sql
Section 10.6, “MySQL Server Time Zone Support”
Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”
Section 4.1, “Overview of MySQL Programs”

mysql_upgrade
Section 13.1.1, “ALTER DATABASE Syntax”
Section 2.11.2.1, “Changes Affecting Downgrades from MySQL 5.5”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 2.11.2, “Downgrading MySQL”
Section 6.2.2, “Grant Tables”
Section B.5.2.15, “Ignoring user”
Section 2.10.1, “Initializing the Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.1, “Overview of MySQL Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2, “Performance Schema Build Configuration”
Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”
Section 17.4.1.30, “Replication of Server-Side Help Tables”
Section 5.1.4, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 2.11.1, “Upgrading MySQL”
Section 2.3.10, “Upgrading MySQL on Windows”

mysql_waitpid
Section 4.6.14, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.1, “Overview of MySQL Programs”

mysql_waitpid()
Section 4.6.14, “mysql_waitpid — Kill Process and Wait for Its Termination”



3207

mysql_zap
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 4.6.15, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.1, “Overview of MySQL Programs”

mysqlaccess
Section 1.8.1, “Contributors to MySQL”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.2, “Starting the Server”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”

mysqladmin
Section 6.3.5, “Assigning Account Passwords”
Section 17.3.1.1, “Backing Up a Slave Using mysqldump”
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 6.5.1.3, “Client-Side Cleartext Pluggable Authentication”
Section 5.1.1, “Configuring the Server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 10.1.4, “Connection Character Sets and Collations”
Section 1.8.1, “Contributors to MySQL”
Section 13.1.10, “CREATE DATABASE Syntax”
Section 2.3.7.6, “Customizing the PATH for MySQL Tools”
Section 24.5.1, “Debugging a MySQL Server”
Section 13.1.21, “DROP DATABASE Syntax”
Section 23.8.3, “Example C API Client Programs”
Section 13.7.6.3, “FLUSH Syntax”
Section 2.4.1, “General Notes on Installing MySQL on OS X”
Section B.5.1, “How to Determine What Is Causing a Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.6, “How to Report Bugs or Problems”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 2.3.3.1, “MySQL Installer Initial Setup”
Section 5.4, “MySQL Server Logs”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.9, “Restrictions on Pluggable Authentication”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 2.3.7.7, “Starting MySQL as a Windows Service”
Section 2.3.7.5, “Starting MySQL from the Windows Command Line”
Section 2.10.3, “Testing the Server”
Section 1.3.2, “The Main Features of MySQL”
Section 5.1.12, “The Server Shutdown Process”
Section 2.3.10, “Upgrading MySQL on Windows”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

mysqladmin debug
Section 24.5.1, “Debugging a MySQL Server”
Section 20.4.5, “Event Scheduler Status”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”



3208

mysqladmin extended-status
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.7.5.36, “SHOW STATUS Syntax”

mysqladmin flush-hosts
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 5.1.5, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”

mysqladmin flush-logs
Section 7.3.3, “Backup Strategy Summary”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.4.7, “Server Log Maintenance”
Section 5.4.4, “The Binary Log”
Section 5.4.2, “The Error Log”
Section 17.2.2.1, “The Slave Relay Log”

mysqladmin flush-privileges
Section 2.11.4, “Copying MySQL Databases to Another Machine”
Section 6.2.2, “Grant Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 5.1.4, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 6.2.6, “When Privilege Changes Take Effect”

mysqladmin flush-tables
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.11.5, “External Locking”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 7.6.1, “Using myisamchk for Crash Recovery”

mysqladmin flush-xxx
Section 6.3.2, “Adding User Accounts”

mysqladmin kill
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 13.7.6.4, “KILL Syntax”
Section 12.17, “Miscellaneous Functions”
Section B.5.2.9, “MySQL server has gone away”
Section 6.2.1, “Privileges Provided by MySQL”

mysqladmin password
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”

mysqladmin processlist
Section 6.3.2, “Adding User Accounts”
Section 8.14, “Examining Thread Information”
Section 13.7.6.4, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 24.1.1, “MySQL Threads”
Section 23.8.7.43, “mysql_list_processes()”



3209

Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”

mysqladmin processlist status
Section 24.5.1, “Debugging a MySQL Server”

mysqladmin refresh
Section 6.3.2, “Adding User Accounts”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 5.4.7, “Server Log Maintenance”

mysqladmin reload
Section 6.3.2, “Adding User Accounts”
Section 6.2.2, “Grant Tables”
Section 1.6, “How to Report Bugs or Problems”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 5.1.4, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”
Section 6.2.6, “When Privilege Changes Take Effect”

mysqladmin reload version
Section 1.6, “How to Report Bugs or Problems”

mysqladmin shutdown
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 24.5.1.2, “Creating Trace Files”
Section 13.7.1.3, “GRANT Syntax”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.4.2, “Installing MySQL on OS X Using Native Packages”
Section 24.5.1.7, “Making a Test Case If You Experience Table Corruption”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 18.2.6, “Safe Shutdown and Restart of NDB Cluster”
Section 2.3.7.7, “Starting MySQL as a Windows Service”
Section 5.1.12, “The Server Shutdown Process”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

mysqladmin status
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 23.8.7.68, “mysql_stat()”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”

mysqladmin variables
Section B.5.2.9, “MySQL server has gone away”
Section 13.7.5.40, “SHOW VARIABLES Syntax”

mysqladmin variables extended-status processlist
Section 1.6, “How to Report Bugs or Problems”

mysqladmin ver
Section 24.5.1.1, “Compiling MySQL for Debugging”



3210

mysqladmin version
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 1.6, “How to Report Bugs or Problems”
Section B.5.2.9, “MySQL server has gone away”
Section 2.10.3, “Testing the Server”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

mysqlanalyze
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlbackup
Section 7.1, “Backup and Recovery Types”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 14.21.1, “InnoDB Backup”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”

mysqlbinlog
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.7.6.1, “BINLOG Syntax”
Section 5.7.1.2, “Command Probes”
Section 17.4.5, “How to Report Replication Bugs or Problems”
Section 14.21.2, “InnoDB Recovery”
Section B.5.7, “Known Issues in MySQL”
Section 12.17, “Miscellaneous Functions”
MySQL Glossary
MySQL Server Options for NDB Cluster
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”
Section 7.5.1, “Point-in-Time Recovery Using Event Times”
Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 17.4.1.38, “Replication and Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 13.7.5.3, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.33, “SHOW RELAYLOG EVENTS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 5.4.4, “The Binary Log”
Section 5.4.3, “The General Query Log”
Section 17.2.2.1, “The Slave Relay Log”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 7.3.2, “Using Backups for Recovery”
Section 1.4, “What Is New in MySQL 5.5”

mysqlbinlog binary-log-file | mysql
Section 24.5.1.7, “Making a Test Case If You Experience Table Corruption”

mysqlbinlog|mysql
Section B.5.7, “Known Issues in MySQL”

mysqlbug
Section 4.4.2, “mysqlbug — Generate Bug Report”



3211

mysqlcheck
Section 13.1.1, “ALTER DATABASE Syntax”
Section 6.5.1.3, “Client-Side Cleartext Pluggable Authentication”
Section 10.1.4, “Connection Character Sets and Collations”
Section 19.3.3, “Maintenance of Partitions”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.1, “Overview of MySQL Programs”
Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.5, “Server System Variables”
Section 1.3.2, “The Main Features of MySQL”
Section 15.3, “The MyISAM Storage Engine”

mysqld
Section 24.4.2, “Adding a New User-Defined Function”
Section 24.4, “Adding New Functions to MySQL”
Section 8.2.1.16, “Avoiding Full Table Scans”
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.4.4.1, “Binary Logging Formats”
Section 6.4.2, “Building MySQL with Support for Secure Connections”
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section B.5.2.13, “Can't create/write to file”
Section B.5.2.17, “Can't initialize character set”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 14.10.2, “Changing the Number or Size of InnoDB Redo Log Files”
Section B.5.2.4, “Client does not support authentication protocol”
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 9.6, “Comment Syntax”
Section B.5.2.11, “Communication Errors and Aborted Connections”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 18.3, “Configuration of NDB Cluster”
Section 5.1.1, “Configuring the Server”
Section 15.3.4.1, “Corrupted MyISAM Tables”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 13.1.17, “CREATE TABLE Syntax”
Section 24.5.1.2, “Creating Trace Files”
Section 14.8.5, “Deadlocks in InnoDB”
Section 24.5.1, “Debugging a MySQL Server”
Section 24.5, “Debugging and Porting MySQL”
Section 24.5.1.4, “Debugging mysqld under gdb”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.3.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 14.7.7, “Doublewrite Buffer”
Section 14.13.1, “Enabling File Formats”
Section 14.20.2, “Enabling InnoDB Monitors”
Section 8.11.5, “External Locking”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.23.2, “Forcing InnoDB Recovery”
Section 18.6.2, “General Requirements for NDB Cluster Replication”



3212

Section 8.14.2, “General Thread States”
Section 16.1.3, “Handling MySQL Recovery with ZFS”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section B.5.1, “How to Determine What Is Causing a Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.6, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 9.2.2, “Identifier Case Sensitivity”
Section B.5.2.15, “Ignoring user”
Section 18.6.8, “Implementing Failover with NDB Cluster Replication”
Section 12.14, “Information Functions”
Section 18.2.3, “Initial Configuration of NDB Cluster”
Section 18.2.4, “Initial Startup of NDB Cluster”
Section 14.21.1, “InnoDB Backup”
Section 14.15.1, “InnoDB Disk I/O”
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 14.21.2, “InnoDB Recovery”
Section 14.9.1, “InnoDB Startup Configuration”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.23, “InnoDB Troubleshooting”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”
Section 2.4.2, “Installing MySQL on OS X Using Native Packages”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 18.2.1.2, “Installing NDB Cluster from RPM”
Section 18.2.1, “Installing NDB Cluster on Linux”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 13.7.6.4, “KILL Syntax”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 24.5.1.7, “Making a Test Case If You Experience Table Corruption”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 18.5, “Management of NDB Cluster”
Section 12.17, “Miscellaneous Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 15.3.1, “MyISAM Startup Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section A.1, “MySQL 5.5 FAQ: General”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.3, “MySQL 5.5 FAQ: Server SQL Mode”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
MySQL Glossary
Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”
Chapter 18, MySQL NDB Cluster 7.2
Section 4.9, “MySQL Program Environment Variables”
Chapter 5, MySQL Server Administration
Section 4.3, “MySQL Server and Server-Startup Programs”



3213

Section B.5.2.9, “MySQL server has gone away”
Section 5.4, “MySQL Server Logs”
MySQL Server Options for NDB Cluster
Section 10.6, “MySQL Server Time Zone Support”
Section 18.5.4, “MySQL Server Usage for NDB Cluster”
Section 18.1.5, “MySQL Server Using InnoDB Compared with NDB Cluster”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 1.7, “MySQL Standards Compliance”
Section 24.1.1, “MySQL Threads”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 23.8.7.1, “mysql_affected_rows()”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 23.8.7.49, “mysql_options()”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.1, “mysqld — The MySQL Server”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 18.5.15, “NDB API Statistics Counters and Variables”
Section 18.5.11.3, “NDB Cluster and MySQL Security Procedures”
Section 18.3.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.1.1, “NDB Cluster Core Concepts”
Section 18.2, “NDB Cluster Installation and Upgrades”
Section 18.3.2.5, “NDB Cluster mysqld Option and Variable Reference”
Section 18.1.2, “NDB Cluster Nodes, Node Groups, Replicas, and Partitions”
Section 18.1, “NDB Cluster Overview”
Section 18.4, “NDB Cluster Programs”
Section 18.6, “NDB Cluster Replication”
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
Section 18.6.10, “NDB Cluster Replication: Multi-Master and Circular Replication”
NDB Cluster Status Variables
NDB Cluster System Variables
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section B.5.5, “Optimizer-Related Issues”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 23.7.3, “Options with the Embedded Server”
Section 4.1, “Overview of MySQL Programs”
Section 18.3.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section B.5.2.10, “Packet Too Large”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.6.5, “Preparing the NDB Cluster for Replication”
Section 15.3.4.2, “Problems from Tables Not Being Closed Properly”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section B.5.3.1, “Problems with File Permissions”
Section 4.2.5, “Program Option Modifiers”
Section 8.10.3.3, “Query Cache Configuration”
Section 18.3.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 13.7.2.5, “REPAIR TABLE Syntax”



3214

Section 17.1.3.1, “Replication and Binary Logging Option and Variable Reference”
Section 17.1.3, “Replication and Binary Logging Options and Variables”
Section 17.1.3.2, “Replication Master Options and Variables”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.4.2.3, “RESET SLAVE Syntax”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section B.5.4.5, “Rollback Failure for Nontransactional Tables”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 6.1.4, “Security-Related mysqld Options and Variables”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 2.3.7.3, “Selecting a MySQL Server Type”
Section 10.1.3.2, “Server Character Set and Collation”
Section 5.1.4, “Server Command Options”
Section 5.4.7, “Server Log Maintenance”
Server Plugin Status and System Variables
Section 5.1.11, “Server Response to Signals”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 10.2, “Setting the Error Message Language”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 23.8.2, “Simultaneous MySQL Server and Connector/C Installations”
Section 2.10.5, “Starting and Stopping MySQL Automatically”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 5.6.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.7.7, “Starting MySQL as a Windows Service”
Section 2.3.7.5, “Starting MySQL from the Windows Command Line”
Section 18.6.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 10.6.1, “Staying Current with Time Zone Changes”
Section 1.8.5, “Supporters of MySQL”
Section 17.3.6, “Switching Masters During Failover”
Section 8.11.2, “Table Locking Issues”
Section B.5.2.19, “Table-Corruption Issues”
Section 2.3.7.8, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 5.4.4, “The Binary Log”
Section 15.7, “The BLACKHOLE Storage Engine”
Section 24.5.3, “The DBUG Package”
Section 5.4.6, “The DDL Log”
Section 5.4.2, “The Error Log”
Section 5.4.3, “The General Query Log”
Section 15.3, “The MyISAM Storage Engine”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1, “The MySQL Server”
Section 24.1.2, “The MySQL Test Suite”
Section 5.4.5, “The Slow Query Log”
Section B.5.3.7, “Time Zone Problems”
Section B.5.2.7, “Too many connections”
Section 5.7, “Tracing mysqld Using DTrace”
Section 2.3.8, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 14.23.1, “Troubleshooting InnoDB I/O Problems”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 1.2, “Typographical and Syntax Conventions”



3215

Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Section 2.11.1, “Upgrading MySQL”
Section 2.3.10, “Upgrading MySQL on Windows”
Section 24.5.1.5, “Using a Stack Trace”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.6, “Using Option Files”
Section 24.5.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 18.6.7, “Using Two Replication Channels for NDB Cluster Replication”
Section 24.5.1.3, “Using WER with PDB to create a Windows crashdump”
Section 1.4, “What Is New in MySQL 5.5”
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”
Section 6.2.6, “When Privilege Changes Take Effect”
Section B.5.3.5, “Where MySQL Stores Temporary Files”
Section 2.1.1, “Which MySQL Version and Distribution to Install”
Section 24.2.4, “Writing Plugins”

mysqld mysqld.trace
Section 24.5.1.2, “Creating Trace Files”

mysqld-debug
Section 24.5.1.2, “Creating Trace Files”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 2.3.7.3, “Selecting a MySQL Server Type”

mysqld.exe
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”

mysqld_multi
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 1.4, “What Is New in MySQL 5.5”

mysqld_safe
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 5.1.1, “Configuring the Server”
Section 8.12.4.2, “Enabling Large Page Support”
Section B.5.2.18, “File Not Found and Similar Errors”
Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 14.23, “InnoDB Troubleshooting”
Section 18.2.1.2, “Installing NDB Cluster from RPM”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 10.6, “MySQL Server Time Zone Support”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 18.5.11.3, “NDB Cluster and MySQL Security Procedures”



3216

Section 4.2.9, “Option Defaults, Options Expecting Values, and the = Sign”
Section 4.1, “Overview of MySQL Programs”
Section B.5.2.10, “Packet Too Large”
Section B.5.3.1, “Problems with File Permissions”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 2.10.5, “Starting and Stopping MySQL Automatically”
Section 2.10.2, “Starting the Server”
Section 2.10.3, “Testing the Server”
Section 5.4.2, “The Error Log”
Section B.5.3.7, “Time Zone Problems”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 4.2.6, “Using Option Files”

mysqldump
Section 17.3.1.3, “Backing Up a Master or Slave by Making It Read Only”
Section 17.3.1.1, “Backing Up a Slave Using mysqldump”
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 7.3.3, “Backup Strategy Summary”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Choosing an Install Type
Section 6.5.1.3, “Client-Side Cleartext Pluggable Authentication”
Section 4.2.2, “Connecting to the MySQL Server”
Section 1.8.1, “Contributors to MySQL”
Section 10.1.9.7, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 2.11.4, “Copying MySQL Databases to Another Machine”
Section 13.1.17, “CREATE TABLE Syntax”
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 14.11.1.1, “Creating InnoDB Tables”
Section 2.3.7.6, “Customizing the PATH for MySQL Tools”
Section 7.2, “Database Backup Methods”
Section 14.15.4, “Defragmenting a Table”
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”
Section 2.11.2, “Downgrading MySQL”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 14.10.4.1, “Enabling and Disabling File-Per-Table Tablespaces”
Section 7.3.1, “Establishing a Backup Policy”
Section 7.3, “Example Backup and Recovery Strategy”
Section 1.6, “How to Report Bugs or Problems”
Section 17.1.1, “How to Set Up Replication”
Section 9.2.2, “Identifier Case Sensitivity”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 14.21.1, “InnoDB Backup”
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 2.6, “Installing MySQL Using Unbreakable Linux Network (ULN)”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 7.4.5.1, “Making a Copy of a Database”
Section 9.2.3, “Mapping of Identifiers to File Names”



3217

Section 14.11.1.3, “Moving or Copying InnoDB Tables”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 4.5.1.1, “mysql Options”
Section 5.4, “MySQL Server Logs”
Section 7.4.5, “mysqldump Tips”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.2.5, “NDB Cluster Example with Tables and Data”
Section 18.1, “NDB Cluster Overview”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 17.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”
Section 18.5.3, “Online Backup of NDB Cluster”
Section 4.1, “Overview of MySQL Programs”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 18.6.5, “Preparing the NDB Cluster for Replication”
Section B.5.4.8, “Problems with Floating-Point Values”
Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 17.3.4, “Replicating Different Databases to Different Slaves”
Section 14.10.1, “Resizing the InnoDB System Tablespace”
Section C.8, “Restrictions on Performance Schema”
Section C.5, “Restrictions on Views”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.8, “Server SQL Modes”
Section 5.1.5, “Server System Variables”
Section 17.1.1.8, “Setting Up Replication with Existing Data”
Section B.5.4.7, “Solving Problems with No Matching Rows”
Section 4.2.3, “Specifying Program Options”
Section 2.3.7.7, “Starting MySQL as a Windows Service”
Section 2.3.6.1, “Starting the MySQL Server Instance Configuration Wizard”
Section 11.4.3, “The BLOB and TEXT Types”
Section 14.9.2.1, “The InnoDB Buffer Pool”
Section 1.3.2, “The Main Features of MySQL”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 2.11.1, “Upgrading MySQL”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”
Section 7.4, “Using mysqldump for Backups”
Section 17.3.1, “Using Replication for Backups”
Section 17.3.2, “Using Replication with Different Master and Slave Storage Engines”
Section 1.4, “What Is New in MySQL 5.5”
Section 12.11, “XML Functions”
Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”

mysqldump mysql
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”

mysqldumpslow
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.4.5, “The Slow Query Log”

mysqlfailover
Section 17.3.6, “Switching Masters During Failover”



3218

mysqlhotcopy
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 1.8.1, “Contributors to MySQL”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.1, “Overview of MySQL Programs”
Section 1.4, “What Is New in MySQL 5.5”

mysqlimport
Section 7.1, “Backup and Recovery Types”
Section 10.1.4, “Connection Character Sets and Collations”
Section 2.11.4, “Copying MySQL Databases to Another Machine”
Section 7.2, “Database Backup Methods”
Section 2.11.2, “Downgrading MySQL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.1, “Overview of MySQL Programs”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

MySQLInstallerConsole.exe
Section 2.3.3.4, “MySQLInstallerConsole Reference”

MySQLInstanceConfig.exe
Section 2.3.6.13, “MySQL Server Instance Config Wizard: Creating an Instance from the Command
Line”

mysqloptimize
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlrepair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlshow
Section 6.5.1.3, “Client-Side Cleartext Pluggable Authentication”
Section 4.2.2, “Connecting to the MySQL Server”
Section 10.1.4, “Connection Character Sets and Collations”
Section 23.8.3, “Example C API Client Programs”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.1, “Overview of MySQL Programs”
Section 13.7.5.15, “SHOW DATABASES Syntax”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 2.3.7.8, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 2.3.9, “Windows Postinstallation Procedures”

mysqlshow db_name
Section 13.7.5.38, “SHOW TABLES Syntax”

mysqlshow db_name tbl_name
Section 13.7.5.6, “SHOW COLUMNS Syntax”



3219

mysqlslap
Section 6.5.1.3, “Client-Side Cleartext Pluggable Authentication”
Section 14.19.1, “Monitoring InnoDB Mutex Waits Using Performance Schema”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.1, “Overview of MySQL Programs”
Section 8.13.3, “Using Your Own Benchmarks”

mysqltest
Section 24.1.2, “The MySQL Test Suite”

N

[index top]

nbdmtd
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”

NDB
Section 18.3.3.12, “SCI Transport Connections in NDB Cluster”

ndb_blob_tool
Section 18.4.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables”

ndb_config
Section 18.4, “NDB Cluster Programs”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.3.3.12, “SCI Transport Connections in NDB Cluster”

ndb_cpcd
Section 18.4.8, “ndb_cpcd — Automate Testing for NDB Development”

ndb_delete_all
Section 18.4.9, “ndb_delete_all — Delete All Rows from an NDB Table”

ndb_desc
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 19.2.5, “KEY Partitioning”
MySQL Server Options for NDB Cluster
Section 18.5.11.3, “NDB Cluster and MySQL Security Procedures”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 21.29.1, “The INFORMATION_SCHEMA FILES Table”
Section 21.12, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 18.5.10.4, “The ndbinfo cluster_operations Table”
Section 18.5.10.15, “The ndbinfo server_operations Table”

ndb_drop_index
Section 18.4.11, “ndb_drop_index — Drop Index from an NDB Table”

ndb_drop_table
Section 18.4.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.4.12, “ndb_drop_table — Drop an NDB Table”



3220

ndb_error_reporter
Section 18.4.13, “ndb_error_reporter — NDB Error-Reporting Utility”

ndb_index_stat
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

ndb_mgm
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.5.13.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”
Section 18.2.4, “Initial Startup of NDB Cluster”
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 18.2.1.2, “Installing NDB Cluster from RPM”
Section 18.2.1, “Installing NDB Cluster on Linux”
Section 18.2.1.3, “Installing NDB Cluster Using .deb Files”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Chapter 18, MySQL NDB Cluster 7.2
MySQL Server Options for NDB Cluster
Section 18.1.1, “NDB Cluster Core Concepts”
Section 18.5.6.1, “NDB Cluster Logging Management Commands”
Section 18.4, “NDB Cluster Programs”
Section 18.5.11.1, “NDB Cluster Security and Networking Issues”
Section 18.5.8, “NDB Cluster Single User Mode”
Section 18.4.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.3, “Online Backup of NDB Cluster”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 18.2.6, “Safe Shutdown and Restart of NDB Cluster”
Section 18.5.10.1, “The ndbinfo arbitrator_validity_detail Table”
Section 18.5.10.11, “The ndbinfo membership Table”
Section 18.5.10.12, “The ndbinfo memoryusage Table”
Section 18.5.10.13, “The ndbinfo nodes Table”
Section 18.5.10.19, “The ndbinfo transporters Table”
Section 18.5.3.2, “Using The NDB Cluster Management Client to Create a Backup”

ndb_mgm.exe
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”

ndb_mgmd
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 18.3.3.5, “Defining an NDB Cluster Management Server”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.2.4, “Initial Startup of NDB Cluster”
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 18.2.1.2, “Installing NDB Cluster from RPM”
Section 18.2.1, “Installing NDB Cluster on Linux”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.2.1.3, “Installing NDB Cluster Using .deb Files”



3221

Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
MySQL Server Options for NDB Cluster
Section 2.9.4, “MySQL Source-Configuration Options”
Section 18.3.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.3.3.3, “NDB Cluster Connection Strings”
Section 18.1.1, “NDB Cluster Core Concepts”
Section 18.5.6.1, “NDB Cluster Logging Management Commands”
Section 18.1.2, “NDB Cluster Nodes, Node Groups, Replicas, and Partitions”
Section 18.4, “NDB Cluster Programs”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.3.1, “Quick Test Setup of NDB Cluster”
Section 18.2.6, “Safe Shutdown and Restart of NDB Cluster”
Section 18.5.1, “Summary of NDB Cluster Start Phases”

ndb_mgmd.exe
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”

ndb_move_data
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”

ndb_print_backup_file
Section 18.4.16, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 18.4.18, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 18.4.19, “ndb_print_sys_file — Print NDB System File Contents”
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”

ndb_print_file
Section 18.4.17, “ndb_print_file — Print NDB Disk Data File Contents”

ndb_print_schema_file
Section 18.4.16, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 18.4.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 18.4.18, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 18.4.19, “ndb_print_sys_file — Print NDB System File Contents”
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”

ndb_print_sys_file
Section 18.4.16, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 18.4.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 18.4.18, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 18.4.19, “ndb_print_sys_file — Print NDB System File Contents”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”

ndb_redo_log_reader
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

ndb_restore
Section 7.1, “Backup and Recovery Types”



3222

Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.1.1, “NDB Cluster Core Concepts”
Section 18.1, “NDB Cluster Overview”
Section 18.4, “NDB Cluster Programs”
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
Section 18.6.10, “NDB Cluster Replication: Multi-Master and Circular Replication”
Section 18.5.8, “NDB Cluster Single User Mode”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.3, “Online Backup of NDB Cluster”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”

ndb_select_all
Section 18.5.11.3, “NDB Cluster and MySQL Security Procedures”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”

ndb_select_count
Section 18.4.23, “ndb_select_count — Print Row Counts for NDB Tables”

ndb_show_tables
MySQL Server Options for NDB Cluster
Section 18.5.11.3, “NDB Cluster and MySQL Security Procedures”
Section 18.4, “NDB Cluster Programs”
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”
Section 18.5.10.4, “The ndbinfo cluster_operations Table”
Section 18.5.10.15, “The ndbinfo server_operations Table”

ndb_size.pl
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
MySQL Server Options for NDB Cluster
Section 18.4.25, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 2.12, “Perl Installation Notes”

ndb_waiter
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

ndbd
Section 18.5.13.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.2.4, “Initial Startup of NDB Cluster”
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 18.2.1.2, “Installing NDB Cluster from RPM”
Section 18.2.1, “Installing NDB Cluster on Linux”
Section 18.2.1.3, “Installing NDB Cluster Using .deb Files”
Section 18.5, “Management of NDB Cluster”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
MySQL Server Options for NDB Cluster
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”



3223

Section 18.3.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.1.1, “NDB Cluster Core Concepts”
Section 18.3.2.1, “NDB Cluster Data Node Configuration Parameters”
Section 18.2, “NDB Cluster Installation and Upgrades”
Section 18.1.2, “NDB Cluster Nodes, Node Groups, Replicas, and Partitions”
Section 18.4, “NDB Cluster Programs”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.4.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 18.3.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 18.3.1, “Quick Test Setup of NDB Cluster”
Section 18.3.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 18.2.6, “Safe Shutdown and Restart of NDB Cluster”
Section 18.3.3.12, “SCI Transport Connections in NDB Cluster”
Section 18.5.1, “Summary of NDB Cluster Start Phases”
Section 18.5.10.13, “The ndbinfo nodes Table”
Section 18.5.6.3, “Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client”
Section 18.3.4, “Using High-Speed Interconnects with NDB Cluster”

ndbd.exe
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”

ndbd_redo_log_reader
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

ndbinfo_select_all
Section 18.4.2, “ndbinfo_select_all — Select From ndbinfo Tables”

ndbmtd
Section 18.5.13.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 18.2.1.2, “Installing NDB Cluster from RPM”
Section 18.2.1, “Installing NDB Cluster on Linux”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 18.1.1, “NDB Cluster Core Concepts”
Section 18.3.2.1, “NDB Cluster Data Node Configuration Parameters”
Section 18.1.2, “NDB Cluster Nodes, Node Groups, Replicas, and Partitions”
Section 18.4, “NDB Cluster Programs”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.4.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 18.3.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 18.2.6, “Safe Shutdown and Restart of NDB Cluster”
Section 18.5.10.13, “The ndbinfo nodes Table”



3224

Section 18.5.10.14, “The ndbinfo resources Table”

ndbmtd.exe
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”

NET
Section 2.3.7.7, “Starting MySQL as a Windows Service”

NET START
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”

net start
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”

NET START MySQL
Section 2.3.7.7, “Starting MySQL as a Windows Service”
Section 2.3.8, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 2.3.10, “Upgrading MySQL on Windows”

NET STOP
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”

net stop
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”

NET STOP MYSQL
Section 18.2.6, “Safe Shutdown and Restart of NDB Cluster”

NET STOP MySQL
Section 2.3.7.7, “Starting MySQL as a Windows Service”

nm
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 24.5.1.5, “Using a Stack Trace”

numactl
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”

O

[index top]

openssl
Section 6.4.6, “Creating SSL Certificates and Keys Using openssl”

openssl md5 package_name
Section 2.1.3.1, “Verifying the MD5 Checksum”

otool
Section 23.8.4.1, “Building C API Client Programs”



3225

P

[index top]

perror
Section B.5.2.13, “Can't create/write to file”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.1, “perror — Explain Error Codes”
Section B.1, “Sources of Error Information”

pfexec
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

PGP
Section 2.1.3.2, “Signature Checking Using GnuPG”

ping6
Section 5.1.9.5, “Obtaining an IPv6 Address from a Broker”

pkgadd
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”

pkgrm
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”

ppm
Section 2.12, “Perl Installation Notes”

ps
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 8.12.4.1, “How MySQL Uses Memory”
Section B.5.1, “How to Determine What Is Causing a Problem”
Section 4.6.15, “mysql_zap — Kill Processes That Match a Pattern”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”

ps auxw
Section 4.2.2, “Connecting to the MySQL Server”

ps xa | grep mysqld
Section B.5.2.2, “Can't connect to [local] MySQL server”

R

[index top]

rename
Section 5.4.7, “Server Log Maintenance”
Section 5.4.2, “The Error Log”
Section 5.4.3, “The General Query Log”

replace
Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with MySQL”



3226

Section 4.1, “Overview of MySQL Programs”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 17.3.3, “Using Replication for Scale-Out”

resolve_stack_dump
Section 4.1, “Overview of MySQL Programs”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 24.5.1.5, “Using a Stack Trace”

resolveip
Section 4.1, “Overview of MySQL Programs”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”

rm
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”

rpm
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”
Section 2.1.3.4, “Signature Checking Using RPM”

rpmbuild
Section 2.9, “Installing MySQL from Source”
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”

rsync
Section 7.1, “Backup and Recovery Types”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 17.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”

S

[index top]

scp
Section 7.1, “Backup and Recovery Types”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”

sed
Section 3.3.4.7, “Pattern Matching”

SELECT
Section 18.2.5, “NDB Cluster Example with Tables and Data”

service
Section 2.5.3, “Installing MySQL on Linux Using Native Package Managers”

Service Control Manager
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 2.3.7.7, “Starting MySQL as a Windows Service”

Services
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 2.3.7.7, “Starting MySQL as a Windows Service”



3227

setenv
Section 4.2.10, “Setting Environment Variables”

setrlimit
Section 16.2.2.1, “memcached Command-Line Options”
Section 16.2.2, “Using memcached”

sh
Section B.5.2.18, “File Not Found and Similar Errors”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

SHOW
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.3.1, “Quick Test Setup of NDB Cluster”

SHOW ERRORS
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”

SHOW WARNINGS
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”

sleep
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

ssh
Section 18.5.11.1, “NDB Cluster Security and Networking Issues”
Section 16.1.1, “Using ZFS for File System Replication”

Start>Run>cmd.exe
Section 6.4.6, “Creating SSL Certificates and Keys Using openssl”

strings
Section 6.1.1, “Security Guidelines”

su root
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”

sudo
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

System Preferences...
Section 2.4.4, “Installing and Using the MySQL Preference Pane”

T

[index top]

tar
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”



3228

Section 3.3, “Creating and Using a Database”
Section 1.6, “How to Report Bugs or Problems”
Section 2.9, “Installing MySQL from Source”
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”
Section 2.4, “Installing MySQL on OS X”
Section 2.7, “Installing MySQL on Solaris”
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”
Section 2.12.1, “Installing Perl on Unix”
Section 17.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
Section 23.8.2, “Simultaneous MySQL Server and Connector/C Installations”
Section 2.1.1, “Which MySQL Version and Distribution to Install”

tcpdump
Section 6.1.1, “Security Guidelines”

tcsh
Section B.5.2.18, “File Not Found and Similar Errors”
Section 2.4.1, “General Notes on Installing MySQL on OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

tee
Section 4.5.1.2, “mysql Commands”

Telnet
Section 16.2.4, “Getting memcached Statistics”

telnet
Section 16.2.4, “Getting memcached Statistics”
Section 6.1.1, “Security Guidelines”

Terminal
Section 2.4, “Installing MySQL on OS X”

Text in this style
Section 1.2, “Typographical and Syntax Conventions”

top
Section B.5.1, “How to Determine What Is Causing a Problem”

U

[index top]

ulimit
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 8.12.4.2, “Enabling Large Page Support”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”



3229

Section B.5.2.10, “Packet Too Large”
Section 5.1.4, “Server Command Options”

update-rc.d
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”

useradd
Section 18.2.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

usermod
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”

V

[index top]

vi
Section 18.2.3, “Initial Configuration of NDB Cluster”
Section 4.5.1.2, “mysql Commands”
Section 3.3.4.7, “Pattern Matching”

vmstat
Section 16.2.2.1, “memcached Command-Line Options”

W

[index top]

WinDbg
Section 24.5.1.3, “Using WER with PDB to create a Windows crashdump”

windbg.exe
Section 24.5.1.3, “Using WER with PDB to create a Windows crashdump”

winMd5Sum
Section 2.1.3.1, “Verifying the MD5 Checksum”

WinZip
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 2.9, “Installing MySQL from Source”
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”

WordPad
Section 13.2.6, “LOAD DATA INFILE Syntax”

Y

[index top]

yacc
Section 2.9.5, “Dealing with Problems Compiling MySQL”



3230

Section 9.3, “Keywords and Reserved Words”

yum
Section 16.2.1, “Installing memcached”
Section 2.5.3, “Installing MySQL on Linux Using Native Package Managers”
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”
Section 16.2.3.3, “Using libmemcached with C and C++”

yum install MySQL*rpm
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”

Z

[index top]

zfs recv
Section 16.1.1, “Using ZFS for File System Replication”

zip
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 1.6, “How to Report Bugs or Problems”

zsh
Section 4.2.10, “Setting Environment Variables”

Function Index
Symbols | A | B | C | D | E | F | G | H | I | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y

Symbols

[index top]

%
Section 1.7.1, “MySQL Extensions to Standard SQL”

A

[index top]

ABS()
Section 24.4, “Adding New Functions to MySQL”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 12.6.2, “Mathematical Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

ACOS()
Section 12.6.2, “Mathematical Functions”

add()
Section 16.2.3.1, “Basic memcached Operations”

ADDDATE()
Section 12.7, “Date and Time Functions”



3231

addslashes()
Section 6.1.7, “Client Programming Security Guidelines”

ADDTIME()
Section 12.7, “Date and Time Functions”

AES_DECRYPT()
Section 12.13, “Encryption and Compression Functions”

AES_ENCRYPT()
Section 12.13, “Encryption and Compression Functions”
Section 12.2, “Type Conversion in Expression Evaluation”

Area()
Section 12.15.7, “Geometry Property Functions”
Section 12.15.7.4, “Polygon and MultiPolygon Property Functions”

AsBinary()
Section 11.5.3.4, “Fetching Spatial Data”
Section 12.15.6, “Geometry Format Conversion Functions”

ASCII()
Section 13.8.3, “HELP Syntax”
Section 12.5, “String Functions”

ASIN()
Section 12.6.2, “Mathematical Functions”

AsText()
Section 11.5.3.4, “Fetching Spatial Data”
Section 12.15.6, “Geometry Format Conversion Functions”

AsWKB()
Section 12.15.6, “Geometry Format Conversion Functions”

AsWKT()
Section 12.15.6, “Geometry Format Conversion Functions”

ATAN()
Section 12.6.2, “Mathematical Functions”

ATAN2()
Section 12.6.2, “Mathematical Functions”

AVG()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 11.1.2, “Date and Time Type Overview”
Section 8.2.1.11, “GROUP BY Optimization”
Section 11.4.4, “The ENUM Type”
Section 1.3.2, “The Main Features of MySQL”
Section 11.4.5, “The SET Type”

B

[index top]



3232

BENCHMARK()
Section 13.2.10.8, “Derived Tables (Subqueries in the FROM Clause)”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 8.13.1, “Measuring the Speed of Expressions and Functions”
Section 13.2.10.10, “Optimizing Subqueries”

BIN()
Section 9.1.5, “Bit-Value Literals”
Section 12.5, “String Functions”

BIT_AND()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 12.12, “Bit Functions and Operators”
Section 1.7.1, “MySQL Extensions to Standard SQL”

BIT_COUNT()
Section 12.12, “Bit Functions and Operators”
Section 1.7.1, “MySQL Extensions to Standard SQL”

BIT_LENGTH()
Section 12.5, “String Functions”

BIT_OR()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 12.12, “Bit Functions and Operators”
Section 1.7.1, “MySQL Extensions to Standard SQL”

BIT_XOR()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 12.12, “Bit Functions and Operators”
Section 1.7.1, “MySQL Extensions to Standard SQL”

C

[index top]

CAST()
Section 9.1.5, “Bit-Value Literals”
Section 12.10, “Cast Functions and Operators”
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.3.2, “Comparison Functions and Operators”
Section 11.3.7, “Conversion Between Date and Time Types”
Section 12.7, “Date and Time Functions”
Section 9.1.4, “Hexadecimal Literals”
Section 1.7.2, “MySQL Differences from Standard SQL”
Section 11.3.1, “The DATE, DATETIME, and TIMESTAMP Types”
Section 12.2, “Type Conversion in Expression Evaluation”
Section 9.4, “User-Defined Variables”

CEIL()
Section 12.6.2, “Mathematical Functions”

CEILING()
Section 19.2.4.1, “LINEAR HASH Partitioning”



3233

Section 12.6.2, “Mathematical Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

Centroid()
Section 12.15.7.4, “Polygon and MultiPolygon Property Functions”

CHAR()
Section 12.13, “Encryption and Compression Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.5, “String Functions”
Section 12.2, “Type Conversion in Expression Evaluation”

CHAR_LENGTH()
Section 12.5, “String Functions”
Section 10.1.10.1, “Unicode Character Sets”

CHARACTER_LENGTH()
Section 12.5, “String Functions”

CHARSET()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.14, “Information Functions”
Section 12.2, “Type Conversion in Expression Evaluation”

COALESCE()
Section 12.3.2, “Comparison Functions and Operators”
Section 13.2.9.2, “JOIN Syntax”

COERCIBILITY()
Section 10.1.8.4, “Collation Coercibility in Expressions”
Section 12.14, “Information Functions”

COLLATION()
Section B.5.4.1, “Case Sensitivity in String Searches”
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.14, “Information Functions”
Section 12.2, “Type Conversion in Expression Evaluation”

COMPRESS()
Section 12.13, “Encryption and Compression Functions”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.5, “Server System Variables”
Section 12.2, “Type Conversion in Expression Evaluation”

CONCAT()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 12.10, “Cast Functions and Operators”
Section 12.5.3, “Character Set and Collation of Function Results”
Section 10.1.2.1, “Character Set Repertoire”
Section 10.1.8.4, “Collation Coercibility in Expressions”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 5.1.8, “Server SQL Modes”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 12.5, “String Functions”



3234

Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 12.2, “Type Conversion in Expression Evaluation”
Section 12.11, “XML Functions”

CONCAT_WS()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 12.5, “String Functions”

CONNECTION_ID()
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 13.7.6.4, “KILL Syntax”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 6.5.2.3, “The Audit Log File”
Section 22.9.6.2, “The threads Table”

Contains()
Section 12.15.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)”

CONV()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.6.2, “Mathematical Functions”
Section 12.5, “String Functions”

CONVERT()
Section 12.10, “Cast Functions and Operators”
Section 10.1.3.8, “Character Set Introducers”
Section 10.1.3.6, “Character String Literal Character Set and Collation”
Section 12.3.2, “Comparison Functions and Operators”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”

CONVERT_TZ()
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”

COS()
Section 12.6.2, “Mathematical Functions”

COT()
Section 12.6.2, “Mathematical Functions”

COUNT()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 3.3.4.8, “Counting Rows”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 8.2.1.11, “GROUP BY Optimization”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 19.1, “Overview of Partitioning in MySQL”
Section B.5.4.3, “Problems with NULL Values”
Section 5.1.8, “Server SQL Modes”
Section 1.3.2, “The Main Features of MySQL”



3235

Section 20.5.3, “Updatable and Insertable Views”
Section 20.5.2, “View Processing Algorithms”
Section 8.2.1.1, “WHERE Clause Optimization”

CRC32()
Section 12.6.2, “Mathematical Functions”

Crosses()
Section 12.15.9.1, “Spatial Relation Functions That Use Object Shapes”

crypt()
Section 12.13, “Encryption and Compression Functions”
Section 5.1.5, “Server System Variables”

CURDATE()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_DATE
Section 13.1.17, “CREATE TABLE Syntax”
Section 11.6, “Data Type Default Values”
Section 12.7, “Date and Time Functions”

CURRENT_DATE()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_TIME
Section 12.7, “Date and Time Functions”

CURRENT_TIME()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_TIMESTAMP
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.1.17, “CREATE TABLE Syntax”
Section 11.6, “Data Type Default Values”
Section 12.7, “Date and Time Functions”

CURRENT_TIMESTAMP()
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_USER
Section 20.6, “Access Control for Stored Programs and Views”
Section 13.1.11, “CREATE EVENT Syntax”



3236

Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 6.2.2, “Grant Tables”
Section 12.14, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 6.2.3, “Specifying Account Names”

CURRENT_USER()
Section 6.2.4, “Access Control, Stage 1: Connection Verification”
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Implementing Proxy User Support in Authentication Plugins
Section 12.14, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 6.3.7, “Proxy Users”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 6.2.3, “Specifying Account Names”
Section 6.3.8, “SQL-Based MySQL Account Activity Auditing”
Section 10.1.2.2, “UTF-8 for Metadata”
Writing the Server-Side Authentication Plugin

CURTIME()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 10.6, “MySQL Server Time Zone Support”

D

[index top]

DATABASE()
Section 17.1.3.4, “Binary Log Options and Variables”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.1.21, “DROP DATABASE Syntax”
Section 3.4, “Getting Information About Databases and Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section B.5.7, “Known Issues in MySQL”
Section 10.1.2.2, “UTF-8 for Metadata”

DATE()
Section 12.7, “Date and Time Functions”

DATE_ADD()
Section 12.6.1, “Arithmetic Operators”
Section 13.1.11, “CREATE EVENT Syntax”
Section 12.7, “Date and Time Functions”



3237

Section 11.3, “Date and Time Types”
Section 3.3.4.5, “Date Calculations”
Section 9.5, “Expression Syntax”

DATE_FORMAT()
Section 23.8.18, “C API Prepared Statement Problems”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.5, “Server System Variables”

DATE_SUB()
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”

DATEDIFF()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

DAY()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

DAYNAME()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.5, “Server System Variables”

DAYOFMONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

DAYOFWEEK()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

DAYOFYEAR()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”

DECODE()
Section 12.13, “Encryption and Compression Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”

decr()
Section 16.2.3.1, “Basic memcached Operations”

DEFAULT()
Section 11.6, “Data Type Default Values”
Section 13.2.5, “INSERT Syntax”
Section 12.17, “Miscellaneous Functions”
Section 13.2.8, “REPLACE Syntax”



3238

DEGREES()
Section 12.6.2, “Mathematical Functions”

delete()
Section 16.2.3.1, “Basic memcached Operations”

DES_DECRYPT()
Section 12.13, “Encryption and Compression Functions”
Section 5.1.4, “Server Command Options”

DES_ENCRYPT()
Section 12.13, “Encryption and Compression Functions”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server Command Options”

Dimension()
Section 12.15.7.1, “General Geometry Property Functions”

Disjoint()
Section 12.15.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)”

E

[index top]

ELT()
Section 12.5.3, “Character Set and Collation of Function Results”
Section B.5.7, “Known Issues in MySQL”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.5, “String Functions”

ENCODE()
Section 12.13, “Encryption and Compression Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”

ENCRYPT()
Section 1.8.1, “Contributors to MySQL”
Section 12.13, “Encryption and Compression Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section C.7, “Restrictions on Character Sets”
Section 5.1.5, “Server System Variables”

EndPoint()
Section 12.15.7.3, “LineString and MultiLineString Property Functions”
Section 12.15.8, “Spatial Operator Functions”

Envelope()
Section 12.15.7.1, “General Geometry Property Functions”
Section 12.15.8, “Spatial Operator Functions”

Equals()
Section 12.15.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)”



3239

EXP()
Section 12.6.2, “Mathematical Functions”

EXPORT_SET()
Section 12.5, “String Functions”

expr IN ()
Section 12.3.2, “Comparison Functions and Operators”

expr NOT IN ()
Section 12.3.2, “Comparison Functions and Operators”

ExteriorRing()
Section 12.15.7.4, “Polygon and MultiPolygon Property Functions”
Section 12.15.8, “Spatial Operator Functions”

EXTRACT()
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

ExtractValue()
Section 12.11, “XML Functions”

F

[index top]

FIELD()
Section 12.5, “String Functions”

FIND_IN_SET()
Section 12.5, “String Functions”
Section 11.4.5, “The SET Type”

FLOOR()
Section 12.6.2, “Mathematical Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

flush_all
Section 16.2.3.1, “Basic memcached Operations”

FORMAT()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.6.2, “Mathematical Functions”
Section 12.17, “Miscellaneous Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 10.7, “MySQL Server Locale Support”
Section 12.5, “String Functions”

FOUND_ROWS()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”



3240

Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.15, “Replication and System Functions”

FROM_DAYS()
Section 12.7, “Date and Time Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”

FROM_UNIXTIME()
Section 6.5.2.4, “Audit Log Logging Control”
Section 1.8.1, “Contributors to MySQL”
Section 12.7, “Date and Time Functions”
Section 17.4.1.34, “Replication and Time Zones”

G

[index top]

GeomCollFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

GeomCollFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

GeometryCollection()
Section 12.15.5, “MySQL-Specific Functions That Create Geometry Values”

GeometryCollectionFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

GeometryCollectionFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

GeometryFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

GeometryFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

GeometryN()
Section 12.15.7.5, “GeometryCollection Property Functions”
Section 12.15.8, “Spatial Operator Functions”

GeometryType()
Section 12.15.7.1, “General Geometry Property Functions”

GeomFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”
Section 11.5.3.3, “Populating Spatial Columns”
Section 11.5.3.1, “Supported Spatial Data Formats”

GeomFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”



3241

get()
Section 16.2.3.1, “Basic memcached Operations”

GET_FORMAT()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”

GET_LOCK()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 23.8.16, “Controlling Automatic Reconnection Behavior”
Section 13.1.11, “CREATE EVENT Syntax”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 20.4.1, “Event Scheduler Overview”
Section 8.14.2, “General Thread States”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.11.1, “Internal Locking Methods”
Section 13.7.6.4, “KILL Syntax”
Section 12.17, “Miscellaneous Functions”
Section 23.8.7.3, “mysql_change_user()”
Section 17.4.1.15, “Replication and System Functions”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”

gethostbyaddr()
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”

gethostbyaddr_r()
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”

gethostbyname()
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”

gethostbyname_r()
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”

getrusage()
Section 18.5.10.18, “The ndbinfo threadstat Table”

gettimeofday()
Section 18.5.10.18, “The ndbinfo threadstat Table”

GLength()
Section 11.5, “Extensions for Spatial Data”
Section 12.15.7.3, “LineString and MultiLineString Property Functions”
Section 12.5, “String Functions”

GREATEST()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.3.2, “Comparison Functions and Operators”

GROUP_CONCAT()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section B.5.7, “Known Issues in MySQL”
Section 1.7.1, “MySQL Extensions to Standard SQL”



3242

Section 5.1.5, “Server System Variables”
Section 1.3.2, “The Main Features of MySQL”

H

[index top]

HEX()
Section 9.1.5, “Bit-Value Literals”
Section 12.5.3, “Character Set and Collation of Function Results”
Section 10.1.3.6, “Character String Literal Character Set and Collation”
Section 9.1.4, “Hexadecimal Literals”
Section 12.6.2, “Mathematical Functions”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 12.5, “String Functions”

HOUR()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

I

[index top]

IF()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.4, “Control Flow Functions”
Section 13.6.5.2, “IF Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 1.7.1, “MySQL Extensions to Standard SQL”

IFNULL()
Section 12.4, “Control Flow Functions”
Section B.5.4.3, “Problems with NULL Values”

IN
Section 12.3.1, “Operator Precedence”

IN()
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.2, “Range Optimization”
Section C.4, “Restrictions on Subqueries”
Section 12.2, “Type Conversion in Expression Evaluation”

incr()
Section 16.2.3.1, “Basic memcached Operations”

INET_ATON()
Section 12.17, “Miscellaneous Functions”

INET_NTOA()
Section 12.17, “Miscellaneous Functions”

INSERT()
Section 12.5, “String Functions”



3243

INSTR()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

InteriorRingN()
Section 12.15.7.4, “Polygon and MultiPolygon Property Functions”
Section 12.15.8, “Spatial Operator Functions”

Intersects()
Section 12.15.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)”

INTERVAL()
Section 12.3.2, “Comparison Functions and Operators”

IS_FREE_LOCK()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.17, “Miscellaneous Functions”
Section 17.4.1.15, “Replication and System Functions”

IS_USED_LOCK()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.17, “Miscellaneous Functions”
Section 17.4.1.15, “Replication and System Functions”

IsClosed()
Section 12.15.7.3, “LineString and MultiLineString Property Functions”

IsEmpty()
Section 12.15.7.1, “General Geometry Property Functions”

ISNULL()
Section 12.3.2, “Comparison Functions and Operators”

IsSimple()
Section 12.15.7.1, “General Geometry Property Functions”

L

[index top]

LAST_DAY()
Section 12.7, “Date and Time Functions”

LAST_INSERT_ID()
Section 12.3.2, “Comparison Functions and Operators”
Section 23.8.16, “Controlling Automatic Reconnection Behavior”
Section 13.1.17, “CREATE TABLE Syntax”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 23.8.15.3, “How to Get the Unique ID for the Last Inserted Row”



3244

Section 12.14, “Information Functions”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 23.8.7.37, “mysql_insert_id()”
Section 23.8.11.16, “mysql_stmt_insert_id()”
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 17.4.1.1, “Replication and AUTO_INCREMENT”
Section 17.4.1.15, “Replication and System Functions”
Section 5.1.5, “Server System Variables”
Section 20.2.4, “Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 17.4.4, “Troubleshooting Replication”
Section 20.5.3, “Updatable and Insertable Views”
Section 3.6.9, “Using AUTO_INCREMENT”

LCASE()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

LEAST()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.3.2, “Comparison Functions and Operators”

LEFT()
Section 12.5, “String Functions”

LENGTH()
Section 11.7, “Data Type Storage Requirements”
Section 12.5, “String Functions”
Section 11.5.3.1, “Supported Spatial Data Formats”

Length()
Section 11.5, “Extensions for Spatial Data”
Section 12.15.7.3, “LineString and MultiLineString Property Functions”

LineFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

LineFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

LineString()
Section 12.15.5, “MySQL-Specific Functions That Create Geometry Values”

LineStringFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

LineStringFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

LN()
Section 12.6.2, “Mathematical Functions”



3245

LOAD_FILE()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 13.2.7, “LOAD XML Syntax”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.15, “Replication and System Functions”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 12.5, “String Functions”

LOCALTIME
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”
Section 12.7, “Date and Time Functions”

LOCALTIME()
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”

LOCALTIMESTAMP
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”
Section 12.7, “Date and Time Functions”

LOCALTIMESTAMP()
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”

LOCATE()
Section 12.5, “String Functions”

LOG()
Section 19.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

LOG10()
Section 12.6.2, “Mathematical Functions”

LOG2()
Section 12.6.2, “Mathematical Functions”

LOWER()
Section 12.10, “Cast Functions and Operators”
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”
Section 10.1.8.7, “Using Collation in INFORMATION_SCHEMA Searches”

LPAD()
Section 12.5, “String Functions”

LTRIM()
Section 12.5.3, “Character Set and Collation of Function Results”



3246

Section 12.5, “String Functions”

M

[index top]

MAKE_SET()
Section 12.5, “String Functions”

MAKEDATE()
Section 12.7, “Date and Time Functions”

MAKETIME()
Section 12.7, “Date and Time Functions”

MASTER_POS_WAIT()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.17, “Miscellaneous Functions”
Section A.13, “MySQL 5.5 FAQ: Replication”

MATCH
Section 9.5, “Expression Syntax”

MATCH ()
Section 12.9, “Full-Text Search Functions”

MATCH()
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.5, “Full-Text Restrictions”
Section 12.9, “Full-Text Search Functions”
MySQL Glossary
Section 12.9.1, “Natural Language Full-Text Searches”

MAX()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 8.2.1.11, “GROUP BY Optimization”
Section 8.3.1, “How MySQL Uses Indexes”
Section B.5.7, “Known Issues in MySQL”
Section 11.1.1, “Numeric Type Overview”
Section 13.2.10.10, “Optimizing Subqueries”
Section 5.1.8, “Server SQL Modes”
Section 21.30.1, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 1.3.2, “The Main Features of MySQL”
Section 11.3.8, “Two-Digit Years in Dates”
Section 20.5.3, “Updatable and Insertable Views”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 20.5.2, “View Processing Algorithms”

MBRContains()
Section 12.15.9.3, “MySQL-Specific Spatial Relation Functions That Use Minimum Bounding
Rectangles (MBRs)”
Section 11.5.3.7, “Using Spatial Indexes”



3247

MBRDisjoint()
Section 12.15.9.3, “MySQL-Specific Spatial Relation Functions That Use Minimum Bounding
Rectangles (MBRs)”

MBREqual()
Section 12.15.9.3, “MySQL-Specific Spatial Relation Functions That Use Minimum Bounding
Rectangles (MBRs)”

MBRIntersects()
Section 12.15.9.3, “MySQL-Specific Spatial Relation Functions That Use Minimum Bounding
Rectangles (MBRs)”

MBROverlaps()
Section 12.15.9.3, “MySQL-Specific Spatial Relation Functions That Use Minimum Bounding
Rectangles (MBRs)”

MBRTouches()
Section 12.15.9.3, “MySQL-Specific Spatial Relation Functions That Use Minimum Bounding
Rectangles (MBRs)”

MBRWithin()
Section 12.15.9.3, “MySQL-Specific Spatial Relation Functions That Use Minimum Bounding
Rectangles (MBRs)”
Section 11.5.3.7, “Using Spatial Indexes”

MD5()
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 19.2.5, “KEY Partitioning”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 9.2, “Schema Object Names”
Section 12.2, “Type Conversion in Expression Evaluation”

MICROSECOND()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

MID()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

MIN()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 23.8.18, “C API Prepared Statement Problems”
Section 8.2.1.11, “GROUP BY Optimization”
Section 8.3.1, “How MySQL Uses Indexes”
Section B.5.7, “Known Issues in MySQL”
Section 11.1.1, “Numeric Type Overview”
Section 13.2.10.10, “Optimizing Subqueries”
Section B.5.4.3, “Problems with NULL Values”
Section 1.3.2, “The Main Features of MySQL”
Section 11.3.8, “Two-Digit Years in Dates”
Section 20.5.3, “Updatable and Insertable Views”
Section 20.5.2, “View Processing Algorithms”
Section 8.2.1.1, “WHERE Clause Optimization”



3248

MINUTE()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

MLineFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

MLineFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

MOD()
Section 12.6.1, “Arithmetic Operators”
Section 3.3.4.5, “Date Calculations”
Section 12.6.2, “Mathematical Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 19.5.3, “Partitioning Limitations Relating to Functions”
Section 5.1.8, “Server SQL Modes”

MONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 19.5.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”

MONTHNAME()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.5, “Server System Variables”

MPointFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

MPointFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

MPolyFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

MPolyFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

MultiLineString()
Section 12.15.5, “MySQL-Specific Functions That Create Geometry Values”

MultiLineStringFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

MultiLineStringFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

MultiPoint()
Section 12.15.5, “MySQL-Specific Functions That Create Geometry Values”

MultiPointFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”



3249

MultiPointFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

MultiPolygon()
Section 12.15.5, “MySQL-Specific Functions That Create Geometry Values”

MultiPolygonFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

MultiPolygonFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

my_open()
Section 5.1.7, “Server Status Variables”

N

[index top]

NAME_CONST()
Section 20.7, “Binary Logging of Stored Programs”
Section 12.17, “Miscellaneous Functions”

NOW()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.17, “CREATE TABLE Syntax”
Section 11.6, “Data Type Default Values”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section A.1, “MySQL 5.5 FAQ: General”
Section 10.6, “MySQL Server Time Zone Support”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.34, “Replication and Time Zones”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 11.3.3, “The YEAR Type”
Section 10.6.2, “Time Zone Leap Second Support”

NULLIF()
Section 12.4, “Control Flow Functions”

NumGeometries()
Section 12.15.7.5, “GeometryCollection Property Functions”

NumInteriorRings()
Section 12.15.7.4, “Polygon and MultiPolygon Property Functions”

NumPoints()
Section 12.15.7.3, “LineString and MultiLineString Property Functions”

O

[index top]



3250

OCT()
Section 12.5, “String Functions”

OCTET_LENGTH()
Section 12.5, “String Functions”

OLD_PASSWORD()
Section B.5.2.4, “Client does not support authentication protocol”
Section 13.7.1.1, “CREATE USER Syntax”
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.5, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”

ORD()
Section 12.5, “String Functions”

Overlaps()
Section 12.15.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)”

P

[index top]

PASSWORD()
Section 6.2.4, “Access Control, Stage 1: Connection Verification”
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.1.1, “CREATE USER Syntax”
Section 12.13, “Encryption and Compression Functions”
Section B.5.2.15, “Ignoring user”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 19.2.5, “KEY Partitioning”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 5.1.5, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 12.2, “Type Conversion in Expression Evaluation”

PERIOD_ADD()
Section 12.7, “Date and Time Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”

PERIOD_DIFF()
Section 12.7, “Date and Time Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”

PI()
Section 9.2.4, “Function Name Parsing and Resolution”
Section 12.6.2, “Mathematical Functions”

Point()
Section 12.15.5, “MySQL-Specific Functions That Create Geometry Values”



3251

Section 11.5.3.1, “Supported Spatial Data Formats”

PointFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

PointFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

PointN()
Section 12.15.7.3, “LineString and MultiLineString Property Functions”
Section 12.15.8, “Spatial Operator Functions”

PolyFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

PolyFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

Polygon()
Section 12.15.5, “MySQL-Specific Functions That Create Geometry Values”

PolygonFromText()
Section 12.15.3, “Functions That Create Geometry Values from WKT Values”

PolygonFromWKB()
Section 12.15.4, “Functions That Create Geometry Values from WKB Values”

POSITION()
Section 12.5, “String Functions”

POW()
Section 8.2.1.14, “Function Call Optimization”
Section 19.2.4, “HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

POWER()
Section 19.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”

pthread_mutex()
Section 1.8.1, “Contributors to MySQL”

Q

[index top]

QUARTER()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

QUOTE()
Section 23.8.7.53, “mysql_real_escape_string()”
Section 12.5, “String Functions”
Section 9.1.1, “String Literals”



3252

R

[index top]

RADIANS()
Section 12.6.2, “Mathematical Functions”

RAND()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.2.1.14, “Function Call Optimization”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.6.2, “Mathematical Functions”
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 17.4.1.15, “Replication and System Functions”
Section 5.1.5, “Server System Variables”

RELEASE_ALL_LOCKS()
Section 8.10.3.1, “How the Query Cache Operates”

RELEASE_LOCK()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 13.2.3, “DO Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.11.1, “Internal Locking Methods”
Section 12.17, “Miscellaneous Functions”
Section 17.4.1.15, “Replication and System Functions”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”

REPEAT()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

REPLACE()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

replace()
Section 16.2.3.1, “Basic memcached Operations”

REVERSE()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

RIGHT()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

ROUND()
Section 12.6.2, “Mathematical Functions”
Section 12.18, “Precision Math”
Section 12.18.5, “Precision Math Examples”
Section 12.18.4, “Rounding Behavior”



3253

ROW_COUNT()
Section 13.2.1, “CALL Syntax”
Section 13.2.2, “DELETE Syntax”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 23.8.7.1, “mysql_affected_rows()”
Section 17.4.1.15, “Replication and System Functions”

RPAD()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

RTRIM()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

S

[index top]

SCHEMA()
Section 12.14, “Information Functions”

SEC_TO_TIME()
Section 12.7, “Date and Time Functions”

SECOND()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

SESSION_USER()
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 10.1.2.2, “UTF-8 for Metadata”

set()
Section 16.2.3.1, “Basic memcached Operations”

setrlimit()
Section 5.1.4, “Server Command Options”

SHA()
Section 12.13, “Encryption and Compression Functions”

SHA1()
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”

SHA2()
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 6.1.1, “Security Guidelines”



3254

SIGN()
Section 12.6.2, “Mathematical Functions”

SIN()
Section 12.6.2, “Mathematical Functions”
Section 24.4.2.3, “UDF Argument Processing”

SLEEP()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.14.2, “General Thread States”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.17, “Miscellaneous Functions”
Section 17.4.1, “Replication Features and Issues”
Section 21.30.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”

SOUNDEX()
Section 24.4, “Adding New Functions to MySQL”
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

SPACE()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

SQRT()
Section 12.6.2, “Mathematical Functions”

SRID()
Section 12.15.7.1, “General Geometry Property Functions”

StartPoint()
Section 12.15.7.3, “LineString and MultiLineString Property Functions”
Section 12.15.8, “Spatial Operator Functions”

STD()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 1.3.2, “The Main Features of MySQL”

STDDEV()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”

STDDEV_POP()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”

STDDEV_SAMP()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”

STR_TO_DATE()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”

STRCMP()
Section B.5.4.2, “Problems Using DATE Columns”



3255

Section 12.5.1, “String Comparison Functions”

SUBDATE()
Section 12.7, “Date and Time Functions”

SUBSTR()
Section 12.5, “String Functions”

SUBSTRING()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

SUBSTRING_INDEX()
Section 6.3.8, “SQL-Based MySQL Account Activity Auditing”
Section 12.5, “String Functions”

SUBTIME()
Section 12.7, “Date and Time Functions”

SUM()
Section 24.4.2, “Adding a New User-Defined Function”
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 11.1.2, “Date and Time Type Overview”
Section 8.2.1.11, “GROUP BY Optimization”
Section 19.1, “Overview of Partitioning in MySQL”
Section B.5.4.3, “Problems with NULL Values”
Section 11.4.4, “The ENUM Type”
Section 1.3.2, “The Main Features of MySQL”
Section 11.4.5, “The SET Type”
Section 20.5.3, “Updatable and Insertable Views”
Section 20.5.2, “View Processing Algorithms”

SYSDATE()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 17.4.1.15, “Replication and System Functions”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

SYSTEM_USER()
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 10.1.2.2, “UTF-8 for Metadata”

T

[index top]

TAN()
Section 12.6.2, “Mathematical Functions”

thr_setconcurrency()
Section 5.1.5, “Server System Variables”



3256

TIME()
Section 12.7, “Date and Time Functions”

TIME_FORMAT()
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”

TIME_TO_SEC()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”

TIMEDIFF()
Section 12.7, “Date and Time Functions”

TIMESTAMP()
Section 12.7, “Date and Time Functions”

TIMESTAMPADD()
Section 12.7, “Date and Time Functions”
Section 1.4, “What Is New in MySQL 5.5”

TIMESTAMPDIFF()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”

TO_DAYS()
Section 12.7, “Date and Time Functions”
Section 19.2.4, “HASH Partitioning”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 19.4, “Partition Pruning”
Section 19.5.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”

TO_SECONDS()
Section 12.7, “Date and Time Functions”
Section 19.4, “Partition Pruning”
Section 19.5.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”
Section 1.4, “What Is New in MySQL 5.5”

Touches()
Section 12.15.9.1, “Spatial Relation Functions That Use Object Shapes”

TRIM()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 10.1.7, “Column Character Set Conversion”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.5, “String Functions”

TRUNCATE()
Section 12.6.2, “Mathematical Functions”

U

[index top]



3257

UCASE()
Section 12.5.3, “Character Set and Collation of Function Results”
Section 12.5, “String Functions”

UNCOMPRESS()
Section 12.13, “Encryption and Compression Functions”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.5, “Server System Variables”

UNCOMPRESSED_LENGTH()
Section 12.13, “Encryption and Compression Functions”

UNHEX()
Section 12.13, “Encryption and Compression Functions”
Section 12.5, “String Functions”

UNIX_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 19.5.3, “Partitioning Limitations Relating to Functions”
Section 19.2.1, “RANGE Partitioning”
Section 5.1.5, “Server System Variables”
Section B.5.3.7, “Time Zone Problems”

UpdateXML()
Section 12.11, “XML Functions”

UPPER()
Section 12.10, “Cast Functions and Operators”
Section 12.5.3, “Character Set and Collation of Function Results”
Section 10.1.2.1, “Character Set Repertoire”
Section 12.5, “String Functions”
Section 10.1.8.7, “Using Collation in INFORMATION_SCHEMA Searches”

USER()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 10.1.8.4, “Collation Coercibility in Expressions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Implementing Proxy User Support in Authentication Plugins
Section 12.14, “Information Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 6.3.7, “Proxy Users”
Section 17.4.1.15, “Replication and System Functions”
Section 6.3.8, “SQL-Based MySQL Account Activity Auditing”
Section 10.1.2.2, “UTF-8 for Metadata”
Writing the Server-Side Authentication Plugin

UTC_DATE
Section 12.7, “Date and Time Functions”

UTC_DATE()
Section 12.7, “Date and Time Functions”



3258

Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”

UTC_TIME
Section 12.7, “Date and Time Functions”

UTC_TIME()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”

UTC_TIMESTAMP
Section 12.7, “Date and Time Functions”

UTC_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 10.6, “MySQL Server Time Zone Support”

UUID()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.3.4, “Binary Log Options and Variables”
Section 20.7, “Binary Logging of Stored Programs”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.2.1.14, “Function Call Optimization”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.17, “Miscellaneous Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.15, “Replication and System Functions”
Section 5.4.4.2, “Setting The Binary Log Format”

UUID_SHORT()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.17, “Miscellaneous Functions”

V

[index top]

VALUES()
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 12.17, “Miscellaneous Functions”

VAR_POP()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”

VAR_SAMP()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”

VARIANCE()
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”

VERSION()
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section B.5.4.1, “Case Sensitivity in String Searches”



3259

Section 10.1.8.4, “Collation Coercibility in Expressions”
Section 12.14, “Information Functions”
Section 17.4.1.15, “Replication and System Functions”
Section 6.5.2.3, “The Audit Log File”
Section 10.1.2.2, “UTF-8 for Metadata”

W

[index top]

WEEK()
Section 12.7, “Date and Time Functions”
Section 5.1.5, “Server System Variables”

WEEKDAY()
Section 12.7, “Date and Time Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 19.5.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”

WEEKOFYEAR()
Section 12.7, “Date and Time Functions”

Within()
Section 12.15.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)”

X

[index top]

X()
Section 12.15.7.2, “Point Property Functions”
Section 11.5.3.1, “Supported Spatial Data Formats”

Y

[index top]

Y()
Section 12.15.7.2, “Point Property Functions”

YEAR()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 19.2.4, “HASH Partitioning”
Section 19.2.7, “How MySQL Partitioning Handles NULL”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 19.4, “Partition Pruning”
Section 19.5.3, “Partitioning Limitations Relating to Functions”
Section 19.2, “Partitioning Types”
Section 19.2.1, “RANGE Partitioning”

YEARWEEK()
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”



3260

INFORMATION_SCHEMA Index
C | E | F | G | I | K | N | P | R | S | T | U | V

C

[index top]

CHARACTER_SETS
Section 10.1.2, “Character Sets and Collations in MySQL”
Section 13.7.5.4, “SHOW CHARACTER SET Syntax”
Section 10.1.10, “Supported Character Sets and Collations”
Section 21.1, “The INFORMATION_SCHEMA CHARACTER_SETS Table”

COLLATION_CHARACTER_SET_APPLICABILITY
Section 21.3, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table”

COLLATIONS
Section 23.8.5, “C API Data Structures”
Section 10.1.2, “Character Sets and Collations in MySQL”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.5, “SHOW COLLATION Syntax”
Section 21.2, “The INFORMATION_SCHEMA COLLATIONS Table”

COLUMN_PRIVILEGES
Section 21.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”

COLUMNS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 21.4, “The INFORMATION_SCHEMA COLUMNS Table”
Section 21.11, “The INFORMATION_SCHEMA PARAMETERS Table”
Section 21.17, “The INFORMATION_SCHEMA ROUTINES Table”

E

[index top]

ENGINES
Section 14.1.3, “Checking InnoDB Availability”
Section 18.5.9, “Quick Reference: NDB Cluster SQL Statements”
Section 5.1.5, “Server System Variables”
Section 13.7.5.17, “SHOW ENGINES Syntax”
Section 21.6, “The INFORMATION_SCHEMA ENGINES Table”

EVENTS
Section 20.4.4, “Event Metadata”
Section 20.4.2, “Event Scheduler Configuration”
Section 17.4.1.12, “Replication of Invoked Features”
Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”

F

[index top]



3261

FILES
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 21.29, “NDB Cluster INFORMATION_SCHEMA Tables”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 21.29.1, “The INFORMATION_SCHEMA FILES Table”

G

[index top]

GLOBAL_STATUS
Section 18.5, “Management of NDB Cluster”
Section 18.5.15, “NDB API Statistics Counters and Variables”
Section 18.6, “NDB Cluster Replication”
Section 13.7.5.36, “SHOW STATUS Syntax”
Section 21.8, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

GLOBAL_VARIABLES
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section 21.9, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

I

[index top]

INFORMATION_SCHEMA
MySQL Glossary
Section 5.2, “The MySQL Data Directory”

INFORMATION_SCHEMA GLOBAL_STATUS
Section 21.8, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

INFORMATION_SCHEMA GLOBAL_VARIABLES
Section 21.9, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

INFORMATION_SCHEMA.CHARACTER_SETS
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”

INFORMATION_SCHEMA.COLLATIONS
Section 10.4.2, “Choosing a Collation ID”

INFORMATION_SCHEMA.COLUMNS
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 22.1, “Performance Schema Quick Start”

INFORMATION_SCHEMA.ENGINES
Section 22.1, “Performance Schema Quick Start”
Section 18.5.9, “Quick Reference: NDB Cluster SQL Statements”

INFORMATION_SCHEMA.EVENTS
Section 20.4.4, “Event Metadata”
Section 17.4.1.12, “Replication of Invoked Features”



3262

Section C.1, “Restrictions on Stored Programs”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

INFORMATION_SCHEMA.FILES
Section 13.1.4, “ALTER LOGFILE GROUP Syntax”
Section 13.1.8, “ALTER TABLESPACE Syntax”
Section 13.1.14, “CREATE LOGFILE GROUP Syntax”
Section 13.1.18, “CREATE TABLESPACE Syntax”
Section 18.5.12.3, “NDB Cluster Disk Data Storage Requirements”
Section 18.4.10, “ndb_desc — Describe NDB Tables”

INFORMATION_SCHEMA.GLOBAL_STATUS
Section 18.5.15, “NDB API Statistics Counters and Variables”

INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
Section 14.7.2, “Change Buffer”

INFORMATION_SCHEMA.INNODB_CMP
MySQL Glossary
Section 14.12.3, “Tuning Compression for InnoDB Tables”
Section 14.18.1.3, “Using the Compression Information Schema Tables”

INFORMATION_SCHEMA.INNODB_CMPMEM
Section 14.18.1.3, “Using the Compression Information Schema Tables”

INFORMATION_SCHEMA.INNODB_LOCK_WAITS
Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”

INFORMATION_SCHEMA.INNODB_LOCKS
Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”

INFORMATION_SCHEMA.INNODB_SYS_TABLES
MySQL Glossary

INFORMATION_SCHEMA.INNODB_TRX
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”

INFORMATION_SCHEMA.KEY_COLUMN_USAGE
Section 1.7.3.2, “FOREIGN KEY Constraints”
Section 14.11.1.6, “InnoDB and FOREIGN KEY Constraints”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”

INFORMATION_SCHEMA.PARTITIONS
Section 19.2.7, “How MySQL Partitioning Handles NULL”
Section 19.2.5, “KEY Partitioning”
Section 19.3.4, “Obtaining Information About Partitions”
Section 19.2.3.1, “RANGE COLUMNS partitioning”
Section 5.1.4, “Server Command Options”
Section 21.12, “The INFORMATION_SCHEMA PARTITIONS Table”

INFORMATION_SCHEMA.PLUGINS
Section 14.18, “InnoDB INFORMATION_SCHEMA Tables”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”



3263

Section 5.5.2, “Installing and Uninstalling Plugins”
Section 6.5.2.1, “Installing MySQL Enterprise Audit”
Section 5.5.3, “Obtaining Server Plugin Information”
Section 6.5.1.4, “PAM Pluggable Authentication”
Chapter 19, Partitioning
Section 24.2.2, “Plugin API Characteristics”
Section 24.2.3, “Plugin API Components”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Server Plugin Library and Plugin Descriptors
Section 6.5.1.6, “Socket Peer-Credential Pluggable Authentication”
Section 6.5.1.7, “Test Pluggable Authentication”
Section 5.5.4.2, “Thread Pool Installation”
Section 6.5.1.5, “Windows Pluggable Authentication”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.5, “Writing Daemon Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4.6, “Writing INFORMATION_SCHEMA Plugins”
Writing the Server-Side Authentication Plugin

INFORMATION_SCHEMA.PROCESSLIST
Section 12.14, “Information Functions”
Section 13.7.6.4, “KILL Syntax”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 21.14, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 22.9.6.2, “The threads Table”
Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”

INFORMATION_SCHEMA.ROUTINES
Chapter 21, INFORMATION_SCHEMA Tables
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 21.17, “The INFORMATION_SCHEMA ROUTINES Table”

INFORMATION_SCHEMA.SESSION_STATUS
Section 18.5.15, “NDB API Statistics Counters and Variables”

INFORMATION_SCHEMA.STATISTICS
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

INFORMATION_SCHEMA.TABLE_CONSTRAINTS
Section 21.16, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”

INFORMATION_SCHEMA.TABLES
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 13.1.7, “ALTER TABLE Syntax”
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”
Chapter 21, INFORMATION_SCHEMA Tables
Section 14.17, “InnoDB Startup Options and System Variables”
Section 5.1.4, “Server Command Options”

INFORMATION_SCHEMA.TRIGGERS
Section A.5, “MySQL 5.5 FAQ: Triggers”

INFORMATION_SCHEMA.VIEWS
Section 20.5.3, “Updatable and Insertable Views”



3264

INNODB_BUFFER_PAGE
Section 14.7.2, “Change Buffer”
Section 14.18.3, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 21.28.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”

INNODB_BUFFER_PAGE_LRU
Section 14.18.3, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 21.28.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”

INNODB_BUFFER_POOL_STATS
Section 14.18.3, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 14.9.2.6, “Monitoring the Buffer Pool Using the InnoDB Standard Monitor”

INNODB_CMP
Section 14.18.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 14.18.1.1, “INNODB_CMP and INNODB_CMP_RESET”
Section 14.18.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 14.12.4, “Monitoring InnoDB Table Compression at Runtime”
Section 21.28.4, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 14.18.1.3, “Using the Compression Information Schema Tables”

INNODB_CMP_RESET
Section 14.18.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 14.18.1.1, “INNODB_CMP and INNODB_CMP_RESET”
Section 14.18.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”

INNODB_CMPMEM
Section 14.18.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 14.18.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 21.28.5, “The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables”
Section 14.18.1.3, “Using the Compression Information Schema Tables”

INNODB_CMPMEM_RESET
Section 14.18.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”

INNODB_LOCK_WAITS
Section 14.18.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”
Section 14.18.2.2, “InnoDB Lock and Lock-Wait Information”
Section 14.18.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 21.28.7, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”

INNODB_LOCKS
Section 14.18.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”
Section 14.18.2.2, “InnoDB Lock and Lock-Wait Information”
Section 14.18.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 21.28.7, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 21.28.6, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 21.28.8, “The INFORMATION_SCHEMA INNODB_TRX Table”

INNODB_METRICS
MySQL Glossary

INNODB_TRX
Section 14.18.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”



3265

Section 14.18.2.2, “InnoDB Lock and Lock-Wait Information”
Section 14.18.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 21.28.6, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 21.28.8, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”

K

[index top]

KEY_COLUMN_USAGE
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 21.10, “The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table”

N

[index top]

NDB_TRANSID_MYSQL_CONNECTION_MAP
Section 18.5.10.15, “The ndbinfo server_operations Table”
Section 18.5.10.16, “The ndbinfo server_transactions Table”

ndb_transid_mysql_connection_map
MySQL Server Options for NDB Cluster
Section 21.29, “NDB Cluster INFORMATION_SCHEMA Tables”

P

[index top]

PARAMETERS
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 21.11, “The INFORMATION_SCHEMA PARAMETERS Table”
Section 21.17, “The INFORMATION_SCHEMA ROUTINES Table”

PARTITIONS
Section 19.2.7, “How MySQL Partitioning Handles NULL”
Section 19.3.4, “Obtaining Information About Partitions”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Chapter 19, Partitioning
Section 21.12, “The INFORMATION_SCHEMA PARTITIONS Table”

PLUGINS
Section 5.5.3, “Obtaining Server Plugin Information”
Section 21.13, “The INFORMATION_SCHEMA PLUGINS Table”

PROCESSLIST
Section 8.14, “Examining Thread Information”
Section 14.18.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 21.28.8, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 21.14, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”

PROFILING
Section 13.7.5.31, “SHOW PROFILE Syntax”



3266

Section 21.15, “The INFORMATION_SCHEMA PROFILING Table”

R

[index top]

REFERENTIAL_CONSTRAINTS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 21.16, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”

ROUTINES
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 20.2.3, “Stored Routine Metadata”
Section 21.11, “The INFORMATION_SCHEMA PARAMETERS Table”
Section 21.17, “The INFORMATION_SCHEMA ROUTINES Table”

S

[index top]

SCHEMA_PRIVILEGES
Section 21.19, “The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table”

SCHEMATA
Section 6.2.2, “Grant Tables”
Section 21.18, “The INFORMATION_SCHEMA SCHEMATA Table”

SESSION_STATUS
Section 18.5, “Management of NDB Cluster”
Section 18.5.15, “NDB API Statistics Counters and Variables”
Section 18.6, “NDB Cluster Replication”
Section 13.7.5.36, “SHOW STATUS Syntax”
Section 21.8, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

SESSION_VARIABLES
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section 21.9, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

STATISTICS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 21.20, “The INFORMATION_SCHEMA STATISTICS Table”

T

[index top]

TABLE_CONSTRAINTS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 21.23, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”

TABLE_PRIVILEGES
Section 21.24, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”



3267

TABLES
Chapter 21, INFORMATION_SCHEMA Tables
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 21.21, “The INFORMATION_SCHEMA TABLES Table”

TABLESPACES
Section 21.22, “The INFORMATION_SCHEMA TABLESPACES Table”

TP_THREAD_GROUP_STATE
Section 21.30.1, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 5.5.4.1, “Thread Pool Components”
Section 21.30, “Thread Pool INFORMATION_SCHEMA Tables”

TP_THREAD_GROUP_STATS
Section 21.30.3, “The INFORMATION_SCHEMA TP_THREAD_STATE Table”
Section 5.5.4.1, “Thread Pool Components”
Section 21.30, “Thread Pool INFORMATION_SCHEMA Tables”

TP_THREAD_STATE
Section 5.5.4.1, “Thread Pool Components”
Section 21.30, “Thread Pool INFORMATION_SCHEMA Tables”
Section 5.5.4.2, “Thread Pool Installation”

TRIGGERS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.13, “SHOW CREATE TRIGGER Syntax”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 21.25, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 20.3.2, “Trigger Metadata”

U

[index top]

USER_PRIVILEGES
Section 21.26, “The INFORMATION_SCHEMA USER_PRIVILEGES Table”

V

[index top]

VIEWS
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 20.5.5, “View Metadata”

Join Types Index
A | C | E | F | I | R | S | U

A

[index top]



3268

ALL
Section 8.2.1.16, “Avoiding Full Table Scans”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.5, “Nested-Loop Join Algorithms”

C

[index top]

const
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Extended EXPLAIN Output Format”
NDB Cluster System Variables
Section 8.2.1.10, “ORDER BY Optimization”
Section 8.2.1.2, “Range Optimization”
Section 13.2.9, “SELECT Syntax”

E

[index top]

eq_ref
Section 8.8.2, “EXPLAIN Output Format”
Section 15.8.1, “MERGE Table Advantages and Disadvantages”
NDB Cluster System Variables
Section 8.2.2, “Subquery Optimization”

F

[index top]

fulltext
Section 8.8.2, “EXPLAIN Output Format”

I

[index top]

index
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.5, “Nested-Loop Join Algorithms”

index_merge
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.3, “Index Merge Optimization”

index_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.2.2, “Subquery Optimization”

R

[index top]



3269

range
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.11, “GROUP BY Optimization”
Section 8.2.1.3, “Index Merge Optimization”
Section 8.2.1.5, “Nested-Loop Join Algorithms”
Section 8.2.1.2, “Range Optimization”

ref
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 15.8.1, “MERGE Table Advantages and Disadvantages”
NDB Cluster System Variables
Section 8.2.2, “Subquery Optimization”

ref_or_null
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.9, “IS NULL Optimization”
Section 8.2.2, “Subquery Optimization”

S

[index top]

system
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 8.2.1.2, “Range Optimization”
Section 13.2.9, “SELECT Syntax”

U

[index top]

unique_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.2.2, “Subquery Optimization”

Operator Index
Symbols | A | B | C | D | E | I | L | N | O | R | X

Symbols

[index top]

-
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.1.1, “Numeric Type Overview”
Section 19.5, “Restrictions and Limitations on Partitioning”

!
Section 9.5, “Expression Syntax”



3270

Section 12.3.3, “Logical Operators”
Section 12.3.1, “Operator Precedence”

!=
Section 12.3.2, “Comparison Functions and Operators”
Section 12.3.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”

%
Section 12.6.1, “Arithmetic Operators”

&
Section 12.12, “Bit Functions and Operators”
Section 13.1.17, “CREATE TABLE Syntax”
Section 19.5, “Restrictions and Limitations on Partitioning”

&&
Section 12.3.3, “Logical Operators”
Section 1.7.1, “MySQL Extensions to Standard SQL”

>
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”

>>
Section 12.12, “Bit Functions and Operators”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 19.5, “Restrictions and Limitations on Partitioning”

>=
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”

<
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”
Section 3.3.4.6, “Working with NULL Values”

<>
Section 12.3.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”



3271

Section 3.3.4.6, “Working with NULL Values”

<<
Section 12.12, “Bit Functions and Operators”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 19.5, “Restrictions and Limitations on Partitioning”

<=
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”

<=>
Section 12.3.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”
Section 12.2, “Type Conversion in Expression Evaluation”

*
Section 12.6.1, “Arithmetic Operators”
Section 11.1.1, “Numeric Type Overview”
Section 19.5, “Restrictions and Limitations on Partitioning”

+
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.1.1, “Numeric Type Overview”
Section 19.5, “Restrictions and Limitations on Partitioning”

/
Section 12.6.1, “Arithmetic Operators”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.5, “Server System Variables”

:=
Section 12.3.4, “Assignment Operators”
Section 12.3.1, “Operator Precedence”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 9.4, “User-Defined Variables”

=
Section 12.3.4, “Assignment Operators”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”
Section C.4, “Restrictions on Subqueries”
Section 13.7.4.1, “SET Syntax for Variable Assignment”



3272

Section 12.5.1, “String Comparison Functions”
Section 9.4, “User-Defined Variables”
Section 3.3.4.6, “Working with NULL Values”

^
Section 12.12, “Bit Functions and Operators”
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 19.5, “Restrictions and Limitations on Partitioning”

|
Section 12.12, “Bit Functions and Operators”
Section 19.5, “Restrictions and Limitations on Partitioning”

||
Section 12.5.3, “Character Set and Collation of Function Results”
Section 10.1.8.2, “COLLATE Clause Precedence”
Section 9.5, “Expression Syntax”
Section 12.3.3, “Logical Operators”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 5.1.8, “Server SQL Modes”

~
Section 12.12, “Bit Functions and Operators”
Section 19.5, “Restrictions and Limitations on Partitioning”

A

[index top]

AND
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 13.1.17, “CREATE TABLE Syntax”
Section 8.2.1.3, “Index Merge Optimization”
Section 12.3.3, “Logical Operators”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 8.2.1.2, “Range Optimization”
Section C.4, “Restrictions on Subqueries”
Section 8.2.1.15, “Row Constructor Expression Optimization”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 12.5.1, “String Comparison Functions”
Section 8.2.2, “Subquery Optimization”
Section 20.5.2, “View Processing Algorithms”

B

[index top]

BETWEEN
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.2, “Range Optimization”
Section 12.2, “Type Conversion in Expression Evaluation”



3273

BINARY
Section 12.10, “Cast Functions and Operators”
Section 8.4.2.2, “Optimizing for Character and String Types”
Section 3.3.4.7, “Pattern Matching”
Section 3.3.4.4, “Sorting Rows”

C

[index top]

CASE
Section 13.6.5.1, “CASE Syntax”
Section 12.4, “Control Flow Functions”
Section 9.5, “Expression Syntax”
Section 1.7.1, “MySQL Extensions to Standard SQL”

CASE value WHEN END
Section 12.4, “Control Flow Functions”

CASE WHEN END
Section 12.4, “Control Flow Functions”

CASE WHEN expr1 = expr2 THEN NULL ELSE expr1 END
Section 12.4, “Control Flow Functions”

D

[index top]

DIV
Section 12.6.1, “Arithmetic Operators”
Section 19.5, “Restrictions and Limitations on Partitioning”

E

[index top]

expr BETWEEN min AND max
Section 12.3.2, “Comparison Functions and Operators”

expr LIKE pat
Section 12.5.1, “String Comparison Functions”

expr NOT BETWEEN min AND max
Section 12.3.2, “Comparison Functions and Operators”

expr NOT LIKE pat
Section 12.5.1, “String Comparison Functions”

expr NOT REGEXP pat
Section 12.5.2, “Regular Expressions”

expr NOT RLIKE pat
Section 12.5.2, “Regular Expressions”



3274

expr REGEXP pat
Section 12.5.2, “Regular Expressions”

expr RLIKE pat
Section 12.5.2, “Regular Expressions”

expr1 SOUNDS LIKE expr2
Section 12.5, “String Functions”

I

[index top]

IS
Section 12.3.1, “Operator Precedence”

IS boolean_value
Section 12.3.2, “Comparison Functions and Operators”

IS NOT boolean_value
Section 12.3.2, “Comparison Functions and Operators”

IS NOT NULL
Section 12.3.2, “Comparison Functions and Operators”
Section B.5.4.3, “Problems with NULL Values”
Section 8.2.1.2, “Range Optimization”
Section 3.3.4.6, “Working with NULL Values”

IS NULL
Section 12.3.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.9, “IS NULL Optimization”
Section B.5.4.3, “Problems with NULL Values”
Section 8.2.1.2, “Range Optimization”
Section 5.1.5, “Server System Variables”
Section 8.2.2, “Subquery Optimization”
Section 3.3.4.6, “Working with NULL Values”

L

[index top]

LIKE
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 12.10, “Cast Functions and Operators”
Section 10.1.2, “Character Sets and Collations in MySQL”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 22.4.3, “Event Pre-Filtering”
Section 21.31, “Extensions to SHOW Statements”
Section 13.8.3, “HELP Syntax”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.4, “mysql Server-Side Help”
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”
Section 12.3.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”



3275

Section 18.5.9, “Quick Reference: NDB Cluster SQL Statements”
Section 8.2.1.2, “Range Optimization”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.7.5.4, “SHOW CHARACTER SET Syntax”
Section 13.7.5.5, “SHOW COLLATION Syntax”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.15, “SHOW DATABASES Syntax”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 13.7.5.25, “SHOW OPEN TABLES Syntax”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 13.7.5.36, “SHOW STATUS Syntax”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 13.7.5.38, “SHOW TABLES Syntax”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section 6.2.3, “Specifying Account Names”
Section 12.5.1, “String Comparison Functions”
Section 9.1.1, “String Literals”
Section 5.1.6.1, “Structured System Variables”
Section 11.4.1, “The CHAR and VARCHAR Types”
Section 11.4.5, “The SET Type”
Section 5.1.6, “Using System Variables”

LIKE '_A%'
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”

LIKE 'pattern'
Section 8.2.1.2, “Range Optimization”
Section 13.7.5, “SHOW Syntax”

LIKE ... ESCAPE
Section B.5.7, “Known Issues in MySQL”

N

[index top]

N % M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

N MOD M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

NOT
Section 12.3.3, “Logical Operators”
Section 5.1.8, “Server SQL Modes”

NOT LIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”

NOT REGEXP
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 3.3.4.7, “Pattern Matching”



3276

Section 12.5.1, “String Comparison Functions”

NOT RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”

O

[index top]

OR
Section 9.5, “Expression Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 8.2.1.3, “Index Merge Optimization”
Section 12.3.3, “Logical Operators”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.2.1.2, “Range Optimization”
Section 8.2.1.15, “Row Constructor Expression Optimization”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.8, “Server SQL Modes”
Section 12.5.1, “String Comparison Functions”
Section 8.2.2, “Subquery Optimization”

R

[index top]

REGEXP
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 12.5.2, “Regular Expressions”
Section C.7, “Restrictions on Character Sets”

RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.2, “Regular Expressions”
Section C.7, “Restrictions on Character Sets”

X

[index top]

XOR
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 12.3.3, “Logical Operators”

Option Index
Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Symbols

[index top]



3277

--
Section 1.7.2.4, “'--' as the Start of a Comment”
Section 4.8.2, “replace — A String-Replacement Utility”

-#
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 5.1.4, “Server Command Options”
Section 24.5.3, “The DBUG Package”

/i
Section 2.3.5.2, “Automating MySQL Installation on Microsoft Windows Using the MSI Package”

/opt/mysql/server-5.5
Section 2.5.2, “Installing MySQL on Linux Using Debian Packages”

/passive
Section 2.3.5.2, “Automating MySQL Installation on Microsoft Windows Using the MSI Package”

/quiet
Section 2.3.5.2, “Automating MySQL Installation on Microsoft Windows Using the MSI Package”

/uninstall
Section 2.3.5.2, “Automating MySQL Installation on Microsoft Windows Using the MSI Package”

/x
Section 2.3.5.2, “Automating MySQL Installation on Microsoft Windows Using the MSI Package”

-1
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

-?
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.14, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.15, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”



3278

Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.4, “Server Command Options”
Section 1.3.2, “The Main Features of MySQL”
Section 4.2.4, “Using Options on the Command Line”

A

[index top]

-A
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.6.3.4, “Other myisamchk Options”

-a
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 16.2.2.1, “memcached Command-Line Options”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.6.3.4, “Other myisamchk Options”

--abort-on-error
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”

--abort-slave-event-count
Section 17.1.3.3, “Replication Slave Options and Variables”

--add-drop-database
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”

--add-drop-table
Section 4.5.4, “mysqldump — A Database Backup Program”

--add-drop-trigger
Section 4.5.4, “mysqldump — A Database Backup Program”

--add-locks
Section 4.5.4, “mysqldump — A Database Backup Program”



3279

--addtodest
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--all
Section 1.4, “What Is New in MySQL 5.5”

--all-databases
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 2.11.1, “Upgrading MySQL”

--all-in-1
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--all-tablespaces
Section 4.5.4, “mysqldump — A Database Backup Program”

--allow-keywords
Section 4.5.4, “mysqldump — A Database Backup Program”

--allow-suspicious-udfs
Section 5.1.4, “Server Command Options”
Section 24.4.2.6, “UDF Security Precautions”

--allowold
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--analyze
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.3.4, “Other myisamchk Options”

--ansi
Section 1.7, “MySQL Standards Compliance”
Section 5.1.4, “Server Command Options”

antonio
Section 6.5.1.4, “PAM Pluggable Authentication”

--append
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--apply-slave-statements
Section 4.5.4, “mysqldump — A Database Backup Program”

--audit-log
Section 6.5.2.7, “Audit Log Options and System Variables”
Section 6.5.2.1, “Installing MySQL Enterprise Audit”



3280

--auto-generate-sql
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-add-autoincrement
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-execute-number
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-guid-primary
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-load-type
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-secondary-indexes
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-unique-query-number
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-unique-write-number
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-generate-sql-write-number
Section 4.5.7, “mysqlslap — Load Emulation Client”

--auto-rehash
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--auto-repair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--auto-vertical-output
Section 4.5.1.1, “mysql Options”

--autocommit
Section 5.1.5, “Server System Variables”

B

[index top]

-B
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”

-b
Section 16.2.2.1, “memcached Command-Line Options”



3281

Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.4, “Server Command Options”

--back_log
Section 2.7, “Installing MySQL on Solaris”

--backup
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

--backup_path
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

backup_path
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--backupid
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--base64-output
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 1.4, “What Is New in MySQL 5.5”

--basedir
Section 2.10.1, “Initializing the Data Directory”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 18.1.6.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.4, “Server Command Options”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”

basedir
Section 2.3.7.2, “Creating an Option File”
Section 2.3.6.13, “MySQL Server Instance Config Wizard: Creating an Instance from the Command
Line”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 2.3.8, “Troubleshooting a Microsoft Windows MySQL Server Installation”

--batch
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”



3282

--big-tables
Section 5.1.4, “Server Command Options”

--binary-as-hex
Section 4.5.1.1, “mysql Options”

--binary-mode
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”

--bind-address
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 5.1.9.2, “Configuring the MySQL Server to Permit IPv6 Connections”
Section 5.1.9.4, “Connecting Using IPv6 Nonlocal Host Addresses”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host Address”
Section 5.1.9, “IPv6 Support”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 5.1.9.5, “Obtaining an IPv6 Address from a Broker”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.4, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”

--binlog-do-db
Section 17.1.3.4, “Binary Log Options and Variables”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.4.4, “The Binary Log”

--binlog-format
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.4.4.1, “Binary Logging Formats”
Section 18.6.2, “General Requirements for NDB Cluster Replication”
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 5.1.4, “Server Command Options”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 18.6.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 18.1.6.6, “Unsupported or Missing Features in NDB Cluster”

--binlog-ignore-db
Section 17.1.3.4, “Binary Log Options and Variables”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.4.4, “The Binary Log”



3283

--binlog-row-event-max-size
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.4.4.2, “Setting The Binary Log Format”

--binlog_format
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--blob-info
Section 18.4.10, “ndb_desc — Describe NDB Tables”

--block-search
Section 4.6.3.4, “Other myisamchk Options”

--bootstrap
Section 5.1.4, “Server Command Options”

--brief
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--builddir
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

C

[index top]

-C
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.1.4, “Server Command Options”

-c
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 4.5.1.1, “mysql Options”
Section 2.3.6.13, “MySQL Server Instance Config Wizard: Creating an Instance from the Command
Line”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”



3284

Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”

--cflags
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--character-set-client-handshake
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 5.1.4, “Server Command Options”
The cp932 Character Set

--character-set-filesystem
Section 5.1.4, “Server Command Options”

--character-set-server
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring Application Character Set and Collation”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 10.1.3.2, “Server Character Set and Collation”
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”

--character-sets-dir
Section B.5.2.17, “Can't initialize character set”
Section 10.5, “Character Set Configuration”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 5.1.4, “Server Command Options”

--character_set_server
Section 2.9.4, “MySQL Source-Configuration Options”

--charset
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--check-only-changed
Section 4.6.3.2, “myisamchk Check Options”



3285

Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--check-orphans
Section 18.4.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables”

--check-upgrade
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--checkpoint
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--chroot
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 5.1.4, “Server Command Options”

CMAKE_BUILD_TYPE
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_build_type
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_RELWITHDEBINFO
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_build_type
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_RELWITHDEBINFO
Section 2.9.4, “MySQL Source-Configuration Options”

CMAKE_INSTALL_PREFIX
Section 24.2.4.3, “Compiling and Installing Plugin Libraries”
Section 2.9.3, “Installing MySQL Using a Development Source Tree”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.5, “Server System Variables”

--collation-server
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring Application Character Set and Collation”
Section 10.1.3.2, “Server Character Set and Collation”
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”



3286

--collation_server
Section 2.9.4, “MySQL Source-Configuration Options”

--column-names
Section 4.5.1.1, “mysql Options”
Section 4.2.5, “Program Option Modifiers”

--column-type-info
Section 8.2.1.13, “LIMIT Query Optimization”
Section 4.5.1.1, “mysql Options”

--columns
Section 4.5.5, “mysqlimport — A Data Import Program”

--comments
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

--commit
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.7, “mysqlslap — Load Emulation Client”

--comp
Section 4.2.3, “Specifying Program Options”

--compact
Section 4.5.4, “mysqldump — A Database Backup Program”

--compatible
Section 4.5.4, “mysqldump — A Database Backup Program”

COMPILATION_COMMENT
Section 5.1.5, “Server System Variables”

--complete-insert
Section 4.5.4, “mysqldump — A Database Backup Program”

--compr
Section 4.2.3, “Specifying Program Options”

--compress
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.2.3, “Specifying Program Options”

--concurrency
Section 4.5.7, “mysqlslap — Load Emulation Client”



3287

--config-cache
Section 18.3.3, “NDB Cluster Configuration Files”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-dir
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-file
Section 18.2.4, “Initial Startup of NDB Cluster”
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 18.3.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 1.4, “What Is New in MySQL 5.5”

--config_from_node
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”

--configdir
Section 18.3.3, “NDB Cluster Configuration Files”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--configinfo
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”

--connect-delay
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”

--connect-retries
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”

--connect-string
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”

--connection-timeout
Section 18.4.13, “ndb_error_reporter — NDB Error-Reporting Utility”

--connections
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”

--console
Section 14.20.2, “Enabling InnoDB Monitors”
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 14.23, “InnoDB Troubleshooting”
Resetting the Root Password: Windows Systems
Section 5.1.4, “Server Command Options”
Section 2.3.7.5, “Starting MySQL from the Windows Command Line”
Section 2.3.7.4, “Starting the Server for the First Time”
Section 5.4.2, “The Error Log”



3288

--copy
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--core-file
Section 24.5.1.4, “Debugging mysqld under gdb”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 5.1.4, “Server Command Options”

core-file
Section 24.5.1.3, “Using WER with PDB to create a Windows crashdump”

--core-file-size
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.4, “Server Command Options”

--correct-checksum
Section 4.6.3.3, “myisamchk Repair Options”

--count
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

--create
Section 4.5.7, “mysqlslap — Load Emulation Client”

--create-options
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 1.4, “What Is New in MySQL 5.5”

--create-schema
Section 4.5.7, “mysqlslap — Load Emulation Client”

--cross-bootstrap
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

--csv
Section 4.5.7, “mysqlslap — Load Emulation Client”

D

[index top]

-D
Section 10.3, “Adding a Character Set”
Section 6.4.2, “Building MySQL with Support for Secure Connections”
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section B.5.2.17, “Can't initialize character set”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 18.2.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 23.7.1, “Compiling Programs with libmysqld”
Section 24.5.2, “Debugging a MySQL Client”
Section 2.9.2, “Installing MySQL Using a Standard Source Distribution”



3289

Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 18.5.4, “MySQL Server Usage for NDB Cluster”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 24.1.1, “MySQL Threads”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”
Chapter 19, Partitioning
Section 22.2, “Performance Schema Build Configuration”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 15.6, “The ARCHIVE Storage Engine”
Section 15.7, “The BLACKHOLE Storage Engine”
Section 15.10, “The EXAMPLE Storage Engine”
Section 15.9, “The FEDERATED Storage Engine”
Section 5.7, “Tracing mysqld Using DTrace”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”
Section 2.1.1, “Which MySQL Version and Distribution to Install”

-d
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 18.4.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables”
Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.5, “Server System Variables”

--daemon
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”

--data-file-length
Section 4.6.3.3, “myisamchk Repair Options”

--database
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 18.4.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables”



3290

Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”
Section 18.4.25, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--databases
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 7.4.5.1, “Making a Copy of a Database”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”

--datadir
Section 2.3.7.2, “Creating an Option File”
Section 2.10.1, “Initializing the Data Directory”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 18.5.11.3, “NDB Cluster and MySQL Security Procedures”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.4, “Server Command Options”
Section 5.6.1, “Setting Up Multiple Data Directories”
Section 5.2, “The MySQL Data Directory”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 4.2.6, “Using Option Files”

datadir
Section 2.3.7.2, “Creating an Option File”
Section 2.4.1, “General Notes on Installing MySQL on OS X”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 2.3.8, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section C.10.6, “Windows Platform Limitations”

--db
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--debug
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”



3291

Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 2.3.7.5, “Starting MySQL from the Windows Command Line”
Section 24.5.3, “The DBUG Package”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”

--debug-check
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”

--debug-info
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”

--debug-sync-timeout
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

--default-auth
Section 23.8.14, “C API Client Plugin Functions”
Client Plugin Descriptors
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 6.5.1.1, “Native Pluggable Authentication”
Section 6.5.1.2, “Old Native Pluggable Authentication”



3292

Section 6.3.6, “Pluggable Authentication”
Using the Authentication Plugins

--default-character-set
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring Application Character Set and Collation”
Section 10.1.4, “Connection Character Sets and Collations”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 6.3.1, “User Names and Passwords”
Section 1.4, “What Is New in MySQL 5.5”

--default-collation
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”

--default-storage-engine
Section 14.17, “InnoDB Startup Options and System Variables”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 15.1, “Setting the Storage Engine”
Section 14.1.6, “Turning Off InnoDB”
Section 1.4, “What Is New in MySQL 5.5”

default-storage-engine
Section 15.1, “Setting the Storage Engine”

--default-table-type
Section 1.4, “What Is New in MySQL 5.5”

--default-time-zone
Section 10.6, “MySQL Server Time Zone Support”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

--default.key_buffer_size
Section 5.1.6.1, “Structured System Variables”

DEFAULT_CHARSET
Section 10.1.5, “Configuring Application Character Set and Collation”
Section 10.1.3.2, “Server Character Set and Collation”

DEFAULT_COLLATION
Section 10.1.5, “Configuring Application Character Set and Collation”
Section 10.1.3.2, “Server Character Set and Collation”



3293

--defaults-extra-file
Section 4.2.7, “Command-Line Options that Affect Option-File Handling”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 5.1.4, “Server Command Options”
Section 4.2.6, “Using Option Files”
Section 1.4, “What Is New in MySQL 5.5”

--defaults-file
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 4.2.7, “Command-Line Options that Affect Option-File Handling”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 14.9.1, “InnoDB Startup Configuration”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 23.7.3, “Options with the Embedded Server”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.4, “Server Command Options”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 5.6.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.7.7, “Starting MySQL as a Windows Service”
Section 2.3.6.1, “Starting the MySQL Server Instance Configuration Wizard”

--defaults-group-suffix
Section 4.2.7, “Command-Line Options that Affect Option-File Handling”



3294

Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.9, “MySQL Program Environment Variables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.1.4, “Server Command Options”

--delay
Section 18.4.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--delay-key-write
Section 8.11.5, “External Locking”
Section 15.3.1, “MyISAM Startup Options”
Section A.13, “MySQL 5.5 FAQ: Replication”
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

--delay-key-write-for-all-tables
Section 1.4, “What Is New in MySQL 5.5”

--delay_key_write
Section 5.1.5, “Server System Variables”
Section 5.1.6, “Using System Variables”

--delayed-insert
Section 4.5.4, “mysqldump — A Database Backup Program”

--delete
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

--delete-master-logs
Section 4.5.4, “mysqldump — A Database Backup Program”

--delete-orphans
Section 18.4.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables”

--delimiter
Section 4.5.1.1, “mysql Options”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--demangle
Section 24.5.1.5, “Using a Stack Trace”

--des-key-file
Section 12.13, “Encryption and Compression Functions”



3295

Section 13.7.6.3, “FLUSH Syntax”
Section 5.1.4, “Server Command Options”

--descending
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--description
Section 4.6.3.4, “Other myisamchk Options”

--detach
Section 4.5.7, “mysqlslap — Load Emulation Client”

--disable
Section 4.2.5, “Program Option Modifiers”

--disable-auto-rehash
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”
Section 4.5.1.1, “mysql Options”

--disable-indexes
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--disable-keys
Section 4.5.4, “mysqldump — A Database Backup Program”

--disable-log-bin
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--disable-named-commands
Section 4.5.1.1, “mysql Options”

--disable-plugin_name
Section 5.5.2, “Installing and Uninstalling Plugins”

--disable-ssl
Section 6.4.5, “Command Options for Secure Connections”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”

--disconnect-slave-event-count
Section 17.1.3.3, “Replication Slave Options and Variables”

--disk
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--dont_ignore_systab_0
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--drop-source
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”

--dry-scp
Section 18.4.13, “ndb_error_reporter — NDB Error-Reporting Utility”

--dryrun
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”



3296

--dump
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

--dump-date
Section 4.5.4, “mysqldump — A Database Backup Program”

--dump-file
Section 18.4.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables”

--dump-slave
Section 4.5.4, “mysqldump — A Database Backup Program”

E

[index top]

-E
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup Program”

-e
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 13.2.7, “LOAD XML Syntax”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.4.5, “ndb_mgm — The NDB Cluster Management Client”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 18.2.6, “Safe Shutdown and Restart of NDB Cluster”
Section 4.2.4, “Using Options on the Command Line”
Section 18.5.3.2, “Using The NDB Cluster Management Client to Create a Backup”

--embedded
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--embedded-libs
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--enable-64bit
Section 16.2.1, “Installing memcached”

--enable-cleartext-plugin
Section 6.5.1.3, “Client-Side Cleartext Pluggable Authentication”
Section 4.5.1.1, “mysql Options”



3297

Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 6.5.1.4, “PAM Pluggable Authentication”

--enable-dtrace
Section 16.2.1, “Installing memcached”
Section 16.2.2.6, “Using memcached and DTrace”

--enable-locking
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”

--enable-memcache
Section 16.2.3.6, “Using MySQL and memcached with PHP”

--enable-named-pipe
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 2.3.7.3, “Selecting a MySQL Server Type”
Section 5.1.4, “Server Command Options”
Section 1.3.2, “The Main Features of MySQL”

--enable-plugin_name
Section 5.5.2, “Installing and Uninstalling Plugins”

--enable-pstack
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”

--enable-threads
Section 16.2.1, “Installing memcached”

ENABLE_DEBUG_SYNC
Section 2.9.4, “MySQL Source-Configuration Options”

ENABLED_LOCAL_INFILE
Section 2.9.4, “MySQL Source-Configuration Options”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

--engine
Section 4.5.7, “mysqlslap — Load Emulation Client”

--engine-condition-pushdown
Section 18.3.3.2, “Recommended Starting Configuration for NDB Cluster”

--error-insert
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”

--event-scheduler
Section 20.4.2, “Event Scheduler Configuration”
Section 5.1.4, “Server Command Options”



3298

event-scheduler
Section 20.4.2, “Event Scheduler Configuration”

--events
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 2.11.1, “Upgrading MySQL”

--example
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--exclude-*
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-databases
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-intermediate-sql-tables
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-missing-columns
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-missing-tables
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-tables
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--excludedbs
Section 18.4.25, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--excludetables
Section 18.4.25, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--execute
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 18.4.5, “ndb_mgm — The NDB Cluster Management Client”
Section 4.2.4, “Using Options on the Command Line”
Section 18.5.3.2, “Using The NDB Cluster Management Client to Create a Backup”

--exit-info
Section 5.1.4, “Server Command Options”

--extend-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”

--extended
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”



3299

--extended-insert
Section 4.5.4, “mysqldump — A Database Backup Program”

--external-locking
Section 8.11.5, “External Locking”
Section 15.3.1, “MyISAM Startup Options”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 8.12.1, “System Factors”
Section 1.4, “What Is New in MySQL 5.5”

--extra-file
Section 4.7.3, “my_print_defaults — Display Options from Option Files”

--extra-node-info
Section 18.4.10, “ndb_desc — Describe NDB Tables”

--extra-partition-info
Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 18.5.10.4, “The ndbinfo cluster_operations Table”
Section 18.5.10.15, “The ndbinfo server_operations Table”

F

[index top]

-F
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.2, “mysql Commands”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”

-f
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 18.2.4, “Initial Startup of NDB Cluster”
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 4.5.1.1, “mysql Options”
Section 4.6.15, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 24.5.1.5, “Using a Stack Trace”



3300

--fast
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--federated
Section 15.9, “The FEDERATED Storage Engine”

--fields
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”

--fields-enclosed-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--fields-escaped-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--fields-optionally-enclosed-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--fields-terminated-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--fields-xxx
Section 4.5.4, “mysqldump — A Database Backup Program”

--first-slave
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 1.4, “What Is New in MySQL 5.5”

--fix-db-names
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--fix-table-names
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--flush
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

--flush-logs
Section 7.3.1, “Establishing a Backup Policy”
Section 5.4, “MySQL Server Logs”



3301

Section 4.5.4, “mysqldump — A Database Backup Program”

--flush-privileges
Section 4.5.4, “mysqldump — A Database Backup Program”

--flush_time
Section 24.1.1, “MySQL Threads”

--flushlog
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--force
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 24.1.2, “The MySQL Test Suite”
Section 3.5, “Using mysql in Batch Mode”

--force-if-open
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--force-read
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--foreground
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”

--format
Section 18.4.25, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--fs
Section 18.4.13, “ndb_error_reporter — NDB Error-Reporting Utility”

G

[index top]

-G
Section 4.5.1.1, “mysql Options”

-g
Section 24.5.1.1, “Compiling MySQL for Debugging”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”



3302

--gci
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--gci64
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--gdb
Section 24.5.1.4, “Debugging mysqld under gdb”
Section 5.1.4, “Server Command Options”

--general-log
Section 5.1.4, “Server Command Options”

--general_log
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 5.4.3, “The General Query Log”

--general_log_file
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 5.4.3, “The General Query Log”

H

[index top]

-H
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

-h
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”



3303

Section 5.1.4, “Server Command Options”
Section 1.2, “Typographical and Syntax Conventions”
Section 4.2.4, “Using Options on the Command Line”

--header
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--header_file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--HELP
Section 4.6.3.1, “myisamchk General Options”

--help
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.11, “mysql_find_rows — Extract SQL Statements from Files”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.13, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.14, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.15, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.13, “ndb_error_reporter — NDB Error-Reporting Utility”
Section 18.4.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.4, “Server Command Options”
Section 2.10.3, “Testing the Server”
Section 1.3.2, “The Main Features of MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”



3304

Chapter 3, Tutorial
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”

--hex
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--hex-blob
Section 4.5.4, “mysqldump — A Database Backup Program”

--hexdump
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--host
Section 5.1.9.2, “Configuring the MySQL Server to Permit IPv6 Connections”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.13, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 4.2.9, “Option Defaults, Options Expecting Values, and the = Sign”
Section 5.1.4, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 1.2, “Typographical and Syntax Conventions”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”

--hostname
Section 18.4.25, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--howto
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--html
Section 4.5.1.1, “mysql Options”

I

[index top]

-I
Section 23.8.4.1, “Building C API Client Programs”
Section 16.2.2.1, “memcached Command-Line Options”



3305

Section 16.2.5, “memcached FAQ”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.14, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.15, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”

-i
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 24.5.1.3, “Using WER with PDB to create a Windows crashdump”

--i-am-a-dummy
Section 4.5.1.1, “mysql Options”
Using the --safe-updates Option

--id
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”

--ignore
Section 4.5.5, “mysqlimport — A Data Import Program”

--ignore-builtin-innodb
Section 14.17, “InnoDB Startup Options and System Variables”

--ignore-lines
Section 4.5.5, “mysqlimport — A Data Import Program”

--ignore-spaces
Section 4.5.1.1, “mysql Options”

--ignore-table
Section 4.5.4, “mysqldump — A Database Backup Program”

--in_file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--include
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--include-*
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”



3306

--include-databases
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--include-master-host-port
Section 4.5.4, “mysqldump — A Database Backup Program”

--include-tables
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--info
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”

--Information
Section 4.6.11, “mysql_find_rows — Extract SQL Statements from Files”

--information
Section 4.6.3.2, “myisamchk Check Options”

--init-command
Section 4.5.1.1, “mysql Options”
Section 17.4.1.30, “Replication of Server-Side Help Tables”

--init-file
Section 22.4, “Performance Schema Runtime Configuration”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 15.4, “The MEMORY Storage Engine”

--init_connect
Section 10.1.5, “Configuring Application Character Set and Collation”

--initial
Section 18.5.13.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 18.1.6.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 18.3.3, “NDB Cluster Configuration Files”
Section 18.3.2.1, “NDB Cluster Data Node Configuration Parameters”
Section 18.5.12.3, “NDB Cluster Disk Data Storage Requirements”
Section 18.3.2.2, “NDB Cluster Management Node Configuration Parameters”
Section 18.3.2.3, “NDB Cluster SQL Node and API Node Configuration Parameters”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.4.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 18.3.2.4, “Other NDB Cluster Configuration Parameters”
Section 18.3.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”



3307

Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 18.5.1, “Summary of NDB Cluster Start Phases”

--initial-start
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”

--innodb
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.1.6, “Turning Off InnoDB”

--innodb-status-file
Section 14.17, “InnoDB Startup Options and System Variables”

innodb-status-file
Section 14.20.2, “Enabling InnoDB Monitors”

--innodb-xxx
Section 5.1.4, “Server Command Options”

--innodb_checksums
Section 14.17, “InnoDB Startup Options and System Variables”

--innodb_file_per_table
Section 14.10.4.1, “Enabling and Disabling File-Per-Table Tablespaces”
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 5.1.4, “Server Command Options”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”

innodb_file_per_table
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 5.1.4, “Server Command Options”

--innodb_rollback_on_timeout
Section 14.23.4, “InnoDB Error Handling”
Section 14.17, “InnoDB Startup Options and System Variables”

--innodb_support_xa
Section 5.4.4, “The Binary Log”

--insert-ignore
Section 4.5.4, “mysqldump — A Database Backup Program”

--install
Section 4.2.7, “Command-Line Options that Affect Option-File Handling”
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 5.1.4, “Server Command Options”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.7.7, “Starting MySQL as a Windows Service”

--install-manual
Section 5.1.4, “Server Command Options”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.7.7, “Starting MySQL as a Windows Service”



3308

INSTALL_LAYOUT
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.5, “Server System Variables”

INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.5, “Server System Variables”

INSTALL_SECURE_FILE_PRIVDIR
Section 5.1.5, “Server System Variables”

--interactive
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--iterations
Section 4.5.7, “mysqlslap — Load Emulation Client”

J

[index top]

-j
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--join
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

K

[index top]

-K
Section 4.5.4, “mysqldump — A Database Backup Program”

-k
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

--keep_files_on_create
Section 13.1.17, “CREATE TABLE Syntax”

--keepold
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--key_buffer_size
Section 5.1.4, “Server Command Options”

--keys
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

--keys-used
Section 4.6.3.3, “myisamchk Repair Options”



3309

L

[index top]

-L
Section 23.8.4.1, “Building C API Client Programs”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 2.12.3, “Problems Using the Perl DBI/DBD Interface”
Section 10.2, “Setting the Error Message Language”

-l
Section 23.8.4.1, “Building C API Client Programs”
Section 23.8.13, “C API Embedded Server Function Descriptions”
Section 23.8.6, “C API Function Overview”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.3, “myisamchk Repair Options”
Section 23.8.7.39, “mysql_library_end()”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”
Section 18.4.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 5.1.4, “Server Command Options”
Section 5.4.3, “The General Query Log”

--language
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 10.2, “Setting the Error Message Language”
Section 1.4, “What Is New in MySQL 5.5”

--large-pages
Section 8.12.4.2, “Enabling Large Page Support”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

--lc-messages
Section 5.1.4, “Server Command Options”

--lc-messages-dir
Section 5.1.4, “Server Command Options”

--ldata
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

--ledir
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”



3310

--length
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”

--libmysqld-libs
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--libs
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--libs_r
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--line-numbers
Section 4.5.1.1, “mysql Options”

--lines-terminated-by
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--loadqueries
Section 18.4.25, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--local
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

--local-infile
Section 13.2.7, “LOAD XML Syntax”
Section 4.5.1.1, “mysql Options”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

--local-load
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--local-service
Section 5.1.4, “Server Command Options”
Section 2.3.7.7, “Starting MySQL as a Windows Service”

--lock
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--lock-all-tables
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 1.4, “What Is New in MySQL 5.5”

--lock-tables
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--log
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”



3311

Section 5.1.4, “Server Command Options”
Section 5.4.3, “The General Query Log”

--log-bin
Section 7.3.3, “Backup Strategy Summary”
Section 17.1.3.4, “Binary Log Options and Variables”
Section 20.7, “Binary Logging of Stored Programs”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 17.4.5, “How to Report Replication Bugs or Problems”
Section B.5.7, “Known Issues in MySQL”
Section 18.1.6.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 17.3.6, “Switching Masters During Failover”
Section 5.4.4, “The Binary Log”
Section 17.4.4, “Troubleshooting Replication”
Section 17.4.3, “Upgrading a Replication Setup”
Section 7.3.2, “Using Backups for Recovery”

--log-bin-index
Section 17.1.3.4, “Binary Log Options and Variables”
Section 18.1.6.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 5.4.4, “The Binary Log”

--log-bin-trust-function-creators
Section 17.1.3.4, “Binary Log Options and Variables”
Section 20.7, “Binary Logging of Stored Programs”
Section 1.4, “What Is New in MySQL 5.5”

--log-bin-trust-routine-creators
Section 1.4, “What Is New in MySQL 5.5”

--log-bin-use-v1-events
Section 17.1.3.4, “Binary Log Options and Variables”

--log-bin-use-v1-row-events
Section 17.1.3.4, “Binary Log Options and Variables”
MySQL Server Options for NDB Cluster
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”

--log-error
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 13.7.6.3, “FLUSH Syntax”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.2.9, “Option Defaults, Options Expecting Values, and the = Sign”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.4, “Server Command Options”
Section 5.4.7, “Server Log Maintenance”
Section 2.3.7.5, “Starting MySQL from the Windows Command Line”



3312

Section 2.3.7.4, “Starting the Server for the First Time”
Section 5.4.2, “The Error Log”

--log-isam
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 5.1.4, “Server Command Options”

--log-long-format
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”

--log-name
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--log-output
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section 5.4.3, “The General Query Log”
Section 5.4.5, “The Slow Query Log”

--log-queries-not-using-indexes
Section 5.1.4, “Server Command Options”

--log-short-format
Section 5.1.4, “Server Command Options”
Section 5.4.5, “The Slow Query Log”

--log-slave-updates
Section 17.4.5, “How to Report Replication Bugs or Problems”
Section 17.3.5, “Improving Replication Performance”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
MySQL Server Options for NDB Cluster
Section 18.6.10, “NDB Cluster Replication: Multi-Master and Circular Replication”
NDB Cluster System Variables
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 17.3.6, “Switching Masters During Failover”
Section 5.4.4, “The Binary Log”

--log-slow-admin-statements
Section 5.1.4, “Server Command Options”
Section 5.4.5, “The Slow Query Log”

--log-slow-queries
Section 5.1.4, “Server Command Options”
Section 5.4.5, “The Slow Query Log”

--log-slow-slave-statements
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.4.5, “The Slow Query Log”

--log-tc
Section 5.1.4, “Server Command Options”

--log-tc-size
Section 5.1.4, “Server Command Options”



3313

Section 5.1.7, “Server Status Variables”

--log-update
Section 1.4, “What Is New in MySQL 5.5”

--log-warnings
Section B.5.2.11, “Communication Errors and Aborted Connections”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section B.5.2.9, “MySQL server has gone away”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server Command Options”
Section 5.4.2, “The Error Log”
Section 1.4, “What Is New in MySQL 5.5”

--loops
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”
Section 18.4.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--loose
Section 4.2.5, “Program Option Modifiers”

--loose-opt_name
Section 4.2.6, “Using Option Files”

--lossy-conversions
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--low-priority
Section 4.5.5, “mysqlimport — A Data Import Program”

--low-priority-updates
Section 8.11.3, “Concurrent Inserts”
Section 13.2.5, “INSERT Syntax”
Section A.13, “MySQL 5.5 FAQ: Replication”
Section 5.1.4, “Server Command Options”
Section 8.11.2, “Table Locking Issues”

--lower-case-table-names
Section 9.2.2, “Identifier Case Sensitivity”

M

[index top]

-M
Section 16.2.2.1, “memcached Command-Line Options”

-m
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”



3314

Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--malloc-lib
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--master-connect-retry
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 1.4, “What Is New in MySQL 5.5”

--master-data
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.4, “MySQL Server Logs”
Section 4.5.4, “mysqldump — A Database Backup Program”

--master-host
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.5”

--master-info-file
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 17.2.2.2, “Slave Status Logs”

--master-password
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.5”

--master-port
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.5”

--master-retry-count
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.3.3, “Replication Slave Options and Variables”

--master-ssl
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.5”

--master-ssl-ca
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.5”

--master-ssl-capath
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.5”

--master-ssl-cert
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.5”

--master-ssl-cipher
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.5”



3315

--master-ssl-key
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.5”

--master-user
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.5”

--master-xxx
Section 1.4, “What Is New in MySQL 5.5”

--max
Section 4.2.8, “Using Options to Set Program Variables”

--max-binlog-dump-events
Section 17.1.3.4, “Binary Log Options and Variables”

--max-binlog-size
Section 17.1.3.3, “Replication Slave Options and Variables”

--max-record-length
Section 4.6.3.3, “myisamchk Repair Options”
Section 13.7.2.5, “REPAIR TABLE Syntax”

--max-relay-log-size
Section 17.1.3.3, “Replication Slave Options and Variables”

--max-seeks-for-key
Section 8.2.1.16, “Avoiding Full Table Scans”
Section B.5.5, “Optimizer-Related Issues”

--max_a
Section 4.2.8, “Using Options to Set Program Variables”

--max_join_size
Using the --safe-updates Option

--maximum
Section 4.2.5, “Program Option Modifiers”

--maximum-max_heap_table_size
Section 4.2.5, “Program Option Modifiers”

--maximum-query_cache_size
Section 4.2.5, “Program Option Modifiers”
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.6, “Using System Variables”

--maximum-var_name
Section 5.1.4, “Server Command Options”
Section 5.1.6, “Using System Variables”

--medium-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”



3316

--memlock
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 14.10.3, “Using Raw Disk Partitions for the System Tablespace”

--method
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--min-examined-row-limit
Section 5.1.4, “Server Command Options”

--my-plugin
Section 5.5.2, “Installing and Uninstalling Plugins”

--my-print-defaults
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”

--my_plugin
Section 5.5.2, “Installing and Uninstalling Plugins”

--mycnf
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--myisam-block-size
Section 8.10.2.5, “Key Cache Block Size”
Section 5.1.4, “Server Command Options”

--myisam-recover
Section 5.1.4, “Server Command Options”

--myisam-recover-options
Section 15.3.1, “MyISAM Startup Options”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section B.5.2.19, “Table-Corruption Issues”
Section 15.3, “The MyISAM Storage Engine”
Section 24.5.1.6, “Using Server Logs to Find Causes of Errors in mysqld”

--myisam_sort_buffer_size
Section 4.6.3.6, “myisamchk Memory Usage”

MYSQL_MAINTAINER_MODE
Section 2.9.5, “Dealing with Problems Compiling MySQL”

MYSQL_TCP_PORT
Section 2.9.3, “Installing MySQL Using a Development Source Tree”
Section 2.9.4, “MySQL Source-Configuration Options”

MYSQL_UNIX_ADDR
Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 2.9.3, “Installing MySQL Using a Development Source Tree”
Section 2.9.4, “MySQL Source-Configuration Options”



3317

--mysqladmin
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--mysqld
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--mysqld-version
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

N

[index top]

-N
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

-n
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”

--name_file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--named-commands
Section 4.5.1.1, “mysql Options”

--ndb
Section 4.8.1, “perror — Explain Error Codes”

--ndb-batch-size
MySQL Server Options for NDB Cluster

--ndb-blob-read-batch-bytes
MySQL Server Options for NDB Cluster

--ndb-blob-write-batch-bytes
MySQL Server Options for NDB Cluster

--ndb-cluster
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”



3318

--ndb-cluster-connection-pool
MySQL Server Options for NDB Cluster

--ndb-connectstring
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
MySQL Server Options for NDB Cluster
Section 18.5.4, “MySQL Server Usage for NDB Cluster”
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”
Section 18.1.1, “NDB Cluster Core Concepts”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 18.6.5, “Preparing the NDB Cluster for Replication”
Section 18.3.3.2, “Recommended Starting Configuration for NDB Cluster”

--ndb-deferred-constraints
MySQL Server Options for NDB Cluster

--ndb-distribution
MySQL Server Options for NDB Cluster

--ndb-force-send
Section 18.3.3.2, “Recommended Starting Configuration for NDB Cluster”

--ndb-index-stat-enable
Section 18.3.3.2, “Recommended Starting Configuration for NDB Cluster”

--ndb-log-apply-status
MySQL Server Options for NDB Cluster
NDB Cluster System Variables

--ndb-log-empty-epochs
MySQL Server Options for NDB Cluster
Section 18.6.4, “NDB Cluster Replication Schema and Tables”

--ndb-log-empty-update
MySQL Server Options for NDB Cluster

--ndb-log-orig
MySQL Server Options for NDB Cluster
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster System Variables

--ndb-log-transaction-id
Section 17.1.3.4, “Binary Log Options and Variables”
MySQL Server Options for NDB Cluster
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables

--ndb-log-update-as-write
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”
Section 5.4.4, “The Binary Log”



3319

--ndb-log-updated-only
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”

--ndb-mgmd-host
MySQL Server Options for NDB Cluster
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”

--ndb-nodegroup-map
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--ndb-nodeid
MySQL Server Options for NDB Cluster
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”

--ndb-optimized-node-selection
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”

--ndb-transid-mysql-connection-map
Section 21.29.2, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”

ndb-transid-mysql-connection-map
MySQL Server Options for NDB Cluster

--ndb-use-exact-count
Section 18.3.3.2, “Recommended Starting Configuration for NDB Cluster”

--ndb-wait-connected
MySQL Server Options for NDB Cluster

--ndb-wait-setup
MySQL Server Options for NDB Cluster

--ndb_optimization_delay
MySQL Server Options for NDB Cluster

--ndbcluster
Section 18.3, “Configuration of NDB Cluster”
Section 18.2.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
MySQL Server Options for NDB Cluster
Section 18.5.4, “MySQL Server Usage for NDB Cluster”
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”
Section 18.1.1, “NDB Cluster Core Concepts”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 18.3.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 13.7.5.17, “SHOW ENGINES Syntax”

--ndbinfo-database
NDB Cluster System Variables



3320

--ndbinfo-table-prefix
NDB Cluster System Variables

net_retry_count
Section 17.2.1, “Replication Implementation Details”

net_write_timeout
Section 17.2.1, “Replication Implementation Details”

--nice
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--no-auto-rehash
Section 4.5.1.1, “mysql Options”

--no-autocommit
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-beep
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”

--no-binlog
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--no-contact
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--no-create-db
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-create-info
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-data
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-defaults
Section 4.2.7, “Command-Line Options that Affect Option-File Handling”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”



3321

Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 5.1.4, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 4.2.6, “Using Option Files”

--no-drop
Section 4.5.7, “mysqlslap — Load Emulation Client”

--no-log
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--no-named-commands
Section 4.5.1.1, “mysql Options”
Section 1.4, “What Is New in MySQL 5.5”

--no-nodeid-checks
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--no-pager
Section 4.5.1.1, “mysql Options”
Section 1.4, “What Is New in MySQL 5.5”

--no-restore-disk-objects
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--no-set-names
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-symlinks
Section 4.6.3.3, “myisamchk Repair Options”

--no-tablespaces
Section 4.5.4, “mysqldump — A Database Backup Program”

--no-tee
Section 4.5.1.1, “mysql Options”
Section 1.4, “What Is New in MySQL 5.5”

--no-upgrade
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--nodaemon
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”

--nodata
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--nodeid
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”



3322

Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--nodes
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”

--noindices
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--nostart
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”

--not-started
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--nowait-nodes
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”

--number-char-cols
Section 4.5.7, “mysqlslap — Load Emulation Client”

--number-int-cols
Section 4.5.7, “mysqlslap — Load Emulation Client”

--number-of-queries
Section 4.5.7, “mysqlslap — Load Emulation Client”

--numeric-dump-file
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”

O

[index top]

-O
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 1.4, “What Is New in MySQL 5.5”

-o
Section 23.7.1, “Compiling Programs with libmysqld”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”
Section 8.12.2, “Optimizing Disk I/O”

--offset
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”



3323

--old-alter-table
Section 5.1.4, “Server Command Options”

--old-style-user-limits
Section 5.1.4, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”

--old_server
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

ON
Section 3.3.4.9, “Using More Than one Table”

--one-database
Section 4.5.1.1, “mysql Options”

--one-thread
Section 5.1.4, “Server Command Options”

--only-print
Section 4.5.7, “mysqlslap — Load Emulation Client”

--open-files-limit
Section B.5.2.18, “File Not Found and Similar Errors”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

open-files-limit
Section B.5.2.7, “Too many connections”

--opt
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”

--opt_name
Section 4.2.6, “Using Option Files”

--optimize
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--order
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--order-by-primary
Section 4.5.4, “mysqldump — A Database Backup Program”

--out_dir
Section 4.4.1, “comp_err — Compile MySQL Error Message File”



3324

--out_file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

P

[index top]

-P
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 5.1.4, “Server Command Options”

-p
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 6.3.2, “Adding User Accounts”
Section 4.2.2, “Connecting to the MySQL Server”
Section 2.11.2, “Downgrading MySQL”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.2.1, “Invoking MySQL Programs”
Section 19.2.5, “KEY Partitioning”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”
Section B.5.2.5, “Password Fails When Entered Interactively”
Section 2.10.4, “Securing the Initial MySQL Accounts”



3325

Section 2.3.7.7, “Starting MySQL as a Windows Service”
Section 2.3.7.5, “Starting MySQL from the Windows Command Line”
Section 2.3.7.8, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 18.5.10.4, “The ndbinfo cluster_operations Table”
Section 18.5.10.15, “The ndbinfo server_operations Table”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 2.11.1, “Upgrading MySQL”
Section 2.3.10, “Upgrading MySQL on Windows”
Section 6.3.1, “User Names and Passwords”
Section 4.2.4, “Using Options on the Command Line”
Section 2.3.9, “Windows Postinstallation Procedures”

--pager
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--parallel-recover
Section 4.6.3.3, “myisamchk Repair Options”

--parallelism
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

parallelism
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--parsable
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”

--partition
Section 5.1.4, “Server Command Options”

--password
Section 6.3.2, “Adding User Accounts”
Section 4.2.2, “Connecting to the MySQL Server”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 7.3, “Example Backup and Recovery Strategy”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.13, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section B.5.2.5, “Password Fails When Entered Interactively”
Section 6.5.1.7, “Test Pluggable Authentication”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 6.3.1, “User Names and Passwords”
Section 4.2.4, “Using Options on the Command Line”



3326

--performance_schema_max_mutex_classes
Section 22.7, “Performance Schema Status Monitoring”

--performance_schema_max_mutex_instances
Section 22.7, “Performance Schema Status Monitoring”

--pid-file
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 5.4.2, “The Error Log”

pid-file
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

--pipe
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 2.3.7.8, “Testing The MySQL Installation”

--plan
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--plugin
Section 5.1.4, “Server Command Options”

--plugin-dir
Section 23.8.14, “C API Client Plugin Functions”
Client Plugin Descriptors
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 6.3.6, “Pluggable Authentication”
Section C.9, “Restrictions on Pluggable Authentication”
Using the Authentication Plugins

--plugin-ini
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”



3327

--plugin-innodb_file_per_table
Section 5.1.4, “Server Command Options”

--plugin-load
Section 6.5.2.7, “Audit Log Options and System Variables”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 6.5.2.1, “Installing MySQL Enterprise Audit”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 6.5.1.4, “PAM Pluggable Authentication”
Section 24.2.3, “Plugin API Components”
Section 24.2.4.2, “Plugin Data Structures”
Section 5.1.4, “Server Command Options”
Server Plugin Library and Plugin Descriptors
Section 6.5.1.6, “Socket Peer-Credential Pluggable Authentication”
Section 6.5.1.7, “Test Pluggable Authentication”
Section 24.2, “The MySQL Plugin API”
Section 5.5.4.2, “Thread Pool Installation”
Using the Authentication Plugins
Section 6.5.1.5, “Windows Pluggable Authentication”

--plugin-sql-mode
Section 5.1.4, “Server Command Options”

--plugin-xxx
Section 5.1.4, “Server Command Options”

--plugin_dir
Section 2.9.4, “MySQL Source-Configuration Options”
Section 24.2.3, “Plugin API Components”

--plugin_name
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”

--plugindir
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--port
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.13, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”



3328

Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”

--port-open-timeout
Section 5.1.4, “Server Command Options”

--position
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 1.4, “What Is New in MySQL 5.5”

--post-query
Section 4.5.7, “mysqlslap — Load Emulation Client”

--post-system
Section 4.5.7, “mysqlslap — Load Emulation Client”

--pre-query
Section 4.5.7, “mysqlslap — Load Emulation Client”

--pre-system
Section 4.5.7, “mysqlslap — Load Emulation Client”

PREFIX
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”

--prefix
Section 16.2.1, “Installing memcached”

--preserve-trailing-spaces
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--preview
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--print
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--print-defaults
Section 4.2.7, “Command-Line Options that Affect Option-File Handling”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”



3329

Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 5.1.4, “Server Command Options”
Section 2.11.1, “Upgrading MySQL”

--print-full-config
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--print_*
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--print_data
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--print_log
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--print_meta
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--progress-frequency
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--promote-attributes
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--prompt
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--protocol
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 2.3.7.4, “Starting the Server for the First Time”
Section 2.3.7.8, “Testing The MySQL Installation”
Section 1.3.2, “The Main Features of MySQL”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”

Q

[index top]

-Q
Section 4.5.4, “mysqldump — A Database Backup Program”



3330

-q
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.17, “ndb_print_file — Print NDB Disk Data File Contents”

--query
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

--query-cache-size
Section 8.11.5, “External Locking”

--quick
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.1, “mysql — The MySQL Command-Line Tool”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section B.5.2.8, “Out of memory”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.6, “Using Option Files”

--quiet
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--quote-names
Section 4.5.4, “mysqldump — A Database Backup Program”

R

[index top]

-R
Section 16.2.2.1, “memcached Command-Line Options”
Section 16.2.4.1, “memcached General Statistics”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.6.3.4, “Other myisamchk Options”

-r
Section 24.4.2, “Adding a New User-Defined Function”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”



3331

Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 5.1.4, “Server Command Options”

--raw
Section 4.5.1.1, “mysql Options”

--read-from-remote-server
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--read-only
Section 4.6.3.2, “myisamchk Check Options”

--rebuild-indexes
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--reconnect
Section 4.5.1.1, “mysql Options”

--record_log_pos
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--recover
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--regexp
Section 4.6.11, “mysql_find_rows — Extract SQL Statements from Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--relative
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”

--relay-log
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.3.5, “Improving Replication Performance”
Section 17.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
Section 4.2.9, “Option Defaults, Options Expecting Values, and the = Sign”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 17.2.2.1, “The Slave Relay Log”

--relay-log-index
Section 17.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 17.2.2.1, “The Slave Relay Log”



3332

--relay-log-info-file
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 17.2.2.2, “Slave Status Logs”

--relay-log-purge
Section 17.1.3.3, “Replication Slave Options and Variables”

--relay-log-recovery
Section 17.1.3.3, “Replication Slave Options and Variables”

--relay-log-space-limit
Section 17.1.3.3, “Replication Slave Options and Variables”

--relnotes
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--reload
Section 18.5.13.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.1.6.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 18.3.3, “NDB Cluster Configuration Files”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”

--remove
Section 18.2.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 18.4.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 5.1.4, “Server Command Options”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.7.7, “Starting MySQL as a Windows Service”

--repair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--replace
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--replicate-*
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 17.2.3.3, “Replication Rule Application”
Section 17.1.3.3, “Replication Slave Options and Variables”

--replicate-*-db
Section 17.2.3.3, “Replication Rule Application”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section C.1, “Restrictions on Stored Programs”

--replicate-*-table
Section 17.2.3.3, “Replication Rule Application”

--replicate-do-*
Section 18.6.3, “Known Issues in NDB Cluster Replication”



3333

--replicate-do-db
Section 17.1.3.4, “Binary Log Options and Variables”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 17.3.4, “Replicating Different Databases to Different Slaves”
Section 17.4.1.27, “Replication and Reserved Words”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 5.4.4, “The Binary Log”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--replicate-do-table
Section 17.2.3.2, “Evaluation of Table-Level Replication Options”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 17.4.1.27, “Replication and Reserved Words”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.2.3.3, “Replication Rule Application”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 15.7, “The BLACKHOLE Storage Engine”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--replicate-ignore-*
Section 18.6.3, “Known Issues in NDB Cluster Replication”

--replicate-ignore-db
Section 17.1.3.4, “Binary Log Options and Variables”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 17.4.1.27, “Replication and Reserved Words”
Section 17.4.1.15, “Replication and System Functions”
Section 17.2.3.3, “Replication Rule Application”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 5.4.4, “The Binary Log”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--replicate-ignore-table
Section 17.2.3.2, “Evaluation of Table-Level Replication Options”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 17.4.1.27, “Replication and Reserved Words”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 15.7, “The BLACKHOLE Storage Engine”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--replicate-rewrite-db
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 17.1.3.3, “Replication Slave Options and Variables”



3334

Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

--replicate-same-server-id
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.3.3, “Replication Slave Options and Variables”

--replicate-wild-do-table
Section 17.2.3.2, “Evaluation of Table-Level Replication Options”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 17.3.4, “Replicating Different Databases to Different Slaves”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section C.1, “Restrictions on Stored Programs”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”

--replicate-wild-ignore-table
Section 17.2.3.2, “Evaluation of Table-Level Replication Options”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section A.13, “MySQL 5.5 FAQ: Replication”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”

replication-ignore-table
Section 17.4.1.39, “Replication and Views”

--replication-rewrite-db
Section 17.1.3.3, “Replication Slave Options and Variables”

--report-host
Section 17.1.4.1, “Checking Replication Status”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”

--report-password
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”

--report-port
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”

--report-user
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”

--resetmaster
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--resetslave
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”



3335

--restore-privilege-tables
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--restore_data
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--restore_epoch
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”

--restore_meta
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--result-file
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”

--retries
Section 18.4.10, “ndb_desc — Describe NDB Tables”

--rewrite-database
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--rhost
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--rollback
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--routines
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 2.11.1, “Upgrading MySQL”

--rowid
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--rows
Section 4.6.11, “mysql_find_rows — Extract SQL Statements from Files”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”

--rpm
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

S

[index top]

-S
Section 4.4.1, “comp_err — Compile MySQL Error Message File”



3336

Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.6.3.4, “Other myisamchk Options”

-s
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.15, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.4, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”

--safe-mode
Section 5.1.4, “Server Command Options”

--safe-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--safe-show-database
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”

--safe-updates
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”



3337

Using the --safe-updates Option

--safe-user-create
Section 5.1.4, “Server Command Options”

--savequeries
Section 18.4.25, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--secure-auth
Section 4.5.1.1, “mysql Options”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.4, “Server Command Options”

--secure-file-priv
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

--select_limit
Using the --safe-updates Option

--server-id
Section 18.6.2, “General Requirements for NDB Cluster Replication”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 17.1.3, “Replication and Binary Logging Options and Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”
Section 17.4.4, “Troubleshooting Replication”

server-id
Section 17.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
Section 17.1, “Replication Configuration”
Section 17.1.3.2, “Replication Master Options and Variables”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 17.1.1.1, “Setting the Replication Master Configuration”
Section 17.1.1.2, “Setting the Replication Slave Configuration”
Section 17.1.1.8, “Setting Up Replication with Existing Data”

--server-id-bits
MySQL Server Options for NDB Cluster
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
NDB Cluster System Variables

service-startup-timeout
Section 4.3.3, “mysql.server — MySQL Server Startup Script”

--set-auto-increment
Section 4.6.3.4, “Other myisamchk Options”

--set-charset
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”

--set-collation
Section 4.6.3.3, “myisamchk Repair Options”



3338

--set-variable
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 1.4, “What Is New in MySQL 5.5”

--shared-memory
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 5.1.4, “Server Command Options”
Section 5.6.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.7.4, “Starting the Server for the First Time”
Section 1.3.2, “The Main Features of MySQL”

--shared-memory-base-name
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 23.8.7.49, “mysql_options()”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.4, “Server Command Options”
Section 5.6.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”

--short-form
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--show-slave-auth-info
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”

--show-table-type
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

--show-temp-status
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”

--show-warnings
Section 4.5.1.1, “mysql Options”

--sigint-ignore
Section 4.5.1.1, “mysql Options”



3339

--silent
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”

--single-transaction
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 14.21.1, “InnoDB Backup”
Section 4.5.4, “mysqldump — A Database Backup Program”

--single-user
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--skip
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.2.5, “Program Option Modifiers”
Section 5.1.4, “Server Command Options”

--skip-add-drop-table
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-add-locks
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-auto-rehash
Section 4.5.1.1, “mysql Options”
Section 14.23.3, “Troubleshooting InnoDB Data Dictionary Operations”

--skip-broken-objects
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--skip-character-set-client-handshake
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
The cp932 Character Set

--skip-column-names
Section 4.5.1.1, “mysql Options”

--skip-comments
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-compact
Section 4.5.4, “mysqldump — A Database Backup Program”



3340

--skip-concurrent-insert
Section 5.1.4, “Server Command Options”

--skip-config-cache
Section 18.4.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--skip-disable-keys
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-dump-date
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-engine_name
Section 13.7.5.17, “SHOW ENGINES Syntax”

--skip-event-scheduler
Section 5.1.4, “Server Command Options”

--skip-events
Section 7.4.5.3, “Dumping Stored Programs”

--skip-extended-insert
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-external-locking
Section 8.11.5, “External Locking”
Section 8.14.2, “General Thread States”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 8.12.1, “System Factors”
Section 1.4, “What Is New in MySQL 5.5”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

--skip-grant-tables
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”
Section 20.4.2, “Event Scheduler Configuration”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 6.3.6, “Pluggable Authentication”
Resetting the Root Password: Generic Instructions
Section 5.1.4, “Server Command Options”
Section 5.3, “The mysql System Database”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 4.2.4, “Using Options on the Command Line”
Section 6.2.6, “When Privilege Changes Take Effect”

--skip-host-cache
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”
Section 5.1.4, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”



3341

--skip-innodb
Section 14.17, “InnoDB Startup Options and System Variables”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section A.13, “MySQL 5.5 FAQ: Replication”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 14.1.6, “Turning Off InnoDB”
Section 17.3.2, “Using Replication with Different Master and Slave Storage Engines”

--skip-innodb-checksums
Section 14.17, “InnoDB Startup Options and System Variables”

--skip-innodb_adaptive_hash_index
Section 14.17, “InnoDB Startup Options and System Variables”

--skip-innodb_checksums
Section 14.17, “InnoDB Startup Options and System Variables”

--skip-innodb_doublewrite
Section 14.17, “InnoDB Startup Options and System Variables”

--skip-kill-mysqld
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--skip-line-numbers
Section 4.5.1.1, “mysql Options”

--skip-lock-tables
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-locking
Section 1.4, “What Is New in MySQL 5.5”

--skip-name-resolve
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 2.3.7.8, “Testing The MySQL Installation”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”

--skip-named-commands
Section 4.5.1.1, “mysql Options”
Section 1.4, “What Is New in MySQL 5.5”

--skip-ndbcluster
MySQL Server Options for NDB Cluster
Section 18.3.2.5, “NDB Cluster mysqld Option and Variable Reference”
NDB Cluster System Variables

--skip-networking
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”



3342

Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”
Section B.5.2.9, “MySQL server has gone away”
Section 6.3.6, “Pluggable Authentication”
Resetting the Root Password: Generic Instructions
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 17.4.3, “Upgrading a Replication Setup”

skip-networking
Section A.13, “MySQL 5.5 FAQ: Replication”
Section 17.1.1.1, “Setting the Replication Master Configuration”
Section 17.4.4, “Troubleshooting Replication”

--skip-new
Section 24.5.1, “Debugging a MySQL Server”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 5.1.5, “Server System Variables”

--skip-nodegroup
Section 18.4.13, “ndb_error_reporter — NDB Error-Reporting Utility”

--skip-opt
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-pager
Section 4.5.1.1, “mysql Options”
Section 1.4, “What Is New in MySQL 5.5”

--skip-partition
Chapter 19, Partitioning
Section 5.1.4, “Server Command Options”

--skip-plugin-innodb_file_per_table
Section 5.1.4, “Server Command Options”

--skip-plugin_name
Section 5.5.2, “Installing and Uninstalling Plugins”

--skip-quick
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-quote-names
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-reconnect
Section 23.8.16, “Controlling Automatic Reconnection Behavior”
Disabling mysql Auto-Reconnect
Section 4.5.1.1, “mysql Options”

--skip-routines
Section 7.4.5.3, “Dumping Stored Programs”

--skip-safemalloc
Section 5.1.4, “Server Command Options”



3343

--skip-set-charset
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-show-database
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server Command Options”
Section 13.7.5.15, “SHOW DATABASES Syntax”
Section 1.8.5, “Supporters of MySQL”

--skip-slave-start
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.6.5, “Preparing the NDB Cluster for Replication”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 17.3.7, “Setting Up Replication to Use Secure Connections”
Section 17.1.1.8, “Setting Up Replication with Existing Data”
Section 13.4.2.5, “START SLAVE Syntax”
Section 18.6.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 17.4.4, “Troubleshooting Replication”
Section 17.4.3, “Upgrading a Replication Setup”

--skip-ssl
Section 6.4.5, “Command Options for Secure Connections”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”

--skip-stack-trace
Section 24.5.1.4, “Debugging mysqld under gdb”
Section 5.1.4, “Server Command Options”

--skip-super-large-pages
Section 8.12.4.2, “Enabling Large Page Support”
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”

--skip-symbolic-links
Section 13.1.17, “CREATE TABLE Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 1.4, “What Is New in MySQL 5.5”

--skip-symlink
Section 1.4, “What Is New in MySQL 5.5”

--skip-syslog
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.4.2, “The Error Log”

--skip-table-check
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--skip-tee
Section 4.5.1.1, “mysql Options”
Section 1.4, “What Is New in MySQL 5.5”



3344

--skip-thread-priority
Section 5.1.4, “Server Command Options”

--skip-triggers
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-tz-utc
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip-unknown-objects
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”

--skip-use-db
Section 4.6.11, “mysql_find_rows — Extract SQL Statements from Files”

--skip-version-check
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

--skip-write-binlog
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--skip-xxx
Section 4.5.4, “mysqldump — A Database Backup Program”

--skip_grant_tables
Section 4.2.4, “Using Options on the Command Line”

--slave-load-tmpdir
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.2, “Database Backup Methods”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section B.5.3.5, “Where MySQL Stores Temporary Files”

--slave-max-allowed-packet
Section 17.1.3.3, “Replication Slave Options and Variables”

slave-max-allowed-packet
Section 17.1.3.3, “Replication Slave Options and Variables”

--slave-net-timeout
Section 17.1.3.3, “Replication Slave Options and Variables”

--slave-skip-errors
Section 18.6.8, “Implementing Failover with NDB Cluster Replication”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 17.4.1.29, “Slave Errors During Replication”

--slave_compressed_protocol
Section 17.1.3.3, “Replication Slave Options and Variables”

--sleep
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”



3345

--slow-query-log
Section 5.1.4, “Server Command Options”

--slow-start-timeout
Section 5.1.4, “Server Command Options”

--slow_query_log
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

--slow_query_log_file
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.4, “Server Command Options”
Section 5.4.5, “The Slow Query Log”

--socket
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 4.2.2, “Connecting to the MySQL Server”
Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.13, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.4, “Server Command Options”
Server Plugin Library and Plugin Descriptors
Section 2.3.7.8, “Testing The MySQL Installation”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”

--sort-index
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-records
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”



3346

Section 4.6.3.3, “myisamchk Repair Options”

--spassword
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--sporadic-binlog-dump-fail
Section 17.1.3.4, “Binary Log Options and Variables”

--sql-bin-update-same
Section 1.4, “What Is New in MySQL 5.5”

--sql-mode
Chapter 12, Functions and Operators
Section A.3, “MySQL 5.5 FAQ: Server SQL Mode”
Section 5.1.4, “Server Command Options”
Section 5.1.8, “Server SQL Modes”

sql-mode
Section 5.1.8, “Server SQL Modes”

--srcdir
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

--ssl
Section 6.4.5, “Command Options for Secure Connections”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.1.4, “Server Command Options”

--ssl*
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.1.4, “Server Command Options”

--ssl-ca
Section 6.4.5, “Command Options for Secure Connections”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Section 6.4.6, “Creating SSL Certificates and Keys Using openssl”



3347

Section 13.7.1.3, “GRANT Syntax”

ssl-ca
Section 17.3.7, “Setting Up Replication to Use Secure Connections”

--ssl-capath
Section 6.4.5, “Command Options for Secure Connections”
Section 13.7.1.3, “GRANT Syntax”
Section 6.4.1, “OpenSSL Versus yaSSL”

--ssl-cert
Section 6.4.5, “Command Options for Secure Connections”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Section 6.4.6, “Creating SSL Certificates and Keys Using openssl”
Section 13.7.1.3, “GRANT Syntax”

ssl-cert
Section 17.3.7, “Setting Up Replication to Use Secure Connections”

--ssl-cipher
Section 6.4.5, “Command Options for Secure Connections”
Section 6.4.1, “OpenSSL Versus yaSSL”

--ssl-key
Section 6.4.5, “Command Options for Secure Connections”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Section 6.4.6, “Creating SSL Certificates and Keys Using openssl”
Section 13.7.1.3, “GRANT Syntax”

ssl-key
Section 17.3.7, “Setting Up Replication to Use Secure Connections”

--ssl-mode
Section 6.4.5, “Command Options for Secure Connections”
Section 23.8.7.49, “mysql_options()”
Section 23.8.7.67, “mysql_ssl_set()”

--ssl-verify-server-cert
Section 6.4.5, “Command Options for Secure Connections”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

--ssl-xxx
Section 6.4.2, “Building MySQL with Support for Secure Connections”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 6.4.5, “Command Options for Secure Connections”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Section 5.1.5, “Server System Variables”

--staging-tries
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”

--standalone
Section 24.5.1.2, “Creating Trace Files”
Section 5.1.4, “Server Command Options”



3348

Section 2.3.7.5, “Starting MySQL from the Windows Command Line”

--start-datetime
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event Times”

--start-position
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”
Section 1.4, “What Is New in MySQL 5.5”

--start_row
Section 4.6.11, “mysql_find_rows — Extract SQL Statements from Files”

--statefile
Section 4.4.1, “comp_err — Compile MySQL Error Message File”

--stats
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”

--status
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”

--stop-datetime
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event Times”

--stop-position
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”

--suffix
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

--super-large-pages
Section 8.12.4.2, “Enabling Large Page Support”
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”

--superuser
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

--symbolic-links
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”

--symbols-file
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”

--sys-*
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-check
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”



3349

--sys-create
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

sys-create-if-not-exist
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-create-if-not-valid
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-drop
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-skip-events
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-skip-tables
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

SYSCONFDIR
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.2.6, “Using Option Files”

--sysdate-is-now
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 17.4.1.15, “Replication and System Functions”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

--syslog
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.4.2, “The Error Log”

--syslog-tag
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”

--system
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”

T

[index top]

-T
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 5.1.4, “Server Command Options”

-t
Section 16.2.2.1, “memcached Command-Line Options”



3350

Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 2.3.6.13, “MySQL Server Instance Config Wizard: Creating an Instance from the Command
Line”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.15, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 18.4.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 18.4.20, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 5.1.4, “Server Command Options”

--tab
Section 7.1, “Backup and Recovery Types”
Section 7.2, “Database Backup Methods”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 7.4, “Using mysqldump for Backups”

--table
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 18.4.10, “ndb_desc — Describe NDB Tables”

--table_open_cache
Section 8.4.3.1, “How MySQL Opens and Closes Tables”

--tables
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”

--tc-heuristic-recover
Section 5.1.4, “Server Command Options”

--tcp-ip
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--tee
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--temp-pool
Section 5.1.4, “Server Command Options”

--test
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”



3351

Text
Section 1.2, “Typographical and Syntax Conventions”

--thread_cache_size
Section 24.5.1.4, “Debugging mysqld under gdb”

--thread_handling
Section 5.1.4, “Server Command Options”

--thread_stack
Section 8.12.5.1, “How MySQL Uses Threads for Client Connections”

--timeout
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--timezone
Section 10.6, “MySQL Server Time Zone Support”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 17.4.1.34, “Replication and Time Zones”
Section 5.1.5, “Server System Variables”
Section B.5.3.7, “Time Zone Problems”

--tmpdir
Section B.5.2.13, “Can't create/write to file”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.4, “Server Command Options”
Section 2.3.7.7, “Starting MySQL as a Windows Service”
Section B.5.3.5, “Where MySQL Stores Temporary Files”

tmpdir
Section 2.3, “Installing MySQL on Microsoft Windows”

--to-last-log
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

--transaction-isolation
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.8.2.1, “Transaction Isolation Levels”

--transactional
Section 18.4.9, “ndb_delete_all — Delete All Rows from an NDB Table”

--triggers
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup Program”

--try-reconnect
Section 18.4.5, “ndb_mgm — The NDB Cluster Management Client”



3352

--tupscan
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--type
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”

--tz-utc
Section 4.5.4, “mysqldump — A Database Backup Program”

U

[index top]

-U
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”

-u
Section 4.2.2, “Connecting to the MySQL Server”
Section 2.11.2, “Downgrading MySQL”
Section 4.2.1, “Invoking MySQL Programs”
Section 16.2.2.1, “memcached Command-Line Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”
Section 5.1.4, “Server Command Options”
Section 2.3.7.8, “Testing The MySQL Installation”
Section 2.10.3, “Testing the Server”
Section 2.11.1, “Upgrading MySQL”
Section 6.3.1, “User Names and Passwords”
Section 2.3.9, “Windows Postinstallation Procedures”

--unbuffered
Section 4.5.1.1, “mysql Options”

--unpack
Section 15.3.3, “MyISAM Table Storage Formats”
Section 4.6.3.3, “myisamchk Repair Options”



3353

Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

--unqualified
Section 18.4.10, “ndb_desc — Describe NDB Tables”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”

--update
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”

--update-state
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.6.3.2, “myisamchk Check Options”
Section 15.3, “The MyISAM Storage Engine”

--upgrade-system-tables
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

--usage
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”

--use-frm
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

--use-symbolic-links
Section 1.4, “What Is New in MySQL 5.5”

--use-threads
Section 4.5.5, “mysqlimport — A Data Import Program”

--useHexFormat
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--user
Section 4.2.2, “Connecting to the MySQL Server”
Section 7.3, “Example Backup and Recovery Strategy”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.10.1, “Initializing the Data Directory”
Section 4.2.1, “Invoking MySQL Programs”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.5.1.1, “mysql Options”
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.6.13, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”



3354

Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.5.11.3, “NDB Cluster and MySQL Security Procedures”
Section 4.2.9, “Option Defaults, Options Expecting Values, and the = Sign”
Resetting the Root Password: Unix and Unix-Like Systems
Section 5.1.4, “Server Command Options”
Section 6.5.1.6, “Socket Peer-Credential Pluggable Authentication”
Section 2.10.2, “Starting the Server”
Section 6.5.1.7, “Test Pluggable Authentication”
Section 6.3.1, “User Names and Passwords”
Section 4.2.6, “Using Option Files”

V

[index top]

-V
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.14, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.4, “Server Command Options”
Section 4.2.4, “Using Options on the Command Line”

-v
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 16.2.2.1, “memcached Command-Line Options”
Section 16.2.2.9, “memcached Logs”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.14, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7.2, “mysqlbinlog Row Event Display”



3355

Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.17, “ndb_print_file — Print NDB Disk Data File Contents”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 5.1.4, “Server Command Options”
Section 4.2.4, “Using Options on the Command Line”

--var_name
Section 14.17, “InnoDB Startup Options and System Variables”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 5.1.4, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.5”

--variable
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”

--verbose
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.6.14, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables”
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 18.4.15, “ndb_move_data — NDB Data Copy Utility”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.8.1, “perror — Explain Error Codes”



3356

Section 5.1.4, “Server Command Options”
Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”

--version
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.6.10, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.14, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 18.4.27, “Options Common to NDB Cluster Programs — Options Common to NDB Cluster
Programs”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.4, “Server Command Options”
Section 4.2.4, “Using Options on the Command Line”

--version-check
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”

--vertical
Section 1.6, “How to Report Bugs or Problems”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”

W

[index top]

-W
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.1.4, “Server Command Options”



3357

-w
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--wait
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”

--wait-nodes
Section 18.4.26, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--warnings
Section 1.4, “What Is New in MySQL 5.5”

--where
Section 4.5.4, “mysqldump — A Database Backup Program”

--windows
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”

--with-libevent
Section 16.2.1, “Installing memcached”

--with-pstack
Section 1.4, “What Is New in MySQL 5.5”

WITH_BUNDLED_MEMCACHED
Section 2.9.4, “MySQL Source-Configuration Options”

WITH_CLASSPATH
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section 18.2.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_DEBUG
Section 14.17, “InnoDB Startup Options and System Variables”
Section 4.5.1.1, “mysql Options”
Section 2.9.4, “MySQL Source-Configuration Options”

WITH_NDB_JAVA
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section 18.2.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_NDBCLUSTER
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”
Section 18.2.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_NDBCLUSTER_STORAGE_ENGINE
Section 18.2.1.4, “Building NDB Cluster from Source on Linux”



3358

Section 18.2.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 2.9.4, “MySQL Source-Configuration Options”

WITH_PERFSCHEMA_STORAGE_ENGINE
Section 22.2, “Performance Schema Build Configuration”

WITH_ZLIB
Section 2.9.4, “MySQL Source-Configuration Options”

--write-binlog
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”

X

[index top]

-X
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”

-x
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

--xml
Section 13.2.7, “LOAD XML Syntax”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.4.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 12.11, “XML Functions”

Y

[index top]

-Y
Section 4.5.4, “mysqldump — A Database Backup Program”

-y
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”

Z

[index top]

-z
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”

Privileges Index
A | C | D | E | F | G | I | L | P | R | S | T | U



3359

A

[index top]

ALL
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

ALL PRIVILEGES
Section 6.2.1, “Privileges Provided by MySQL”

ALTER
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.32, “RENAME TABLE Syntax”
Section 21.24, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”

ALTER ROUTINE
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.1.5, “ALTER PROCEDURE Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.5, “Server System Variables”
Section 20.2.2, “Stored Routines and MySQL Privileges”

C

[index top]

CREATE
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.1.10, “CREATE DATABASE Syntax”
Section 13.1.17, “CREATE TABLE Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.32, “RENAME TABLE Syntax”

CREATE ROUTINE
Section 20.7, “Binary Logging of Stored Programs”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.5, “Server System Variables”
Section 20.2.2, “Stored Routines and MySQL Privileges”

CREATE TABLESPACE
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

CREATE TEMPORARY TABLES
Section 13.1.17.3, “CREATE TEMPORARY TABLE Syntax”



3360

Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

CREATE USER
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.1.1, “CREATE USER Syntax”
Section 13.7.1.2, “DROP USER Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.4, “RENAME USER Syntax”
Section 13.7.1.5, “REVOKE Syntax”

CREATE VIEW
Section 13.1.9, “ALTER VIEW Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5, “Restrictions on Views”
Section 21.24, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”

D

[index top]

DELETE
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 13.1.17, “CREATE TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 13.7.1.2, “DROP USER Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.8, “REPLACE Syntax”
Section 15.8, “The MERGE Storage Engine”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”

DROP
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.1.9, “ALTER VIEW Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 13.1.21, “DROP DATABASE Syntax”
Section 13.1.28, “DROP TABLE Syntax”
Section 13.1.31, “DROP VIEW Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 22.8, “Performance Schema General Table Characteristics”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.32, “RENAME TABLE Syntax”
Section 21.24, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 6.2, “The MySQL Access Privilege System”



3361

Section 13.1.33, “TRUNCATE TABLE Syntax”

E

[index top]

EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.1.22, “DROP EVENT Syntax”
Section 20.4.1, “Event Scheduler Overview”
Section 20.4.3, “Event Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.9, “SHOW CREATE EVENT Syntax”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

EXECUTE
Section 20.6, “Access Control for Stored Programs and Views”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.5, “Server System Variables”
Section 20.2.2, “Stored Routines and MySQL Privileges”

F

[index top]

FILE
Section 13.1.17, “CREATE TABLE Syntax”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.5, “Server System Variables”
Section 12.5, “String Functions”
Section 11.4.3, “The BLOB and TEXT Types”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”

G

[index top]

GRANT OPTION
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.5, “REVOKE Syntax”
Section 21.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”



3362

I

[index top]

INDEX
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 21.24, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”

INSERT
Section 20.6, “Access Control for Stored Programs and Views”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 13.7.1.1, “CREATE USER Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 15.2.1, “Pluggable Storage Engine Architecture”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.32, “RENAME TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.2.8, “REPLACE Syntax”
Section 5.1.4, “Server Command Options”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 21.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 21.24, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”

L

[index top]

LOCK TABLES
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”

P

[index top]

PROCESS
Section 6.3.2, “Adding User Accounts”
Section 14.20.2, “Enabling InnoDB Monitors”
Section 20.4.2, “Event Scheduler Configuration”



3363

Section 8.14, “Examining Thread Information”
Section 13.7.1.3, “GRANT Syntax”
Chapter 21, INFORMATION_SCHEMA Tables
Section 13.7.6.4, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 18.5.4, “MySQL Server Usage for NDB Cluster”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 21.28.1, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 21.28.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 21.28.3, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 21.28.4, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 21.28.5, “The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables”
Section 21.28.7, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 21.28.6, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 21.28.8, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 21.14, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 22.9.6.2, “The threads Table”

PROXY
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Implementing Proxy User Support in Authentication Plugins
Section 6.5.1.4, “PAM Pluggable Authentication”
Section 6.2.1, “Privileges Provided by MySQL”
Section 6.3.7, “Proxy Users”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 6.5.1.5, “Windows Pluggable Authentication”

PROXY ... WITH GRANT OPTION
Section 6.3.7, “Proxy Users”

R

[index top]

REFERENCES
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 21.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 21.24, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”

RELOAD
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 6.3.2, “Adding User Accounts”
Section 12.13, “Encryption and Compression Functions”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 23.8.7.55, “mysql_refresh()”
Section 23.8.7.56, “mysql_reload()”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”



3364

Section 13.7.6.6, “RESET Syntax”

REPLICATION CLIENT
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.2, “SHOW BINARY LOGS Syntax”
Section 13.7.5.24, “SHOW MASTER STATUS Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”

REPLICATION SLAVE
Section 17.1.1.3, “Creating a User for Replication”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.3.7, “Setting Up Replication to Use Secure Connections”

S

[index top]

SELECT
Section 20.6, “Access Control for Stored Programs and Views”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.2.3, “CHECKSUM TABLE Syntax”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.17.4, “CREATE TABLE ... LIKE Syntax”
Section 13.1.17, “CREATE TABLE Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 22.8, “Performance Schema General Table Characteristics”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section C.5, “Restrictions on Views”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 13.7.5.22, “SHOW GRANTS Syntax”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 21.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 21.24, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 15.8, “The MERGE Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 20.3.1, “Trigger Syntax and Examples”
Section 13.2.11, “UPDATE Syntax”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”

SHOW DATABASES
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.5, “Server System Variables”



3365

Section 13.7.5.15, “SHOW DATABASES Syntax”

SHOW VIEW
Section 13.8.2, “EXPLAIN Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5, “Restrictions on Views”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”

SHUTDOWN
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 23.8.7.65, “mysql_shutdown()”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.12, “The Server Shutdown Process”

SUPER
Section 20.6, “Access Control for Stored Programs and Views”
Section 13.7.1, “Account Management Statements”
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.1.6, “ALTER SERVER Syntax”
Section 13.1.9, “ALTER VIEW Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 17.1.3.4, “Binary Log Options and Variables”
Section 20.7, “Binary Logging of Stored Programs”
Section 13.7.6.1, “BINLOG Syntax”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 10.1.5, “Configuring Application Character Set and Collation”
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.16, “CREATE SERVER Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.7.1.1, “CREATE USER Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 13.1.27, “DROP SERVER Syntax”
Section 13.7.1.2, “DROP USER Syntax”
Section 12.13, “Encryption and Compression Functions”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 13.7.1.3, “GRANT Syntax”
Section 17.1.1, “How to Set Up Replication”
Section 13.7.6.4, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 10.7, “MySQL Server Locale Support”
Section 10.6, “MySQL Server Time Zone Support”
Section 23.8.7.12, “mysql_dump_debug_info()”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.4, “RENAME USER Syntax”
Section 17.1.2, “Replication Formats”
Section 13.7.1.5, “REVOKE Syntax”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.8, “Server SQL Modes”



3366

Section 5.1.5, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 13.4.1.3, “SET sql_log_bin Syntax”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 13.7.5.2, “SHOW BINARY LOGS Syntax”
Section 13.7.5.22, “SHOW GRANTS Syntax”
Section 13.7.5.24, “SHOW MASTER STATUS Syntax”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section 5.4.4, “The Binary Log”
Section 24.5.3, “The DBUG Package”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section B.5.2.7, “Too many connections”
Section 5.1.6, “Using System Variables”

T

[index top]

TRIGGER
Section 20.6, “Access Control for Stored Programs and Views”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.1.30, “DROP TRIGGER Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.13, “SHOW CREATE TRIGGER Syntax”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 21.25, “The INFORMATION_SCHEMA TRIGGERS Table”

U

[index top]

UPDATE
Section 20.6, “Access Control for Stored Programs and Views”
Section 6.3.5, “Assigning Account Passwords”
Section 13.1.17, “CREATE TABLE Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”
Section 22.8, “Performance Schema General Table Characteristics”
Section 22.4, “Performance Schema Runtime Configuration”
Section 22.9.2, “Performance Schema Setup Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.4, “RENAME USER Syntax”
Section 13.7.1.5, “REVOKE Syntax”
Section 21.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 21.24, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 15.8, “The MERGE Storage Engine”
Section 20.3.1, “Trigger Syntax and Examples”
Section 13.2.11, “UPDATE Syntax”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”



3367

USAGE
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

SQL Modes Index
A | D | E | H | I | M | N | O | P | R | S | T

A

[index top]

ALLOW_INVALID_DATES
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section B.5.4.2, “Problems Using DATE Columns”
Section 5.1.8, “Server SQL Modes”
Section 11.3.1, “The DATE, DATETIME, and TIMESTAMP Types”

ANSI
Section 9.2.4, “Function Name Parsing and Resolution”
Section 5.1.8, “Server SQL Modes”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”

ANSI_QUOTES
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 9.2, “Schema Object Names”
Section 5.1.8, “Server SQL Modes”
Section 9.1.1, “String Literals”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”

D

[index top]

DB2
Section 5.1.8, “Server SQL Modes”

E

[index top]

ERROR_FOR_DIVISION_BY_ZERO
Section 12.18.3, “Expression Handling”
Section 12.18.5, “Precision Math Examples”
Section 5.1.8, “Server SQL Modes”

H

[index top]

HIGH_NOT_PRECEDENCE
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”



3368

Section 5.1.8, “Server SQL Modes”

I

[index top]

IGNORE_SPACE
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 4.5.1.1, “mysql Options”
Section 5.1.8, “Server SQL Modes”

M

[index top]

MAXDB
Section 11.1.2, “Date and Time Type Overview”
Section 5.1.8, “Server SQL Modes”
Section 11.3.1, “The DATE, DATETIME, and TIMESTAMP Types”

MSSQL
Section 5.1.8, “Server SQL Modes”

MYSQL323
Section 5.1.8, “Server SQL Modes”

MYSQL40
Section 5.1.8, “Server SQL Modes”

N

[index top]

NO_AUTO_CREATE_USER
Section 13.7.1.3, “GRANT Syntax”
Section 5.1.8, “Server SQL Modes”

NO_AUTO_VALUE_ON_ZERO
Section 13.1.17, “CREATE TABLE Syntax”
Section 11.2.5, “Numeric Type Attributes”
Section 5.1.8, “Server SQL Modes”
Section 3.6.9, “Using AUTO_INCREMENT”

NO_BACKSLASH_ESCAPES
Section 5.1.8, “Server SQL Modes”
Section 12.5.1, “String Comparison Functions”
Section 9.1.1, “String Literals”

NO_DIR_IN_CREATE
Section 13.1.17, “CREATE TABLE Syntax”
Section 17.4.1.11, “Replication and DIRECTORY Table Options”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.8, “Server SQL Modes”
Section 19.2.6, “Subpartitioning”
Section 5.4.4, “The Binary Log”



3369

NO_ENGINE_SUBSTITUTION
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.1.17, “CREATE TABLE Syntax”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 5.1.8, “Server SQL Modes”
Section 15.1, “Setting the Storage Engine”
Section 17.3.2, “Using Replication with Different Master and Slave Storage Engines”

NO_FIELD_OPTIONS
Section 5.1.8, “Server SQL Modes”

NO_KEY_OPTIONS
Section 5.1.8, “Server SQL Modes”

NO_TABLE_OPTIONS
Section 5.1.8, “Server SQL Modes”

NO_UNSIGNED_SUBTRACTION
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 11.1.1, “Numeric Type Overview”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.8, “Server SQL Modes”

NO_ZERO_DATE
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section B.5.4.2, “Problems Using DATE Columns”
Section 5.1.8, “Server SQL Modes”

NO_ZERO_IN_DATE
Section 13.1.17, “CREATE TABLE Syntax”
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section B.5.4.2, “Problems Using DATE Columns”
Section 5.1.8, “Server SQL Modes”

O

[index top]

ONLY_FULL_GROUP_BY
Section 3.3.4.8, “Counting Rows”
Section 12.16.2, “GROUP BY Modifiers”
Section 12.16.3, “MySQL Handling of GROUP BY”
Section 5.1.8, “Server SQL Modes”

ORACLE
Section 5.1.8, “Server SQL Modes”

P

[index top]



3370

PAD_CHAR_TO_FULL_LENGTH
Section 5.1.8, “Server SQL Modes”
Section 11.1.3, “String Type Overview”
Section 11.4.1, “The CHAR and VARCHAR Types”

PIPES_AS_CONCAT
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 5.1.8, “Server SQL Modes”

POSTGRESQL
Section 5.1.8, “Server SQL Modes”

R

[index top]

REAL_AS_FLOAT
Section 11.1.1, “Numeric Type Overview”
Section 11.2, “Numeric Types”
Section 5.1.8, “Server SQL Modes”

S

[index top]

STRICT_ALL_TABLES
Section 1.7.3.3, “Constraints on Invalid Data”
Section 12.18.3, “Expression Handling”
Section A.3, “MySQL 5.5 FAQ: Server SQL Mode”
Section 5.1.8, “Server SQL Modes”

STRICT_TRANS_TABLES
Section 1.7.3.3, “Constraints on Invalid Data”
Section 12.18.3, “Expression Handling”
Section A.3, “MySQL 5.5 FAQ: Server SQL Mode”
Section 5.1.8, “Server SQL Modes”

T

[index top]

TRADITIONAL
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”
Section 12.18.3, “Expression Handling”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section A.3, “MySQL 5.5 FAQ: Server SQL Mode”
Section 5.1.8, “Server SQL Modes”

Statement/Syntax Index
A | B | C | D | E | F | G | H | I | K | L | O | P | R | S | T | U | W | X

A

[index top]



3371

ALTER DATABASE
Section 13.1.1, “ALTER DATABASE Syntax”
Section 10.1.3.3, “Database Character Set and Collation”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.1.3.3, “Replication Slave Options and Variables”

ALTER EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 13.1.11, “CREATE EVENT Syntax”
Section 20.4.4, “Event Metadata”
Section 20.4.1, “Event Scheduler Overview”
Section 20.4.3, “Event Syntax”
Section 12.14, “Information Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.12, “Replication of Invoked Features”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”

ALTER EVENT event_name ENABLE
Section 17.4.1.12, “Replication of Invoked Features”

ALTER FUNCTION
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.2.1, “Stored Routine Syntax”

ALTER LOGFILE GROUP
Section 13.1.4, “ALTER LOGFILE GROUP Syntax”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 21.29.1, “The INFORMATION_SCHEMA FILES Table”

ALTER ONLINE TABLE
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”

ALTER ONLINE TABLE ... REORGANIZE PARTITION
Section 18.5.13.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 18.5.13.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 18.2.7, “Upgrading and Downgrading NDB Cluster 7.2”

ALTER PROCEDURE
Section 13.1.5, “ALTER PROCEDURE Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.2.1, “Stored Routine Syntax”



3372

ALTER SCHEMA
Section 13.1.1, “ALTER DATABASE Syntax”

ALTER SERVER
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.7, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”

ALTER TABLE
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 13.1.7.3, “ALTER TABLE Examples”
Section 13.1.7.2, “ALTER TABLE Online Operations in NDB Cluster 7.2”
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 13.1.7, “ALTER TABLE Syntax”
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 17.1.3.4, “Binary Log Options and Variables”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 10.1.3.5, “Column Character Set and Collation”
Section 10.1.7, “Column Character Set Conversion”
Section 8.3.4, “Column Indexes”
Section 14.16.4, “Concurrency Considerations for Fast Index Creation”
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 10.1.9.7, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 13.1.13, “CREATE INDEX Syntax”
Section 13.1.17.1, “CREATE TABLE Statement Retention”
Section 13.1.17, “CREATE TABLE Syntax”
Section 3.3.2, “Creating a Table”
Section 14.11.1.1, “Creating InnoDB Tables”
Section 11.5.3.2, “Creating Spatial Columns”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 14.15.4, “Defragmenting a Table”
Section 13.1.24, “DROP INDEX Syntax”
Section 14.12.2, “Enabling Compression for a Table”
Section 14.16.2, “Examples of Fast Index Creation”
Section 8.8.2, “EXPLAIN Output Format”
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.23.2, “Forcing InnoDB Recovery”
Section 1.7.3.2, “FOREIGN KEY Constraints”
Section 12.9, “Full-Text Search Functions”
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 14.12.5, “How Compression Works for InnoDB Tables”
Section 14.16.5, “How Crash Recovery Works with Fast Index Creation”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 8.10.3.1, “How the Query Cache Operates”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 12.14, “Information Functions”
Section 18.2.3, “Initial Configuration of NDB Cluster”
Section 14.11.1.6, “InnoDB and FOREIGN KEY Constraints”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 13.2.5.2, “INSERT DELAYED Syntax”



3373

Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.16.6, “Limitations of Fast Index Creation”
Section 18.1.6.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 18.1.6.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section C.10.3, “Limits on Table Size”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 19.3.3, “Maintenance of Partitions”
Section 19.3.2, “Management of HASH and KEY Partitions”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.8.2, “MERGE Table Problems”
Section 15.3.1, “MyISAM Startup Options”
Section 15.3.3, “MyISAM Table Storage Formats”
Section 4.6.3.1, “myisamchk General Options”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
MySQL Glossary
Section 23.8.7.35, “mysql_info()”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.3.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 18.2.5, “NDB Cluster Example with Tables and Data”
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster System Variables
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.1.6.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 19.1, “Overview of Partitioning in MySQL”
Section 14.12.1, “Overview of Table Compression”
Section 19.3, “Partition Management”
Section 19.5.4, “Partitioning and Table-Level Locking”
Section 19.5.1, “Partitioning Keys, Primary Keys, and Unique Keys”
Section 19.5.2, “Partitioning Limitations Relating to Storage Engines”
Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB
Cluster 7.x”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.6.1, “Problems with ALTER TABLE”
Section 19.2.3.1, “RANGE COLUMNS partitioning”
Section 19.2.1, “RANGE Partitioning”
Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”
Section 13.1.32, “RENAME TABLE Syntax”
Section 17.4.1.1, “Replication and AUTO_INCREMENT”
Section 17.4.1.27, “Replication and Reserved Words”
Replication with More Columns on Master or Slave
Section 19.5, “Restrictions and Limitations on Partitioning”
Section C.5, “Restrictions on Views”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 5.1.8, “Server SQL Modes”
Section 5.1.5, “Server System Variables”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 15.1, “Setting the Storage Engine”
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 13.7.5.23, “SHOW INDEX Syntax”



3374

Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.1.17.7, “Silent Column Specification Changes”
Section 14.14.2, “Specifying the Row Format for a Table”
Section 14.12.6, “SQL Compression Syntax Warnings and Errors”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 11.1.3, “String Type Overview”
Section 10.1.3.4, “Table Character Set and Collation”
Section B.5.6.2, “TEMPORARY Table Problems”
Section 5.4.6, “The DDL Log”
Section 21.12, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 15.4, “The MEMORY Storage Engine”
Section 15.3, “The MyISAM Storage Engine”
Section 5.4.5, “The Slow Query Log”
Section 14.23.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 18.1.6.6, “Unsupported or Missing Features in NDB Cluster”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”
Section 17.3.2, “Using Replication with Different Master and Slave Storage Engines”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 14.13.2, “Verifying File Format Compatibility”
Section 1.4, “What Is New in MySQL 5.5”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”
Section B.5.3.5, “Where MySQL Stores Temporary Files”
Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”

ALTER TABLE ... ADD PARTITION
Section 19.3.1, “Management of RANGE and LIST Partitions”

ALTER TABLE ... DISCARD TABLESPACE
MySQL Glossary

ALTER TABLE ... DROP PARTITION
Section 17.4.1.19, “Replication and Partitioning”

ALTER TABLE ... ENGINE = MEMORY
Section 17.4.1.23, “Replication and MEMORY Tables”

ALTER TABLE ... ENGINE = NDB
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”

ALTER TABLE ... IMPORT TABLESPACE
Section 13.1.7, “ALTER TABLE Syntax”
MySQL Glossary

ALTER TABLE ... OPTIMIZE PARTITION
Section 19.3.3, “Maintenance of Partitions”
Section 19.5.2, “Partitioning Limitations Relating to Storage Engines”

ALTER TABLE ... PARTITION BY
Section 19.5.1, “Partitioning Keys, Primary Keys, and Unique Keys”

ALTER TABLE ... PARTITION BY ...
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 19.5, “Restrictions and Limitations on Partitioning”

ALTER TABLE ... PARTITION BY ALGORITHM=1 KEY ()
Section 2.11.2.1, “Changes Affecting Downgrades from MySQL 5.5”



3375

ALTER TABLE ... PARTITION BY ALGORITHM=2 KEY ()
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”

ALTER TABLE ... RENAME
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

ALTER TABLE ... REORGANIZE PARTITION
Section 18.5.13.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.3.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”

ALTER TABLE ... REPAIR PARTITION
Section 19.3.3, “Maintenance of Partitions”

ALTER TABLE ... TRUNCATE PARTITION
Section 19.3.3, “Maintenance of Partitions”
Section 19.3, “Partition Management”
Section 1.4, “What Is New in MySQL 5.5”

ALTER TABLE mysql.ndb_apply_status ENGINE=MyISAM
Section 18.6.3, “Known Issues in NDB Cluster Replication”

ALTER TABLE t3 DROP PARTITION p2
Section 5.4.6, “The DDL Log”

ALTER TABLE table_name REORGANIZE PARTITION
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”

ALTER TABLE tbl_name TABLESPACE tablespace_name
MySQL Glossary

ALTER TABLESPACE
Section 13.1.8, “ALTER TABLESPACE Syntax”
Section 13.1.18, “CREATE TABLESPACE Syntax”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 21.29.1, “The INFORMATION_SCHEMA FILES Table”

ALTER VIEW
Section 13.1.9, “ALTER VIEW Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 12.14, “Information Functions”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.5.2, “View Processing Algorithms”
Section 20.5.1, “View Syntax”

ANALYZE TABLE
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”
Section 14.9.11.1, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”



3376

Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.2, “General Thread States”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.17, “InnoDB Startup Options and System Variables”
Section B.5.7, “Known Issues in MySQL”
Section 14.11.1.7, “Limits on InnoDB Tables”
Section 19.3.3, “Maintenance of Partitions”
Section 15.8.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.6.3.1, “myisamchk General Options”
Section 1.7.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.14, “Replication and FLUSH”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.4.5, “The Slow Query Log”

B

[index top]

BEGIN
Section 14.8.2.2, “autocommit, Commit, and Rollback”
Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 14.23.4, “InnoDB Error Handling”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 17.4.1.35, “Replication and Transactions”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.5, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”

BEGIN ... END
Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”
Section 13.6.5.1, “CASE Syntax”
Section 13.6, “Compound-Statement Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.6.6.1, “Cursor CLOSE Syntax”
Section 13.6.6.3, “Cursor FETCH Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.3, “DECLARE Syntax”
Section 20.1, “Defining Stored Programs”
Section 20.4.1, “Event Scheduler Overview”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.4.1, “Local Variable DECLARE Syntax”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 13.6.2, “Statement Label Syntax”



3377

Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.3.1, “Trigger Syntax and Examples”

BINLOG
Section 13.7.6.1, “BINLOG Syntax”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.1, “Privileges Provided by MySQL”

C

[index top]

CACHE INDEX
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 8.10.2.4, “Index Preloading”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 8.10.2.2, “Multiple Key Caches”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 1.4, “What Is New in MySQL 5.5”

CALL
Section 20.6, “Access Control for Stored Programs and Views”
Section 20.7, “Binary Logging of Stored Programs”
Section 23.8.5, “C API Data Structures”
Section 23.8.18, “C API Prepared Statement Problems”
Section 23.8.17, “C API Support for Multiple Statement Execution”
Section 23.8.20, “C API Support for Prepared CALL Statements”
Section 13.2.1, “CALL Syntax”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.37, “mysql_insert_id()”
Section 23.8.7.45, “mysql_more_results()”
Section 23.8.7.46, “mysql_next_result()”
Section 23.8.7.52, “mysql_real_connect()”
Section 23.8.7.64, “mysql_set_server_option()”
Section 23.8.11.17, “mysql_stmt_next_result()”
Section 13.5, “Prepared SQL Statement Syntax”
Chapter 20, Stored Programs and Views
Section 20.2.1, “Stored Routine Syntax”
Section 20.3.1, “Trigger Syntax and Examples”

CALL p()
RESIGNAL with a Condition Value and Optional New Signal Information

CALL stored_procedure()
Section 19.5.4, “Partitioning and Table-Level Locking”

CASE
Section 13.6.5.1, “CASE Syntax”
Section 12.4, “Control Flow Functions”
Section 13.6.5, “Flow Control Statements”

CHANGE MASTER TO
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”



3378

Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 13.7.1.3, “GRANT Syntax”
Section 18.6.8, “Implementing Failover with NDB Cluster Replication”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 18.6.10, “NDB Cluster Replication: Multi-Master and Circular Replication”
Section 18.6.5, “Preparing the NDB Cluster for Replication”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.21, “Replication and Master or Slave Shutdowns”
Section 17.1, “Replication Configuration”
Section 8.14.8, “Replication Slave Connection Thread States”
Section 8.14.6, “Replication Slave I/O Thread States”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.4.2.3, “RESET SLAVE Syntax”
Section 5.1.7, “Server Status Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 17.1.1.10, “Setting the Master Configuration on the Slave”
Section 17.3.7, “Setting Up Replication to Use Secure Connections”
Section 17.1.1.8, “Setting Up Replication with Existing Data”
Section 17.1.1.7, “Setting Up Replication with New Master and Slaves”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 17.2.2.2, “Slave Status Logs”
Section 17.3.6, “Switching Masters During Failover”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 1.4, “What Is New in MySQL 5.5”

CHECK TABLE
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 15.3.4.1, “Corrupted MyISAM Tables”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 8.11.5, “External Locking”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.6, “How to Report Bugs or Problems”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 14.21.2, “InnoDB Recovery”
Section 14.23, “InnoDB Troubleshooting”
Section 19.3.3, “Maintenance of Partitions”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section A.6, “MySQL 5.5 FAQ: Views”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.69, “mysql_store_result()”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 23.8.7.71, “mysql_use_result()”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 15.3.4.2, “Problems from Tables Not Being Closed Properly”
Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section C.3, “Restrictions on Server-Side Cursors”
Section C.1, “Restrictions on Stored Programs”
Section C.5, “Restrictions on Views”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”



3379

Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.6, “The ARCHIVE Storage Engine”
Section 15.8, “The MERGE Storage Engine”
Section 5.4.5, “The Slow Query Log”

CHECK TABLE ... EXTENDED
Section 13.7.2.2, “CHECK TABLE Syntax”

CHECK TABLE ... FOR UPGRADE
Section 13.7.2.5, “REPAIR TABLE Syntax”

CHECKSUM TABLE
Section 13.7.2.3, “CHECKSUM TABLE Syntax”
Section 13.1.17, “CREATE TABLE Syntax”
Section 17.4.1.4, “Replication and CHECKSUM TABLE”

COMMIT
Section 14.8.2.2, “autocommit, Commit, and Rollback”
Section 20.7, “Binary Logging of Stored Programs”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 14.5, “InnoDB and the ACID Model”
Section 14.23.4, “InnoDB Error Handling”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.11.1.7, “Limits on InnoDB Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
NDB Cluster System Variables
Section 17.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”
Section 17.4.1.35, “Replication and Transactions”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.4.4, “The Binary Log”
Section 13.3, “Transactional and Locking Statements”
Section 20.3.1, “Trigger Syntax and Examples”

CREATE DATABASE
Section 7.1, “Backup and Recovery Types”
Section 23.8.6, “C API Function Overview”
Section 10.1.5, “Configuring Application Character Set and Collation”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 13.1.10, “CREATE DATABASE Syntax”
Section 10.1.3.3, “Database Character Set and Collation”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 9.2.2, “Identifier Case Sensitivity”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 23.8.7.8, “mysql_create_db()”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 7.4.2, “Reloading SQL-Format Backups”



3380

Section 17.1.3.3, “Replication Slave Options and Variables”
Section 10.1.3.2, “Server Character Set and Collation”
Section B.3, “Server Error Codes and Messages”
Section 13.7.5.8, “SHOW CREATE DATABASE Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”

CREATE DATABASE dbx
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”

CREATE DATABASE IF NOT EXISTS
Section 17.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 13.1.11, “CREATE EVENT Syntax”
Section 20.4.4, “Event Metadata”
Section 20.4.3, “Event Syntax”
Section 12.14, “Information Functions”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.12, “Replication of Invoked Features”
Section C.1, “Restrictions on Stored Programs”
Section 13.7.5.9, “SHOW CREATE EVENT Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”

CREATE EVENT IF NOT EXISTS
Section 17.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE FUNCTION
Section 24.4, “Adding New Functions to MySQL”
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 1.8.1, “Contributors to MySQL”
Section 13.1.12, “CREATE FUNCTION Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 12.14, “Information Functions”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.12, “Replication of Invoked Features”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.2.1, “Stored Routine Syntax”
Section 24.4.2.1, “UDF Calling Sequences for Simple Functions”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Section 2.11.1, “Upgrading MySQL”

CREATE INDEX
Section 13.1.7.2, “ALTER TABLE Online Operations in NDB Cluster 7.2”
Section 8.3.4, “Column Indexes”
Section 14.16.4, “Concurrency Considerations for Fast Index Creation”



3381

Section 13.1.13, “CREATE INDEX Syntax”
Section 13.1.17, “CREATE TABLE Syntax”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 14.12.2, “Enabling Compression for a Table”
Section 14.16.2, “Examples of Fast Index Creation”
Section 12.9, “Full-Text Search Functions”
Section 14.12.5, “How Compression Works for InnoDB Tables”
Section 14.16.5, “How Crash Recovery Works with Fast Index Creation”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.7, “Optimizing for MEMORY Tables”
Section 14.16.1, “Overview of Fast Index Creation”
Section 5.1.4, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 5.1.5, “Server System Variables”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.4.5, “The Slow Query Log”
Section 18.1.6.6, “Unsupported or Missing Features in NDB Cluster”

CREATE LOGFILE GROUP
Section 13.1.4, “ALTER LOGFILE GROUP Syntax”
Section 13.1.14, “CREATE LOGFILE GROUP Syntax”
Section 13.1.18, “CREATE TABLESPACE Syntax”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 21.29.1, “The INFORMATION_SCHEMA FILES Table”
Section 18.5.10.14, “The ndbinfo resources Table”

CREATE OR REPLACE VIEW
Section 13.1.9, “ALTER VIEW Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section C.5, “Restrictions on Views”

CREATE PROCEDURE
Section 13.1.5, “ALTER PROCEDURE Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 13.2.1, “CALL Syntax”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 12.14, “Information Functions”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.12, “Replication of Invoked Features”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.2.1, “Stored Routine Syntax”

CREATE SCHEMA
Section 13.1.10, “CREATE DATABASE Syntax”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”

CREATE SERVER
Section 13.1.6, “ALTER SERVER Syntax”
Section 13.1.16, “CREATE SERVER Syntax”



3382

Section 15.9.2.2, “Creating a FEDERATED Table Using CREATE SERVER”
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.6.3, “FLUSH Syntax”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 15.9.2, “How to Create FEDERATED Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.7, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”

CREATE TABLE
Section 13.1.7.3, “ALTER TABLE Examples”
Section 13.1.7.2, “ALTER TABLE Online Operations in NDB Cluster 7.2”
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 13.1.7, “ALTER TABLE Syntax”
Chapter 15, Alternative Storage Engines
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 7.1, “Backup and Recovery Types”
Section 17.1.3.4, “Binary Log Options and Variables”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 10.1.3.5, “Column Character Set and Collation”
Section 8.3.4, “Column Indexes”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.1.13, “CREATE INDEX Syntax”
Section 13.1.16, “CREATE SERVER Syntax”
Section 13.1.17.4, “CREATE TABLE ... LIKE Syntax”
Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”
Section 13.1.17.1, “CREATE TABLE Statement Retention”
Section 13.1.17, “CREATE TABLE Syntax”
Section 13.1.17.3, “CREATE TEMPORARY TABLE Syntax”
Section 15.9.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 3.3.2, “Creating a Table”
Section 14.11.1.1, “Creating InnoDB Tables”
Section 11.5.3.2, “Creating Spatial Columns”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 7.2, “Database Backup Methods”
Section 10.1.3.3, “Database Character Set and Collation”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 14.12.2, “Enabling Compression for a Table”
Section 14.20.2, “Enabling InnoDB Monitors”
Section 1.7.3.2, “FOREIGN KEY Constraints”
Section 12.9, “Full-Text Search Functions”
Section 3.4, “Getting Information About Databases and Tables”
Section 19.2.4, “HASH Partitioning”
Section 13.8.3, “HELP Syntax”
Section 14.12.5, “How Compression Works for InnoDB Tables”
Section 19.2.7, “How MySQL Partitioning Handles NULL”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 9.2.2, “Identifier Case Sensitivity”
Section 12.14, “Information Functions”
Section 18.2.3, “Initial Configuration of NDB Cluster”
Section 14.11.1.6, “InnoDB and FOREIGN KEY Constraints”
Section 14.22, “InnoDB and MySQL Replication”
Section 14.14, “InnoDB Row Storage and Row Formats”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.23, “InnoDB Troubleshooting”
Section 8.4.4, “Internal Temporary Table Use in MySQL”



3383

Section 14.1, “Introduction to InnoDB”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 19.2.5, “KEY Partitioning”
Section C.10.3, “Limits on Table Size”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 19.2.2, “LIST Partitioning”
Section 13.2.7, “LOAD XML Syntax”
Section 3.3.3, “Loading Data into a Table”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.3.3, “MyISAM Table Storage Formats”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.15, “NDB API Statistics Counters and Variables”
Section 18.3.3.1, “NDB Cluster Configuration: Basic Example”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 18.4.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables”
Section 18.1.6.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 8.4.1, “Optimizing Data Size”
Section 8.5.6, “Optimizing InnoDB DDL Operations”
Section 19.1, “Overview of Partitioning in MySQL”
Section 14.12.1, “Overview of Table Compression”
Section 19.3, “Partition Management”
Section 19.5.1, “Partitioning Keys, Primary Keys, and Unique Keys”
Section 19.5.3, “Partitioning Limitations Relating to Functions”
Section 19.5.2, “Partitioning Limitations Relating to Storage Engines”
Section 19.2, “Partitioning Types”
Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB
Cluster 7.x”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.2.3.1, “RANGE COLUMNS partitioning”
Section 19.2.1, “RANGE Partitioning”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 13.2.8, “REPLACE Syntax”
Section 17.4.1.1, “Replication and AUTO_INCREMENT”
Section 17.4.1.3, “Replication and Character Sets”
Section 17.4.1.11, “Replication and DIRECTORY Table Options”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.6, “Replication of CREATE TABLE ... SELECT Statements”
Replication with More Columns on Master or Slave
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 5.1.8, “Server SQL Modes”
Section 5.1.5, “Server System Variables”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 15.1, “Setting the Storage Engine”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.12, “SHOW CREATE TABLE Syntax”
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”



3384

Section 13.1.17.7, “Silent Column Specification Changes”
Section B.1, “Sources of Error Information”
Section 14.14.2, “Specifying the Row Format for a Table”
Section 14.12.6, “SQL Compression Syntax Warnings and Errors”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 11.1.3, “String Type Overview”
Section 19.2.6, “Subpartitioning”
Section 10.1.3.4, “Table Character Set and Collation”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 15.6, “The ARCHIVE Storage Engine”
Section 11.4.4, “The ENUM Type”
Section 21.12, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 15.4, “The MEMORY Storage Engine”
Section 15.3, “The MyISAM Storage Engine”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 14.23.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 13.1.33, “TRUNCATE TABLE Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 18.1.6.6, “Unsupported or Missing Features in NDB Cluster”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”
Section 3.3.4.9, “Using More Than one Table”
Section 7.4, “Using mysqldump for Backups”
Section 17.3.2, “Using Replication with Different Master and Slave Storage Engines”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 1.4, “What Is New in MySQL 5.5”
Section C.10.6, “Windows Platform Limitations”

CREATE TABLE ... LIKE
Section 13.1.17.4, “CREATE TABLE ... LIKE Syntax”
Section 17.4.1.1, “Replication and AUTO_INCREMENT”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 15.8, “The MERGE Storage Engine”

CREATE TABLE ... SELECT
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 20.7, “Binary Logging of Stored Programs”
Section 12.10, “Cast Functions and Operators”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 17.4.2, “Replication Compatibility Between MySQL Versions”
Section 17.4.1.6, “Replication of CREATE TABLE ... SELECT Statements”
Section 1.7.2.1, “SELECT INTO TABLE Differences”
Section 13.3.3, “Statements That Cause an Implicit Commit”

CREATE TABLE ... SELECT ...
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 19.3.1, “Management of RANGE and LIST Partitions”

CREATE TABLE IF NOT EXISTS
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”
Section 17.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”



3385

CREATE TABLE IF NOT EXISTS ... LIKE
Section 17.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE IF NOT EXISTS ... SELECT
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”
Section 17.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE tbl_name ... TABLESPACE tablespace_name
MySQL Glossary

CREATE TABLE...AS SELECT
Section 8.2.1, “Optimizing SELECT Statements”

CREATE TABLESPACE
Section 13.1.8, “ALTER TABLESPACE Syntax”
Section 13.1.17, “CREATE TABLE Syntax”
Section 13.1.18, “CREATE TABLESPACE Syntax”
Section 18.3.3.6, “Defining NDB Cluster Data Nodes”
Section 13.1.29, “DROP TABLESPACE Syntax”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 21.29.1, “The INFORMATION_SCHEMA FILES Table”

CREATE TEMPORARY TABLE
Section 13.7.1.3, “GRANT Syntax”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section B.5.6.2, “TEMPORARY Table Problems”

CREATE TRIGGER
Section 20.7, “Binary Logging of Stored Programs”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 12.14, “Information Functions”
Section A.5, “MySQL 5.5 FAQ: Triggers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.12, “Replication of Invoked Features”
Section C.1, “Restrictions on Stored Programs”
Section 13.7.5.13, “SHOW CREATE TRIGGER Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.2.2, “Subquery Optimization”
Section 20.3.1, “Trigger Syntax and Examples”

CREATE USER
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host Address”
Section 13.7.1.1, “CREATE USER Syntax”
Section 17.1.1.3, “Creating a User for Replication”
Section 12.13, “Encryption and Compression Functions”



3386

Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Implementing Proxy User Support in Authentication Plugins
Section 5.1.9, “IPv6 Support”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”
Section 6.5.1.4, “PAM Pluggable Authentication”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 6.3.7, “Proxy Users”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 6.5.1.6, “Socket Peer-Credential Pluggable Authentication”
Section 6.2.3, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.5.1.7, “Test Pluggable Authentication”
Section 6.2, “The MySQL Access Privilege System”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 6.3.1, “User Names and Passwords”
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”
Section 6.5.1.5, “Windows Pluggable Authentication”

CREATE VIEW
Section 13.1.9, “ALTER VIEW Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 8.14.2, “General Thread States”
Section 12.14, “Information Functions”
Section 19.5.4, “Partitioning and Table-Level Locking”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section C.5, “Restrictions on Views”
Section 9.2, “Schema Object Names”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 20.5.3, “Updatable and Insertable Views”
Section 20.5.2, “View Processing Algorithms”
Section 20.5.1, “View Syntax”

D

[index top]

DEALLOCATE PREPARE
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section 13.5, “Prepared SQL Statement Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.7, “Server Status Variables”

DECLARE
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”



3387

Section 13.6.3, “DECLARE Syntax”
Section 13.6.7.4, “SIGNAL Syntax”
Section 13.6.4, “Variables in Stored Programs”

DECLARE ... CONDITION
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.7.4, “SIGNAL Syntax”

DECLARE ... HANDLER
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Effect of Signals on Handlers, Cursors, and Statements

DELETE
Section 6.3.2, “Adding User Accounts”
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 17.1.3.4, “Binary Log Options and Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 23.8.6, “C API Function Overview”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 14.7.2, “Change Buffer”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 14.9.4, “Configuring InnoDB Change Buffering”
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section B.5.4.6, “Deleting Rows from Related Tables”
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.23.2, “Forcing InnoDB Recovery”
Chapter 12, Functions and Operators
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Chapter 21, INFORMATION_SCHEMA Tables
Section 14.22, “InnoDB and MySQL Replication”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 8.11.1, “Internal Locking Methods”
Section 13.2.9.2, “JOIN Syntax”
Section 9.3, “Keywords and Reserved Words”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 18.1.6.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 19.2.2, “LIST Partitioning”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.8.2, “MERGE Table Problems”



3388

Section 1.7.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.48, “mysql_num_rows()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.13, “mysql_stmt_field_count()”
Section 23.8.11.18, “mysql_stmt_num_rows()”
Section 18.5.11.3, “NDB Cluster and MySQL Security Procedures”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 18.4.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 8.2.4, “Optimizing Data Change Statements”
Section 8.2.1, “Optimizing SELECT Statements”
Section 19.4, “Partition Pruning”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section 6.2.1, “Privileges Provided by MySQL”
Section 8.14.4, “Query Cache Thread States”
Section 19.2.1, “RANGE Partitioning”
Section 14.15.5, “Reclaiming Disk Space with TRUNCATE TABLE”
Section 17.4.1.16, “Replication and LIMIT”
Section 17.4.1.23, “Replication and MEMORY Tables”
Section 17.4.1.26, “Replication and the Query Optimizer”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 3.3.4.1, “Selecting All Data”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”
Section 5.7.1.12, “Statement Probes”
Section 13.2.10.9, “Subquery Errors”
Section 13.2.10, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 15.6, “The ARCHIVE Storage Engine”
Section 5.4.4, “The Binary Log”
Section 15.7, “The BLACKHOLE Storage Engine”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.3.2, “The Main Features of MySQL”
Section 15.4, “The MEMORY Storage Engine”
Section 15.8, “The MERGE Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 14.8.2.1, “Transaction Isolation Levels”
Section 20.3.1, “Trigger Syntax and Examples”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 13.1.33, “TRUNCATE TABLE Syntax”
Section 20.5.3, “Updatable and Insertable Views”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”
Using the --safe-updates Option
Section 23.8.15.2, “What Results You Can Get from a Query”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 8.2.1.1, “WHERE Clause Optimization”
Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”
Section 24.2.4.8, “Writing Audit Plugins”

DELETE FROM ... WHERE ...
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”



3389

DELETE FROM a.t
Section 17.1.3.3, “Replication Slave Options and Variables”

DELETE FROM t1,t2
Section 5.7.1.12, “Statement Probes”

DESCRIBE
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 13.1.17.1, “CREATE TABLE Statement Retention”
Section 3.3.2, “Creating a Table”
Section 13.8.1, “DESCRIBE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 21.31, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and Tables”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 23.8.11.28, “mysql_stmt_store_result()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.1.17.7, “Silent Column Specification Changes”
Section 21.28.1, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 21.28.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 21.28.3, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 21.28.4, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 21.28.5, “The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables”
Section 21.28.7, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 21.28.6, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 21.28.8, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 3.6.6, “Using Foreign Keys”
Section 10.1.2.2, “UTF-8 for Metadata”

DO
Section 13.1.2, “ALTER EVENT Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.2.3, “DO Syntax”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 12.17, “Miscellaneous Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section C.1, “Restrictions on Stored Programs”
Section 13.2.10, “Subquery Syntax”
Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”

DROP DATABASE
Section 23.8.6, “C API Function Overview”
Section 13.1.21, “DROP DATABASE Syntax”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 8.10.3.1, “How the Query Cache Operates”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 23.8.7.11, “mysql_drop_db()”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”



3390

Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section C.10.6, “Windows Platform Limitations”

DROP DATABASE IF EXISTS
Section 17.4.1.9, “Replication of DROP ... IF EXISTS Statements”

DROP EVENT
Section 20.7, “Binary Logging of Stored Programs”
Section 20.4.3, “Event Syntax”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

DROP FUNCTION
Section 24.4, “Adding New Functions to MySQL”
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 1.8.1, “Contributors to MySQL”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 13.1.23, “DROP FUNCTION Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Syntax”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.2.1, “Stored Routine Syntax”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Section 2.11.1, “Upgrading MySQL”

DROP INDEX
Section 13.1.7.2, “ALTER TABLE Online Operations in NDB Cluster 7.2”
Section 13.1.7, “ALTER TABLE Syntax”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 13.1.24, “DROP INDEX Syntax”
Section 14.16.2, “Examples of Fast Index Creation”
Section 1.7.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 14.16.1, “Overview of Fast Index Creation”
Section 5.1.4, “Server Command Options”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.4.5, “The Slow Query Log”

DROP LOGFILE GROUP
Section 13.1.25, “DROP LOGFILE GROUP Syntax”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”

DROP PROCEDURE
Section 13.1.5, “ALTER PROCEDURE Syntax”
Section 20.7, “Binary Logging of Stored Programs”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.2.1, “Stored Routine Syntax”

DROP SCHEMA
Section 13.1.21, “DROP DATABASE Syntax”



3391

Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 5.1.5, “Server System Variables”

DROP SERVER
Section 13.7.6.3, “FLUSH Syntax”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.7, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”

DROP TABLE
Section 18.5.13.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 13.1.7, “ALTER TABLE Syntax”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.1.28, “DROP TABLE Syntax”
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 18.1.6.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 15.8.2, “MERGE Table Problems”
Section 1.7.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.4.11, “ndb_drop_index — Drop Index from an NDB Table”
Section 18.4.12, “ndb_drop_table — Drop an NDB Table”
Section 8.5.6, “Optimizing InnoDB DDL Operations”
Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section C.5, “Restrictions on Views”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.6.7.4, “SIGNAL Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.4.6, “The DDL Log”
Section 15.4, “The MEMORY Storage Engine”
Section 15.8, “The MERGE Storage Engine”
Section 14.23.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 13.1.33, “TRUNCATE TABLE Syntax”
Section 24.2.1, “Types of Plugins”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”

DROP TABLE IF EXISTS
Section 17.4.1.9, “Replication of DROP ... IF EXISTS Statements”



3392

DROP TABLE IF EXISTS mysql.user mysql.db mysql.tables_priv
mysql.columns_priv mysql.procs_priv
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”

DROP TABLESPACE
Section 13.1.29, “DROP TABLESPACE Syntax”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”

DROP TEMPORARY TABLE IF EXISTS
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

DROP TRIGGER
Section 13.1.30, “DROP TRIGGER Syntax”
Section A.5, “MySQL 5.5 FAQ: Triggers”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.3.1, “Trigger Syntax and Examples”

DROP USER
Section 13.7.1.2, “DROP USER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 12.14, “Information Functions”
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”
Section 6.2.1, “Privileges Provided by MySQL”
Section 6.3.3, “Removing User Accounts”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 13.7.1.5, “REVOKE Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.3.1, “User Names and Passwords”

DROP USER 'x'@'localhost'
Using the Authentication Plugins

DROP VIEW
Section 13.1.31, “DROP VIEW Syntax”
Section C.5, “Restrictions on Views”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 20.5.1, “View Syntax”

DROP VIEW IF EXISTS
Section 17.4.1.9, “Replication of DROP ... IF EXISTS Statements”

E

[index top]

EXECUTE
Section 23.8.20, “C API Support for Prepared CALL Statements”
Section 13.2.1, “CALL Syntax”
Section 13.5.2, “EXECUTE Syntax”



3393

Section 13.5.1, “PREPARE Syntax”
Section 13.5, “Prepared SQL Statement Syntax”
Section C.1, “Restrictions on Stored Programs”
Section C.5, “Restrictions on Views”
Section 5.1.7, “Server Status Variables”

EXPLAIN
Section 13.1.7, “ALTER TABLE Syntax”
Section 8.2.1.16, “Avoiding Full Table Scans”
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 8.3.4, “Column Indexes”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 24.5.1, “Debugging a MySQL Server”
Section 13.2.10.8, “Derived Tables (Subqueries in the FROM Clause)”
Section 13.8.1, “DESCRIBE Syntax”
Section 8.2.1.12, “DISTINCT Optimization”
Section 8.2.1.4, “Engine Condition Pushdown Optimization”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 8.2.1.11, “GROUP BY Optimization”
Section 8.9.3, “Index Hints”
Section 8.2.1.3, “Index Merge Optimization”
Chapter 21, INFORMATION_SCHEMA Tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 8.2.1.9, “IS NULL Optimization”
Chapter 22, MySQL Performance Schema
Section 23.8.11.28, “mysql_stmt_store_result()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
NDB Cluster Status Variables
NDB Cluster System Variables
Section 19.3.4, “Obtaining Information About Partitions”
Section B.5.5, “Optimizer-Related Issues”
Section 8.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.2.1.10, “ORDER BY Optimization”
Section 6.2.1, “Privileges Provided by MySQL”
Section 8.2.1.2, “Range Optimization”
Section C.1, “Restrictions on Stored Programs”
Section 13.2.9, “SELECT Syntax”
Section B.3, “Server Error Codes and Messages”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section B.5.4.7, “Solving Problems with No Matching Rows”
Section 8.2.2, “Subquery Optimization”
Section 1.3.2, “The Main Features of MySQL”
Section 8.8, “Understanding the Query Execution Plan”
Section 24.5.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 11.5.3.7, “Using Spatial Indexes”
Section 8.3.6, “Verifying Index Usage”
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”

EXPLAIN ... SELECT
Section 19.3.4, “Obtaining Information About Partitions”



3394

EXPLAIN EXTENDED
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 8.2.2, “Subquery Optimization”

EXPLAIN PARTITIONS
Section 13.8.2, “EXPLAIN Syntax”
Section 19.3.4, “Obtaining Information About Partitions”
Section 8.8.1, “Optimizing Queries with EXPLAIN”

EXPLAIN PARTITIONS SELECT
Section 19.3.4, “Obtaining Information About Partitions”

EXPLAIN PARTITIONS SELECT COUNT()
Section 19.2.1, “RANGE Partitioning”

EXPLAIN SELECT
Section 13.2.10.8, “Derived Tables (Subqueries in the FROM Clause)”
Section 8.8.2, “EXPLAIN Output Format”
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”
Section 1.6, “How to Report Bugs or Problems”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 19.3.4, “Obtaining Information About Partitions”

EXPLAIN SELECT ... ORDER BY
Section 8.2.1.10, “ORDER BY Optimization”

EXPLAIN tbl_name
Section 8.8.1, “Optimizing Queries with EXPLAIN”

F

[index top]

FETCH
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.6.3, “Cursor FETCH Syntax”
Section C.1, “Restrictions on Stored Programs”

FETCH ... INTO var_list
Section 13.6.4, “Variables in Stored Programs”

FLUSH
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.14, “Replication and FLUSH”
Section 13.7.6.6, “RESET Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 2.10.4, “Securing the Initial MySQL Accounts”



3395

Section 5.1.11, “Server Response to Signals”
Section 13.3.3, “Statements That Cause an Implicit Commit”

FLUSH BINARY LOGS
Section 5.4.7, “Server Log Maintenance”

FLUSH DES_KEY_FILE
Section 12.13, “Encryption and Compression Functions”

FLUSH HOSTS
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 23.8.7.55, “mysql_refresh()”
Section 5.1.5, “Server System Variables”

FLUSH LOGS
Section 7.3.3, “Backup Strategy Summary”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Syntax”
Section 5.4, “MySQL Server Logs”
Section 23.8.7.55, “mysql_refresh()”
Section 17.4.1.14, “Replication and FLUSH”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.7, “Server Status Variables”
Section 5.4.2, “The Error Log”
Section 17.2.2.1, “The Slave Relay Log”

FLUSH MASTER
Section 13.7.6.3, “FLUSH Syntax”
Section 17.4.1.14, “Replication and FLUSH”

FLUSH PRIVILEGES
Section 18.5.14, “Distributed MySQL Privileges for NDB Cluster”
Section 13.7.6.3, “FLUSH Syntax”
Section 6.2.2, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 23.8.7.55, “mysql_refresh()”
Section 23.8.7.56, “mysql_reload()”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.11.3, “NDB Cluster and MySQL Security Procedures”
Section 17.4.1.14, “Replication and FLUSH”
Section 5.1.4, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 1.2, “Typographical and Syntax Conventions”
Section 6.2.6, “When Privilege Changes Take Effect”

FLUSH QUERY CACHE
Section 13.7.6.3, “FLUSH Syntax”
Section 8.10.3.4, “Query Cache Status and Maintenance”

FLUSH SLAVE
Section 13.7.6.3, “FLUSH Syntax”



3396

Section 17.4.1.14, “Replication and FLUSH”

FLUSH STATUS
Section 23.8.7.55, “mysql_refresh()”
Section 5.1.7, “Server Status Variables”

FLUSH TABLE
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 13.7.6.3, “FLUSH Syntax”

FLUSH TABLES
Section 13.5.4, “Automatic Prepared Statement Repreparation”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 13.7.6.3, “FLUSH Syntax”
Section 8.14.2, “General Thread States”
Section 13.2.4, “HANDLER Syntax”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 15.8.2, “MERGE Table Problems”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 23.8.7.55, “mysql_refresh()”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 17.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”
Section 15.3.4.2, “Problems from Tables Not Being Closed Properly”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 17.4.1.14, “Replication and FLUSH”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

FLUSH TABLES ... FOR EXPORT
MySQL Glossary

FLUSH TABLES tbl_list WITH READ LOCK
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”

FLUSH TABLES tbl_name ... WITH READ LOCK
Section 13.7.6.3, “FLUSH Syntax”

FLUSH TABLES tbl_name WITH READ LOCK
Section 13.2.4, “HANDLER Syntax”

FLUSH TABLES WITH READ LOCK
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.3, “FLUSH Syntax”
Section 8.14.2, “General Thread States”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”



3397

Section 17.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”
Section 17.4.1.14, “Replication and FLUSH”
Section C.6, “Restrictions on XA Transactions”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.5, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”

FLUSH USER_RESOURCES
Section 13.7.6.3, “FLUSH Syntax”
Section 6.3.4, “Setting Account Resource Limits”

G

[index top]

GRANT
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 6.3.2, “Adding User Accounts”
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 6.3.5, “Assigning Account Passwords”
Section 6.4.5, “Command Options for Secure Connections”
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host Address”
Section 13.7.1.1, “CREATE USER Syntax”
Section 17.1.1.3, “Creating a User for Replication”
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Implementing Proxy User Support in Authentication Plugins
Section 12.14, “Information Functions”
Section 5.1.9, “IPv6 Support”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.13, “MySQL 5.5 FAQ: Replication”
MySQL Glossary
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”
Section 8.2.5, “Optimizing Database Privileges”
Section 6.5.1.4, “PAM Pluggable Authentication”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 18.6.5, “Preparing the NDB Cluster for Replication”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 6.3.7, “Proxy Users”
Section 17.4.1.14, “Replication and FLUSH”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.25, “Replication of the mysql System Database”
Section 13.7.1.5, “REVOKE Syntax”
Section 6.1.1, “Security Guidelines”
Section 5.1.4, “Server Command Options”
Section 5.1.8, “Server SQL Modes”
Section 5.1.5, “Server System Variables”
Section 6.3.4, “Setting Account Resource Limits”



3398

Section 13.7.5.22, “SHOW GRANTS Syntax”
Section 6.2.3, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2, “The MySQL Access Privilege System”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 6.3.1, “User Names and Passwords”
Section 6.4, “Using Secure Connections”
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 6.5.1.5, “Windows Pluggable Authentication”

GRANT ALL
Section 13.7.1.3, “GRANT Syntax”

GRANT EVENT
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

GRANT USAGE
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.1.3, “GRANT Syntax”
Section 6.3.4, “Setting Account Resource Limits”

H

[index top]

HANDLER
Section 23.8.16, “Controlling Automatic Reconnection Behavior”
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.6.3, “FLUSH Syntax”
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 1.7, “MySQL Standards Compliance”
Section 23.8.7.3, “mysql_change_user()”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.5, “Server System Variables”

HANDLER ... CLOSE
Section 13.7.5.25, “SHOW OPEN TABLES Syntax”

HANDLER ... OPEN
Section 13.7.5.25, “SHOW OPEN TABLES Syntax”

HANDLER ... READ
Section C.1, “Restrictions on Stored Programs”

HANDLER OPEN
Section 13.2.4, “HANDLER Syntax”
Section 13.1.33, “TRUNCATE TABLE Syntax”

HELP
Section 13.8.3, “HELP Syntax”
Section 17.4.1.30, “Replication of Server-Side Help Tables”
Section 5.1.10, “Server-Side Help”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”



3399

I

[index top]

IF
Section 12.4, “Control Flow Functions”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.2, “IF Syntax”

INSERT
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 6.3.2, “Adding User Accounts”
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 14.8.2.2, “autocommit, Commit, and Rollback”
Section 13.5.4, “Automatic Prepared Statement Repreparation”
Section 7.1, “Backup and Recovery Types”
Section 20.7, “Binary Logging of Stored Programs”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 23.8.6, “C API Function Overview”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.17, “C API Support for Multiple Statement Execution”
Section 14.7.2, “Change Buffer”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 10.1.7, “Column Character Set Conversion”
Section 8.11.3, “Concurrent Inserts”
Section 14.9.4, “Configuring InnoDB Change Buffering”
Section 1.7.3.3, “Constraints on Invalid Data”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 13.1.13, “CREATE INDEX Syntax”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”
Section 13.1.17.3, “CREATE TEMPORARY TABLE Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 15.9.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 11.6, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.2.2, “DELETE Syntax”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 7.3.1, “Establishing a Backup Policy”
Section 12.18.3, “Expression Handling”
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.23.2, “Forcing InnoDB Recovery”
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 23.8.15.3, “How to Get the Unique ID for the Last Inserted Row”
Section 12.14, “Information Functions”
Chapter 21, INFORMATION_SCHEMA Tables
Section 14.8.1, “InnoDB Locking”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”



3400

Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 8.11.1, “Internal Locking Methods”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 19.2.2, “LIST Partitioning”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 3.3.3, “Loading Data into a Table”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.8.2, “MERGE Table Problems”
Section 12.17, “Miscellaneous Functions”
Section A.1, “MySQL 5.5 FAQ: General”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.5, “MySQL 5.5 FAQ: Triggers”
Section A.6, “MySQL 5.5 FAQ: Views”
Section 1.7.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.37, “mysql_insert_id()”
Section 23.8.7.48, “mysql_num_rows()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.13, “mysql_stmt_field_count()”
Section 23.8.11.16, “mysql_stmt_insert_id()”
Section 23.8.11.18, “mysql_stmt_num_rows()”
Section 23.8.11.21, “mysql_stmt_prepare()”
Section 23.8.7.69, “mysql_store_result()”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.15, “NDB API Statistics Counters and Variables”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 18.2.5, “NDB Cluster Example with Tables and Data”
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 8.2.4, “Optimizing Data Change Statements”
Section 8.2.4.1, “Optimizing INSERT Statements”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 19.4, “Partition Pruning”
Section 19.5.4, “Partitioning and Table-Level Locking”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section 11.5.3.3, “Populating Spatial Columns”
Section 1.7.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 6.2.1, “Privileges Provided by MySQL”
Section 8.14.4, “Query Cache Thread States”
Section 19.2.1, “RANGE Partitioning”
Section 13.2.8, “REPLACE Syntax”
Section 17.4.1.1, “Replication and AUTO_INCREMENT”
Section 17.4.1.31, “Replication and Server SQL Mode”
Section 17.4.1.15, “Replication and System Functions”
Section 17.4.1.38, “Replication and Variables”
Section 17.1.3.2, “Replication Master Options and Variables”
Section 17.2.3.3, “Replication Rule Application”
Section 19.5, “Restrictions and Limitations on Partitioning”



3401

Section C.1, “Restrictions on Stored Programs”
Section 5.7.1.7, “Row-Level Probes”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 5.1.8, “Server SQL Modes”
Section 5.1.5, “Server System Variables”
Section 13.7.5.28, “SHOW PROCEDURE CODE Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 17.4.1.29, “Slave Errors During Replication”
Section 5.7.1.12, “Statement Probes”
Section 13.2.10, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 15.6, “The ARCHIVE Storage Engine”
Section 10.1.8.5, “The binary Collation Compared to _bin Collations”
Section 5.4.4, “The Binary Log”
Section 15.7, “The BLACKHOLE Storage Engine”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.3.2, “The Main Features of MySQL”
Section 15.8, “The MERGE Storage Engine”
Section 15.3, “The MyISAM Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1.12, “The Server Shutdown Process”
Section 20.3.1, “Trigger Syntax and Examples”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 20.5.3, “Updatable and Insertable Views”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”
Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”
Section 20.3, “Using Triggers”
Section 23.8.15.2, “What Results You Can Get from a Query”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”

INSERT ... ()
Section 5.7.1.12, “Statement Probes”

INSERT ... ON DUPLICATE KEY UPDATE
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 12.14, “Information Functions”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 15.8.2, “MERGE Table Problems”
Section 12.17, “Miscellaneous Functions”
MySQL Glossary
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.37, “mysql_insert_id()”
Section 19.5.4, “Partitioning and Table-Level Locking”

INSERT ... SELECT
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”



3402

Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 8.11.3, “Concurrent Inserts”
Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 23.8.7.37, “mysql_insert_id()”
NDB Cluster System Variables
Section 19.5.4, “Partitioning and Table-Level Locking”
Section 17.4.1.16, “Replication and LIMIT”
Section 5.1.5, “Server System Variables”
Section 5.7.1.12, “Statement Probes”
Section 5.4.4, “The Binary Log”

INSERT ... SELECT ON DUPLICATE KEY UPDATE
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”

INSERT ... SET
Section 13.2.5, “INSERT Syntax”

INSERT ... VALUES
Section 13.2.5, “INSERT Syntax”
Section 23.8.7.35, “mysql_info()”

INSERT DELAYED
Section 13.1.7, “ALTER TABLE Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.14.3, “Delayed-Insert Thread States”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 15.8.2, “MERGE Table Problems”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 24.1.1, “MySQL Threads”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 19.5.4, “Partitioning and Table-Level Locking”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 15.6, “The ARCHIVE Storage Engine”
Section 15.4, “The MEMORY Storage Engine”
Section 20.5.3, “Updatable and Insertable Views”

INSERT IGNORE
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 1.7.3.3, “Constraints on Invalid Data”
Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”



3403

Section 1.7.3.4, “ENUM and SET Constraints”
Section 12.14, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB
Cluster 7.x”
Section 5.1.8, “Server SQL Modes”

INSERT IGNORE ... SELECT
Section 13.2.5.1, “INSERT ... SELECT Syntax”

INSERT INTO ... SELECT
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 1.7.3.3, “Constraints on Invalid Data”
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 17.4.1.6, “Replication of CREATE TABLE ... SELECT Statements”
Section 1.7.2.1, “SELECT INTO TABLE Differences”
Section 15.4, “The MEMORY Storage Engine”

INSERT INTO ... SELECT ...
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 23.8.7.35, “mysql_info()”
Section 23.8.15.2, “What Results You Can Get from a Query”

INSERT INTO ... SELECT FROM memory_table
Section 17.4.1.23, “Replication and MEMORY Tables”

INSERT INTO...SELECT
Section 8.2.1, “Optimizing SELECT Statements”

INSTALL PLUGIN
Section 6.5.2.7, “Audit Log Options and System Variables”
Section 13.7.6.3, “FLUSH Syntax”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 14.18, “InnoDB INFORMATION_SCHEMA Tables”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 6.5.2.1, “Installing MySQL Enterprise Audit”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 5.5.3, “Obtaining Server Plugin Information”
Section 6.5.1.4, “PAM Pluggable Authentication”
Section 15.2.1, “Pluggable Storage Engine Architecture”
Section 24.2.3, “Plugin API Components”
Section 24.2.4.2, “Plugin Data Structures”
Section 17.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.4, “Server Command Options”
Server Plugin Library and Plugin Descriptors
Section 5.1.5, “Server System Variables”
Section 13.7.5.26, “SHOW PLUGINS Syntax”
Section 6.5.1.6, “Socket Peer-Credential Pluggable Authentication”
Section 6.5.1.7, “Test Pluggable Authentication”
Section 21.13, “The INFORMATION_SCHEMA PLUGINS Table”



3404

Section 24.2, “The MySQL Plugin API”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 6.5.1.5, “Windows Pluggable Authentication”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.5, “Writing Daemon Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4.6, “Writing INFORMATION_SCHEMA Plugins”
Writing the Server-Side Authentication Plugin

ITERATE
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.2, “Statement Label Syntax”

K

[index top]

KILL
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.38, “mysql_kill()”
Section 4.6.15, “mysql_zap — Kill Processes That Match a Pattern”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”

KILL CONNECTION
Section 13.7.6.4, “KILL Syntax”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section 5.1.12, “The Server Shutdown Process”

KILL QUERY
Section 13.7.6.4, “KILL Syntax”
Section 12.17, “Miscellaneous Functions”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section 5.1.12, “The Server Shutdown Process”

L

[index top]

LEAVE
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 13.6.5.7, “RETURN Syntax”
Section 13.6.2, “Statement Label Syntax”

LOAD DATA
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”



3405

Section 8.11.3, “Concurrent Inserts”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 10.1.3.3, “Database Character Set and Collation”
Section B.5.7, “Known Issues in MySQL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 3.3.3, “Loading Data into a Table”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 23.8.7.49, “mysql_options()”
Section 19.5.4, “Partitioning and Table-Level Locking”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section C.1, “Restrictions on Stored Programs”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 3.3.4.1, “Selecting All Data”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 11.4.4, “The ENUM Type”
Section 9.4, “User-Defined Variables”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”
Section 20.3, “Using Triggers”

LOAD DATA INFILE
Section 6.5.2.4, “Audit Log Logging Control”
Section 6.5.2.8, “Audit Log Restrictions”
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.11.3, “Concurrent Inserts”
Section 7.2, “Database Backup Methods”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 12.14, “Information Functions”
Section B.5.7, “Known Issues in MySQL”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 15.3.1, “MyISAM Startup Options”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.1, “mysql Options”
Section 4.6.7.1, “mysqlbinlog Hex Dump Format”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 18.4.24, “ndb_show_tables — Display List of NDB Tables”
Section 9.1.7, “NULL Values”
Section 8.2.4.1, “Optimizing INSERT Statements”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 4.1, “Overview of MySQL Programs”
Section 18.5.5, “Performing a Rolling Restart of an NDB Cluster”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.4.3, “Problems with NULL Values”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 17.4.1.17, “Replication and LOAD DATA INFILE”
Section 17.4.2, “Replication Compatibility Between MySQL Versions”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 8.14.7, “Replication Slave SQL Thread States”
Section C.7, “Restrictions on Character Sets”
Section 13.2.9.1, “SELECT ... INTO Syntax”



3406

Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.2.10, “Subquery Syntax”
Section 15.4, “The MEMORY Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section B.5.3.5, “Where MySQL Stores Temporary Files”
Section C.10.6, “Windows Platform Limitations”

LOAD DATA INFILE ...
Section 23.8.7.35, “mysql_info()”
Section 23.8.15.2, “What Results You Can Get from a Query”

LOAD DATA LOCAL
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 23.8.7.49, “mysql_options()”
Section 23.8.7.52, “mysql_real_connect()”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 5.1.5, “Server System Variables”

LOAD DATA LOCAL INFILE
Section 23.8.6, “C API Function Overview”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 23.8.7.49, “mysql_options()”
Section 23.8.7.62, “mysql_set_local_infile_default()”
Section 23.8.7.63, “mysql_set_local_infile_handler()”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

LOAD INDEX INTO CACHE
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 8.10.2.4, “Index Preloading”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 1.4, “What Is New in MySQL 5.5”

LOAD INDEX INTO CACHE ... IGNORE LEAVES
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”

LOAD XML
Section 13.2.7, “LOAD XML Syntax”

LOAD XML INFILE
Section 13.2.7, “LOAD XML Syntax”
Section 1.4, “What Is New in MySQL 5.5”

LOAD XML LOCAL
Section 13.2.7, “LOAD XML Syntax”

LOAD XML LOCAL INFILE
Section 13.2.7, “LOAD XML Syntax”



3407

LOCK TABLE
Section 8.11.3, “Concurrent Inserts”
Section 8.14.2, “General Thread States”
Section B.5.6.1, “Problems with ALTER TABLE”

LOCK TABLES
Section 14.1.2, “Best Practices for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 13.1.10, “CREATE DATABASE Syntax”
Section 13.1.17.4, “CREATE TABLE ... LIKE Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 14.8.5.2, “Deadlock Detection and Rollback”
Section 14.8.5, “Deadlocks in InnoDB”
Section 13.7.6.3, “FLUSH Syntax”
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 8.11.1, “Internal Locking Methods”
Section 18.1.6.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 14.11.1.7, “Limits on InnoDB Tables”
Section 13.3.5.2, “LOCK TABLES and Triggers”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 15.8.2, “MERGE Table Problems”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup Program”
Section 19.5.4, “Partitioning and Table-Level Locking”
Section 6.2.1, “Privileges Provided by MySQL”
Section 15.3.4.2, “Problems from Tables Not Being Closed Properly”
Section C.1, “Restrictions on Stored Programs”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.5, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.12.1, “System Factors”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”

LOCK TABLES ... READ
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.11.1.7, “Limits on InnoDB Tables”

LOCK TABLES ... WRITE
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.11.1.7, “Limits on InnoDB Tables”

LOOP
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section 13.6.2, “Statement Label Syntax”



3408

O

[index top]

OPTIMIZE TABLE
Section 18.5.13.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 18.5.13.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 24.5.1, “Debugging a MySQL Server”
Section 13.2.2, “DELETE Syntax”
Section 15.3.3.2, “Dynamic Table Characteristics”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.2, “General Thread States”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.16.6, “Limitations of Fast Index Creation”
Section 18.1.6.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 19.3.3, “Maintenance of Partitions”
Section 15.8.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.1, “myisamchk General Options”
Section 1.7.1, “MySQL Extensions to Standard SQL”
MySQL Server Options for NDB Cluster
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 18.5.12.3, “NDB Cluster Disk Data Storage Requirements”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.4.2, “Optimizing UPDATE Statements”
Section 8.2.6, “Other Optimization Tips”
Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB
Cluster 7.x”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.14, “Replication and FLUSH”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.3.3.1, “Static (Fixed-Length) Table Characteristics”
Section 15.6, “The ARCHIVE Storage Engine”
Section 5.1.12, “The Server Shutdown Process”
Section 5.4.5, “The Slow Query Log”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

P

[index top]

PREPARE
Section 13.5.4, “Automatic Prepared Statement Repreparation”
Section 23.8.20, “C API Support for Prepared CALL Statements”
Section 13.2.1, “CALL Syntax”
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 13.5.2, “EXECUTE Syntax”
Section 9.2.2, “Identifier Case Sensitivity”



3409

Section 8.11.4, “Metadata Locking”
Section 13.5.1, “PREPARE Syntax”
Section 13.5, “Prepared SQL Statement Syntax”
Section C.1, “Restrictions on Stored Programs”
Section C.5, “Restrictions on Views”
Section 5.1.7, “Server Status Variables”

PURGE BINARY LOGS
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.1.3, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.5, “Server System Variables”
Section 5.4.4, “The Binary Log”

R

[index top]

RELEASE SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax”

RENAME TABLE
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.14.2, “General Thread States”
Section 9.2.2, “Identifier Case Sensitivity”
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 13.1.32, “RENAME TABLE Syntax”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section B.5.6.2, “TEMPORARY Table Problems”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

RENAME USER
Section 13.7.1.3, “GRANT Syntax”
Section 12.14, “Information Functions”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.4, “RENAME USER Syntax”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2.6, “When Privilege Changes Take Effect”

REPAIR TABLE
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 13.1.7, “ALTER TABLE Syntax”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 15.3.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 8.11.5, “External Locking”



3410

Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.2, “General Thread States”
Section 16.1.3, “Handling MySQL Recovery with ZFS”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.6, “How to Report Bugs or Problems”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 19.3.3, “Maintenance of Partitions”
Section 15.8.2, “MERGE Table Problems”
Section 15.3.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 6.2.1, “Privileges Provided by MySQL”
Section 15.3.4.2, “Problems from Tables Not Being Closed Properly”
Section B.5.6.1, “Problems with ALTER TABLE”
Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 17.4.1.14, “Replication and FLUSH”
Section 17.4.1.20, “Replication and REPAIR TABLE”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 15.6, “The ARCHIVE Storage Engine”
Section 5.1.12, “The Server Shutdown Process”
Section 5.4.5, “The Slow Query Log”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

REPEAT
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 20.1, “Defining Stored Programs”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.6, “REPEAT Syntax”
Section 13.6.2, “Statement Label Syntax”

REPLACE
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 11.6, “Data Type Default Values”
Section 12.14, “Information Functions”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”



3411

Section 15.8.2, “MERGE Table Problems”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.1, “mysql_affected_rows()”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 19.5.4, “Partitioning and Table-Level Locking”
Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB
Cluster 7.x”
Section 13.2.8, “REPLACE Syntax”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server Command Options”
Section 13.2.10, “Subquery Syntax”
Section 15.6, “The ARCHIVE Storage Engine”
Section 1.3.2, “The Main Features of MySQL”

REPLACE ... SELECT
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section B.5.7, “Known Issues in MySQL”

RESET
Section 13.7.6.3, “FLUSH Syntax”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 13.7.6.6, “RESET Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”

RESET MASTER
Section 13.7.6.3, “FLUSH Syntax”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 23.8.7.55, “mysql_refresh()”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 17.3.6, “Switching Masters During Failover”
Section 5.4.4, “The Binary Log”

RESET QUERY CACHE
Section 8.14.4, “Query Cache Thread States”

RESET SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 23.8.7.55, “mysql_refresh()”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.4.2.3, “RESET SLAVE Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”

RESET SLAVE ALL
Section 13.4.2.1, “CHANGE MASTER TO Syntax”

RESIGNAL
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
RESIGNAL Alone
RESIGNAL Requires Condition Handler Context
Section 13.6.7.3, “RESIGNAL Syntax”
RESIGNAL with a Condition Value and Optional New Signal Information



3412

RESIGNAL with New Signal Information
Section C.2, “Restrictions on Condition Handling”
Section C.1, “Restrictions on Stored Programs”
Signal Condition Information Items
Section 1.4, “What Is New in MySQL 5.5”

RETURN
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.5, “LOOP Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 13.6.5.7, “RETURN Syntax”

REVOKE
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 12.14, “Information Functions”
Section 5.1.9, “IPv6 Support”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section A.13, “MySQL 5.5 FAQ: Replication”
Section 1.7.2, “MySQL Differences from Standard SQL”
MySQL Glossary
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 6.3.7, “Proxy Users”
Section 17.4.1.8, “Replication of CURRENT_USER()”
Section 17.4.1.25, “Replication of the mysql System Database”
Section 13.7.1.5, “REVOKE Syntax”
Section 6.1.1, “Security Guidelines”
Section 5.1.5, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2, “The MySQL Access Privilege System”
Section 6.3.1, “User Names and Passwords”
Section 6.2.6, “When Privilege Changes Take Effect”

REVOKE ALL PRIVILEGES
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

ROLLBACK
Section 14.8.2.2, “autocommit, Commit, and Rollback”
Section 20.7, “Binary Logging of Stored Programs”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 14.8.5.2, “Deadlock Detection and Rollback”
Section 12.14, “Information Functions”
Section 14.5, “InnoDB and the ACID Model”
Section 14.23.4, “InnoDB Error Handling”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 23.8.7.3, “mysql_change_user()”
Section 17.4.1.35, “Replication and Transactions”



3413

Section 17.1.3.3, “Replication Slave Options and Variables”
Section B.5.4.5, “Rollback Failure for Nontransactional Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 5.1.5, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 13.3.2, “Statements That Cannot Be Rolled Back”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.4.4, “The Binary Log”
Section 13.3, “Transactional and Locking Statements”
Section 20.3.1, “Trigger Syntax and Examples”

ROLLBACK TO SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax”

ROLLBACK to SAVEPOINT
Section 20.3.1, “Trigger Syntax and Examples”

S

[index top]

SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax”

SELECT
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.1.9, “ALTER VIEW Syntax”
Section 12.3.4, “Assignment Operators”
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 14.8.2.2, “autocommit, Commit, and Rollback”
Section 13.5.4, “Automatic Prepared Statement Repreparation”
Section 17.1.3.4, “Binary Log Options and Variables”
Section 20.7, “Binary Logging of Stored Programs”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.17, “C API Support for Multiple Statement Execution”
Section 23.8.20, “C API Support for Prepared CALL Statements”
Section 13.2.1, “CALL Syntax”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.11.3, “Concurrent Inserts”
Section 10.1.4, “Connection Character Sets and Collations”
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.17.5, “CREATE TABLE ... SELECT Syntax”
Section 13.1.17, “CREATE TABLE Syntax”
Section 13.1.17.3, “CREATE TEMPORARY TABLE Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 15.9.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.6.6.2, “Cursor DECLARE Syntax”



3414

Section 13.6.6.3, “Cursor FETCH Syntax”
Section 14.8.5.2, “Deadlock Detection and Rollback”
Section 13.2.2, “DELETE Syntax”
Section 13.2.10.8, “Derived Tables (Subqueries in the FROM Clause)”
Section 8.4.3.2, “Disadvantages of Creating Many Tables in the Same Database”
Section 13.2.3, “DO Syntax”
Section 5.1.6.2, “Dynamic System Variables”
Section 3.2, “Entering Queries”
Section 20.4.2, “Event Scheduler Configuration”
Section 10.1.8.6, “Examples of the Effect of Collation”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.23.2, “Forcing InnoDB Recovery”
Section 8.2.1.14, “Function Call Optimization”
Chapter 12, Functions and Operators
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 13.2.4, “HANDLER Syntax”
Section 19.2.7, “How MySQL Partitioning Handles NULL”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”
Section 1.6, “How to Report Bugs or Problems”
Section 8.9.3, “Index Hints”
Section 12.14, “Information Functions”
Chapter 21, INFORMATION_SCHEMA Tables
Section 2.10.1, “Initializing the Data Directory”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 8.11.1, “Internal Locking Methods”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.2.9.2, “JOIN Syntax”
Section 9.3, “Keywords and Reserved Words”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.2.7, “LOAD XML Syntax”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 14.8.2.4, “Locking Reads”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.8.2, “MERGE Table Problems”
Section 8.3.5, “Multiple-Column Indexes”
Section 7.6.4, “MyISAM Table Optimization”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.13, “MySQL 5.5 FAQ: Replication”
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Chapter 22, MySQL Performance Schema
Section 23.8.7.1, “mysql_affected_rows()”



3415

Section 23.8.7.17, “mysql_fetch_field()”
Section 23.8.7.22, “mysql_field_count()”
Section 23.8.7.47, “mysql_num_fields()”
Section 23.8.7.48, “mysql_num_rows()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.11, “mysql_stmt_fetch()”
Section 23.8.11.18, “mysql_stmt_num_rows()”
Section 23.8.11.28, “mysql_stmt_store_result()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 18.2.5, “NDB Cluster Example with Tables and Data”
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster System Variables
Section 18.4.22, “ndb_select_all — Print Rows from an NDB Table”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 19.3.4, “Obtaining Information About Partitions”
Section 8.3, “Optimization and Indexes”
Section B.5.5, “Optimizer-Related Issues”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 8.2.4.2, “Optimizing UPDATE Statements”
Section 4.6.3.4, “Other myisamchk Options”
Section 19.4, “Partition Pruning”
Section 19.5.4, “Partitioning and Table-Level Locking”
Section 14.8.4, “Phantom Rows”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.4.2, “Problems Using DATE Columns”
Section B.5.4.8, “Problems with Floating-Point Values”
Section 8.10.3.2, “Query Cache SELECT Options”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 8.14.4, “Query Cache Thread States”
Section 18.5.9, “Quick Reference: NDB Cluster SQL Statements”
Section 19.2.3.1, “RANGE COLUMNS partitioning”
Section 8.2.1.2, “Range Optimization”
Section 15.5.1, “Repairing and Checking CSV Tables”
Section 13.2.8, “REPLACE Syntax”
Section 17.2, “Replication Implementation”
Section 17.1.3.2, “Replication Master Options and Variables”
Section 17.4.1.5, “Replication of CREATE ... IF NOT EXISTS Statements”
Section 17.4.1.12, “Replication of Invoked Features”
Section C.1, “Restrictions on Stored Programs”
Section 3.3.4, “Retrieving Information from a Table”
Section 3.6.7, “Searching on Two Keys”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 13.2.9, “SELECT Syntax”
Section 3.3.4.1, “Selecting All Data”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.8, “Server SQL Modes”
Section 5.1.5, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 13.7.5.3, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”



3416

Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.28, “SHOW PROCEDURE CODE Syntax”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 13.7.5.33, “SHOW RELAYLOG EVENTS Syntax”
Section 13.7.5, “SHOW Syntax”
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section B.5.4.7, “Solving Problems with No Matching Rows”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 5.7.1.12, “Statement Probes”
Section 20.2.1, “Stored Routine Syntax”
Section 9.1.1, “String Literals”
Section 13.2.10.6, “Subqueries with EXISTS or NOT EXISTS”
Section 13.2.10.9, “Subquery Errors”
Section 8.2.2, “Subquery Optimization”
Section 13.2.10, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 15.6, “The ARCHIVE Storage Engine”
Section 5.4.4, “The Binary Log”
Section 11.4.4, “The ENUM Type”
Section 21.4, “The INFORMATION_SCHEMA COLUMNS Table”
Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 21.9, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.3.2, “The Main Features of MySQL”
Section 15.8, “The MERGE Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 8.10.3, “The MySQL Query Cache”
Section 18.5.10.13, “The ndbinfo nodes Table”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 14.8.2.1, “Transaction Isolation Levels”
Section 20.3.1, “Trigger Syntax and Examples”
Section 1.2, “Typographical and Syntax Conventions”
Section 13.2.9.3, “UNION Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 9.4, “User-Defined Variables”
Section 14.18.2.1, “Using InnoDB Transaction and Locking Information”
Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 24.5.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 11.5.3.7, “Using Spatial Indexes”
Section 5.1.6, “Using System Variables”
Using the --safe-updates Option
Section 10.1.2.2, “UTF-8 for Metadata”
Section 20.5.1, “View Syntax”
Section 12.8, “What Calendar Is Used By MySQL?”
Section 8.2.1.1, “WHERE Clause Optimization”
Section B.5.3.5, “Where MySQL Stores Temporary Files”
Section 24.2.4.8, “Writing Audit Plugins”

SELECT *
Section 11.4.3, “The BLOB and TEXT Types”

SELECT * INTO OUTFILE 'file_name' FROM tbl_name
Section 7.2, “Database Backup Methods”



3417

SELECT ... FOR UPDATE
Section 14.8.5, “Deadlocks in InnoDB”
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”
Section 14.8.1, “InnoDB Locking”
Section 14.8.2.4, “Locking Reads”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”

SELECT ... FROM
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”

SELECT ... FROM ... FOR UPDATE
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”

SELECT ... FROM ... LOCK IN SHARE MODE
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”

SELECT ... INTO
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 17.4.1.15, “Replication and System Functions”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 1.7.2.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Syntax”

SELECT ... INTO DUMPFILE
Section 2.10.1, “Initializing the Data Directory”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.5, “Server System Variables”

SELECT ... INTO OUTFILE
Section 7.1, “Backup and Recovery Types”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 14.23.2, “Forcing InnoDB Recovery”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 9.1.7, “NULL Values”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 1.7.2.1, “SELECT INTO TABLE Differences”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 1.2, “Typographical and Syntax Conventions”
Section C.10.6, “Windows Platform Limitations”

SELECT ... INTO OUTFILE 'file_name'
Section 13.2.9.1, “SELECT ... INTO Syntax”

SELECT ... INTO var_list
Section C.1, “Restrictions on Stored Programs”
Section 13.6.4, “Variables in Stored Programs”

SELECT ... LOCK IN SHARE MODE
Section 14.8.1, “InnoDB Locking”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.8.2.4, “Locking Reads”



3418

Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 14.8.2.1, “Transaction Isolation Levels”

SELECT DISTINCT
Section 8.14.2, “General Thread States”
Section C.4, “Restrictions on Subqueries”

SET
Section 12.3.4, “Assignment Operators”
Section 17.1.3.4, “Binary Log Options and Variables”
Section 20.7, “Binary Logging of Stored Programs”
Section 20.1, “Defining Stored Programs”
Section 5.1.6.2, “Dynamic System Variables”
Section 20.4.2, “Event Scheduler Configuration”
Section 12.1, “Function and Operator Reference”
Chapter 12, Functions and Operators
Section 12.14, “Information Functions”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 4.6.11, “mysql_find_rows — Extract SQL Statements from Files”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 12.3, “Operators”
Section 8.10.3.3, “Query Cache Configuration”
Section 17.1.3.2, “Replication Master Options and Variables”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server Command Options”
Section 5.1.8, “Server SQL Modes”
Section 5.1.5, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section 13.2.10, “Subquery Syntax”
Section 20.3.1, “Trigger Syntax and Examples”
Section 9.4, “User-Defined Variables”
Section 4.2.8, “Using Options to Set Program Variables”
Section 5.1.6, “Using System Variables”
Using the --safe-updates Option
Section 13.6.4, “Variables in Stored Programs”
Section 1.4, “What Is New in MySQL 5.5”

SET autocommit
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 13.3, “Transactional and Locking Statements”

SET autocommit = 0
Section 17.3.8, “Semisynchronous Replication”

SET CHARACTER SET
Section 10.1.4, “Connection Character Sets and Collations”
Section 23.8.7.53, “mysql_real_escape_string()”
Section C.7, “Restrictions on Character Sets”
Section 5.1.5, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 10.1.9, “Unicode Support”

SET CHARACTER SET charset_name
Section 10.1.4, “Connection Character Sets and Collations”



3419

SET GLOBAL
Section 14.9.4, “Configuring InnoDB Change Buffering”
Section 5.1.6.2, “Dynamic System Variables”
Section 13.7.1.3, “GRANT Syntax”
Section 8.10.2.2, “Multiple Key Caches”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 5.1.6, “Using System Variables”

SET GLOBAL sql_slave_skip_counter
Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Syntax”

SET NAMES
Section 10.1.3.6, “Character String Literal Character Set and Collation”
Section 10.1.5, “Configuring Application Character Set and Collation”
Section 10.1.4, “Connection Character Sets and Collations”
Section 23.8.16, “Controlling Automatic Reconnection Behavior”
Section 10.1.6, “Error Message Character Set”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 4.5.1.2, “mysql Commands”
Section 23.8.7.53, “mysql_real_escape_string()”
Section 23.8.7.61, “mysql_set_character_set()”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section C.7, “Restrictions on Character Sets”
Section 5.1.5, “Server System Variables”
Section 13.7.4.3, “SET NAMES Syntax”
Section 13.7.4, “SET Syntax”
Section 12.2, “Type Conversion in Expression Evaluation”
Section 10.1.9, “Unicode Support”
Section 10.1.2.2, “UTF-8 for Metadata”

SET NAMES 'charset_name'
Section 10.1.4, “Connection Character Sets and Collations”

SET NAMES 'cp1251'
Section 10.1.4, “Connection Character Sets and Collations”

SET NAMES charset_name
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

SET NAMES default_character_set
Section 4.5.4, “mysqldump — A Database Backup Program”

SET PASSWORD
Section 6.3.5, “Assigning Account Passwords”
Section B.5.2.4, “Client does not support authentication protocol”
Section 13.7.1.1, “CREATE USER Syntax”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 12.14, “Information Functions”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 17.4.1.38, “Replication and Variables”
Section 17.4.1.8, “Replication of CURRENT_USER()”



3420

Resetting the Root Password: Generic Instructions
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 17.4.1.28, “SET PASSWORD and Row-Based Replication”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 13.7.4, “SET Syntax”
Section 6.2.3, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 6.2.6, “When Privilege Changes Take Effect”

SET PASSWORD ... = PASSWORD()
Section 6.3.5, “Assigning Account Passwords”

SET SESSION
Section 5.1.6.2, “Dynamic System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 5.1.6, “Using System Variables”

SET sql_mode='modes'
Section A.3, “MySQL 5.5 FAQ: Server SQL Mode”

SET TIMESTAMP = value
Section 8.14, “Examining Thread Information”

SET TRANSACTION
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 14.8.2.1, “Transaction Isolation Levels”

SET TRANSACTION ISOLATION LEVEL
Section 13.7.4, “SET Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”

SET var_name = value
Section 13.7.4, “SET Syntax”

SHOW
Section 23.8.5, “C API Data Structures”
Section 23.8.6, “C API Function Overview”
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 3.3, “Creating and Using a Database”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 21.31, “Extensions to SHOW Statements”
Chapter 21, INFORMATION_SCHEMA Tables
Section 9.2.3, “Mapping of Identifiers to File Names”
Section A.13, “MySQL 5.5 FAQ: Replication”
Section 1.7.1, “MySQL Extensions to Standard SQL”
Section 23.8.11.28, “mysql_stmt_store_result()”
Section 23.8.7.69, “mysql_store_result()”
Section 23.8.7.71, “mysql_use_result()”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
Section 22.1, “Performance Schema Quick Start”



3421

Section C.1, “Restrictions on Stored Programs”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5, “SHOW Syntax”
Section 13.7.5.38, “SHOW TABLES Syntax”
Section 13.4.1, “SQL Statements for Controlling Master Servers”
Section 5.4.4, “The Binary Log”
Section 21.1, “The INFORMATION_SCHEMA CHARACTER_SETS Table”
Section 21.3, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table”
Section 21.2, “The INFORMATION_SCHEMA COLLATIONS Table”
Section 21.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 21.4, “The INFORMATION_SCHEMA COLUMNS Table”
Section 21.6, “The INFORMATION_SCHEMA ENGINES Table”
Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 21.29.1, “The INFORMATION_SCHEMA FILES Table”
Section 21.8, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”
Section 21.9, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”
Section 21.10, “The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table”
Section 21.29.2, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”
Section 21.12, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 21.13, “The INFORMATION_SCHEMA PLUGINS Table”
Section 21.14, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 21.15, “The INFORMATION_SCHEMA PROFILING Table”
Section 21.16, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”
Section 21.19, “The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table”
Section 21.18, “The INFORMATION_SCHEMA SCHEMATA Table”
Section 21.20, “The INFORMATION_SCHEMA STATISTICS Table”
Section 21.23, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”
Section 21.24, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 21.21, “The INFORMATION_SCHEMA TABLES Table”
Section 21.22, “The INFORMATION_SCHEMA TABLESPACES Table”
Section 21.25, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 21.26, “The INFORMATION_SCHEMA USER_PRIVILEGES Table”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.3.2, “The Main Features of MySQL”
Section 10.1.2.2, “UTF-8 for Metadata”

SHOW AUTHORS
Section 13.7.5.1, “SHOW AUTHORS Syntax”

SHOW BINARY LOGS
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.7.5.2, “SHOW BINARY LOGS Syntax”
Section 13.4.1, “SQL Statements for Controlling Master Servers”

SHOW BINLOG EVENTS
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
Section C.3, “Restrictions on Server-Side Cursors”
Section 13.7.5.3, “SHOW BINLOG EVENTS Syntax”
Section 13.4.1, “SQL Statements for Controlling Master Servers”
Section 13.4.2.5, “START SLAVE Syntax”

SHOW CHARACTER SET
Section 13.1.1, “ALTER DATABASE Syntax”
Section 10.1.3.8, “Character Set Introducers”



3422

Section 10.1.2, “Character Sets and Collations in MySQL”
Section 10.1.3.6, “Character String Literal Character Set and Collation”
Section 10.1.3.5, “Column Character Set and Collation”
Section 10.1.3.3, “Database Character Set and Collation”
Section 21.31, “Extensions to SHOW Statements”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 13.7.5.4, “SHOW CHARACTER SET Syntax”
Section 10.1.10, “Supported Character Sets and Collations”
Section 10.1.3.4, “Table Character Set and Collation”

SHOW COLLATION
Section 13.1.1, “ALTER DATABASE Syntax”
Section 23.8.5, “C API Data Structures”
Section 10.5, “Character Set Configuration”
Section 10.1.2, “Character Sets and Collations in MySQL”
Section 10.4.2, “Choosing a Collation ID”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 13.7.5.5, “SHOW COLLATION Syntax”
Section 21.3, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table”
Section 21.2, “The INFORMATION_SCHEMA COLLATIONS Table”

SHOW COLUMNS
Section 13.8.2, “EXPLAIN Syntax”
Section 21.31, “Extensions to SHOW Statements”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 22.1, “Performance Schema Quick Start”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 21.28.1, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 21.28.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 21.28.3, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 21.28.4, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 21.28.5, “The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables”
Section 21.28.7, “The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table”
Section 21.28.6, “The INFORMATION_SCHEMA INNODB_LOCKS Table”
Section 21.28.8, “The INFORMATION_SCHEMA INNODB_TRX Table”

SHOW COLUMNS FROM tbl_name LIKE 'enum_col'
Section 11.4.4, “The ENUM Type”

SHOW CONTRIBUTORS
Section 13.7.5.7, “SHOW CONTRIBUTORS Syntax”

SHOW COUNT()
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”

SHOW CREATE DATABASE
Section 5.1.5, “Server System Variables”
Section 13.7.5.8, “SHOW CREATE DATABASE Syntax”

SHOW CREATE EVENT
Section 20.4.4, “Event Metadata”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”



3423

SHOW CREATE FUNCTION
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 1.6, “How to Report Bugs or Problems”
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”
Section 20.2.3, “Stored Routine Metadata”

SHOW CREATE PROCEDURE
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 1.6, “How to Report Bugs or Problems”
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 13.7.5.10, “SHOW CREATE FUNCTION Syntax”
Section 20.2.3, “Stored Routine Metadata”

SHOW CREATE SCHEMA
Section 13.7.5.8, “SHOW CREATE DATABASE Syntax”

SHOW CREATE TABLE
Section 13.1.7.1, “ALTER TABLE Partition Operations”
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.1.17.1, “CREATE TABLE Statement Retention”
Section 13.1.17, “CREATE TABLE Syntax”
Section 11.6, “Data Type Default Values”
Section 13.8.2, “EXPLAIN Syntax”
Section 3.4, “Getting Information About Databases and Tables”
Section 15.9.2, “How to Create FEDERATED Tables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 19.2.5, “KEY Partitioning”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 18.1.6.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 19.3.4, “Obtaining Information About Partitions”
Section 22.1, “Performance Schema Quick Start”
Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”
Section 5.1.8, “Server SQL Modes”
Section 5.1.5, “Server System Variables”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.12, “SHOW CREATE TABLE Syntax”
Section 13.1.17.7, “Silent Column Specification Changes”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”
Section 3.6.6, “Using Foreign Keys”

SHOW CREATE TRIGGER
Section 13.7.5.13, “SHOW CREATE TRIGGER Syntax”
Section 21.25, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 20.3.2, “Trigger Metadata”

SHOW CREATE VIEW
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5, “Restrictions on Views”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 20.5.5, “View Metadata”

SHOW DATABASES
Section 13.1.10, “CREATE DATABASE Syntax”



3424

Section 3.3, “Creating and Using a Database”
Section 21.31, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and Tables”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 9.2.2, “Identifier Case Sensitivity”
Chapter 21, INFORMATION_SCHEMA Tables
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 22.2, “Performance Schema Build Configuration”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 13.7.5.15, “SHOW DATABASES Syntax”

SHOW ENGINE
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.16, “SHOW ENGINE Syntax”

SHOW ENGINE INNODB MUTEX
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 1.4, “What Is New in MySQL 5.5”

SHOW ENGINE INNODB STATUS
Section 14.7.3, “Adaptive Hash Index”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 14.8.5, “Deadlocks in InnoDB”
Section 14.20.2, “Enabling InnoDB Monitors”
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”
Section 14.11.1.6, “InnoDB and FOREIGN KEY Constraints”
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 14.18.3, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 14.8.1, “InnoDB Locking”
Section 14.20.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.9.2.6, “Monitoring the Buffer Pool Using the InnoDB Standard Monitor”
MySQL Glossary
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section B.1, “Sources of Error Information”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”
Section 1.4, “What Is New in MySQL 5.5”

SHOW ENGINE NDB STATUS
Section 18.2.2.3, “Initial Startup of NDB Cluster on Windows”
Section 18.5, “Management of NDB Cluster”
Section 18.6.4, “NDB Cluster Replication Schema and Tables”
Section 18.5.9, “Quick Reference: NDB Cluster SQL Statements”
Section 13.7.5.16, “SHOW ENGINE Syntax”

SHOW ENGINE NDBCLUSTER STATUS
MySQL Server Options for NDB Cluster
Section 18.5.9, “Quick Reference: NDB Cluster SQL Statements”

SHOW ENGINE PERFORMANCE_SCHEMA STATUS
Section 22.7, “Performance Schema Status Monitoring”
Section 13.7.5.16, “SHOW ENGINE Syntax”



3425

SHOW ENGINES
Chapter 15, Alternative Storage Engines
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 18.5.4, “MySQL Server Usage for NDB Cluster”
NDB Cluster System Variables
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 22.2, “Performance Schema Build Configuration”
Section 22.1, “Performance Schema Quick Start”
Section 18.5.9, “Quick Reference: NDB Cluster SQL Statements”
Section 2.3.7.3, “Selecting a MySQL Server Type”
Section 5.1.5, “Server System Variables”
Section 13.7.5.17, “SHOW ENGINES Syntax”
Section 15.6, “The ARCHIVE Storage Engine”
Section 15.7, “The BLACKHOLE Storage Engine”
Section 1.4, “What Is New in MySQL 5.5”

SHOW ERRORS
Section 14.11.1.6, “InnoDB and FOREIGN KEY Constraints”
RESIGNAL with a Condition Value and Optional New Signal Information
Section 5.1.5, “Server System Variables”
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Signal Condition Information Items
Section B.1, “Sources of Error Information”

SHOW EVENTS
Section 20.4.4, “Event Metadata”
Section 17.4.1.12, “Replication of Invoked Features”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”
Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”

SHOW FULL COLUMNS
Section 13.1.17, “CREATE TABLE Syntax”
Section 21.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”

SHOW FULL PROCESSLIST
Section 8.14, “Examining Thread Information”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”

SHOW FULL TABLES
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 13.7.5.38, “SHOW TABLES Syntax”

SHOW FUNCTION CODE
Section 13.7.5.28, “SHOW PROCEDURE CODE Syntax”

SHOW FUNCTION STATUS
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 20.2.3, “Stored Routine Metadata”

SHOW GLOBAL STATUS
NDB Cluster Status Variables
Section 5.1.5, “Server System Variables”
Section 21.8, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”



3426

SHOW GLOBAL VARIABLES
Section 21.9, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

SHOW GRANTS
Section 6.3.2, “Adding User Accounts”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.5, “REVOKE Syntax”
Section 6.1.1, “Security Guidelines”
Section 13.7.5.22, “SHOW GRANTS Syntax”
Section 13.7.5.27, “SHOW PRIVILEGES Syntax”
Section 6.2, “The MySQL Access Privilege System”

SHOW INDEX
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.9.3, “Index Hints”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.11.1.7, “Limits on InnoDB Tables”
Section 18.4.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 4.6.3.4, “Other myisamchk Options”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 21.20, “The INFORMATION_SCHEMA STATISTICS Table”
Section 21.23, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”

SHOW MASTER LOGS
Section 13.7.5.2, “SHOW BINARY LOGS Syntax”

SHOW MASTER STATUS
Section 17.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 17.4.5, “How to Report Replication Bugs or Problems”
Section 18.6.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 17.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1, “SQL Statements for Controlling Master Servers”
Section 17.4.4, “Troubleshooting Replication”

SHOW OPEN TABLES
Section 13.7.5.25, “SHOW OPEN TABLES Syntax”

SHOW PLUGINS
Section 14.18, “InnoDB INFORMATION_SCHEMA Tables”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 6.5.2.1, “Installing MySQL Enterprise Audit”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
MySQL Server Options for NDB Cluster
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 5.5.3, “Obtaining Server Plugin Information”
Section 6.5.1.4, “PAM Pluggable Authentication”



3427

Chapter 19, Partitioning
Section 24.2.2, “Plugin API Characteristics”
Section 24.2.3, “Plugin API Components”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Server Plugin Library and Plugin Descriptors
Section 5.1.5, “Server System Variables”
Section 13.7.5.26, “SHOW PLUGINS Syntax”
Section 6.5.1.6, “Socket Peer-Credential Pluggable Authentication”
Section 6.5.1.7, “Test Pluggable Authentication”
Section 21.29.2, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”
Section 21.13, “The INFORMATION_SCHEMA PLUGINS Table”
Section 5.5.4.2, “Thread Pool Installation”
Section 1.4, “What Is New in MySQL 5.5”
Section 6.5.1.5, “Windows Pluggable Authentication”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.5, “Writing Daemon Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4.6, “Writing INFORMATION_SCHEMA Plugins”
Writing the Server-Side Authentication Plugin

SHOW PRIVILEGES
Section 13.7.5.27, “SHOW PRIVILEGES Syntax”

SHOW PROCEDURE CODE
Section 13.7.5.20, “SHOW FUNCTION CODE Syntax”

SHOW PROCEDURE STATUS
Section 13.7.5.21, “SHOW FUNCTION STATUS Syntax”
Section 20.2.3, “Stored Routine Metadata”

SHOW PROCESSLIST
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.4.1, “Checking Replication Status”
Section 5.7.1.2, “Command Probes”
Section 5.7.1.1, “Connection Probes”
Section 20.4.2, “Event Scheduler Configuration”
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 12.14, “Information Functions”
Section 14.23.4, “InnoDB Error Handling”
Section 13.7.6.4, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.13, “MySQL 5.5 FAQ: Replication”
Section 18.5.4, “MySQL Server Usage for NDB Cluster”
Section 23.8.7.43, “mysql_list_processes()”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.7.1.6, “Query Execution Probes”
Section 5.7.1.3, “Query Probes”
Section 17.2.1, “Replication Implementation Details”
Section 5.1.5, “Server System Variables”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 13.7.5.31, “SHOW PROFILE Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 17.3.6, “Switching Masters During Failover”
Section 21.29.2, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”



3428

Section 18.5.10.15, “The ndbinfo server_operations Table”
Section 18.5.10.16, “The ndbinfo server_transactions Table”
Section 22.9.6.2, “The threads Table”
Section B.5.2.7, “Too many connections”
Section 17.4.4, “Troubleshooting Replication”

SHOW PROFILE
Section 8.14, “Examining Thread Information”
Section 8.14.2, “General Thread States”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.5, “Server System Variables”
Section 13.7.5.31, “SHOW PROFILE Syntax”
Section 13.7.5.32, “SHOW PROFILES Syntax”
Section 21.15, “The INFORMATION_SCHEMA PROFILING Table”

SHOW PROFILES
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.5, “Server System Variables”
Section 13.7.5.31, “SHOW PROFILE Syntax”
Section 13.7.5.32, “SHOW PROFILES Syntax”
Section 21.15, “The INFORMATION_SCHEMA PROFILING Table”

SHOW RELAYLOG EVENTS
Section 13.7.5.3, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.33, “SHOW RELAYLOG EVENTS Syntax”
Section 13.4.2, “SQL Statements for Controlling Slave Servers”

SHOW SCHEMAS
Section 13.7.5.15, “SHOW DATABASES Syntax”

SHOW SESSION STATUS
NDB Cluster Status Variables
Section 21.8, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”

SHOW SESSION VARIABLES
Section 21.9, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
Tables”

SHOW SLAVE HOSTS
Section 17.1.4.1, “Checking Replication Status”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.4.1, “SQL Statements for Controlling Master Servers”

SHOW SLAVE STATUS
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.4.1, “Checking Replication Status”
Section 17.4.5, “How to Report Replication Bugs or Problems”
Section 18.6.8, “Implementing Failover with NDB Cluster Replication”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section A.13, “MySQL 5.5 FAQ: Replication”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 17.2.1, “Replication Implementation Details”
Section 8.14.6, “Replication Slave I/O Thread States”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 17.3.7, “Setting Up Replication to Use Secure Connections”



3429

Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 17.4.1.29, “Slave Errors During Replication”
Section 17.2.2.2, “Slave Status Logs”
Section B.1, “Sources of Error Information”
Section 13.4.2, “SQL Statements for Controlling Slave Servers”
Section 13.4.2.5, “START SLAVE Syntax”
Section 17.4.4, “Troubleshooting Replication”

SHOW STATUS
Section 18.3.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 18.5, “Management of NDB Cluster”
MySQL Server Options for NDB Cluster
Section 18.5.15, “NDB API Statistics Counters and Variables”
Section 18.6, “NDB Cluster Replication”
Section 24.2.2, “Plugin API Characteristics”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 18.5.9, “Quick Reference: NDB Cluster SQL Statements”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.2.1, “Replication Implementation Details”
Section 17.4.1.32, “Replication Retries and Timeouts”
Section C.1, “Restrictions on Stored Programs”
Section 17.3.8.3, “Semisynchronous Replication Monitoring”
Server Plugin Library and Plugin Descriptors
Server Plugin Status and System Variables
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.5.36, “SHOW STATUS Syntax”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4, “Writing Plugins”

SHOW STATUS LIKE 'perf%'
Section 22.7, “Performance Schema Status Monitoring”

SHOW TABLE STATUS
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”
Section 13.1.17.1, “CREATE TABLE Statement Retention”
Section 13.1.17, “CREATE TABLE Syntax”
Section 14.11.1.1, “Creating InnoDB Tables”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.15.2, “File Space Management”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.11.1.7, “Limits on InnoDB Tables”
MySQL Glossary
Section 19.3.4, “Obtaining Information About Partitions”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 15.6, “The ARCHIVE Storage Engine”
Section 21.21, “The INFORMATION_SCHEMA TABLES Table”
Section 14.11.1.2, “The Physical Row Structure of an InnoDB Table”

SHOW TABLES
Section 3.3.2, “Creating a Table”
Section 21.31, “Extensions to SHOW Statements”
Section 9.2.2, “Identifier Case Sensitivity”



3430

Chapter 21, INFORMATION_SCHEMA Tables
Section 14.18, “InnoDB INFORMATION_SCHEMA Tables”
Section 9.2.3, “Mapping of Identifiers to File Names”
MySQL Glossary
Section 18.6.10, “NDB Cluster Replication: Multi-Master and Circular Replication”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 5.1.4, “Server Command Options”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 13.7.5.38, “SHOW TABLES Syntax”
Section B.5.2.16, “Table 'tbl_name' doesn't exist”
Section B.5.6.2, “TEMPORARY Table Problems”

SHOW TABLES FROM some_ndb_database
Section 18.5.11.2, “NDB Cluster and MySQL Privileges”

SHOW TRIGGERS
Section A.5, “MySQL 5.5 FAQ: Triggers”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 21.25, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 20.3.2, “Trigger Metadata”

SHOW VARIABLES
Section 24.2.4.3, “Compiling and Installing Plugin Libraries”
Section 20.4.2, “Event Scheduler Configuration”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Chapter 19, Partitioning
Section 24.2.2, “Plugin API Characteristics”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 17.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section 18.6.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 5.1.6, “Using System Variables”
Section 24.2.4, “Writing Plugins”

SHOW WARNINGS
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.1.7, “ALTER TABLE Syntax”
Section 13.6.7, “Condition Handling”
Section 13.1.26, “DROP PROCEDURE and DROP FUNCTION Syntax”
Effect of Signals on Handlers, Cursors, and Statements
Section 8.8.2, “EXPLAIN Output Format”
Section 8.8.3, “Extended EXPLAIN Output Format”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 1.7.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section B.3, “Server Error Codes and Messages”
Section 5.1.5, “Server System Variables”
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Signal Condition Information Items
Section 13.6.7.4, “SIGNAL Syntax”
Section B.1, “Sources of Error Information”



3431

Section 8.2.2, “Subquery Optimization”

SIGNAL
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Effect of Signals on Handlers, Cursors, and Statements
Section 12.14, “Information Functions”
Section 13.6.7.3, “RESIGNAL Syntax”
Section C.2, “Restrictions on Condition Handling”
Section C.1, “Restrictions on Stored Programs”
Signal Condition Information Items
Section 13.6.7.4, “SIGNAL Syntax”
Section 1.4, “What Is New in MySQL 5.5”

START SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 18.6.8, “Implementing Failover with NDB Cluster Replication”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.6.10, “NDB Cluster Replication: Multi-Master and Circular Replication”
Section 18.4.21, “ndb_restore — Restore an NDB Cluster Backup”
Section 17.1.4.2, “Pausing Replication on the Slave”
Section 17.3.4, “Replicating Different Databases to Different Slaves”
Section 17.2.1, “Replication Implementation Details”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.4.2.3, “RESET SLAVE Syntax”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 17.4.1.29, “Slave Errors During Replication”
Section 13.4.2.5, “START SLAVE Syntax”
Section 18.6.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section 17.3.6, “Switching Masters During Failover”
Section 17.4.4, “Troubleshooting Replication”
Section 18.6.7, “Using Two Replication Channels for NDB Cluster Replication”

START TRANSACTION
Section 14.8.2.2, “autocommit, Commit, and Rollback”
Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”
Section 14.23.4, “InnoDB Error Handling”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 14.8.2.4, “Locking Reads”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section C.1, “Restrictions on Stored Programs”
Section 17.3.8, “Semisynchronous Replication”
Section 5.1.5, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.3, “Transactional and Locking Statements”
Section 20.3.1, “Trigger Syntax and Examples”
Section 13.3.7.2, “XA Transaction States”

START TRANSACTION READ ONLY
MySQL Glossary



3432

START TRANSACTION WITH CONSISTENT SNAPSHOT
Section 14.8.2.3, “Consistent Nonlocking Reads”

STOP SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.4.1, “Checking Replication Status”
Section 17.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 17.1.4.2, “Pausing Replication on the Slave”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.4.2.3, “RESET SLAVE Syntax”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 13.4.2.5, “START SLAVE Syntax”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section 17.3.6, “Switching Masters During Failover”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

STOP SLAVE SQL_THREAD
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

T

[index top]

TRUNCATE TABLE
Section 18.5.13.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 18.5.2, “Commands in the NDB Cluster Management Client”
Section 15.3.3.3, “Compressed Table Characteristics”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.2.2, “DELETE Syntax”
Section 22.4.3, “Event Pre-Filtering”
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 22.9.5.2, “File I/O Summary Tables”
Section 13.2.4, “HANDLER Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 18.1.6.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 19.3.3, “Maintenance of Partitions”
Section 19.3.1, “Management of RANGE and LIST Partitions”
Section 15.8.2, “MERGE Table Problems”
MySQL Glossary
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.4.9, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 8.5.6, “Optimizing InnoDB DDL Operations”
Section 22.4.1, “Performance Schema Event Timing”
Section 22.8, “Performance Schema General Table Characteristics”
Section 22.9.5, “Performance Schema Summary Tables”
Section 18.6.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.23, “Replication and MEMORY Tables”
Section 17.4.1.37, “Replication and TRUNCATE TABLE”



3433

Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.5, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 22.9.3.1, “The cond_instances Table”
Section 22.9.4.1, “The events_waits_current Table”
Section 22.9.4.2, “The events_waits_history Table”
Section 22.9.4.3, “The events_waits_history_long Table”
Section 22.9.3.2, “The file_instances Table”
Section 15.4, “The MEMORY Storage Engine”
Section 22.9.3.3, “The mutex_instances Table”
Section 22.9.6.1, “The performance_timers Table”
Section 22.9.3.4, “The rwlock_instances Table”
Section 22.9.2.1, “The setup_consumers Table”
Section 22.9.2.2, “The setup_instruments Table”
Section 22.9.2.3, “The setup_timers Table”
Section 22.9.6.2, “The threads Table”
Section 13.1.33, “TRUNCATE TABLE Syntax”
Section 22.9.5.1, “Wait Event Summary Tables”
Section 23.8.15.2, “What Results You Can Get from a Query”

U

[index top]

UNINSTALL PLUGIN
Section 13.7.6.3, “FLUSH Syntax”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 6.5.1.4, “PAM Pluggable Authentication”
Section 22.13, “Performance Schema and Plugins”
Section 15.2.1, “Pluggable Storage Engine Architecture”
Section 24.2.3, “Plugin API Components”
Server Plugin Library and Plugin Descriptors
Section 13.7.5.26, “SHOW PLUGINS Syntax”
Section 6.5.1.6, “Socket Peer-Credential Pluggable Authentication”
Section 6.5.1.7, “Test Pluggable Authentication”
Section 21.13, “The INFORMATION_SCHEMA PLUGINS Table”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 6.5.1.5, “Windows Pluggable Authentication”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.5, “Writing Daemon Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4.6, “Writing INFORMATION_SCHEMA Plugins”
Writing the Server-Side Authentication Plugin

UNION
Section 23.8.5, “C API Data Structures”
Section 12.5.3, “Character Set and Collation of Function Results”
Section 13.1.17, “CREATE TABLE Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 12.14, “Information Functions”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 11.2.5, “Numeric Type Attributes”
Section 8.2.1.2, “Range Optimization”



3434

Section 3.6.7, “Searching on Two Keys”
Section 13.2.9, “SELECT Syntax”
Section 5.1.7, “Server Status Variables”
Section 13.2.10, “Subquery Syntax”
Section 15.8, “The MERGE Storage Engine”
Section 13.2.9.3, “UNION Syntax”
Section 20.5.3, “Updatable and Insertable Views”
Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 20.5.2, “View Processing Algorithms”
Section 20.5.1, “View Syntax”
Section 12.11, “XML Functions”

UNION ALL
Section 12.14, “Information Functions”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.2.9.3, “UNION Syntax”
Section 20.5.3, “Updatable and Insertable Views”
Section 20.5.2, “View Processing Algorithms”

UNION DISTINCT
Section 13.2.9.3, “UNION Syntax”

UNLOCK TABLES
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 14.11.1.7, “Limits on InnoDB Tables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.12.1, “System Factors”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”

UPDATE
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 6.3.2, “Adding User Accounts”
Section 17.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.3.4, “Assignment Operators”
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 13.5.4, “Automatic Prepared Statement Repreparation”
Section 17.1.3.4, “Binary Log Options and Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 23.8.6, “C API Function Overview”
Section 23.8.10, “C API Prepared Statement Function Overview”
Section 23.8.17, “C API Support for Multiple Statement Execution”
Section 14.7.2, “Change Buffer”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 10.1.7, “Column Character Set Conversion”
Section 14.9.4, “Configuring InnoDB Change Buffering”
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 1.7.3.3, “Constraints on Invalid Data”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 13.1.17.3, “CREATE TEMPORARY TABLE Syntax”



3435

Section 13.1.19, “CREATE TRIGGER Syntax”
Section 13.1.20, “CREATE VIEW Syntax”
Section 15.9.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 11.6, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 14.8.5, “Deadlocks in InnoDB”
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.23.2, “Forcing InnoDB Recovery”
Section 12.1, “Function and Operator Reference”
Section 8.2.1.14, “Function Call Optimization”
Chapter 12, Functions and Operators
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Chapter 21, INFORMATION_SCHEMA Tables
Section 14.8.1, “InnoDB Locking”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 8.11.1, “Internal Locking Methods”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.2.9.2, “JOIN Syntax”
Section 13.7.6.4, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.8.2.4, “Locking Reads”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 12.17, “Miscellaneous Functions”
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 1.7.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 4.5.1.1, “mysql Options”
Section 23.8.7.1, “mysql_affected_rows()”
Section 23.8.7.35, “mysql_info()”
Section 23.8.7.37, “mysql_insert_id()”
Section 23.8.7.48, “mysql_num_rows()”
Section 23.8.7.49, “mysql_options()”
Section 23.8.11.10, “mysql_stmt_execute()”
Section 23.8.11.16, “mysql_stmt_insert_id()”
Section 23.8.11.18, “mysql_stmt_num_rows()”
Section 4.6.7.2, “mysqlbinlog Row Event Display”
Section 18.5.12.1, “NDB Cluster Disk Data Objects”
Section 12.3, “Operators”
Section 8.2.4, “Optimizing Data Change Statements”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 19.4, “Partition Pruning”
Section 19.5.4, “Partitioning and Table-Level Locking”
Section 1.7.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.4.2, “Problems Using DATE Columns”
Section 17.4.1.16, “Replication and LIMIT”
Section 17.4.1.26, “Replication and the Query Optimizer”
Section 17.1.3.3, “Replication Slave Options and Variables”



3436

Section 19.5, “Restrictions and Limitations on Partitioning”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 2.10.4, “Securing the Initial MySQL Accounts”
Section 3.3.4.1, “Selecting All Data”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section 5.1.8, “Server SQL Modes”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 17.4.1.29, “Slave Errors During Replication”
Section 5.7.1.12, “Statement Probes”
Section 13.2.10.9, “Subquery Errors”
Section 13.2.10, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 15.6, “The ARCHIVE Storage Engine”
Section 10.1.8.5, “The binary Collation Compared to _bin Collations”
Section 5.4.4, “The Binary Log”
Section 15.7, “The BLACKHOLE Storage Engine”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.3.2, “The Main Features of MySQL”
Section 15.8, “The MERGE Storage Engine”
Section 15.3, “The MyISAM Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 5.1.12, “The Server Shutdown Process”
Section 14.8.2.1, “Transaction Isolation Levels”
Section 20.3.1, “Trigger Syntax and Examples”
Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”
Section 20.5.3, “Updatable and Insertable Views”
Section 1.7.2.2, “UPDATE Differences”
Section 13.2.11, “UPDATE Syntax”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”
Using the --safe-updates Option
Section 23.8.15.2, “What Results You Can Get from a Query”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 8.2.1.1, “WHERE Clause Optimization”
Section 23.8.15.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”

UPDATE ... ()
Section 14.8.2.3, “Consistent Nonlocking Reads”

UPDATE ... WHERE
Section 14.8.5, “Deadlocks in InnoDB”

UPDATE ... WHERE ...
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”

UPDATE IGNORE
Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB
Cluster 7.x”
Section 5.1.8, “Server SQL Modes”
Section 13.2.11, “UPDATE Syntax”



3437

UPDATE t1,t2 ...
Section 5.7.1.12, “Statement Probes”

USE
Section 17.1.3.4, “Binary Log Options and Variables”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 3.3.1, “Creating and Selecting a Database”
Section 3.3, “Creating and Using a Database”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 17.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 8.9.3, “Index Hints”
Chapter 21, INFORMATION_SCHEMA Tables
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 18.5.10, “ndbinfo: The NDB Cluster Information Database”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 17.2.3.3, “Replication Rule Application”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 20.2.1, “Stored Routine Syntax”
Section 13.8.4, “USE Syntax”

USE db2
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

USE db_name
Section 4.5.1.1, “mysql Options”

USE test
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”

W

[index top]

WHILE
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.2, “Statement Label Syntax”
Section 13.6.5.8, “WHILE Syntax”

X

[index top]

XA COMMIT
Section 2.11.2, “Downgrading MySQL”
Section 5.1.5, “Server System Variables”
Section 2.11.1, “Upgrading MySQL”
Section 13.3.7.2, “XA Transaction States”

XA END
Section C.6, “Restrictions on XA Transactions”



3438

Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA PREPARE
Section 13.3.7.2, “XA Transaction States”

XA RECOVER
Section 2.11.2, “Downgrading MySQL”
Section 2.11.1, “Upgrading MySQL”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA ROLLBACK
Section 2.11.2, “Downgrading MySQL”
Section 5.1.5, “Server System Variables”
Section 2.11.1, “Upgrading MySQL”
Section 13.3.7.2, “XA Transaction States”

XA START
Section C.6, “Restrictions on XA Transactions”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA START xid
Section 13.3.7.1, “XA Transaction SQL Syntax”

Status Variable Index
A | B | C | D | F | H | I | K | L | M | N | O | P | Q | R | S | T | U

A

[index top]

Aborted_clients
Section B.5.2.11, “Communication Errors and Aborted Connections”
Section 5.1.7, “Server Status Variables”

Aborted_connects
Section B.5.2.11, “Communication Errors and Aborted Connections”
Section 5.1.7, “Server Status Variables”

B

[index top]

Binlog_cache_disk_use
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.1.7, “Server Status Variables”
Section 5.4.4, “The Binary Log”

Binlog_cache_use
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.1.7, “Server Status Variables”



3439

Section 5.4.4, “The Binary Log”

Binlog_stmt_cache_disk_use
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.1.7, “Server Status Variables”

Binlog_stmt_cache_use
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.1.7, “Server Status Variables”

Bytes_received
Section 5.1.7, “Server Status Variables”

Bytes_sent
Section 5.1.7, “Server Status Variables”

C

[index top]

Com_flush
Section 5.1.7, “Server Status Variables”

Com_stmt_reprepare
Section 13.5.4, “Automatic Prepared Statement Repreparation”

Compression
Section 5.1.7, “Server Status Variables”

Connections
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

Created_tmp_disk_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

Created_tmp_files
Section 5.1.7, “Server Status Variables”

Created_tmp_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.5.36, “SHOW STATUS Syntax”

D

[index top]

Delayed_errors
Section 5.1.7, “Server Status Variables”



3440

Delayed_insert_threads
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.7, “Server Status Variables”

Delayed_writes
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.7, “Server Status Variables”

F

[index top]

Flush_commands
Section 5.1.7, “Server Status Variables”

H

[index top]

Handler_commit
Section 5.1.7, “Server Status Variables”

Handler_delete
Section 5.1.7, “Server Status Variables”

Handler_discover
NDB Cluster Status Variables

Handler_prepare
Section 5.1.7, “Server Status Variables”

Handler_read_first
Section 5.1.7, “Server Status Variables”

Handler_read_key
Section 5.1.7, “Server Status Variables”

Handler_read_last
Section 5.1.7, “Server Status Variables”

Handler_read_next
Section 5.1.7, “Server Status Variables”

Handler_read_prev
Section 5.1.7, “Server Status Variables”

Handler_read_rnd
Section 5.1.7, “Server Status Variables”

Handler_read_rnd_next
Section 5.1.7, “Server Status Variables”

Handler_rollback
Section 5.1.7, “Server Status Variables”



3441

Handler_savepoint
Section 5.1.7, “Server Status Variables”

Handler_savepoint_rollback
Section 5.1.7, “Server Status Variables”

Handler_update
Section 5.1.7, “Server Status Variables”

Handler_write
Section 5.1.7, “Server Status Variables”

I

[index top]

Innodb_buffer_pool_bytes_data
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_bytes_dirty
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_pages_data
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_pages_dirty
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_pages_flushed
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_pages_free
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_pages_latched
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_pages_misc
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_pages_total
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_read_ahead
Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 5.1.7, “Server Status Variables”
Section 1.4, “What Is New in MySQL 5.5”

Innodb_buffer_pool_read_ahead_evicted
Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 5.1.7, “Server Status Variables”
Section 1.4, “What Is New in MySQL 5.5”



3442

Innodb_buffer_pool_read_ahead_rnd
Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_read_requests
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_reads
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_wait_free
Section 5.1.7, “Server Status Variables”

Innodb_buffer_pool_write_requests
Section 5.1.7, “Server Status Variables”

Innodb_data_fsyncs
Section 14.17, “InnoDB Startup Options and System Variables”
Section 5.1.7, “Server Status Variables”

Innodb_data_pending_fsyncs
Section 5.1.7, “Server Status Variables”

Innodb_data_pending_reads
Section 5.1.7, “Server Status Variables”

Innodb_data_pending_writes
Section 5.1.7, “Server Status Variables”

Innodb_data_read
Section 5.1.7, “Server Status Variables”

Innodb_data_reads
Section 5.1.7, “Server Status Variables”

Innodb_data_writes
Section 5.1.7, “Server Status Variables”

Innodb_data_written
Section 5.1.7, “Server Status Variables”

Innodb_dblwr_pages_written
Section 5.1.7, “Server Status Variables”

Innodb_dblwr_writes
Section 5.1.7, “Server Status Variables”

Innodb_have_atomic_builtins
Section 5.1.7, “Server Status Variables”
Section 1.4, “What Is New in MySQL 5.5”

Innodb_log_waits
Section 5.1.7, “Server Status Variables”



3443

Innodb_log_write_requests
Section 5.1.7, “Server Status Variables”

Innodb_log_writes
Section 5.1.7, “Server Status Variables”

Innodb_os_log_fsyncs
Section 5.1.7, “Server Status Variables”

Innodb_os_log_pending_fsyncs
Section 5.1.7, “Server Status Variables”

Innodb_os_log_pending_writes
Section 5.1.7, “Server Status Variables”

Innodb_os_log_written
Section 5.1.7, “Server Status Variables”

Innodb_page_size
Section 5.1.7, “Server Status Variables”

Innodb_pages_created
Section 5.1.7, “Server Status Variables”

Innodb_pages_read
Section 5.1.7, “Server Status Variables”

Innodb_pages_written
Section 5.1.7, “Server Status Variables”

Innodb_row_lock_current_waits
Section 5.1.7, “Server Status Variables”

Innodb_row_lock_time
Section 5.1.7, “Server Status Variables”

Innodb_row_lock_time_avg
Section 5.1.7, “Server Status Variables”

Innodb_row_lock_time_max
Section 5.1.7, “Server Status Variables”

Innodb_row_lock_waits
Section 5.1.7, “Server Status Variables”

Innodb_rows_deleted
Section 5.1.7, “Server Status Variables”

Innodb_rows_inserted
Section 5.1.7, “Server Status Variables”

Innodb_rows_read
Section 5.1.7, “Server Status Variables”



3444

Innodb_rows_updated
Section 5.1.7, “Server Status Variables”

Innodb_truncated_status_writes
Section 5.1.7, “Server Status Variables”

K

[index top]

Key_blocks_not_flushed
Section 5.1.7, “Server Status Variables”

Key_blocks_unused
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

Key_blocks_used
Section 5.1.7, “Server Status Variables”

Key_read_requests
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

Key_reads
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

Key_write_requests
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

Key_writes
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

L

[index top]

Last_query_cost
Section 5.1.7, “Server Status Variables”

M

[index top]

Max_used_connections
Section 13.7.6.3, “FLUSH Syntax”
Section 5.1.7, “Server Status Variables”

N

[index top]



3445

Ndb_api_bytes_received_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_received_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_received_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_sent_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_sent_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_sent_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_bytes_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_bytes_count_injector
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_data_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_data_count_injector
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_nondata_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_nondata_count_injector
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables



3446

Ndb_api_pk_op_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_range_scan_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_range_scan_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_range_scan_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_read_row_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_read_row_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_read_row_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_table_scan_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables



3447

Ndb_api_table_scan_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_table_scan_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_abort_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_abort_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_abort_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_close_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_close_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_close_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables



3448

Ndb_api_trans_start_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_start_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_start_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_uk_op_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_uk_op_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_uk_op_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_nanos_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_nanos_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”



3449

NDB Cluster Status Variables

Ndb_api_wait_nanos_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_scan_result_count
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_scan_result_count_session
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_scan_result_count_slave
Section 18.5.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_cluster_node_id
NDB Cluster Status Variables

Ndb_config_from_host
NDB Cluster Status Variables

Ndb_config_from_port
NDB Cluster Status Variables

Ndb_conflict_fn_epoch
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”

Ndb_conflict_fn_epoch_trans
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_max
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”

Ndb_conflict_fn_old
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”

Ndb_conflict_trans_conflict_commit_count
NDB Cluster Status Variables

Ndb_conflict_trans_row_conflict_count
NDB Cluster Status Variables

Ndb_conflict_trans_row_reject_count
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”

Ndb_execute_count
NDB Cluster Status Variables

Ndb_number_of_data_nodes
NDB Cluster Status Variables



3450

Ndb_pruned_scan_count
NDB Cluster Status Variables

Ndb_pushed_queries_defined
NDB Cluster Status Variables
NDB Cluster System Variables
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”

Ndb_pushed_queries_dropped
NDB Cluster Status Variables
NDB Cluster System Variables
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”

Ndb_pushed_queries_executed
NDB Cluster Status Variables
NDB Cluster System Variables
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”

Ndb_pushed_reads
NDB Cluster Status Variables
NDB Cluster System Variables
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”

Ndb_scan_count
NDB Cluster Status Variables

Not_flushed_delayed_rows
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.7, “Server Status Variables”

O

[index top]

Open_files
Section 5.1.7, “Server Status Variables”

Open_streams
Section 5.1.7, “Server Status Variables”

Open_table_definitions
Section 5.1.7, “Server Status Variables”

Open_tables
Section 5.1.7, “Server Status Variables”

Opened_files
Section 5.1.7, “Server Status Variables”

Opened_table_definitions
Section 5.1.7, “Server Status Variables”

Opened_tables
Section 8.4.3.1, “How MySQL Opens and Closes Tables”



3451

Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

P

[index top]

Performance_schema_cond_classes_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_cond_instances_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_file_classes_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_file_handles_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_file_instances_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_locker_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_mutex_classes_lost
Section 22.7, “Performance Schema Status Monitoring”
Section 22.12, “Performance Schema Status Variables”

Performance_schema_mutex_instances_lost
Section 22.7, “Performance Schema Status Monitoring”
Section 22.12, “Performance Schema Status Variables”

Performance_schema_rwlock_classes_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_rwlock_instances_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_table_handles_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_table_instances_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_thread_classes_lost
Section 22.12, “Performance Schema Status Variables”

Performance_schema_thread_instances_lost
Section 22.12, “Performance Schema Status Variables”
Section 22.11, “Performance Schema System Variables”

Prepared_stmt_count
Section 5.1.7, “Server Status Variables”



3452

Q

[index top]

Qcache_free_blocks
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 5.1.7, “Server Status Variables”

Qcache_free_memory
Section 5.1.7, “Server Status Variables”

Qcache_hits
Section 8.10.3.1, “How the Query Cache Operates”
Section 5.1.7, “Server Status Variables”

Qcache_inserts
Section 5.1.7, “Server Status Variables”

Qcache_lowmem_prunes
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 5.1.7, “Server Status Variables”

Qcache_not_cached
Section 5.1.7, “Server Status Variables”

Qcache_queries_in_cache
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.7, “Server Status Variables”

Qcache_total_blocks
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 5.1.7, “Server Status Variables”

Queries
Section 5.1.7, “Server Status Variables”

Questions
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 5.1.7, “Server Status Variables”

R

[index top]

Rpl_semi_sync_master_clients
Section 17.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_net_avg_wait_time
Section 5.1.7, “Server Status Variables”



3453

Rpl_semi_sync_master_net_wait_time
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_net_waits
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_no_times
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_no_tx
Section 17.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_status
Section 17.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_timefunc_failures
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_tx_avg_wait_time
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_tx_wait_time
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_tx_waits
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_wait_pos_backtraverse
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_wait_sessions
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_master_yes_tx
Section 17.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.7, “Server Status Variables”

Rpl_semi_sync_slave_status
Section 17.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.7, “Server Status Variables”

Rpl_status
Section 5.1.7, “Server Status Variables”

S

[index top]



3454

Select_full_join
Section 5.1.7, “Server Status Variables”

Select_full_range_join
Section 5.1.7, “Server Status Variables”

Select_range
Section 5.1.7, “Server Status Variables”

Select_range_check
Section 5.1.7, “Server Status Variables”

Select_scan
Section 5.1.7, “Server Status Variables”

Slave_heartbeat_period
Section 5.1.7, “Server Status Variables”

Slave_open_temp_tables
Section 17.4.1.24, “Replication and Temporary Tables”
Section 5.1.7, “Server Status Variables”

Slave_received_heartbeats
Section 5.1.7, “Server Status Variables”

Slave_retried_transactions
Section 5.1.7, “Server Status Variables”

Slave_running
Section 17.2.1, “Replication Implementation Details”
Section 5.1.7, “Server Status Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”

Slow_launch_threads
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

Slow_queries
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

Sort_merge_passes
Section 8.2.1.10, “ORDER BY Optimization”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

Sort_range
Section 5.1.7, “Server Status Variables”

Sort_rows
Section 5.1.7, “Server Status Variables”

Sort_scan
Section 5.1.7, “Server Status Variables”



3455

Ssl_accept_renegotiates
Section 5.1.7, “Server Status Variables”

Ssl_accepts
Section 5.1.7, “Server Status Variables”

Ssl_callback_cache_hits
Section 5.1.7, “Server Status Variables”

Ssl_cipher
Section 6.4.4, “Configuring MySQL to Use Secure Connections”
Section 6.4.3, “Secure Connection Protocols and Ciphers”
Section 5.1.7, “Server Status Variables”

Ssl_cipher_list
Section 6.4.3, “Secure Connection Protocols and Ciphers”
Section 5.1.7, “Server Status Variables”

Ssl_client_connects
Section 5.1.7, “Server Status Variables”

Ssl_connect_renegotiates
Section 5.1.7, “Server Status Variables”

Ssl_ctx_verify_depth
Section 5.1.7, “Server Status Variables”

Ssl_ctx_verify_mode
Section 5.1.7, “Server Status Variables”

Ssl_default_timeout
Section 5.1.7, “Server Status Variables”

Ssl_finished_accepts
Section 5.1.7, “Server Status Variables”

Ssl_finished_connects
Section 5.1.7, “Server Status Variables”

Ssl_session_cache_hits
Section 5.1.7, “Server Status Variables”

Ssl_session_cache_misses
Section 5.1.7, “Server Status Variables”

Ssl_session_cache_mode
Section 5.1.7, “Server Status Variables”

Ssl_session_cache_overflows
Section 5.1.7, “Server Status Variables”

Ssl_session_cache_size
Section 5.1.7, “Server Status Variables”



3456

Ssl_session_cache_timeouts
Section 5.1.7, “Server Status Variables”

Ssl_sessions_reused
Section 5.1.7, “Server Status Variables”

Ssl_used_session_cache_entries
Section 5.1.7, “Server Status Variables”

Ssl_verify_depth
Section 5.1.7, “Server Status Variables”

Ssl_verify_mode
Section 5.1.7, “Server Status Variables”

Ssl_version
Section 6.4.3, “Secure Connection Protocols and Ciphers”
Section 5.1.7, “Server Status Variables”

T

[index top]

Table_locks_immediate
Section 8.11.1, “Internal Locking Methods”
Section 5.1.7, “Server Status Variables”

Table_locks_waited
Section 8.11.1, “Internal Locking Methods”
Section 5.1.7, “Server Status Variables”

Tc_log_max_pages_used
Section 5.1.7, “Server Status Variables”

Tc_log_page_size
Section 5.1.7, “Server Status Variables”

Tc_log_page_waits
Section 5.1.7, “Server Status Variables”

Threads_cached
Section 8.12.5.1, “How MySQL Uses Threads for Client Connections”
Section 5.1.7, “Server Status Variables”

Threads_connected
Section 5.1.7, “Server Status Variables”

Threads_created
Section 8.12.5.1, “How MySQL Uses Threads for Client Connections”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

Threads_running
Section A.14, “MySQL 5.5 FAQ: MySQL Enterprise Thread Pool”



3457

Section 5.1.7, “Server Status Variables”

U

[index top]

Uptime
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 5.1.7, “Server Status Variables”

Uptime_since_flush_status
Section 5.1.7, “Server Status Variables”

System Variable Index
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W

A

[index top]

audit_log_buffer_size
Section 6.5.2.4, “Audit Log Logging Control”
Section 6.5.2.7, “Audit Log Options and System Variables”

audit_log_file
Section 6.5.2.4, “Audit Log Logging Control”
Section 6.5.2.7, “Audit Log Options and System Variables”
Section 6.5.2, “MySQL Enterprise Audit”
Section 6.5.2.2, “MySQL Enterprise Audit Security Considerations”

audit_log_flush
Section 6.5.2.4, “Audit Log Logging Control”
Section 6.5.2.7, “Audit Log Options and System Variables”

audit_log_format
Section 6.5.2.7, “Audit Log Options and System Variables”
Section 6.5.2, “MySQL Enterprise Audit”
Section 6.5.2.3, “The Audit Log File”

audit_log_policy
Section 6.5.2.5, “Audit Log Filtering”
Section 6.5.2.7, “Audit Log Options and System Variables”
Section 6.5.2, “MySQL Enterprise Audit”

audit_log_rotate_on_size
Section 6.5.2.4, “Audit Log Logging Control”
Section 6.5.2.7, “Audit Log Options and System Variables”

audit_log_strategy
Section 6.5.2.4, “Audit Log Logging Control”
Section 6.5.2.7, “Audit Log Options and System Variables”

authentication_windows_log_level
Section 5.1.5, “Server System Variables”



3458

Section 6.5.1.5, “Windows Pluggable Authentication”

authentication_windows_use_principal_name
Section 5.1.5, “Server System Variables”
Section 6.5.1.5, “Windows Pluggable Authentication”

auto_increment_increment
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.1, “MySQL 5.5 FAQ: General”
Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB
Cluster 7.x”
Section 17.4.1.38, “Replication and Variables”
Section 17.1.3.2, “Replication Master Options and Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

auto_increment_offset
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.1, “MySQL 5.5 FAQ: General”
Section 18.1.6.11, “Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB
Cluster 7.x”
Section 17.4.1.38, “Replication and Variables”
Section 17.1.3.2, “Replication Master Options and Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

AUTOCOMMIT
Section 17.4.1.35, “Replication and Transactions”

autocommit
Section 14.8.2.2, “autocommit, Commit, and Rollback”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 14.8.5.2, “Deadlock Detection and Rollback”
Section 13.2.2, “DELETE Syntax”
Section 14.8, “InnoDB Locking and Transaction Model”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 14.11.1.7, “Limits on InnoDB Tables”
Section 14.8.2.4, “Locking Reads”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
NDB Cluster System Variables
Section 17.4.1.35, “Replication and Transactions”
Section 5.1.5, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 5.5.4.3, “Thread Pool Operation”
Section 14.8.2.1, “Transaction Isolation Levels”

automatic_sp_privileges
Section 13.1.5, “ALTER PROCEDURE Syntax”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 5.1.5, “Server System Variables”
Section 20.2.2, “Stored Routines and MySQL Privileges”

B

[index top]



3459

back_log
Section 5.1.5, “Server System Variables”

basedir
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

big_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.5, “Server System Variables”

binlog_cache_size
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.1.7, “Server Status Variables”
Section 5.4.4, “The Binary Log”

binlog_checksum
MySQL Glossary

binlog_direct_non_transactional_updates
Section 17.1.3.4, “Binary Log Options and Variables”
Section 17.4.1.35, “Replication and Transactions”

binlog_format
Section 17.1.3.4, “Binary Log Options and Variables”
Section 12.7, “Date and Time Functions”
Section 17.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 18.6.2, “General Requirements for NDB Cluster Replication”
Section 12.14, “Information Functions”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 12.6.2, “Mathematical Functions”
Section 12.17, “Miscellaneous Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.13, “MySQL 5.5 FAQ: Replication”
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.4.1.2, “Replication and BLACKHOLE Tables”
Section 17.4.1.23, “Replication and MEMORY Tables”
Section 17.4.1.24, “Replication and Temporary Tables”
Section 17.4.1.35, “Replication and Transactions”
Section 17.1.2, “Replication Formats”
Section 17.4.1.25, “Replication of the mysql System Database”
Section 5.1.4, “Server Command Options”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 15.7, “The BLACKHOLE Storage Engine”
Section 5.4.3, “The General Query Log”

binlog_stmt_cache_size
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.1.7, “Server Status Variables”

bulk_insert_buffer_size
Section 15.3.1, “MyISAM Startup Options”



3460

Section 8.2.4.1, “Optimizing INSERT Statements”
Section 5.1.5, “Server System Variables”

C

[index top]

character_set_client
Section 23.8.9.1, “C API Prepared Statement Type Codes”
Section 10.5, “Character Set Configuration”
Section 10.1.4, “Connection Character Sets and Collations”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Syntax”
Section 13.7.4.3, “SET NAMES Syntax”
Section 13.7.5.9, “SHOW CREATE EVENT Syntax”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”
Section 13.7.5.13, “SHOW CREATE TRIGGER Syntax”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 5.4.4, “The Binary Log”
Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 21.17, “The INFORMATION_SCHEMA ROUTINES Table”
Section 21.25, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”

character_set_connection
Section 12.10, “Cast Functions and Operators”
Section 12.5.3, “Character Set and Collation of Function Results”
Section 10.1.3.8, “Character Set Introducers”
Section 10.1.2.1, “Character Set Repertoire”
Section 10.1.3.6, “Character String Literal Character Set and Collation”
Section 10.1.8.4, “Collation Coercibility in Expressions”
Section 10.1.4, “Connection Character Sets and Collations”
Section 12.7, “Date and Time Functions”
Section 12.13, “Encryption and Compression Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 10.7, “MySQL Server Locale Support”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Syntax”
Section 13.7.4.3, “SET NAMES Syntax”
Section 9.1.1, “String Literals”
Section 12.2, “Type Conversion in Expression Evaluation”

character_set_database
Section 10.1.4, “Connection Character Sets and Collations”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 10.1.3.3, “Database Character Set and Collation”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.4.4.3, “Mixed Binary Logging Format”



3461

Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Syntax”

character_set_filesystem
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 12.5, “String Functions”

character_set_results
Section 23.8.5, “C API Data Structures”
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 10.1.4, “Connection Character Sets and Collations”
Section 10.1.6, “Error Message Character Set”
Section A.11, “MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 5.1.5, “Server System Variables”
Section 13.7.4.2, “SET CHARACTER SET Syntax”
Section 13.7.4.3, “SET NAMES Syntax”
Section 10.1.2.2, “UTF-8 for Metadata”

character_set_server
Section 10.5, “Character Set Configuration”
Section 10.1.4, “Connection Character Sets and Collations”
Section 10.1.3.3, “Database Character Set and Collation”
Section 12.9.4, “Full-Text Stopwords”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.3, “Replication and Character Sets”
Section 17.4.1.38, “Replication and Variables”
Section 10.1.3.2, “Server Character Set and Collation”
Section 5.1.5, “Server System Variables”

character_set_system
Section 10.5, “Character Set Configuration”
Section 5.1.5, “Server System Variables”
Section 10.1.2.2, “UTF-8 for Metadata”

character_sets_dir
Section 10.4.3, “Adding a Simple Collation to an 8-Bit Character Set”
Section 10.4.4.1, “Defining a UCA Collation Using LDML Syntax”
Section 5.1.5, “Server System Variables”

collation_connection
Section 12.10, “Cast Functions and Operators”
Section 12.5.3, “Character Set and Collation of Function Results”
Section 10.1.3.8, “Character Set Introducers”
Section 10.1.3.6, “Character String Literal Character Set and Collation”
Section 10.1.8.4, “Collation Coercibility in Expressions”
Section 10.1.4, “Connection Character Sets and Collations”
Section 12.7, “Date and Time Functions”
Section 12.13, “Encryption and Compression Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.4.3, “SET NAMES Syntax”
Section 13.7.5.9, “SHOW CREATE EVENT Syntax”



3462

Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”
Section 13.7.5.13, “SHOW CREATE TRIGGER Syntax”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 5.4.4, “The Binary Log”
Section 21.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 21.17, “The INFORMATION_SCHEMA ROUTINES Table”
Section 21.25, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 12.2, “Type Conversion in Expression Evaluation”

collation_database
Section 10.1.4, “Connection Character Sets and Collations”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 10.1.3.3, “Database Character Set and Collation”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”
Section 5.4.4, “The Binary Log”

collation_server
Section 10.1.4, “Connection Character Sets and Collations”
Section 10.1.3.3, “Database Character Set and Collation”
Section 12.9.4, “Full-Text Stopwords”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 10.1.3.2, “Server Character Set and Collation”
Section 5.1.5, “Server System Variables”
Section 5.4.4, “The Binary Log”

completion_type
Section 23.8.7.6, “mysql_commit()”
Section 23.8.7.57, “mysql_rollback()”
Section 5.1.5, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”

concurrent_insert
Section 8.11.3, “Concurrent Inserts”
Section 8.11.1, “Internal Locking Methods”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 5.1.5, “Server System Variables”

connect_timeout
Section B.5.2.11, “Communication Errors and Aborted Connections”
Section B.5.2.3, “Lost connection to MySQL server”
Section 23.8.7.52, “mysql_real_connect()”
Section 5.1.5, “Server System Variables”

D

[index top]

datadir
Section 14.9.1, “InnoDB Startup Configuration”



3463

Section 2.3, “Installing MySQL on Microsoft Windows”
MySQL Glossary
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

date_format
Section 5.1.5, “Server System Variables”

datetime_format
Section 5.1.5, “Server System Variables”

debug
Section 5.1.5, “Server System Variables”
Section 24.5.3, “The DBUG Package”

debug_sync
Section 5.1.5, “Server System Variables”

default_storage_engine
Section 13.1.14, “CREATE LOGFILE GROUP Syntax”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”
Section 15.1, “Setting the Storage Engine”
Section 17.3.2, “Using Replication with Different Master and Slave Storage Engines”
Section 1.4, “What Is New in MySQL 5.5”

default_week_format
Section 12.7, “Date and Time Functions”
Section 19.5.3, “Partitioning Limitations Relating to Functions”
Section 5.1.5, “Server System Variables”

delay_key_write
Section 13.1.17, “CREATE TABLE Syntax”
Section 5.1.5, “Server System Variables”

delayed_insert_limit
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.5, “Server System Variables”

delayed_insert_timeout
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.5, “Server System Variables”

delayed_queue_size
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.5, “Server System Variables”

div_precision_increment
Section 12.6.1, “Arithmetic Operators”
Section 5.1.5, “Server System Variables”

E

[index top]



3464

engine_condition_pushdown
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.5”

error_count
Section 5.1.5, “Server System Variables”
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section B.1, “Sources of Error Information”

event_scheduler
Section 20.4.2, “Event Scheduler Configuration”
Section 23.7.2, “Restrictions When Using the Embedded MySQL Server”
Section 5.1.5, “Server System Variables”
Section 20.4.6, “The Event Scheduler and MySQL Privileges”

expire_logs_days
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.5, “Server System Variables”

external_user
Implementing Proxy User Support in Authentication Plugins
Section 6.3.7, “Proxy Users”
Section 5.1.5, “Server System Variables”
Writing the Server-Side Authentication Plugin

F

[index top]

flush
Section 5.1.5, “Server System Variables”

flush_time
Section 5.1.5, “Server System Variables”

foreign_key_checks
Section 13.1.7, “ALTER TABLE Syntax”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.8, “Server SQL Modes”
Section 5.1.5, “Server System Variables”
Section 5.4.4, “The Binary Log”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”

ft_boolean_syntax
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.5, “Server System Variables”

ft_max_word_len
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.5, “Server System Variables”
Section 24.2.1, “Types of Plugins”



3465

ft_min_word_len
Section 12.9.2, “Boolean Full-Text Searches”
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.5, “Server System Variables”
Section 24.2.1, “Types of Plugins”

ft_query_expansion_limit
Section 5.1.5, “Server System Variables”

ft_stopword_file
Section 17.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.5, “Server System Variables”

G

[index top]

general_log
MySQL Glossary
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 5.4.3, “The General Query Log”

general_log_file
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.5, “Server System Variables”
Section 5.4.3, “The General Query Log”

group_concat_max_len
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section 5.1.5, “Server System Variables”

H

[index top]

have_compress
Section 5.1.5, “Server System Variables”

have_crypt
Section 5.1.5, “Server System Variables”

have_csv
Section 5.1.5, “Server System Variables”

have_dynamic_loading
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.5, “Server System Variables”

have_geometry
Section 5.1.5, “Server System Variables”



3466

have_innodb
Section B.5.4.5, “Rollback Failure for Nontransactional Tables”
Section 5.1.5, “Server System Variables”

have_ndbcluster
NDB Cluster System Variables

have_openssl
Section 5.1.5, “Server System Variables”

have_partitioning
Chapter 19, Partitioning
Section 5.1.5, “Server System Variables”

have_profiling
Section 5.1.5, “Server System Variables”

have_query_cache
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.5, “Server System Variables”

have_rtree_keys
Section 5.1.5, “Server System Variables”

have_ssl
Section 6.4.2, “Building MySQL with Support for Secure Connections”
Section 5.1.5, “Server System Variables”

have_symlink
Section 5.1.5, “Server System Variables”
Section 8.12.3.3, “Using Symbolic Links for Databases on Windows”
Section 8.12.3.2, “Using Symbolic Links for MyISAM Tables on Unix”

hostname
Section 5.1.5, “Server System Variables”

I

[index top]

identity
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”

init_connect
Section 10.1.5, “Configuring Application Character Set and Collation”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.5, “Server System Variables”

init_file
Section 5.1.5, “Server System Variables”



3467

init_slave
Section 17.1.3.3, “Replication Slave Options and Variables”

innodb
Section 14.10.4.1, “Enabling and Disabling File-Per-Table Tablespaces”
Section A.15, “MySQL 5.5 FAQ: InnoDB Change Buffer”

innodb_adaptive_flushing
Section 14.9.2.5, “Configuring InnoDB Buffer Pool Flushing”
Section 14.9.2.1, “The InnoDB Buffer Pool”

innodb_adaptive_hash_index
Section 14.7.3, “Adaptive Hash Index”
Section 14.9.5, “Configuring Thread Concurrency for InnoDB”
MySQL Glossary
Section 8.5.8, “Optimizing InnoDB Configuration Variables”
Section 13.1.33, “TRUNCATE TABLE Syntax”
Section 1.4, “What Is New in MySQL 5.5”

innodb_additional_mem_pool_size
Section 14.9.3, “Configuring the Memory Allocator for InnoDB”
Section 14.9.1, “InnoDB Startup Configuration”

innodb_autoextend_increment
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 14.9.1, “InnoDB Startup Configuration”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.10.1, “Resizing the InnoDB System Tablespace”

innodb_autoinc_lock_mode
Section 14.11.1.5, “AUTO_INCREMENT Handling in InnoDB”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 12.14, “Information Functions”
Section 14.8.1, “InnoDB Locking”
Section 14.11.1.7, “Limits on InnoDB Tables”
MySQL Glossary

innodb_buffer_pool_dump_at_shutdown
MySQL Glossary

innodb_buffer_pool_instances
Section 14.9.2.2, “Configuring Multiple Buffer Pool Instances”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 14.9.1, “InnoDB Startup Configuration”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.9.2.1, “The InnoDB Buffer Pool”

innodb_buffer_pool_load_at_startup
MySQL Glossary

innodb_buffer_pool_size
Section 14.9.2.2, “Configuring Multiple Buffer Pool Instances”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”



3468

Section 8.12.4.1, “How MySQL Uses Memory”
Section 14.9.1, “InnoDB Startup Configuration”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section B.3, “Server Error Codes and Messages”
Section 14.9.2.1, “The InnoDB Buffer Pool”

innodb_change_buffer_max_size
MySQL Glossary

innodb_change_buffering
Section 14.7.2, “Change Buffer”
Section 14.9.4, “Configuring InnoDB Change Buffering”
MySQL Glossary
Section 8.5.2, “Optimizing InnoDB Transaction Management”

innodb_checksum_algorithm
MySQL Glossary

innodb_checksums
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_commit_concurrency
Section 14.17, “InnoDB Startup Options and System Variables”

innodb_compression_failure_threshold_pct
MySQL Glossary

innodb_compression_level
MySQL Glossary

innodb_compression_pad_pct_max
MySQL Glossary

innodb_concurrency_tickets
Section 14.9.5, “Configuring Thread Concurrency for InnoDB”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 8.5.8, “Optimizing InnoDB Configuration Variables”
Section 21.28.8, “The INFORMATION_SCHEMA INNODB_TRX Table”

innodb_data_file_path
Section 14.15.2, “File Space Management”
Section 14.9.1, “InnoDB Startup Configuration”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.10.1, “Resizing the InnoDB System Tablespace”
Section 14.7.5, “System Tablespace”
Section 14.23.1, “Troubleshooting InnoDB I/O Problems”
Section 14.10.3, “Using Raw Disk Partitions for the System Tablespace”

innodb_data_home_dir
Section 14.9.1, “InnoDB Startup Configuration”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.23.1, “Troubleshooting InnoDB I/O Problems”



3469

innodb_deadlock_detect
MySQL Glossary

innodb_default_row_format
MySQL Glossary

innodb_doublewrite
Section 14.7.7, “Doublewrite Buffer”
Section 14.5, “InnoDB and the ACID Model”
Section 14.15.1, “InnoDB Disk I/O”
Section 14.9.1, “InnoDB Startup Configuration”
MySQL Glossary

innodb_fast_shutdown
Section 14.10.2, “Changing the Number or Size of InnoDB Redo Log Files”
Section 14.13.2.1, “Compatibility Check When InnoDB Is Started”
Section 2.11.2, “Downgrading MySQL”
Section 14.21.2, “InnoDB Recovery”
MySQL Glossary
Section 5.1.12, “The Server Shutdown Process”
Section 2.11.1, “Upgrading MySQL”

innodb_file_format
Section 14.13.2.2, “Compatibility Check When a Table Is Opened”
Section 14.13.2.1, “Compatibility Check When InnoDB Is Started”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 13.1.17, “CREATE TABLE Syntax”
Section 14.11.1.1, “Creating InnoDB Tables”
Section 14.14.3, “DYNAMIC and COMPRESSED Row Formats”
Section 14.12.2, “Enabling Compression for a Table”
Section 14.13.1, “Enabling File Formats”
Section 14.13.3, “Identifying the File Format in Use”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 14.12.6, “SQL Compression Syntax Warnings and Errors”
Section 14.11.1.2, “The Physical Row Structure of an InnoDB Table”
Section 14.1.4, “Upward and Downward Compatibility”

innodb_file_format_check
Section 14.13.2.2, “Compatibility Check When a Table Is Opened”
Section 14.13.2.1, “Compatibility Check When InnoDB Is Started”
Section 14.17, “InnoDB Startup Options and System Variables”

innodb_file_format_max
Section 14.17, “InnoDB Startup Options and System Variables”

innodb_file_per_table
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 13.1.17, “CREATE TABLE Syntax”
Section 14.11.1.1, “Creating InnoDB Tables”
Section 14.14.3, “DYNAMIC and COMPRESSED Row Formats”
Section 14.10.4.1, “Enabling and Disabling File-Per-Table Tablespaces”
Section 14.12.2, “Enabling Compression for a Table”
Section 14.13.1, “Enabling File Formats”
Section 14.15.2, “File Space Management”
Section 14.7.9, “File-Per-Table Tablespaces”



3470

Section 13.1.17.2, “Files Created by CREATE TABLE”
Section 14.5, “InnoDB and the ACID Model”
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.20.4, “InnoDB Tablespace Monitor Output”
MySQL Glossary
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 14.15.5, “Reclaiming Disk Space with TRUNCATE TABLE”
Section 17.3.4, “Replicating Different Databases to Different Slaves”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 14.12.6, “SQL Compression Syntax Warnings and Errors”
Section 14.11.1.2, “The Physical Row Structure of an InnoDB Table”
Section 14.23.3, “Troubleshooting InnoDB Data Dictionary Operations”
Section 1.4, “What Is New in MySQL 5.5”

innodb_flush_log_at_timeout
Section 14.7.4, “Redo Log Buffer”

innodb_flush_log_at_trx_commit
Section 14.5, “InnoDB and the ACID Model”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 14.7.4, “Redo Log Buffer”

innodb_flush_method
Section 14.10.4, “InnoDB File-Per-Table Tablespaces”
Section 8.5.7, “Optimizing InnoDB Disk I/O”

innodb_flush_neighbors
MySQL Glossary

innodb_force_load_corrupted
Section 14.17, “InnoDB Startup Options and System Variables”

innodb_force_recovery
Section 14.23.2, “Forcing InnoDB Recovery”
Section 1.6, “How to Report Bugs or Problems”
Section 14.21.2, “InnoDB Recovery”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 2.11.3, “Rebuilding or Repairing Tables or Indexes”

innodb_ft_cache_size
MySQL Glossary

innodb_io_capacity
Section 14.9.8, “Configuring the InnoDB Master Thread I/O Rate”
Section 14.17, “InnoDB Startup Options and System Variables”
Section A.15, “MySQL 5.5 FAQ: InnoDB Change Buffer”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 1.4, “What Is New in MySQL 5.5”

innodb_large_prefix
Section 2.11.2.1, “Changes Affecting Downgrades from MySQL 5.5”
Section 8.3.4, “Column Indexes”
Section 13.1.13, “CREATE INDEX Syntax”
Section 13.1.17, “CREATE TABLE Syntax”
Section 14.11.1.7, “Limits on InnoDB Tables”



3471

MySQL Glossary

innodb_lock_wait_timeout
Section 14.8.5.2, “Deadlock Detection and Rollback”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.4.1.32, “Replication Retries and Timeouts”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section B.3, “Server Error Codes and Messages”
Section 1.4, “What Is New in MySQL 5.5”

innodb_locks_unsafe_for_binlog
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 14.8.1, “InnoDB Locking”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
MySQL Glossary
Section 14.8.2.1, “Transaction Isolation Levels”

innodb_log_buffer_size
Section 14.9.1, “InnoDB Startup Configuration”
MySQL Glossary
Section 8.5.3, “Optimizing InnoDB Redo Logging”
Section 14.7.4, “Redo Log Buffer”

innodb_log_file_size
Section 14.9.1, “InnoDB Startup Configuration”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 8.5.3, “Optimizing InnoDB Redo Logging”

innodb_log_files_in_group
Section 14.9.1, “InnoDB Startup Configuration”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 8.5.3, “Optimizing InnoDB Redo Logging”

innodb_log_group_home_dir
Section 14.9.1, “InnoDB Startup Configuration”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_max_dirty_pages_pct
Section 14.9.2.5, “Configuring InnoDB Buffer Pool Flushing”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 14.9.2.1, “The InnoDB Buffer Pool”

innodb_max_purge_lag
Section 14.6, “InnoDB Multi-Versioning”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_old_blocks_pct
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.9.2.3, “Making the Buffer Pool Scan Resistant”



3472

MySQL Glossary
Section 14.9.2.1, “The InnoDB Buffer Pool”

innodb_old_blocks_time
Section 14.9.2.3, “Making the Buffer Pool Scan Resistant”
Section 14.9.2.6, “Monitoring the Buffer Pool Using the InnoDB Standard Monitor”
Section 14.9.2.1, “The InnoDB Buffer Pool”

innodb_online_alter_log_max_size
MySQL Glossary

innodb_page_cleaners
MySQL Glossary

innodb_page_size
MySQL Glossary

innodb_print_all_deadlocks
Section 14.8.5, “Deadlocks in InnoDB”
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”
Section 14.23, “InnoDB Troubleshooting”

innodb_purge_batch_size
Section 14.9.10, “Configuring InnoDB Purge Scheduling”

innodb_purge_threads
Section 14.9.10, “Configuring InnoDB Purge Scheduling”
Section 14.17, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_random_read_ahead
Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
MySQL Glossary
Section 14.9.2.1, “The InnoDB Buffer Pool”
Section 1.4, “What Is New in MySQL 5.5”

innodb_read_ahead_threshold
Section 14.9.2.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.9.2.1, “The InnoDB Buffer Pool”

innodb_read_io_threads
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 14.9.6, “Configuring the Number of Background InnoDB I/O Threads”
Section 14.20.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 24.1.1, “MySQL Threads”
Section 14.9.7, “Using Asynchronous I/O on Linux”
Section 1.4, “What Is New in MySQL 5.5”

innodb_rollback_segments
Section 14.7.8, “Undo Logs”

innodb_sort_buffer_size
MySQL Glossary



3473

innodb_spin_wait_delay
Section 14.9.9, “Configuring Spin Lock Polling”

innodb_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
MySQL Glossary

innodb_stats_on_metadata
Section 1.4, “What Is New in MySQL 5.5”

innodb_stats_sample_pages
Section 14.9.11, “Configuring Optimizer Statistics for InnoDB”
Section 14.9.11.1, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 14.11.1.7, “Limits on InnoDB Tables”

innodb_strict_mode
Section 13.1.17, “CREATE TABLE Syntax”
Section 14.12.5, “How Compression Works for InnoDB Tables”
Section 14.2, “Installing the InnoDB Storage Engine”
Section C.10.4, “Limits on Table Column Count and Row Size”
MySQL Glossary
Section 5.1.8, “Server SQL Modes”
Section 14.12.6, “SQL Compression Syntax Warnings and Errors”
Section 1.4, “What Is New in MySQL 5.5”

innodb_support_xa
MySQL Glossary
Section 8.5.2, “Optimizing InnoDB Transaction Management”

innodb_table_locks
Section 14.17, “InnoDB Startup Options and System Variables”
Section 14.11.1.7, “Limits on InnoDB Tables”

innodb_temp_data_file_path
MySQL Glossary

innodb_thread_concurrency
Section 14.9.5, “Configuring Thread Concurrency for InnoDB”
Section 14.20.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.17, “InnoDB Startup Options and System Variables”
Section A.14, “MySQL 5.5 FAQ: MySQL Enterprise Thread Pool”
Section 8.5.8, “Optimizing InnoDB Configuration Variables”

innodb_thread_sleep_delay
Section 14.9.5, “Configuring Thread Concurrency for InnoDB”

innodb_undo_directory
MySQL Glossary

innodb_undo_tablespaces
MySQL Glossary

innodb_use_native_aio
Section 14.17, “InnoDB Startup Options and System Variables”



3474

MySQL Glossary
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 14.9.7, “Using Asynchronous I/O on Linux”
Section 1.4, “What Is New in MySQL 5.5”

innodb_use_sys_malloc
Section 14.9.3, “Configuring the Memory Allocator for InnoDB”
Section 14.9.5, “Configuring Thread Concurrency for InnoDB”
Section 14.17, “InnoDB Startup Options and System Variables”

innodb_write_io_threads
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 14.9.6, “Configuring the Number of Background InnoDB I/O Threads”
Section 14.20.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 24.1.1, “MySQL Threads”
Section 14.9.7, “Using Asynchronous I/O on Linux”
Section 1.4, “What Is New in MySQL 5.5”

insert_id
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 5.1.5, “Server System Variables”

interactive_timeout
Section B.5.2.11, “Communication Errors and Aborted Connections”
Section 23.8.7.52, “mysql_real_connect()”
Section 5.1.5, “Server System Variables”

J

[index top]

join_buffer_size
Section 8.2.1.5, “Nested-Loop Join Algorithms”
Section 5.1.5, “Server System Variables”

K

[index top]

keep_files_on_create
Section 5.1.5, “Server System Variables”

key_buffer_size
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 5.1.1, “Configuring the Server”
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 8.8.4, “Estimating Query Performance”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.9.1, “InnoDB Startup Configuration”
Section B.5.7, “Known Issues in MySQL”
Section 8.10.2.2, “Multiple Key Caches”
Section 8.2.4.3, “Optimizing DELETE Statements”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 8.10.2.6, “Restructuring a Key Cache”



3475

Section 5.1.4, “Server Command Options”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”
Section 5.1.6.1, “Structured System Variables”
Section 8.10.2, “The MyISAM Key Cache”

key_cache_age_threshold
Section 8.10.2.3, “Midpoint Insertion Strategy”
Section 5.1.5, “Server System Variables”
Section 5.1.6.1, “Structured System Variables”

key_cache_block_size
Section 8.10.2.5, “Key Cache Block Size”
Section 8.10.2.6, “Restructuring a Key Cache”
Section 5.1.5, “Server System Variables”
Section 5.1.6.1, “Structured System Variables”

key_cache_division_limit
Section 8.10.2.3, “Midpoint Insertion Strategy”
Section 5.1.5, “Server System Variables”
Section 5.1.6.1, “Structured System Variables”

L

[index top]

language
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 5.1.5, “Server System Variables”

large_files_support
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.5, “Server System Variables”

large_page_size
Section 5.1.5, “Server System Variables”

large_pages
Section 5.1.5, “Server System Variables”

last_insert_id
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”

lc_messages
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 5.1.5, “Server System Variables”
Section 10.2, “Setting the Error Message Language”
Section 1.4, “What Is New in MySQL 5.5”

lc_messages_dir
Section 2.11.1.1, “Changes Affecting Upgrades to MySQL 5.5”
Section 5.1.5, “Server System Variables”
Section 10.2, “Setting the Error Message Language”



3476

Section 1.4, “What Is New in MySQL 5.5”

lc_time_names
Section 12.7, “Date and Time Functions”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 10.7, “MySQL Server Locale Support”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”
Section 12.5, “String Functions”

license
Section 5.1.5, “Server System Variables”

local
Section 13.2.7, “LOAD XML Syntax”

local_infile
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 5.1.5, “Server System Variables”

lock_wait_timeout
Section 5.1.5, “Server System Variables”

locked_in_memory
Section 5.1.5, “Server System Variables”

log
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

log_bin
Section 17.1.3.4, “Binary Log Options and Variables”
NDB Cluster System Variables

log_bin_trust_function_creators
Section 17.1.3.4, “Binary Log Options and Variables”
Section 20.7, “Binary Logging of Stored Programs”
Section A.4, “MySQL 5.5 FAQ: Stored Procedures and Functions”
Section 5.1.5, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.5”

log_bin_use_v
Section 17.1.3.4, “Binary Log Options and Variables”

log_error
Section 5.1.5, “Server System Variables”
Section 5.4.2, “The Error Log”

log_output
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.5, “Server System Variables”
Section 5.4.3, “The General Query Log”
Section 5.4.5, “The Slow Query Log”



3477

log_queries_not_using_indexes
Section 5.1.5, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

log_slave_updates
Section 17.1.3.4, “Binary Log Options and Variables”

log_slow_queries
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

log_warnings
Section 5.1.5, “Server System Variables”
Section 5.4.2, “The Error Log”

long_query_time
Section 5.4, “MySQL Server Logs”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server Command Options”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

low_priority_updates
Section 5.1.5, “Server System Variables”
Section 8.11.2, “Table Locking Issues”

lower_case_file_system
Section 5.1.5, “Server System Variables”

lower_case_table_names
Section 13.7.1.3, “GRANT Syntax”
Section 17.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 1.6, “How to Report Bugs or Problems”
Section 9.2.2, “Identifier Case Sensitivity”
Section 22.1, “Performance Schema Quick Start”
Section 17.4.1.38, “Replication and Variables”
Section 13.7.1.5, “REVOKE Syntax”
Section 5.1.5, “Server System Variables”
Section 13.7.5.38, “SHOW TABLES Syntax”
Section 10.1.8.7, “Using Collation in INFORMATION_SCHEMA Searches”
Section 13.1.17.6, “Using FOREIGN KEY Constraints”

M

[index top]

master_verify_checksum
MySQL Glossary

max_allowed_packet
Section 12.16.1, “Aggregate (GROUP BY) Function Descriptions”
Section B.5.2.11, “Communication Errors and Aborted Connections”
Section 12.3.2, “Comparison Functions and Operators”
Section B.5.4.6, “Deleting Rows from Related Tables”



3478

Section 8.12.4.1, “How MySQL Uses Memory”
Section B.5.2.3, “Lost connection to MySQL server”
Section 23.8, “MySQL C API”
Section B.5.2.9, “MySQL server has gone away”
Section 23.8.11.26, “mysql_stmt_send_long_data()”
Section 23.8.7.71, “mysql_use_result()”
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”
Section B.5.2.10, “Packet Too Large”
Section 17.4.1.22, “Replication and max_allowed_packet”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.5, “Server System Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 12.5, “String Functions”
Section 11.4.3, “The BLOB and TEXT Types”

max_binlog_cache_size
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.4.4, “The Binary Log”

max_binlog_size
Section 17.1.3.4, “Binary Log Options and Variables”
Section 5.4, “MySQL Server Logs”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.4.7, “Server Log Maintenance”
Section 5.1.5, “Server System Variables”
Section 5.4.4, “The Binary Log”
Section 17.2.2.1, “The Slave Relay Log”

max_binlog_stmt_cache_size
Section 17.1.3.4, “Binary Log Options and Variables”

max_connect_errors
Section 8.12.5.2, “DNS Lookup Optimization and the Host Cache”
Section 13.7.6.3, “FLUSH Syntax”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 5.1.5, “Server System Variables”

max_connections
Section 24.5.1.4, “Debugging mysqld under gdb”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.5.1, “How MySQL Uses Threads for Client Connections”
Section 22.11, “Performance Schema System Variables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 5.5.4.3, “Thread Pool Operation”
Section B.5.2.7, “Too many connections”

max_delayed_threads
Section 22.11, “Performance Schema System Variables”
Section 5.1.5, “Server System Variables”

max_error_count
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.6.7.3, “RESIGNAL Syntax”



3479

Section 5.1.5, “Server System Variables”
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”

max_heap_table_size
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section C.10.3, “Limits on Table Size”
Section 17.4.1.23, “Replication and MEMORY Tables”
Section 17.4.1.38, “Replication and Variables”
Section C.3, “Restrictions on Server-Side Cursors”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”
Section 15.4, “The MEMORY Storage Engine”

max_insert_delayed_threads
Section 5.1.5, “Server System Variables”

max_join_size
Section 8.8.2, “EXPLAIN Output Format”
Section 5.1.5, “Server System Variables”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 5.1.6, “Using System Variables”

max_length_for_sort_data
Section 8.2.1.10, “ORDER BY Optimization”
Section 5.1.5, “Server System Variables”

max_long_data_size
Section 23.8.11.26, “mysql_stmt_send_long_data()”
Section 5.1.5, “Server System Variables”

max_prepared_stmt_count
Section 13.5, “Prepared SQL Statement Syntax”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

max_relay_log_size
Section 17.1.3.4, “Binary Log Options and Variables”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.5, “Server System Variables”
Section 17.2.2.1, “The Slave Relay Log”

max_seeks_for_key
Section 14.11.1.7, “Limits on InnoDB Tables”
Section 5.1.5, “Server System Variables”

max_sort_length
Section B.5.7, “Known Issues in MySQL”
Section 8.2.1.10, “ORDER BY Optimization”
Section 13.2.9, “SELECT Syntax”
Section 5.1.5, “Server System Variables”
Section 11.4.3, “The BLOB and TEXT Types”

max_sp_recursion_depth
Section 5.1.5, “Server System Variables”



3480

Section 20.2.1, “Stored Routine Syntax”

max_tmp_tables
Section 5.1.5, “Server System Variables”

max_user_connections
Section 13.7.1.3, “GRANT Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.5, “Server System Variables”
Section 6.3.4, “Setting Account Resource Limits”

max_write_lock_count
Section 5.1.5, “Server System Variables”
Section 8.11.2, “Table Locking Issues”

metadata_locks_cache_size
Section 5.1.5, “Server System Variables”

min_examined_row_limit
Section 5.1.5, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

multi_range_count
Section 5.1.5, “Server System Variables”

myisam_data_pointer_size
Section 13.1.17, “CREATE TABLE Syntax”
Section C.10.3, “Limits on Table Size”
Section 5.1.5, “Server System Variables”

myisam_max_sort_file_size
Section 15.3.1, “MyISAM Startup Options”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.5, “Server System Variables”

myisam_mmap_size
Section 5.1.5, “Server System Variables”

myisam_recover_options
Section 5.1.5, “Server System Variables”

myisam_repair_threads
Section 5.1.5, “Server System Variables”

myisam_sort_buffer_size
Section 13.1.7, “ALTER TABLE Syntax”
Section 15.3.1, “MyISAM Startup Options”
Section 4.6.3.1, “myisamchk General Options”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 5.1.5, “Server System Variables”

myisam_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 5.1.5, “Server System Variables”



3481

myisam_use_mmap
Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.5, “Server System Variables”

N

[index top]

named_pipe
Section 5.1.5, “Server System Variables”

ndb_autoincrement_prefetch_sz
NDB Cluster System Variables

ndb_cache_check_time
NDB Cluster System Variables

ndb_deferred_constraints
NDB Cluster System Variables

ndb_distribution
NDB Cluster System Variables

ndb_eventbuffer_max_alloc
NDB Cluster System Variables

ndb_extra_logging
NDB Cluster System Variables

ndb_force_send
NDB Cluster System Variables

ndb_index_stat_cache_entries
NDB Cluster System Variables

ndb_index_stat_enable
NDB Cluster System Variables

ndb_index_stat_option
NDB Cluster System Variables

ndb_index_stat_update_freq
NDB Cluster System Variables

ndb_join_pushdown
Section 8.8.2, “EXPLAIN Output Format”
NDB Cluster System Variables
Section 18.1.4, “What is New in MySQL NDB Cluster 7.2”

ndb_log_apply_status
Section 18.6.10, “NDB Cluster Replication: Multi-Master and Circular Replication”
NDB Cluster System Variables

ndb_log_bin
NDB Cluster System Variables



3482

ndb_log_binlog_index
NDB Cluster System Variables

ndb_log_empty_epochs
NDB Cluster System Variables

ndb_log_empty_update
NDB Cluster System Variables

ndb_log_orig
NDB Cluster System Variables

ndb_log_transaction_id
NDB Cluster System Variables

ndb_optimized_node_selection
NDB Cluster System Variables
Section 18.3.3.9, “NDB Cluster TCP/IP Connections”
Section 18.5.6.3, “Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client”

ndb_report_thresh_binlog_epoch_slip
NDB Cluster System Variables

ndb_report_thresh_binlog_mem_usage
NDB Cluster System Variables

ndb_table_no_logging
NDB Cluster System Variables

ndb_table_temporary
NDB Cluster System Variables

ndb_use_copying_alter_table
NDB Cluster System Variables

ndb_use_exact_count
NDB Cluster System Variables

ndb_use_transactions
NDB Cluster System Variables

ndb_version
NDB Cluster System Variables

ndb_version_string
NDB Cluster System Variables

ndbinfo_database
NDB Cluster System Variables

ndbinfo_max_bytes
NDB Cluster System Variables



3483

ndbinfo_max_rows
NDB Cluster System Variables

ndbinfo_offline
NDB Cluster System Variables

ndbinfo_show_hidden
NDB Cluster System Variables
Section 18.5.10.4, “The ndbinfo cluster_operations Table”
Section 18.5.10.5, “The ndbinfo cluster_transactions Table”
Section 18.5.10.15, “The ndbinfo server_operations Table”
Section 18.5.10.16, “The ndbinfo server_transactions Table”

ndbinfo_table_prefix
NDB Cluster System Variables

ndbinfo_version
NDB Cluster System Variables

net_buffer_length
Section 8.12.4.1, “How MySQL Uses Memory”
Section 23.8, “MySQL C API”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 5.1.5, “Server System Variables”

net_read_timeout
Section B.5.2.3, “Lost connection to MySQL server”
Section 5.1.5, “Server System Variables”

net_retry_count
Section 5.1.5, “Server System Variables”

net_write_timeout
Section 5.1.5, “Server System Variables”

new
Section 19.5.2, “Partitioning Limitations Relating to Storage Engines”
Section 5.1.5, “Server System Variables”

O

[index top]

old
Section 8.9.3, “Index Hints”
Section 5.1.5, “Server System Variables”

old_alter_table
Section 13.1.7, “ALTER TABLE Syntax”
Section 5.1.5, “Server System Variables”

old_passwords
Section 6.3.5, “Assigning Account Passwords”



3484

Section B.5.2.4, “Client does not support authentication protocol”
Section 13.7.1.1, “CREATE USER Syntax”
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.5, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”

one_shot
Section 5.1.5, “Server System Variables”

open_files_limit
Section B.5.2.18, “File Not Found and Similar Errors”
Section 22.11, “Performance Schema System Variables”
Section 19.5, “Restrictions and Limitations on Partitioning”
Section 5.1.5, “Server System Variables”

optimizer_prune_level
Section 8.9.1, “Controlling Query Plan Evaluation”
Section 5.1.5, “Server System Variables”

optimizer_search_depth
Section 8.9.1, “Controlling Query Plan Evaluation”
Section 5.1.5, “Server System Variables”

optimizer_switch
Section 8.2.1.4, “Engine Condition Pushdown Optimization”
Section 8.2.1.3, “Index Merge Optimization”
Section 5.1.5, “Server System Variables”
Section 8.9.2, “Switchable Optimizations”
Section 1.4, “What Is New in MySQL 5.5”

P

[index top]

performance_schema
Section 22.1, “Performance Schema Quick Start”
Section 22.3, “Performance Schema Startup Configuration”
Section 22.11, “Performance Schema System Variables”

performance_schema_events_waits_history_long_size
Section 22.11, “Performance Schema System Variables”
Section 22.9, “Performance Schema Table Descriptions”
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 22.9.4.3, “The events_waits_history_long Table”

performance_schema_events_waits_history_size
Section 22.11, “Performance Schema System Variables”
Section 22.9, “Performance Schema Table Descriptions”
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 22.9.4.2, “The events_waits_history Table”

performance_schema_max_cond_classes
Section 22.11, “Performance Schema System Variables”



3485

performance_schema_max_cond_instances
Section 22.11, “Performance Schema System Variables”

performance_schema_max_file_classes
Section 22.11, “Performance Schema System Variables”

performance_schema_max_file_handles
Section 22.11, “Performance Schema System Variables”

performance_schema_max_file_instances
Section 22.11, “Performance Schema System Variables”

performance_schema_max_mutex_classes
Section 22.7, “Performance Schema Status Monitoring”
Section 22.11, “Performance Schema System Variables”

performance_schema_max_mutex_instances
Section 22.11, “Performance Schema System Variables”

performance_schema_max_rwlock_classes
Section 22.11, “Performance Schema System Variables”

performance_schema_max_rwlock_instances
Section 22.11, “Performance Schema System Variables”

performance_schema_max_table_handles
Section 22.11, “Performance Schema System Variables”

performance_schema_max_table_instances
Section 22.11, “Performance Schema System Variables”

performance_schema_max_thread_classes
Section 22.11, “Performance Schema System Variables”

performance_schema_max_thread_instances
Section 22.12, “Performance Schema Status Variables”
Section 22.11, “Performance Schema System Variables”
Section 13.7.5.16, “SHOW ENGINE Syntax”

pid_file
Section 5.1.5, “Server System Variables”

plugin_dir
Section 6.1.2.2, “Administrator Guidelines for Password Security”
Section 24.2.4.3, “Compiling and Installing Plugin Libraries”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 2.10.1, “Initializing the Data Directory”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.5.2, “Installing and Uninstalling Plugins”
Section 6.5.2.1, “Installing MySQL Enterprise Audit”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.5.1.4, “PAM Pluggable Authentication”
Section 15.2.1, “Pluggable Storage Engine Architecture”
Section 24.2.3, “Plugin API Components”



3486

Section C.9, “Restrictions on Pluggable Authentication”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 13.7.5.26, “SHOW PLUGINS Syntax”
Section 6.5.1.6, “Socket Peer-Credential Pluggable Authentication”
Section 6.5.1.7, “Test Pluggable Authentication”
Section 21.13, “The INFORMATION_SCHEMA PLUGINS Table”
Section 5.5.4.2, “Thread Pool Installation”
Section 24.4.2.5, “UDF Compiling and Installing”
Section 24.4.2.6, “UDF Security Precautions”
Using the Authentication Plugins
Section 6.5.1.5, “Windows Pluggable Authentication”
Section 24.2.4.8, “Writing Audit Plugins”
Section 24.2.4.5, “Writing Daemon Plugins”
Section 24.2.4.4, “Writing Full-Text Parser Plugins”
Section 24.2.4.6, “Writing INFORMATION_SCHEMA Plugins”
Section 24.2.4.7, “Writing Semisynchronous Replication Plugins”

port
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 5.1.5, “Server System Variables”

preload_buffer_size
Section 5.1.5, “Server System Variables”

profiling
Section 5.1.5, “Server System Variables”
Section 13.7.5.31, “SHOW PROFILE Syntax”
Section 21.15, “The INFORMATION_SCHEMA PROFILING Table”

profiling_history_size
Section 5.1.5, “Server System Variables”
Section 13.7.5.31, “SHOW PROFILE Syntax”

protocol_version
Section 5.1.5, “Server System Variables”

proxy_user
Section 6.3.7, “Proxy Users”
Section 5.1.5, “Server System Variables”

pseudo_slave_mode
Section 5.1.5, “Server System Variables”

pseudo_thread_id
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”

Q

[index top]

query_alloc_block_size
Section 5.1.5, “Server System Variables”



3487

query_cache_limit
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.5, “Server System Variables”

query_cache_min_res_unit
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.5, “Server System Variables”

query_cache_size
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.5, “Server System Variables”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1.6, “Using System Variables”

query_cache_type
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.2, “Query Cache SELECT Options”
Section 13.2.9, “SELECT Syntax”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

query_cache_wlock_invalidate
Section 5.1.5, “Server System Variables”

query_prealloc_size
Section 5.1.5, “Server System Variables”

R

[index top]

rand_seed
Section 5.1.5, “Server System Variables”

range_alloc_block_size
Section 5.1.5, “Server System Variables”

read_buffer_size
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.6.3, “Optimizing REPAIR TABLE Statements”
Section 5.1.5, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.5”

read_only
Section 13.7.1, “Account Management Statements”
Section 6.3.5, “Assigning Account Passwords”
Section 17.3.1.3, “Backing Up a Master or Slave by Making It Read Only”
Section 13.7.1.1, “CREATE USER Syntax”
Section 13.7.1.2, “DROP USER Syntax”
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.4, “RENAME USER Syntax”
Section 17.4.1.38, “Replication and Variables”
Section 13.7.1.5, “REVOKE Syntax”



3488

Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.5, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”

read_rnd_buffer_size
Section 5.1.1, “Configuring the Server”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.2.1.10, “ORDER BY Optimization”
Section 5.1.5, “Server System Variables”

relay_log
Section 17.1.3.3, “Replication Slave Options and Variables”

relay_log_index
Section 17.1.3.3, “Replication Slave Options and Variables”

relay_log_info_file
Section 17.1.3.3, “Replication Slave Options and Variables”

relay_log_purge
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 5.1.5, “Server System Variables”

relay_log_recovery
Section 17.1.3.3, “Replication Slave Options and Variables”

relay_log_space_limit
Section 8.14.6, “Replication Slave I/O Thread States”
Section 5.1.5, “Server System Variables”

report_host
Section 5.1.5, “Server System Variables”

report_password
Section 5.1.5, “Server System Variables”

report_port
Section 5.1.5, “Server System Variables”

report_user
Section 5.1.5, “Server System Variables”

Rpl_recovery_rank
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”

rpl_recovery_rank
Section 17.1.3.3, “Replication Slave Options and Variables”

rpl_semi_sync_master_enabled
Section 17.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 17.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.5, “Server System Variables”



3489

rpl_semi_sync_master_timeout
Section 17.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.5, “Server System Variables”

rpl_semi_sync_master_trace_level
Section 5.1.5, “Server System Variables”

rpl_semi_sync_master_wait_no_slave
Section 5.1.5, “Server System Variables”

rpl_semi_sync_slave_enabled
Section 17.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 17.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.5, “Server System Variables”

rpl_semi_sync_slave_trace_level
Section 5.1.5, “Server System Variables”

S

[index top]

secure_auth
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.5, “Server System Variables”

secure_file_priv
Section 2.10.1, “Initializing the Data Directory”
Section 2.5.1, “Installing MySQL on Linux Using RPM Packages”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 12.5, “String Functions”

server_id
Section 12.17, “Miscellaneous Functions”
MySQL Server Options for NDB Cluster
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 18.6.11, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables
Section 5.1.5, “Server System Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 6.5.2.3, “The Audit Log File”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

server_id_bits
MySQL Server Options for NDB Cluster
NDB Cluster System Variables

shared_memory
Section 5.1.5, “Server System Variables”



3490

shared_memory_base_name
Section 5.1.5, “Server System Variables”

skip_external_locking
Section 8.11.5, “External Locking”
Section 5.1.5, “Server System Variables”

skip_name_resolve
Section 5.1.5, “Server System Variables”

skip_networking
Section 5.1.5, “Server System Variables”

skip_show_database
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

slave_allow_batching
NDB Cluster System Variables
Section 18.6.6, “Starting NDB Cluster Replication (Single Replication Channel)”

slave_compressed_protocol
Section 17.1.3.3, “Replication Slave Options and Variables”

slave_exec_mode
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 17.4.1.23, “Replication and MEMORY Tables”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 17.1.2.2, “Usage of Row-Based Logging and Replication”

slave_load_tmpdir
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.5, “Server System Variables”

slave_max_allowed_packet
Section 17.1.3.3, “Replication Slave Options and Variables”

slave_net_timeout
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 17.1.4.1, “Checking Replication Status”
Section 17.4.1.21, “Replication and Master or Slave Shutdowns”
Section 8.14.6, “Replication Slave I/O Thread States”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.5, “Server System Variables”

slave_skip_errors
Section 17.1.3.3, “Replication Slave Options and Variables”

slave_sql_verify_checksum
MySQL Glossary

slave_transaction_retries
Section 17.4.1.32, “Replication Retries and Timeouts”



3491

Section 17.1.3.3, “Replication Slave Options and Variables”

slave_type_conversions
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 17.1.3.3, “Replication Slave Options and Variables”

slow_launch_time
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

slow_query_log
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.5, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

slow_query_log_file
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.5, “Server System Variables”
Section 5.4.5, “The Slow Query Log”

socket
Section 5.1.5, “Server System Variables”

sort_buffer_size
Section 7.6.3, “How to Repair MyISAM Tables”
Section 8.2.1.10, “ORDER BY Optimization”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

sql_auto_is_null
Section 12.3.2, “Comparison Functions and Operators”
Section 13.1.17, “CREATE TABLE Syntax”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”
Section 5.4.4, “The Binary Log”

sql_big_selects
Section 5.1.5, “Server System Variables”

sql_buffer_result
Section 5.1.5, “Server System Variables”

sql_log_bin
Section 17.1.3.4, “Binary Log Options and Variables”
Section 18.1.6.8, “Issues Exclusive to NDB Cluster”
Section 18.6.3, “Known Issues in NDB Cluster Replication”
Section 18.1.6.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.1.3.1, “Replication and Binary Logging Option and Variable Reference”
Section 5.1.5, “Server System Variables”
Section 13.4.1.3, “SET sql_log_bin Syntax”
Section 13.7.4.1, “SET Syntax for Variable Assignment”
Section 17.4.3, “Upgrading a Replication Setup”
Section 5.1.6, “Using System Variables”



3492

sql_log_off
Section 17.1.3.4, “Binary Log Options and Variables”
MySQL Glossary
Section 6.2.1, “Privileges Provided by MySQL”
Section 17.1.3.1, “Replication and Binary Logging Option and Variable Reference”
Section 5.4.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.5, “Server System Variables”
Section 5.4.3, “The General Query Log”

sql_log_update
Section 5.1.5, “Server System Variables”

sql_mode
Section 13.1.11, “CREATE EVENT Syntax”
Section 13.1.15, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.19, “CREATE TRIGGER Syntax”
Effect of Signals on Handlers, Cursors, and Statements
Section 12.18.3, “Expression Handling”
Section 1.6, “How to Report Bugs or Problems”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 1.7, “MySQL Standards Compliance”
Section B.5.4.2, “Problems Using DATE Columns”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.8, “Server SQL Modes”
Section 5.1.5, “Server System Variables”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 5.4.4, “The Binary Log”
Section 21.27, “The INFORMATION_SCHEMA VIEWS Table”
Section 4.2.6, “Using Option Files”
Section 5.1.6, “Using System Variables”

sql_notes
Section 5.1.5, “Server System Variables”
Section 13.7.5.41, “SHOW WARNINGS Syntax”

sql_quote_show_create
Section 5.1.5, “Server System Variables”
Section 13.7.5.8, “SHOW CREATE DATABASE Syntax”
Section 13.7.5.12, “SHOW CREATE TABLE Syntax”

sql_safe_updates
Section 5.1.5, “Server System Variables”

sql_select_limit
Section 5.1.5, “Server System Variables”

sql_slave_skip_counter
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”

sql_warnings
Section 5.1.5, “Server System Variables”

ssl_ca
Section 5.1.5, “Server System Variables”



3493

ssl_capath
Section 5.1.5, “Server System Variables”

ssl_cert
Section 5.1.5, “Server System Variables”

ssl_cipher
Section 5.1.5, “Server System Variables”

ssl_key
Section 5.1.5, “Server System Variables”

storage_engine
Section 13.1.14, “CREATE LOGFILE GROUP Syntax”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”
Section 17.3.2, “Using Replication with Different Master and Slave Storage Engines”
Section 1.4, “What Is New in MySQL 5.5”

stored_program_cache
Section 5.1.5, “Server System Variables”

sync_binlog
Section 17.1.3.4, “Binary Log Options and Variables”
Section 14.5, “InnoDB and the ACID Model”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 17.4.1.21, “Replication and Master or Slave Shutdowns”
Section 5.4.4, “The Binary Log”

sync_frm
Section 5.1.5, “Server System Variables”

sync_master_info
Section 17.1.3.3, “Replication Slave Options and Variables”

sync_relay_log
Section 17.1.3.3, “Replication Slave Options and Variables”

sync_relay_log_info
Section 17.4.1.21, “Replication and Master or Slave Shutdowns”
Section 17.1.3.3, “Replication Slave Options and Variables”

system_time_zone
Section 10.6, “MySQL Server Time Zone Support”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”

T

[index top]

table_definition_cache
Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.5, “Server System Variables”



3494

table_lock_wait_timeout
Section 5.1.5, “Server System Variables”

table_open_cache
Section 5.1.1, “Configuring the Server”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 8.14.2, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.4, “Server Command Options”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

table_type
Section 5.1.5, “Server System Variables”

thread_cache_size
Section 24.5.1.4, “Debugging mysqld under gdb”
Section 8.12.5.1, “How MySQL Uses Threads for Client Connections”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

thread_concurrency
Section 5.1.5, “Server System Variables”

thread_handling
Section 5.1.5, “Server System Variables”
Section 5.5.4.1, “Thread Pool Components”

thread_pool_algorithm
Section 5.1.5, “Server System Variables”
Section 21.30.1, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 5.5.4.1, “Thread Pool Components”

thread_pool_high_priority_connection
Section 5.1.5, “Server System Variables”
Section 5.5.4.1, “Thread Pool Components”
Section 5.5.4.3, “Thread Pool Operation”

thread_pool_max_unused_threads
Section 5.1.5, “Server System Variables”
Section 5.5.4.1, “Thread Pool Components”

thread_pool_prio_kickup_timer
Section 5.1.5, “Server System Variables”
Section 21.30.1, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 21.30.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”
Section 5.5.4.1, “Thread Pool Components”
Section 5.5.4.3, “Thread Pool Operation”
Section 5.5.4.4, “Thread Pool Tuning”

thread_pool_size
Section 5.1.5, “Server System Variables”
Section 5.5.4.1, “Thread Pool Components”
Section 5.5.4.3, “Thread Pool Operation”



3495

Section 5.5.4.4, “Thread Pool Tuning”

thread_pool_stall_limit
Section 5.1.5, “Server System Variables”
Section 21.30.1, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 21.30.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”
Section 5.5.4.1, “Thread Pool Components”
Section 5.5.4.3, “Thread Pool Operation”
Section 5.5.4.4, “Thread Pool Tuning”

thread_stack
Section 8.12.4.1, “How MySQL Uses Memory”
Section 5.1.5, “Server System Variables”
Section 20.2.1, “Stored Routine Syntax”

time_format
Section 5.1.5, “Server System Variables”

time_zone
Section 13.1.11, “CREATE EVENT Syntax”
Section 12.7, “Date and Time Functions”
Section 20.4.4, “Event Metadata”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 10.6, “MySQL Server Time Zone Support”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 11.3.1, “The DATE, DATETIME, and TIMESTAMP Types”

timed_mutexes
Section 5.1.5, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.5”

timestamp
Section 15.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”

tmp_table_size
Section 8.12.4.1, “How MySQL Uses Memory”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section C.3, “Restrictions on Server-Side Cursors”
Section 5.1.7, “Server Status Variables”
Section 5.1.5, “Server System Variables”

tmpdir
Section 17.3.1.2, “Backing Up Raw Data from a Slave”
Section B.5.2.13, “Can't create/write to file”
Section 7.2, “Database Backup Methods”
Section 14.16.6, “Limitations of Fast Index Creation”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 8.2.1.10, “ORDER BY Optimization”
Section 17.1.3.3, “Replication Slave Options and Variables”
Section 5.1.5, “Server System Variables”



3496

transaction_alloc_block_size
Section 5.1.5, “Server System Variables”

transaction_allow_batching
NDB Cluster System Variables

transaction_prealloc_size
Section 5.1.5, “Server System Variables”

tx_isolation
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”

U

[index top]

unique_checks
Section 14.11.1.4, “Converting Tables from MyISAM to InnoDB”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 17.4.1.38, “Replication and Variables”
Section 5.1.5, “Server System Variables”
Section 5.4.4, “The Binary Log”

updatable_views_with_limit
Section 5.1.5, “Server System Variables”
Section 20.5.3, “Updatable and Insertable Views”

V

[index top]

version
Section 12.14, “Information Functions”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 5.1.5, “Server System Variables”
Section 6.5.2.3, “The Audit Log File”

version_comment
Section 5.1.5, “Server System Variables”
Section 13.7.5.40, “SHOW VARIABLES Syntax”

version_compile_machine
Section 5.1.5, “Server System Variables”

version_compile_os
Section 5.1.5, “Server System Variables”

W

[index top]

wait_timeout
Section B.5.2.11, “Communication Errors and Aborted Connections”



3497

Section B.5.2.9, “MySQL server has gone away”
Section 23.8.7.52, “mysql_real_connect()”
Section 5.1.5, “Server System Variables”

warning_count
Effect of Signals on Handlers, Cursors, and Statements
Section 5.1.5, “Server System Variables”
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section B.1, “Sources of Error Information”

Transaction Isolation Level Index
R | S

R

[index top]

READ COMMITTED
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 18.1.5.1, “Differences Between the NDB and InnoDB Storage Engines”
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”
Section 14.8.1, “InnoDB Locking”
Section 14.17, “InnoDB Startup Options and System Variables”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section A.1, “MySQL 5.5 FAQ: General”
Section A.10, “MySQL FAQ: MySQL 5.5 and NDB Cluster”
Section 18.1.5.3, “NDB and InnoDB Feature Usage Summary”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 14.8.2.1, “Transaction Isolation Levels”
Section 13.1.33, “TRUNCATE TABLE Syntax”

READ UNCOMMITTED
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 5.4.4.2, “Setting The Binary Log Format”
Section 14.8.2.1, “Transaction Isolation Levels”
Section 13.1.33, “TRUNCATE TABLE Syntax”

READ-COMMITTED
Section 5.1.4, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Syntax”

READ-UNCOMMITTED
Section 5.1.4, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Syntax”

REPEATABLE READ
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 14.8.1, “InnoDB Locking”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 4.5.4, “mysqldump — A Database Backup Program”



3498

Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 14.8.2.1, “Transaction Isolation Levels”
Section 13.3.7, “XA Transactions”

REPEATABLE-READ
Section 5.1.4, “Server Command Options”
Section 5.1.5, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”

S

[index top]

SERIALIZABLE
Section 14.8.2.3, “Consistent Nonlocking Reads”
Section 8.10.3.1, “How the Query Cache Operates”
Section 18.1.6.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.8.3, “Locks Set by Different SQL Statements in InnoDB”
Section 5.4.4.3, “Mixed Binary Logging Format”
Section 5.1.4, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 14.8.2.1, “Transaction Isolation Levels”
Section 13.3.7, “XA Transactions”



3499

MySQL Glossary
These terms are commonly used in information about the MySQL database server. This glossary originated as a
reference for terminology about the InnoDB storage engine, and the majority of definitions are InnoDB-related.

A
.ARM file

 Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in
backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file, MySQL Enterprise Backup, mysqlbackup command.

.ARZ file
 Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file, MySQL Enterprise Backup, mysqlbackup command.

ACID
 An acronym standing for atomicity, consistency, isolation, and durability. These properties are all desirable
in a database system, and are all closely tied to the notion of a transaction. The transactional features of
InnoDB adhere to the ACID principles.

Transactions are atomic units of work that can be committed or rolled back. When a transaction makes
multiple changes to the database, either all the changes succeed when the transaction is committed, or all the
changes are undone when the transaction is rolled back.

The database remains in a consistent state at all times — after each commit or rollback, and while
transactions are in progress. If related data is being updated across multiple tables, queries see either all old
values or all new values, not a mix of old and new values.

Transactions are protected (isolated) from each other while they are in progress; they cannot interfere with
each other or see each other's uncommitted data. This isolation is achieved through the locking mechanism.
Experienced users can adjust the isolation level, trading off less protection in favor of increased performance
and concurrency, when they can be sure that the transactions really do not interfere with each other.

The results of transactions are durable: once a commit operation succeeds, the changes made by that
transaction are safe from power failures, system crashes, race conditions, or other potential dangers that
many non-database applications are vulnerable to. Durability typically involves writing to disk storage, with a
certain amount of redundancy to protect against power failures or software crashes during write operations.
(In InnoDB, the doublewrite buffer assists with durability.)
See Also atomic, commit, concurrency, doublewrite buffer, isolation level, locking, rollback, transaction.

adaptive flushing
 An algorithm for InnoDB tables that smooths out the I/O overhead introduced by checkpoints. Instead of
flushing all modified pages from the buffer pool to the data files at once, MySQL periodically flushes small
sets of modified pages. The adaptive flushing algorithm extends this process by estimating the optimal rate to
perform these periodic flushes, based on the rate of flushing and how fast redo information is generated.
See Also buffer pool, checkpoint, data files, flush, InnoDB, page, redo log.

adaptive hash index
 An optimization for InnoDB tables that can speed up lookups using = and IN operators, by constructing
a hash index in memory. MySQL monitors index searches for InnoDB tables, and if queries could
benefit from a hash index, it builds one automatically for index pages that are frequently accessed.
In a sense, the adaptive hash index configures MySQL at runtime to take advantage of ample main
memory, coming closer to the architecture of main-memory databases. This feature is controlled by the
innodb_adaptive_hash_index configuration option. Because this feature benefits some workloads
and not others, and the memory used for the hash index is reserved in the buffer pool, typically you should
benchmark with this feature both enabled and disabled.



3500

The hash index is always built based on an existing InnoDB secondary index, which is organized as a
B-tree structure. MySQL can build a hash index on a prefix of any length of the key defined for the B-tree,
depending on the pattern of searches against the index. A hash index can be partial; the whole B-tree index
does not need to be cached in the buffer pool.

In MySQL 5.6 and higher, another way to take advantage of fast single-value lookups with InnoDB tables is to
use the InnoDB memcached plugin. See InnoDB memcached Plugin for details.
See Also B-tree, buffer pool, hash index, memcached, page, secondary index.

AHI
 Acronym for adaptive hash index.
See Also adaptive hash index.

AIO
 Acronym for asynchronous I/O. You might see this acronym in InnoDB messages or keywords.
See Also asynchronous I/O.

Antelope
 The code name for the original InnoDB file format. It supports the REDUNDANT and COMPACT row
formats, but not the newer DYNAMIC and COMPRESSED row formats available in the Barracuda file format.
See Also Barracuda, compact row format, compressed row format, dynamic row format, file format,
innodb_file_format, redundant row format.

application programming interface (API)
 A set of functions or procedures. An API provides a stable set of names and types for functions, procedures,
parameters, and return values.

apply
 When a backup produced by the MySQL Enterprise Backup product does not include the most recent
changes that occurred while the backup was underway, the process of updating the backup files to include
those changes is known as the apply step. It is specified by the apply-log option of the mysqlbackup
command.

Before the changes are applied, we refer to the files as a raw backup. After the changes are applied, we refer
to the files as a prepared backup. The changes are recorded in the ibbackup_logfile file; once the apply
step is finished, this file is no longer necessary.
See Also hot backup, ibbackup_logfile, MySQL Enterprise Backup, prepared backup, raw backup.

asynchronous I/O
 A type of I/O operation that allows other processing to proceed before the I/O is completed. Also known as
non-blocking I/O and abbreviated as AIO. InnoDB uses this type of I/O for certain operations that can run in
parallel without affecting the reliability of the database, such as reading pages into the buffer pool that have
not actually been requested, but might be needed soon.

Historically, InnoDB used asynchronous I/O on Windows systems only. Starting with the InnoDB Plugin 1.1
and MySQL 5.5, InnoDB uses asynchronous I/O on Linux systems. This change introduces a dependency
on libaio. Asynchronous I/O on Linux systems is configured using the innodb_use_native_aio option,
which is enabled by default. On other Unix-like systems, InnoDB uses synchronous I/O only.
See Also buffer pool, non-blocking I/O.

atomic
 In the SQL context, transactions are units of work that either succeed entirely (when committed) or have
no effect at all (when rolled back). The indivisible ("atomic") property of transactions is the “A” in the acronym
ACID.
See Also ACID, commit, rollback, transaction.

atomic instruction
 Special instructions provided by the CPU, to ensure that critical low-level operations cannot be interrupted.

auto-increment
 A property of a table column (specified by the AUTO_INCREMENT keyword) that automatically adds an
ascending sequence of values in the column. InnoDB supports auto-increment only for primary key columns.

http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html


3501

It saves work for the developer, not to have to produce new unique values when inserting new rows. It
provides useful information for the query optimizer, because the column is known to be not null and with
unique values. The values from such a column can be used as lookup keys in various contexts, and because
they are auto-generated there is no reason to ever change them; for this reason, primary key columns are
often specified as auto-incrementing.

Auto-increment columns can be problematic with statement-based replication, because replaying the
statements on a slave might not produce the same set of column values as on the master, due to timing
issues. When you have an auto-incrementing primary key, you can use statement-based replication only
with the setting innodb_autoinc_lock_mode=1. If you have innodb_autoinc_lock_mode=2, which
allows higher concurrency for insert operations, use row-based replication rather than statement-based
replication. The setting innodb_autoinc_lock_mode=0 is the previous (traditional) default setting and
should not be used except for compatibility purposes.
See Also auto-increment locking, innodb_autoinc_lock_mode, primary key, row-based replication, statement-
based replication.

auto-increment locking
 The convenience of an auto-increment primary key involves some tradeoff with concurrency. In the simplest
case, if one transaction is inserting values into the table, any other transactions must wait to do their own
inserts into that table, so that rows inserted by the first transaction receive consecutive primary key values.
InnoDB includes optimizations, and the innodb_autoinc_lock_mode option, so that you can choose how
to trade off between predictable sequences of auto-increment values and maximum concurrency for insert
operations.
See Also auto-increment, concurrency, innodb_autoinc_lock_mode.

autocommit
 A setting that causes a commit operation after each SQL statement. This mode is not recommended for
working with InnoDB tables with transactions that span several statements. It can help performance for
read-only transactions on InnoDB tables, where it minimizes overhead from locking and generation of
undo data, especially in MySQL 5.6.4 and up. It is also appropriate for working with MyISAM tables, where
transactions are not applicable.
See Also commit, locking, read-only transaction, SQL, transaction, undo.

availability
 The ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL, the
operating system, or the hardware and maintenance activity that may otherwise cause downtime. Often paired
with scalability as critical aspects of a large-scale deployment.
See Also scalability.

B
B-tree

 A tree data structure that is popular for use in database indexes. The structure is kept sorted at all times,
enabling fast lookup for exact matches (equals operator) and ranges (for example, greater than, less than,
and BETWEEN operators). This type of index is available for most storage engines, such as InnoDB and
MyISAM.

Because B-tree nodes can have many children, a B-tree is not the same as a binary tree, which is limited to 2
children per node.

Contrast with hash index, which is only available in the MEMORY storage engine. The MEMORY storage engine
can also use B-tree indexes, and you should choose B-tree indexes for MEMORY tables if some queries use
range operators.

The use of the term B-tree is intended as a reference to the general class of index design. B-tree structures
used by MySQL storage engines may be regarded as variants due to sophistications not present in a classic
B-tree design. For related information, refer to the InnoDB Page Structure Fil Header section of the MySQL
Internals Manual.
See Also hash index.

https://dev.mysql.com/doc/internals/en/innodb-fil-header.html
https://dev.mysql.com/doc/internals/en/index.html
https://dev.mysql.com/doc/internals/en/index.html


3502

backticks
 Identifiers within MySQL SQL statements must be quoted using the backtick character (`) if they contain
special characters or reserved words. For example, to refer to a table named FOO#BAR or a column named
SELECT, you would specify the identifiers as `FOO#BAR` and `SELECT`. Since the backticks provide an
extra level of safety, they are used extensively in program-generated SQL statements, where the identifier
names might not be known in advance.

Many other database systems use double quotation marks (") around such special names. For portability, you
can enable ANSI_QUOTES mode in MySQL and use double quotation marks instead of backticks to qualify
identifier names.
See Also SQL.

backup
 The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can
also refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore
operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical
backups are performed by the mysqldump command. These techniques have different characteristics in
terms of size and representation of the backup data, and speed (especially speed of the restore operation).

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal
database operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, MySQL Enterprise Backup, mysqldump, physical backup,
warm backup.

Barracuda
 The code name for an InnoDB file format that supports the COMPRESSED row format that enables InnoDB
table compression, and the DYNAMIC row format that improves the storage layout for long variable-length
columns.

The MySQL Enterprise Backup product version 3.5 and above supports backing up tablespaces that use the
Barracuda file format.
See Also Antelope, compact row format, compressed row format, dynamic row format, file format, file-per-
table, general tablespace, innodb_file_format, MySQL Enterprise Backup, row format, system tablespace.

beta
 An early stage in the life of a software product, when it is available only for evaluation, typically without a
definite release number or a number less than 1. InnoDB does not use the beta designation, preferring an
early adopter phase that can extend over several point releases, leading to a GA release.
See Also early adopter, GA.

binary log
 A file containing a record of all statements that attempt to change table data. These statements can be
replayed to bring slave servers up to date in a replication scenario, or to bring a database up to date after
restoring table data from a backup. The binary logging feature can be turned on and off, although Oracle
recommends always enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay those statements during replication or recovery, by
using the mysqlbinlog command. For full information about the binary log, see Section 5.4.4, “The Binary
Log”. For MySQL configuration options related to the binary log, see Section 17.1.3.4, “Binary Log Options
and Variables”.

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the
file are important details. To record this information for the master server when taking a backup in a replication
context, you can specify the --slave-info option.

Prior to MySQL 5.0, a similar capability was available, known as the update log. In MySQL 5.0 and higher, the
binary log replaces the update log.
See Also binlog, MySQL Enterprise Backup, replication.



3503

binlog
 An informal name for the binary log file. For example, you might see this abbreviation used in e-mail
messages or forum discussions.
See Also binary log.

blind query expansion
 A special mode of full-text search enabled by the WITH QUERY EXPANSION clause. It performs the search
twice, where the search phrase for the second search is the original search phrase concatenated with the
few most highly relevant documents from the first search. This technique is mainly applicable for short search
phrases, perhaps only a single word. It can uncover relevant matches where the precise search term does not
occur in the document.
See Also full-text search.

bottleneck
 A portion of a system that is constrained in size or capacity, that has the effect of limiting overall throughput.
For example, a memory area might be smaller than necessary; access to a single required resource might
prevent multiple CPU cores from running simultaneously; or waiting for disk I/O to complete might prevent the
CPU from running at full capacity. Removing bottlenecks tends to improve concurrency. For example, the
ability to have multiple InnoDB buffer pool instances reduces contention when multiple sessions read from
and write to the buffer pool simultaneously.
See Also buffer pool, concurrency.

bounce
 A shutdown operation immediately followed by a restart. Ideally with a relatively short warmup period so
that performance and throughput quickly return to a high level.
See Also shutdown.

buddy allocator
 A mechanism for managing different-sized pages in the InnoDB buffer pool.
See Also buffer pool, page, page size.

buffer
 A memory or disk area used for temporary storage. Data is buffered in memory so that it can be written
to disk efficiently, with a few large I/O operations rather than many small ones. Data is buffered on disk for
greater reliability, so that it can be recovered even when a crash or other failure occurs at the worst possible
time. The main types of buffers used by InnoDB are the buffer pool, the doublewrite buffer, and the change
buffer.
See Also buffer pool, change buffer, crash, doublewrite buffer.

buffer pool
 The memory area that holds cached InnoDB data for both tables and indexes. For efficiency of high-volume
read operations, the buffer pool is divided into pages that can potentially hold multiple rows. For efficiency of
cache management, the buffer pool is implemented as a linked list of pages; data that is rarely used is aged
out of the cache, using a variation of the LRU algorithm. On systems with large memory, you can improve
concurrency by dividing the buffer pool into multiple buffer pool instances.

Several InnoDB status variables, INFORMATION_SCHEMA tables, and performance_schema tables help
to monitor the internal workings of the buffer pool. Starting in MySQL 5.6, you can avoid a lengthy warmup
period after restarting the server, particularly for instances with large buffer pools, by saving the buffer pool
state at server shutdown and restoring the buffer pool to the same state at server startup. See Saving and
Restoring the Buffer Pool State.
See Also buffer pool instance, LRU, page, warm up.

buffer pool instance
 Any of the multiple regions into which the buffer pool can be divided, controlled by the
innodb_buffer_pool_instances configuration option. The total memory size specified by
innodb_buffer_pool_size is divided among all buffer pool instances. Typically, having multiple buffer
pool instances is appropriate for systems that allocate multiple gigabytes to the InnoDB buffer pool, with each
instance being one gigabyte or larger. On systems loading or looking up large amounts of data in the buffer

http://dev.mysql.com/doc/refman/5.6/en/innodb-preload-buffer-pool.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-preload-buffer-pool.html


3504

pool from many concurrent sessions, having multiple buffer pool instances reduces contention for exclusive
access to data structures that manage the buffer pool.
See Also buffer pool.

built-in
 The built-in InnoDB storage engine within MySQL is the original form of distribution for the storage engine.
Contrast with the InnoDB Plugin. Starting with MySQL 5.5, the InnoDB Plugin is merged back into the
MySQL code base as the built-in InnoDB storage engine (known as InnoDB 1.1).

This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin
but not the built-in InnoDB, or vice versa.
See Also InnoDB.

business rules
 The relationships and sequences of actions that form the basis of business software, used to run a
commercial company. Sometimes these rules are dictated by law, other times by company policy. Careful
planning ensures that the relationships encoded and enforced by the database, and the actions performed
through application logic, accurately reflect the real policies of the company and can handle real-life situations.

For example, an employee leaving a company might trigger a sequence of actions from the human resources
department. The human resources database might also need the flexibility to represent data about a person
who has been hired, but not yet started work. Closing an account at an online service might result in data
being removed from a database, or the data might be moved or flagged so that it could be recovered if the
account is re-opened. A company might establish policies regarding salary maximums, minimums, and
adjustments, in addition to basic sanity checks such as the salary not being a negative number. A retail
database might not allow a purchase with the same serial number to be returned more than once, or might not
allow credit card purchases above a certain value, while a database used to detect fraud might allow these
kinds of things.
See Also relational.

C
.cfg file

 A metadata file used with the InnoDB transportable tablespace feature. It is produced by the command
FLUSH TABLES ... FOR EXPORT, puts one or more tables in a consistent state that can be copied to
another server. The .cfg file is copied along with the corresponding .ibd file, and used to adjust the internal
values of the .ibd file, such as the space ID, during the ALTER TABLE ... IMPORT TABLESPACE step.
See Also .ibd file, space ID, transportable tablespace.

cache
 The general term for any memory area that stores copies of data for frequent or high-speed retrieval. In
InnoDB, the primary kind of cache structure is the buffer pool.
See Also buffer, buffer pool.

cardinality
 The number of different values in a table column. When queries refer to columns that have an associated
index, the cardinality of each column influences which access method is most efficient. For example, for a
column with a unique constraint, the number of different values is equal to the number of rows in the table. If
a table has a million rows but only 10 different values for a particular column, each value occurs (on average)
100,000 times. A query such as SELECT c1 FROM t1 WHERE c1 = 50; thus might return 1 row or a huge
number of rows, and the database server might process the query differently depending on the cardinality of
c1.

If the values in a column have a very uneven distribution, the cardinality might not be a good way to determine
the best query plan. For example, SELECT c1 FROM t1 WHERE c1 = x; might return 1 row when x=50
and a million rows when x=30. In such a case, you might need to use index hints to pass along advice about
which lookup method is more efficient for a particular query.

Cardinality can also apply to the number of distinct values present in multiple columns, as in a composite
index.



3505

See Also column, composite index, index, index hint, persistent statistics, random dive, selectivity, unique
constraint.

change buffer
 A special data structure that records changes to pages in secondary indexes. These values could result
from SQL INSERT, UPDATE, or DELETE statements (DML). The set of features involving the change buffer
is known collectively as change buffering, consisting of insert buffering, delete buffering, and purge
buffering.

Changes are only recorded in the change buffer when the relevant page from the secondary index is not in
the buffer pool. When the relevant index page is brought into the buffer pool while associated changes are
still in the change buffer, the changes for that page are applied in the buffer pool (merged) using the data
from the change buffer. Periodically, the purge operation that runs during times when the system is mostly
idle, or during a slow shutdown, writes the new index pages to disk. The purge operation can write the disk
blocks for a series of index values more efficiently than if each value were written to disk immediately.

Physically, the change buffer is part of the system tablespace, so that the index changes remain buffered
across database restarts. The changes are only applied (merged) when the pages are brought into the buffer
pool due to some other read operation.

The kinds and amount of data stored in the change buffer are governed by the innodb_change_buffering
and innodb_change_buffer_max_size configuration options. To see information about the current data
in the change buffer, issue the SHOW ENGINE INNODB STATUS command.

Formerly known as the insert buffer.
See Also buffer pool, change buffering, delete buffering, DML, insert buffer, insert buffering, merge, page,
purge, purge buffering, secondary index, system tablespace.

change buffering
 The general term for the features involving the change buffer, consisting of insert buffering, delete
buffering, and purge buffering. Index changes resulting from SQL statements, which could normally
involve random I/O operations, are held back and performed periodically by a background thread.
This sequence of operations can write the disk blocks for a series of index values more efficiently than
if each value were written to disk immediately. Controlled by the innodb_change_buffering and
innodb_change_buffer_max_size configuration options.
See Also change buffer, delete buffering, insert buffering, purge buffering.

checkpoint
 As changes are made to data pages that are cached in the buffer pool, those changes are written to the
data files sometime later, a process known as flushing. The checkpoint is a record of the latest changes
(represented by an LSN value) that have been successfully written to the data files.
See Also buffer pool, data files, flush, fuzzy checkpointing, LSN.

checksum
 In InnoDB, a validation mechanism to detect corruption when a page in a tablespace is read
from disk into the InnoDB buffer pool. This feature is controlled by the innodb_checksums
configuration option in MySQL 5.5. innodb_checksums is deprecated in MySQL 5.6.3, replaced by
innodb_checksum_algorithm.

The innochecksum command helps diagnose corruption problems by testing the checksum values for a
specified tablespace file while the MySQL server is shut down.

MySQL also uses checksums for replication purposes. For details, see the configuration options
binlog_checksum, master_verify_checksum, and slave_sql_verify_checksum.
See Also buffer pool, page, tablespace.

child table
 In a foreign key relationship, a child table is one whose rows refer (or point) to rows in another table with an
identical value for a specific column. This is the table that contains the FOREIGN KEY ... REFERENCES
clause and optionally ON UPDATE and ON DELETE clauses. The corresponding row in the parent table

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_change_buffer_max_size
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_change_buffer_max_size
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_checksum_algorithm
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_checksum
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_master_verify_checksum
http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#sysvar_slave_sql_verify_checksum


3506

must exist before the row can be created in the child table. The values in the child table can prevent delete or
update operations on the parent table, or can cause automatic deletion or updates in the child table, based on
the ON CASCADE option used when creating the foreign key.
See Also foreign key, parent table.

clean page
 A page in the InnoDB buffer pool where all changes made in memory have also been written (flushed) to
the data files. The opposite of a dirty page.
See Also buffer pool, data files, dirty page, flush, page.

clean shutdown
 A shutdown that completes without errors and applies all changes to InnoDB tables before finishing, as
opposed to a crash or a fast shutdown. Synonym for slow shutdown.
See Also crash, fast shutdown, shutdown, slow shutdown.

client
 A type of program that sends requests to a server, and interprets or processes the results. The client
software might run only some of the time (such as a mail or chat program), and might run interactively (such
as the mysql command processor).
See Also mysql, server.

clustered index
 The InnoDB term for a primary key index. InnoDB table storage is organized based on the values of the
primary key columns, to speed up queries and sorts involving the primary key columns. For best performance,
choose the primary key columns carefully based on the most performance-critical queries. Because modifying
the columns of the clustered index is an expensive operation, choose primary columns that are rarely or never
updated.

In the Oracle Database product, this type of table is known as an index-organized table.
See Also index, primary key, secondary index.

cold backup
 A backup taken while the database is shut down. For busy applications and web sites, this might not be
practical, and you might prefer a warm backup or a hot backup.
See Also backup, hot backup, warm backup.

column
 A data item within a row, whose storage and semantics are defined by a data type. Each table and index is
largely defined by the set of columns it contains.

Each column has a cardinality value. A column can be the primary key for its table, or part of the primary
key. A column can be subject to a unique constraint, a NOT NULL constraint, or both. Values in different
columns, even across different tables, can be linked by a foreign key relationship.

In discussions of MySQL internal operations, sometimes field is used as a synonym.
See Also cardinality, foreign key, index, NOT NULL constraint, primary key, row, table, unique constraint.

column index
 An index on a single column.
See Also composite index, index.

column prefix
 When an index is created with a length specification, such as CREATE INDEX idx ON t1 (c1(N)), only
the first N characters of the column value are stored in the index. Keeping the index prefix small makes the
index compact, and the memory and disk I/O savings help performance. (Although making the index prefix too
small can hinder query optimization by making rows with different values appear to the query optimizer to be
duplicates.)

For columns containing binary values or long text strings, where sorting is not a major consideration and
storing the entire value in the index would waste space, the index automatically uses the first N (typically 768)
characters of the value to do lookups and sorts.



3507

See Also index.

commit
 A SQL statement that ends a transaction, making permanent any changes made by the transaction. It is the
opposite of rollback, which undoes any changes made in the transaction.

InnoDB uses an optimistic mechanism for commits, so that changes can be written to the data files before
the commit actually occurs. This technique makes the commit itself faster, with the tradeoff that more work is
required in case of a rollback.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement.
See Also autocommit, optimistic, rollback, SQL, transaction.

compact row format
 The default InnoDB row format for InnoDB tables since MySQL 5.0.3. The COMPACT row format provides
a more compact representation for nulls and variable-length columns than the prior default (REDUNDANT row
format).

For additional information about InnoDB COMPACT row format, see Section 14.14.4, “COMPACT and
REDUNDANT Row Formats”.
See Also Antelope, dynamic row format, file format, redundant row format, row format.

composite index
 An index that includes multiple columns.
See Also index.

compressed backup
 The compression feature of the MySQL Enterprise Backup product makes a compressed copy of each
tablespace, changing the extension from .ibd to .ibz. Compressing backup data allows you to keep more
backups on hand, and reduces the time to transfer backups to a different server. The data is uncompressed
during the restore operation. When a compressed backup operation processes a table that is already
compressed, it skips the compression step for that table, because compressing again would result in little or
no space savings.

A set of files produced by the MySQL Enterprise Backup product, where each tablespace is compressed.
The compressed files are renamed with a .ibz file extension.

Applying compression at the start of the backup process helps to avoid storage overhead during the
compression process, and to avoid network overhead when transferring the backup files to another server.
The process of applying the binary log takes longer, and requires uncompressing the backup files.
See Also apply, binary log, compression, hot backup, MySQL Enterprise Backup, tablespace.

compressed row format
 A row format that enables data and index compression for InnoDB tables. It was introduced in the InnoDB
Plugin, available as part of the Barracuda file format. Large fields are stored away from the page that holds
the rest of the row data, as in dynamic row format. Both index pages and large fields are compressed,
yielding memory and disk savings. Depending on the structure of the data, the decrease in memory and disk
usage might or might not outweigh the performance overhead of uncompressing the data as it is used. See
Section 14.12, “InnoDB Table Compression” for usage details.

For additional information about InnoDB COMPRESSED row format, see Section 14.14.3, “DYNAMIC and
COMPRESSED Row Formats”.
See Also Barracuda, compression, dynamic row format, row format.

compressed table
 A table for which the data is stored in compressed form. For InnoDB, it is a table created with
ROW_FORMAT=COMPRESSED. See Section 14.12, “InnoDB Table Compression” for more information.
See Also compressed row format, compression.



3508

compression
 A feature with wide-ranging benefits from using less disk space, performing less I/O, and using less memory
for caching. InnoDB table and index data can be kept in a compressed format during database operation.

The data is uncompressed when needed for queries, and re-compressed when changes are made by
DML operations. After you enable compression for a table, this processing is transparent to users and
application developers. DBAs can consult InnoDB INFORMATION_SCHEMA tables to monitor how efficiently
the compression parameters work for the MySQL instance and for particular compressed tables.

When InnoDB table data is compressed, the compression applies to the table itself, any associated index
data, and the pages loaded into the buffer pool. Compression does not apply to pages in the undo buffer.

The table compression feature requires using MySQL 5.5 or higher, or the InnoDB Plugin in MySQL 5.1
or earlier, and creating the table using the Barracuda file format and compressed row format, with the
innodb_file_per_table setting enabled.

Compression for each table is influenced by the KEY_BLOCK_SIZE clause of the CREATE TABLE and ALTER
TABLE statements. In MySQL 5.6 and higher, compression is also affected by the server-wide configuration
options innodb_compression_failure_threshold_pct, innodb_compression_level, and
innodb_compression_pad_pct_max. See Section 14.12, “InnoDB Table Compression” for usage details.

Another type of compression is the compressed backup feature of the MySQL Enterprise Backup product.
See Also Barracuda, buffer pool, compressed backup, compressed row format, DML, transparent page
compression.

compression failure
 Not actually an error, rather an expensive operation that can occur when using compression in
combination with DML operations. It occurs when: updates to a compressed page overflow the area
on the page reserved for recording modifications; the page is compressed again, with all changes
applied to the table data; the re-compressed data does not fit on the original page, requiring MySQL
to split the data into two new pages and compress each one separately. To check the frequency
of this condition, query the INFORMATION_SCHEMA.INNODB_CMP table and check how much the
value of the COMPRESS_OPS column exceeds the value of the COMPRESS_OPS_OK column. Ideally,
compression failures do not occur often; when they do, you can adjust the innodb_compression_level,
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
configuration options.
See Also compression, DML, page.

concatenated index
See composite index.

concurrency
 The ability of multiple operations (in database terminology, transactions) to run simultaneously, without
interfering with each other. Concurrency is also involved with performance, because ideally the protection
for multiple simultaneous transactions works with a minimum of performance overhead, using efficient
mechanisms for locking.
See Also ACID, locking, transaction.

configuration file
 The file that holds the option values used by MySQL at startup. Traditionally, on Linux and Unix this file is
named my.cnf, and on Windows it is named my.ini. You can set a number of options related to InnoDB
under the [mysqld] section of the file.

See Section 4.2.6, “Using Option Files” for information about where MySQL searches for configuration files.

When you use the MySQL Enterprise Backup product, you typically use two configuration files: one that
specifies where the data comes from and how it is structured (which could be the original configuration file for
your server), and a stripped-down one containing only a small set of options that specify where the backup
data goes and how it is structured. The configuration files used with the MySQL Enterprise Backup product
must contain certain options that are typically left out of regular configuration files, so you might need to add
options to your existing configuration file for use with MySQL Enterprise Backup.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_failure_threshold_pct
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_level
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_pad_pct_max
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_level
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_failure_threshold_pct
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_compression_pad_pct_max


3509

See Also my.cnf, MySQL Enterprise Backup, option, option file.

consistent read
 A read operation that uses snapshot information to present query results based on a point in time,
regardless of changes performed by other transactions running at the same time. If queried data has been
changed by another transaction, the original data is reconstructed based on the contents of the undo log.
This technique avoids some of the locking issues that can reduce concurrency by forcing transactions to
wait for other transactions to finish.

With REPEATABLE READ isolation level, the snapshot is based on the time when the first read operation is
performed. With READ COMMITTED isolation level, the snapshot is reset to the time of each consistent read
operation.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED
and REPEATABLE READ isolation levels. Because a consistent read does not set any locks on the tables
it accesses, other sessions are free to modify those tables while a consistent read is being performed on the
table.

For technical details about the applicable isolation levels, see Section 14.8.2.3, “Consistent Nonlocking
Reads”.
See Also concurrency, isolation level, locking, READ COMMITTED, REPEATABLE READ, snapshot,
transaction, undo log.

constraint
 An automatic test that can block database changes to prevent data from becoming inconsistent. (In computer
science terms, a kind of assertion related to an invariant condition.) Constraints are a crucial component of
the ACID philosophy, to maintain data consistency. Constraints supported by MySQL include FOREIGN KEY
constraints and unique constraints.
See Also ACID, foreign key, unique constraint.

counter
 A value that is incremented by a particular kind of InnoDB operation. Useful for measuring how busy a
server is, troubleshooting the sources of performance issues, and testing whether changes (for example,
to configuration settings or indexes used by queries) have the desired low-level effects. Different kinds
of counters are available through Performance Schema tables and INFORMATION_SCHEMA tables,
particularly INFORMATION_SCHEMA.INNODB_METRICS.
See Also INFORMATION_SCHEMA, metrics counter, Performance Schema.

covering index
 An index that includes all the columns retrieved by a query. Instead of using the index values as pointers to
find the full table rows, the query returns values from the index structure, saving disk I/O. InnoDB can apply
this optimization technique to more indexes than MyISAM can, because InnoDB secondary indexes also
include the primary key columns. InnoDB cannot apply this technique for queries against tables modified by
a transaction, until that transaction ends.

Any column index or composite index could act as a covering index, given the right query. Design your
indexes and queries to take advantage of this optimization technique wherever possible.
See Also column index, composite index, index, primary key, secondary index.

CPU-bound
 A type of workload where the primary bottleneck is CPU operations in memory. Typically involves read-
intensive operations where the results can all be cached in the buffer pool.
See Also bottleneck, buffer pool, workload.

crash
 MySQL uses the term “crash” to refer generally to any unexpected shutdown operation where the server
cannot do its normal cleanup. For example, a crash could happen due to a hardware fault on the database
server machine or storage device; a power failure; a potential data mismatch that causes the MySQL server to
halt; a fast shutdown initiated by the DBA; or many other reasons. The robust, automatic crash recovery for



3510

InnoDB tables ensures that data is made consistent when the server is restarted, without any extra work for
the DBA.
See Also crash recovery, fast shutdown, InnoDB, shutdown.

crash recovery
 The cleanup activities that occur when MySQL is started again after a crash. For InnoDB tables, changes
from incomplete transactions are replayed using data from the redo log. Changes that were committed
before the crash, but not yet written into the data files, are reconstructed from the doublewrite buffer. When
the database is shut down normally, this type of activity is performed during shutdown by the purge operation.

During normal operation, committed data can be stored in the change buffer for a period of time before being
written to the data files. There is always a tradeoff between keeping the data files up-to-date, which introduces
performance overhead during normal operation, and buffering the data, which can make shutdown and crash
recovery take longer.
See Also change buffer, commit, crash, data files, doublewrite buffer, InnoDB, purge, redo log.

CRUD
 Acronym for “create, read, update, delete”, a common sequence of operations in database applications.
Often denotes a class of applications with relatively simple database usage (basic DDL, DML and query
statements in SQL) that can be implemented quickly in any language.
See Also DDL, DML, query, SQL.

cursor
 An internal data structure that is used to represent the result set of a query, or other operation that performs
a search using an SQL WHERE clause. It works like an iterator in other high-level languages, producing each
value from the result set as requested.

Although SQL usually handles the processing of cursors for you, you might delve into the inner workings when
dealing with performance-critical code.
See Also query.

D
data definition language

See DDL.

data dictionary
 Metadata that keeps track of InnoDB-related objects such as tables, indexes, and table columns. This
metadata is physically located in the InnoDB system tablespace. For historical reasons, it overlaps to some
degree with information stored in the .frm files.

Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups
include the contents of the data dictionary.
See Also column, file-per-table, .frm file, index, MySQL Enterprise Backup, system tablespace, table.

data directory
 The directory under which each MySQL instance keeps the data files for InnoDB and the directories
representing individual databases. Controlled by the datadir configuration option.
See Also data files, instance.

data files
 The files that physically contain table and index data.

The InnoDB system tablespace, which holds the InnoDB data dictionary and is capable of holding data for
multiple InnoDB tables, is represented by one or more .ibdata data files.

File-per-table tablespaces, which hold data for a single InnoDB table, are represented by a .ibd data file.

General tablespaces (introduced in MySQL 5.7.6), which can hold data for multiple InnoDB tables, are also
represented by a .ibd data file.



3511

See Also data dictionary, file-per-table, general tablespace, .ibd file, ibdata file, index, system tablespace,
table, tablespace.

data manipulation language
See DML.

data warehouse
 A database system or application that primarily runs large queries. The read-only or read-mostly data might
be organized in denormalized form for query efficiency. Can benefit from the optimizations for read-only
transactions in MySQL 5.6 and higher. Contrast with OLTP.
See Also denormalized, OLTP, query, read-only transaction.

database
 Within the MySQL data directory, each database is represented by a separate directory. The InnoDB
system tablespace, which can hold table data from multiple databases within a MySQL instance, is kept
in data files that reside outside of individual database directories. When file-per-table mode is enabled, the
.ibd files representing individual InnoDB tables are stored inside the database directories unless created
elsewhere using the DATA DIRECTORY clause. General tablespaces, introduced in MySQL 5.7.6, also hold
table data in .ibd files. Unlike file-per-table .ibd files, general tablespace .ibd files can hold table data from
multiple databases within a MySQL instance, and can be assigned to directories relative to or independent of
the MySQL data directory.

For long-time MySQL users, a database is a familiar notion. Users coming from an Oracle Database
background will find that the MySQL meaning of a database is closer to what Oracle Database calls a
schema.
See Also data files, file-per-table, .ibd file, instance, schema, system tablespace.

DCL
 Data control language, a set of SQL statements for managing privileges. In MySQL, consists of the GRANT
and REVOKE statements. Contrast with DDL and DML.
See Also DDL, DML, SQL.

DDL
 Data definition language, a set of SQL statements for manipulating the database itself rather than individual
table rows. Includes all forms of the CREATE, ALTER, and DROP statements. Also includes the TRUNCATE
statement, because it works differently than a DELETE FROM table_name statement, even though the
ultimate effect is similar.

DDL statements automatically commit the current transaction; they cannot be rolled back.

The InnoDB online DDL feature enhances performance for CREATE INDEX, DROP INDEX, and many types
of ALTER TABLE operations. See InnoDB and Online DDL for more information. Also, the InnoDB file-per-
table setting can affect the behavior of DROP TABLE and TRUNCATE TABLE operations.

Contrast with DML and DCL.
See Also commit, DCL, DML, file-per-table, rollback, SQL, transaction.

deadlock
 A situation where different transactions are unable to proceed, because each holds a lock that the other
needs. Because both transactions are waiting for a resource to become available, neither will ever release the
locks it holds.

A deadlock can occur when the transactions lock rows in multiple tables (through statements such as UPDATE
or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when such statements
lock ranges of index records and gaps, with each transaction acquiring some locks but not others due to a
timing issue.

For background information on how deadlocks are automatically detected and handled, see Section 14.8.5.2,
“Deadlock Detection and Rollback”. For tips on avoiding and recovering from deadlock conditions, see
Section 14.8.5.3, “How to Minimize and Handle Deadlocks”.
See Also gap, lock, transaction.

http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html


3512

deadlock detection
 A mechanism that automatically detects when a deadlock occurs, and automatically rolls back one of the
transactions involved (the victim).
See Also deadlock, rollback, transaction, victim.

delete
 When InnoDB processes a DELETE statement, the rows are immediately marked for deletion and no longer
are returned by queries. The storage is reclaimed sometime later, during the periodic garbage collection
known as the purge operation. For removing large quantities of data, related operations with their own
performance characteristics are TRUNCATE and DROP.
See Also drop, purge, truncate.

delete buffering
 The technique of storing changes to secondary index pages, resulting from DELETE operations, in the
change buffer rather than writing the changes immediately, so that the physical writes can be performed to
minimize random I/O. (Because delete operations are a two-step process, this operation buffers the write that
normally marks an index record for deletion.) It is one of the types of change buffering; the others are insert
buffering and purge buffering.
See Also change buffer, change buffering, insert buffer, insert buffering, purge buffering.

denormalized
 A data storage strategy that duplicates data across different tables, rather than linking the tables with foreign
keys and join queries. Typically used in data warehouse applications, where the data is not updated
after loading. In such applications, query performance is more important than making it simple to maintain
consistent data during updates. Contrast with normalized.
See Also data warehouse, foreign key, join, normalized.

descending index
 A type of index available with some database systems, where index storage is optimized to process ORDER
BY column DESC clauses. Currently, although MySQL allows the DESC keyword in the CREATE TABLE
statement, it does not use any special storage layout for the resulting index.
See Also index.

dirty page
 A page in the InnoDB buffer pool that has been updated in memory, where the changes are not yet written
(flushed) to the data files. The opposite of a clean page.
See Also buffer pool, clean page, data files, flush, page.

dirty read
 An operation that retrieves unreliable data, data that was updated by another transaction but not yet
committed. It is only possible with the isolation level known as read uncommitted.

This kind of operation does not adhere to the ACID principle of database design. It is considered very risky,
because the data could be rolled back, or updated further before being committed; then, the transaction
doing the dirty read would be using data that was never confirmed as accurate.

Its opposite is consistent read, where InnoDB ensures that a transaction does not read information updated
by another transaction, even if the other transaction commits in the meantime.
See Also ACID, commit, consistent read, isolation level, READ UNCOMMITTED, rollback.

disk-based
 A kind of database that primarily organizes data on disk storage (hard drives or equivalent). Data is brought
back and forth between disk and memory to be operated upon. It is the opposite of an in-memory database.
Although InnoDB is disk-based, it also contains features such as he buffer pool, multiple buffer pool
instances, and the adaptive hash index that allow certain kinds of workloads to work primarily from memory.
See Also adaptive hash index, buffer pool, in-memory database.

disk-bound
 A type of workload where the primary bottleneck is disk I/O. (Also known as I/O-bound.) Typically involves
frequent writes to disk, or random reads of more data than can fit into the buffer pool.
See Also bottleneck, buffer pool, workload.



3513

DML
 Data manipulation language, a set of SQL statements for performing INSERT, UPDATE, and DELETE
operations. The SELECT statement is sometimes considered as a DML statement, because the SELECT ...
FOR UPDATE form is subject to the same considerations for locking as INSERT, UPDATE, and DELETE.

DML statements for an InnoDB table operate in the context of a transaction, so their effects can be
committed or rolled back as a single unit.

Contrast with DDL and DCL.
See Also commit, DCL, DDL, locking, rollback, SQL, transaction.

document id
 In the InnoDB full-text search feature, a special column in the table containing the FULLTEXT index,
to uniquely identify the document associated with each ilist value. Its name is FTS_DOC_ID (uppercase
required). The column itself must be of BIGINT UNSIGNED NOT NULL type, with a unique index named
FTS_DOC_ID_INDEX. Preferably, you define this column when creating the table. If InnoDB must add the
column to the table while creating a FULLTEXT index, the indexing operation is considerably more expensive.
See Also full-text search, FULLTEXT index, ilist.

doublewrite buffer
 InnoDB uses a file flush technique called doublewrite. Before writing pages to the data files, InnoDB
first writes them to a contiguous area called the doublewrite buffer. Only after the write and the flush to the
doublewrite buffer have completed, does InnoDB write the pages to their proper positions in the data file.
If there is an operating system, storage subsystem, or mysqld process crash in the middle of a page write,
InnoDB can later find a good copy of the page from the doublewrite buffer during crash recovery.

Although data is always written twice, the doublewrite buffer does not require twice as much I/O overhead
or twice as many I/O operations. Data is written to the buffer itself as a large sequential chunk, with a single
fsync() call to the operating system.

To turn off the doublewrite buffer, specify the option innodb_doublewrite=0.
See Also crash recovery, data files, page, purge.

drop
 A kind of DDL operation that removes a schema object, through a statement such as DROP TABLE
or DROP INDEX. It maps internally to an ALTER TABLE statement. From an InnoDB perspective, the
performance considerations of such operations involve the time that the data dictionary is locked to ensure
that interrelated objects are all updated, and the time to update memory structures such as the buffer pool.
For a table, the drop operation has somewhat different characteristics than a truncate operation (TRUNCATE
TABLE statement).
See Also buffer pool, data dictionary, DDL, table, truncate.

dynamic row format
 A row format introduced in the InnoDB Plugin, available as part of the Barracuda file format. Because long
variable-length column values are stored outside of the page that holds the row data, it is very efficient for
rows that include large objects. Since the large fields are typically not accessed to evaluate query conditions,
they are not brought into the buffer pool as often, resulting in fewer I/O operations and better utilization of
cache memory.

As of MySQL 5.7.9, the default row format is defined by innodb_default_row_format, which has a
default value of DYNAMIC.

For additional information about InnoDB DYNAMIC row format, see Section 14.14.3, “DYNAMIC and
COMPRESSED Row Formats”.
See Also Barracuda, buffer pool, file format, row format.

E
early adopter

 A stage similar to beta, when a software product is typically evaluated for performance, functionality, and
compatibility in a non-mission-critical setting.

http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_default_row_format


3514

See Also beta.

error log
 A type of log showing information about MySQL startup and critical runtime errors and crash information. For
details, see Section 5.4.2, “The Error Log”.
See Also crash, log.

eviction
 The process of removing an item from a cache or other temporary storage area, such as the InnoDB buffer
pool. Often, but not always, uses the LRU algorithm to determine which item to remove. When a dirty page
is evicted, its contents are flushed to disk, and any dirty neighbor pages might be flushed also.
See Also buffer pool, dirty page, flush, LRU, neighbor page.

exclusive lock
 A kind of lock that prevents any other transaction from locking the same row. Depending on the transaction
isolation level, this kind of lock might block other transactions from writing to the same row, or might also
block other transactions from reading the same row. The default InnoDB isolation level, REPEATABLE
READ, enables higher concurrency by allowing transactions to read rows that have exclusive locks, a
technique known as consistent read.
See Also concurrency, consistent read, isolation level, lock, REPEATABLE READ, shared lock, transaction.

extent
 A group of pages within a tablespace. For the default page size of 16KB, an extent contains 64 pages.
In MySQL 5.6, the page size for an InnoDB instance can be 4KB, 8KB, or 16KB, controlled by the
innodb_page_size configuration option. For 4KB, 8KB, and 16KB pages sizes, the extent size is always
1MB (or 1048576 bytes).

Support for 32KB and 64KB InnoDB page sizes was added in MySQL 5.7.6. For a 32KB page size, the extent
size is 2MB. For a 64KB page size, the extent size is 4MB.

InnoDB features such as segments, read-ahead requests and the doublewrite buffer use I/O operations
that read, write, allocate, or free data one extent at a time.
See Also doublewrite buffer, page, page size, read-ahead, segment, tablespace.

F
.frm file

 A file containing the metadata, such as the table definition, of a MySQL table.

For backups, you must always keep the full set of .frm files along with the backup data to be able to restore
tables that are altered or dropped after the backup.

Although each InnoDB table has a .frm file, InnoDB maintains its own table metadata in the system
tablespace; the .frm files are not needed for InnoDB to operate on InnoDB tables.

.frm files are backed up by the MySQL Enterprise Backup product. These files must not be modified by an
ALTER TABLE operation while the backup is taking place, which is why backups that include non-InnoDB
tables perform a FLUSH TABLES WITH READ LOCK operation to freeze such activity while backing up .frm
files. Restoring a backup can result in .frm files being created, changed, or removed to match the state of the
database at the time of the backup.
See Also data dictionary, MySQL Enterprise Backup, system tablespace.

fanout
 The increase or decrease in number of rows from adding a table during join processing. Suppose that a
query of the form SELECT ... FROM t1 INNER JOIN t2 ... selects rows from table t1, then t2.

• If the join selects one row from t2 per row in t1, the fanout for t2 is 1.

• If the join selects two rows from t2 per row in t1, the fanout for t2 is 2.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_page_size


3515

• If the join selects one row from t2 per two rows in t1, the fanout for t2 is .5.

Fast Index Creation
 A capability first introduced in the InnoDB Plugin, now part of MySQL in 5.5 and higher, that speeds up
creation of InnoDB secondary indexes by avoiding the need to completely rewrite the associated table. The
speedup applies to dropping secondary indexes also.

Because index maintenance can add performance overhead to many data transfer operations, consider doing
operations such as ALTER TABLE ... ENGINE=INNODB or INSERT INTO ... SELECT * FROM ...
without any secondary indexes in place, and creating the indexes afterward.

In MySQL 5.6, this feature becomes more general. You can read and write to tables while an index is being
created, and many more kinds of ALTER TABLE operations can be performed without copying the table,
without blocking DML operations, or both. Thus in MySQL 5.6 and higher, this set of features is referred to as
online DDL rather than Fast Index Creation.

For related information, see Section 14.16, “InnoDB Fast Index Creation”, and InnoDB and Online DDL.
See Also DML, index, online DDL, secondary index.

fast shutdown
 The default shutdown procedure for InnoDB, based on the configuration setting
innodb_fast_shutdown=1. To save time, certain flush operations are skipped. This type of shutdown
is safe during normal usage, because the flush operations are performed during the next startup, using the
same mechanism as in crash recovery. In cases where the database is being shut down for an upgrade or
downgrade, do a slow shutdown instead to ensure that all relevant changes are applied to the data files
during the shutdown.
See Also crash recovery, data files, flush, shutdown, slow shutdown.

file format
 The file format for InnoDB tables, enabled using the innodb_file_format configuration option. Supported
file formats are Antelope and Barracuda. Antelope is the original InnoDB file format and supports the
REDUNDANT and COMPACT row formats. Barracuda is the newer InnoDB file format and supports the
COMPRESSED and DYNAMIC row formats.
See Also Antelope, Barracuda, file-per-table, .ibd file, ibdata file, row format.

file-per-table
 A general name for the setting controlled by the innodb_file_per_table option, which is an
important configuration option that affects aspects of InnoDB file storage, availability of features, and I/O
characteristics. As of MySQL 5.6.7, innodb_file_per_table is enabled by default.

With the innodb_file_per_table option enabled, you can create a table in its own .ibd file rather than
in the shared ibdata files of the system tablespace. When table data is stored in an individual .ibd file,
you have more flexibility to choose row formats required for features such as data compression. The
TRUNCATE TABLE operation is also faster, and reclaimed space can be used by the operating system rather
than remaining reserved for InnoDB.

The MySQL Enterprise Backup product is more flexible for tables that are in their own files. For example,
tables can be excluded from a backup, but only if they are in separate files. Thus, this setting is suitable for
tables that are backed up less frequently or on a different schedule.
See Also compressed row format, compression, file format, .ibd file, ibdata file, innodb_file_per_table, MySQL
Enterprise Backup, row format, system tablespace.

fill factor
 In an InnoDB index, the proportion of a page that is taken up by index data before the page is split. The
unused space when index data is first divided between pages allows for rows to be updated with longer
string values without requiring expensive index maintenance operations. If the fill factor is too low, the index
consumes more space than needed, causing extra I/O overhead when reading the index. If the fill factor
is too high, any update that increases the length of column values can cause extra I/O overhead for index
maintenance. See Section 14.11.2.2, “The Physical Structure of an InnoDB Index” for more information.
See Also index, page.

http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html


3516

fixed row format
 This row format is used by the MyISAM storage engine, not by InnoDB. If you create an InnoDB table with
the option ROW_FORMAT=FIXED in MySQL 5.7.6 or earlier, InnoDB uses the compact row format instead,
although the FIXED value might still show up in output such as SHOW TABLE STATUS reports. As of MySQL
5.7.7, InnoDB returns an error if ROW_FORMAT=FIXED is specified.
See Also compact row format, row format.

flush
 To write changes to the database files, that had been buffered in a memory area or a temporary disk storage
area. The InnoDB storage structures that are periodically flushed include the redo log, the undo log, and the
buffer pool.

Flushing can happen because a memory area becomes full and the system needs to free some space,
because a commit operation means the changes from a transaction can be finalized, or because a slow
shutdown operation means that all outstanding work should be finalized. When it is not critical to flush all
the buffered data at once, InnoDB can use a technique called fuzzy checkpointing to flush small batches of
pages to spread out the I/O overhead.
See Also buffer pool, commit, fuzzy checkpointing, redo log, slow shutdown, undo log.

flush list
 An internal InnoDB data structure that tracks dirty pages in the buffer pool: that is, pages that have been
changed and need to be written back out to disk. This data structure is updated frequently by InnoDB internal
mini-transactions, and so is protected by its own mutex to allow concurrent access to the buffer pool.
See Also buffer pool, dirty page, LRU, mini-transaction, mutex, page, page cleaner.

foreign key
 A type of pointer relationship, between rows in separate InnoDB tables. The foreign key relationship is
defined on one column in both the parent table and the child table.

In addition to enabling fast lookup of related information, foreign keys help to enforce referential integrity,
by preventing any of these pointers from becoming invalid as data is inserted, updated, and deleted. This
enforcement mechanism is a type of constraint. A row that points to another table cannot be inserted if
the associated foreign key value does not exist in the other table. If a row is deleted or its foreign key value
changed, and rows in another table point to that foreign key value, the foreign key can be set up to prevent
the deletion, cause the corresponding column values in the other table to become null, or automatically delete
the corresponding rows in the other table.

One of the stages in designing a normalized database is to identify data that is duplicated, separate that data
into a new table, and set up a foreign key relationship so that the multiple tables can be queried like a single
table, using a join operation.
See Also child table, FOREIGN KEY constraint, join, normalized, NULL, parent table, referential integrity,
relational.

FOREIGN KEY constraint
 The type of constraint that maintains database consistency through a foreign key relationship. Like other
kinds of constraints, it can prevent data from being inserted or updated if data would become inconsistent; in
this case, the inconsistency being prevented is between data in multiple tables. Alternatively, when a DML
operation is performed, FOREIGN KEY constraints can cause data in child rows to be deleted, changed to
different values, or set to null, based on the ON CASCADE option specified when creating the foreign key.
See Also child table, constraint, DML, foreign key, NULL.

FTS
 In most contexts, an acronym for full-text search. Sometimes in performance discussions, an acronym for
full table scan.
See Also full table scan, full-text search.

full backup
 A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup.



3517

See Also backup, database, instance, partial backup, table.

full table scan
 An operation that requires reading the entire contents of a table, rather than just selected portions using an
index. Typically performed either with small lookup tables, or in data warehousing situations with large tables
where all available data is aggregated and analyzed. How frequently these operations occur, and the sizes of
the tables relative to available memory, have implications for the algorithms used in query optimization and
managing the buffer pool.

The purpose of indexes is to allow lookups for specific values or ranges of values within a large table, thus
avoiding full table scans when practical.
See Also buffer pool, index.

full-text search
 The MySQL feature for finding words, phrases, Boolean combinations of words, and so on within table data,
in a faster, more convenient, and more flexible way than using the SQL LIKE operator or writing your own
application-level search algorithm. It uses the SQL function MATCH() and FULLTEXT indexes.
See Also FULLTEXT index.

FULLTEXT index
 The special kind of index that holds the search index in the MySQL full-text search mechanism.
Represents the words from values of a column, omitting any that are specified as stopwords. Originally, only
available for MyISAM tables. Starting in MySQL 5.6.4, it is also available for InnoDB tables.
See Also full-text search, index, InnoDB, search index, stopword.

fuzzy checkpointing
 A technique that flushes small batches of dirty pages from the buffer pool, rather than flushing all dirty
pages at once which would disrupt database processing.
See Also buffer pool, dirty page, flush.

G
GA

 “Generally available”, the stage when a software product leaves beta and is available for sale, official
support, and production use.
See Also beta.

gap
 A place in an InnoDB index data structure where new values could be inserted. When you lock a set of rows
with a statement such as SELECT ... FOR UPDATE, InnoDB can create locks that apply to the gaps as
well as the actual values in the index. For example, if you select all values greater than 10 for update, a gap
lock prevents another transaction from inserting a new value that is greater than 10. The supremum record
and infimum record represent the gaps containing all values greater than or less than all the current index
values.
See Also concurrency, gap lock, index, infimum record, isolation level, supremum record.

gap lock
 A lock on a gap between index records, or a lock on the gap before the first or after the last index record.
For example, SELECT c1 FROM t WHERE c1 BETWEEN 10 and 20 FOR UPDATE; prevents other
transactions from inserting a value of 15 into the column t.c1, whether or not there was already any such
value in the column, because the gaps between all existing values in the range are locked. Contrast with
record lock and next-key lock.

Gap locks are part of the tradeoff between performance and concurrency, and are used in some transaction
isolation levels and not others.
See Also gap, infimum record, lock, next-key lock, record lock, supremum record.

general log
See general query log.



3518

general query log
 A type of log used for diagnosis and troubleshooting of SQL statements processed by the MySQL server.
Can be stored in a file or in a database table. You must enable this feature through the general_log
configuration option to use it. You can disable it for a specific connection through the sql_log_off
configuration option.

Records a broader range of queries than the slow query log. Unlike the binary log, which is used for
replication, the general query log contains SELECT statements and does not maintain strict ordering. For more
information, see Section 5.4.3, “The General Query Log”.
See Also binary log, log, slow query log.

general tablespace
 A shared InnoDB tablespace created using CREATE TABLESPACE syntax. General tablespaces can be
created outside of the MySQL data directory, are capable of holding multiple tables, and support tables of all
row formats. General tablespaces were introduced in MySQL 5.7.6.

Tables are added to a general tablespace using CREATE TABLE tbl_name ... TABLESPACE [=]
tablespace_name or ALTER TABLE tbl_name TABLESPACE [=] tablespace_name syntax.

Contrast with system tablespace and file-per-table tablespace.

For more information, see InnoDB General Tablespaces.
See Also file-per-table, system tablespace, table, tablespace.

global transaction
 A type of transaction involved in XA operations. It consists of several actions that are transactional in
themselves, but that all must either complete successfully as a group, or all be rolled back as a group. In
essence, this extends ACID properties “up a level” so that multiple ACID transactions can be executed in
concert as components of a global operation that also has ACID properties.
See Also ACID, transaction, XA.

group commit
 An InnoDB optimization that performs some low-level I/O operations (log write) once for a set of commit
operations, rather than flushing and syncing separately for each commit.

When the binary log is enabled, you typically also set the configuration option sync_binlog=0, because
group commit for the binary log is only supported if it is set to 0.
See Also binary log, commit.

H
hash index

 A type of index intended for queries that use equality operators, rather than range operators such as greater-
than or BETWEEN. It is available for MEMORY tables. Although hash indexes are the default for MEMORY tables
for historic reasons, that storage engine also supports B-tree indexes, which are often a better choice for
general-purpose queries.

MySQL includes a variant of this index type, the adaptive hash index, that is constructed automatically for
InnoDB tables if needed based on runtime conditions.
See Also adaptive hash index, B-tree, index, InnoDB.

HDD
 Acronym for “hard disk drive”. Refers to storage media using spinning platters, usually when comparing and
contrasting with SSD. Its performance characteristics can influence the throughput of a disk-based workload.
See Also disk-based, SSD.

heartbeat
 A periodic message that is sent to indicate that a system is functioning properly. In a replication context, if
the master stops sending such messages, one of the slaves can take its place. Similar techniques can be
used between the servers in a cluster environment, to confirm that all of them are operating properly.

http://dev.mysql.com/doc/refman/5.7/en/general-tablespaces.html


3519

See Also master server, replication.

high-water mark
 A value representing an upper limit, either a hard limit that should not be exceeded at runtime, or a record of
the maximum value that was actually reached. Contrast with low-water mark.
See Also low-water mark.

history list
 A list of transactions with delete-marked records scheduled to be processed by the InnoDB purge
operation. Recorded in the undo log. The length of the history list is reported by the command SHOW
ENGINE INNODB STATUS. If the history list grows longer than the value of the innodb_max_purge_lag
configuration option, each DML operation is delayed slightly to allow the purge operation to finish flushing the
deleted records.

Also known as purge lag.
See Also DML, flush, purge, purge lag, rollback segment, transaction, undo log.

hole punching
 Releasing empty blocks from a page. The InnoDB transparent page compression feature relies on hole
punching support. For more information, see InnoDB Page Compression.
See Also sparse file, transparent page compression.

hot
 A condition where a row, table, or internal data structure is accessed so frequently, requiring some form of
locking or mutual exclusion, that it results in a performance or scalability issue.

Although “hot” typically indicates an undesirable condition, a hot backup is the preferred type of backup.
See Also hot backup.

hot backup
 A backup taken while the database is running and applications are reading and writing to it. The backup
involves more than simply copying data files: it must include any data that was inserted or updated while the
backup was in process; it must exclude any data that was deleted while the backup was in process; and it
must ignore any changes that were not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and
other storage engines, is known as MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the data files produces a raw backup.
The apply step incorporates any changes to the database that happened while the backup was running.
Applying the changes produces a prepared backup; these files are ready to be restored whenever necessary.
See Also apply, MySQL Enterprise Backup, prepared backup, raw backup.

I

.ibd file
 The data file for file-per-table tablespaces and general tablespaces. File-per-table tablespace .idb files
contain a single table and associated index data. General tablespace .idb files may contain table and index
data for multiple tables. General tablespaces were introduced in MySQL 5.7.6.

The .ibd file extension does not apply to the system tablespace, which consists of one or more ibdata
files.

If a file-per-table tablespace or general tablespace is created with the DATA DIRECTORY = clause, the .ibd
file is located at the specified path, outside the normal data directory, and is pointed to by a .isl file.

When a .ibd file is included in a compressed backup by the MySQL Enterprise Backup product, the
compressed equivalent is a .ibz file.

http://dev.mysql.com/doc/refman/5.7/en/innodb-page-compression.html


3520

See Also database, file-per-table, general tablespace, ibdata file, .ibz file, innodb_file_per_table, .isl file,
MySQL Enterprise Backup, system tablespace.

.ibz file
 When the MySQL Enterprise Backup product performs a compressed backup, it transforms each
tablespace file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data
compressed during normal operation. A compressed backup operation skips the compression step for a
tablespace that is already in compressed row format, as compressing a second time would slow down the
backup but produce little or no space savings.
See Also compressed backup, compressed row format, file-per-table, .ibd file, MySQL Enterprise Backup,
tablespace.

.isl file
 A file that specifies the location of an .ibd file for an InnoDB table created with the DATA DIRECTORY =
clause in MySQL 5.6 and higher, or with the CREATE TABLESPACE ... ADD DATAFILE clause in MySQL
5.7.8 and higher. It functions like a symbolic link, without the platform restrictions of the actual symbolic
link mechanism. You can store InnoDB tablespaces outside the database directory, for example, on an
especially large or fast storage device depending on the usage of the table. For details, see Creating File-Per-
Table Tablespaces Outside the Data Directory, and InnoDB General Tablespaces.
See Also database, .ibd file, table, tablespace.

I/O-bound
See disk-bound.

ib-file set
 The set of files managed by InnoDB within a MySQL database: the system tablespace, file-per-table
tablespace files, and redo log files. Depending on MySQL version and InnoDB configuration, may also
include general tablespace, temporary tablespace, and undo tablespace files. This term is sometimes
used in detailed discussions of InnoDB file structures and formats to refer to the set of files managed by
InnoDB within a MySQL database.
See Also database, file-per-table, general tablespace, redo log, system tablespace, temporary tablespace,
undo tablespace.

ibbackup_logfile
 A supplemental backup file created by the MySQL Enterprise Backup product during a hot backup
operation. It contains information about any data changes that occurred while the backup was running. The
initial backup files, including ibbackup_logfile, are known as a raw backup, because the changes that
occurred during the backup operation are not yet incorporated. After you perform the apply step to the raw
backup files, the resulting files do include those final data changes, and are known as a prepared backup. At
this stage, the ibbackup_logfile file is no longer necessary.
See Also apply, hot backup, MySQL Enterprise Backup, prepared backup, raw backup.

ibdata file
 A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system
tablespace. These files contain metadata about InnoDB tables, (the InnoDB data dictionary), and the
storage areas for one or more undo logs, the change buffer, and the doublewrite buffer. They also can
contain some or all of the table data also (depending on whether the file-per-table mode is in effect when
each table is created). When the innodb_file_per_table option is enabled, data and indexes for newly
created tables are stored in separate .ibd files rather than in the system tablespace.

The growth of the ibdata files is influenced by the innodb_autoextend_increment configuration option.
See Also change buffer, data dictionary, doublewrite buffer, file-per-table, .ibd file, innodb_file_per_table,
system tablespace, undo log.

ibtmp file
 The InnoDB temporary tablespace data file for non-compressed InnoDB temporary tables and related
objects. The configuration file option, innodb_temp_data_file_path, allows users to define a relative

http://dev.mysql.com/doc/refman/5.6/en/tablespace-placing.html
http://dev.mysql.com/doc/refman/5.6/en/tablespace-placing.html
http://dev.mysql.com/doc/refman/5.7/en/general-tablespaces.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path


3521

path for the temporary tablespace data file. If innodb_temp_data_file_path is not specified, the default
behavior is to create a single auto-extending 12MB data file named ibtmp1 in the data directory, alongside
ibdata1.
See Also data files, temporary table, temporary tablespace.

ib_logfile
 A set of files, typically named ib_logfile0 and ib_logfile1, that form the redo log. Also sometimes
referred to as the log group. These files record statements that attempt to change data in InnoDB tables.
These statements are replayed automatically to correct data written by incomplete transactions, on startup
following a crash.

This data cannot be used for manual recovery; for that type of operation, use the binary log.
See Also binary log, log group, redo log.

ilist
 Within an InnoDB FULLTEXT index, the data structure consisting of a document ID and positional
information for a token (that is, a particular word).
See Also FULLTEXT index.

implicit row lock
 A row lock that InnoDB acquires to ensure consistency, without you specifically requesting it.
See Also row lock.

in-memory database
 A type of database system that maintains data in memory, to avoid overhead due to disk I/O and translation
between disk blocks and memory areas. Some in-memory databases sacrifice durability (the “D” in the ACID
design philosophy) and are vulnerable to hardware, power, and other types of failures, making them more
suitable for read-only operations. Other in-memory databases do use durability mechanisms such as logging
changes to disk or using non-volatile memory.

MySQL features that address the same kinds of memory-intensive processing include the InnoDB buffer
pool, adaptive hash index, and read-only transaction optimization, the MEMORY storage engine, the
MyISAM key cache, and the MySQL query cache.
See Also ACID, adaptive hash index, buffer pool, disk-based, read-only transaction.

incremental backup
 A type of hot backup, performed by the MySQL Enterprise Backup product, that only saves data changed
since some point in time. Having a full backup and a succession of incremental backups lets you reconstruct
backup data over a long period, without the storage overhead of keeping several full backups on hand. You
can restore the full backup and then apply each of the incremental backups in succession, or you can keep
the full backup up-to-date by applying each incremental backup to it, then perform a single restore operation.

The granularity of changed data is at the page level. A page might actually cover more than one row. Each
changed page is included in the backup.
See Also hot backup, MySQL Enterprise Backup, page.

index
 A data structure that provides a fast lookup capability for rows of a table, typically by forming a tree structure
(B-tree) representing all the values of a particular column or set of columns.

InnoDB tables always have a clustered index representing the primary key. They can also have one or
more secondary indexes defined on one or more columns. Depending on their structure, secondary indexes
can be classified as partial, column, or composite indexes.

Indexes are a crucial aspect of query performance. Database architects design tables, queries, and indexes
to allow fast lookups for data needed by applications. The ideal database design uses a covering index
where practical; the query results are computed entirely from the index, without reading the actual table
data. Each foreign key constraint also requires an index, to efficiently check whether values exist in both the
parent and child tables.

http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path


3522

Although a B-tree index is the most common, a different kind of data structure is used for hash indexes, as
in the MEMORY storage engine and the InnoDB adaptive hash index. R-tree indexes are used for spatial
indexing of multi-dimensional information.
See Also adaptive hash index, B-tree, child table, clustered index, column index, composite index, covering
index, foreign key, hash index, parent table, partial index, primary key, query, R-tree, row, secondary index,
table.

index cache
 A memory area that holds the token data for InnoDB full-text search. It buffers the data to minimize disk I/
O when data is inserted or updated in columns that are part of a FULLTEXT index. The token data is written
to disk when the index cache becomes full. Each InnoDB FULLTEXT index has its own separate index cache,
whose size is controlled by the configuration option innodb_ft_cache_size.
See Also full-text search, FULLTEXT index.

index condition pushdown
 Index condition pushdown (ICP) is an optimization that pushes part of a WHERE condition down to the storage
engine if parts of the condition can be evaluated using fields from the index. ICP can reduce the number
of times the storage engine must access the base table and the number of times the MySQL server must
access the storage engine. For more information, see Index Condition Pushdown Optimization.
See Also index, storage engine.

index hint
 Extended SQL syntax for overriding the indexes recommended by the optimizer. For example, the FORCE
INDEX, USE INDEX, and IGNORE INDEX clauses. Typically used when indexed columns have unevenly
distributed values, resulting in inaccurate cardinality estimates.
See Also cardinality, index.

index prefix
 In an index that applies to multiple columns (known as a composite index), the initial or leading columns of
the index. A query that references the first 1, 2, 3, and so on columns of a composite index can use the index,
even if the query does not reference all the columns in the index.
See Also composite index, index.

index statistics
See statistics.

infimum record
 A pseudo-record in an index, representing the gap below the smallest value in that index. If a transaction
has a statement such as SELECT ... FROM ... WHERE col < 10 FOR UPDATE;, and the smallest
value in the column is 5, it is a lock on the infimum record that prevents other transactions from inserting even
smaller values such as 0, -10, and so on.
See Also gap, index, pseudo-record, supremum record.

INFORMATION_SCHEMA
 The name of the database that provides a query interface to the MySQL data dictionary. (This name is
defined by the ANSI SQL standard.) To examine information (metadata) about the database, you can query
tables such as INFORMATION_SCHEMA.TABLES and INFORMATION_SCHEMA.COLUMNS, rather than using
SHOW commands that produce unstructured output.

The INFORMATION_SCHEMA database also contains tables specific to InnoDB that provide a query interface
to the InnoDB data dictionary. You use these tables not to see how the database is structured, but to get
real-time information about the workings of InnoDB tables to help with performance monitoring, tuning, and
troubleshooting.
See Also data dictionary, database, InnoDB.

InnoDB
 A MySQL component that combines high performance with transactional capability for reliability, robustness,
and concurrent access. It embodies the ACID design philosophy. Represented as a storage engine; it
handles tables created or altered with the ENGINE=INNODB clause. See Chapter 14, The InnoDB Storage
Engine for architectural details and administration procedures, and Section 8.5, “Optimizing for InnoDB
Tables” for performance advice.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_ft_cache_size
http://dev.mysql.com/doc/refman/5.6/en/index-condition-pushdown-optimization.html


3523

In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables and the ENGINE=INNODB
clause is not required.

InnoDB tables are ideally suited for hot backups. See Section 25.2, “MySQL Enterprise Backup Overview”
for information about the MySQL Enterprise Backup product for backing up MySQL servers without
interrupting normal processing.
See Also ACID, hot backup, MySQL Enterprise Backup, storage engine, transaction.

innodb_autoinc_lock_mode
 The innodb_autoinc_lock_mode option controls the algorithm used for auto-increment locking.
When you have an auto-incrementing primary key, you can use statement-based replication only
with the setting innodb_autoinc_lock_mode=1. This setting is known as consecutive lock mode,
because multi-row inserts within a transaction receive consecutive auto-increment values. If you have
innodb_autoinc_lock_mode=2, which allows higher concurrency for insert operations, use row-based
replication rather than statement-based replication. This setting is known as interleaved lock mode, because
multiple multi-row insert statements running at the same time can receive auto-increment values that are
interleaved. The setting innodb_autoinc_lock_mode=0 is the previous (traditional) default setting and
should not be used except for compatibility purposes.
See Also auto-increment, auto-increment locking, mixed-mode insert, primary key.

innodb_file_format
 The innodb_file_format option defines the file format to use for new InnoDB file-per-table
tablespaces. Currently, you can specify the Antelope and Barracuda file formats.
See Also Antelope, Barracuda, file format, file-per-table, general tablespace, innodb_file_per_table, system
tablespace, tablespace.

innodb_file_per_table
 An important configuration option that affects many aspects of InnoDB file storage, availability of features,
and I/O characteristics. In MySQL 5.6.7 and higher, it is enabled by default. The innodb_file_per_table
option turns on file-per-table mode. With this mode enabled, a newly created InnoDB table and associated
indexes can be stored in a file-per-table .ibd file, outside the system tablespace.

This option affects the performance and storage considerations for a number of SQL statements, such as
DROP TABLE and TRUNCATE TABLE.

Enabling the innodb_file_per_table option allows you to take advantage of features such as table
compression and named-table backups in MySQL Enterprise Backup.

For more information, see innodb_file_per_table, and Section 14.10.4, “InnoDB File-Per-Table
Tablespaces”.
See Also compression, file-per-table, .ibd file, MySQL Enterprise Backup, system tablespace.

innodb_lock_wait_timeout
 The innodb_lock_wait_timeout option sets the balance between waiting for shared resources to
become available, or giving up and handling the error, retrying, or doing alternative processing in your
application. Rolls back any InnoDB transaction that waits more than a specified time to acquire a lock.
Especially useful if deadlocks are caused by updates to multiple tables controlled by different storage
engines; such deadlocks are not detected automatically.
See Also deadlock, deadlock detection, lock, wait.

innodb_strict_mode
 The innodb_strict_mode option controls whether InnoDB operates in strict mode, where conditions that
are normally treated as warnings, cause errors instead (and the underlying statements fail).
See Also strict mode.

insert
 One of the primary DML operations in SQL. The performance of inserts is a key factor in data warehouse
systems that load millions of rows into tables, and OLTP systems where many concurrent connections might
insert rows into the same table, in arbitrary order. If insert performance is important to you, you should learn
about InnoDB features such as the insert buffer used in change buffering, and auto-increment columns.



3524

See Also auto-increment, change buffering, data warehouse, DML, InnoDB, insert buffer, OLTP, SQL.

insert buffer
 The former name of the change buffer. In MySQL 5.5, support was added for buffering changes to
secondary index pages for DELETE and UPDATE operations. Previously, only changes resulting from INSERT
operations were buffered. The preferred term is now change buffer.
See Also change buffer, change buffering.

insert buffering
 The technique of storing changes to secondary index pages, resulting from INSERT operations, in the
change buffer rather than writing the changes immediately, so that the physical writes can be performed to
minimize random I/O. It is one of the types of change buffering; the others are delete buffering and purge
buffering.

Insert buffering is not used if the secondary index is unique, because the uniqueness of new values cannot
be verified before the new entries are written out. Other kinds of change buffering do work for unique indexes.
See Also change buffer, change buffering, delete buffering, insert buffer, purge buffering, unique index.

insert intention lock
 A type of gap lock that is set by INSERT operations prior to row insertion. This type of lock signals the intent
to insert in such a way that multiple transactions inserting into the same index gap need not wait for each
other if they are not inserting at the same position within the gap. For more information, see Section 14.8.1,
“InnoDB Locking”.
See Also gap lock, lock, next-key lock.

instance
 A single mysqld daemon managing a data directory representing one or more databases with a set of
tables. It is common in development, testing, and some replication scenarios to have multiple instances on
the same server machine, each managing its own data directory and listening on its own port or socket. With
one instance running a disk-bound workload, the server might still have extra CPU and memory capacity to
run additional instances.
See Also data directory, database, disk-bound, mysqld, replication, server, table.

instrumentation
 Modifications at the source code level to collect performance data for tuning and debugging. In MySQL, data
collected by instrumentation is exposed through an SQL interface using the INFORMATION_SCHEMA and
PERFORMANCE_SCHEMA databases.
See Also INFORMATION_SCHEMA, Performance Schema.

intention exclusive lock
See intention lock.

intention lock
 A kind of lock that applies to the table, used to indicate the kind of lock the transaction intends to acquire
on rows in the table. Different transactions can acquire different kinds of intention locks on the same table,
but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions from
acquiring any S or X locks on the table. Conversely, the first transaction to acquire an intention shared (IS)
lock on a table prevents other transactions from acquiring any X locks on the table. The two-phase process
allows the lock requests to be resolved in order, without blocking locks and corresponding operations that are
compatible. For more information about this locking mechanism, see Section 14.8.1, “InnoDB Locking”.
See Also lock, lock mode, locking, transaction.

intention shared lock
See intention lock.

inverted index
 A data structure optimized for document retrieval systems, used in the implementation of InnoDB full-text
search. The InnoDB FULLTEXT index, implemented as an inverted index, records the position of each word
within a document, rather than the location of a table row. A single column value (a document stored as a text
string) is represented by many entries in the inverted index.
See Also full-text search, FULLTEXT index, ilist.



3525

IOPS
 Acronym for I/O operations per second. A common measurement for busy systems, particularly OLTP
applications. If this value is near the maximum that the storage devices can handle, the application can
become disk-bound, limiting scalability.
See Also disk-bound, OLTP, scalability.

isolation level
 One of the foundations of database processing. Isolation is the I in the acronym ACID; the isolation level is
the setting that fine-tunes the balance between performance and reliability, consistency, and reproducibility of
results when multiple transactions are making changes and performing queries at the same time.

From highest amount of consistency and protection to the least, the isolation levels supported by InnoDB are:
SERIALIZABLE, REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED.

With InnoDB tables, many users can keep the default isolation level (REPEATABLE READ) for all operations.
Expert users might choose the READ COMMITTED level as they push the boundaries of scalability with
OLTP processing, or during data warehousing operations where minor inconsistencies do not affect
the aggregate results of large amounts of data. The levels on the edges (SERIALIZABLE and READ
UNCOMMITTED) change the processing behavior to such an extent that they are rarely used.
See Also ACID, OLTP, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
transaction.

J
join

 A query that retrieves data from more than one table, by referencing columns in the tables that hold identical
values. Ideally, these columns are part of an InnoDB foreign key relationship, which ensures referential
integrity and that the join columns are indexed. Often used to save space and improve query performance
by replacing repeated strings with numeric IDs, in a normalized data design.
See Also foreign key, index, normalized, query, referential integrity.

K
KEY_BLOCK_SIZE

 An option to specify the size of data pages within an InnoDB table that uses compressed row format. The
default is 8 kilobytes. Lower values risk hitting internal limits that depend on the combination of row size and
compression percentage.

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key blocks. The
value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE value specified for
an individual index definition overrides a table-level KEY_BLOCK_SIZE value.
See Also compressed row format.

L
latch

 A lightweight structure used by InnoDB to implement a lock for its own internal memory structures,
typically held for a brief time measured in milliseconds or microseconds. A general term that includes both
mutexes (for exclusive access) and rw-locks (for shared access). Certain latches are the focus of InnoDB
performance tuning. Statistics about latch use and contention are available through the Performance
Schema interface.
See Also lock, locking, mutex, Performance Schema, rw-lock.

list
 The InnoDB buffer pool is represented as a list of memory pages. The list is reordered as new pages are
accessed and enter the buffer pool, as pages within the buffer pool are accessed again and are considered
newer, and as pages that are not accessed for a long time are evicted from the buffer pool. The buffer pool is
divided into sublists, and the replacement policy is a variation of the familiar LRU technique.
See Also buffer pool, eviction, LRU, page, sublist.



3526

lock
 The high-level notion of an object that controls access to a resource, such as a table, row, or internal data
structure, as part of a locking strategy. For intensive performance tuning, you might delve into the actual
structures that implement locks, such as mutexes and latches.
See Also latch, lock mode, locking, mutex.

lock escalation
 An operation used in some database systems that converts many row locks into a single table lock, saving
memory space but reducing concurrent access to the table. InnoDB uses a space-efficient representation for
row locks, so that lock escalation is not needed.
See Also locking, row lock, table lock.

lock mode
 A shared (S) lock allows a transaction to read a row. Multiple transactions can acquire an S lock on that
same row at the same time.

An exclusive (X) lock allows a transaction to update or delete a row. No other transaction can acquire any kind
of lock on that same row at the same time.

Intention locks apply to the table, and are used to indicate what kind of lock the transaction intends to
acquire on rows in the table. Different transactions can acquire different kinds of intention locks on the same
table, but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions
from acquiring any S or X locks on the table. Conversely, the first transaction to acquire an intention shared
(IS) lock on a table prevents other transactions from acquiring any X locks on the table. The two-phase
process allows the lock requests to be resolved in order, without blocking locks and corresponding operations
that are compatible.
See Also intention lock, lock, locking, transaction.

locking
 The system of protecting a transaction from seeing or changing data that is being queried or changed by
other transactions. The locking strategy must balance reliability and consistency of database operations (the
principles of the ACID philosophy) against the performance needed for good concurrency. Fine-tuning the
locking strategy often involves choosing an isolation level and ensuring all your database operations are safe
and reliable for that isolation level.
See Also ACID, concurrency, isolation level, locking, transaction.

locking read
 A SELECT statement that also performs a locking operation on an InnoDB table. Either SELECT ... FOR
UPDATE or SELECT ... LOCK IN SHARE MODE. It has the potential to produce a deadlock, depending on
the isolation level of the transaction. The opposite of a non-locking read. Not allowed for global tables in a
read-only transaction.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.

See Section 14.8.2.4, “Locking Reads”.
See Also deadlock, isolation level, locking, non-locking read, read-only transaction.

log
 In the InnoDB context, “log” or “log files” typically refers to the redo log represented by the ib_logfileN files.
Another type of InnoDB log is the undo log, which is a storage area that holds copies of data modified by
active transactions.

Other kinds of logs that are important in MySQL are the error log (for diagnosing startup and runtime
problems), binary log (for working with replication and performing point-in-time restores), the general query
log (for diagnosing application problems), and the slow query log (for diagnosing performance problems).
See Also binary log, error log, general query log, ib_logfile, redo log, slow query log, undo log.

log buffer
 The memory area that holds data to be written to the log files that make up the redo log. It is controlled by
the innodb_log_buffer_size configuration option.



3527

See Also log file, redo log.

log file
 One of the ib_logfileN files that make up the redo log. Data is written to these files from the log buffer
memory area.
See Also ib_logfile, log buffer, redo log.

log group
 The set of files that make up the redo log, typically named ib_logfile0 and ib_logfile1. (For that
reason, sometimes referred to collectively as ib_logfile.)
See Also ib_logfile, redo log.

logical
 A type of operation that involves high-level, abstract aspects such as tables, queries, indexes, and other
SQL concepts. Typically, logical aspects are important to make database administration and application
development convenient and usable. Contrast with physical.
See Also logical backup, physical.

logical backup
 A backup that reproduces table structure and data, without copying the actual data files. For example, the
mysqldump command produces a logical backup, because its output contains statements such as CREATE
TABLE and INSERT that can re-create the data. Contrast with physical backup. A logical backup offers
flexibility (for example, you could edit table definitions or insert statements before restoring), but can take
substantially longer to restore than a physical backup.
See Also backup, mysqldump, physical backup, restore.

loose_
 A prefix added to InnoDB configuration options after server startup, so any new configuration options not
recognized by the current level of MySQL do not cause a startup failure. MySQL processes configuration
options that start with this prefix, but gives a warning rather than a failure if the part after the prefix is not a
recognized option.
See Also startup.

low-water mark
 A value representing a lower limit, typically a threshold value at which some corrective action begins or
becomes more aggressive. Contrast with high-water mark.
See Also high-water mark.

LRU
 An acronym for “least recently used”, a common method for managing storage areas. The items that have
not been used recently are evicted when space is needed to cache newer items. InnoDB uses the LRU
mechanism by default to manage the pages within the buffer pool, but makes exceptions in cases where a
page might be read only a single time, such as during a full table scan. This variation of the LRU algorithm
is called the midpoint insertion strategy. For more information, see Section 14.9.2.1, “The InnoDB Buffer
Pool”.
See Also buffer pool, eviction, full table scan, midpoint insertion strategy, page.

LSN
 Acronym for “log sequence number”. This arbitrary, ever-increasing value represents a point in time
corresponding to operations recorded in the redo log. (This point in time is regardless of transaction
boundaries; it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash
recovery and for managing the buffer pool.

Prior to MySQL 5.6.3, the LSN was a 4-byte unsigned integer. The LSN became an 8-byte unsigned integer in
MySQL 5.6.3 when the redo log file size limit increased from 4GB to 512GB, as additional bytes were required
to store extra size information. Applications built on MySQL 5.6.3 or later that use LSN values should use 64-
bit rather than 32-bit variables to store and compare LSN values.

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which
to take an incremental backup. The relevant LSN is displayed by the output of the mysqlbackup command.



3528

Once you have the LSN corresponding to the time of a full backup, you can specify that value to take a
subsequent incremental backup, whose output contains another LSN for the next incremental backup.
See Also buffer pool, crash recovery, incremental backup, MySQL Enterprise Backup, redo log, transaction.

M
.MRG file

 A file containing references to other tables, used by the MERGE storage engine. Files with this extension are
always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup
product.
See Also MySQL Enterprise Backup, mysqlbackup command.

.MYD file
 A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file, MySQL Enterprise Backup, mysqlbackup command.

.MYI file
 A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file, MySQL Enterprise Backup, mysqlbackup command.

master server
 Frequently shortened to “master”. A database server machine in a replication scenario that processes the
initial insert, update, and delete requests for data. These changes are propagated to, and repeated on, other
servers known as slave servers.
See Also replication, slave server.

master thread
 An InnoDB thread that performs various tasks in the background. Most of these tasks are I/O related, such
as writing changes from the change buffer to the appropriate secondary indexes.

To improve concurrency, sometimes actions are moved from the master thread to separate background
threads. For example, in MySQL 5.6 and higher, dirty pages are flushed from the buffer pool by the page
cleaner thread rather than the master thread.
See Also buffer pool, change buffer, concurrency, dirty page, flush, page cleaner, thread.

MDL
 Acronym for “metadata lock”.
See Also metadata lock.

memcached
 A popular component of many MySQL and NoSQL software stacks, allowing fast reads and writes for single
values and caching the results entirely in memory. Traditionally, applications required extra logic to write the
same data to a MySQL database for permanent storage, or to read data from a MySQL database when it
was not cached yet in memory. Now, applications can use the simple memcached protocol, supported by
client libraries for many languages, to communicate directly with MySQL servers using InnoDB or NDB tables.
These NoSQL interfaces to MySQL tables allow applications to achieve higher read and write performance
than by issuing SQL statements directly, and can simplify application logic and deployment configurations for
systems that already incorporate memcached for in-memory caching.

The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see InnoDB memcached
Plugin for details. The memcached interface to NDB tables is available in NDB Cluster 7.2 and later; see http://
dev.mysql.com/doc/ndbapi/en/ndbmemcache.html for details.
See Also InnoDB, NoSQL.

merge
 To apply changes to data cached in memory, such as when a page is brought into the buffer pool, and any
applicable changes recorded in the change buffer are incorporated into the page in the buffer pool. The
updated data is eventually written to the tablespace by the flush mechanism.
See Also buffer pool, change buffer, flush, tablespace.

http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html


3529

metadata lock
 A type of lock that prevents DDL operations on a table that is being used at the same time by another
transaction. For details, see Section 8.11.4, “Metadata Locking”.

Enhancements to online operations, particularly in MySQL 5.6 and higher, are focused on reducing the
amount of metadata locking. The objective is for DDL operations that do not change the table structure
(such as CREATE INDEX and DROP INDEX for InnoDB tables) to proceed while the table is being queried,
updated, and so on by other transactions.
See Also DDL, lock, online, transaction.

metrics counter
 A feature implemented by the INNODB_METRICS table in the INFORMATION_SCEMA, in MySQL 5.6
and higher. You can query counts and totals for low-level InnoDB operations, and use the results for
performance tuning in combination with data from the Performance Schema.
See Also counter, INFORMATION_SCHEMA, Performance Schema.

midpoint insertion strategy
 The technique of initially bringing pages into the InnoDB buffer pool not at the “newest” end of the list,
but instead somewhere in the middle. The exact location of this point can vary, based on the setting of the
innodb_old_blocks_pct option. The intent is that pages that are only read once, such as during a full
table scan, can be aged out of the buffer pool sooner than with a strict LRU algorithm. For more information,
see Section 14.9.2.1, “The InnoDB Buffer Pool”.
See Also buffer pool, full table scan, LRU, page.

mini-transaction
 An internal phase of InnoDB processing, when making changes at the physical level to internal data
structures during DML operations. A mini-transaction (mtr) has no notion of rollback; multiple mini-
transactions can occur within a single transaction. Mini-transactions write information to the redo log that is
used during crash recovery. A mini-transaction can also happen outside the context of a regular transaction,
for example during purge processing by background threads.
See Also commit, crash recovery, DML, physical, purge, redo log, rollback, transaction.

mixed-mode insert
 An INSERT statement where auto-increment values are specified for some but not all of the new rows.
For example, a multi-value INSERT could specify a value for the auto-increment column in some cases and
NULL in other cases. InnoDB generates auto-increment values for the rows where the column value was
specified as NULL. Another example is an INSERT ... ON DUPLICATE KEY UPDATE statement, where
auto-increment values might be generated but not used, for any duplicate rows that are processed as UPDATE
rather than INSERT statements.

Can cause consistency issues between master and slave servers in a replication configuration. Can require
adjusting the value of the innodb_autoinc_lock_mode configuration option.
See Also auto-increment, innodb_autoinc_lock_mode, master server, replication, slave server.

mtr
See mini-transaction.

multi-core
 A type of processor that can take advantage of multi-threaded programs, such as the MySQL server.

multiversion concurrency control
See MVCC.

mutex
 Informal abbreviation for “mutex variable”. (Mutex itself is short for “mutual exclusion”.) The low-level object
that InnoDB uses to represent and enforce exclusive-access locks to internal in-memory data structures.
Once the lock is acquired, any other process, thread, and so on is prevented from acquiring the same lock.
Contrast with rw-locks, which InnoDB uses to represent and enforce shared-access locks to internal in-
memory data structures. Mutexes and rw-locks are known collectively as latches.
See Also latch, lock, Performance Schema, Pthreads, rw-lock.

http://dev.mysql.com/doc/refman/5.6/en/innodb-metrics-table.html


3530

MVCC
 Acronym for “multiversion concurrency control”. This technique lets InnoDB transactions with certain
isolation levels perform consistent read operations; that is, to query rows that are being updated by other
transactions, and see the values from before those updates occurred. This is a powerful technique to increase
concurrency, by allowing queries to proceed without waiting due to locks held by the other transactions.

This technique is not universal in the database world. Some other database products, and some other MySQL
storage engines, do not support it.
See Also ACID, concurrency, consistent read, isolation level, lock, transaction.

my.cnf
 The name, on Unix or Linux systems, of the MySQL option file.
See Also my.ini, option file.

my.ini
 The name, on Windows systems, of the MySQL option file.
See Also my.cnf, option file.

mysql
 The mysql program is the command-line interpreter for the MySQL database. It processes SQL statements,
and also MySQL-specific commands such as SHOW TABLES, by passing requests to the mysqld daemon.
See Also mysqld, SQL.

MySQL Enterprise Backup
 A licensed product that performs hot backups of MySQL databases. It offers the most efficiency and
flexibility when backing up InnoDB tables, but can also back up MyISAM and other kinds of tables.
See Also hot backup, InnoDB.

mysqlbackup command
 A command-line tool of the MySQL Enterprise Backup product. It performs a hot backup operation
for InnoDB tables, and a warm backup for MyISAM and other kinds of tables. See Section 25.2, “MySQL
Enterprise Backup Overview” for more information about this command.
See Also hot backup, MySQL Enterprise Backup, warm backup.

mysqld
 The mysqld program is the database engine for the MySQL database. It runs as a Unix daemon or Windows
service, constantly waiting for requests and performing maintenance work in the background.
See Also mysql.

mysqldump
 A command that performs a logical backup of some combination of databases, tables, and table data. The
results are SQL statements that reproduce the original schema objects, data, or both. For substantial amounts
of data, a physical backup solution such as MySQL Enterprise Backup is faster, particularly for the restore
operation.
See Also logical backup, MySQL Enterprise Backup, physical backup, restore.

N
natural key

 An indexed column, typically a primary key, where the values have some real-world significance. Usually
advised against because:

• If the value should ever change, there is potentially a lot of index maintenance to re-sort the clustered
index and update the copies of the primary key value that are repeated in each secondary index.

• Even seemingly stable values can change in unpredictable ways that are difficult to represent correctly
in the database. For example, one country can change into two or several, making the original country
code obsolete. Or, rules about unique values might have exceptions. For example, even if taxpayer IDs
are intended to be unique to a single person, a database might have to handle records that violate that
rule, such as in cases of identity theft. Taxpayer IDs and other sensitive ID numbers also make poor



3531

primary keys, because they may need to be secured, encrypted, and otherwise treated differently than other
columns.

Thus, it is typically better to use arbitrary numeric values to form a synthetic key, for example using an auto-
increment column.
See Also auto-increment, clustered index, primary key, secondary index, synthetic key.

neighbor page
 Any page in the same extent as a particular page. When a page is selected to be flushed, any neighbor
pages that are dirty are typically flushed as well, as an I/O optimization for traditional hard disks. In MySQL
5.6 and up, this behavior can be controlled by the configuration variable innodb_flush_neighbors; you
might turn that setting off for SSD drives, which do not have the same overhead for writing smaller batches of
data at random locations.
See Also dirty page, extent, flush, page.

next-key lock
 A combination of a record lock on the index record and a gap lock on the gap before the index record.
See Also gap lock, locking, record lock.

non-blocking I/O
 An industry term that means the same as asynchronous I/O.
See Also asynchronous I/O.

non-locking read
 A query that does not use the SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE
clauses. The only kind of query allowed for global tables in a read-only transaction. The opposite of a
locking read. See Section 14.8.2.3, “Consistent Nonlocking Reads”.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also locking read, query, read-only transaction.

non-repeatable read
 The situation when a query retrieves data, and a later query within the same transaction retrieves what
should be the same data, but the queries return different results (changed by another transaction committing
in the meantime).

This kind of operation goes against the ACID principle of database design. Within a transaction, data should
be consistent, with predictable and stable relationships.

Among different isolation levels, non-repeatable reads are prevented by the serializable read and
repeatable read levels, and allowed by the consistent read, and read uncommitted levels.
See Also ACID, consistent read, isolation level, READ UNCOMMITTED, REPEATABLE READ,
SERIALIZABLE, transaction.

normalized
 A database design strategy where data is split into multiple tables, and duplicate values condensed into
single rows represented by an ID, to avoid storing, querying, and updating redundant or lengthy values. It is
typically used in OLTP applications.

For example, an address might be given a unique ID, so that a census database could represent the
relationship lives at this address by associating that ID with each member of a family, rather than storing
multiple copies of a complex value such as 123 Main Street, Anytown, USA.

For another example, although a simple address book application might store each phone number in the
same table as a person's name and address, a phone company database might give each phone number a
special ID, and store the numbers and IDs in a separate table. This normalized representation could simplify
large-scale updates when area codes split apart.

Normalization is not always recommended. Data that is primarily queried, and only updated by deleting
entirely and reloading, is often kept in fewer, larger tables with redundant copies of duplicate values. This data
representation is referred to as denormalized, and is frequently found in data warehousing applications.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_flush_neighbors


3532

See Also denormalized, foreign key, OLTP, relational.

NoSQL
 A broad term for a set of data access technologies that do not use the SQL language as their primary
mechanism for reading and writing data. Some NoSQL technologies act as key-value stores, only accepting
single-value reads and writes; some relax the restrictions of the ACID methodology; still others do not require
a pre-planned schema. MySQL users can combine NoSQL-style processing for speed and simplicity with
SQL operations for flexibility and convenience, by using the memcached API to directly access some kinds of
MySQL tables. The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see InnoDB
memcached Plugin for details. The memcached interface to NDB tables is available in NDB Cluster 7.2 and
later; see ndbmemcache—Memcache API for NDB Cluster.
See Also ACID, InnoDB, memcached, schema, SQL.

NOT NULL constraint
 A type of constraint that specifies that a column cannot contain any NULL values. It helps to preserve
referential integrity, as the database server can identify data with erroneous missing values. It also helps
in the arithmetic involved in query optimization, allowing the optimizer to predict the number of entries in an
index on that column.
See Also column, constraint, NULL, primary key, referential integrity.

NULL
 A special value in SQL, indicating the absence of data. Any arithmetic operation or equality test involving a
NULL value, in turn produces a NULL result. (Thus it is similar to the IEEE floating-point concept of NaN, “not
a number”.) Any aggregate calculation such as AVG() ignores rows with NULL values, when determining how
many rows to divide by. The only test that works with NULL values uses the SQL idioms IS NULL or IS NOT
NULL.

NULL values play a part in index operations, because for performance a database must minimize the
overhead of keeping track of missing data values. Typically, NULL values are not stored in an index, because
a query that tests an indexed column using a standard comparison operator could never match a row with a
NULL value for that column. For the same reason, unique indexes do not prevent NULL values; those values
simply are not represented in the index. Declaring a NOT NULL constraint on a column provides reassurance
that there are no rows left out of the index, allowing for better query optimization (accurate counting of rows
and estimation of whether to use the index).

Because the primary key must be able to uniquely identify every row in the table, a single-column primary
key cannot contain any NULL values, and a multi-column primary key cannot contain any rows with NULL
values in all columns.

Although the Oracle database allows a NULL value to be concatenated with a string, InnoDB treats the result
of such an operation as NULL.
See Also index, primary key, SQL.

O
.OPT file

 A file containing database configuration information. Files with this extension are included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.

off-page column
 A column containing variable-length data (such as BLOB and VARCHAR) that is too long to fit on a B-tree
page. The data is stored in overflow pages. The DYNAMIC row format is more efficient for such storage than
the older COMPACT row format.
See Also B-tree, compact row format, dynamic row format, overflow page.

OLTP
 Acronym for “Online Transaction Processing”. A database system, or a database application, that runs a
workload with many transactions, with frequent writes as well as reads, typically affecting small amounts of
data at a time. For example, an airline reservation system or an application that processes bank deposits. The

http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html


3533

data might be organized in normalized form for a balance between DML (insert/update/delete) efficiency and
query efficiency. Contrast with data warehouse.

With its row-level locking and transactional capability, InnoDB is the ideal storage engine for MySQL tables
used in OLTP applications.
See Also data warehouse, DML, InnoDB, query, row lock, transaction.

online
 A type of operation that involves no downtime, blocking, or restricted operation for the database. Typically
applied to DDL. Operations that shorten the periods of restricted operation, such as fast index creation, have
evolved into a wider set of online DDL operations in MySQL 5.6.

In the context of backups, a hot backup is an online operation and a warm backup is partially an online
operation.
See Also DDL, Fast Index Creation, hot backup, online DDL, warm backup.

online DDL
 A feature that improves the performance, concurrency, and availability of InnoDB tables during DDL
(primarily ALTER TABLE) operations. See InnoDB and Online DDL for details.

The details vary according to the type of operation. In some cases, the table can be modified
concurrently while the ALTER TABLE is in progress. The operation might be able to be performed
without a table copy, or using a specially optimized type of table copy. Space usage is controlled by the
innodb_online_alter_log_max_size configuration option.

This feature is an enhancement of the Fast Index Creation feature in MySQL 5.5.
See Also DDL, Fast Index Creation, online.

optimistic
 A methodology that guides low-level implementation decisions for a relational database system. The
requirements of performance and concurrency in a relational database mean that operations must be started
or dispatched quickly. The requirements of consistency and referential integrity mean that any operation
could fail: a transaction might be rolled back, a DML operation could violate a constraint, a request for a lock
could cause a deadlock, a network error could cause a timeout. An optimistic strategy is one that assumes
most requests or attempts will succeed, so that relatively little work is done to prepare for the failure case.
When this assumption is true, the database does little unnecessary work; when requests do fail, extra work
must be done to clean up and undo changes.

InnoDB uses optimistic strategies for operations such as locking and commits. For example, data changed
by a transaction can be written to the data files before the commit occurs, making the commit itself very fast,
but requiring more work to undo the changes if the transaction is rolled back.

The opposite of an optimistic strategy is a pessimistic one, where a system is optimized to deal with
operations that are unreliable and frequently unsuccessful. This methodology is rare in a database system,
because so much care goes into choosing reliable hardware, networks, and algorithms.
See Also commit, concurrency, DML, locking, pessimistic, referential integrity.

optimizer
 The MySQL component that determines the best indexes and join order to use for a query, based on
characteristics and data distribution of the relevant tables.
See Also index, join, query, table.

option
 A configuration parameter for MySQL, either stored in the option file or passed on the command line.

For the options that apply to InnoDB tables, each option name starts with the prefix innodb_.
See Also InnoDB, option, option file.

option file
 The file that holds the configuration options for the MySQL instance. Traditionally, on Linux and Unix this file
is named my.cnf, and on Windows it is named my.ini.
See Also configuration file, my.cnf, my.ini, option.

http://dev.mysql.com/doc/refman/5.6/en/innodb-online-ddl.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_online_alter_log_max_size


3534

overflow page
 Separately allocated disk pages that hold variable-length columns (such as BLOB and VARCHAR) that are too
long to fit on a B-tree page. The associated columns are known as off-page columns.
See Also B-tree, off-page column, page.

P
.PAR file

 A file containing partition definitions. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.

With the introduction of native partitioning support for InnoDB tables in MySQL 5.7.6, .PAR files are no longer
created for partitioned InnoDB tables.
See Also MySQL Enterprise Backup, mysqlbackup command.

page
 A unit representing how much data InnoDB transfers at any one time between disk (the data files) and
memory (the buffer pool). A page can contain one or more rows, depending on how much data is in each
row. If a row does not fit entirely into a single page, InnoDB sets up additional pointer-style data structures so
that the information about the row can be stored in one page.

One way to fit more data in each page is to use compressed row format. For tables that use BLOBs or large
text fields, compact row format allows those large columns to be stored separately from the rest of the row,
reducing I/O overhead and memory usage for queries that do not reference those columns.

When InnoDB reads or writes sets of pages as a batch to increase I/O throughput, it reads or writes an
extent at a time.

All the InnoDB disk data structures within a MySQL instance share the same page size.
See Also buffer pool, compact row format, compressed row format, data files, extent, page size, row.

page cleaner
 An InnoDB background thread that flushes dirty pages from the buffer pool. Prior to MySQL 5.6, this
activity was performed by the master thread. The number of page cleaner threads is controlled by the
innodb_page_cleaners configuration option, introduced in MySQL 5.7.4.
See Also buffer pool, dirty page, flush, master thread, thread.

page size
 For releases up to and including MySQL 5.5, the size of each InnoDB page is fixed at 16 kilobytes. This
value represents a balance: large enough to hold the data for most rows, yet small enough to minimize the
performance overhead of transferring unneeded data to memory. Other values are not tested or supported.

Starting in MySQL 5.6, the page size for an InnoDB instance can be either 4KB, 8KB, or 16KB, controlled
by the innodb_page_size configuration option. As of MySQL 5.7.6, InnoDB also supports 32KB and 64KB
page sizes. For 32KB and 64KB page sizes, ROW_FORMAT=COMPRESSED is not supported and the maximum
record size is 16KB.

Page size is set when creating the MySQL instance, and it remains constant afterward. The same page
size applies to all InnoDB tablespaces, including the system tablespace, file-per-table tablespaces, and
general tablespaces.

Smaller page sizes can help performance with storage devices that use small block sizes, particularly for SSD
devices in disk-bound workloads, such as for OLTP applications. As individual rows are updated, less data is
copied into memory, written to disk, reorganized, locked, and so on.
See Also disk-bound, file-per-table, general tablespace, instance, OLTP, page, SSD, system tablespace,
tablespace.

parent table
 The table in a foreign key relationship that holds the initial column values pointed to from the child table.
The consequences of deleting, or updating rows in the parent table depend on the ON UPDATE and ON

http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_page_cleaners
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_page_size


3535

DELETE clauses in the foreign key definition. Rows with corresponding values in the child table could be
automatically deleted or updated in turn, or those columns could be set to NULL, or the operation could be
prevented.
See Also child table, foreign key.

partial backup
 A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL
instance. Contrast with full backup.
See Also backup, full backup, table.

partial index
 An index that represents only part of a column value, typically the first N characters (the prefix) of a long
VARCHAR value.
See Also index, index prefix.

Performance Schema
 The performance_schema schema, in MySQL 5.5 and up, presents a set of tables that you can query to
get detailed information about the performance characteristics of many internal parts of the MySQL server.
See Chapter 22, MySQL Performance Schema.
See Also INFORMATION_SCHEMA, latch, mutex, rw-lock.

persistent statistics
 A feature in MySQL 5.6 that stores index statistics for InnoDB tables on disk, providing better plan stability
for queries. For more information, see Configuring Persistent Optimizer Statistics Parameters.
See Also index, optimizer, plan stability, query, table.

pessimistic
 A methodology that sacrifices performance or concurrency in favor of safety. It is appropriate if a high
proportion of requests or attempts might fail, or if the consequences of a failed request are severe. InnoDB
uses what is known as a pessimistic locking strategy, to minimize the chance of deadlocks. At the
application level, you might avoid deadlocks by using a pessimistic strategy of acquiring all locks needed by a
transaction at the very beginning.

Many built-in database mechanisms use the opposite optimistic methodology.
See Also deadlock, locking, optimistic.

phantom
 A row that appears in the result set of a query, but not in the result set of an earlier query. For example, if a
query is run twice within a transaction, and in the meantime, another transaction commits after inserting a
new row or updating a row so that it matches the WHERE clause of the query.

This occurrence is known as a phantom read. It is harder to guard against than a non-repeatable read,
because locking all the rows from the first query result set does not prevent the changes that cause the
phantom to appear.

Among different isolation levels, phantom reads are prevented by the serializable read level, and allowed
by the repeatable read, consistent read, and read uncommitted levels.
See Also consistent read, isolation level, non-repeatable read, READ UNCOMMITTED, REPEATABLE
READ, SERIALIZABLE, transaction.

physical
 A type of operation that involves hardware-related aspects such as disk blocks, memory pages, files, bits,
disk reads, and so on. Typically, physical aspects are important during expert-level performance tuning and
problem diagnosis. Contrast with logical.
See Also logical, physical backup.

physical backup
 A backup that copies the actual data files. For example, the mysqlbackup command of the MySQL
Enterprise Backup product produces a physical backup, because its output contains data files that can be
used directly by the mysqld server, resulting in a faster restore operation. Contrast with logical backup.
See Also backup, logical backup, MySQL Enterprise Backup, restore.

http://dev.mysql.com/doc/refman/5.6/en/innodb-persistent-stats.html


3536

PITR
 Acronym for point-in-time recovery.
See Also point-in-time recovery.

plan stability
 A property of a query execution plan, where the optimizer makes the same choices each time for a given
query, so that performance is consistent and predictable.
See Also query, query execution plan.

point-in-time recovery
 The process of restoring a backup to recreate the state of the database at a specific date and time.
Commonly abbreviated “PITR”. Because it is unlikely that the specified time corresponds exactly to the time
of a backup, this technique usually requires a combination of a physical backup and a logical backup. For
example, with the MySQL Enterprise Backup product, you restore the last backup that you took before the
specified point in time, then replay changes from the binary log between the time of the backup and the PITR
time.
See Also backup, binary log, logical backup, MySQL Enterprise Backup, physical backup.

prefix
See index prefix.

prepared backup
 A set of backup files, produced by the MySQL Enterprise Backup product, after all the stages of applying
binary logs and incremental backups are finished. The resulting files are ready to be restored. Prior to the
apply steps, the files are known as a raw backup.
See Also binary log, hot backup, incremental backup, MySQL Enterprise Backup, raw backup, restore.

primary key
 A set of columns—and by implication, the index based on this set of columns—that can uniquely identify
every row in a table. As such, it must be a unique index that does not contain any NULL values.

InnoDB requires that every table has such an index (also called the clustered index or cluster index), and
organizes the table storage based on the column values of the primary key.

When choosing primary key values, consider using arbitrary values (a synthetic key) rather than relying on
values derived from some other source (a natural key).
See Also clustered index, index, natural key, synthetic key.

process
 An instance of an executing program. The operating system switches between multiple running processes,
allowing for a certain degree of concurrency. On most operating systems, processes can contain multiple
threads of execution that share resources. Context-switching between threads is faster than the equivalent
switching between processes.
See Also concurrency, thread.

pseudo-record
 An artificial record in an index, used for locking key values or ranges that do not currently exist.
See Also infimum record, locking, supremum record.

Pthreads
 The POSIX threads standard, which defines an API for threading and locking operations on Unix and Linux
systems. On Unix and Linux systems, InnoDB uses this implementation for mutexes.
See Also mutex.

purge
 A type of garbage collection that runs on a periodic schedule. Purge parses and processes undo log pages
from the history list for the purpose of removing clustered and secondary index records that were marked
for deletion (by previous DELETE statements) and are no longer required for MVCC or rollback. Purge frees
undo log pages from the history list after processing them. By default, the purge operation is performed
as part of the master thread, but it can be configured to run in a separate background thread using the
innodb_purge_threads configuration option.



3537

See Also history list, MVCC, rollback, undo log.

purge buffering
 The technique of storing changes to secondary index pages, resulting from DELETE operations, in the
change buffer rather than writing the changes immediately, so that the physical writes can be performed to
minimize random I/O. (Because delete operations are a two-step process, this operation buffers the write that
normally purges an index record that was previously marked for deletion.) It is one of the types of change
buffering; the others are insert buffering and delete buffering.
See Also change buffer, change buffering, delete buffering, insert buffer, insert buffering.

purge lag
 Another name for the InnoDB history list. Related to the innodb_max_purge_lag configuration option.
See Also history list, purge.

purge thread
 A thread within the InnoDB process that is dedicated to performing the periodic purge operation. In MySQL
5.6 and higher, multiple purge threads are enabled by the innodb_purge_threads configuration option.
See Also purge, thread.

Q
query

 In SQL, an operation that reads information from one or more tables. Depending on the organization of data
and the parameters of the query, the lookup might be optimized by consulting an index. If multiple tables are
involved, the query is known as a join.

For historical reasons, sometimes discussions of internal processing for statements use “query” in a broader
sense, including other types of MySQL statements such as DDL and DML statements.
See Also DDL, DML, index, join, SQL, table.

query execution plan
 The set of decisions made by the optimizer about how to perform a query most efficiently, including which
index or indexes to use, and the order in which to join tables. Plan stability involves the same choices being
made consistently for a given query.
See Also index, join, plan stability, query.

query log
See general query log.

quiesce
 To reduce the amount of database activity, often in preparation for an operation such as an ALTER TABLE,
a backup, or a shutdown. Might or might not involve doing as much flushing as possible, so that InnoDB
does not continue doing background I/O.

In MySQL 5.6 and higher, the syntax FLUSH TABLES ... FOR EXPORT writes some data to disk for
InnoDB tables that make it simpler to back up those tables by copying the data files.
See Also backup, flush, InnoDB, shutdown.

R
R-tree

 A tree data structure used for spatial indexing of multi-dimensional data such as geographical coordinates,
rectangles or polygons.
See Also B-tree.

RAID
 Acronym for “Redundant Array of Inexpensive Drives”. Spreading I/O operations across multiple drives
enables greater concurrency at the hardware level, and improves the efficiency of low-level write operations
that otherwise would be performed in sequence.
See Also concurrency.



3538

random dive
 A technique for quickly estimating the number of different values in a column (the column's cardinality).
InnoDB samples pages at random from the index and uses that data to estimate the number of different
values.
See Also cardinality.

raw backup
 The initial set of backup files produced by the MySQL Enterprise Backup product, before the changes
reflected in the binary log and any incremental backups are applied. At this stage, the files are not ready to
restore. After these changes are applied, the files are known as a prepared backup.
See Also binary log, hot backup, ibbackup_logfile, incremental backup, MySQL Enterprise Backup, prepared
backup, restore.

READ COMMITTED
 An isolation level that uses a locking strategy that relaxes some of the protection between transactions,
in the interest of performance. Transactions cannot see uncommitted data from other transactions, but they
can see data that is committed by another transaction after the current transaction started. Thus, a transaction
never sees any bad data, but the data that it does see may depend to some extent on the timing of other
transactions.

When a transaction with this isolation level performs UPDATE ... WHERE or DELETE ... WHERE
operations, other transactions might have to wait. The transaction can perform SELECT ... FOR UPDATE,
and LOCK IN SHARE MODE operations without making other transactions wait.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also ACID, isolation level, locking, REPEATABLE READ, SERIALIZABLE, transaction.

read phenomena
 Phenomena such as dirty reads, non-repeatable reads, and phantom reads which can occur when a
transaction reads data that another transaction has modified.
See Also dirty read, non-repeatable read, phantom.

READ UNCOMMITTED
 The isolation level that provides the least amount of protection between transactions. Queries employ
a locking strategy that allows them to proceed in situations where they would normally wait for another
transaction. However, this extra performance comes at the cost of less reliable results, including data that has
been changed by other transactions and not committed yet (known as dirty read). Use this isolation level with
great caution, and be aware that the results might not be consistent or reproducible, depending on what other
transactions are doing at the same time. Typically, transactions with this isolation level only do queries, not
insert, update, or delete operations.
See Also ACID, dirty read, isolation level, locking, transaction.

read view
 An internal snapshot used by the MVCC mechanism of InnoDB. Certain transactions, depending on their
isolation level, see the data values as they were at the time the transaction (or in some cases, the statement)
started. Isolation levels that use a read view are REPEATABLE READ, READ COMMITTED, and READ
UNCOMMITTED.
See Also isolation level, MVCC, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ,
transaction.

read-ahead
 A type of I/O request that prefetches a group of pages (an entire extent) into the buffer pool
asynchronously, in anticipation that these pages will be needed soon. The linear read-ahead technique
prefetches all the pages of one extent based on access patterns for pages in the preceding extent. The
random read-ahead technique prefetches all the pages for an extent once a certain number of pages from
the same extent are in the buffer pool. Random read-ahead is not part of MySQL 5.5, but is re-introduced in
MySQL 5.6 under the control of the innodb_random_read_ahead configuration option.
See Also buffer pool, extent, page.



3539

read-only transaction
 A type of transaction that can be optimized for InnoDB tables by eliminating some of the bookkeeping
involved with creating a read view for each transaction. Can only perform non-locking read queries. It can
be started explicitly with the syntax START TRANSACTION READ ONLY, or automatically under certain
conditions. See Optimizing InnoDB Read-Only Transactions for details.
See Also non-locking read, read view, transaction.

record lock
 A lock on an index record. For example, SELECT c1 FROM t WHERE c1 = 10 FOR UPDATE; prevents
any other transaction from inserting, updating, or deleting rows where the value of t.c1 is 10. Contrast with
gap lock and next-key lock.
See Also gap lock, lock, next-key lock.

redo
 The data, in units of records, recorded in the redo log when DML statements make changes to InnoDB
tables. It is used during crash recovery to correct data written by incomplete transactions. The ever-
increasing LSN value represents the cumulative amount of redo data that has passed through the redo log.
See Also crash recovery, DML, LSN, redo log, transaction.

redo log
 A disk-based data structure used during crash recovery, to correct data written by incomplete transactions.
During normal operation, it encodes requests to change InnoDB table data, which result from SQL
statements or low-level API calls through NoSQL interfaces. Modifications that did not finish updating the data
files before an unexpected shutdown are replayed automatically.

The redo log is physically represented as a set of files, typically named ib_logfile0 and ib_logfile1.
The data in the redo log is encoded in terms of records affected; this data is collectively referred to as redo.
The passage of data through the redo logs is represented by the ever-increasing LSN value. The original 4GB
limit on maximum size for the redo log is raised to 512GB in MySQL 5.6.3.

The disk layout of the redo log is influenced by the configuration options innodb_log_file_size,
innodb_log_group_home_dir, and (rarely) innodb_log_files_in_group. The performance of redo
log operations is also affected by the log buffer, which is controlled by the innodb_log_buffer_size
configuration option.
See Also crash recovery, data files, ib_logfile, log buffer, LSN, redo, shutdown, transaction.

redundant row format
 The oldest InnoDB row format. Prior to MySQL 5.0.3, it was the only row format available in InnoDB. From
MySQL 5.0.3 to MySQL 5.7.8, the default row format is COMPACT. As of MySQL 5.7.9, the default row
format is defined by the innodb_default_row_format configuration option, which has a default setting of
DYNAMIC. You can still specify the REDUNDANT row format for compatibility with older InnoDB tables.

For more information, see Section 14.14.4, “COMPACT and REDUNDANT Row Formats”.
See Also compact row format, dynamic row format, row format.

referential integrity
 The technique of maintaining data always in a consistent format, part of the ACID philosophy. In particular,
data in different tables is kept consistent through the use of foreign key constraints, which can prevent
changes from happening or automatically propagate those changes to all related tables. Related mechanisms
include the unique constraint, which prevents duplicate values from being inserted by mistake, and the NOT
NULL constraint, which prevents blank values from being inserted by mistake.
See Also ACID, FOREIGN KEY constraint, NOT NULL constraint, unique constraint.

relational
 An important aspect of modern database systems. The database server encodes and enforces relationships
such as one-to-one, one-to-many, many-to-one, and uniqueness. For example, a person might have zero,
one, or many phone numbers in an address database; a single phone number might be associated with
several family members. In a financial database, a person might be required to have exactly one taxpayer ID,
and any taxpayer ID could only be associated with one person.

http://dev.mysql.com/doc/refman/5.6/en/innodb-performance-ro-txn.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_default_row_format


3540

The database server can use these relationships to prevent bad data from being inserted, and to find efficient
ways to look up information. For example, if a value is declared to be unique, the server can stop searching as
soon as the first match is found, and it can reject attempts to insert a second copy of the same value.

At the database level, these relationships are expressed through SQL features such as columns within a
table, unique and NOT NULL constraints, foreign keys, and different kinds of join operations. Complex
relationships typically involve data split between more than one table. Often, the data is normalized, so that
duplicate values in one-to-many relationships are stored only once.

In a mathematical context, the relations within a database are derived from set theory. For example, the OR
and AND operators of a WHERE clause represent the notions of union and intersection.
See Also ACID, column, constraint, foreign key, normalized.

relevance
 In the full-text search feature, a number signifying the similarity between the search string and the data in
the FULLTEXT index. For example, when you search for a single word, that word is typically more relevant
for a row where it occurs several times in the text than a row where it appears only once.
See Also full-text search, FULLTEXT index.

REPEATABLE READ
 The default isolation level for InnoDB. It prevents any rows that are queried from being changed by other
transactions, thus blocking non-repeatable reads but not phantom reads. It uses a moderately strict
locking strategy so that all queries within a transaction see data from the same snapshot, that is, the data as
it was at the time the transaction started.

When a transaction with this isolation level performs UPDATE ... WHERE, DELETE ... WHERE,
SELECT ... FOR UPDATE, and LOCK IN SHARE MODE operations, other transactions might have to wait.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also ACID, consistent read, isolation level, locking, phantom, transaction.

replication
 The practice of sending changes from a master database, to one or more slave databases, so that all
databases have the same data. This technique has a wide range of uses, such as load-balancing for better
scalability, disaster recovery, and testing software upgrades and configuration changes. The changes can be
sent between the database by methods called row-based replication and statement-based replication.
See Also master server, row-based replication, slave server, statement-based replication.

restore
 The process of putting a set of backup files from the MySQL Enterprise Backup product in place for use by
MySQL. This operation can be performed to fix a corrupted database, to return to some earlier point in time,
or (in a replication context) to set up a new slave database. In the MySQL Enterprise Backup product, this
operation is performed by the copy-back option of the mysqlbackup command.
See Also hot backup, MySQL Enterprise Backup, mysqlbackup command, prepared backup, replication, slave
server.

rollback
 A SQL statement that ends a transaction, undoing any changes made by the transaction. It is the opposite
of commit, which makes permanent any changes made in the transaction.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement. You must change this setting before you can use the rollback technique.
See Also ACID, autocommit, commit, SQL, transaction.

rollback segment
 The storage area containing the undo log. By default, this area is physically part of the system tablespace.
However, as of MySQL 5.6.3, undo logs can reside in separate undo tablespaces.
See Also system tablespace, undo log, undo tablespace.



3541

row
 The logical data structure defined by a set of columns. A set of rows makes up a table. Within InnoDB data
files, each page can contain one or more rows.

Although InnoDB uses the term row format for consistency with MySQL syntax, the row format is a property
of each table and applies to all rows in that table.
See Also column, data files, page, row format, table.

row format
 The disk storage format for rows of an InnoDB table. As InnoDB gains new capabilities such as
compression, new row formats are introduced to support the resulting improvements in storage efficiency
and performance.

The row format of an InnoDB table is specified by the ROW_FORMAT option or by the
innodb_default_row_format configuration option (introduced in MySQL 5.7.9). Row formats include
REDUNDANT, COMPACT, COMPRESSED, and DYNAMIC. To view the row format of an InnoDB table, issue the
SHOW TABLE STATUS statement or query INFORMATION_SCHEMA.INNODB_SYS_TABLES (available in
MySQL 5.6 or higher).
See Also compact row format, compressed row format, compression, dynamic row format, redundant row
format, row, table.

row lock
 A lock that prevents a row from being accessed in an incompatible way by another transaction. Other rows
in the same table can be freely written to by other transactions. This is the type of locking done by DML
operations on InnoDB tables.

Contrast with table locks used by MyISAM, or during DDL operations on InnoDB tables that cannot be done
with online DDL; those locks block concurrent access to the table.
See Also DDL, DML, InnoDB, lock, locking, online DDL, table lock, transaction.

row-based replication
 A form of replication where events are propagated from the master server specifying how to change
individual rows on the slave server. It is safe to use for all settings of the innodb_autoinc_lock_mode
option.
See Also auto-increment locking, innodb_autoinc_lock_mode, master server, replication, slave server,
statement-based replication.

row-level locking
 The locking mechanism used for InnoDB tables, relying on row locks rather than table locks. Multiple
transactions can modify the same table concurrently. Only if two transactions try to modify the same row
does one of the transactions wait for the other to complete (and release its row locks).
See Also InnoDB, locking, row lock, table lock, transaction.

rw-lock
 The low-level object that InnoDB uses to represent and enforce shared-access locks to internal in-memory
data structures following certain rules. Contrast with mutexes, which InnoDB uses to represent and enforce
exclusive access to internal in-memory data structures. Mutexes and rw-locks are known collectively as
latches.

rw-lock types include s-locks (shared locks), x-locks (exclusive locks), and sx-locks (shared-
exclusive locks).

• An s-lock provides read access to a common resource.

• An x-lock provides write access to a common resource while not permitting inconsistent reads by other
threads.

• An sx-lock provides write access to a common resource while permitting inconsistent reads by other
threads. sx-locks were introduced in MySQL 5.7 to optimize concurrency and improve scalability for read-
write workloads.

The following matrix summarizes rw-lock type compatibility.

http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_default_row_format
http://dev.mysql.com/doc/refman/5.6/en/innodb-sys-tables-table.html


3542

 S SX X

S Compatible Compatible Conflict

SX Compatible Conflict Conflict

X Conflict Conflict Conflict

See Also latch, lock, mutex, Performance Schema.

S
savepoint

 Savepoints help to implement nested transactions. They can be used to provide scope to operations on
tables that are part of a larger transaction. For example, scheduling a trip in a reservation system might
involve booking several different flights; if a desired flight is unavailable, you might roll back the changes
involved in booking that one leg, without rolling back the earlier flights that were successfully booked.
See Also rollback, transaction.

scalability
 The ability to add more work and issue more simultaneous requests to a system, without a sudden drop in
performance due to exceeding the limits of system capacity. Software architecture, hardware configuration,
application coding, and type of workload all play a part in scalability. When the system reaches its maximum
capacity, popular techniques for increasing scalability are scale up (increasing the capacity of existing
hardware or software) and scale out (adding new servers and more instances of MySQL). Often paired with
availability as critical aspects of a large-scale deployment.
See Also availability, scale out, scale up.

scale out
 A technique for increasing scalability by adding new servers and more instances of MySQL. For example,
setting up replication, NDB Cluster, connection pooling, or other features that spread work across a group of
servers. Contrast with scale up.
See Also scalability, scale up.

scale up
 A technique for increasing scalability by increasing the capacity of existing hardware or software.
For example, increasing the memory on a server and adjusting memory-related parameters such as
innodb_buffer_pool_size and innodb_buffer_pool_instances. Contrast with scale out.
See Also scalability, scale out.

schema
 Conceptually, a schema is a set of interrelated database objects, such as tables, table columns, data types
of the columns, indexes, foreign keys, and so on. These objects are connected through SQL syntax, because
the columns make up the tables, the foreign keys refer to tables and columns, and so on. Ideally, they are
also connected logically, working together as part of a unified application or flexible framework. For example,
the INFORMATION_SCHEMA and performance_schema databases use “schema” in their names to
emphasize the close relationships between the tables and columns they contain.

In MySQL, physically, a schema is synonymous with a database. You can substitute the keyword SCHEMA
instead of DATABASE in MySQL SQL syntax, for example using CREATE SCHEMA instead of CREATE
DATABASE.

Some other database products draw a distinction. For example, in the Oracle Database product, a schema
represents only a part of a database: the tables and other objects owned by a single user.
See Also database, INFORMATION_SCHEMA, Performance Schema.

search index
 In MySQL, full-text search queries use a special kind of index, the FULLTEXT index. In MySQL 5.6.4 and
up, InnoDB and MyISAM tables both support FULLTEXT indexes; formerly, these indexes were only available
for MyISAM tables.
See Also full-text search, FULLTEXT index.



3543

secondary index
 A type of InnoDB index that represents a subset of table columns. An InnoDB table can have zero, one, or
many secondary indexes. (Contrast with the clustered index, which is required for each InnoDB table, and
stores the data for all the table columns.)

A secondary index can be used to satisfy queries that only require values from the indexed columns. For more
complex queries, it can be used to identify the relevant rows in the table, which are then retrieved through
lookups using the clustered index.

Creating and dropping secondary indexes has traditionally involved significant overhead from copying all the
data in the InnoDB table. The fast index creation feature makes both CREATE INDEX and DROP INDEX
statements much faster for InnoDB secondary indexes.
See Also clustered index, Fast Index Creation, index.

segment
 A division within an InnoDB tablespace. If a tablespace is analogous to a directory, the segments are
analogous to files within that directory. A segment can grow. New segments can be created.

For example, within a file-per-table tablespace, table data is in one segment and each associated index is
in its own segment. The system tablespace contains many different segments, because it can hold many
tables and their associated indexes. The system tablespace also includes one or more rollback segments
used for undo logs.

Segments grow and shrink as data is inserted and deleted. When a segment needs more room, it is extended
by one extent (1 megabyte) at a time. Similarly, a segment releases one extent's worth of space when all the
data in that extent is no longer needed.
See Also extent, file-per-table, rollback segment, system tablespace, tablespace, undo log.

selectivity
 A property of data distribution, the number of distinct values in a column (its cardinality) divided by the
number of records in the table. High selectivity means that the column values are relatively unique, and can
retrieved efficiently through an index. If you (or the query optimizer) can predict that a test in a WHERE clause
only matches a small number (or proportion) of rows in a table, the overall query tends to be efficient if it
evaluates that test first, using an index.
See Also cardinality, query.

semi-consistent read
 A type of read operation used for UPDATE statements, that is a combination of READ COMMITTED
and consistent read. When an UPDATE statement examines a row that is already locked, InnoDB
returns the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads
the row again, and this time InnoDB either locks it or waits for a lock on it. This type of read operation
can only happen when the transaction has the READ COMMITTED isolation level, or when the
innodb_locks_unsafe_for_binlog option is enabled. innodb_locks_unsafe_for_binlog was
removed in MySQL 8.0.
See Also consistent read, isolation level, READ COMMITTED.

SERIALIZABLE
 The isolation level that uses the most conservative locking strategy, to prevent any other transactions from
inserting or changing data that was read by this transaction, until it is finished. This way, the same query can
be run over and over within a transaction, and be certain to retrieve the same set of results each time. Any
attempt to change data that was committed by another transaction since the start of the current transaction,
cause the current transaction to wait.

This is the default isolation level specified by the SQL standard. In practice, this degree of strictness is rarely
needed, so the default isolation level for InnoDB is the next most strict, REPEATABLE READ.
See Also ACID, consistent read, isolation level, locking, REPEATABLE READ, transaction.

server
 A type of program that runs continuously, waiting to receive and act upon requests from another program
(the client). Because often an entire computer is dedicated to running one or more server programs (such as



3544

a database server, a web server, an application server, or some combination of these), the term server can
also refer to the computer that runs the server software.
See Also client, mysqld.

shared lock
 A kind of lock that allows other transactions to read the locked object, and to also acquire other shared
locks on it, but not to write to it. The opposite of exclusive lock.
See Also exclusive lock, lock, transaction.

shared tablespace
 Another way of referring to the system tablespace or to a general tablespace. General tablespaces were
introduced in MySQL 5.7
See Also general tablespace, system tablespace.

sharp checkpoint
 The process of flushing to disk all dirty buffer pool pages whose redo entries are contained in certain
portion of the redo log. Occurs before InnoDB reuses a portion of a log file; the log files are used in a circular
fashion. Typically occurs with write-intensive workloads.
See Also dirty page, flush, redo log, workload.

shutdown
 The process of stopping the MySQL server. By default, this process cleans up operations for InnoDB tables,
so InnoDB can be slow to shut down, but fast to start up later. If you skip the cleanup operations, it is fast to
shut down but the cleanup must be performed during the next restart.

The shutdown mode for InnoDB is controlled by the innodb_fast_shutdown option.
See Also fast shutdown, InnoDB, slow shutdown, startup.

slave server
 Frequently shortened to “slave”. A database server machine in a replication scenario that receives changes
from another server (the master) and applies those same changes. Thus it maintains the same contents as
the master, although it might lag somewhat behind.

In MySQL, slave servers are commonly used in disaster recovery, to take the place of a master servers that
fails. They are also commonly used for testing software upgrades and new settings, to ensure that database
configuration changes do not cause problems with performance or reliability.

Slave servers typically have high workloads, because they process all the DML (write) operations relayed
from the master, as well as user queries. To ensure that slave servers can apply changes from the master
fast enough, they frequently have fast I/O devices and sufficient CPU and memory to run multiple database
instances on the same slave server. For example, the master server might use hard drive storage while the
slave servers use SSDs.
See Also DML, master server, replication, server, SSD.

slow query log
 A type of log used for performance tuning of SQL statements processed by the MySQL server. The log
information is stored in a file. You must enable this feature to use it. You control which categories of “slow”
SQL statements are logged. For more information, see Section 5.4.5, “The Slow Query Log”.
See Also general query log, log.

slow shutdown
 A type of shutdown that does additional InnoDB flushing operations before completing. Also known as a
clean shutdown. Specified by the configuration parameter innodb_fast_shutdown=0 or the command
SET GLOBAL innodb_fast_shutdown=0;. Although the shutdown itself can take longer, that time will be
saved on the subsequent startup.
See Also clean shutdown, fast shutdown, shutdown.

snapshot
 A representation of data at a particular time, which remains the same even as changes are committed by
other transactions. Used by certain isolation levels to allow consistent reads.



3545

See Also commit, consistent read, isolation level, transaction.

sort buffer
 The buffer used for sorting data during creation of an InnoDB index. Sort buffer size is configured using the
innodb_sort_buffer_size configuration option.

space ID
 An identifier used to uniquely identify an InnoDB tablespace within a MySQL instance. The space ID for the
system tablespace is always zero; this same ID applies to all tables within the system tablespace or within a
general tablespace. Each file-per-table tablespace and general tablespace has its own space ID.

Prior to MySQL 5.6, this hardcoded value presented difficulties in moving InnoDB tablespace files between
MySQL instances. Starting in MySQL 5.6, you can copy tablespace files between instances by using the
transportable tablespace feature involving the statements FLUSH TABLES ... FOR EXPORT, ALTER
TABLE ... DISCARD TABLESPACE, and ALTER TABLE ... IMPORT TABLESPACE. The information
needed to adjust the space ID is conveyed in the .cfg file which you copy along with the tablespace. See
Copying File-Per-Table Tablespaces to Another Instance for details.
See Also .cfg file, file-per-table, general tablespace, .ibd file, system tablespace, tablespace, transportable
tablespace.

sparse file
 A type of file that uses file system space more efficiently by writing metadata representing empty blocks to
disk instead of writing the actual empty space. The InnoDB transparent page compression feature relies on
sparse file support. For more information, see InnoDB Page Compression.
See Also hole punching, transparent page compression.

spin
 A type of wait operation that continuously tests whether a resource becomes available. This technique is
used for resources that are typically held only for brief periods, where it is more efficient to wait in a “busy
loop” than to put the thread to sleep and perform a context switch. If the resource does not become available
within a short time, the spin loop ceases and another wait technique is used.
See Also latch, lock, mutex, wait.

SQL
 The Structured Query Language that is standard for performing database operations. Often divided into
the categories DDL, DML, and queries. MySQL includes some additional statement categories such as
replication. See Chapter 9, Language Structure for the building blocks of SQL syntax, Chapter 11, Data
Types for the data types to use for MySQL table columns, Chapter 13, SQL Statement Syntax for details
about SQL statements and their associated categories, and Chapter 12, Functions and Operators for standard
and MySQL-specific functions to use in queries.
See Also DDL, DML, query, replication.

SSD
 Acronym for “solid-state drive”. A type of storage device with different performance characteristics than a
traditional hard disk drive (HDD): smaller storage capacity, faster for random reads, no moving parts, and with
a number of considerations affecting write performance. Its performance characteristics can influence the
throughput of a disk-bound workload.
See Also disk-bound, HDD.

startup
 The process of starting the MySQL server. Typically done by one of the programs listed in Section 4.3,
“MySQL Server and Server-Startup Programs”. The opposite of shutdown.
See Also shutdown.

statement-based replication
 A form of replication where SQL statements are sent from the master server and replayed on the slave
server. It requires some care with the setting for the innodb_autoinc_lock_mode option, to avoid
potential timing problems with auto-increment locking.
See Also auto-increment locking, innodb_autoinc_lock_mode, master server, replication, row-based
replication, slave server.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_sort_buffer_size
http://dev.mysql.com/doc/refman/5.6/en/tablespace-copying.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-page-compression.html


3546

statistics
 Estimated values relating to each InnoDB table and index, used to construct an efficient query execution
plan. The main values are the cardinality (number of distinct values) and the total number of table rows
or index entries. The statistics for the table represent the data in its primary key index. The statistics for a
secondary index represent the rows covered by that index.

The values are estimated rather than counted precisely because at any moment, different transactions can
be inserting and deleting rows from the same table. To keep the values from being recalculated frequently,
you can enable persistent statistics, where the values are stored in InnoDB system tables, and refreshed
only when you issue an ANALYZE TABLE statement.

You can control how NULL values are treated when calculating statistics through the
innodb_stats_method configuration option.

Other types of statistics are available for database objects and database activity through the
INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables.
See Also cardinality, index, INFORMATION_SCHEMA, NULL, Performance Schema, persistent statistics,
primary key, query execution plan, secondary index, table, transaction.

stemming
 The ability to search for different variations of a word based on a common root word, such as singular and
plural, or past, present, and future verb tense. This feature is currently supported in MyISAM full-text search
feature but not in FULLTEXT indexes for InnoDB tables.
See Also full-text search, FULLTEXT index.

stopword
 In a FULLTEXT index, a word that is considered common or trivial enough that it is omitted from the search
index and ignored in search queries. Different configuration settings control stopword processing for InnoDB
and MyISAM tables. See Section 12.9.4, “Full-Text Stopwords” for details.
See Also FULLTEXT index, search index.

storage engine
 A component of the MySQL database that performs the low-level work of storing, updating, and querying
data. In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables, superceding MyISAM.
Different storage engines are designed with different tradeoffs between factors such as memory usage versus
disk usage, read speed versus write speed, and speed versus robustness. Each storage engine manages
specific tables, so we refer to InnoDB tables, MyISAM tables, and so on.

The MySQL Enterprise Backup product is optimized for backing up InnoDB tables. It can also back up
tables handled by MyISAM and other storage engines.
See Also InnoDB, MySQL Enterprise Backup, table type.

strict mode
 The general name for the setting controlled by the innodb_strict_mode option. Turning on this setting
causes certain conditions that are normally treated as warnings, to be considered errors. For example, certain
invalid combinations of options related to file format and row format, that normally produce a warning and
continue with default values, now cause the CREATE TABLE operation to fail. innodb_strict_mode is
enabled by default in MySQL 5.7.

MySQL also has something called strict mode.
See Also file format, innodb_strict_mode, row format.

sublist
 Within the list structure that represents the buffer pool, pages that are relatively old and relatively new are
represented by different portions of the list. A set of parameters control the size of these portions and the
dividing point between the new and old pages.
See Also buffer pool, eviction, list, LRU.

supremum record
 A pseudo-record in an index, representing the gap above the largest value in that index. If a transaction has
a statement such as SELECT ... FROM ... WHERE col > 10 FOR UPDATE;, and the largest value



3547

in the column is 20, it is a lock on the supremum record that prevents other transactions from inserting even
larger values such as 50, 100, and so on.
See Also gap, infimum record, pseudo-record.

surrogate key
 Synonym name for synthetic key.
See Also synthetic key.

synthetic key
 An indexed column, typically a primary key, where the values are assigned arbitrarily. Often done using
an auto-increment column. By treating the value as completely arbitrary, you can avoid overly restrictive
rules and faulty application assumptions. For example, a numeric sequence representing employee numbers
might have a gap if an employee was approved for hiring but never actually joined. Or employee number 100
might have a later hiring date than employee number 500, if they left the company and later rejoined. Numeric
values also produce shorter values of predictable length. For example, storing numeric codes meaning
“Road”, “Boulevard”, “Expressway”, and so on is more space-efficient than repeating those strings over and
over.

Also known as a surrogate key. Contrast with natural key.
See Also auto-increment, natural key, primary key, surrogate key.

system tablespace
 One or more data files (ibdata files) containing metadata for InnoDB-related objects (the InnoDB data
dictionary), and the storage areas for one or more undo logs, the change buffer, and the doublewrite
buffer. Depending on the innodb_file_per_table setting, it might also contain table and index data
for InnoDB tables. The data and metadata in the system tablespace apply to all databases in a MySQL
instance.
See Also Barracuda, change buffer, compression, data dictionary, database, doublewrite buffer, dynamic
row format, file-per-table, general tablespace, .ibd file, ibdata file, innodb_file_per_table, instance, MySQL
Enterprise Backup, off-page column, tablespace, undo log.

T
.TRG file

 A file containing trigger parameters. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRN file.

.TRN file
 A file containing trigger namespace information. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRG file.

table
 Each MySQL table is associated with a particular storage engine. InnoDB tables have particular physical
and logical characteristics that affect performance, scalability, backup, administration, and application
development.

In terms of file storage, an InnoDB table belongs to one of the following tablespace types:

• The shared InnoDB system tablespace, which is comprised of one or more ibdata files.

• A file-per-table tablespace, comprised of an individual .ibd file.

• A shared general tablespace, comprised of an individual .ibd file. General tablespaces were introduced
in MySQL 5.7.6.

.ibd data files contain both table and index data.

InnoDB tables created in file-per-table tablespaces can use the Barracuda file format, and Barracuda
tables can use DYNAMIC or COMPRESSED row format. These row formats enable InnoDB



3548

features such as compression, efficient storage of off-page columns, and large index key prefixes
(see innodb_large_prefix). General tablespaces support all row formats regardless of the
innodb_file_format setting.

Up to MySQL 5.7.5, InnoDB tables inside the system tablespace had to use the Antelope file format for
backward compatibility with MySQL 5.1 and earlier. The Antelope file format supports COMPACT and
REDUNDANT row format. The system tablespace supports tables that use DYNAMIC row format as of
MySQL 5.7.6.

The rows of an InnoDB table are organized into an index structure known as the clustered index, with
entries sorted based on the primary key columns of the table. Data access is optimized for queries that
filter and sort on the primary key columns, and each index contains a copy of the associated primary key
columns for each entry. Modifying values for any of the primary key columns is an expensive operation. Thus
an important aspect of InnoDB table design is choosing a primary key with columns that are used in the most
important queries, and keeping the primary key short, with rarely changing values.
See Also Antelope, backup, Barracuda, clustered index, compact row format, compressed row format,
compression, dynamic row format, Fast Index Creation, file-per-table, .ibd file, index, off-page column, primary
key, redundant row format, row, system tablespace, tablespace.

table lock
 A lock that prevents any other transaction from accessing a table. InnoDB makes considerable effort to
make such locks unnecessary, by using techniques such as online DDL, row locks and consistent reads
for processing DML statements and queries. You can create such a lock through SQL using the LOCK
TABLE statement; one of the steps in migrating from other database systems or MySQL storage engines is to
remove such statements wherever practical.
See Also consistent read, DML, lock, locking, online DDL, query, row lock, table, transaction.

table scan
See full table scan.

table statistics
See statistics.

table type
 Obsolete synonym for storage engine. We refer to InnoDB tables, MyISAM tables, and so on.
See Also InnoDB, storage engine.

tablespace
 A data file that can hold data for one or more InnoDB tables and associated indexes.

The system tablespace contains the InnoDB data dictionary, and prior to MySQL 5.6 holds all other
InnoDB tables by default.

The innodb_file_per_table option, enabled by default in MySQL 5.6 and higher, allows tables to be
created in their own tablespaces. File-per-table tablespaces support features such as efficient storage of off-
page columns, table compression, and transportable tablespaces. See Section 14.10.4, “InnoDB File-Per-
Table Tablespaces” for details.

InnoDB introduced general tablespaces in MySQL 5.7.6. General tablespaces are shared tablespaces
created using CREATE TABLESPACE syntax. They can be created outside of the MySQL data directory, are
capable of holding multiple tables, and support tables of all row formats.

MySQL NDB Cluster also groups its tables into tablespaces. See Section 18.5.12.1, “NDB Cluster Disk Data
Objects” for details.
See Also compressed row format, data dictionary, data files, file-per-table, general tablespace, index,
innodb_file_per_table, system tablespace, table.

tablespace dictionary
 A representation of the data dictionary metadata for a table, within the InnoDB tablespace. This metadata
can be checked against the .frm file for consistency when the table is opened, to diagnose errors resulting



3549

from out-of-date .frm files. This information is present for InnoDB tables that reside in the system
tablespace, a file-per-table tablespace, or a general tablespace.
See Also data dictionary, file-per-table, .frm file, general tablespace, .ibd file, system tablespace, tablespace.

temporary table
 A table whose data does not need to be truly permanent. For example, temporary tables might be used as
storage areas for intermediate results in complicated calculations or transformations; this intermediate data
would not need to be recovered after a crash. Database products can take various shortcuts to improve the
performance of operations on temporary tables, by being less scrupulous about writing data to disk and other
measures to protect the data across restarts.

Sometimes, the data itself is removed automatically at a set time, such as when the transaction ends or when
the session ends. With some database products, the table itself is removed automatically too.
See Also table.

temporary tablespace
 The tablespace for non-compressed InnoDB temporary tables and related objects, introduced in MySQL
5.7.1. The configuration file option, innodb_temp_data_file_path, allows users to define a relative
path for the temporary tablespace data file. If innodb_temp_data_file_path is not specified, the default
behavior is to create a single auto-extending 12MB data file named ibtmp1 in the data directory, alongside
the system tablespace files. The temporary tablespace is recreated on each server start and receives
a dynamically generated space ID, which helps avoid conflicts with existing space IDs. The temporary
tablespace cannot reside on a raw device. Startup is refused if the temporary tablespace cannot be created.

The temporary tablespace is removed on normal shutdown or on an aborted initialization. The temporary
tablespace is not removed when a crash occurs. In this case, the database administrator may remove
the temporary tablespace manually or restart the server with the same configuration, which removes and
recreates the temporary tablespace.
See Also ibtmp file, space ID, system tablespace, temporary table.

text collection
 The set of columns included in a FULLTEXT index.
See Also FULLTEXT index.

thread
 A unit of processing that is typically more lightweight than a process, allowing for greater concurrency.
See Also concurrency, master thread, process, Pthreads.

torn page
 An error condition that can occur due to a combination of I/O device configuration and hardware failure.
If data is written out in chunks smaller than the InnoDB page size (by default, 16KB), a hardware failure
while writing could result in only part of a page being stored to disk. The InnoDB doublewrite buffer guards
against this possibility.
See Also doublewrite buffer.

TPS
 Acronym for “transactions per second”, a unit of measurement sometimes used in benchmarks. Its value
depends on the workload represented by a particular benchmark test, combined with factors that you control
such as the hardware capacity and database configuration.
See Also transaction, workload.

transaction
 Transactions are atomic units of work that can be committed or rolled back. When a transaction makes
multiple changes to the database, either all the changes succeed when the transaction is committed, or all the
changes are undone when the transaction is rolled back.

Database transactions, as implemented by InnoDB, have properties that are collectively known by the
acronym ACID, for atomicity, consistency, isolation, and durability.
See Also ACID, commit, isolation level, lock, rollback.

http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path


3550

transaction ID
 An internal field associated with each row. This field is physically changed by INSERT, UPDATE, and DELETE
operations to record which transaction has locked the row.
See Also implicit row lock, row, transaction.

transparent page compression
 A feature added in MySQL 5.7.8 that permits page-level compression for InnoDB tables that reside in file-
per-table tablespaces. Page compression is enabled by specifying the COMPRESSION attribute with CREATE
TABLE or ALTER TABLE. For more information, see InnoDB Page Compression.
See Also file-per-table, hole punching, sparse file.

transportable tablespace
 A feature that allows a tablespace to be moved from one instance to another. Traditionally, this has not
been possible for InnoDB tablespaces because all table data was part of the system tablespace. In MySQL
5.6 and higher, the FLUSH TABLES ... FOR EXPORT syntax prepares an InnoDB table for copying to
another server; running ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ... IMPORT
TABLESPACE on the other server brings the copied data file into the other instance. A separate .cfg file,
copied along with the .ibd file, is used to update the table metadata (for example the space ID) as the
tablespace is imported. See Copying File-Per-Table Tablespaces to Another Instance for usage information.
See Also .cfg file, .ibd file, space ID, system tablespace, tablespace.

troubleshooting
 The process of determining the source of a problem. Some of the resources for troubleshooting MySQL
problems include:

• Section 2.10.2.1, “Troubleshooting Problems Starting the MySQL Server”

• Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”

• Section B.5.3.2, “How to Reset the Root Password”

• Section B.5.2, “Common Errors When Using MySQL Programs”

• Section 14.23, “InnoDB Troubleshooting”.

truncate
 A DDL operation that removes the entire contents of a table, while leaving the table and related indexes
intact. Contrast with drop. Although conceptually it has the same result as a DELETE statement with no
WHERE clause, it operates differently behind the scenes: InnoDB creates a new empty table, drops the old
table, then renames the new table to take the place of the old one. Because this is a DDL operation, it cannot
be rolled back.

If the table being truncated contains foreign keys that reference another table, the truncation operation uses
a slower method of operation, deleting one row at a time so that corresponding rows in the referenced table
can be deleted as needed by any ON DELETE CASCADE clause. (MySQL 5.5 and higher do not allow this
slower form of truncate, and return an error instead if foreign keys are involved. In this case, use a DELETE
statement instead.
See Also DDL, drop, foreign key, rollback.

tuple
 A technical term designating an ordered set of elements. It is an abstract notion, used in formal discussions
of database theory. In the database field, tuples are usually represented by the columns of a table row. They
could also be represented by the result sets of queries, for example, queries that retrieved only some columns
of a table, or columns from joined tables.
See Also cursor.

two-phase commit
 An operation that is part of a distributed transaction, under the XA specification. (Sometimes abbreviated as
2PC.) When multiple databases participate in the transaction, either all databases commit the changes, or all
databases roll back the changes.

http://dev.mysql.com/doc/refman/5.7/en/innodb-page-compression.html
http://dev.mysql.com/doc/refman/5.6/en/tablespace-copying.html


3551

See Also commit, rollback, transaction, XA.

U
undo

 Data that is maintained throughout the life of a transaction, recording all changes so that they can be
undone in case of a rollback operation. It is stored in the undo log either within the system tablespace or in
separate undo tablespaces.
See Also rollback, rollback segment, system tablespace, transaction, undo log, undo tablespace.

undo buffer
See undo log.

undo log
 A storage area that holds copies of data modified by active transactions. If another transaction needs to see
the original data (as part of a consistent read operation), the unmodified data is retrieved from this storage
area.

By default, this area is physically part of the system tablespace. In MySQL 5.6 and higher, you can use the
innodb_undo_tablespaces and innodb_undo_directory configuration options to split it into one or
more separate tablespace files, the undo tablespaces, optionally stored on another storage device such as
an SSD.

The undo log is split into separate portions, the insert undo buffer and the update undo buffer.
See Also consistent read, rollback segment, SSD, system tablespace, transaction, undo tablespace.

undo log segment
 A collection of undo logs. Undo log segments exists within rollback segments. An undo log segment might
contain undo logs from multiple transactions. An undo log segment can only be used by one transaction at a
time but can be reused after it is released at transaction commit or rollback. May also be referred to as an
“undo segment”.
See Also commit, rollback, rollback segment, undo log.

undo tablespace
 An undo tablespace comprises one or more files that contain undo logs. Undo logs exist within undo log
segments, which are contained within rollback segments. By default, rollback segments are physically
part of the system tablespace. However, rollback segments can reside in separate undo tablespaces.
An undo tablespace is created when the undo log is separated from the system tablespace using the
innodb_undo_tablespaces and innodb_undo_directory configuration options. Undo tablespaces
were introduced in MySQL 5.6.

For more information, see Storing InnoDB Undo Logs in Separate Tablespaces.
See Also rollback segment, system tablespace, undo log, undo log segment.

unique constraint
 A kind of constraint that asserts that a column cannot contain any duplicate values. In terms of relational
algebra, it is used to specify 1-to-1 relationships. For efficiency in checking whether a value can be inserted
(that is, the value does not already exist in the column), a unique constraint is supported by an underlying
unique index.
See Also constraint, relational, unique index.

unique index
 An index on a column or set of columns that have a unique constraint. Because the index is known not
to contain any duplicate values, certain kinds of lookups and count operations are more efficient than in the
normal kind of index. Most of the lookups against this type of index are simply to determine if a certain value
exists or not. The number of values in the index is the same as the number of rows in the table, or at least the
number of rows with non-null values for the associated columns.

Change buffering optimization does not apply to unique indexes. As a workaround, you can temporarily set
unique_checks=0 while doing a bulk data load into an InnoDB table.

http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_tablespaces
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_directory
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_tablespaces
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_directory
http://dev.mysql.com/doc/refman/5.6/en/innodb-undo-tablespace.html


3552

See Also cardinality, change buffering, unique constraint, unique key.

unique key
 The set of columns (one or more) comprising a unique index. When you can define a WHERE condition that
matches exactly one row, and the query can use an associated unique index, the lookup and error handling
can be performed very efficiently.
See Also cardinality, unique constraint, unique index.

V
variable-length type

 A data type of variable length. VARCHAR, VARBINARY, and BLOB and TEXT types are variable-length types.

InnoDB treats fixed-length fields greater than or equal to 768 bytes in length as variable-length fields, which
can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum byte
length of the character set is greater than 3, as it is with utf8mb4.
See Also off-page column, overflow page.

victim
 The transaction that is automatically chosen to be rolled back when a deadlock is detected. InnoDB rolls
back the transaction that has updated the fewest rows.

Deadlock detection can be disabled using the innodb_deadlock_detect configuration option.
See Also deadlock, deadlock detection, innodb_lock_wait_timeout, transaction.

W
wait

 When an operation, such as acquiring a lock, mutex, or latch, cannot be completed immediately, InnoDB
pauses and tries again. The mechanism for pausing is elaborate enough that this operation has its own name,
the wait. Individual threads are paused using a combination of internal InnoDB scheduling, operating system
wait() calls, and short-duration spin loops.

On systems with heavy load and many transactions, you might use the output from the SHOW INNODB
STATUS command or Performance Schema to determine whether threads are spending too much time
waiting, and if so, how you can improve concurrency.
See Also concurrency, latch, lock, mutex, Performance Schema, spin.

warm backup
 A backup taken while the database is running, but that restricts some database operations during the backup
process. For example, tables might become read-only. For busy applications and web sites, you might prefer
a hot backup.
See Also backup, cold backup, hot backup.

warm up
 To run a system under a typical workload for some time after startup, so that the buffer pool and other
memory regions are filled as they would be under normal conditions. This process happens naturally over
time when a MySQL server is restarted or subjected to a new workload.

Typically, you run a workload for some time to warm up the buffer pool before running performance tests, to
ensure consistent results across multiple runs; otherwise, performance might be artificially low during the first
run.

In MySQL 5.6, you can speed up the warmup process by enabling the
innodb_buffer_pool_dump_at_shutdown and innodb_buffer_pool_load_at_startup
configuration options, to bring the contents of the buffer pool back into memory after a restart. These options
are enabled by default in MySQL 5.7. See Saving and Restoring the Buffer Pool State.
See Also buffer pool, workload.

http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_deadlock_detect
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_buffer_pool_dump_at_shutdown
http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_buffer_pool_load_at_startup
http://dev.mysql.com/doc/refman/5.6/en/innodb-preload-buffer-pool.html


3553

workload
 The combination and volume of SQL and other database operations, performed by a database application
during typical or peak usage. You can subject the database to a particular workload during performance
testing to identify bottlenecks, or during capacity planning.
See Also bottleneck, CPU-bound, disk-bound, SQL.

write combining
 An optimization technique that reduces write operations when dirty pages are flushed from the InnoDB
buffer pool. If a row in a page is updated multiple times, or multiple rows on the same page are updated, all
of those changes are stored to the data files in a single write operation rather than one write for each change.
See Also buffer pool, dirty page, flush.

X
XA

 A standard interface for coordinating distributed transactions, allowing multiple databases to participate in a
transaction while maintaining ACID compliance. For full details, see Section 13.3.7, “XA Transactions”.

XA Distributed Transaction support is enabled by default. If you are not using this feature, you can disable the
innodb_support_xa configuration option, avoiding the performance overhead of an extra fsync for each
transaction.

As of MySQL 5.7.10, disabling innodb_support_xa is not permitted as it makes replication unsafe
and prevents performance gains associated with binary log group commit. The innodb_support_xa
configuration option is removed in MySQL 8.0.
See Also ACID, binary log, commit, transaction, two-phase commit.

Y
young

 A characteristic of a page in the InnoDB buffer pool meaning it has been accessed recently, and so is
moved within the buffer pool data structure, so that it will not be flushed soon by the LRU algorithm. This term
is used in some INFORMATION_SCHEMA column names of tables related to the buffer pool.
See Also buffer pool, flush, INFORMATION_SCHEMA, LRU, page.



3554


	MySQL 5.5 Reference Manual
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 About This Manual
	1.2 Typographical and Syntax Conventions
	1.3 Overview of the MySQL Database Management System
	1.3.1 What is MySQL?
	1.3.2 The Main Features of MySQL
	1.3.3 History of MySQL

	1.4 What Is New in MySQL 5.5
	1.5 MySQL Information Sources
	1.5.1 MySQL Web Sites
	1.5.2 MySQL Mailing Lists
	1.5.2.1 Guidelines for Using the Mailing Lists

	1.5.3 MySQL Community Support at the MySQL Forums
	1.5.4 MySQL Community Support on Internet Relay Chat (IRC)
	1.5.5 MySQL Enterprise

	1.6 How to Report Bugs or Problems
	1.7 MySQL Standards Compliance
	1.7.1 MySQL Extensions to Standard SQL
	1.7.2 MySQL Differences from Standard SQL
	1.7.2.1 SELECT INTO TABLE Differences
	1.7.2.2 UPDATE Differences
	1.7.2.3 Foreign Key Differences
	1.7.2.4 '--' as the Start of a Comment

	1.7.3 How MySQL Deals with Constraints
	1.7.3.1 PRIMARY KEY and UNIQUE Index Constraints
	1.7.3.2 FOREIGN KEY Constraints
	1.7.3.3 Constraints on Invalid Data
	1.7.3.4 ENUM and SET Constraints


	1.8 Credits
	1.8.1 Contributors to MySQL
	1.8.2 Documenters and translators
	1.8.3 Packages that support MySQL
	1.8.4 Tools that were used to create MySQL
	1.8.5 Supporters of MySQL


	Chapter 2 Installing and Upgrading MySQL
	2.1 General Installation Guidance
	2.1.1 Which MySQL Version and Distribution to Install
	2.1.2 How to Get MySQL
	2.1.3 Verifying Package Integrity Using MD5 Checksums or GnuPG
	2.1.3.1 Verifying the MD5 Checksum
	2.1.3.2 Signature Checking Using GnuPG
	2.1.3.3 Signature Checking Using Gpg4win for Windows
	2.1.3.4 Signature Checking Using RPM

	2.1.4 Installation Layouts
	2.1.5 Compiler-Specific Build Characteristics

	2.2 Installing MySQL on Unix/Linux Using Generic Binaries
	2.3 Installing MySQL on Microsoft Windows
	2.3.1 MySQL Installation Layout on Microsoft Windows
	2.3.2 Choosing An Installation Package
	2.3.3 MySQL Installer for Windows
	2.3.3.1 MySQL Installer Initial Setup
	2.3.3.2 Installation Workflow
	InnoDB Cluster Sandbox Test Setup
	Server Configuration
	Setting Alternative Server Paths
	MySQL Applications, Connectors, and Documentation

	2.3.3.3 MySQL Installer Product Catalog and Dashboard
	2.3.3.4 MySQLInstallerConsole Reference

	2.3.4 MySQL Notifier
	2.3.4.1 MySQL Notifier Usage
	2.3.4.2 Setting Up Remote Monitoring in MySQL Notifier

	2.3.5 Installing MySQL on Microsoft Windows Using an MSI Package
	2.3.5.1 Using the MySQL Installation Wizard
	Downloading and Starting the MySQL Installation Wizard
	Choosing an Install Type
	The Custom Install Dialog
	The Confirmation Dialog
	Changes Made by MySQL Installation Wizard
	Upgrading MySQL with the Installation Wizard

	2.3.5.2 Automating MySQL Installation on Microsoft Windows Using the MSI Package
	2.3.5.3 Removing MySQL When Installed from the MSI Package

	2.3.6 MySQL Server Instance Configuration Wizard
	2.3.6.1 Starting the MySQL Server Instance Configuration Wizard
	2.3.6.2 Choosing a Maintenance Option
	2.3.6.3 Choosing a Configuration Type
	2.3.6.4 The Server Type Dialog
	2.3.6.5 The Database Usage Dialog
	2.3.6.6 The InnoDB Tablespace Dialog
	2.3.6.7 The Concurrent Connections Dialog
	2.3.6.8 The Networking and Strict Mode Options Dialog
	2.3.6.9 The Character Set Dialog
	2.3.6.10 The Service Options Dialog
	2.3.6.11 The Security Options Dialog
	2.3.6.12 The Confirmation Dialog
	2.3.6.13 MySQL Server Instance Config Wizard: Creating an Instance from the Command Line

	2.3.7 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive
	2.3.7.1 Extracting the Install Archive
	2.3.7.2 Creating an Option File
	2.3.7.3 Selecting a MySQL Server Type
	2.3.7.4 Starting the Server for the First Time
	2.3.7.5 Starting MySQL from the Windows Command Line
	2.3.7.6 Customizing the PATH for MySQL Tools
	2.3.7.7 Starting MySQL as a Windows Service
	2.3.7.8 Testing The MySQL Installation

	2.3.8 Troubleshooting a Microsoft Windows MySQL Server Installation
	2.3.9 Windows Postinstallation Procedures
	2.3.10 Upgrading MySQL on Windows

	2.4 Installing MySQL on OS X
	2.4.1 General Notes on Installing MySQL on OS X
	2.4.2 Installing MySQL on OS X Using Native Packages
	2.4.3 Installing a MySQL Launch Daemon
	2.4.4 Installing and Using the MySQL Preference Pane

	2.5 Installing MySQL on Linux
	2.5.1 Installing MySQL on Linux Using RPM Packages
	2.5.2 Installing MySQL on Linux Using Debian Packages
	2.5.3 Installing MySQL on Linux Using Native Package Managers

	2.6 Installing MySQL Using Unbreakable Linux Network (ULN)
	2.7 Installing MySQL on Solaris
	2.7.1 Installing MySQL on Solaris Using a Solaris PKG

	2.8 Installing MySQL on FreeBSD
	2.9 Installing MySQL from Source
	2.9.1 MySQL Layout for Source Installation
	2.9.2 Installing MySQL Using a Standard Source Distribution
	2.9.3 Installing MySQL Using a Development Source Tree
	2.9.4 MySQL Source-Configuration Options
	2.9.5 Dealing with Problems Compiling MySQL
	2.9.6 MySQL Configuration and Third-Party Tools

	2.10 Postinstallation Setup and Testing
	2.10.1 Initializing the Data Directory
	2.10.1.1 Problems Running mysql_install_db

	2.10.2 Starting the Server
	2.10.2.1 Troubleshooting Problems Starting the MySQL Server

	2.10.3 Testing the Server
	2.10.4 Securing the Initial MySQL Accounts
	2.10.5 Starting and Stopping MySQL Automatically

	2.11 Upgrading or Downgrading MySQL
	2.11.1 Upgrading MySQL
	2.11.1.1 Changes Affecting Upgrades to MySQL 5.5

	2.11.2 Downgrading MySQL
	2.11.2.1 Changes Affecting Downgrades from MySQL 5.5
	2.11.2.2 Downgrading from MySQL Enterprise Edition to MySQL Community Server

	2.11.3 Rebuilding or Repairing Tables or Indexes
	2.11.4 Copying MySQL Databases to Another Machine

	2.12 Perl Installation Notes
	2.12.1 Installing Perl on Unix
	2.12.2 Installing ActiveState Perl on Windows
	2.12.3 Problems Using the Perl DBI/DBD Interface


	Chapter 3 Tutorial
	3.1 Connecting to and Disconnecting from the Server
	3.2 Entering Queries
	3.3 Creating and Using a Database
	3.3.1 Creating and Selecting a Database
	3.3.2 Creating a Table
	3.3.3 Loading Data into a Table
	3.3.4 Retrieving Information from a Table
	3.3.4.1 Selecting All Data
	3.3.4.2 Selecting Particular Rows
	3.3.4.3 Selecting Particular Columns
	3.3.4.4 Sorting Rows
	3.3.4.5 Date Calculations
	3.3.4.6 Working with NULL Values
	3.3.4.7 Pattern Matching
	3.3.4.8 Counting Rows
	3.3.4.9 Using More Than one Table


	3.4 Getting Information About Databases and Tables
	3.5 Using mysql in Batch Mode
	3.6 Examples of Common Queries
	3.6.1 The Maximum Value for a Column
	3.6.2 The Row Holding the Maximum of a Certain Column
	3.6.3 Maximum of Column per Group
	3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column
	3.6.5 Using User-Defined Variables
	3.6.6 Using Foreign Keys
	3.6.7 Searching on Two Keys
	3.6.8 Calculating Visits Per Day
	3.6.9 Using AUTO_INCREMENT

	3.7 Using MySQL with Apache

	Chapter 4 MySQL Programs
	4.1 Overview of MySQL Programs
	4.2 Using MySQL Programs
	4.2.1 Invoking MySQL Programs
	4.2.2 Connecting to the MySQL Server
	4.2.3 Specifying Program Options
	4.2.4 Using Options on the Command Line
	4.2.5 Program Option Modifiers
	4.2.6 Using Option Files
	4.2.7 Command-Line Options that Affect Option-File Handling
	4.2.8 Using Options to Set Program Variables
	4.2.9 Option Defaults, Options Expecting Values, and the = Sign
	4.2.10 Setting Environment Variables

	4.3 MySQL Server and Server-Startup Programs
	4.3.1 mysqld — The MySQL Server
	4.3.2 mysqld_safe — MySQL Server Startup Script
	4.3.3 mysql.server — MySQL Server Startup Script
	4.3.4 mysqld_multi — Manage Multiple MySQL Servers

	4.4 MySQL Installation-Related Programs
	4.4.1 comp_err — Compile MySQL Error Message File
	4.4.2 mysqlbug — Generate Bug Report
	4.4.3 mysql_install_db — Initialize MySQL Data Directory
	4.4.4 mysql_plugin — Configure MySQL Server Plugins
	4.4.5 mysql_secure_installation — Improve MySQL Installation Security
	4.4.6 mysql_tzinfo_to_sql — Load the Time Zone Tables
	4.4.7 mysql_upgrade — Check and Upgrade MySQL Tables

	4.5 MySQL Client Programs
	4.5.1 mysql — The MySQL Command-Line Tool
	4.5.1.1 mysql Options
	4.5.1.2 mysql Commands
	4.5.1.3 mysql Logging
	4.5.1.4 mysql Server-Side Help
	4.5.1.5 Executing SQL Statements from a Text File
	4.5.1.6 mysql Tips
	Input-Line Editing
	Displaying Query Results Vertically
	Using the --safe-updates Option
	Disabling mysql Auto-Reconnect


	4.5.2 mysqladmin — Client for Administering a MySQL Server
	4.5.3 mysqlcheck — A Table Maintenance Program
	4.5.4 mysqldump — A Database Backup Program
	4.5.5 mysqlimport — A Data Import Program
	4.5.6 mysqlshow — Display Database, Table, and Column Information
	4.5.7 mysqlslap — Load Emulation Client

	4.6 MySQL Administrative and Utility Programs
	4.6.1 innochecksum — Offline InnoDB File Checksum Utility
	4.6.2 myisam_ftdump — Display Full-Text Index information
	4.6.3 myisamchk — MyISAM Table-Maintenance Utility
	4.6.3.1 myisamchk General Options
	4.6.3.2 myisamchk Check Options
	4.6.3.3 myisamchk Repair Options
	4.6.3.4 Other myisamchk Options
	4.6.3.5 Obtaining Table Information with myisamchk
	4.6.3.6 myisamchk Memory Usage

	4.6.4 myisamlog — Display MyISAM Log File Contents
	4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables
	4.6.6 mysqlaccess — Client for Checking Access Privileges
	4.6.7 mysqlbinlog — Utility for Processing Binary Log Files
	4.6.7.1 mysqlbinlog Hex Dump Format
	4.6.7.2 mysqlbinlog Row Event Display

	4.6.8 mysqldumpslow — Summarize Slow Query Log Files
	4.6.9 mysqlhotcopy — A Database Backup Program
	4.6.10 mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
	4.6.11 mysql_find_rows — Extract SQL Statements from Files
	4.6.12 mysql_fix_extensions — Normalize Table File Name Extensions
	4.6.13 mysql_setpermission — Interactively Set Permissions in Grant Tables
	4.6.14 mysql_waitpid — Kill Process and Wait for Its Termination
	4.6.15 mysql_zap — Kill Processes That Match a Pattern

	4.7 MySQL Program Development Utilities
	4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL
	4.7.2 mysql_config — Display Options for Compiling Clients
	4.7.3 my_print_defaults — Display Options from Option Files
	4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

	4.8 Miscellaneous Programs
	4.8.1 perror — Explain Error Codes
	4.8.2 replace — A String-Replacement Utility
	4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa

	4.9 MySQL Program Environment Variables

	Chapter 5 MySQL Server Administration
	5.1 The MySQL Server
	5.1.1 Configuring the Server
	5.1.2 Server Configuration Defaults
	5.1.3 Server Option and Variable Reference
	5.1.4 Server Command Options
	5.1.5 Server System Variables
	5.1.6 Using System Variables
	5.1.6.1 Structured System Variables
	5.1.6.2 Dynamic System Variables

	5.1.7 Server Status Variables
	5.1.8 Server SQL Modes
	5.1.9 IPv6 Support
	5.1.9.1 Verifying System Support for IPv6
	5.1.9.2 Configuring the MySQL Server to Permit IPv6 Connections
	5.1.9.3 Connecting Using the IPv6 Local Host Address
	5.1.9.4 Connecting Using IPv6 Nonlocal Host Addresses
	5.1.9.5 Obtaining an IPv6 Address from a Broker

	5.1.10 Server-Side Help
	5.1.11 Server Response to Signals
	5.1.12 The Server Shutdown Process

	5.2 The MySQL Data Directory
	5.3 The mysql System Database
	5.4 MySQL Server Logs
	5.4.1 Selecting General Query and Slow Query Log Output Destinations
	5.4.2 The Error Log
	5.4.3 The General Query Log
	5.4.4 The Binary Log
	5.4.4.1 Binary Logging Formats
	5.4.4.2 Setting The Binary Log Format
	5.4.4.3 Mixed Binary Logging Format
	5.4.4.4 Logging Format for Changes to mysql Database Tables

	5.4.5 The Slow Query Log
	5.4.6 The DDL Log
	5.4.7 Server Log Maintenance

	5.5 MySQL Server Plugins
	5.5.1 Server Plugins Available
	5.5.2 Installing and Uninstalling Plugins
	5.5.3 Obtaining Server Plugin Information
	5.5.4 MySQL Enterprise Thread Pool
	5.5.4.1 Thread Pool Components
	5.5.4.2 Thread Pool Installation
	5.5.4.3 Thread Pool Operation
	5.5.4.4 Thread Pool Tuning


	5.6 Running Multiple MySQL Instances on One Machine
	5.6.1 Setting Up Multiple Data Directories
	5.6.2 Running Multiple MySQL Instances on Windows
	5.6.2.1 Starting Multiple MySQL Instances at the Windows Command Line
	5.6.2.2 Starting Multiple MySQL Instances as Windows Services

	5.6.3 Running Multiple MySQL Instances on Unix
	5.6.4 Using Client Programs in a Multiple-Server Environment

	5.7 Tracing mysqld Using DTrace
	5.7.1 mysqld DTrace Probe Reference
	5.7.1.1 Connection Probes
	5.7.1.2 Command Probes
	5.7.1.3 Query Probes
	5.7.1.4 Query Parsing Probes
	5.7.1.5 Query Cache Probes
	5.7.1.6 Query Execution Probes
	5.7.1.7 Row-Level Probes
	5.7.1.8 Read Row Probes
	5.7.1.9 Index Probes
	5.7.1.10 Lock Probes
	5.7.1.11 Filesort Probes
	5.7.1.12 Statement Probes
	5.7.1.13 Network Probes
	5.7.1.14 Keycache Probes



	Chapter 6 Security
	6.1 General Security Issues
	6.1.1 Security Guidelines
	6.1.2 Keeping Passwords Secure
	6.1.2.1 End-User Guidelines for Password Security
	6.1.2.2 Administrator Guidelines for Password Security
	6.1.2.3 Passwords and Logging
	6.1.2.4 Password Hashing in MySQL
	6.1.2.5 Implications of Password Hashing Changes in MySQL 4.1 for Application Programs

	6.1.3 Making MySQL Secure Against Attackers
	6.1.4 Security-Related mysqld Options and Variables
	6.1.5 How to Run MySQL as a Normal User
	6.1.6 Security Issues with LOAD DATA LOCAL
	6.1.7 Client Programming Security Guidelines

	6.2 The MySQL Access Privilege System
	6.2.1 Privileges Provided by MySQL
	6.2.2 Grant Tables
	6.2.3 Specifying Account Names
	6.2.4 Access Control, Stage 1: Connection Verification
	6.2.5 Access Control, Stage 2: Request Verification
	6.2.6 When Privilege Changes Take Effect
	6.2.7 Troubleshooting Problems Connecting to MySQL

	6.3 MySQL User Account Management
	6.3.1 User Names and Passwords
	6.3.2 Adding User Accounts
	6.3.3 Removing User Accounts
	6.3.4 Setting Account Resource Limits
	6.3.5 Assigning Account Passwords
	6.3.6 Pluggable Authentication
	6.3.7 Proxy Users
	6.3.8 SQL-Based MySQL Account Activity Auditing

	6.4 Using Secure Connections
	6.4.1 OpenSSL Versus yaSSL
	6.4.2 Building MySQL with Support for Secure Connections
	6.4.3 Secure Connection Protocols and Ciphers
	6.4.4 Configuring MySQL to Use Secure Connections
	6.4.5 Command Options for Secure Connections
	6.4.6 Creating SSL Certificates and Keys Using openssl
	6.4.7 Connecting to MySQL Remotely from Windows with SSH

	6.5 Security Plugins
	6.5.1 Authentication Plugins
	6.5.1.1 Native Pluggable Authentication
	6.5.1.2 Old Native Pluggable Authentication
	6.5.1.3 Client-Side Cleartext Pluggable Authentication
	6.5.1.4 PAM Pluggable Authentication
	6.5.1.5 Windows Pluggable Authentication
	6.5.1.6 Socket Peer-Credential Pluggable Authentication
	6.5.1.7 Test Pluggable Authentication

	6.5.2 MySQL Enterprise Audit
	6.5.2.1 Installing MySQL Enterprise Audit
	6.5.2.2 MySQL Enterprise Audit Security Considerations
	6.5.2.3 The Audit Log File
	6.5.2.4 Audit Log Logging Control
	6.5.2.5 Audit Log Filtering
	6.5.2.6 Audit Log Option and Variable Reference
	6.5.2.7 Audit Log Options and System Variables
	6.5.2.8 Audit Log Restrictions



	Chapter 7 Backup and Recovery
	7.1 Backup and Recovery Types
	7.2 Database Backup Methods
	7.3 Example Backup and Recovery Strategy
	7.3.1 Establishing a Backup Policy
	7.3.2 Using Backups for Recovery
	7.3.3 Backup Strategy Summary

	7.4 Using mysqldump for Backups
	7.4.1 Dumping Data in SQL Format with mysqldump
	7.4.2 Reloading SQL-Format Backups
	7.4.3 Dumping Data in Delimited-Text Format with mysqldump
	7.4.4 Reloading Delimited-Text Format Backups
	7.4.5 mysqldump Tips
	7.4.5.1 Making a Copy of a Database
	7.4.5.2 Copy a Database from one Server to Another
	7.4.5.3 Dumping Stored Programs
	7.4.5.4 Dumping Table Definitions and Content Separately
	7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities


	7.5 Point-in-Time (Incremental) Recovery Using the Binary Log
	7.5.1 Point-in-Time Recovery Using Event Times
	7.5.2 Point-in-Time Recovery Using Event Positions

	7.6 MyISAM Table Maintenance and Crash Recovery
	7.6.1 Using myisamchk for Crash Recovery
	7.6.2 How to Check MyISAM Tables for Errors
	7.6.3 How to Repair MyISAM Tables
	7.6.4 MyISAM Table Optimization
	7.6.5 Setting Up a MyISAM Table Maintenance Schedule


	Chapter 8 Optimization
	8.1 Optimization Overview
	8.2 Optimizing SQL Statements
	8.2.1 Optimizing SELECT Statements
	8.2.1.1 WHERE Clause Optimization
	8.2.1.2 Range Optimization
	8.2.1.3 Index Merge Optimization
	8.2.1.4 Engine Condition Pushdown Optimization
	8.2.1.5 Nested-Loop Join Algorithms
	8.2.1.6 Nested Join Optimization
	8.2.1.7 Left Join and Right Join Optimization
	8.2.1.8 Outer Join Simplification
	8.2.1.9 IS NULL Optimization
	8.2.1.10 ORDER BY Optimization
	8.2.1.11 GROUP BY Optimization
	8.2.1.12 DISTINCT Optimization
	8.2.1.13 LIMIT Query Optimization
	8.2.1.14 Function Call Optimization
	8.2.1.15 Row Constructor Expression Optimization
	8.2.1.16 Avoiding Full Table Scans

	8.2.2 Subquery Optimization
	8.2.3 Optimizing INFORMATION_SCHEMA Queries
	8.2.4 Optimizing Data Change Statements
	8.2.4.1 Optimizing INSERT Statements
	8.2.4.2 Optimizing UPDATE Statements
	8.2.4.3 Optimizing DELETE Statements

	8.2.5 Optimizing Database Privileges
	8.2.6 Other Optimization Tips

	8.3 Optimization and Indexes
	8.3.1 How MySQL Uses Indexes
	8.3.2 Using Primary Keys
	8.3.3 Using Foreign Keys
	8.3.4 Column Indexes
	8.3.5 Multiple-Column Indexes
	8.3.6 Verifying Index Usage
	8.3.7 InnoDB and MyISAM Index Statistics Collection
	8.3.8 Comparison of B-Tree and Hash Indexes

	8.4 Optimizing Database Structure
	8.4.1 Optimizing Data Size
	8.4.2 Optimizing MySQL Data Types
	8.4.2.1 Optimizing for Numeric Data
	8.4.2.2 Optimizing for Character and String Types
	8.4.2.3 Optimizing for BLOB Types
	8.4.2.4 Using PROCEDURE ANALYSE

	8.4.3 Optimizing for Many Tables
	8.4.3.1 How MySQL Opens and Closes Tables
	8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

	8.4.4 Internal Temporary Table Use in MySQL

	8.5 Optimizing for InnoDB Tables
	8.5.1 Optimizing Storage Layout for InnoDB Tables
	8.5.2 Optimizing InnoDB Transaction Management
	8.5.3 Optimizing InnoDB Redo Logging
	8.5.4 Bulk Data Loading for InnoDB Tables
	8.5.5 Optimizing InnoDB Queries
	8.5.6 Optimizing InnoDB DDL Operations
	8.5.7 Optimizing InnoDB Disk I/O
	8.5.8 Optimizing InnoDB Configuration Variables
	8.5.9 Optimizing InnoDB for Systems with Many Tables

	8.6 Optimizing for MyISAM Tables
	8.6.1 Optimizing MyISAM Queries
	8.6.2 Bulk Data Loading for MyISAM Tables
	8.6.3 Optimizing REPAIR TABLE Statements

	8.7 Optimizing for MEMORY Tables
	8.8 Understanding the Query Execution Plan
	8.8.1 Optimizing Queries with EXPLAIN
	8.8.2 EXPLAIN Output Format
	8.8.3 Extended EXPLAIN Output Format
	8.8.4 Estimating Query Performance

	8.9 Controlling the Query Optimizer
	8.9.1 Controlling Query Plan Evaluation
	8.9.2 Switchable Optimizations
	8.9.3 Index Hints

	8.10 Buffering and Caching
	8.10.1 InnoDB Buffer Pool Optimization
	8.10.2 The MyISAM Key Cache
	8.10.2.1 Shared Key Cache Access
	8.10.2.2 Multiple Key Caches
	8.10.2.3 Midpoint Insertion Strategy
	8.10.2.4 Index Preloading
	8.10.2.5 Key Cache Block Size
	8.10.2.6 Restructuring a Key Cache

	8.10.3 The MySQL Query Cache
	8.10.3.1 How the Query Cache Operates
	8.10.3.2 Query Cache SELECT Options
	8.10.3.3 Query Cache Configuration
	8.10.3.4 Query Cache Status and Maintenance


	8.11 Optimizing Locking Operations
	8.11.1 Internal Locking Methods
	8.11.2 Table Locking Issues
	8.11.3 Concurrent Inserts
	8.11.4 Metadata Locking
	8.11.5 External Locking

	8.12 Optimizing the MySQL Server
	8.12.1 System Factors
	8.12.2 Optimizing Disk I/O
	8.12.3 Using Symbolic Links
	8.12.3.1 Using Symbolic Links for Databases on Unix
	8.12.3.2 Using Symbolic Links for MyISAM Tables on Unix
	8.12.3.3 Using Symbolic Links for Databases on Windows

	8.12.4 Optimizing Memory Use
	8.12.4.1 How MySQL Uses Memory
	8.12.4.2 Enabling Large Page Support

	8.12.5 Optimizing Network Use
	8.12.5.1 How MySQL Uses Threads for Client Connections
	8.12.5.2 DNS Lookup Optimization and the Host Cache


	8.13 Measuring Performance (Benchmarking)
	8.13.1 Measuring the Speed of Expressions and Functions
	8.13.2 The MySQL Benchmark Suite
	8.13.3 Using Your Own Benchmarks
	8.13.4 Measuring Performance with performance_schema

	8.14 Examining Thread Information
	8.14.1 Thread Command Values
	8.14.2 General Thread States
	8.14.3 Delayed-Insert Thread States
	8.14.4 Query Cache Thread States
	8.14.5 Replication Master Thread States
	8.14.6 Replication Slave I/O Thread States
	8.14.7 Replication Slave SQL Thread States
	8.14.8 Replication Slave Connection Thread States
	8.14.9 NDB Cluster Thread States
	8.14.10 Event Scheduler Thread States


	Chapter 9 Language Structure
	9.1 Literal Values
	9.1.1 String Literals
	9.1.2 Number Literals
	9.1.3 Date and Time Literals
	9.1.4 Hexadecimal Literals
	9.1.5 Bit-Value Literals
	9.1.6 Boolean Literals
	9.1.7 NULL Values

	9.2 Schema Object Names
	9.2.1 Identifier Qualifiers
	9.2.2 Identifier Case Sensitivity
	9.2.3 Mapping of Identifiers to File Names
	9.2.4 Function Name Parsing and Resolution

	9.3 Keywords and Reserved Words
	9.4 User-Defined Variables
	9.5 Expression Syntax
	9.6 Comment Syntax

	Chapter 10 Globalization
	10.1 Character Set Support
	10.1.1 Character Sets and Collations in General
	10.1.2 Character Sets and Collations in MySQL
	10.1.2.1 Character Set Repertoire
	10.1.2.2 UTF-8 for Metadata

	10.1.3 Specifying Character Sets and Collations
	10.1.3.1 Collation Naming Conventions
	10.1.3.2 Server Character Set and Collation
	10.1.3.3 Database Character Set and Collation
	10.1.3.4 Table Character Set and Collation
	10.1.3.5 Column Character Set and Collation
	10.1.3.6 Character String Literal Character Set and Collation
	10.1.3.7 The National Character Set
	10.1.3.8 Character Set Introducers
	10.1.3.9 Examples of Character Set and Collation Assignment
	10.1.3.10 Compatibility with Other DBMSs

	10.1.4 Connection Character Sets and Collations
	10.1.5 Configuring Application Character Set and Collation
	10.1.6 Error Message Character Set
	10.1.7 Column Character Set Conversion
	10.1.8 Collation Issues
	10.1.8.1 Using COLLATE in SQL Statements
	10.1.8.2 COLLATE Clause Precedence
	10.1.8.3 Character Set and Collation Compatibility
	10.1.8.4 Collation Coercibility in Expressions
	10.1.8.5 The binary Collation Compared to _bin Collations
	10.1.8.6 Examples of the Effect of Collation
	10.1.8.7 Using Collation in INFORMATION_SCHEMA Searches

	10.1.9 Unicode Support
	10.1.9.1 The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)
	10.1.9.2 The utf8mb3 Character Set (Alias for utf8)
	10.1.9.3 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)
	10.1.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding)
	10.1.9.5 The utf16 Character Set (UTF-16 Unicode Encoding)
	10.1.9.6 The utf32 Character Set (UTF-32 Unicode Encoding)
	10.1.9.7 Converting Between 3-Byte and 4-Byte Unicode Character Sets

	10.1.10 Supported Character Sets and Collations
	10.1.10.1 Unicode Character Sets
	10.1.10.2 West European Character Sets
	10.1.10.3 Central European Character Sets
	10.1.10.4 South European and Middle East Character Sets
	10.1.10.5 Baltic Character Sets
	10.1.10.6 Cyrillic Character Sets
	10.1.10.7 Asian Character Sets
	The cp932 Character Set

	10.1.10.8 The Binary Character Set


	10.2 Setting the Error Message Language
	10.3 Adding a Character Set
	10.3.1 Character Definition Arrays
	10.3.2 String Collating Support for Complex Character Sets
	10.3.3 Multi-Byte Character Support for Complex Character Sets

	10.4 Adding a Collation to a Character Set
	10.4.1 Collation Implementation Types
	10.4.2 Choosing a Collation ID
	10.4.3 Adding a Simple Collation to an 8-Bit Character Set
	10.4.4 Adding a UCA Collation to a Unicode Character Set
	10.4.4.1 Defining a UCA Collation Using LDML Syntax
	10.4.4.2 LDML Syntax Supported in MySQL


	10.5 Character Set Configuration
	10.6 MySQL Server Time Zone Support
	10.6.1 Staying Current with Time Zone Changes
	10.6.2 Time Zone Leap Second Support

	10.7 MySQL Server Locale Support

	Chapter 11 Data Types
	11.1 Data Type Overview
	11.1.1 Numeric Type Overview
	11.1.2 Date and Time Type Overview
	11.1.3 String Type Overview

	11.2 Numeric Types
	11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
	11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC
	11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE
	11.2.4 Bit-Value Type - BIT
	11.2.5 Numeric Type Attributes
	11.2.6 Out-of-Range and Overflow Handling

	11.3 Date and Time Types
	11.3.1 The DATE, DATETIME, and TIMESTAMP Types
	11.3.2 The TIME Type
	11.3.3 The YEAR Type
	11.3.4 YEAR(2) Limitations and Migrating to YEAR(4)
	11.3.5 Automatic Initialization and Updating for TIMESTAMP
	11.3.6 Fractional Seconds in Time Values
	11.3.7 Conversion Between Date and Time Types
	11.3.8 Two-Digit Years in Dates

	11.4 String Types
	11.4.1 The CHAR and VARCHAR Types
	11.4.2 The BINARY and VARBINARY Types
	11.4.3 The BLOB and TEXT Types
	11.4.4 The ENUM Type
	11.4.5 The SET Type

	11.5 Extensions for Spatial Data
	11.5.1 Spatial Data Types
	11.5.2 The OpenGIS Geometry Model
	11.5.2.1 The Geometry Class Hierarchy
	11.5.2.2 Geometry Class
	11.5.2.3 Point Class
	11.5.2.4 Curve Class
	11.5.2.5 LineString Class
	11.5.2.6 Surface Class
	11.5.2.7 Polygon Class
	11.5.2.8 GeometryCollection Class
	11.5.2.9 MultiPoint Class
	11.5.2.10 MultiCurve Class
	11.5.2.11 MultiLineString Class
	11.5.2.12 MultiSurface Class
	11.5.2.13 MultiPolygon Class

	11.5.3 Using Spatial Data
	11.5.3.1 Supported Spatial Data Formats
	11.5.3.2 Creating Spatial Columns
	11.5.3.3 Populating Spatial Columns
	11.5.3.4 Fetching Spatial Data
	11.5.3.5 Optimizing Spatial Analysis
	11.5.3.6 Creating Spatial Indexes
	11.5.3.7 Using Spatial Indexes


	11.6 Data Type Default Values
	11.7 Data Type Storage Requirements
	11.8 Choosing the Right Type for a Column
	11.9 Using Data Types from Other Database Engines

	Chapter 12 Functions and Operators
	12.1 Function and Operator Reference
	12.2 Type Conversion in Expression Evaluation
	12.3 Operators
	12.3.1 Operator Precedence
	12.3.2 Comparison Functions and Operators
	12.3.3 Logical Operators
	12.3.4 Assignment Operators

	12.4 Control Flow Functions
	12.5 String Functions
	12.5.1 String Comparison Functions
	12.5.2 Regular Expressions
	12.5.3 Character Set and Collation of Function Results

	12.6 Numeric Functions and Operators
	12.6.1 Arithmetic Operators
	12.6.2 Mathematical Functions

	12.7 Date and Time Functions
	12.8 What Calendar Is Used By MySQL?
	12.9 Full-Text Search Functions
	12.9.1 Natural Language Full-Text Searches
	12.9.2 Boolean Full-Text Searches
	12.9.3 Full-Text Searches with Query Expansion
	12.9.4 Full-Text Stopwords
	12.9.5 Full-Text Restrictions
	12.9.6 Fine-Tuning MySQL Full-Text Search
	12.9.7 Adding a Collation for Full-Text Indexing

	12.10 Cast Functions and Operators
	12.11 XML Functions
	12.12 Bit Functions and Operators
	12.13 Encryption and Compression Functions
	12.14 Information Functions
	12.15 Spatial Analysis Functions
	12.15.1 Spatial Function Reference
	12.15.2 Argument Handling by Spatial Functions
	12.15.3 Functions That Create Geometry Values from WKT Values
	12.15.4 Functions That Create Geometry Values from WKB Values
	12.15.5 MySQL-Specific Functions That Create Geometry Values
	12.15.6 Geometry Format Conversion Functions
	12.15.7 Geometry Property Functions
	12.15.7.1 General Geometry Property Functions
	12.15.7.2 Point Property Functions
	12.15.7.3 LineString and MultiLineString Property Functions
	12.15.7.4 Polygon and MultiPolygon Property Functions
	12.15.7.5 GeometryCollection Property Functions

	12.15.8 Spatial Operator Functions
	12.15.9 Functions That Test Spatial Relations Between Geometry Objects
	12.15.9.1 Spatial Relation Functions That Use Object Shapes
	12.15.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)
	12.15.9.3 MySQL-Specific Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)


	12.16 Aggregate (GROUP BY) Functions
	12.16.1 Aggregate (GROUP BY) Function Descriptions
	12.16.2 GROUP BY Modifiers
	12.16.3 MySQL Handling of GROUP BY

	12.17 Miscellaneous Functions
	12.18 Precision Math
	12.18.1 Types of Numeric Values
	12.18.2 DECIMAL Data Type Characteristics
	12.18.3 Expression Handling
	12.18.4 Rounding Behavior
	12.18.5 Precision Math Examples


	Chapter 13 SQL Statement Syntax
	13.1 Data Definition Statements
	13.1.1 ALTER DATABASE Syntax
	13.1.2 ALTER EVENT Syntax
	13.1.3 ALTER FUNCTION Syntax
	13.1.4 ALTER LOGFILE GROUP Syntax
	13.1.5 ALTER PROCEDURE Syntax
	13.1.6 ALTER SERVER Syntax
	13.1.7 ALTER TABLE Syntax
	13.1.7.1 ALTER TABLE Partition Operations
	13.1.7.2 ALTER TABLE Online Operations in NDB Cluster 7.2
	13.1.7.3 ALTER TABLE Examples

	13.1.8 ALTER TABLESPACE Syntax
	13.1.9 ALTER VIEW Syntax
	13.1.10 CREATE DATABASE Syntax
	13.1.11 CREATE EVENT Syntax
	13.1.12 CREATE FUNCTION Syntax
	13.1.13 CREATE INDEX Syntax
	13.1.14 CREATE LOGFILE GROUP Syntax
	13.1.15 CREATE PROCEDURE and CREATE FUNCTION Syntax
	13.1.16 CREATE SERVER Syntax
	13.1.17 CREATE TABLE Syntax
	13.1.17.1 CREATE TABLE Statement Retention
	13.1.17.2 Files Created by CREATE TABLE
	13.1.17.3 CREATE TEMPORARY TABLE Syntax
	13.1.17.4 CREATE TABLE ... LIKE Syntax
	13.1.17.5 CREATE TABLE ... SELECT Syntax
	13.1.17.6 Using FOREIGN KEY Constraints
	13.1.17.7 Silent Column Specification Changes

	13.1.18 CREATE TABLESPACE Syntax
	13.1.19 CREATE TRIGGER Syntax
	13.1.20 CREATE VIEW Syntax
	13.1.21 DROP DATABASE Syntax
	13.1.22 DROP EVENT Syntax
	13.1.23 DROP FUNCTION Syntax
	13.1.24 DROP INDEX Syntax
	13.1.25 DROP LOGFILE GROUP Syntax
	13.1.26 DROP PROCEDURE and DROP FUNCTION Syntax
	13.1.27 DROP SERVER Syntax
	13.1.28 DROP TABLE Syntax
	13.1.29 DROP TABLESPACE Syntax
	13.1.30 DROP TRIGGER Syntax
	13.1.31 DROP VIEW Syntax
	13.1.32 RENAME TABLE Syntax
	13.1.33 TRUNCATE TABLE Syntax

	13.2 Data Manipulation Statements
	13.2.1 CALL Syntax
	13.2.2 DELETE Syntax
	13.2.3 DO Syntax
	13.2.4 HANDLER Syntax
	13.2.5 INSERT Syntax
	13.2.5.1 INSERT ... SELECT Syntax
	13.2.5.2 INSERT DELAYED Syntax
	13.2.5.3 INSERT ... ON DUPLICATE KEY UPDATE Syntax

	13.2.6 LOAD DATA INFILE Syntax
	13.2.7 LOAD XML Syntax
	13.2.8 REPLACE Syntax
	13.2.9 SELECT Syntax
	13.2.9.1 SELECT ... INTO Syntax
	13.2.9.2 JOIN Syntax
	13.2.9.3 UNION Syntax

	13.2.10 Subquery Syntax
	13.2.10.1 The Subquery as Scalar Operand
	13.2.10.2 Comparisons Using Subqueries
	13.2.10.3 Subqueries with ANY, IN, or SOME
	13.2.10.4 Subqueries with ALL
	13.2.10.5 Row Subqueries
	13.2.10.6 Subqueries with EXISTS or NOT EXISTS
	13.2.10.7 Correlated Subqueries
	13.2.10.8 Derived Tables (Subqueries in the FROM Clause)
	13.2.10.9 Subquery Errors
	13.2.10.10 Optimizing Subqueries
	13.2.10.11 Rewriting Subqueries as Joins

	13.2.11 UPDATE Syntax

	13.3 Transactional and Locking Statements
	13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax
	13.3.2 Statements That Cannot Be Rolled Back
	13.3.3 Statements That Cause an Implicit Commit
	13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax
	13.3.5 LOCK TABLES and UNLOCK TABLES Syntax
	13.3.5.1 Interaction of Table Locking and Transactions
	13.3.5.2 LOCK TABLES and Triggers
	13.3.5.3 Table-Locking Restrictions and Conditions

	13.3.6 SET TRANSACTION Syntax
	13.3.7 XA Transactions
	13.3.7.1 XA Transaction SQL Syntax
	13.3.7.2 XA Transaction States


	13.4 Replication Statements
	13.4.1 SQL Statements for Controlling Master Servers
	13.4.1.1 PURGE BINARY LOGS Syntax
	13.4.1.2 RESET MASTER Syntax
	13.4.1.3 SET sql_log_bin Syntax

	13.4.2 SQL Statements for Controlling Slave Servers
	13.4.2.1 CHANGE MASTER TO Syntax
	13.4.2.2 MASTER_POS_WAIT() Syntax
	13.4.2.3 RESET SLAVE Syntax
	13.4.2.4 SET GLOBAL sql_slave_skip_counter Syntax
	13.4.2.5 START SLAVE Syntax
	13.4.2.6 STOP SLAVE Syntax


	13.5 Prepared SQL Statement Syntax
	13.5.1 PREPARE Syntax
	13.5.2 EXECUTE Syntax
	13.5.3 DEALLOCATE PREPARE Syntax
	13.5.4 Automatic Prepared Statement Repreparation

	13.6 Compound-Statement Syntax
	13.6.1 BEGIN ... END Compound-Statement Syntax
	13.6.2 Statement Label Syntax
	13.6.3 DECLARE Syntax
	13.6.4 Variables in Stored Programs
	13.6.4.1 Local Variable DECLARE Syntax
	13.6.4.2 Local Variable Scope and Resolution

	13.6.5 Flow Control Statements
	13.6.5.1 CASE Syntax
	13.6.5.2 IF Syntax
	13.6.5.3 ITERATE Syntax
	13.6.5.4 LEAVE Syntax
	13.6.5.5 LOOP Syntax
	13.6.5.6 REPEAT Syntax
	13.6.5.7 RETURN Syntax
	13.6.5.8 WHILE Syntax

	13.6.6 Cursors
	13.6.6.1 Cursor CLOSE Syntax
	13.6.6.2 Cursor DECLARE Syntax
	13.6.6.3 Cursor FETCH Syntax
	13.6.6.4 Cursor OPEN Syntax

	13.6.7 Condition Handling
	13.6.7.1 DECLARE ... CONDITION Syntax
	13.6.7.2 DECLARE ... HANDLER Syntax
	13.6.7.3 RESIGNAL Syntax
	RESIGNAL Alone
	RESIGNAL with New Signal Information
	RESIGNAL with a Condition Value and Optional New Signal Information
	RESIGNAL Requires Condition Handler Context

	13.6.7.4 SIGNAL Syntax
	Signal Condition Information Items
	Effect of Signals on Handlers, Cursors, and Statements



	13.7 Database Administration Statements
	13.7.1 Account Management Statements
	13.7.1.1 CREATE USER Syntax
	13.7.1.2 DROP USER Syntax
	13.7.1.3 GRANT Syntax
	13.7.1.4 RENAME USER Syntax
	13.7.1.5 REVOKE Syntax
	13.7.1.6 SET PASSWORD Syntax

	13.7.2 Table Maintenance Statements
	13.7.2.1 ANALYZE TABLE Syntax
	13.7.2.2 CHECK TABLE Syntax
	13.7.2.3 CHECKSUM TABLE Syntax
	13.7.2.4 OPTIMIZE TABLE Syntax
	13.7.2.5 REPAIR TABLE Syntax

	13.7.3 Plugin and User-Defined Function Statements
	13.7.3.1 CREATE FUNCTION Syntax for User-Defined Functions
	13.7.3.2 DROP FUNCTION Syntax
	13.7.3.3 INSTALL PLUGIN Syntax
	13.7.3.4 UNINSTALL PLUGIN Syntax

	13.7.4 SET Syntax
	13.7.4.1 SET Syntax for Variable Assignment
	13.7.4.2 SET CHARACTER SET Syntax
	13.7.4.3 SET NAMES Syntax

	13.7.5 SHOW Syntax
	13.7.5.1 SHOW AUTHORS Syntax
	13.7.5.2 SHOW BINARY LOGS Syntax
	13.7.5.3 SHOW BINLOG EVENTS Syntax
	13.7.5.4 SHOW CHARACTER SET Syntax
	13.7.5.5 SHOW COLLATION Syntax
	13.7.5.6 SHOW COLUMNS Syntax
	13.7.5.7 SHOW CONTRIBUTORS Syntax
	13.7.5.8 SHOW CREATE DATABASE Syntax
	13.7.5.9 SHOW CREATE EVENT Syntax
	13.7.5.10 SHOW CREATE FUNCTION Syntax
	13.7.5.11 SHOW CREATE PROCEDURE Syntax
	13.7.5.12 SHOW CREATE TABLE Syntax
	13.7.5.13 SHOW CREATE TRIGGER Syntax
	13.7.5.14 SHOW CREATE VIEW Syntax
	13.7.5.15 SHOW DATABASES Syntax
	13.7.5.16 SHOW ENGINE Syntax
	13.7.5.17 SHOW ENGINES Syntax
	13.7.5.18 SHOW ERRORS Syntax
	13.7.5.19 SHOW EVENTS Syntax
	13.7.5.20 SHOW FUNCTION CODE Syntax
	13.7.5.21 SHOW FUNCTION STATUS Syntax
	13.7.5.22 SHOW GRANTS Syntax
	13.7.5.23 SHOW INDEX Syntax
	13.7.5.24 SHOW MASTER STATUS Syntax
	13.7.5.25 SHOW OPEN TABLES Syntax
	13.7.5.26 SHOW PLUGINS Syntax
	13.7.5.27 SHOW PRIVILEGES Syntax
	13.7.5.28 SHOW PROCEDURE CODE Syntax
	13.7.5.29 SHOW PROCEDURE STATUS Syntax
	13.7.5.30 SHOW PROCESSLIST Syntax
	13.7.5.31 SHOW PROFILE Syntax
	13.7.5.32 SHOW PROFILES Syntax
	13.7.5.33 SHOW RELAYLOG EVENTS Syntax
	13.7.5.34 SHOW SLAVE HOSTS Syntax
	13.7.5.35 SHOW SLAVE STATUS Syntax
	13.7.5.36 SHOW STATUS Syntax
	13.7.5.37 SHOW TABLE STATUS Syntax
	13.7.5.38 SHOW TABLES Syntax
	13.7.5.39 SHOW TRIGGERS Syntax
	13.7.5.40 SHOW VARIABLES Syntax
	13.7.5.41 SHOW WARNINGS Syntax

	13.7.6 Other Administrative Statements
	13.7.6.1 BINLOG Syntax
	13.7.6.2 CACHE INDEX Syntax
	13.7.6.3 FLUSH Syntax
	13.7.6.4 KILL Syntax
	13.7.6.5 LOAD INDEX INTO CACHE Syntax
	13.7.6.6 RESET Syntax


	13.8 Utility Statements
	13.8.1 DESCRIBE Syntax
	13.8.2 EXPLAIN Syntax
	13.8.3 HELP Syntax
	13.8.4 USE Syntax


	Chapter 14 The InnoDB Storage Engine
	14.1 Introduction to InnoDB
	14.1.1 Benefits of Using InnoDB Tables
	14.1.2 Best Practices for InnoDB Tables
	14.1.3 Checking InnoDB Availability
	14.1.4 Upward and Downward Compatibility
	14.1.5 Testing and Benchmarking with InnoDB
	14.1.6 Turning Off InnoDB
	14.1.7 Third-Party Software Contributions
	14.1.7.1 Performance Patches from Google
	14.1.7.2 Multiple Background I/O Threads Patch from Percona
	14.1.7.3 Performance Patches from Sun Microsystems


	14.2 Installing the InnoDB Storage Engine
	14.3 Upgrading the InnoDB Storage Engine
	14.4 Downgrading the InnoDB Storage Engine
	14.5 InnoDB and the ACID Model
	14.6 InnoDB Multi-Versioning
	14.7 InnoDB Architecture
	14.7.1 Buffer Pool
	14.7.2 Change Buffer
	14.7.3 Adaptive Hash Index
	14.7.4 Redo Log Buffer
	14.7.5 System Tablespace
	14.7.6 InnoDB Data Dictionary
	14.7.7 Doublewrite Buffer
	14.7.8 Undo Logs
	14.7.9 File-Per-Table Tablespaces
	14.7.10 Redo Log
	14.7.10.1 Group Commit for Redo Log Flushing


	14.8 InnoDB Locking and Transaction Model
	14.8.1 InnoDB Locking
	14.8.2 InnoDB Transaction Model
	14.8.2.1 Transaction Isolation Levels
	14.8.2.2 autocommit, Commit, and Rollback
	14.8.2.3 Consistent Nonlocking Reads
	14.8.2.4 Locking Reads

	14.8.3 Locks Set by Different SQL Statements in InnoDB
	14.8.4 Phantom Rows
	14.8.5 Deadlocks in InnoDB
	14.8.5.1 An InnoDB Deadlock Example
	14.8.5.2 Deadlock Detection and Rollback
	14.8.5.3 How to Minimize and Handle Deadlocks


	14.9 InnoDB Configuration
	14.9.1 InnoDB Startup Configuration
	14.9.2 InnoDB Buffer Pool Configuration
	14.9.2.1 The InnoDB Buffer Pool
	14.9.2.2 Configuring Multiple Buffer Pool Instances
	14.9.2.3 Making the Buffer Pool Scan Resistant
	14.9.2.4 Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)
	14.9.2.5 Configuring InnoDB Buffer Pool Flushing
	14.9.2.6 Monitoring the Buffer Pool Using the InnoDB Standard Monitor

	14.9.3 Configuring the Memory Allocator for InnoDB
	14.9.4 Configuring InnoDB Change Buffering
	14.9.5 Configuring Thread Concurrency for InnoDB
	14.9.6 Configuring the Number of Background InnoDB I/O Threads
	14.9.7 Using Asynchronous I/O on Linux
	14.9.8 Configuring the InnoDB Master Thread I/O Rate
	14.9.9 Configuring Spin Lock Polling
	14.9.10 Configuring InnoDB Purge Scheduling
	14.9.11 Configuring Optimizer Statistics for InnoDB
	14.9.11.1 Estimating ANALYZE TABLE Complexity for InnoDB Tables


	14.10 InnoDB Tablespaces
	14.10.1 Resizing the InnoDB System Tablespace
	14.10.2 Changing the Number or Size of InnoDB Redo Log Files
	14.10.3 Using Raw Disk Partitions for the System Tablespace
	14.10.4 InnoDB File-Per-Table Tablespaces
	14.10.4.1 Enabling and Disabling File-Per-Table Tablespaces


	14.11 InnoDB Tables and Indexes
	14.11.1 InnoDB Tables
	14.11.1.1 Creating InnoDB Tables
	14.11.1.2 The Physical Row Structure of an InnoDB Table
	14.11.1.3 Moving or Copying InnoDB Tables
	14.11.1.4 Converting Tables from MyISAM to InnoDB
	14.11.1.5 AUTO_INCREMENT Handling in InnoDB
	14.11.1.6 InnoDB and FOREIGN KEY Constraints
	14.11.1.7 Limits on InnoDB Tables

	14.11.2 InnoDB Indexes
	14.11.2.1 Clustered and Secondary Indexes
	14.11.2.2 The Physical Structure of an InnoDB Index


	14.12 InnoDB Table Compression
	14.12.1 Overview of Table Compression
	14.12.2 Enabling Compression for a Table
	14.12.3 Tuning Compression for InnoDB Tables
	14.12.4 Monitoring InnoDB Table Compression at Runtime
	14.12.5 How Compression Works for InnoDB Tables
	14.12.6 SQL Compression Syntax Warnings and Errors

	14.13 InnoDB File-Format Management
	14.13.1 Enabling File Formats
	14.13.2 Verifying File Format Compatibility
	14.13.2.1 Compatibility Check When InnoDB Is Started
	14.13.2.2 Compatibility Check When a Table Is Opened

	14.13.3 Identifying the File Format in Use
	14.13.4 Downgrading the File Format

	14.14 InnoDB Row Storage and Row Formats
	14.14.1 Overview of InnoDB Row Storage
	14.14.2 Specifying the Row Format for a Table
	14.14.3 DYNAMIC and COMPRESSED Row Formats
	14.14.4 COMPACT and REDUNDANT Row Formats

	14.15 InnoDB Disk I/O and File Space Management
	14.15.1 InnoDB Disk I/O
	14.15.2 File Space Management
	14.15.3 InnoDB Checkpoints
	14.15.4 Defragmenting a Table
	14.15.5 Reclaiming Disk Space with TRUNCATE TABLE

	14.16 InnoDB Fast Index Creation
	14.16.1 Overview of Fast Index Creation
	14.16.2 Examples of Fast Index Creation
	14.16.3 Implementation Details of Fast Index Creation
	14.16.4 Concurrency Considerations for Fast Index Creation
	14.16.5 How Crash Recovery Works with Fast Index Creation
	14.16.6 Limitations of Fast Index Creation

	14.17 InnoDB Startup Options and System Variables
	14.18 InnoDB INFORMATION_SCHEMA Tables
	14.18.1 InnoDB INFORMATION_SCHEMA Tables about Compression
	14.18.1.1 INNODB_CMP and INNODB_CMP_RESET
	14.18.1.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET
	14.18.1.3 Using the Compression Information Schema Tables

	14.18.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information
	14.18.2.1 Using InnoDB Transaction and Locking Information
	14.18.2.2 InnoDB Lock and Lock-Wait Information
	14.18.2.3 Persistence and Consistency of InnoDB Transaction and Locking Information

	14.18.3 InnoDB INFORMATION_SCHEMA Buffer Pool Tables

	14.19 InnoDB Integration with MySQL Performance Schema
	14.19.1 Monitoring InnoDB Mutex Waits Using Performance Schema

	14.20 InnoDB Monitors
	14.20.1 InnoDB Monitor Types
	14.20.2 Enabling InnoDB Monitors
	14.20.3 InnoDB Standard Monitor and Lock Monitor Output
	14.20.4 InnoDB Tablespace Monitor Output
	14.20.5 InnoDB Table Monitor Output

	14.21 InnoDB Backup and Recovery
	14.21.1 InnoDB Backup
	14.21.2 InnoDB Recovery

	14.22 InnoDB and MySQL Replication
	14.23 InnoDB Troubleshooting
	14.23.1 Troubleshooting InnoDB I/O Problems
	14.23.2 Forcing InnoDB Recovery
	14.23.3 Troubleshooting InnoDB Data Dictionary Operations
	14.23.4 InnoDB Error Handling


	Chapter 15 Alternative Storage Engines
	15.1 Setting the Storage Engine
	15.2 Overview of MySQL Storage Engine Architecture
	15.2.1 Pluggable Storage Engine Architecture
	15.2.2 The Common Database Server Layer

	15.3 The MyISAM Storage Engine
	15.3.1 MyISAM Startup Options
	15.3.2 Space Needed for Keys
	15.3.3 MyISAM Table Storage Formats
	15.3.3.1 Static (Fixed-Length) Table Characteristics
	15.3.3.2 Dynamic Table Characteristics
	15.3.3.3 Compressed Table Characteristics

	15.3.4 MyISAM Table Problems
	15.3.4.1 Corrupted MyISAM Tables
	15.3.4.2 Problems from Tables Not Being Closed Properly


	15.4 The MEMORY Storage Engine
	15.5 The CSV Storage Engine
	15.5.1 Repairing and Checking CSV Tables
	15.5.2 CSV Limitations

	15.6 The ARCHIVE Storage Engine
	15.7 The BLACKHOLE Storage Engine
	15.8 The MERGE Storage Engine
	15.8.1 MERGE Table Advantages and Disadvantages
	15.8.2 MERGE Table Problems

	15.9 The FEDERATED Storage Engine
	15.9.1 FEDERATED Storage Engine Overview
	15.9.2 How to Create FEDERATED Tables
	15.9.2.1 Creating a FEDERATED Table Using CONNECTION
	15.9.2.2 Creating a FEDERATED Table Using CREATE SERVER

	15.9.3 FEDERATED Storage Engine Notes and Tips
	15.9.4 FEDERATED Storage Engine Resources

	15.10 The EXAMPLE Storage Engine
	15.11 Other Storage Engines

	Chapter 16 High Availability and Scalability
	16.1 Using ZFS Replication
	16.1.1 Using ZFS for File System Replication
	16.1.2 Configuring MySQL for ZFS Replication
	16.1.3 Handling MySQL Recovery with ZFS

	16.2 Using MySQL with memcached
	16.2.1 Installing memcached
	16.2.2 Using memcached
	16.2.2.1 memcached Command-Line Options
	16.2.2.2 memcached Deployment
	16.2.2.3 Using Namespaces
	16.2.2.4 Data Expiry
	16.2.2.5 memcached Hashing/Distribution Types
	16.2.2.6 Using memcached and DTrace
	16.2.2.7 Memory Allocation within memcached
	16.2.2.8 memcached Thread Support
	16.2.2.9 memcached Logs

	16.2.3 Developing a memcached Application
	16.2.3.1 Basic memcached Operations
	16.2.3.2 Using memcached as a MySQL Caching Layer
	16.2.3.3 Using libmemcached with C and C++
	libmemcached Base Functions
	libmemcached Server Functions
	libmemcached Set Functions
	libmemcached Get Functions
	Controlling libmemcached Behaviors
	libmemcached Command-Line Utilities

	16.2.3.4 Using MySQL and memcached with Perl
	16.2.3.5 Using MySQL and memcached with Python
	16.2.3.6 Using MySQL and memcached with PHP
	16.2.3.7 Using MySQL and memcached with Ruby
	16.2.3.8 Using MySQL and memcached with Java
	16.2.3.9 Using the memcached TCP Text Protocol

	16.2.4 Getting memcached Statistics
	16.2.4.1 memcached General Statistics
	16.2.4.2 memcached Slabs Statistics
	16.2.4.3 memcached Item Statistics
	16.2.4.4 memcached Size Statistics
	16.2.4.5 memcached Detail Statistics
	16.2.4.6 Using memcached-tool

	16.2.5 memcached FAQ


	Chapter 17 Replication
	17.1 Replication Configuration
	17.1.1 How to Set Up Replication
	17.1.1.1 Setting the Replication Master Configuration
	17.1.1.2 Setting the Replication Slave Configuration
	17.1.1.3 Creating a User for Replication
	17.1.1.4 Obtaining the Replication Master Binary Log Coordinates
	17.1.1.5 Creating a Data Snapshot Using mysqldump
	17.1.1.6 Creating a Data Snapshot Using Raw Data Files
	17.1.1.7 Setting Up Replication with New Master and Slaves
	17.1.1.8 Setting Up Replication with Existing Data
	17.1.1.9 Introducing Additional Slaves to an Existing Replication Environment
	17.1.1.10 Setting the Master Configuration on the Slave

	17.1.2 Replication Formats
	17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
	17.1.2.2 Usage of Row-Based Logging and Replication
	17.1.2.3 Determination of Safe and Unsafe Statements in Binary Logging

	17.1.3 Replication and Binary Logging Options and Variables
	17.1.3.1 Replication and Binary Logging Option and Variable Reference
	17.1.3.2 Replication Master Options and Variables
	17.1.3.3 Replication Slave Options and Variables
	17.1.3.4 Binary Log Options and Variables

	17.1.4 Common Replication Administration Tasks
	17.1.4.1 Checking Replication Status
	17.1.4.2 Pausing Replication on the Slave


	17.2 Replication Implementation
	17.2.1 Replication Implementation Details
	17.2.2 Replication Relay and Status Logs
	17.2.2.1 The Slave Relay Log
	17.2.2.2 Slave Status Logs

	17.2.3 How Servers Evaluate Replication Filtering Rules
	17.2.3.1 Evaluation of Database-Level Replication and Binary Logging Options
	17.2.3.2 Evaluation of Table-Level Replication Options
	17.2.3.3 Replication Rule Application


	17.3 Replication Solutions
	17.3.1 Using Replication for Backups
	17.3.1.1 Backing Up a Slave Using mysqldump
	17.3.1.2 Backing Up Raw Data from a Slave
	17.3.1.3 Backing Up a Master or Slave by Making It Read Only

	17.3.2 Using Replication with Different Master and Slave Storage Engines
	17.3.3 Using Replication for Scale-Out
	17.3.4 Replicating Different Databases to Different Slaves
	17.3.5 Improving Replication Performance
	17.3.6 Switching Masters During Failover
	17.3.7 Setting Up Replication to Use Secure Connections
	17.3.8 Semisynchronous Replication
	17.3.8.1 Semisynchronous Replication Administrative Interface
	17.3.8.2 Semisynchronous Replication Installation and Configuration
	17.3.8.3 Semisynchronous Replication Monitoring


	17.4 Replication Notes and Tips
	17.4.1 Replication Features and Issues
	17.4.1.1 Replication and AUTO_INCREMENT
	17.4.1.2 Replication and BLACKHOLE Tables
	17.4.1.3 Replication and Character Sets
	17.4.1.4 Replication and CHECKSUM TABLE
	17.4.1.5 Replication of CREATE ... IF NOT EXISTS Statements
	17.4.1.6 Replication of CREATE TABLE ... SELECT Statements
	17.4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
	17.4.1.8 Replication of CURRENT_USER()
	17.4.1.9 Replication of DROP ... IF EXISTS Statements
	17.4.1.10 Replication with Differing Table Definitions on Master and Slave
	Replication with More Columns on Master or Slave
	Replication of Columns Having Different Data Types

	17.4.1.11 Replication and DIRECTORY Table Options
	17.4.1.12 Replication of Invoked Features
	17.4.1.13 Replication and Floating-Point Values
	17.4.1.14 Replication and FLUSH
	17.4.1.15 Replication and System Functions
	17.4.1.16 Replication and LIMIT
	17.4.1.17 Replication and LOAD DATA INFILE
	17.4.1.18 Replication and the Slow Query Log
	17.4.1.19 Replication and Partitioning
	17.4.1.20 Replication and REPAIR TABLE
	17.4.1.21 Replication and Master or Slave Shutdowns
	17.4.1.22 Replication and max_allowed_packet
	17.4.1.23 Replication and MEMORY Tables
	17.4.1.24 Replication and Temporary Tables
	17.4.1.25 Replication of the mysql System Database
	17.4.1.26 Replication and the Query Optimizer
	17.4.1.27 Replication and Reserved Words
	17.4.1.28 SET PASSWORD and Row-Based Replication
	17.4.1.29 Slave Errors During Replication
	17.4.1.30 Replication of Server-Side Help Tables
	17.4.1.31 Replication and Server SQL Mode
	17.4.1.32 Replication Retries and Timeouts
	17.4.1.33 Replication and TIMESTAMP
	17.4.1.34 Replication and Time Zones
	17.4.1.35 Replication and Transactions
	17.4.1.36 Replication and Triggers
	17.4.1.37 Replication and TRUNCATE TABLE
	17.4.1.38 Replication and Variables
	17.4.1.39 Replication and Views

	17.4.2 Replication Compatibility Between MySQL Versions
	17.4.3 Upgrading a Replication Setup
	17.4.4 Troubleshooting Replication
	17.4.5 How to Report Replication Bugs or Problems


	Chapter 18 MySQL NDB Cluster 7.2
	18.1 NDB Cluster Overview
	18.1.1 NDB Cluster Core Concepts
	18.1.2 NDB Cluster Nodes, Node Groups, Replicas, and Partitions
	18.1.3 NDB Cluster Hardware, Software, and Networking Requirements
	18.1.4 What is New in MySQL NDB Cluster 7.2
	18.1.5 MySQL Server Using InnoDB Compared with NDB Cluster
	18.1.5.1 Differences Between the NDB and InnoDB Storage Engines
	18.1.5.2 NDB and InnoDB Workloads
	18.1.5.3 NDB and InnoDB Feature Usage Summary

	18.1.6 Known Limitations of NDB Cluster
	18.1.6.1 Noncompliance with SQL Syntax in NDB Cluster
	18.1.6.2 Limits and Differences of NDB Cluster from Standard MySQL Limits
	18.1.6.3 Limits Relating to Transaction Handling in NDB Cluster
	18.1.6.4 NDB Cluster Error Handling
	18.1.6.5 Limits Associated with Database Objects in NDB Cluster
	18.1.6.6 Unsupported or Missing Features in NDB Cluster
	18.1.6.7 Limitations Relating to Performance in NDB Cluster
	18.1.6.8 Issues Exclusive to NDB Cluster
	18.1.6.9 Limitations Relating to NDB Cluster Disk Data Storage
	18.1.6.10 Limitations Relating to Multiple NDB Cluster Nodes
	18.1.6.11 Previous NDB Cluster Issues Resolved in MySQL 5.1, NDB Cluster 6.x, and NDB Cluster 7.x


	18.2 NDB Cluster Installation and Upgrades
	18.2.1 Installing NDB Cluster on Linux
	18.2.1.1 Installing an NDB Cluster Binary Release on Linux
	18.2.1.2 Installing NDB Cluster from RPM
	18.2.1.3 Installing NDB Cluster Using .deb Files
	18.2.1.4 Building NDB Cluster from Source on Linux

	18.2.2 Installing NDB Cluster on Windows
	18.2.2.1 Installing NDB Cluster on Windows from a Binary Release
	18.2.2.2 Compiling and Installing NDB Cluster from Source on Windows
	18.2.2.3 Initial Startup of NDB Cluster on Windows
	18.2.2.4 Installing NDB Cluster Processes as Windows Services

	18.2.3 Initial Configuration of NDB Cluster
	18.2.4 Initial Startup of NDB Cluster
	18.2.5 NDB Cluster Example with Tables and Data
	18.2.6 Safe Shutdown and Restart of NDB Cluster
	18.2.7 Upgrading and Downgrading NDB Cluster 7.2

	18.3 Configuration of NDB Cluster
	18.3.1 Quick Test Setup of NDB Cluster
	18.3.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables
	18.3.2.1 NDB Cluster Data Node Configuration Parameters
	18.3.2.2 NDB Cluster Management Node Configuration Parameters
	18.3.2.3 NDB Cluster SQL Node and API Node Configuration Parameters
	18.3.2.4 Other NDB Cluster Configuration Parameters
	18.3.2.5 NDB Cluster mysqld Option and Variable Reference

	18.3.3 NDB Cluster Configuration Files
	18.3.3.1 NDB Cluster Configuration: Basic Example
	18.3.3.2 Recommended Starting Configuration for NDB Cluster
	18.3.3.3 NDB Cluster Connection Strings
	18.3.3.4 Defining Computers in an NDB Cluster
	18.3.3.5 Defining an NDB Cluster Management Server
	18.3.3.6 Defining NDB Cluster Data Nodes
	18.3.3.7 Defining SQL and Other API Nodes in an NDB Cluster
	18.3.3.8 MySQL Server Options and Variables for NDB Cluster
	MySQL Server Options for NDB Cluster
	NDB Cluster System Variables
	NDB Cluster Status Variables

	18.3.3.9 NDB Cluster TCP/IP Connections
	18.3.3.10 NDB Cluster TCP/IP Connections Using Direct Connections
	18.3.3.11 NDB Cluster Shared-Memory Connections
	18.3.3.12 SCI Transport Connections in NDB Cluster
	18.3.3.13 Configuring NDB Cluster Send Buffer Parameters

	18.3.4 Using High-Speed Interconnects with NDB Cluster

	18.4 NDB Cluster Programs
	18.4.1 ndbd — The NDB Cluster Data Node Daemon
	18.4.2 ndbinfo_select_all — Select From ndbinfo Tables
	18.4.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)
	18.4.4 ndb_mgmd — The NDB Cluster Management Server Daemon
	18.4.5 ndb_mgm — The NDB Cluster Management Client
	18.4.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables
	18.4.7 ndb_config — Extract NDB Cluster Configuration Information
	18.4.8 ndb_cpcd — Automate Testing for NDB Development
	18.4.9 ndb_delete_all — Delete All Rows from an NDB Table
	18.4.10 ndb_desc — Describe NDB Tables
	18.4.11 ndb_drop_index — Drop Index from an NDB Table
	18.4.12 ndb_drop_table — Drop an NDB Table
	18.4.13 ndb_error_reporter — NDB Error-Reporting Utility
	18.4.14 ndb_index_stat — NDB Index Statistics Utility
	18.4.15 ndb_move_data — NDB Data Copy Utility
	18.4.16 ndb_print_backup_file — Print NDB Backup File Contents
	18.4.17 ndb_print_file — Print NDB Disk Data File Contents
	18.4.18 ndb_print_schema_file — Print NDB Schema File Contents
	18.4.19 ndb_print_sys_file — Print NDB System File Contents
	18.4.20 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log
	18.4.21 ndb_restore — Restore an NDB Cluster Backup
	18.4.22 ndb_select_all — Print Rows from an NDB Table
	18.4.23 ndb_select_count — Print Row Counts for NDB Tables
	18.4.24 ndb_show_tables — Display List of NDB Tables
	18.4.25 ndb_size.pl — NDBCLUSTER Size Requirement Estimator
	18.4.26 ndb_waiter — Wait for NDB Cluster to Reach a Given Status
	18.4.27 Options Common to NDB Cluster Programs — Options Common to NDB Cluster Programs

	18.5 Management of NDB Cluster
	18.5.1 Summary of NDB Cluster Start Phases
	18.5.2 Commands in the NDB Cluster Management Client
	18.5.3 Online Backup of NDB Cluster
	18.5.3.1 NDB Cluster Backup Concepts
	18.5.3.2 Using The NDB Cluster Management Client to Create a Backup
	18.5.3.3 Configuration for NDB Cluster Backups
	18.5.3.4 NDB Cluster Backup Troubleshooting

	18.5.4 MySQL Server Usage for NDB Cluster
	18.5.5 Performing a Rolling Restart of an NDB Cluster
	18.5.6 Event Reports Generated in NDB Cluster
	18.5.6.1 NDB Cluster Logging Management Commands
	18.5.6.2 NDB Cluster Log Events
	18.5.6.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

	18.5.7 NDB Cluster Log Messages
	18.5.7.1 NDB Cluster: Messages in the Cluster Log
	18.5.7.2 NDB Cluster Log Startup Messages
	18.5.7.3 NDB Cluster: NDB Transporter Errors

	18.5.8 NDB Cluster Single User Mode
	18.5.9 Quick Reference: NDB Cluster SQL Statements
	18.5.10 ndbinfo: The NDB Cluster Information Database
	18.5.10.1 The ndbinfo arbitrator_validity_detail Table
	18.5.10.2 The ndbinfo arbitrator_validity_summary Table
	18.5.10.3 The ndbinfo blocks Table
	18.5.10.4 The ndbinfo cluster_operations Table
	18.5.10.5 The ndbinfo cluster_transactions Table
	18.5.10.6 The ndbinfo config_params Table
	18.5.10.7 The ndbinfo counters Table
	18.5.10.8 The ndbinfo diskpagebuffer Table
	18.5.10.9 The ndbinfo logbuffers Table
	18.5.10.10 The ndbinfo logspaces Table
	18.5.10.11 The ndbinfo membership Table
	18.5.10.12 The ndbinfo memoryusage Table
	18.5.10.13 The ndbinfo nodes Table
	18.5.10.14 The ndbinfo resources Table
	18.5.10.15 The ndbinfo server_operations Table
	18.5.10.16 The ndbinfo server_transactions Table
	18.5.10.17 The ndbinfo threadblocks Table
	18.5.10.18 The ndbinfo threadstat Table
	18.5.10.19 The ndbinfo transporters Table

	18.5.11 NDB Cluster Security Issues
	18.5.11.1 NDB Cluster Security and Networking Issues
	18.5.11.2 NDB Cluster and MySQL Privileges
	18.5.11.3 NDB Cluster and MySQL Security Procedures

	18.5.12 NDB Cluster Disk Data Tables
	18.5.12.1 NDB Cluster Disk Data Objects
	18.5.12.2 Using Symbolic Links with Disk Data Objects
	18.5.12.3 NDB Cluster Disk Data Storage Requirements

	18.5.13 Adding NDB Cluster Data Nodes Online
	18.5.13.1 Adding NDB Cluster Data Nodes Online: General Issues
	18.5.13.2 Adding NDB Cluster Data Nodes Online: Basic procedure
	18.5.13.3 Adding NDB Cluster Data Nodes Online: Detailed Example

	18.5.14 Distributed MySQL Privileges for NDB Cluster
	18.5.15 NDB API Statistics Counters and Variables

	18.6 NDB Cluster Replication
	18.6.1 NDB Cluster Replication: Abbreviations and Symbols
	18.6.2 General Requirements for NDB Cluster Replication
	18.6.3 Known Issues in NDB Cluster Replication
	18.6.4 NDB Cluster Replication Schema and Tables
	18.6.5 Preparing the NDB Cluster for Replication
	18.6.6 Starting NDB Cluster Replication (Single Replication Channel)
	18.6.7 Using Two Replication Channels for NDB Cluster Replication
	18.6.8 Implementing Failover with NDB Cluster Replication
	18.6.9 NDB Cluster Backups With NDB Cluster Replication
	18.6.9.1 NDB Cluster Replication: Automating Synchronization of the Replication Slave to the Master Binary Log
	18.6.9.2 Point-In-Time Recovery Using NDB Cluster Replication

	18.6.10 NDB Cluster Replication: Multi-Master and Circular Replication
	18.6.11 NDB Cluster Replication Conflict Resolution

	18.7 NDB Cluster Release Notes

	Chapter 19 Partitioning
	19.1 Overview of Partitioning in MySQL
	19.2 Partitioning Types
	19.2.1 RANGE Partitioning
	19.2.2 LIST Partitioning
	19.2.3 COLUMNS Partitioning
	19.2.3.1 RANGE COLUMNS partitioning
	19.2.3.2 LIST COLUMNS partitioning

	19.2.4 HASH Partitioning
	19.2.4.1 LINEAR HASH Partitioning

	19.2.5 KEY Partitioning
	19.2.6 Subpartitioning
	19.2.7 How MySQL Partitioning Handles NULL

	19.3 Partition Management
	19.3.1 Management of RANGE and LIST Partitions
	19.3.2 Management of HASH and KEY Partitions
	19.3.3 Maintenance of Partitions
	19.3.4 Obtaining Information About Partitions

	19.4 Partition Pruning
	19.5 Restrictions and Limitations on Partitioning
	19.5.1 Partitioning Keys, Primary Keys, and Unique Keys
	19.5.2 Partitioning Limitations Relating to Storage Engines
	19.5.3 Partitioning Limitations Relating to Functions
	19.5.4 Partitioning and Table-Level Locking


	Chapter 20 Stored Programs and Views
	20.1 Defining Stored Programs
	20.2 Using Stored Routines (Procedures and Functions)
	20.2.1 Stored Routine Syntax
	20.2.2 Stored Routines and MySQL Privileges
	20.2.3 Stored Routine Metadata
	20.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

	20.3 Using Triggers
	20.3.1 Trigger Syntax and Examples
	20.3.2 Trigger Metadata

	20.4 Using the Event Scheduler
	20.4.1 Event Scheduler Overview
	20.4.2 Event Scheduler Configuration
	20.4.3 Event Syntax
	20.4.4 Event Metadata
	20.4.5 Event Scheduler Status
	20.4.6 The Event Scheduler and MySQL Privileges

	20.5 Using Views
	20.5.1 View Syntax
	20.5.2 View Processing Algorithms
	20.5.3 Updatable and Insertable Views
	20.5.4 The View WITH CHECK OPTION Clause
	20.5.5 View Metadata

	20.6 Access Control for Stored Programs and Views
	20.7 Binary Logging of Stored Programs

	Chapter 21 INFORMATION_SCHEMA Tables
	21.1 The INFORMATION_SCHEMA CHARACTER_SETS Table
	21.2 The INFORMATION_SCHEMA COLLATIONS Table
	21.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	21.4 The INFORMATION_SCHEMA COLUMNS Table
	21.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	21.6 The INFORMATION_SCHEMA ENGINES Table
	21.7 The INFORMATION_SCHEMA EVENTS Table
	21.8 The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
	21.9 The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
	21.10 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	21.11 The INFORMATION_SCHEMA PARAMETERS Table
	21.12 The INFORMATION_SCHEMA PARTITIONS Table
	21.13 The INFORMATION_SCHEMA PLUGINS Table
	21.14 The INFORMATION_SCHEMA PROCESSLIST Table
	21.15 The INFORMATION_SCHEMA PROFILING Table
	21.16 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
	21.17 The INFORMATION_SCHEMA ROUTINES Table
	21.18 The INFORMATION_SCHEMA SCHEMATA Table
	21.19 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	21.20 The INFORMATION_SCHEMA STATISTICS Table
	21.21 The INFORMATION_SCHEMA TABLES Table
	21.22 The INFORMATION_SCHEMA TABLESPACES Table
	21.23 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	21.24 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	21.25 The INFORMATION_SCHEMA TRIGGERS Table
	21.26 The INFORMATION_SCHEMA USER_PRIVILEGES Table
	21.27 The INFORMATION_SCHEMA VIEWS Table
	21.28 InnoDB INFORMATION_SCHEMA Tables
	21.28.1 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
	21.28.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
	21.28.3 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
	21.28.4 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
	21.28.5 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
	21.28.6 The INFORMATION_SCHEMA INNODB_LOCKS Table
	21.28.7 The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table
	21.28.8 The INFORMATION_SCHEMA INNODB_TRX Table

	21.29 NDB Cluster INFORMATION_SCHEMA Tables
	21.29.1 The INFORMATION_SCHEMA FILES Table
	21.29.2 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table

	21.30 Thread Pool INFORMATION_SCHEMA Tables
	21.30.1 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table
	21.30.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table
	21.30.3 The INFORMATION_SCHEMA TP_THREAD_STATE Table

	21.31 Extensions to SHOW Statements

	Chapter 22 MySQL Performance Schema
	22.1 Performance Schema Quick Start
	22.2 Performance Schema Build Configuration
	22.3 Performance Schema Startup Configuration
	22.4 Performance Schema Runtime Configuration
	22.4.1 Performance Schema Event Timing
	22.4.2 Performance Schema Event Filtering
	22.4.3 Event Pre-Filtering
	22.4.4 Naming Instruments or Consumers for Filtering Operations
	22.4.5 Determining What Is Instrumented

	22.5 Performance Schema Queries
	22.6 Performance Schema Instrument Naming Conventions
	22.7 Performance Schema Status Monitoring
	22.8 Performance Schema General Table Characteristics
	22.9 Performance Schema Table Descriptions
	22.9.1 Performance Schema Table Index
	22.9.2 Performance Schema Setup Tables
	22.9.2.1 The setup_consumers Table
	22.9.2.2 The setup_instruments Table
	22.9.2.3 The setup_timers Table

	22.9.3 Performance Schema Instance Tables
	22.9.3.1 The cond_instances Table
	22.9.3.2 The file_instances Table
	22.9.3.3 The mutex_instances Table
	22.9.3.4 The rwlock_instances Table

	22.9.4 Performance Schema Wait Event Tables
	22.9.4.1 The events_waits_current Table
	22.9.4.2 The events_waits_history Table
	22.9.4.3 The events_waits_history_long Table

	22.9.5 Performance Schema Summary Tables
	22.9.5.1 Wait Event Summary Tables
	22.9.5.2 File I/O Summary Tables

	22.9.6 Performance Schema Miscellaneous Tables
	22.9.6.1 The performance_timers Table
	22.9.6.2 The threads Table


	22.10 Performance Schema Option and Variable Reference
	22.11 Performance Schema System Variables
	22.12 Performance Schema Status Variables
	22.13 Performance Schema and Plugins
	22.14 Using the Performance Schema to Diagnose Problems

	Chapter 23 Connectors and APIs
	23.1 MySQL Connector/C
	23.2 MySQL Connector/C++
	23.3 MySQL Connector/J
	23.4 MySQL Connector/Net
	23.5 MySQL Connector/ODBC
	23.6 MySQL Connector/Python
	23.7 libmysqld, the Embedded MySQL Server Library
	23.7.1 Compiling Programs with libmysqld
	23.7.2 Restrictions When Using the Embedded MySQL Server
	23.7.3 Options with the Embedded Server
	23.7.4 Embedded Server Examples

	23.8 MySQL C API
	23.8.1 MySQL C API Implementations
	23.8.2 Simultaneous MySQL Server and Connector/C Installations
	23.8.3 Example C API Client Programs
	23.8.4 Building and Running C API Client Programs
	23.8.4.1 Building C API Client Programs
	23.8.4.2 Writing C API Threaded Client Programs
	23.8.4.3 Running C API Client Programs
	23.8.4.4 C API Server and Client Library Versions

	23.8.5 C API Data Structures
	23.8.6 C API Function Overview
	23.8.7 C API Function Descriptions
	23.8.7.1 mysql_affected_rows()
	23.8.7.2 mysql_autocommit()
	23.8.7.3 mysql_change_user()
	23.8.7.4 mysql_character_set_name()
	23.8.7.5 mysql_close()
	23.8.7.6 mysql_commit()
	23.8.7.7 mysql_connect()
	23.8.7.8 mysql_create_db()
	23.8.7.9 mysql_data_seek()
	23.8.7.10 mysql_debug()
	23.8.7.11 mysql_drop_db()
	23.8.7.12 mysql_dump_debug_info()
	23.8.7.13 mysql_eof()
	23.8.7.14 mysql_errno()
	23.8.7.15 mysql_error()
	23.8.7.16 mysql_escape_string()
	23.8.7.17 mysql_fetch_field()
	23.8.7.18 mysql_fetch_field_direct()
	23.8.7.19 mysql_fetch_fields()
	23.8.7.20 mysql_fetch_lengths()
	23.8.7.21 mysql_fetch_row()
	23.8.7.22 mysql_field_count()
	23.8.7.23 mysql_field_seek()
	23.8.7.24 mysql_field_tell()
	23.8.7.25 mysql_free_result()
	23.8.7.26 mysql_get_character_set_info()
	23.8.7.27 mysql_get_client_info()
	23.8.7.28 mysql_get_client_version()
	23.8.7.29 mysql_get_host_info()
	23.8.7.30 mysql_get_proto_info()
	23.8.7.31 mysql_get_server_info()
	23.8.7.32 mysql_get_server_version()
	23.8.7.33 mysql_get_ssl_cipher()
	23.8.7.34 mysql_hex_string()
	23.8.7.35 mysql_info()
	23.8.7.36 mysql_init()
	23.8.7.37 mysql_insert_id()
	23.8.7.38 mysql_kill()
	23.8.7.39 mysql_library_end()
	23.8.7.40 mysql_library_init()
	23.8.7.41 mysql_list_dbs()
	23.8.7.42 mysql_list_fields()
	23.8.7.43 mysql_list_processes()
	23.8.7.44 mysql_list_tables()
	23.8.7.45 mysql_more_results()
	23.8.7.46 mysql_next_result()
	23.8.7.47 mysql_num_fields()
	23.8.7.48 mysql_num_rows()
	23.8.7.49 mysql_options()
	23.8.7.50 mysql_ping()
	23.8.7.51 mysql_query()
	23.8.7.52 mysql_real_connect()
	23.8.7.53 mysql_real_escape_string()
	23.8.7.54 mysql_real_query()
	23.8.7.55 mysql_refresh()
	23.8.7.56 mysql_reload()
	23.8.7.57 mysql_rollback()
	23.8.7.58 mysql_row_seek()
	23.8.7.59 mysql_row_tell()
	23.8.7.60 mysql_select_db()
	23.8.7.61 mysql_set_character_set()
	23.8.7.62 mysql_set_local_infile_default()
	23.8.7.63 mysql_set_local_infile_handler()
	23.8.7.64 mysql_set_server_option()
	23.8.7.65 mysql_shutdown()
	23.8.7.66 mysql_sqlstate()
	23.8.7.67 mysql_ssl_set()
	23.8.7.68 mysql_stat()
	23.8.7.69 mysql_store_result()
	23.8.7.70 mysql_thread_id()
	23.8.7.71 mysql_use_result()
	23.8.7.72 mysql_warning_count()

	23.8.8 C API Prepared Statements
	23.8.9 C API Prepared Statement Data Structures
	23.8.9.1 C API Prepared Statement Type Codes
	23.8.9.2 C API Prepared Statement Type Conversions

	23.8.10 C API Prepared Statement Function Overview
	23.8.11 C API Prepared Statement Function Descriptions
	23.8.11.1 mysql_stmt_affected_rows()
	23.8.11.2 mysql_stmt_attr_get()
	23.8.11.3 mysql_stmt_attr_set()
	23.8.11.4 mysql_stmt_bind_param()
	23.8.11.5 mysql_stmt_bind_result()
	23.8.11.6 mysql_stmt_close()
	23.8.11.7 mysql_stmt_data_seek()
	23.8.11.8 mysql_stmt_errno()
	23.8.11.9 mysql_stmt_error()
	23.8.11.10 mysql_stmt_execute()
	23.8.11.11 mysql_stmt_fetch()
	23.8.11.12 mysql_stmt_fetch_column()
	23.8.11.13 mysql_stmt_field_count()
	23.8.11.14 mysql_stmt_free_result()
	23.8.11.15 mysql_stmt_init()
	23.8.11.16 mysql_stmt_insert_id()
	23.8.11.17 mysql_stmt_next_result()
	23.8.11.18 mysql_stmt_num_rows()
	23.8.11.19 mysql_stmt_param_count()
	23.8.11.20 mysql_stmt_param_metadata()
	23.8.11.21 mysql_stmt_prepare()
	23.8.11.22 mysql_stmt_reset()
	23.8.11.23 mysql_stmt_result_metadata()
	23.8.11.24 mysql_stmt_row_seek()
	23.8.11.25 mysql_stmt_row_tell()
	23.8.11.26 mysql_stmt_send_long_data()
	23.8.11.27 mysql_stmt_sqlstate()
	23.8.11.28 mysql_stmt_store_result()

	23.8.12 C API Threaded Function Descriptions
	23.8.12.1 my_init()
	23.8.12.2 mysql_thread_end()
	23.8.12.3 mysql_thread_init()
	23.8.12.4 mysql_thread_safe()

	23.8.13 C API Embedded Server Function Descriptions
	23.8.13.1 mysql_server_init()
	23.8.13.2 mysql_server_end()

	23.8.14 C API Client Plugin Functions
	23.8.14.1 mysql_client_find_plugin()
	23.8.14.2 mysql_client_register_plugin()
	23.8.14.3 mysql_load_plugin()
	23.8.14.4 mysql_load_plugin_v()
	23.8.14.5 mysql_plugin_options()

	23.8.15 Common Questions and Problems When Using the C API
	23.8.15.1 Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success
	23.8.15.2 What Results You Can Get from a Query
	23.8.15.3 How to Get the Unique ID for the Last Inserted Row

	23.8.16 Controlling Automatic Reconnection Behavior
	23.8.17 C API Support for Multiple Statement Execution
	23.8.18 C API Prepared Statement Problems
	23.8.19 C API Prepared Statement Handling of Date and Time Values
	23.8.20 C API Support for Prepared CALL Statements

	23.9 MySQL PHP API
	23.10 MySQL Perl API
	23.11 MySQL Python API
	23.12 MySQL Ruby APIs
	23.12.1 The MySQL/Ruby API
	23.12.2 The Ruby/MySQL API

	23.13 MySQL Tcl API
	23.14 MySQL Eiffel Wrapper

	Chapter 24 Extending MySQL
	24.1 MySQL Internals
	24.1.1 MySQL Threads
	24.1.2 The MySQL Test Suite

	24.2 The MySQL Plugin API
	24.2.1 Types of Plugins
	24.2.2 Plugin API Characteristics
	24.2.3 Plugin API Components
	24.2.4 Writing Plugins
	24.2.4.1 Overview of Plugin Writing
	24.2.4.2 Plugin Data Structures
	Server Plugin Library and Plugin Descriptors
	Server Plugin Status and System Variables
	Client Plugin Descriptors

	24.2.4.3 Compiling and Installing Plugin Libraries
	24.2.4.4 Writing Full-Text Parser Plugins
	24.2.4.5 Writing Daemon Plugins
	24.2.4.6 Writing INFORMATION_SCHEMA Plugins
	24.2.4.7 Writing Semisynchronous Replication Plugins
	24.2.4.8 Writing Audit Plugins
	24.2.4.9 Writing Authentication Plugins
	Writing the Server-Side Authentication Plugin
	Writing the Client-Side Authentication Plugin
	Using the Authentication Plugins
	Implementing Proxy User Support in Authentication Plugins



	24.3 MySQL Services for Plugins
	24.4 Adding New Functions to MySQL
	24.4.1 Features of the User-Defined Function Interface
	24.4.2 Adding a New User-Defined Function
	24.4.2.1 UDF Calling Sequences for Simple Functions
	24.4.2.2 UDF Calling Sequences for Aggregate Functions
	24.4.2.3 UDF Argument Processing
	24.4.2.4 UDF Return Values and Error Handling
	24.4.2.5 UDF Compiling and Installing
	24.4.2.6 UDF Security Precautions

	24.4.3 Adding a New Native Function

	24.5 Debugging and Porting MySQL
	24.5.1 Debugging a MySQL Server
	24.5.1.1 Compiling MySQL for Debugging
	24.5.1.2 Creating Trace Files
	24.5.1.3 Using WER with PDB to create a Windows crashdump
	24.5.1.4 Debugging mysqld under gdb
	24.5.1.5 Using a Stack Trace
	24.5.1.6 Using Server Logs to Find Causes of Errors in mysqld
	24.5.1.7 Making a Test Case If You Experience Table Corruption

	24.5.2 Debugging a MySQL Client
	24.5.3 The DBUG Package


	Chapter 25 MySQL Enterprise Edition
	25.1 MySQL Enterprise Monitor Overview
	25.2 MySQL Enterprise Backup Overview
	25.3 MySQL Enterprise Security Overview
	25.4 MySQL Enterprise Encryption Overview
	25.5 MySQL Enterprise Audit Overview
	25.6 MySQL Enterprise Firewall Overview
	25.7 MySQL Enterprise Thread Pool Overview

	Chapter 26 MySQL Workbench
	Appendix A MySQL 5.5 Frequently Asked Questions
	A.1 MySQL 5.5 FAQ: General
	A.2 MySQL 5.5 FAQ: Storage Engines
	A.3 MySQL 5.5 FAQ: Server SQL Mode
	A.4 MySQL 5.5 FAQ: Stored Procedures and Functions
	A.5 MySQL 5.5 FAQ: Triggers
	A.6 MySQL 5.5 FAQ: Views
	A.7 MySQL 5.5 FAQ: INFORMATION_SCHEMA
	A.8 MySQL 5.5 FAQ: Migration
	A.9 MySQL 5.5 FAQ: Security
	A.10 MySQL FAQ: MySQL 5.5 and NDB Cluster
	A.11 MySQL 5.5 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
	A.12 MySQL 5.5 FAQ: Connectors & APIs
	A.13 MySQL 5.5 FAQ: Replication
	A.14 MySQL 5.5 FAQ: MySQL Enterprise Thread Pool
	A.15 MySQL 5.5 FAQ: InnoDB Change Buffer
	A.16 MySQL 5.5 FAQ: Virtualization Support

	Appendix B Errors, Error Codes, and Common Problems
	B.1 Sources of Error Information
	B.2 Types of Error Values
	B.3 Server Error Codes and Messages
	B.4 Client Error Codes and Messages
	B.5 Problems and Common Errors
	B.5.1 How to Determine What Is Causing a Problem
	B.5.2 Common Errors When Using MySQL Programs
	B.5.2.1 Access denied
	B.5.2.2 Can't connect to [local] MySQL server
	Connection to MySQL Server Failing on Windows

	B.5.2.3 Lost connection to MySQL server
	B.5.2.4 Client does not support authentication protocol
	B.5.2.5 Password Fails When Entered Interactively
	B.5.2.6 Host 'host_name' is blocked
	B.5.2.7 Too many connections
	B.5.2.8 Out of memory
	B.5.2.9 MySQL server has gone away
	B.5.2.10 Packet Too Large
	B.5.2.11 Communication Errors and Aborted Connections
	B.5.2.12 The table is full
	B.5.2.13 Can't create/write to file
	B.5.2.14 Commands out of sync
	B.5.2.15 Ignoring user
	B.5.2.16 Table 'tbl_name' doesn't exist
	B.5.2.17 Can't initialize character set
	B.5.2.18 File Not Found and Similar Errors
	B.5.2.19 Table-Corruption Issues

	B.5.3 Administration-Related Issues
	B.5.3.1 Problems with File Permissions
	B.5.3.2 How to Reset the Root Password
	Resetting the Root Password: Windows Systems
	Resetting the Root Password: Unix and Unix-Like Systems
	Resetting the Root Password: Generic Instructions

	B.5.3.3 What to Do If MySQL Keeps Crashing
	B.5.3.4 How MySQL Handles a Full Disk
	B.5.3.5 Where MySQL Stores Temporary Files
	B.5.3.6 How to Protect or Change the MySQL Unix Socket File
	B.5.3.7 Time Zone Problems

	B.5.4 Query-Related Issues
	B.5.4.1 Case Sensitivity in String Searches
	B.5.4.2 Problems Using DATE Columns
	B.5.4.3 Problems with NULL Values
	B.5.4.4 Problems with Column Aliases
	B.5.4.5 Rollback Failure for Nontransactional Tables
	B.5.4.6 Deleting Rows from Related Tables
	B.5.4.7 Solving Problems with No Matching Rows
	B.5.4.8 Problems with Floating-Point Values

	B.5.5 Optimizer-Related Issues
	B.5.6 Table Definition-Related Issues
	B.5.6.1 Problems with ALTER TABLE
	B.5.6.2 TEMPORARY Table Problems

	B.5.7 Known Issues in MySQL


	Appendix C Restrictions and Limits
	C.1 Restrictions on Stored Programs
	C.2 Restrictions on Condition Handling
	C.3 Restrictions on Server-Side Cursors
	C.4 Restrictions on Subqueries
	C.5 Restrictions on Views
	C.6 Restrictions on XA Transactions
	C.7 Restrictions on Character Sets
	C.8 Restrictions on Performance Schema
	C.9 Restrictions on Pluggable Authentication
	C.10 Limits in MySQL
	C.10.1 Limits on Joins
	C.10.2 Limits on Number of Databases and Tables
	C.10.3 Limits on Table Size
	C.10.4 Limits on Table Column Count and Row Size
	C.10.5 Limits Imposed by .frm File Structure
	C.10.6 Windows Platform Limitations


	Appendix D Indexes
	General Index
	C Function Index
	Command Index
	Function Index
	INFORMATION_SCHEMA Index
	Join Types Index
	Operator Index
	Option Index
	Privileges Index
	SQL Modes Index
	Statement/Syntax Index
	Status Variable Index
	System Variable Index
	Transaction Isolation Level Index

	MySQL Glossary

