

Home → Documentation → Manuals → PostgreSQL 9.1
This page in other versions: 9.2 / 9.3 / 9.4 / 9.5 / current (9.6) | Development versions: devel / 10 |
Unsupported versions: 7.1 / 7.2 / 7.3 / 7.4 / 8.0 / 8.1 / 8.2 / 8.3 / 8.4 / 9.0 / 9.1

PostgreSQL 9.1.24 Documentation
Prev Up Next

CREATE TABLE

Name
CREATE TABLE -- define a new table

Synopsis
CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS
] table_name ([
 { column_name data_type [COLLATE collation] [column_constraint [...]]
 | table_constraint
 | LIKE parent_table [like_option ...] }
 [, ...]
])
[INHERITS (parent_table [, ...])]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS
] table_name
 OF type_name [(
 { column_name WITH OPTIONS [column_constraint [...]]
 | table_constraint }
 [, ...]
)]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) |
 DEFAULT default_expr |
 UNIQUE index_parameters |

https://www.postgresql.org/docs/9.1/static/sql-createtableas.html
https://www.postgresql.org/docs/9.1/static/sql-commands.html
https://www.postgresql.org/docs/9.1/static/sql-createserver.html
https://www.postgresql.org/docs/9.1/static/index.html
https://www.postgresql.org/docs/9.0/static/sql-createtable.html
https://www.postgresql.org/docs/8.4/static/sql-createtable.html
https://www.postgresql.org/docs/8.3/static/sql-createtable.html
https://www.postgresql.org/docs/8.2/static/sql-createtable.html
https://www.postgresql.org/docs/8.1/static/sql-createtable.html
https://www.postgresql.org/docs/8.0/static/sql-createtable.html
https://www.postgresql.org/docs/7.4/static/sql-createtable.html
https://www.postgresql.org/docs/7.3/static/sql-createtable.html
https://www.postgresql.org/docs/7.2/static/sql-createtable.html
https://www.postgresql.org/docs/7.1/static/sql-createtable.html
https://www.postgresql.org/docs/10/static/sql-createtable.html
https://www.postgresql.org/docs/devel/static/sql-createtable.html
https://www.postgresql.org/docs/9.6/static/sql-createtable.html
https://www.postgresql.org/docs/current/static/sql-createtable.html
https://www.postgresql.org/docs/9.5/static/sql-createtable.html
https://www.postgresql.org/docs/9.4/static/sql-createtable.html
https://www.postgresql.org/docs/9.3/static/sql-createtable.html
https://www.postgresql.org/docs/9.2/static/sql-createtable.html
https://www.postgresql.org/docs/9.1/static/index.html
https://www.postgresql.org/docs/manuals
https://www.postgresql.org/docs
https://www.postgresql.org/
https://www.postgresql.org/

 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE
]
 [ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) |
 UNIQUE (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator [, ...])
index_parameters [WHERE (predicate)] |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])
]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE action] [ON UPDATE
action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and like_option is:

{ INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS |
ALL }

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace]

exclude_element in an EXCLUDE constraint is:

{ column | (expression) } [opclass] [ASC | DESC] [NULLS { FIRST | LAST }]

Description
CREATE TABLE will create a new, initially empty table in the current database. The table will be

owned by the user issuing the command.

If a schema name is given (for example, CREATE TABLE myschema.mytable ...) then the

table is created in the specified schema. Otherwise it is created in the current schema. Temporary tables
exist in a special schema, so a schema name cannot be given when creating a temporary table. The
name of the table must be distinct from the name of any other table, sequence, index, view, or foreign
table in the same schema.

CREATE TABLE also automatically creates a data type that represents the composite type

corresponding to one row of the table. Therefore, tables cannot have the same name as any existing
data type in the same schema.

The optional constraint clauses specify constraints (tests) that new or updated rows must satisfy for an
insert or update operation to succeed. A constraint is an SQL object that helps define the set of valid
values in the table in various ways.

There are two ways to define constraints: table constraints and column constraints. A column constraint
is defined as part of a column definition. A table constraint definition is not tied to a particular column,
and it can encompass more than one column. Every column constraint can also be written as a table
constraint; a column constraint is only a notational convenience for use when the constraint only affects
one column.

Parameters
TEMPORARY or TEMP

If specified, the table is created as a temporary table. Temporary tables are automatically dropped
at the end of a session, or optionally at the end of the current transaction (see ON COMMIT
below). Existing permanent tables with the same name are not visible to the current session while
the temporary table exists, unless they are referenced with schema-qualified names. Any indexes
created on a temporary table are automatically temporary as well.

The autovacuum daemon cannot access and therefore cannot vacuum or analyze temporary
tables. For this reason, appropriate vacuum and analyze operations should be performed via
session SQL commands. For example, if a temporary table is going to be used in complex
queries, it is wise to run ANALYZE on the temporary table after it is populated.

Optionally, GLOBAL or LOCAL can be written before TEMPORARY or TEMP. This makes no
difference in PostgreSQL, but see Compatibility.

UNLOGGED

If specified, the table is created as an unlogged table. Data written to unlogged tables is not
written to the write-ahead log (see Chapter 29), which makes them considerably faster than
ordinary tables. However, they are not crash-safe: an unlogged table is automatically truncated
after a crash or unclean shutdown. The contents of an unlogged table are also not replicated to
standby servers. Any indexes created on an unlogged table are automatically unlogged as well;
however, unlogged GiST indexes are currently not supported and cannot be created on an
unlogged table.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this
case. Note that there is no guarantee that the existing relation is anything like the one that would
have been created.

table_name

The name (optionally schema-qualified) of the table to be created.

OF type_name

https://www.postgresql.org/docs/9.1/static/gist.html
https://www.postgresql.org/docs/9.1/static/wal.html
https://www.postgresql.org/docs/9.1/static/sql-createtable.html#SQL-CREATETABLE-COMPATIBILITY
https://www.postgresql.org/docs/9.1/static/routine-vacuuming.html#AUTOVACUUM

Creates a typed table, which takes its structure from the specified composite type (name
optionally schema-qualified). A typed table is tied to its type; for example the table will be
dropped if the type is dropped (with DROP TYPE ... CASCADE).

When a typed table is created, then the data types of the columns are determined by the
underlying composite type and are not specified by the CREATE TABLE command. But the
CREATE TABLE command can add defaults and constraints to the table and can specify storage
parameters.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This can include array specifiers. For more information on the data
types supported by PostgreSQL, refer to Chapter 8.

COLLATE collation

The COLLATE clause assigns a collation to the column (which must be of a collatable data type).
If not specified, the column data type's default collation is used.

INHERITS (parent_table [, ...])

The optional INHERITS clause specifies a list of tables from which the new table automatically
inherits all columns.

Use of INHERITS creates a persistent relationship between the new child table and its parent
table(s). Schema modifications to the parent(s) normally propagate to children as well, and by
default the data of the child table is included in scans of the parent(s).

If the same column name exists in more than one parent table, an error is reported unless the data
types of the columns match in each of the parent tables. If there is no conflict, then the duplicate
columns are merged to form a single column in the new table. If the column name list of the new
table contains a column name that is also inherited, the data type must likewise match the
inherited column(s), and the column definitions are merged into one. If the new table explicitly
specifies a default value for the column, this default overrides any defaults from inherited
declarations of the column. Otherwise, any parents that specify default values for the column
must all specify the same default, or an error will be reported.

CHECK constraints are merged in essentially the same way as columns: if multiple parent tables
and/or the new table definition contain identically-named CHECK constraints, these constraints
must all have the same check expression, or an error will be reported. Constraints having the
same name and expression will be merged into one copy. Notice that an unnamed CHECK
constraint in the new table will never be merged, since a unique name will always be chosen for
it.

https://www.postgresql.org/docs/9.1/static/datatype.html

Column STORAGE settings are also copied from parent tables.

LIKE parent_table [like_option ...]

The LIKE clause specifies a table from which the new table automatically copies all column
names, their data types, and their not-null constraints.

Unlike INHERITS, the new table and original table are completely decoupled after creation is
complete. Changes to the original table will not be applied to the new table, and it is not possible
to include data of the new table in scans of the original table.

Default expressions for the copied column definitions will be copied only if INCLUDING
DEFAULTS is specified. The default behavior is to exclude default expressions, resulting in the
copied columns in the new table having null defaults. Note that copying defaults that call
database-modification functions, such as nextval, may create a functional linkage between the
original and new tables.

Not-null constraints are always copied to the new table. CHECK constraints will be copied only if
INCLUDING CONSTRAINTS is specified. No distinction is made between column constraints
and table constraints.

Indexes, PRIMARY KEY, UNIQUE, and EXCLUDE constraints on the original table will be
created on the new table only if INCLUDING INDEXES is specified. Names for the new
indexes and constraints are chosen according to the default rules, regardless of how the originals
were named. (This behavior avoids possible duplicate-name failures for the new indexes.)

STORAGE settings for the copied column definitions will be copied only if INCLUDING
STORAGE is specified. The default behavior is to exclude STORAGE settings, resulting in the
copied columns in the new table having type-specific default settings. For more on STORAGE
settings, see Section 55.2.

Comments for the copied columns, constraints, and indexes will be copied only if INCLUDING
COMMENTS is specified. The default behavior is to exclude comments, resulting in the copied
columns and constraints in the new table having no comments.

INCLUDING ALL is an abbreviated form of INCLUDING DEFAULTS INCLUDING
CONSTRAINTS INCLUDING INDEXES INCLUDING STORAGE INCLUDING
COMMENTS.

Note that unlike INHERITS, columns and constraints copied by LIKE are not merged with
similarly named columns and constraints. If the same name is specified explicitly or in another
LIKE clause, an error is signaled.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If the constraint is violated, the constraint
name is present in error messages, so constraint names like col must be positive can be

https://www.postgresql.org/docs/9.1/static/storage-toast.html

used to communicate helpful constraint information to client applications. (Double-quotes are
needed to specify constraint names that contain spaces.) If a constraint name is not specified, the
system generates a name.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only provided for compatibility with non-standard SQL databases. Its use is
discouraged in new applications.

CHECK (expression)

The CHECK clause specifies an expression producing a Boolean result which new or updated
rows must satisfy for an insert or update operation to succeed. Expressions evaluating to TRUE
or UNKNOWN succeed. Should any row of an insert or update operation produce a FALSE
result an error exception is raised and the insert or update does not alter the database. A check
constraint specified as a column constraint should reference that column's value only, while an
expression appearing in a table constraint can reference multiple columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than
columns of the current row.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it
appears within. The value is any variable-free expression (subqueries and cross-references to
other columns in the current table are not allowed). The data type of the default expression must
match the data type of the column.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is null.

UNIQUE (column constraint)
UNIQUE (column_name [, ...]) (table constraint)

The UNIQUE constraint specifies that a group of one or more columns of a table can contain only
unique values. The behavior of the unique table constraint is the same as that for column
constraints, with the additional capability to span multiple columns.

For the purpose of a unique constraint, null values are not considered equal.

Each unique table constraint must name a set of columns that is different from the set of columns
named by any other unique or primary key constraint defined for the table. (Otherwise it would
just be the same constraint listed twice.)

PRIMARY KEY (column constraint)
PRIMARY KEY (column_name [, ...]) (table constraint)

The PRIMARY KEY constraint specifies that a column or columns of a table can contain only
unique (non-duplicate), nonnull values. Only one primary key can be specified for a table,
whether as a column constraint or a table constraint.

The primary key constraint should name a set of columns that is different from the set of columns
named by any unique constraint defined for the same table. (Otherwise, the unique constraint is
redundant and will be discarded.)

PRIMARY KEY enforces the same data constraints as a combination of UNIQUE and NOT
NULL, but identifying a set of columns as the primary key also provides metadata about the
design of the schema, since a primary key implies that other tables can rely on this set of columns
as a unique identifier for rows.

EXCLUDE [USING index_method] (exclude_element WITH operator [, ...
]) index_parameters [WHERE (predicate)]

The EXCLUDE clause defines an exclusion constraint, which guarantees that if any two rows are
compared on the specified column(s) or expression(s) using the specified operator(s), not all of
these comparisons will return TRUE. If all of the specified operators test for equality, this is
equivalent to a UNIQUE constraint, although an ordinary unique constraint will be faster.
However, exclusion constraints can specify constraints that are more general than simple equality.
For example, you can specify a constraint that no two rows in the table contain overlapping
circles (see Section 8.8) by using the && operator.

Exclusion constraints are implemented using an index, so each specified operator must be
associated with an appropriate operator class (see Section 11.9) for the index access method
index_method. The operators are required to be commutative. Each exclude_element
can optionally specify an operator class and/or ordering options; these are described fully under
CREATE INDEX.

The access method must support amgettuple (see Chapter 52); at present this means GIN
cannot be used. Although it's allowed, there is little point in using B-tree or hash indexes with an
exclusion constraint, because this does nothing that an ordinary unique constraint doesn't do
better. So in practice the access method will always be GiST.

The predicate allows you to specify an exclusion constraint on a subset of the table;
internally this creates a partial index. Note that parentheses are required around the predicate.

REFERENCES reftable [(refcolumn)] [MATCH matchtype] [ON DELETE
action] [ON UPDATE action] (column constraint)

https://www.postgresql.org/docs/9.1/static/indexam.html
https://www.postgresql.org/docs/9.1/static/sql-createindex.html
https://www.postgresql.org/docs/9.1/static/indexes-opclass.html
https://www.postgresql.org/docs/9.1/static/datatype-geometric.html

FOREIGN KEY (column [, ...]) REFERENCES reftable [(refcolumn
[, ...])] [MATCH matchtype] [ON DELETE action] [ON UPDATE
action] (table constraint)

These clauses specify a foreign key constraint, which requires that a group of one or more
columns of the new table must only contain values that match values in the referenced column(s)
of some row of the referenced table. If refcolumn is omitted, the primary key of the
reftable is used. The referenced columns must be the columns of a non-deferrable unique or
primary key constraint in the referenced table. Note that foreign key constraints cannot be defined
between temporary tables and permanent tables.

A value inserted into the referencing column(s) is matched against the values of the referenced
table and referenced columns using the given match type. There are three match types: MATCH
FULL, MATCH PARTIAL, and MATCH SIMPLE, which is also the default. MATCH FULL will
not allow one column of a multicolumn foreign key to be null unless all foreign key columns are
null. MATCH SIMPLE allows some foreign key columns to be null while other parts of the
foreign key are not null. MATCH PARTIAL is not yet implemented.

In addition, when the data in the referenced columns is changed, certain actions are performed on
the data in this table's columns. The ON DELETE clause specifies the action to perform when a
referenced row in the referenced table is being deleted. Likewise, the ON UPDATE clause
specifies the action to perform when a referenced column in the referenced table is being updated
to a new value. If the row is updated, but the referenced column is not actually changed, no action
is done. Referential actions other than the NO ACTION check cannot be deferred, even if the
constraint is declared deferrable. There are the following possible actions for each clause:

NO ACTION

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. If the constraint is deferred, this error will be produced at constraint check time if
there still exist any referencing rows. This is the default action.

RESTRICT

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. This is the same as NO ACTION except that the check is not deferrable.

CASCADE

Delete any rows referencing the deleted row, or update the value of the referencing column
to the new value of the referenced column, respectively.

SET NULL

Set the referencing column(s) to null.

SET DEFAULT

Set the referencing column(s) to their default values.

If the referenced column(s) are changed frequently, it might be wise to add an index to the
foreign key column so that referential actions associated with the foreign key column can be
performed more efficiently.

DEFERRABLE
NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not deferrable will be
checked immediately after every command. Checking of constraints that are deferrable can be
postponed until the end of the transaction (using the SET CONSTRAINTS command). NOT
DEFERRABLE is the default. Currently, only UNIQUE, PRIMARY KEY, EXCLUDE, and
REFERENCES (foreign key) constraints accept this clause. NOT NULL and CHECK constraints
are not deferrable.

INITIALLY IMMEDIATE
INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the
constraint is INITIALLY IMMEDIATE, it is checked after each statement. This is the default. If
the constraint is INITIALLY DEFERRED, it is checked only at the end of the transaction. The
constraint check time can be altered with the SET CONSTRAINTS command.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for a table or index; see Storage Parameters for
more information. The WITH clause for a table can also include OIDS=TRUE (or just OIDS) to
specify that rows of the new table should have OIDs (object identifiers) assigned to them, or
OIDS=FALSE to specify that the rows should not have OIDs. If OIDS is not specified, the
default setting depends upon the default_with_oids configuration parameter. (If the new table
inherits from any tables that have OIDs, then OIDS=TRUE is forced even if the command says
OIDS=FALSE.)

If OIDS=FALSE is specified or implied, the new table does not store OIDs and no OID will be
assigned for a row inserted into it. This is generally considered worthwhile, since it will reduce
OID consumption and thereby postpone the wraparound of the 32-bit OID counter. Once the
counter wraps around, OIDs can no longer be assumed to be unique, which makes them
considerably less useful. In addition, excluding OIDs from a table reduces the space required to
store the table on disk by 4 bytes per row (on most machines), slightly improving performance.

To remove OIDs from a table after it has been created, use ALTER TABLE.

WITH OIDS
WITHOUT OIDS

https://www.postgresql.org/docs/9.1/static/sql-altertable.html
https://www.postgresql.org/docs/9.1/static/runtime-config-compatible.html#GUC-DEFAULT-WITH-OIDS
https://www.postgresql.org/docs/9.1/static/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS
https://www.postgresql.org/docs/9.1/static/sql-set-constraints.html
https://www.postgresql.org/docs/9.1/static/sql-set-constraints.html

These are obsolescent syntaxes equivalent to WITH (OIDS) and WITH (OIDS=FALSE),
respectively. If you wish to give both an OIDS setting and storage parameters, you must use the
WITH (...) syntax; see above.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON
COMMIT. The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block.
Essentially, an automatic TRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace

The tablespace is the name of the tablespace in which the new table is to be created. If not
specified, default_tablespace is consulted, or temp_tablespaces if the table is temporary.

USING INDEX TABLESPACE tablespace

This clause allows selection of the tablespace in which the index associated with a UNIQUE,
PRIMARY KEY, or EXCLUDE constraint will be created. If not specified, default_tablespace is
consulted, or temp_tablespaces if the table is temporary.

Storage Parameters

The WITH clause can specify storage parameters for tables, and for indexes associated with a

UNIQUE, PRIMARY KEY, or EXCLUDE constraint. Storage parameters for indexes are documented in

CREATE INDEX. The storage parameters currently available for tables are listed below. For each

parameter, unless noted, there is an additional parameter with the same name prefixed with toast.,

which can be used to control the behavior of the table's secondary TOAST table, if any (see Section

55.2 for more information about TOAST). Note that the TOAST table inherits the autovacuum_*

values from its parent table, if there are no toast.autovacuum_* settings set.

fillfactor (integer)

https://www.postgresql.org/docs/9.1/static/storage-toast.html
https://www.postgresql.org/docs/9.1/static/storage-toast.html
https://www.postgresql.org/docs/9.1/static/sql-createindex.html
https://www.postgresql.org/docs/9.1/static/runtime-config-client.html#GUC-TEMP-TABLESPACES
https://www.postgresql.org/docs/9.1/static/runtime-config-client.html#GUC-DEFAULT-TABLESPACE
https://www.postgresql.org/docs/9.1/static/runtime-config-client.html#GUC-TEMP-TABLESPACES
https://www.postgresql.org/docs/9.1/static/runtime-config-client.html#GUC-DEFAULT-TABLESPACE
https://www.postgresql.org/docs/9.1/static/sql-truncate.html

The fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is the
default. When a smaller fillfactor is specified, INSERT operations pack table pages only to the
indicated percentage; the remaining space on each page is reserved for updating rows on that
page. This gives UPDATE a chance to place the updated copy of a row on the same page as the
original, which is more efficient than placing it on a different page. For a table whose entries are
never updated, complete packing is the best choice, but in heavily updated tables smaller
fillfactors are appropriate. This parameter cannot be set for TOAST tables.

autovacuum_enabled, toast.autovacuum_enabled (boolean)

Enables or disables the autovacuum daemon on a particular table. If true, the autovacuum
daemon will initiate a VACUUM operation on a particular table when the number of updated or
deleted tuples exceeds autovacuum_vacuum_threshold plus
autovacuum_vacuum_scale_factor times the number of live tuples currently estimated
to be in the relation. Similarly, it will initiate an ANALYZE operation when the number of
inserted, updated or deleted tuples exceeds autovacuum_analyze_threshold plus
autovacuum_analyze_scale_factor times the number of live tuples currently
estimated to be in the relation. If false, this table will not be autovacuumed, except to prevent
transaction Id wraparound. See Section 23.1.4 for more about wraparound prevention. Observe
that this variable inherits its value from the autovacuum setting.

autovacuum_vacuum_threshold, toast.autovacuum_vacuum_threshold
(integer)

Minimum number of updated or deleted tuples before initiate a VACUUM operation on a particular
table.

autovacuum_vacuum_scale_factor, toast.autovacuum_vacuum_scale_factor
(float4)

Multiplier for reltuples to add to autovacuum_vacuum_threshold.

autovacuum_analyze_threshold (integer)

Minimum number of inserted, updated, or deleted tuples before initiate an ANALYZE operation
on a particular table.

autovacuum_analyze_scale_factor (float4)

Multiplier for reltuples to add to autovacuum_analyze_threshold.

autovacuum_vacuum_cost_delay, toast.autovacuum_vacuum_cost_delay
(integer)

Custom autovacuum_vacuum_cost_delay parameter.

https://www.postgresql.org/docs/9.1/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-DELAY
https://www.postgresql.org/docs/9.1/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM
https://www.postgresql.org/docs/9.1/static/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

autovacuum_vacuum_cost_limit, toast.autovacuum_vacuum_cost_limit
(integer)

Custom autovacuum_vacuum_cost_limit parameter.

autovacuum_freeze_min_age, toast.autovacuum_freeze_min_age (integer)

Custom vacuum_freeze_min_age parameter. Note that autovacuum will ignore attempts to set a
per-table autovacuum_freeze_min_age larger than the half system-wide
autovacuum_freeze_max_age setting.

autovacuum_freeze_max_age, toast.autovacuum_freeze_max_age (integer)

Custom autovacuum_freeze_max_age parameter. Note that autovacuum will ignore attempts to
set a per-table autovacuum_freeze_max_age larger than the system-wide setting (it can
only be set smaller).

autovacuum_freeze_table_age, toast.autovacuum_freeze_table_age
(integer)

Custom vacuum_freeze_table_age parameter.

Notes
Using OIDs in new applications is not recommended: where possible, using a SERIAL or other

sequence generator as the table's primary key is preferred. However, if your application does make use

of OIDs to identify specific rows of a table, it is recommended to create a unique constraint on the oid

column of that table, to ensure that OIDs in the table will indeed uniquely identify rows even after
counter wraparound. Avoid assuming that OIDs are unique across tables; if you need a database-wide

unique identifier, use the combination of tableoid and row OID for the purpose.

Tip: The use of OIDS=FALSE is not recommended for tables with no primary key, since
without either an OID or a unique data key, it is difficult to identify specific rows.

PostgreSQL automatically creates an index for each unique constraint and primary key constraint to
enforce uniqueness. Thus, it is not necessary to create an index explicitly for primary key columns.
(See CREATE INDEX for more information.)

Unique constraints and primary keys are not inherited in the current implementation. This makes the
combination of inheritance and unique constraints rather dysfunctional.

A table cannot have more than 1600 columns. (In practice, the effective limit is usually lower because
of tuple-length constraints.)

https://www.postgresql.org/docs/9.1/static/sql-createindex.html
https://www.postgresql.org/docs/9.1/static/runtime-config-client.html#GUC-VACUUM-FREEZE-TABLE-AGE
https://www.postgresql.org/docs/9.1/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-FREEZE-MAX-AGE
https://www.postgresql.org/docs/9.1/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-FREEZE-MAX-AGE
https://www.postgresql.org/docs/9.1/static/runtime-config-client.html#GUC-VACUUM-FREEZE-MIN-AGE
https://www.postgresql.org/docs/9.1/static/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-LIMIT

Examples
Create table films and table distributors:

CREATE TABLE films (
 code char(5) CONSTRAINT firstkey PRIMARY KEY,
 title varchar(40) NOT NULL,
 did integer NOT NULL,
 date_prod date,
 kind varchar(10),
 len interval hour to minute
);

CREATE TABLE distributors (
 did integer PRIMARY KEY DEFAULT nextval('serial'),
 name varchar(40) NOT NULL CHECK (name <> '')
);

Create a table with a 2-dimensional array:

CREATE TABLE array_int (
 vector int[][]
);

Define a unique table constraint for the table films. Unique table constraints can be defined on one or

more columns of the table:

CREATE TABLE films (
 code char(5),
 title varchar(40),
 did integer,
 date_prod date,
 kind varchar(10),
 len interval hour to minute,
 CONSTRAINT production UNIQUE(date_prod)
);

Define a check column constraint:

CREATE TABLE distributors (
 did integer CHECK (did > 100),
 name varchar(40)
);

Define a check table constraint:

CREATE TABLE distributors (
 did integer,
 name varchar(40)
 CONSTRAINT con1 CHECK (did > 100 AND name <> '')
);

Define a primary key table constraint for the table films:

CREATE TABLE films (
 code char(5),

 title varchar(40),
 did integer,
 date_prod date,
 kind varchar(10),
 len interval hour to minute,
 CONSTRAINT code_title PRIMARY KEY(code,title)
);

Define a primary key constraint for table distributors. The following two examples are

equivalent, the first using the table constraint syntax, the second the column constraint syntax:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 PRIMARY KEY(did)
);

CREATE TABLE distributors (
 did integer PRIMARY KEY,
 name varchar(40)
);

Assign a literal constant default value for the column name, arrange for the default value of column

did to be generated by selecting the next value of a sequence object, and make the default value of

modtime be the time at which the row is inserted:

CREATE TABLE distributors (
 name varchar(40) DEFAULT 'Luso Films',
 did integer DEFAULT nextval('distributors_serial'),
 modtime timestamp DEFAULT current_timestamp
);

Define two NOT NULL column constraints on the table distributors, one of which is explicitly

given a name:

CREATE TABLE distributors (
 did integer CONSTRAINT no_null NOT NULL,
 name varchar(40) NOT NULL
);

Define a unique constraint for the name column:

CREATE TABLE distributors (
 did integer,
 name varchar(40) UNIQUE
);

The same, specified as a table constraint:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 UNIQUE(name)
);

Create the same table, specifying 70% fill factor for both the table and its unique index:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 UNIQUE(name) WITH (fillfactor=70)
)
WITH (fillfactor=70);

Create table circles with an exclusion constraint that prevents any two circles from overlapping:

CREATE TABLE circles (
 c circle,
 EXCLUDE USING gist (c WITH &&)
);

Create table cinemas in tablespace diskvol1:

CREATE TABLE cinemas (
 id serial,
 name text,
 location text
) TABLESPACE diskvol1;

Create a composite type and a typed table:

CREATE TYPE employee_type AS (name text, salary numeric);

CREATE TABLE employees OF employee_type (
 PRIMARY KEY (name),
 salary WITH OPTIONS DEFAULT 1000
);

Compatibility
The CREATE TABLE command conforms to the SQL standard, with exceptions listed below.

Temporary Tables

Although the syntax of CREATE TEMPORARY TABLE resembles that of the SQL standard, the effect

is not the same. In the standard, temporary tables are defined just once and automatically exist (starting
with empty contents) in every session that needs them. PostgreSQL instead requires each session to

issue its own CREATE TEMPORARY TABLE command for each temporary table to be used. This

allows different sessions to use the same temporary table name for different purposes, whereas the
standard's approach constrains all instances of a given temporary table name to have the same table
structure.

The standard's definition of the behavior of temporary tables is widely ignored. PostgreSQL's behavior
on this point is similar to that of several other SQL databases.

The standard's distinction between global and local temporary tables is not in PostgreSQL, since that
distinction depends on the concept of modules, which PostgreSQL does not have. For compatibility's

sake, PostgreSQL will accept the GLOBAL and LOCAL keywords in a temporary table declaration, but

they have no effect.

The ON COMMIT clause for temporary tables also resembles the SQL standard, but has some

differences. If the ON COMMIT clause is omitted, SQL specifies that the default behavior is ON

COMMIT DELETE ROWS. However, the default behavior in PostgreSQL is ON COMMIT PRESERVE

ROWS. The ON COMMIT DROP option does not exist in SQL.

Non-deferred Uniqueness Constraints

When a UNIQUE or PRIMARY KEY constraint is not deferrable, PostgreSQL checks for uniqueness

immediately whenever a row is inserted or modified. The SQL standard says that uniqueness should be
enforced only at the end of the statement; this makes a difference when, for example, a single command
updates multiple key values. To obtain standard-compliant behavior, declare the constraint as

DEFERRABLE but not deferred (i.e., INITIALLY IMMEDIATE). Be aware that this can be

significantly slower than immediate uniqueness checking.

Column Check Constraints

The SQL standard says that CHECK column constraints can only refer to the column they apply to; only

CHECK table constraints can refer to multiple columns. PostgreSQL does not enforce this restriction; it

treats column and table check constraints alike.

EXCLUDE Constraint

The EXCLUDE constraint type is a PostgreSQL extension.

NULL "Constraint"

The NULL "constraint" (actually a non-constraint) is a PostgreSQL extension to the SQL standard that

is included for compatibility with some other database systems (and for symmetry with the NOT NULL

constraint). Since it is the default for any column, its presence is simply noise.

Inheritance

Multiple inheritance via the INHERITS clause is a PostgreSQL language extension. SQL:1999 and

later define single inheritance using a different syntax and different semantics. SQL:1999-style
inheritance is not yet supported by PostgreSQL.

Zero-column Tables

PostgreSQL allows a table of no columns to be created (for example, CREATE TABLE foo();).

This is an extension from the SQL standard, which does not allow zero-column tables. Zero-column

tables are not in themselves very useful, but disallowing them creates odd special cases for ALTER

TABLE DROP COLUMN, so it seems cleaner to ignore this spec restriction.

LIKE Clause

While a LIKE clause exists in the SQL standard, many of the options that PostgreSQL accepts for it are

not in the standard, and some of the standard's options are not implemented by PostgreSQL.

WITH Clause

The WITH clause is a PostgreSQL extension; neither storage parameters nor OIDs are in the standard.

Tablespaces

The PostgreSQL concept of tablespaces is not part of the standard. Hence, the clauses TABLESPACE

and USING INDEX TABLESPACE are extensions.

Typed Tables

Typed tables implement a subset of the SQL standard. According to the standard, a typed table has
columns corresponding to the underlying composite type as well as one other column that is the "self-
referencing column". PostgreSQL does not support these self-referencing columns explicitly, but the
same effect can be had using the OID feature.

See Also
ALTER TABLE, DROP TABLE, CREATE TABLESPACE, CREATE TYPE

Prev Home Next
CREATE SERVER Up CREATE TABLE AS

Submit correction
If you see anything in the documentation that is not correct, does not match your experience with the
particular feature or requires further clarification, please use this form to report a documentation issue.

Privacy Policy | About PostgreSQL
Copyright © 1996-2017 The PostgreSQL Global Development Group

https://www.postgresql.org/about/
https://www.postgresql.org/about/privacypolicy
https://www.postgresql.org/account/comments/new/9.1/sql-createtable.html/
https://www.postgresql.org/docs/9.1/static/sql-commands.html
https://www.postgresql.org/docs/9.1/static/sql-createtableas.html
https://www.postgresql.org/docs/9.1/static/index.html
https://www.postgresql.org/docs/9.1/static/sql-createserver.html
https://www.postgresql.org/docs/9.1/static/sql-createtype.html
https://www.postgresql.org/docs/9.1/static/sql-createtablespace.html
https://www.postgresql.org/docs/9.1/static/sql-droptable.html
https://www.postgresql.org/docs/9.1/static/sql-altertable.html

	CREATE TABLE
	Name
	Synopsis
	Description
	Parameters
	Storage Parameters

	Notes
	Examples
	Compatibility
	Temporary Tables
	Non-deferred Uniqueness Constraints
	Column Check Constraints
	EXCLUDE Constraint
	NULL "Constraint"
	Inheritance
	Zero-column Tables
	LIKE Clause
	WITH Clause
	Tablespaces
	Typed Tables

	See Also
	Submit correction

