

Home → Documentation → Manuals → PostgreSQL 9.6
This page in other versions: 9.2 / 9.3 / 9.4 / 9.5 / current (9.6) | Development versions: devel / 10 |
Unsupported versions: 7.1 / 7.2 / 7.3 / 7.4 / 8.0 / 8.1 / 8.2 / 8.3 / 8.4 / 9.0 / 9.1

PostgreSQL 9.6.3 Documentation
Prev Up Next

pg_dump
https://www.postgresql.org/docs/9.6/static/app-pgdump.html

Name
pg_dump -- extract a PostgreSQL database into a script file or other archive file

Synopsis
pg_dump [connection-option...] [option...] [dbname]

Description
pg_dump is a utility for backing up a PostgreSQL database. It makes consistent backups even if the
database is being used concurrently. pg_dump does not block other users accessing the database
(readers or writers).

pg_dump only dumps a single database. To backup global objects that are common to all databases in a
cluster, such as roles and tablespaces, use pg_dumpall.

Dumps can be output in script or archive file formats. Script dumps are plain-text files containing the
SQL commands required to reconstruct the database to the state it was in at the time it was saved. To
restore from such a script, feed it to psql. Script files can be used to reconstruct the database even on
other machines and other architectures; with some modifications, even on other SQL database products.

The alternative archive file formats must be used with pg_restore to rebuild the database. They allow
pg_restore to be selective about what is restored, or even to reorder the items prior to being restored.
The archive file formats are designed to be portable across architectures.

When used with one of the archive file formats and combined with pg_restore, pg_dump provides a
flexible archival and transfer mechanism. pg_dump can be used to backup an entire database, then

https://www.postgresql.org/docs/9.6/static/app-pgdump.html
https://www.postgresql.org/docs/9.6/static/app-pgrestore.html
https://www.postgresql.org/docs/9.6/static/app-psql.html
https://www.postgresql.org/docs/9.6/static/app-pg-dumpall.html
https://www.postgresql.org/docs/9.6/static/app-pg-dumpall.html
https://www.postgresql.org/docs/9.6/static/reference-client.html
https://www.postgresql.org/docs/9.6/static/app-pgconfig.html
https://www.postgresql.org/docs/9.6/static/index.html
https://www.postgresql.org/docs/9.1/static/app-pgdump.html
https://www.postgresql.org/docs/9.0/static/app-pgdump.html
https://www.postgresql.org/docs/8.4/static/app-pgdump.html
https://www.postgresql.org/docs/8.3/static/app-pgdump.html
https://www.postgresql.org/docs/8.2/static/app-pgdump.html
https://www.postgresql.org/docs/8.1/static/app-pgdump.html
https://www.postgresql.org/docs/8.0/static/app-pgdump.html
https://www.postgresql.org/docs/7.4/static/app-pgdump.html
https://www.postgresql.org/docs/7.3/static/app-pgdump.html
https://www.postgresql.org/docs/7.2/static/app-pgdump.html
https://www.postgresql.org/docs/7.1/static/app-pgdump.html
https://www.postgresql.org/docs/10/static/app-pgdump.html
https://www.postgresql.org/docs/devel/static/app-pgdump.html
https://www.postgresql.org/docs/9.5/static/app-pgdump.html
https://www.postgresql.org/docs/9.4/static/app-pgdump.html
https://www.postgresql.org/docs/9.3/static/app-pgdump.html
https://www.postgresql.org/docs/9.2/static/app-pgdump.html
https://www.postgresql.org/docs/9.6/static/index.html
https://www.postgresql.org/docs/manuals
https://www.postgresql.org/docs
https://www.postgresql.org/
https://www.postgresql.org/

pg_restore can be used to examine the archive and/or select which parts of the database are to be

restored. The most flexible output file formats are the "custom" format (-Fc) and the "directory"

format(-Fd). They allow for selection and reordering of all archived items, support parallel restoration,

and are compressed by default. The "directory" format is the only format that supports parallel dumps.

While running pg_dump, one should examine the output for any warnings (printed on standard error),
especially in light of the limitations listed below.

Options
The following command-line options control the content and format of the output.

dbname

Specifies the name of the database to be dumped. If this is not specified, the environment variable
PGDATABASE is used. If that is not set, the user name specified for the connection is used.

-a
--data-only

Dump only the data, not the schema (data definitions). Table data, large objects, and sequence
values are dumped.

This option is similar to, but for historical reasons not identical to, specifying
--section=data.

-b
--blobs

Include large objects in the dump. This is the default behavior except when --schema,
--table, or --schema-only is specified. The -b switch is therefore only useful to add large
objects to dumps where a specific schema or table has been requested. Note that blobs are
considered data and therefore will be included when --data-only is used, but not when --schema-
only is.

-c
--clean

Output commands to clean (drop) database objects prior to outputting the commands for creating
them. (Unless --if-exists is also specified, restore might generate some harmless error
messages, if any objects were not present in the destination database.)

This option is only meaningful for the plain-text format. For the archive formats, you can specify
the option when you call pg_restore.

-C
--create

Begin the output with a command to create the database itself and reconnect to the created
database. (With a script of this form, it doesn't matter which database in the destination
installation you connect to before running the script.) If --clean is also specified, the script
drops and recreates the target database before reconnecting to it.

This option is only meaningful for the plain-text format. For the archive formats, you can specify
the option when you call pg_restore.

-E encoding
--encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the
database encoding. (Another way to get the same result is to set the PGCLIENTENCODING
environment variable to the desired dump encoding.)

-f file
--file=file

Send output to the specified file. This parameter can be omitted for file based output formats, in
which case the standard output is used. It must be given for the directory output format however,
where it specifies the target directory instead of a file. In this case the directory is created by
pg_dump and must not exist before.

-F format
--format=format

Selects the format of the output. format can be one of the following:

p
plain

Output a plain-text SQL script file (the default).

c
custom

Output a custom-format archive suitable for input into pg_restore. Together with the
directory output format, this is the most flexible output format in that it allows manual
selection and reordering of archived items during restore. This format is also compressed
by default.

d
directory

Output a directory-format archive suitable for input into pg_restore. This will create a
directory with one file for each table and blob being dumped, plus a so-called Table of
Contents file describing the dumped objects in a machine-readable format that pg_restore
can read. A directory format archive can be manipulated with standard Unix tools; for
example, files in an uncompressed archive can be compressed with the gzip tool. This
format is compressed by default and also supports parallel dumps.

t
tar

Output a tar-format archive suitable for input into pg_restore. The tar format is
compatible with the directory format: extracting a tar-format archive produces a valid
directory-format archive. However, the tar format does not support compression. Also,
when using tar format the relative order of table data items cannot be changed during
restore.

-j njobs
--jobs=njobs

Run the dump in parallel by dumping njobs tables simultaneously. This option reduces the time
of the dump but it also increases the load on the database server. You can only use this option
with the directory output format because this is the only output format where multiple processes
can write their data at the same time.

pg_dump will open njobs + 1 connections to the database, so make sure your max_connections
setting is high enough to accommodate all connections.

Requesting exclusive locks on database objects while running a parallel dump could cause the
dump to fail. The reason is that the pg_dump master process requests shared locks on the objects
that the worker processes are going to dump later in order to make sure that nobody deletes them
and makes them go away while the dump is running. If another client then requests an exclusive
lock on a table, that lock will not be granted but will be queued waiting for the shared lock of the
master process to be released. Consequently any other access to the table will not be granted
either and will queue after the exclusive lock request. This includes the worker process trying to
dump the table. Without any precautions this would be a classic deadlock situation. To detect this
conflict, the pg_dump worker process requests another shared lock using the NOWAIT option. If
the worker process is not granted this shared lock, somebody else must have requested an
exclusive lock in the meantime and there is no way to continue with the dump, so pg_dump has
no choice but to abort the dump.

For a consistent backup, the database server needs to support synchronized snapshots, a feature
that was introduced in PostgreSQL 9.2. With this feature, database clients can ensure they see the
same data set even though they use different connections. pg_dump -j uses multiple database
connections; it connects to the database once with the master process and once again for each
worker job. Without the synchronized snapshot feature, the different worker jobs wouldn't be
guaranteed to see the same data in each connection, which could lead to an inconsistent backup.

https://www.postgresql.org/docs/9.6/static/runtime-config-connection.html#GUC-MAX-CONNECTIONS

If you want to run a parallel dump of a pre-9.2 server, you need to make sure that the database
content doesn't change from between the time the master connects to the database until the last
worker job has connected to the database. The easiest way to do this is to halt any data modifying
processes (DDL and DML) accessing the database before starting the backup. You also need to
specify the --no-synchronized-snapshots parameter when running pg_dump -j
against a pre-9.2 PostgreSQL server.

-n schema
--schema=schema

Dump only schemas matching schema; this selects both the schema itself, and all its contained
objects. When this option is not specified, all non-system schemas in the target database will be
dumped. Multiple schemas can be selected by writing multiple -n switches. Also, the schema
parameter is interpreted as a pattern according to the same rules used by psql's \d commands
(see Patterns), so multiple schemas can also be selected by writing wildcard characters in the
pattern. When using wildcards, be careful to quote the pattern if needed to prevent the shell from
expanding the wildcards; see Examples.

Note: When -n is specified, pg_dump makes no attempt to dump any other database
objects that the selected schema(s) might depend upon. Therefore, there is no
guarantee that the results of a specific-schema dump can be successfully restored by
themselves into a clean database.

Note: Non-schema objects such as blobs are not dumped when -n is specified. You
can add blobs back to the dump with the --blobs switch.

-N schema
--exclude-schema=schema

Do not dump any schemas matching the schema pattern. The pattern is interpreted according to
the same rules as for -n. -N can be given more than once to exclude schemas matching any of
several patterns.

When both -n and -N are given, the behavior is to dump just the schemas that match at least one
-n switch but no -N switches. If -N appears without -n, then schemas matching -N are
excluded from what is otherwise a normal dump.

-o
--oids

Dump object identifiers (OIDs) as part of the data for every table. Use this option if your
application references the OID columns in some way (e.g., in a foreign key constraint).
Otherwise, this option should not be used.

https://www.postgresql.org/docs/9.6/static/app-pgdump.html#PG-DUMP-EXAMPLES
https://www.postgresql.org/docs/9.6/static/app-psql.html#APP-PSQL-PATTERNS

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set
ownership of created database objects. These statements will fail when the script is run unless it
is started by a superuser (or the same user that owns all of the objects in the script). To make a
script that can be restored by any user, but will give that user ownership of all the objects, specify
-O.

This option is only meaningful for the plain-text format. For the archive formats, you can specify
the option when you call pg_restore.

-R
--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s
--schema-only

Dump only the object definitions (schema), not data.

This option is the inverse of --data-only. It is similar to, but for historical reasons not
identical to, specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word "schema" in a different
meaning.)

To exclude table data for only a subset of tables in the database, see --exclude-table-
data.

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if
--disable-triggers is used. (Usually, it's better to leave this out, and instead start the
resulting script as superuser.)

-t table
--table=table

Dump only tables with names matching table. For this purpose, "table" includes views,
materialized views, sequences, and foreign tables. Multiple tables can be selected by writing
multiple -t switches. Also, the table parameter is interpreted as a pattern according to the
same rules used by psql's \d commands (see Patterns), so multiple tables can also be selected by

https://www.postgresql.org/docs/9.6/static/app-psql.html#APP-PSQL-PATTERNS

writing wildcard characters in the pattern. When using wildcards, be careful to quote the pattern
if needed to prevent the shell from expanding the wildcards; see Examples.

The -n and -N switches have no effect when -t is used, because tables selected by -t will be
dumped regardless of those switches, and non-table objects will not be dumped.

Note: When -t is specified, pg_dump makes no attempt to dump any other database
objects that the selected table(s) might depend upon. Therefore, there is no guarantee
that the results of a specific-table dump can be successfully restored by themselves
into a clean database.

Note: The behavior of the -t switch is not entirely upward compatible with pre-8.2
PostgreSQL versions. Formerly, writing -t tab would dump all tables named tab,
but now it just dumps whichever one is visible in your default search path. To get the
old behavior you can write -t '*.tab'. Also, you must write something like -t
sch.tab to select a table in a particular schema, rather than the old locution of -n
sch -t tab.

-T table
--exclude-table=table

Do not dump any tables matching the table pattern. The pattern is interpreted according to the
same rules as for -t. -T can be given more than once to exclude tables matching any of several
patterns.

When both -t and -T are given, the behavior is to dump just the tables that match at least one
-t switch but no -T switches. If -T appears without -t, then tables matching -T are excluded
from what is otherwise a normal dump.

-v
--verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and
start/stop times to the dump file, and progress messages to standard error.

-V
--version

Print the pg_dump version and exit.

-x
--no-privileges
--no-acl

Prevent dumping of access privileges (grant/revoke commands).

https://www.postgresql.org/docs/9.6/static/app-pgdump.html#PG-DUMP-EXAMPLES

-Z 0..9
--compress=0..9

Specify the compression level to use. Zero means no compression. For the custom archive
format, this specifies compression of individual table-data segments, and the default is to
compress at a moderate level. For plain text output, setting a nonzero compression level causes
the entire output file to be compressed, as though it had been fed through gzip; but the default is
not to compress. The tar archive format currently does not support compression at all.

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended
or supported. The behavior of the option may change in future releases without notice.

--column-inserts
--attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table
(column, ...) VALUES ...). This will make restoration very slow; it is mainly useful for
making dumps that can be loaded into non-PostgreSQL databases. However, since this option
generates a separate command for each row, an error in reloading a row causes only that row to
be lost rather than the entire table contents.

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted
using SQL standard string syntax.

--disable-triggers

This option is relevant only when creating a data-only dump. It instructs pg_dump to include
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this
if you have referential integrity checks or other triggers on the tables that you do not want to
invoke during data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So,
you should also specify a superuser name with -S, or preferably be careful to start the resulting
script as a superuser.

This option is only meaningful for the plain-text format. For the archive formats, you can specify
the option when you call pg_restore.

--enable-row-security

This option is relevant only when dumping the contents of a table which has row security. By
default, pg_dump will set row_security to off, to ensure that all data is dumped from the table. If
the user does not have sufficient privileges to bypass row security, then an error is thrown. This

https://www.postgresql.org/docs/9.6/static/runtime-config-client.html#GUC-ROW-SECURITY

parameter instructs pg_dump to set row_security to on instead, allowing the user to dump the
parts of the contents of the table that they have access to.

Note that if you use this option currently, you probably also want the dump be in INSERT
format, as the COPY FROM during restore does not support row security.

--exclude-table-data=table

Do not dump data for any tables matching the table pattern. The pattern is interpreted
according to the same rules as for -t. --exclude-table-data can be given more than once
to exclude tables matching any of several patterns. This option is useful when you need the
definition of a particular table even though you do not need the data in it.

To exclude data for all tables in the database, see --schema-only.

--if-exists

Use conditional commands (i.e. add an IF EXISTS clause) when cleaning database objects.
This option is not valid unless --clean is also specified.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is
mainly useful for making dumps that can be loaded into non-PostgreSQL databases. However,
since this option generates a separate command for each row, an error in reloading a row causes
only that row to be lost rather than the entire table contents. Note that the restore might fail
altogether if you have rearranged column order. The --column-inserts option is safe
against column order changes, though even slower.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead fail if
unable to lock a table within the specified timeout. The timeout may be specified in any of the
formats accepted by SET statement_timeout. (Allowed values vary depending on the
server version you are dumping from, but an integer number of milliseconds is accepted by all
versions since 7.3. This option is ignored when dumping from a pre-7.3 server.)

--no-security-labels

Do not dump security labels.

--no-synchronized-snapshots

This option allows running pg_dump -j against a pre-9.2 server, see the documentation of the
-j parameter for more details.

--no-tablespaces

https://www.postgresql.org/docs/9.6/static/runtime-config-client.html#GUC-ROW-SECURITY

Do not output commands to select tablespaces. With this option, all objects will be created in
whichever tablespace is the default during restore.

This option is only meaningful for the plain-text format. For the archive formats, you can specify
the option when you call pg_restore.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not the
table definitions (schema) are dumped; it only suppresses dumping the table data. Data in
unlogged tables is always excluded when dumping from a standby server.

--quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database from a
server whose PostgreSQL major version is different from pg_dump's, or when the output is
intended to be loaded into a server of a different major version. By default, pg_dump quotes only
identifiers that are reserved words in its own major version. This sometimes results in
compatibility issues when dealing with servers of other versions that may have slightly different
sets of reserved words. Using --quote-all-identifiers prevents such issues, at the price
of a harder-to-read dump script.

--section=sectionname

Only dump the named section. The section name can be pre-data, data, or post-data.
This option can be specified more than once to select multiple sections. The default is to dump all
sections.

The data section contains actual table data, large-object contents, and sequence values. Post-data
items include definitions of indexes, triggers, rules, and constraints other than validated check
constraints. Pre-data items include all other data definition items.

--serializable-deferrable

Use a serializable transaction for the dump, to ensure that the snapshot used is consistent
with later database states; but do this by waiting for a point in the transaction stream at which no
anomalies can be present, so that there isn't a risk of the dump failing or causing other
transactions to roll back with a serialization_failure. See Chapter 13 for more
information about transaction isolation and concurrency control.

This option is not beneficial for a dump which is intended only for disaster recovery. It could be
useful for a dump used to load a copy of the database for reporting or other read-only load
sharing while the original database continues to be updated. Without it the dump may reflect a
state which is not consistent with any serial execution of the transactions eventually committed.
For example, if batch processing techniques are used, a batch may show as closed in the dump
without all of the items which are in the batch appearing.

https://www.postgresql.org/docs/9.6/static/mvcc.html

This option will make no difference if there are no read-write transactions active when pg_dump
is started. If read-write transactions are active, the start of the dump may be delayed for an
indeterminate length of time. Once running, performance with or without the switch is the same.

--snapshot=snapshotname

Use the specified synchronized snapshot when making a dump of the database (see Table 9-81 for
more details).

This option is useful when needing to synchronize the dump with a logical replication slot (see
Chapter 47) or with a concurrent session.

In the case of a parallel dump, the snapshot name defined by this option is used rather than taking
a new snapshot.

--strict-names

Require that each schema (-n/--schema) and table (-t/--table) qualifier match at least one
schema/table in the database to be dumped. Note that if none of the schema/table qualifiers find
matches, pg_dump will generate an error even without --strict-names.

This option has no effect on -N/--exclude-schema, -T/--exclude-table, or
--exclude-table-data. An exclude pattern failing to match any objects is not considered
an error.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER
OWNER commands to determine object ownership. This makes the dump more standards-
compatible, but depending on the history of the objects in the dump, might not restore properly.
Also, a dump using SET SESSION AUTHORIZATION will certainly require superuser
privileges to restore correctly, whereas ALTER OWNER requires lesser privileges.

-?
--help

Show help about pg_dump command line arguments, and exit.

The following command-line options control the database connection parameters.

-d dbname
--dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the
first non-option argument on the command line.

https://www.postgresql.org/docs/9.6/static/logicaldecoding.html
https://www.postgresql.org/docs/9.6/static/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION-TABLE

If this parameter contains an = sign or starts with a valid URI prefix (postgresql:// or
postgres://), it is treated as a conninfo string. See Section 32.1 for more information.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOST environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This
option can be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_dump to prompt for a password before connecting to a database.

This option is never essential, since pg_dump will automatically prompt for a password if the
server demands password authentication. However, pg_dump will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the
extra connection attempt.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dump to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated
user (specified by -U) lacks privileges needed by pg_dump, but can switch to a role with the
required rights. Some installations have a policy against logging in directly as a superuser, and
use of this option allows dumps to be made without violating the policy.

https://www.postgresql.org/docs/9.6/static/libpq-connect.html

Environment
PGDATABASE
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by
libpq (see Section 32.14).

Diagnostics
pg_dump internally executes SELECT statements. If you have problems running pg_dump, make sure

you are able to select information from the database using, for example, psql. Also, any default
connection settings and environment variables used by the libpq front-end library will apply.

The database activity of pg_dump is normally collected by the statistics collector. If this is undesirable,

you can set parameter track_counts to false via PGOPTIONS or the ALTER USER command.

Notes
If your database cluster has any local additions to the template1 database, be careful to restore the

output of pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate
definitions of the added objects. To make an empty database without any local additions, copy from

template0 not template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

When a data-only dump is chosen and the option --disable-triggers is used, pg_dump emits

commands to disable triggers on user tables before inserting the data, and then commands to re-enable
them after the data has been inserted. If the restore is stopped in the middle, the system catalogs might
be left in the wrong state.

The dump file produced by pg_dump does not contain the statistics used by the optimizer to make

query planning decisions. Therefore, it is wise to run ANALYZE after restoring from a dump file to

ensure optimal performance; see Section 24.1.3 and Section 24.1.6 for more information. The dump

file also does not contain any ALTER DATABASE ... SET commands; these settings are dumped

by pg_dumpall, along with database users and other installation-wide settings.

Because pg_dump is used to transfer data to newer versions of PostgreSQL, the output of pg_dump can
be expected to load into PostgreSQL server versions newer than pg_dump's version. pg_dump can also
dump from PostgreSQL servers older than its own version. (Currently, servers back to version 7.0 are

https://www.postgresql.org/docs/9.6/static/app-pg-dumpall.html
https://www.postgresql.org/docs/9.6/static/routine-vacuuming.html#AUTOVACUUM
https://www.postgresql.org/docs/9.6/static/routine-vacuuming.html#VACUUM-FOR-STATISTICS
https://www.postgresql.org/docs/9.6/static/app-psql.html
https://www.postgresql.org/docs/9.6/static/libpq-envars.html

supported.) However, pg_dump cannot dump from PostgreSQL servers newer than its own major
version; it will refuse to even try, rather than risk making an invalid dump. Also, it is not guaranteed
that pg_dump's output can be loaded into a server of an older major version — not even if the dump
was taken from a server of that version. Loading a dump file into an older server may require manual

editing of the dump file to remove syntax not understood by the older server. Use of the --quote-

all-identifiers option is recommended in cross-version cases, as it can prevent problems

arising from varying reserved-word lists in different PostgreSQL versions.

Examples
To dump a database called mydb into a SQL-script file:

$ pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

$ psql -d newdb -f db.sql

To dump a database into a custom-format archive file:

$ pg_dump -Fc mydb > db.dump

To dump a database into a directory-format archive:

$ pg_dump -Fd mydb -f dumpdir

To dump a database into a directory-format archive in parallel with 5 worker jobs:

$ pg_dump -Fd mydb -j 5 -f dumpdir

To reload an archive file into a (freshly created) database named newdb:

$ pg_restore -d newdb db.dump

To dump a single table named mytab:

$ pg_dump -t mytab mydb > db.sql

To dump all tables whose names start with emp in the detroit schema, except for the table named

employee_log:

$ pg_dump -t 'detroit.emp*' -T detroit.employee_log mydb > db.sql

To dump all schemas whose names start with east or west and end in gsm, excluding any schemas

whose names contain the word test:

$ pg_dump -n 'east*gsm' -n 'west*gsm' -N '*test*' mydb > db.sql

The same, using regular expression notation to consolidate the switches:

$ pg_dump -n '(east|west)*gsm' -N '*test*' mydb > db.sql

To dump all database objects except for tables whose names begin with ts_:

$ pg_dump -T 'ts_*' mydb > db.sql

To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the

name; else it will be folded to lower case (see Patterns). But double quotes are special to the shell, so in
turn they must be quoted. Thus, to dump a single table with a mixed-case name, you need something
like

$ pg_dump -t "\"MixedCaseName\"" mydb > mytab.sql

See Also
pg_dumpall, pg_restore, psql

Prev Home Next
pg_config Up pg_dumpall

Submit correction
If you see anything in the documentation that is not correct, does not match your experience with the
particular feature or requires further clarification, please use this form to report a documentation issue.

Privacy Policy | About PostgreSQL
Copyright © 1996-2017 The PostgreSQL Global Development Group

https://www.postgresql.org/about/
https://www.postgresql.org/about/privacypolicy
https://www.postgresql.org/account/comments/new/9.6/app-pgdump.html/
https://www.postgresql.org/docs/9.6/static/reference-client.html
https://www.postgresql.org/docs/9.6/static/app-pg-dumpall.html
https://www.postgresql.org/docs/9.6/static/index.html
https://www.postgresql.org/docs/9.6/static/app-pgconfig.html
https://www.postgresql.org/docs/9.6/static/app-psql.html
https://www.postgresql.org/docs/9.6/static/app-pgrestore.html
https://www.postgresql.org/docs/9.6/static/app-pg-dumpall.html
https://www.postgresql.org/docs/9.6/static/app-psql.html#APP-PSQL-PATTERNS

	pg_dump
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also
	Submit correction

