
Derek DeJonghe

Compliments of

Complete
NGINX
Cookbook

FREE TRIAL LEARN MORE

flawless
application

delivery
Load

Balancer
Content
Cache

Web
Server

Security
Controls

Monitoring &
Management

https://www.nginx.com/free-trial-request/?utm_source=oreilly&utm_campaign=comprehensive-cookbook&utm_medium=ebook
https://www.nginx.com/products/?utm_source=oreilly&utm_campaign=comprehensive-cookbook&utm_medium=ebook
https://www.nginx.com/products/?utm_source=oreilly&utm_campaign=comprehensive-cookbook&utm_medium=ebook

Derek DeJonghe

Complete NGINX Cookbook
Advanced Recipes for Operations

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96895-6

[LSI]

NGINX Cookbook
by Derek DeJonghe

Copyright © 2017 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Virginia Wilson
Acquisitions Editor: Brian Anderson
Production Editor: Shiny Kalapurakkel
Copyeditor: Amanda Kersey

Proofreader: Sonia Saruba
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2017: First Edition

Revision History for the First Edition
2017-05-26: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. NGINX Cook‐
book, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com/safari

Table of Contents

Part I. Part I: Load Balancing and HTTP Caching

1. High-Performance Load Balancing. 1
1.0 Introduction 1
1.1 HTTP Load Balancing 2
1.2 TCP Load Balancing 3
1.3 Load-Balancing Methods 4
1.4 Connection Limiting 6

2. Intelligent Session Persistence. 9
2.0 Introduction 9
2.1 Sticky Cookie 10
2.2 Sticky Learn 11
2.3 Sticky Routing 12
2.4 Connection Draining 13

3. Application-Aware Health Checks. 15
3.0 Introduction 15
3.1 What to Check 15
3.2 Slow Start 16
3.3 TCP Health Checks 17
3.4 HTTP Health Checks 18

4. High-Availability Deployment Modes. 21
4.0 Introduction 21
4.1 NGINX HA Mode 21

v

4.2 Load-Balancing Load Balancers with DNS 22
4.3 Load Balancing on EC2 23

5. Massively Scalable Content Caching. 25
5.0 Introduction 25
5.1 Caching Zones 25
5.2 Caching Hash Keys 27
5.3 Cache Bypass 28
5.4 Cache Performance 29
5.5 Purging 30

6. Sophisticated Media Streaming. 31
6.0 Introduction 31
6.1 Serving MP4 and FLV 31
6.2 Streaming with HLS 32
6.3 Streaming with HDS 34
6.4 Bandwidth Limits 34

7. Advanced Activity Monitoring. 37
7.0 Introduction 37
7.1 NGINX Traffic Monitoring 37
7.2 The JSON Feed 39

8. DevOps On-the-Fly Reconfiguration. 41
8.0 Introduction 41
8.1 The NGINX API 41
8.2 Seamless Reload 43
8.3 SRV Records 44

9. UDP Load Balancing. 47
9.0 Introduction 47
9.1 Stream Context 47
9.2 Load-Balancing Algorithms 49
9.3 Health Checks 49

10. Cloud-Agnostic Architecture. 51
10.0 Introduction 51
10.1 The Anywhere Load Balancer 51
10.2 The Importance of Versatility 52

vi | Table of Contents

Part II. Part II: Security and Access

11. Controlling Access. 57
11.0 Introduction 57
11.1 Access Based on IP Address 57
11.2 Allowing Cross-Origin Resource Sharing 58

12. Limiting Use. 61
12.0 Introduction 61
12.1 Limiting Connections 61
12.2 Limiting Rate 63
12.3 Limiting Bandwidth 64

13. Encrypting. 67
13.0 Introduction 67
13.1 Client-Side Encryption 67
13.2 Upstream Encryption 69

14. HTTP Basic Authentication. 71
14.0 Introduction 71
14.1 Creating a User File 71
14.2 Using Basic Authentication 72

15. HTTP Authentication Subrequests. 75
15.0 Introduction 75
15.1 Authentication Subrequests 75

16. Secure Links. 77
16.0 Introduction 77
16.1 Securing a Location 77
16.2 Generating a Secure Link with a Secret 78
16.3 Securing a Location with an Expire Date 80
16.4 Generating an Expiring Link 81

17. API Authentication Using JWT. 83
17.0 Introduction 83
17.1 Validating JWTs 83
17.2 Creating JSON Web Keys 84

18. OpenId Connect Single Sign-On. 87
18.0 Introduction 87

Table of Contents | vii

18.1 Authenticate Users via Existing OpenId Connect
Single Sign-On (SSO) 87

18.2 Obtaining JSON Web Key from Google 89

19. ModSecurity Web Application Firewall. 91
19.0 Introduction 91
19.1 Installing ModSecurity for NGINX Plus 91
19.2 Configuring ModSecurity in NGINX Plus 92
19.3 Installing ModSecurity from Source for a Web

Application Firewall 93

20. Practical Security Tips. 97
20.0 Introduction 97
20.1 HTTPS Redirects 97
20.2 Redirecting to HTTPS Where SSL/TLS Is Terminated

Before NGINX 98
20.3 HTTP Strict Transport Security 99
20.4 Satisfying Any Number of Security Methods 100

Part III. Part III: Deployment and Operations

21. Deploying on AWS. 103
21.0 Introduction 103
21.1 Auto-Provisioning on AWS 103
21.2 Routing to NGINX Nodes Without an ELB 105
21.3 The ELB Sandwich 106
21.4 Deploying from the Marketplace 108

22. Deploying on Azure. 111
22.0 Introduction 111
22.1 Creating an NGINX Virtual Machine Image 111
22.2 Load Balancing Over NGINX Scale Sets 113
22.3 Deploying Through the Marketplace 114

23. Deploying on Google Cloud Compute. 117
23.0 Introduction 117
23.1 Deploying to Google Compute Engine 117
23.2 Creating a Google Compute Image 118
23.3 Creating a Google App Engine Proxy 119

viii | Table of Contents

24. Deploying on Docker. 123
24.0 Introduction 123
24.1 Running Quickly with the NGINX Image 123
24.2 Creating an NGINX Dockerfile 124
24.3 Building an NGINX Plus Image 126
24.4 Using Environment Variables in NGINX 128

25. Using Puppet/Chef/Ansible/SaltStack. 131
25.0 Introduction 131
25.1 Installing with Puppet 131
25.2 Installing with Chef 133
25.3 Installing with Ansible 135
25.4 Installing with SaltStack 136

26. Automation. 139
26.0 Introduction 139
26.1 Automating with NGINX Plus 139
26.2 Automating Configurations with Consul Templating 140

27. A/B Testing with split_clients. 143
27.0 Introduction 143
27.1 A/B Testing 143

28. Locating Users by IP Address Using the GeoIP Module. 145
28.0 Introduction 145
28.1 Using the GeoIP Module and Database 146
28.2 Restricting Access Based on Country 147
28.3 Finding the Original Client 148

29. Debugging and Troubleshooting with Access Logs, Error Logs, and
Request Tracing. 151
29.0 Introduction 151
29.1 Configuring Access Logs 151
29.2 Configuring Error Logs 153
29.3 Forwarding to Syslog 154
29.4 Request Tracing 155

30. Performance Tuning. 157
30.0 Introduction 157
30.1 Automating Tests with Load Drivers 157
30.2 Keeping Connections Open to Clients 158

Table of Contents | ix

30.3 Keeping Connections Open Upstream 159
30.4 Buffering Responses 160
30.5 Buffering Access Logs 161
30.6 OS Tuning 162

31. Practical Ops Tips and Conclusion. 165
31.0 Introduction 165
31.1 Using Includes for Clean Configs 165
31.2 Debugging Configs 166
31.3 Conclusion 168

x | Table of Contents

PART I

Part I: Load Balancing and
HTTP Caching

This is Part I of III of NGINX Cookbook. This book is about NGINX
the web server, reverse proxy, load balancer, and HTTP cache. Part I
will focus mostly on the load-balancing aspect and the advanced
features around load balancing, as well as some information around
HTTP caching. This book will touch on NGINX Plus, the licensed
version of NGINX that provides many advanced features, such as a
real-time monitoring dashboard and JSON feed, the ability to add
servers to a pool of application servers with an API call, and active
health checks with an expected response. The following chapters
have been written for an audience that has some understanding of
NGINX, modern web architectures such as n-tier or microservice
designs, and common web protocols such as TCP, UDP, and HTTP.
I wrote this book because I believe in NGINX as the strongest web
server, proxy, and load balancer we have. I also believe in NGINX’s
vision as a company. When I heard Owen Garrett, head of products
at NGINX, Inc. explain that the core of the NGINX system would
continue to be developed and open source, I knew NGINX, Inc. was
good for all of us, leading the World Wide Web with one of the most
powerful software technologies to serve a vast number of use cases.

Throughout this book, there will be references to both the free and
open source NGINX software, as well as the commercial product

from NGINX, Inc., NGINX Plus. Features and directives that are
only available as part of the paid subscription to NGINX Plus will be
denoted as such. Most readers in this audience will be users and
advocates for the free and open source solution; this book’s focus is
on just that, free and open source NGINX at its core. However, this
first part provides an opportunity to view some of the advanced fea‐
tures available in the paid solution, NGINX Plus.

CHAPTER 1

High-Performance Load Balancing

1.0 Introduction
Today’s internet user experience demands performance and uptime.
To achieve this, multiple copies of the same system are run, and
the load is distributed over them. As load increases, another copy
of the system can be brought online. The architecture technique is
called horizontal scaling. Software-based infrastructure is increas‐
ing in popularity because of its flexibility, opening up a vast world
of possibility. Whether the use case is as small as a set of two for
high availability or as large as thousands world wide, there’s a need
for a load-balancing solution that is as dynamic as the infrastruc‐
ture. NGINX fills this need in a number of ways, such as HTTP,
TCP, and UDP load balancing, the last of which is discussed in
Chapter 9.

This chapter discusses load-balancing configurations for HTTP
and TCP in NGINX. In this chapter, you will learn about the
NGINX load-balancing algorithms, such as round robin, least con‐
nection, least time, IP hash, and generic hash. They will aid you in
distributing load in ways more useful to your application. When
balancing load, you also want to control the amount of load being
served to the application server, which is covered in Recipe 1.4.

1

1.1 HTTP Load Balancing
Problem

You need to distribute load between two or more HTTP servers.

Solution

Use NGINX’s HTTP module to load balance over HTTP servers
using the upstream block:

upstream backend {
 server 10.10.12.45:80 weight=1;
 server app.example.com:80 weight=2;
}
server {
 location / {
 proxy_pass http://backend;
 }
}

This configuration balances load across two HTTP servers on port
80. The weight parameter instructs NGINX to pass twice as many
connections to the second server, and the weight parameter defaults
to 1.

Discussion

The HTTP upstream module controls the load balancing for HTTP.
This module defines a pool of destinations, either a list of Unix
sockets, IP addresses, and DNS records, or a mix. The upstream
module also defines how any individual request is assigned to any of
the upstream servers.

Each upstream destination is defined in the upstream pool by the
server directive. The server directive is provided a Unix socket, IP
address, or an FQDN, along with a number of optional parameters.
The optional parameters give more control over the routing of
requests. These parameters include the weight of the server in the
balancing algorithm; whether the server is in standby mode, avail‐
able, or unavailable; and how to determine if the server is unavail‐
able. NGINX Plus provides a number of other convenient
parameters like connection limits to the server, advanced DNS reso‐

2 | Chapter 1: High-Performance Load Balancing

lution control, and the ability to slowly ramp up connections to a
server after it starts.

1.2 TCP Load Balancing
Problem

You need to distribute load between two or more TCP servers.

Solution

Use NGINX’s stream module to load balance over TCP servers
using the upstream block:

stream {
 upstream mysql_read {
 server read1.example.com:3306 weight=5;
 server read2.example.com:3306;
 server 10.10.12.34:3306 backup;
 }

 server {
 listen 3306;
 proxy_pass mysql_read;
 }
}

The server block in this example instructs NGINX to listen on TCP
port 3306 and balance load between two MySQL database read rep‐
licas, and lists another as a backup that will be passed traffic if the
primaries are down.

Discussion

TCP load balancing is defined by the NGINX stream module. The
stream module, like the HTTP module, allows you to define upstream
pools of servers and configure a listening server. When configuring
a server to listen on a given port, you must define the port it’s to lis‐
ten on, or optionally, an address and a port. From there a destina‐
tion must be configured, whether it be a direct reverse proxy to
another address or an upstream pool of resources.

The upstream for TCP load balancing is much like the upstream for
HTTP, in that it defines upstream resources as servers, configured
with Unix socket, IP, or FQDN; as well as server weight, max num‐

1.2 TCP Load Balancing | 3

ber of connections, DNS resolvers, and connection ramp-up peri‐
ods; and if the server is active, down, or in backup mode.

NGINX Plus offers even more features for TCP load balancing.
These advanced features offered in NGINX Plus can be found
throughout Part I of this book. Features available in NGINX Plus,
such as connection limiting, can be found later in this chap‐
ter. Health checks for all load balancing will be covered in Chapter 2.
Dynamic reconfiguration for upstream pools, a feature available in
NGINX Plus, is covered in Chapter 8.

1.3 Load-Balancing Methods
Problem

Round-robin load balancing doesn’t fit your use case because you
have heterogeneous workloads or server pools.

Solution

Use one of NGINX’s load-balancing methods, such as least connec‐
tions, least time, generic hash, or IP hash:

upstream backend {
 least_conn;
 server backend.example.com;
 server backend1.example.com;
}

This sets the load-balancing algorithm for the backend upstream
pool to be least connections. All load-balancing algorithms, with the
exception of generic hash, will be standalone directives like the pre‐
ceding example. Generic hash takes a single parameter, which can be
a concatenation of variables, to build the hash from.

Discussion

Not all requests or packets carry an equal weight. Given this, round
robin, or even the weighted round robin used in examples prior, will
not fit the need of all applications or traffic flow. NGINX provides a
number of load-balancing algorithms that can be used to fit particu‐
lar use cases. These load-balancing algorithms or methods can not
only be chosen, but also configured. The following load-balancing
methods are available for upstream HTTP, TCP, and UDP pools:

4 | Chapter 1: High-Performance Load Balancing

Round robin
The default load-balancing method, which distributes requests
in order of the list of servers in the upstream pool. Weight can
be taken into consideration for a weighted round robin, which
could be used if the capacity of the upstream servers varies. The
higher the integer value for the weight, the more favored the
server will be in the round robin. The algorithm behind weight
is simply statistical probability of a weighted average. Round
robin is the default load-balancing algorithm and is used if no
other algorithm is specified.

Least connections
Another load-balancing method provided by NGINX. This
method balances load by proxying the current request to the
upstream server with the least number of open connections
proxied through NGINX. Least connections, like round robin,
also takes weights into account when deciding to which server
to send the connection. The directive name is least_conn.

Least time
Available only in NGINX Plus, is akin to least connections in
that it proxies to the upstream server with the least number of
current connections but favors the servers with the lowest aver‐
age response times. This method is one of the most sophistica‐
ted load-balancing algorithms out there and fits the need of
highly performant web applications. This algorithm is a value
add over least connections because a small number of connec‐
tions does not necessarily mean the quickest response. The
directive name is least_time.

Generic hash
The administrator defines a hash with the given text, variables
of the request or runtime, or both. NGINX distributes the load
amongst the servers by producing a hash for the current request
and placing it against the upstream servers. This method is very
useful when you need more control over where requests are sent
or determining what upstream server most likely will have the
data cached. Note that when a server is added or removed from
the pool, the hashed requests will be redistributed. This algo‐
rithm has an optional parameter, consistent, to minimize the
effect of redistribution. The directive name is hash.

1.3 Load-Balancing Methods | 5

IP hash
Only supported for HTTP, is the last of the bunch. IP hash uses
the client IP address as the hash. Slightly different from using
the remote variable in a generic hash, this algorithm uses the
first three octets of an IPv4 address or the entire IPv6 address.
This method ensures that clients get proxied to the same
upstream server as long as that server is available, which is
extremely helpful when the session state is of concern and not
handled by shared memory of the application. This method also
takes the weight parameter into consideration when distribut‐
ing the hash. The directive name is ip_hash.

1.4 Connection Limiting
Problem

You have too much load overwhelming your upstream servers.

Solution

Use NGINX Plus’s max_conns parameter to limit connections to
upstream servers:

upstream backend {
 zone backends 64k;
 queue 750 timeout=30s;

 server webserver1.example.com max_conns=25;
 server webserver2.example.com max_conns=15;
}

The connection-limiting feature is currently only available in
NGINX Plus. This NGINX Plus configuration sets an integer on
each upstream server that specifies the max number of connections
to be handled at any given time. If the max number of connections
has been reached on each server, the request can be placed into the
queue for further processing, provided the optional queue directive
is specified. The optional queue directive sets the maximum number
of requests that can be simultaneously in the queue. A shared mem‐
ory zone is created by use of the zone directive. The shared memory
zone allows NGINX Plus worker processes to share information

6 | Chapter 1: High-Performance Load Balancing

about how many connections are handled by each server and how
many requests are queued.

Discussion

In dealing with distribution of load, one concern is overload. Over‐
loading a server will cause it to queue connections in a listen queue.
If the load balancer has no regard for the upstream server, it can
load the server’s listen queue beyond repair. The ideal approach is
for the load balancer to be aware of the connection limitations of the
server and queue the connections itself so that it can send the con‐
nection to the next available server with understanding of load as a
whole. Depending on the upstream server to process its own queue
will lead to poor user experience as connections start to timeout.
NGINX Plus provides a solution by allowing connections to queue
at the load balancer and by making informed decisions on where it
sends the next request or session.

The max_conns parameter on the server directive within the
upstream block provides NGINX Plus with a limit of how many
connections each upstream server can handle. This parameter is
configurable in order to match the capacity of a given server. When
the number of current connections to a server meets the value of the
max_conns parameter specified, NGINX Plus will stop sending new
requests or sessions to that server until those connections are
released.

Optionally, in NGINX Plus, if all upstream servers are at their
max_conns limit, NGINX Plus can start to queue new connections
until resources are freed to handle those connections. Specifying a
queue is optional. When queuing, we must take into consideration a
reasonable queue length. Much like in everyday life, users and appli‐
cations would much rather be asked to come back after a short
period of time than wait in a long line and still not be served. The
queue directive in an upstream block specifies the max length of the
queue. The timeout parameter of the queue directive specifies how
long any given request should wait in queue before giving up, which
defaults to 60 seconds.

1.4 Connection Limiting | 7

CHAPTER 2

Intelligent Session Persistence

2.0 Introduction
While HTTP may be a stateless protocol, if the context it’s to convey
were stateless, the internet would be a much less interesting place.
Many modern web architectures employ stateless application tiers,
storing state in shared memory or databases. However, this is not
the reality for all. Session state is immensely valuable and vast in
interactive applications. This state may be stored locally for a num‐
ber of reasons; for example, in applications where the data being
worked is so large that network overhead is too expensive in perfor‐
mance. When state is stored locally to an application server, it is
extremely important to the user experience that the subsequent
requests continue to be delivered to the same server. Another por‐
tion of the problem is that servers should not be released until the
session has finished. Working with stateful applications at scale
requires an intelligent load balancer. NGINX Plus offers multiple
ways to solve this problem by tracking cookies or routing.

NGINX Plus’s sticky directive alleviates difficulties of server affin‐
ity at the traffic controller, allowing the application to focus on its
core. NGINX tracks session persistence in three ways: by creating
and tracking its own cookie, detecting when applications prescribe
cookies, or routing based on runtime variables.

9

2.1 Sticky Cookie
Problem

You need to bind a downstream client to an upstream server.

Solution

Use the sticky cookie directive to instruct NGINX Plus to create
and track a cookie:

upstream backend {
 server backend1.example.com;
 server backend2.example.com;
 sticky cookie
 affinity
 expires=1h
 domain=.example.com
 httponly
 secure
 path=/;
}

This configuration creates and tracks a cookie that ties a down‐
stream client to an upstream server. The cookie in this example is
named affinity, is set for example.com, persists an hour, cannot be
consumed client-side, can only be sent over HTTPS, and is valid for
all paths.

Discussion

Using the cookie parameter on the sticky directive will create a
cookie on first request containing information about the upstream
server. NGINX Plus tracks this cookie, enabling it to continue
directing subsequent requests to the same server. The first positional
parameter to the cookie parameter is the name of the cookie to be
created and tracked. Other parameters offer additional control
informing the browser of the appropriate usage, like the expire time,
domain, path, and whether the cookie can be consumed client-side
or if it can be passed over unsecure protocols.

10 | Chapter 2: Intelligent Session Persistence

2.2 Sticky Learn
Problem

You need to bind a downstream client to an upstream server by
using an existing cookie.

Solution

Use the sticky learn directive to discover and track cookies that
are created by the upstream application:

upstream backend {
 server backend1.example.com:8080;
 server backend2.example.com:8081;

 sticky learn
 create=$upstream_cookie_cookiename
 lookup=$cookie_cookiename
 zone=client_sessions:2m;
}

The example instructs NGINX to look for and track sessions by
looking for a cookie named COOKIENAME in response headers, and
looking up existing sessions by looking for the same cookie on
request headers. This session affinity is stored in a shared memory
zone of 2 megabytes that can track approximately 16,000 sessions.
The name of the cookie will always be application specific. Com‐
monly used cookie names such as jsessionid or phpsessionid are
typically defaults set within the application or the application server
configuration.

Discussion

When applications create their own session state cookies, NGINX
Plus can discover them in request responses and track them. This
type of cookie tracking is performed when the sticky directive is
provided the learn parameter. Shared memory for tracking cookies
is specified with the zone parameter, with a name and size. NGINX
Plus is told to look for cookies in the response from the upstream
server with specification of the create parameter, and searches for
prior registered server affinity by the lookup parameter. The value
of these parameters are variables exposed by the HTTP module.

2.2 Sticky Learn | 11

2.3 Sticky Routing
Problem

You need granular control over how your persistent sessions are
routed to the upstream server.

Solution

Use the sticky directive with the route parameter to use variables
about the request to route:

map $cookie_jsessionid $route_cookie {
 ~.+\.(?P<route>\w+)$ $route;
}

map $request_uri $route_uri {
 ~jsessionid=.+\.(?P<route>\w+)$ $route;
}

upstream backend {
 server backend1.example.com route=a;
 server backend2.example.com route=b;

 sticky route $route_cookie $route_uri;
}

The example attempts to extract a Java session ID, first from a
cookie by mapping the value of the Java session ID cookie to a vari‐
able with the first map block, and second by looking into the request
URI for a parameter called jsessionid, mapping the value to a vari‐
able using the second map block. The sticky directive with the
route parameter is passed any number of variables. The first non‐
zero or nonempty value is used for the route. If a jsessionid cookie
is used, the request is routed to backend1; if a URI parameter is
used, the request is routed to backend2. While this example is based
on the Java common session ID, the same applies for other session
technology like phpsessionid, or any guaranteed unique identifier
your application generates for the session ID.

12 | Chapter 2: Intelligent Session Persistence

Discussion

Sometimes you may want to direct traffic to a particular server with
a bit more granular control. The route parameter to the sticky
directive is built to achieve this goal. Sticky route gives you better
control, actual tracking, and stickiness, as opposed to the generic
hash load-balancing algorithm. The client is first routed to an
upstream server based on the route specified, and then subsequent
requests will carry the routing information in a cookie or the URI.
Sticky route takes a number of positional parameters that are evalu‐
ated. The first nonempty variable is used to route to a server. Map
blocks can be used to selectively parse variables and save them as
another variable to be used in the routing. Essentially, the sticky
route directive creates a session within the NGINX Plus shared
memory zone for tracking any client session identifier you specify to
the upstream server, consistently delivering requests with this ses‐
sion identifier to the same upstream server as its original request.

2.4 Connection Draining
Problem

You need to gracefully remove servers for maintenance or other rea‐
sons while still serving sessions.

Solution

Use the drain parameter through the NGINX Plus API, described in
more detail in Chapter 8, to instruct NGINX to stop sending new
connections that are not already tracked:

$ curl 'http://localhost/upstream_conf\
?upstream=backend&id=1&drain=1'

Discussion

When session state is stored locally to a server, connections and per‐
sistent sessions must be drained before it’s removed from the pool.
Draining connections is the process of letting sessions to that server
expire natively before removing the server from the upstream pool.
Draining can be configured for a particular server by adding the

2.4 Connection Draining | 13

drain parameter to the server directive. When the drain parameter
is set, NGINX Plus will stop sending new sessions to this server but
will allow current sessions to continue being served for the length of
their session.

14 | Chapter 2: Intelligent Session Persistence

CHAPTER 3

Application-Aware Health Checks

3.0 Introduction
For a number of reasons, applications fail. It could be because of
network connectivity, server failure, or application failure, to name a
few. Proxies and load balancers must be smart enough to detect fail‐
ure of upstream servers and stop passing traffic to them; otherwise,
the client will be waiting, only to be delivered a timeout. A way to
mitigate service degradation when a server fails is to have the proxy
check the health of the upstream servers. NGINX offers two differ‐
ent types of health checks: passive, available in the open source ver‐
sion; as well as active, available only in NGINX Plus. Active health
checks on a regular interval will make a connection or request to the
upstream server and have the ability to verify that the response is
correct. Passive health checks monitor the connection or responses
of the upstream server as clients make the request or connection.
You may want to use passive health checks to reduce the load of
your upstream servers, and you may want to use active health
checks to determine failure of an upstream server before a client is
served a failure.

3.1 What to Check
Problem

You need to check your application for health but don’t know what
to check.

15

Solution

Use a simple but direct indication of the application health. For
example, a handler that simply returns an HTTP 200 response tells
the load balancer that the application process is running.

Discussion

It’s important to check the core of the service you’re load balancing
for. A single comprehensive health check that ensures all of the sys‐
tems are available can be problematic. Health checks should check
that the application directly behind the load balancer is available
over the network and that the application itself is running. With
application-aware health checks, you want to pick an endpoint that
simply ensures that the processes on that machine are running. It
may be tempting to make sure that the database connection strings
are correct or that the application can contact its resources. How‐
ever, this can cause a cascading effect if any particular service fails.

3.2 Slow Start
Problem

Your application needs to ramp up before taking on full production
load.

Solution

Use the slow_start parameter on the server directive to gradually
increase the number of connections over a specified time as a server
is reintroduced to the upstream load-balancing pool:

upstream {
 zone backend 64k;

 server server1.example.com slow_start=20s;
 server server2.example.com slow_start=15s;
}

The server directive configurations will slowly ramp up traffic to
the upstream servers after they’re reintroduced to the pool. server1
will slowly ramp up its number of connections over 20 seconds, and
server2 over 15 seconds.

16 | Chapter 3: Application-Aware Health Checks

Discussion

Slow start is the concept of slowly ramping up the number of
requests proxied to a server over a period of time. Slow start allows
the application to warm up by populating caches, initiating database
connections without being overwhelmed by connections as soon as
it starts. This feature takes effect when a server that has failed health
checks begins to pass again and re-enters the load-balancing pool.

3.3 TCP Health Checks
Problem

You need to check your upstream TCP server for health and remove
unhealthy servers from the pool.

Solution

Use the health_check directive in the server block for an active
health check:

stream {
 server {
 listen 3306;
 proxy_pass read_backend;
 health_check interval=10 passes=2 fails=3;
 }
}

The example monitors the upstream servers actively. The upstream
server will be considered unhealthy if it fails to respond to three or
more TCP connections initiated by NGINX. NGINX performs the
check every 10 seconds. The server will only be considered healthy
after passing two health checks.

Discussion

TCP health can be verified by NGINX Plus either passively or
actively. Passive health monitoring is done by noting the communi‐
cation between the client and the upstream server. If the upstream
server is timing out or rejecting connections, a passive health check
will deem that server unhealthy. Active health checks will initiate
their own configurable checks to determine health. Active health

3.3 TCP Health Checks | 17

checks not only test a connection to the upstream server, but can
expect a given response.

3.4 HTTP Health Checks
Problem

You need to actively check your upstream HTTP servers for health.

Solution

Use the health_check directive in a location block:

http {
 server {
 ...
 location / {
 proxy_pass http://backend;
 health_check interval=2s
 fails=2
 passes=5
 uri=/
 match=welcome;
 }
 }
 # status is 200, content type is "text/html",
 # and body contains "Welcome to nginx!"
 match welcome {
 status 200;
 header Content-Type = text/html;
 body ~ "Welcome to nginx!";
 }
}

This health check configuration for HTTP servers checks the health
of the upstream servers by making an HTTP request to the URI '/'
every two seconds. The upstream servers must pass five consecutive
health checks to be considered healthy and will be considered
unhealthy if they fail two consecutive checks. The response from the
upstream server must match the defined match block, which defines
the status code as 200, the header Content-Type value as 'text/
html', and the string "Welcome to nginx!" in the response body.

18 | Chapter 3: Application-Aware Health Checks

Discussion

HTTP health checks in NGINX Plus can measure more than just
the response code. In NGINX Plus, active HTTP health checks
monitor based on a number of acceptance criteria of the response
from the upstream server. Active health check monitoring can be
configured for how often upstream servers are checked, the URI to
check, how many times it must pass this check to be considered
healthy, how many times it can fail before being deemed unhealthy,
and what the expected result should be. The match parameter points
to a match block that defines the acceptance criteria for the
response. The match block has three directives: status, header, and
body. All three of these directives have comparison flags as well.

3.4 HTTP Health Checks | 19

CHAPTER 4

High-Availability Deployment
Modes

4.0 Introduction
Fault-tolerant architecture separates systems into identical, inde‐
pendent stacks. Load balancers like NGINX are employed to distrib‐
ute load, ensuring that what’s provisioned is utilized. The core
concepts of high availability are load balancing over multiple active
nodes or an active-passive failover. Highly available applications
have no single points of failure; every component must use one of
these concepts, including the load balancers themselves. For us, that
means NGINX. NGINX is designed to work in either configuration:
multiple active or active-passive failover. This chapter will detail
techniques on how to run multiple NGINX servers to ensure high
availability in your load-balancing tier.

4.1 NGINX HA Mode
Problem

You need a highly available load-balancing solution.

21

Solution

Use NGINX Plus’s HA mode with keepalived by installing the
nginx-ha-keepalived package from the NGINX Plus repository.

Discussion

The NGINX Plus repository includes a package called nginx-ha-
keepalived. This package, based on keepalived, manages a virtual IP
address exposed to the client. Another process is run on the NGINX
server that ensures that NGINX Plus and the keepalived process are
running. Keepalived is a process that utilizes the Virtual Router
Redundancy Protocol (VRRP), sending small messages often
referred to as heartbeats to the backup server. If the backup server
does not receive the heartbeat for three consecutive periods, the
backup server initiates the failover, moving the virtual IP address to
itself and becoming the master. The failover capabilities of nginx-
ha-keepalived can be configured to identify custom failure situa‐
tions.

4.2 Load-Balancing Load Balancers with DNS
Problem

You need to distribute load between two or more NGINX servers.

Solution

Use DNS to round robin across NGINX servers by adding multiple
IP addresses to a DNS A record.

Discussion

When running multiple load balancers, you can distribute load via
DNS. The A record allows for multiple IP addresses to be listed
under a single, fully qualified domain name. DNS will automatically
round robin across all the IPs listed. DNS also offers weighted round
robin with weighted records, which works in the same way as
weighted round robin in NGINX described in Chapter 1. These
techniques work great. However, a pitfall can be removing the

22 | Chapter 4: High-Availability Deployment Modes

record when an NGINX server encounters a failure. There are DNS
providers—Amazon Route53 for one, and Dyn DNS for another—
that offer health checks and failover with their DNS offering, which
alleviates these issues. If using DNS to load balance over NGINX,
when an NGINX server is marked for removal, it’s best to follow the
same protocols that NGINX does when removing an upstream
server. First, stop sending new connections to it by removing its IP
from the DNS record, then allow connections to drain before stop‐
ping or shutting down the service.

4.3 Load Balancing on EC2
Problem

You’re using NGINX in AWS, and the NGINX Plus HA does not
support Amazon IPs.

Solution

Put NGINX behind an elastic load balancer by configuring an Auto
Scaling group of NGINX servers and linking the Auto Scaling group
to the elastic load balancer. Alternatively, you can place NGINX
servers into the elastic load balancer manually through the Amazon
Web Services console, command-line interface, or API.

Discussion

The HA solution from NGINX Plus based on keepalived will not
work on Amazon Web Services because it does not support the
floating virtual IP address, as EC2 IP addresses work in a different
way. This does not mean that NGINX can’t be HA in the AWS cloud;
in fact, it’s the opposite. The AWS elastic load balancer is a product
offering from Amazon that will natively load balance over multiple,
physically separated data centers called availability zones, provide
active health checks, and provide a DNS CNAME endpoint. A com‐
mon solution for HA NGINX on AWS is to put an NGINX layer
behind the ELB. NGINX servers can be automatically added to and
removed from the ELB pool as needed. The ELB is not a replace‐
ment for NGINX; there are many things NGINX offers that the ELB
does not, such as multiple load-balancing methods, context switch‐
ing, and UDP load balancing. In the event that the ELB will not fit

4.3 Load Balancing on EC2 | 23

1 Amazon also has a white paper about NGINX Plus failover on AWS: http://bit.ly/
2aWAqW8.

your need, there are many other options. One option is the DNS sol‐
ution, Route53. The DNS product from AWS offers health checks
and DNS failover. Amazon also has a white paper about high-
availability NGINX Plus, with use of Corosync and Pacemaker, that
will cluster the NGINX servers and use an elastic IP to float between
boxes for automatic failover.1

24 | Chapter 4: High-Availability Deployment Modes

http://bit.ly/2aWAqW8
http://bit.ly/2aWAqW8

CHAPTER 5

Massively Scalable
Content Caching

5.0 Introduction
Caching accelerates content serving by storing request responses to
be served again in the future. Content caching reduces load to
upstream servers, caching the full response rather than running
computations and queries again for the same request. Caching
increases performance and reduces load, meaning you can serve
faster with fewer resources. Scaling and distributing caching servers
in strategic locations can have a dramatic effect on user experience.
It’s optimal to host content close to the consumer for the best perfor‐
mance. You can also cache your content close to your users. This is
the pattern of content delivery networks, or CDNs. With NGINX
you’re able to cache your content wherever you can place an NGINX
server, effectively enabling you to create your own CDN. With
NGINX caching, you’re also able to passively cache and serve cached
responses in the event of an upstream failure.

5.1 Caching Zones
Problem

You need to cache content and need to define where the cache is
stored.

25

Solution

Use the proxy_cache_path directive to define shared memory cache
zones and a location for the content:

proxy_cache_path /var/nginx/cache
 keys_zone=CACHE:60m
 levels=1:2
 inactive=3h
 max_size=20g;
proxy_cache CACHE;

The cache definition example creates a directory for cached respon‐
ses on the filesystem at /var/nginx/cache and creates a shared mem‐
ory space named CACHE with 60 megabytes of memory. This
example sets the directory structure levels, defines the release of
cached responses after they have not been requested in 3 hours, and
defines a maximum size of the cache of 20 gigabytes. The
proxy_cache directive informs a particular context to use the cache
zone. The proxy_cache_path is valid in the HTTP context, and the
proxy_cache directive is valid in the HTTP, server, and location
contexts.

Discussion

To configure caching in NGINX, it’s necessary to declare a path and
zone to be used. A cache zone in NGINX is created with the direc‐
tive proxy_cache_path. The proxy_cache_path designates a loca‐
tion to store the cached information and a shared memory space to
store active keys and response metadata. Optional parameters to this
directive provide more control over how the cache is maintained
and accessed. The levels parameter defines how the file structure is
created. The value is a colon-separated value that declares the length
of subdirectory names, with a maximum of three levels. NGINX
caches based on the cache key, which is a hashed value. NGINX then
stores the result in the file structure provided, using the cache key as
a file path and breaking up directories based on the levels value.
The inactive parameter allows for control over the length of time a
cache item will be hosted after its last use. The size of the cache is
also configurable with use of the max_size parameter. Other param‐
eters are in relation to the cache loading process, which loads the
cache keys into the shared memory zone from the files cached on
disk.

26 | Chapter 5: Massively Scalable Content Caching

1 Any combination of text or variables exposed to NGINX can be used to form a cache
key. A list of variables is available in NGINX: http://nginx.org/en/docs/varindex.html.

5.2 Caching Hash Keys
Problem

You need to control how your content is cached and looked up.

Solution

Use the proxy_cache_key directive, along with variables to define
what constitutes a cache hit or miss:

proxy_cache_key "$host$request_uri $cookie_user";

This cache hash key will instruct NGINX to cache pages based on
the host and URI being requested, as well as a cookie that defines
the user. With this you can cache dynamic pages without serving
content that was generated for a different user.

Discussion

The default proxy_cache_key is "$scheme$proxy_host

$request_uri". This default will fit most use cases. The variables
used include the scheme, HTTP or HTTPS, the proxy_host, where
the request is being sent, and the request URI. All together, this
reflects the URL that NGINX is proxying the request to. You may
find that there are many other factors that define a unique request
per application, such as request arguments, headers, session identifi‐
ers, and so on, to which you’ll want to create your own hash key.1

Selecting a good hash key is very important and should be thought
through with understanding of the application. Selecting a cache key
for static content is typically pretty straightforward; using the host‐
name and URI will suffice. Selecting a cache key for fairly dynamic
content like pages for a dashboard application requires more knowl‐
edge around how users interact with the application and the degree
of variance between user experiences. For security concerns you
may not want to present cached data from one user to another
without fully understanding the context. The proxy_cache_key
directive configures the string to be hashed for the cache key. The

5.2 Caching Hash Keys | 27

http://nginx.org/en/docs/varindex.html

proxy_cache_key can be set in the context of HTTP, server, and
location blocks, providing flexible control on how requests are
cached.

5.3 Cache Bypass
Problem

You need the ability to bypass the caching.

Solution

Use the proxy_cache_bypass directive with a nonempty or nonzero
value. One way to do this is by setting a variable within location
blocks that you do not want cached to equal 1:

proxy_cache_bypass $http_cache_bypass;

The configuration tells NGINX to bypass the cache if the HTTP
request header named cache_bypass is set to any value that is not 0.

Discussion

There are many scenarios that demand that the request is not
cached. For this, NGINX exposes a proxy_cache_bypass directive
that when the value is nonempty or nonzero, the request will be sent
to an upstream server rather than be pulled from cache. Interesting
techniques and solutions for cache bypass are derived from the need
of the client and application. These can be as simple as a request
variable or as intricate as a number of map blocks.

For many reasons, you may want to bypass the cache. One impor‐
tant reason is troubleshooting and debugging. Reproducing issues
can be hard if you’re consistently pulling cached pages or if your
cache key is specific to a user identifier. Having the ability to bypass
the cache is vital. Options include but are not limited to bypassing
cache when a particular cookie, header, or request argument is set.
You can also turn off cache completely for a given context such as a
location block by setting proxy_cache off;.

28 | Chapter 5: Massively Scalable Content Caching

5.4 Cache Performance
Problem

You need to increase performance by caching on the client side.

Solution

Use client-side cache control headers:

location ~* \.(css|js)$ {
 expires 1y;
 add_header Cache-Control "public";
}

This location block specifies that the client can cache the content of
CSS and JavaScript files. The expires directive instructs the client
that their cached resource will no longer be valid after one year. The
add_header directive adds the HTTP response header Cache-
Control to the response, with a value of public, which allows any
caching server along the way to cache the resource. If we specify pri‐
vate, only the client is allowed to cache the value.

Discussion

Cache performance has to do with many variables, disk speed being
high on the list. There are many things within the NGINX configu‐
ration you can do to assist with cache performance. One option is to
set headers of the response in such a way that the client actually
caches the response and does not make the request to NGINX at all,
but simply serves it from its own cache.

5.4 Cache Performance | 29

5.5 Purging
Problem

You need to invalidate an object from the cache.

Solution

Use NGINX Plus’s purge feature, the proxy_cache_purge directive,
and a nonempty or zero value variable:

map $request_method $purge_method {
 PURGE 1;
 default 0;
}
server {
 ...
 location / {
 ...
 proxy_cache_purge $purge_method;
 }
}

Discussion

A common concept for static files is to put a hash of the file in the
filename. This ensures that as you roll out new code and content,
your CDN recognizes this as a new file because the URI has
changed. However, this does not exactly work for dynamic content
to which you’ve set cache keys that don’t fit this model. In every
caching scenario, you must have a way to purge the cache. NGINX
Plus has provided a simple method of purging cached responses.
The proxy_cache_purge directive, when passed a nonzero or non‐
empty value, will purge the cached items matching the request. A
simple way to set up purging is by mapping the request method for
PURGE. However, you may want to use this in conjunction with the
geo_ip module or a simple authentication to ensure that not anyone
can purge your precious cache items. NGINX has also allowed for
the use of *, which will purge cache items that match a common
URI prefix. To use wildcards you will need to configure your
proxy_cache_path directive with the purger=on argument.

30 | Chapter 5: Massively Scalable Content Caching

CHAPTER 6

Sophisticated Media Streaming

6.0 Introduction
This chapter covers streaming media with NGINX in MPEG-4 or
Flash Video formats. NGINX is widely used to distribute and stream
content to the masses. NGINX supports industry-standard formats
and streaming technologies, which will be covered in this chapter.
NGINX Plus enables the ability to fragment content on the fly with
the HTTP Live Stream module, as well as the ability to deliver
HTTP Dynamic Streaming of already fragmented media. NGINX
natively allows for bandwidth limits, and NGINX Plus’s advanced
feature offers bitrate limiting, enabling your content to be delivered
in the most efficient manner while reserving the servers’ resources
to reach the most users.

6.1 Serving MP4 and FLV
Problem

You need to stream digital media, originating in MPEG-4 (MP4) or
Flash Video (FLV).

Solution

Designate an HTTP location block as .mp4 or .flv. NGINX will
stream the media using progressive downloads or HTTP pseudos‐
treaming and support seeking:

31

http {
 server {
 ...

 location /videos/ {
 mp4;
 }
 location ~ \.flv$ {
 flv;
 }
 }
}

The example location block tells NGINX that files in the videos
directory are of MP4 format type and can be streamed with progres‐
sive download support. The second location block instructs NGINX
that any files ending in .flv are of Flash Video format and can be
streamed with HTTP pseudostreaming support.

Discussion

Streaming video or audio files in NGINX is as simple as a single
directive. Progressive download enables the client to initiate play‐
back of the media before the file has finished downloading. NGINX
supports seeking to an undownloaded portion of the media in both
formats.

6.2 Streaming with HLS
Problem

You need to support HTTP live streaming (HLS) for H.264/AAC-
encoded content packaged in MP4 files.

Solution

Utilize NGINX Plus’s HLS module with real-time segmentation,
packetization, and multiplexing, with control over fragmentation
buffering and more, like forwarding HLS arguments:

32 | Chapter 6: Sophisticated Media Streaming

location /hls/ {
 hls; # Use the HLS handler to manage requests

 # Serve content from the following location
 alias /var/www/video;

 # HLS parameters
 hls_fragment 4s;
 hls_buffers 10 10m;
 hls_mp4_buffer_size 1m;
 hls_mp4_max_buffer_size 5m;
}

The location block demonstrated directs NGINX to stream HLS
media out of the /var/www/video directory, fragmenting the media
into four-second segments. The number of HLS buffers is set to 10
with a size of 10 megabytes. The initial MP4 buffer size is set to one
megabyte with a maximum of five megabytes.

Discussion

The HLS module available in NGINX Plus provides the ability to
transmultiplex MP4 media files on the fly. There are many directives
that give you control over how your media is fragmented and buf‐
fered. The location block must be configured to serve the media as
an HLS stream with the HLS handler. The HLS fragmentation is set
in number of seconds, instructing NGINX to fragment the media by
time length. The amount of buffered data is set with the
hls_buffers directive specifying the number of buffers and the
size. The client is allowed to start playback of the media after a cer‐
tain amount of buffering has accrued specified by the
hls_mp4_buffer_size. However, a larger buffer may be necessary as
metadata about the video may exceed the initial buffer size. This
amount is capped by the hls_mp4_max_buffer_size. These buffer‐
ing variables allow NGINX to optimize the end-user experience;
choosing the right values for these directives requires knowing the
target audience and your media. For instance, if the bulk of your
media is large video files, and your target audience has high band‐
width, you may opt for a larger max buffer size and longer length
fragmentation. This will allow for the metadata about the content to
be downloaded initially without error and your users to receive
larger fragments.

6.2 Streaming with HLS | 33

6.3 Streaming with HDS
Problem

You need to support Adobe’s HTTP Dynamic Streaming (HDS) that
has already been fragmented and separated from the metadata.

Solution

Use NGINX Plus’s support for fragmented FLV files (F4F) module to
offer Adobe Adaptive Streaming to your users:

location /video/ {
 alias /var/www/transformed_video;
 f4f;
 f4f_buffer_size 512k;
}

The example instructs NGINX Plus to serve previously fragmented
media from a location on disk to the client using the NGINX Plus
F4F module. The buffer size for the index file (.f4x) is set to 512 kilo‐
bytes.

Discussion

The NGINX Plus F4F module enables NGINX to serve previously
fragmented media to end users. The configuration of such is as sim‐
ple as using the f4f handler inside of an HTTP location block. The
f4f_buffer_size directive configures the buffer size for the index
file of this type of media.

6.4 Bandwidth Limits
Problem

You need to limit bandwidth to downstream media streaming cli‐
ents without impacting the viewing experience.

Solution

Utilize NGINX Plus’s bitrate limiting support for MP4 media files:

34 | Chapter 6: Sophisticated Media Streaming

location /video/ {
 mp4;
 mp4_limit_rate_after 15s;
 mp4_limit_rate 1.2;
}

This configuration allows the downstream client to download for 15
seconds before applying a bitrate limit. After 15 seconds, the client is
allowed to download media at a rate of 120% of the bitrate, which
enables the client to always download faster than they play.

Discussion

NGINX Plus’s bitrate limiting allows your streaming server to limit
bandwidth dynamically based on the media being served, allowing
clients to download just as much as they need to ensure a seamless
user experience. The MP4 handler described in a previous section
designates this location block to stream MP4 media formats. The
rate-limiting directives, such as mp4_limit_rate_after, tell NGINX
to only rate-limit traffic after a specified amount of time, in seconds.
The other directive involved in MP4 rate limiting is
mp4_limit_rate, which specifies the bitrate at which clients are
allowed to download in relation to the bitrate of the media. A value
of 1 provided to the mp4_limit_rate directive specifies that NGINX
is to limit bandwidth, 1 to 1 to the bitrate of the media. Providing a
value of more than one to the mp4_limit_rate directive will allow
users to download faster than they watch so they can buffer the
media and watch seamlessly while they download.

6.4 Bandwidth Limits | 35

CHAPTER 7

Advanced Activity Monitoring

7.0 Introduction
To ensure your application is running at optimal performance and
precision, you need insight into the monitoring metrics about its
activity. NGINX Plus offers an advanced monitoring dashboard and
a JSON feed to provide in-depth monitoring about all requests that
come through the heart of your application. The NGINX Plus activ‐
ity monitoring provides insight into requests, upstream server pools,
caching, health, and more. This chapter will detail the power and
possibilities of the NGINX Plus dashboard and JSON feed.

7.1 NGINX Traffic Monitoring
Problem

You require in-depth metrics about the traffic flowing through your
system.

Solution

Utilize NGINX Plus’s real-time activity monitoring dashboard:

37

server {
 listen 8080;
 root /usr/share/nginx/html;

 # Redirect requests for / to /status.html
 location = / {
 return 301 /status.html;
 }

 location = /status.html { }

 # Everything beginning with /status
 # (except for /status.html) is
 # processed by the status handler
 location /status {
 status;
 }
}

The NGINX Plus configuration serves the NGINX Plus status moni‐
toring dashboard. This configuration sets up an HTTP server to lis‐
ten on port 8080, serve content out of the /usr/share/nginx/html
directory, and redirect / requests to /status.html. All other /status
requests will be served by the /status location that serves the
NGINX Plus status API.

Discussion

NGINX Plus provides an advanced status monitoring dashboard.
This status dashboard provides a detailed status of the NGINX sys‐
tem, such as number of active connections, uptime, upstream server
pool information, and more. For a glimpse of the console, see
Figure 7-1.

The landing page of the status dashboard provides an overview of
the entire system. Clicking into the Server zones tab lists details
about all HTTP servers configured in the NGINX configuration,
detailing the number of responses from 1XX to 5XX and an overall
total, as well as requests per second and the current traffic through‐
put. The Upstream tab details upstream server status, as in if it’s in a
failed state, how many requests it has served, and a total of how
many responses have been served by status code, as well as other
stats such as how many health checks it has passed or failed. The
TCP/UDP Zones tab details the amount of traffic flowing through
the TCP or UDP streams and the number of connections. The
TCP/UDP Upstream tab shows information about how much each

38 | Chapter 7: Advanced Activity Monitoring

of the upstream servers in the TCP/UDP upstream pools is serving,
as well as health check pass and fail details and response times. The
Caches tab displays information about the amount of space utilized
for cache; the amount of traffic served, written, and bypassed; as
well as the hit ratio. The NGINX status dashboard is invaluable in
monitoring the heart of your applications and traffic flow.

Figure 7-1. The NGINX Plus status dashboard

Also See

NGINX Plus Status Dashboard Demo

7.2 The JSON Feed
Problem

You need API access to the detail metrics provided by the NGINX
Plus status dashboard.

Solution

Utilize the JSON feed provided by NGINX Plus’s status API:

$ curl "demo.nginx.com/status/upstreams\
 /demo-backend/peers/0/responses"
{
 "1xx":0,
 "2xx":199237,
 "3xx":7404,
 "4xx":104415,
 "5xx":19574,

7.2 The JSON Feed | 39

https://demo.nginx.com/status.html

 "total":330630
}

The curl call requests a JSON feed from the NGINX Plus status API
for information about an upstream HTTP server pool, and in par‐
ticular about the first server in the pool’s responses.

Discussion

The NGINX Plus status API is vast, and requesting just the status
will return a JSON object with all the information that can be found
on the status dashboard in whole. The JSON feed API allows you to
drill down to particular information you may want to monitor or
use in custom logic to make application or infrastructure decisions.
The API is intuitive and RESTful, and you’re able to make requests
for objects within the overall status JSON feed to limit the data
returned. This JSON feed enables you to feed the monitoring data
into any other number of systems you may be utilizing for monitor‐
ing, such as Graphite, Datadog, and Splunk.

40 | Chapter 7: Advanced Activity Monitoring

CHAPTER 8

DevOps On-the-Fly
Reconfiguration

8.0 Introduction
The term DevOps has been tossed and spun around more than your
favorite pizza crust. To the people actually doing the work, the term
has nearly lost meaning; the origin of this term comes from a cul‐
ture of developers and operations folk working together in an Agile
workflow to enhance quality and productivity and share responsibil‐
ity. If you ask a recruiter, it’s a job title; ask someone in marketing,
it’s a hit-generating Swiss army knife. In this context, we mean
DevOps to be developing software and tools to solve operational
tasks in the ever-evolving dynamic technology landscape. In this
chapter, we’ll discuss the NGINX Plus API that allows you to
dynamically reconfigure the NGINX Plus load balancer, as well as
other tools and patterns to allow your load balancer to evolve with
the rest of your environment, such as the seamless reload and
NGINX Plus’s ability to utilize DNS SRV records.

8.1 The NGINX API
Problem

You have a dynamic environment and need to reconfigure NGINX
on the fly.

41

Solution

Configure the NGINX Plus API to enable adding and removing
servers through API calls:

location /upstream_conf {
 upstream_conf;
 allow 10.0.0.0/8; # permit access from private network
 deny all; # deny access from everywhere else
}

...
upstream backend {
 zone backend 64k;
 state /var/lib/nginx/state/backend.state;
 ...
}

The NGINX Plus configuration enables the upstream configuration
API and only allows access from a private network. The configura‐
tion of the upstream block defines a shared memory zone named
backend of 64 kilobytes. The state directive tells NGINX to persist
these changes through a restart by saving them to the filesystem.

Utilize the API to add servers when they come online:

$ curl 'http://nginx.local/upstream_conf?\
 add=&upstream=backend&server=10.0.0.42:8080'

The curl call demonstrated makes a request to NGINX Plus and
requests a new server be added to the backend upstream configura‐
tion.

Utilize the NGINX Plus API to list the servers in the upstream pool:

$ curl 'http://nginx.local/upstream_conf?upstream=backend'
server 10.0.0.42:8080; # id=0

The curl call demonstrated makes a request to NGINX Plus to list
all of the servers in the upstream pool named backend. Currently we
only have the one server that we added in the previous curl call to
the API. The list request will show the IP address, port, and ID of
each server in the pool.

Use the NGINX Plus API to drain connections from an upstream
server, preparing it for a graceful removal from the upstream pool.
Details about connection draining can be found in Chapter 2,
Recipe 2.4:

42 | Chapter 8: DevOps On-the-Fly Reconfiguration

$ curl 'http://nginx.local/upstream_conf?\
 upstream=backend&id=0&drain=1'
server 10.0.0.42:8080; # id=0 draining

In this curl, we specify arguments for the upstream pool, backend,
the ID of the server we wish to drain, 0, and set the drain argument
to equal 1. We found the ID of the server by listing the servers in the
upstream pool in the previous curl command.

NGINX Plus will begin to drain the connections. This process can
take as long as the length of the sessions of the application. To check
in on how many active connections are being served by the server
you’ve begun to drain, you can use the NGINX Plus JSON feed that
was detailed in Chapter 7, Recipe 7.2.

After all connections have drained, utilize the NGINX Plus API to
remove the server from the upstream pool entirely:

$ curl 'http://nginx.local/upstream_conf?\
 upstream=backend&id=0&remove=1'

The curl command passes arguments to the NGINX Plus API to
remove server 0 from the upstream pool named backend. This API
call will return all of the servers and their IDs that are still left in the
pool. As we started with an empty pool, added only one server
through the API, drained it, and then removed it, we now have an
empty pool again.

Discussion

This upstream API enables dynamic application servers to add and
remove themselves to the NGINX configuration on the fly. As
servers come online, they can register themselves to the pool, and
NGINX will begin to start sending it load. When a server needs to
be removed, the server can request NGINX Plus to drain its connec‐
tions, then remove itself from the upstream pool before it’s shut
down. This enables the infrastructure to, through some automation,
scale in and out without human intervention.

8.2 Seamless Reload
Problem

You need to reload you configuration without dropping packets.

8.2 Seamless Reload | 43

Solution

Use the reload method of NGINX to achieve a seamless reload of
the configuration without stopping the server:

service nginx reload

The command-line example reloads the NGINX system using the
NGINX init script generally located in the /etc/init.d/ directory.

Discussion

Reloading the NGINX configuration without stopping the server
provides the ability to change configuration on the fly without drop‐
ping any packets. In a high-uptime, dynamic environment, you will
need to change your load-balancing configuration at some point.
NGINX allows you to do this while keeping the load balancer
online. This feature enables countless possibilities, such as rerun‐
ning configuration management in a live environment, or building
an application- and cluster-aware module to dynamically configure
and reload NGINX to the needs of the environment.

8.3 SRV Records
Problem

You’d like to use your existing DNS SRV record implementation as
the source for upstream servers.

Solution

Specify the service directive with a value of http on an upstream
server to instruct NGINX to utilize the SRV record as a load-
balancing pool:

http {
 resolver 10.0.0.2;

 upstream backend {
 zone backends 64k;
 server api.example.internal service=http resolve;
 }
}

44 | Chapter 8: DevOps On-the-Fly Reconfiguration

The configuration instructs NGINX to resolve DNS from a DNS
server at 10.0.0.2 and set up an upstream server pool with a single
server directive. This server directive specified with the resolve
parameter is instructed to periodically re-resolve the domain name.
The service=http parameter and value tells NGINX that this is an
SRV record containing a list of IPs and ports and to load balance
over them as if they were configured with the server directive.

Discussion

Dynamic infrastructure is becoming ever more popular with the
demand and adoption of cloud-based infrastructure. Autoscaling
environments scale horizontally, increasing and decreasing the
number of servers in the pool to match the demand of the load.
Scaling horizontally demands a load balancer that can add and
remove resources from the pool. With an SRV record, you offload
the responsibility of keeping the list of servers to DNS. This type of
configuration is extremely enticing for containerized environments
because you may have containers running applications on variable
port numbers, possibly at the same IP address.

8.3 SRV Records | 45

CHAPTER 9

UDP Load Balancing

9.0 Introduction
User Datagram Protocol (UDP) is used in many contexts, such as
DNS, NTP, and Voice over IP. NGINX can load balance over
upstream servers with all the load-balancing algorithms provided to
the other protocols. In this chapter, we’ll cover the UDP load balanc‐
ing in NGINX.

9.1 Stream Context
Problem

You need to distribute load between two or more UDP servers.

47

Solution

Use NGINX’s stream module to load balance over UDP servers
using the upstream block defined as udp:

stream {
 upstream ntp {
 server ntp1.example.com:123 weight=2;
 server ntp2.example.com:123;
 }

 server {
 listen 123 udp;
 proxy_pass ntp;
 }
}

This section of configuration balances load between two upstream
NTP servers using the UDP protocol. Specifying UDP load balanc‐
ing is as simple as using the udp parameter on the listen directive.

Discussion

One might ask, “Why do you need a load balancer when you can
have multiple hosts in a DNS A or SRV record?” The answer is that
not only are there alternative balancing algorithms we can balance
with, but we can load balance over the DNS servers themselves.
UDP services make up a lot of the services that we depend on in
networked systems such as DNS, NTP, and Voice over IP. UDP load
balancing may be less common to some but just as useful in the
world of scale.

UDP load balancing will be found in the stream module, just like
TCP, and configured mostly in the same way. The main difference is
that the listen directive specifies that the open socket is for work‐
ing with datagrams. When working with datagrams, there are some
other directives that may apply where they would not in TCP, such
as the proxy_response directive that tells NGINX how many
expected responses may be sent from the upstream server, by default
being unlimited until the proxy_timeout limit is reached.

48 | Chapter 9: UDP Load Balancing

9.2 Load-Balancing Algorithms
Problem

You need to distribute load of a UDP service with control over the
destination or for best performance.

Solution

Utilize the different load-balancing algorithms, like IP hash or least
conn, described in Chapter 1:

upstream dns {
 least_conn;
 server ns1.example.com:53;
 server ns2.example.com:53;
}

The configuration load balances over two DNS name servers and
directs the request to the name server with the least number of cur‐
rent connections.

Discussion

All of the load-balancing algorithms that were described in Recipe
9.2 are available in UDP load balancing as well. These algo‐
rithms, such as least connections, least time, generic hash, or IP
hash, are useful tools to provide the best experience to the consumer
of the service or application.

9.3 Health Checks
Problem

You need to check the health of upstream UDP servers.

Solution

Use NGINX health checks with UDP load balancing to ensure only
healthy upstream servers are sent datagrams:

9.2 Load-Balancing Algorithms | 49

upstream ntp {
 server ntp1.example.com:123 max_fails=3 fail_timeout=3s;
 server ntp2.example.com:123 max_fails=3 fail_timeout=3s;
}

This configuration passively monitors the upstream health, setting
the max_fails directive to 3, and fail_timeout to 3 seconds.

Discussion

Health checking is important on all types of load balancing not only
from a user experience standpoint but also for business continuity.
NGINX can actively and passively monitor upstream UDP servers
to ensure they’re healthy and performing. Passive monitoring
watches for failed or timed-out connections as they pass through
NGINX. Active health checks send a packet to the specified port,
and can optionally expect a response.

50 | Chapter 9: UDP Load Balancing

CHAPTER 10

Cloud-Agnostic Architecture

10.0 Introduction
One thing many companies request when moving to the cloud is to
be cloud agnostic. Being cloud agnostic in their architectures ena‐
bles them to pick up and move to another cloud or instantiate the
application in a location that one cloud provider may have that
another does not. Cloud-agnostic architecture also reduces risk of
vendor lock-in and enables an insurance fallback for your applica‐
tion. It’s very common for disaster-recovery plans to use an entirely
separate cloud, as failure can sometimes be systematic and affect a
cloud as a whole. For cloud-agnostic architecture, all of your tech‐
nology choices must be able to be run in all of those environments.
In this chapter, we’ll talk about why NGINX is the right technology
choice when architecting a solution that will fit in any cloud.

10.1 The Anywhere Load Balancer
Problem

You need a load-balancer solution that can be deployed in any data
center, cloud environment, or even local hosts.

51

1 NGINX provides a page to download its software: http://nginx.org/en/download.html.
2 Linux packages and repositories can be found at http://nginx.org/en/linux_pack‐

ages.html.

Solution

Load balance with NGINX. NGINX is software that can be deployed
anywhere. NGINX runs on Unix; and on multiple flavors of Linux
such as Cent OS and Debian, BSD variants, Solaris, macOS, Win‐
dows, and others. NGINX can be built from source on Unix and
Linux derivatives as well as installed through package managers
such as yum, aptitude, and zypper. On Windows, it can be installed
by downloading a ZIP archive and running the .exe file.

Discussion

The fact that NGINX is a software load balancer rather than strictly
hardware allows it to be deployed on almost any infrastructure.1

Cross-cloud environments and hybrid cloud architectures are on the
rise, applications are distributed between different clouds for high
availability, and vendor-agnostic architecture limits risk of produc‐
tion outages and reduces network latency between the end user and
the application. In these scenarios, the application being hosted typi‐
cally doesn’t change and neither should your load-balancing solu‐
tion. NGINX can be run in all of these environments with all of the
power of its configuration.2

10.2 The Importance of Versatility
Problem

You need versatility in your architecture and the ability to build in
an iterative manner.

Solution

Use NGINX as your load balancer or traffic router. NGINX provides
versatility on the platform it runs on or its configuration. If you’re
architecting a solution, and you’re not sure where it’s going to live or

52 | Chapter 10: Cloud-Agnostic Architecture

http://nginx.org/en/download.html
http://nginx.org/en/linux_packages.html
http://nginx.org/en/linux_packages.html

need the flexibility to be able to move it to another provider,
NGINX will fit this need. If you’re working in an iterative workflow,
and new services or configurations are continually changing during
the development cycle, NGINX is a prime resource, as its configura‐
tion can change; and with a reload of the service, the new configura‐
tion is online without concern of stopping the service. An example
might be planning to build out a data center, and then for cost and
flexibility, switching gears into a cloud environment. Another exam‐
ple might be refactoring an existing monolithic application and
slowly decoupling the application into microservices, deploying ser‐
vice by service as the smaller applications become ready for produc‐
tion.

Discussion

Agile workflows have changed how development work is done. The
idea of an Agile workflow is an iterative approach where it’s OK if
requirements or scope change. Infrastructure architecture can also
follow an Agile workflow: you may start out aiming to go into a par‐
ticular cloud provider and then have to switch to another partway
through the project, or want to deploy to multiple cloud providers.
NGINX being able to run anywhere makes it an extremely versatile
tool. The importance of versatility is that with the inevitable onset of
cloud, things are always changing. In the ever-evolving landscape of
software, NGINX is able to efficiently serve your application needs
as it grows with your features and user base.

10.2 The Importance of Versatility | 53

PART II

Part II: Security and Access

This is Part II of III of NGINX Cookbook. This part will focus on
security aspects and features of NGINX and NGINX Plus, the
licensed version of the NGINX server. Throughout this part, you
will learn the basics about controlling access and limiting abuse and
misuse of your web assets and applications. Security concepts such
as encryption of your web traffic as well as basic HTTP authentica‐
tion will be explained as applicable to the NGINX server. More
advanced topics are covered as well, such as setting up NGINX to
verify authentication via third-party systems as well as through
JSON Web Token Signature validation and integrating with Single
sign-on providers. This part covers some amazing features of
NGINX and NGINX Plus such as securing links for time-limited
access and security as well as enabling Web Application Firewall
capabilities of NGINX Plus with the ModSecurity module. Some of
the plug-and-play modules in this part are only available through
the paid NGINX Plus subscription, however this does not mean that
the core open source NGINX server is not capable of these securi‐
ties.

CHAPTER 11

Controlling Access

11.0 Introduction
Controlling access to your web applications or subsets of your web
applications is important business. Access control takes many forms
in NGINX, such as denying it at the network level, allowing it based
on authentication mechanisms, or HTTP responses instructing
browsers how to act. In this chapter we will discuss access control
based on network attributes, authentication, and how to specify
Cross-Origin Resource Sharing (CORS) rules.

11.1 Access Based on IP Address
Problem
You need to control access based on the IP address of the client.

Solution
Use the HTTP access module to control access to protected resour‐
ces:

location /admin/ {
 deny 10.0.0.1;
 allow 10.0.0.0/20;
 allow 2001:0db8::/32;
 deny all;
}

57

The given location block allows access from any IPv4 address in
10.0.0.0/20 except 10.0.0.1, allows access from IPv6 addresses in the
2001:0db8::/32 subnet, and returns a 403 for requests originating
from any other address. The allow and deny directives are valid
within the HTTP, server, and location contexts. Rules are checked in
sequence until a match is found for the remote address.

Discussion
Protecting valuable resources and services on the internet must be
done in layers. NGINX provides the ability to be one of those layers.
The deny directive blocks access to a given context, while the allow
directive can be used to allow subsets of the blocked access. You can
use IP addresses, IPv4 or IPv6, CIDR block ranges, the keyword all,
and a Unix socket. Typically when protecting a resource, one might
allow a block of internal IP addresses and deny access from all.

11.2 Allowing Cross-Origin Resource Sharing
Problem
You’re serving resources from another domain and need to allow
CORS to enable browsers to utilize these resources.

Solution
Alter headers based on the request method to enable CORS:

map $request_method $cors_method {
 OPTIONS 11;
 GET 1;
 POST 1;
 default 0;
}
server {
 ...
 location / {
 if ($cors_method ~ '1') {
 add_header 'Access-Control-Allow-Methods'
 'GET,POST,OPTIONS';
 add_header 'Access-Control-Allow-Origin'
 '*.example.com';
 add_header 'Access-Control-Allow-Headers'
 'DNT,
 Keep-Alive,
 User-Agent,

58 | Chapter 11: Controlling Access

 X-Requested-With,
 If-Modified-Since,
 Cache-Control,
 Content-Type';
 }
 if ($cors_method = '11') {
 add_header 'Access-Control-Max-Age' 1728000;
 add_header 'Content-Type' 'text/plain; charset=UTF-8';
 add_header 'Content-Length' 0;
 return 204;
 }
 }
}

There’s a lot going on in this example, which has been condensed by
using a map to group the GET and POST methods together. The
OPTIONS request method returns information called a preflight
request to the client about this server’s CORS rules. OPTIONS, GET,
and POST methods are allowed under CORS. Setting the Access-
Control-Allow-Origin header allows for content being served from
this server to also be used on pages of origins that match this header.
The preflight request can be cached on the client for 1,728,000 sec‐
onds, or 20 days.

Discussion
Resources such as JavaScript make cross-origin resource requests
when the resource they’re requesting is of a domain other than its
own origin. When a request is considered cross origin, the browser
is required to obey CORS rules. The browser will not use the
resource if it does not have headers that specifically allow its use. To
allow our resources to be used by other subdomains, we have to set
the CORS headers, which can be done with the add_header direc‐
tive. If the request is a GET, HEAD, or POST with standard content
type, and the request does not have special headers, the browser will
make the request and only check for origin. Other request methods
will cause the browser to make the preflight request to check the
terms of the server to which it will obey for that resource. If you do
not set these headers appropriately, the browser will give an error
when trying to utilize that resource.

11.2 Allowing Cross-Origin Resource Sharing | 59

CHAPTER 12

Limiting Use

12.0 Introduction
Limiting use or abuse of your system can be important for throttling
heavy users or stopping attacks. NGINX has multiple modules built
in to help control the use of your applications. This chapter focuses
on limiting use and abuse, the number of connections, the rate at
which requests are served, and the amount of bandwidth used. It’s
important to differentiate between connections and requests: con‐
nections (TCP connections) are the transport layer on which
requests are made and therefore are not the same thing. A browser
may open multiple connections to a server to make multiple
requests. However, in HTTP/1 and HTTP/1.1, requests can only be
made one at a time on a single connection; whereas in HTTP/2,
multiple requests can be made in parallel over a single TCP connec‐
tion. This chapter will help you restrict usage of your service and
mitigate abuse.

12.1 Limiting Connections
Problem
You need to limit the number of connections based on a predefined
key, such as the client’s IP address.

61

Solution
Construct a shared memory zone to hold connection metrics, and
use the limit_conn directive to limit open connections:

http {
 limit_conn_zone $binary_remote_addr zone=limitbyaddr:10m;
 limit_conn_status 429;
 ...
 server {
 ...
 limit_conn limitbyaddr 40;
 ...
 }
}

This configuration creates a shared memory zone named limit
byaddr. The predefined key used is the client’s IP address in binary
form. The size of the shared memory zone is set to 10 mega‐
bytes. The limit_conn directive takes two parameters: a
limit_conn_zone name, and the number of connections allowed.
The limit_conn_status sets the response when the connections are
limited to a status of 429, indicating too many
requests. The limit_conn and limit_conn_status directives are
valid in the HTTP, server, and location context.

Discussion
Limiting the number of connections based on a key can be used to
defend against abuse and share your resources fairly across all your
clients. It is important to be cautious of your predefined key. Using
an IP address, as we are in the previous example, could be danger‐
ous if many users are on the same network that originates from the
same IP, such as when behind a Network Address Translation (NAT).
The entire group of clients will be limited. The limit_conn_zone
directive is only valid in the HTTP context. You can utilize any
number of variables available to NGINX within the HTTP context
in order to build a string on which to limit by. Utilizing a variable
that can identify the user at the application level, such as a session
cookie, may be a cleaner solution depending on the use case. The
limit_conn_status defaults to 503, service unavailable. You may
find it preferable to use a 429, as the service is available, and 500-
level responses indicate server error whereas 400-level responses
indicate client error.

62 | Chapter 12: Limiting Use

12.2 Limiting Rate
Problem
You need to limit the rate of requests by predefined key, such as the
client’s IP address.

Solution
Utilize the rate-limiting module to limit the rate of requests:

http {
 limit_req_zone $binary_remote_addr
 zone=limitbyaddr:10m rate=1r/s;
 limit_req_status 429;
 ...
 server {
 ...
 limit_req zone=limitbyaddr burst=10 nodelay;
 ...
 }
}

This example configuration creates a shared memory zone named
limitbyaddr. The predefined key used is the client’s IP address in
binary form. The size of the shared memory zone is set to 10 mega‐
bytes. The zone sets the rate with a keyword argument. The
limit_req directive takes two optional keyword arguments: zone
and burst. zone is required to instruct the directive on which shared
memory request limit zone to use. When the request rate for a given
zone is exceeded, requests are delayed until their maximum burst
size is reached, denoted by the burst keyword argument. The burst
keyword argument defaults to zero. limit_req also takes a third
optional parameter, nodelay. This parameter enables the client to
use its burst without delay before being limited. limit_req_status
sets the status returned to the client to a particular HTTP status
code; the default is 503. limit_req_status and limit_req are valid
in the context of HTTP, server, and location. limit_req_zone is
only valid in the HTTP context.

Discussion
The rate-limiting module is very powerful in protecting against abu‐
sive rapid requests while still providing a quality service to every‐
one. There are many reasons to limit rate of request, one being

12.2 Limiting Rate | 63

security. You can deny a brute force attack by putting a very strict
limit on your login page. You can disable the plans of malicious
users that might try to deny service to your application or to waste
resources by setting a sane limit on all requests. The configuration
of the rate-limit module is much like the preceding connection-
limiting module described in Recipe 12.1, and much of the same
concerns apply. The rate at which requests are limited can be done
in requests per second or requests per minute. When the rate limit is
hit, the incident is logged. There’s a directive not in the example:
limit_req_log_level, which defaults to error, but can be set to
info, notice, or warn.

12.3 Limiting Bandwidth
Problem
You need to limit download bandwidths per client for your assets.

Solution
Utilize NGINX’s limit_rate and limit_rate_after directives to
limit the rate of response to a client:

location /download/ {
 limit_rate_after 10m;
 limit_rate 1m;
}

The configuration of this location block specifies that for URIs with
the prefix download, the rate at which the response will be served to
the client will be limited after 10 megabytes to a rate of 1 megabyte
per second. The bandwidth limit is per connection, so you may want
to institute a connection limit as well as a bandwidth limit where
applicable.

Discussion
Limiting the bandwidth for particular connections enables NGINX
to share its upload bandwidth across all of the clients in a manner
you specify. These two directives do it all: limit_rate_after and
limit_rate. The limit_rate_after directive can be set in almost
any context: http, server, location, and if when the if is within a
location. The limit_rate directive is applicable in the same con‐

64 | Chapter 12: Limiting Use

texts as limit_rate_after; however, it can alternatively be set by
setting a variable named $limit_rate. The limit_rate_after
directive specifies that the connection should not be rate limited
until after a specified amount of data has been transferred. The
limit_rate directive specifies the rate limit for a given context in
bytes per second by default. However, you can specify m for mega‐
bytes or g for gigabytes. Both directives default to a value of 0. The
value 0 means not to limit download rates at all. This module allows
you to programmatically change the rate limit of clients.

12.3 Limiting Bandwidth | 65

CHAPTER 13

Encrypting

13.0 Introduction
The internet can be a scary place, but it doesn’t have to be. Encryp‐
tion for information in transit has become easier and more attaina‐
ble in that signed certificates have become less costly with the advent
of Let’s Encrypt and Amazon Web Services. Both offer free certifi‐
cates with limited usage. With free signed certificates, there’s little
standing in the way of protecting sensitive information. While not
all certificates are created equal, any protection is better than none.
In this chapter, we discuss how to secure information between
NGINX and the client, as well as NGINX and upstream services.

13.1 Client-Side Encryption
Problem
You need to encrypt traffic between your NGINX server and the cli‐
ent.

Solution
Utilize one of the SSL modules, such as the ngx_http_ssl_module
or ngx_stream_ssl_module to encrypt traffic:

67

http { # All directives used below are also valid in stream
 server {
 listen 8433 ssl;
 ssl_protocols TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!MD5;
 ssl_certificate /usr/local/nginx/conf/cert.pem;
 ssl_certificate_key /usr/local/nginx/conf/cert.key;
 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 10m;
 }
}

This configuration sets up a server to listen on a port encrypted with
SSL, 8443. The server accepts the SSL protocol version TLSv1.2. The
SSL certificate and key locations are disclosed to the server for use.
The server is instructed to use the highest strength offered by the
client while restricting a few that are insecure. The SSL session cache
and timeout allow for workers to cache and store session parameters
for a given amount of time. There are many other session cache
options that can help with performance or security of all types of use
cases. Session cache options can be used in conjunction. However,
specifying one without the default will turn off that default, built-in
session cache.

Discussion
Secure transport layers are the most common way of encrypting
information in transit. At the time of writing, the Transport Layer
Security protocol (TLS) is the default over the Secure Socket Layer
(SSL) protocol. That’s because versions 1 through 3 of SSL are now
considered insecure. While the protocol name may be different, TLS
still establishes a secure socket layer. NGINX enables your service to
protect information between you and your clients, which in turn
protects the client and your business. When using a signed certifi‐
cate, you need to concatenate the certificate with the certificate
authority chain. When you concatenate your certificate and the
chain, your certificate should be above the chain in the file. If your
certificate authority has provided many files in the chain, it is also
able to provide the order in which they are layered. The SSL session
cache enhances performance by not having to negotiate for SSL/TLS
versions and ciphers.

68 | Chapter 13: Encrypting

Also See
Mozilla Server Side TLS Page

Mozilla SSL Configuration Generator

Test your SSL Configuration with SSL Labs SSL Test

13.2 Upstream Encryption
Problem
You need to encrypt traffic between NGINX and the upstream ser‐
vice and set specific negotiation rules for compliance regulations or
if the upstream is outside of your secured network.

Solution
Use the SSL directives of the HTTP proxy module to specify SSL
rules:

location / {
 proxy_pass https://upstream.example.com;
 proxy_ssl_verify on;
 proxy_ssl_verify_depth 2;
 proxy_ssl_protocols TLSv1.2;
}

These proxy directives set specific SSL rules for NGINX to obey. The
configured directives ensure that NGINX verifies that the certificate
and chain on the upstream service is valid up to two certificates
deep. The proxy_ssl_protocols directive specifies that NGINX will
only use TLS version 1.2. By default NGINX does not verify
upstream certificates and accepts all TLS versions.

Discussion
The configuration directives for the HTTP proxy module are vast,
and if you need to encrypt upstream traffic, you should at least turn
on verification. You can proxy over HTTPS simply by changing the
protocol on the value passed to the proxy_pass directive. However,
this does not validate the upstream certificate. Other directives
available, such as proxy_ssl_certificate and proxy_ssl_certifi
cate_key, allow you to lock down upstream encryption for

13.2 Upstream Encryption | 69

https://wiki.mozilla.org/Security/Server_Side_TLS
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://www.ssllabs.com/ssltest/

enhanced security. You can also specify proxy_ssl_crl or a certifi‐
cate revocation list, which lists certificates that are no longer consid‐
ered valid. These SSL proxy directives help harden your system’s
communication channels within your own network or across the
public internet.

70 | Chapter 13: Encrypting

CHAPTER 14

HTTP Basic Authentication

14.0 Introduction
Basic authentication is a simple way to protect private content. This
method of authentication can be used to easily hide development
sites or keep privileged content hidden. Basic authentication is
pretty unsophisticated, not extremely secure, and, therefore, should
be used with other layers to prevent abuse. It’s recommended to set
up a rate limit on locations or servers that require basic authentica‐
tion to hinder the rate of brute force attacks. It’s also recommended
to utilize HTTPS, as described in Chapter 13, whenever possible, as
the username and password are passed as a base64-encoded string
to the server in a header on every authenticated request. The impli‐
cations of basic authentication over an unsecured protocol such as
HTTP means that the username and password can be captured by
any machine the request passes through.

14.1 Creating a User File
Problem
You need an HTTP basic authentication user file to store usernames
and passwords.

Solution
Generate a file in the following format, where the password is
encrypted or hashed with one of the allowed formats:

71

comment
name1:password1
name2:password2:comment
name3:password3

The username is the first field, the password the second field, and
the delimiter is a colon. An optional third field can be used for com‐
ment on each user. NGINX can understand a few different formats
for passwords, one of which is if the password is encrypted with the
C function crypt(). This function is exposed to the command line
by the openssl passwd command. With openssl installed, you can
create encrypted password strings with the following command:

$ openssl passwd MyPassword1234

The output will be a string NGINX can use in your password file.

Discussion
Basic authentication passwords can be generated a few ways and in a
few different formats to varying degrees of security. The htpasswd
command from Apache can also generate passwords. Both the
openssl and htpasswd commands can generate passwords with the
apr1 algorithm, which NGINX can also understand. The password
can also be in the salted sha-1 format that LDAP and Dovecot use.
NGINX supports more formats and hashing algorithms, however,
many of them are considered insecure because they can be easily
brute-forced.

14.2 Using Basic Authentication
Problem
You need basic authentication to protect an NGINX location or
server.

Solution
Use the auth_basic and auth_basic_user_file directives to enable
basic authentication:

location / {
 auth_basic "Private site";
 auth_basic_user_file conf.d/passwd;
}

72 | Chapter 14: HTTP Basic Authentication

The auth_basic directives can be used in the HTTP, server, or loca‐
tion contexts. The auth_basic directive takes a string parameter,
which is displayed on the basic authentication pop-up window when
an unauthenticated user arrives. The auth_basic_user_file speci‐
fies a path to the user file, which was just described in Recipe 14.1.

Discussion
Basic authentication can be used to protect the context of the entire
NGINX host, specific virtual servers, or even just specific location
blocks. Basic authentication won’t replace user authentication for
web applications, but it can help keep private information secure.
Under the hood, basic authentication is done by the server returning
a 401 unauthorized HTTP code with a response header WWW-
Authenticate. This header will have a value of Basic realm="your
string". This response will cause the browser to prompt for a user‐
name and password. The username and password are concatenated
and delimited with a colon, then base64 encoded, and sent in a
request header named Authorization. The Authorization request
header will specify a Basic and user:password encoded string. The
server decodes the header and verifies against the
auth_basic_user_file provided. Because the username password
string is merely base64 encoded, it’s recommended to use HTTPS
with basic authentication.

14.2 Using Basic Authentication | 73

CHAPTER 15

HTTP Authentication Subrequests

15.0 Introduction
With many different approaches to authentication, NGINX makes it
easy to validate against a wide range of authentication systems by
enabling a subrequest mid-flight to validate identity. The HTTP
authentication request module is meant to enable authentication
systems like LDAP or custom authentication microservices. The
authentication mechanism proxies the request to the authentication
service before the request is fulfilled. During this proxy you have the
power of NGINX to manipulate the request as the authentication
service requires. Therefore, it is extremely flexible.

15.1 Authentication Subrequests
Problem
You have a third-party authentication system to which you would
like requests authenticated.

Solution
Use the http_auth_request_module to make a request to the
authentication service to verify identity before serving the request:

75

location /private/ {
 auth_request /auth;
 auth_request_set $auth_status $upstream_status;
}

location = /auth {
 internal;
 proxy_pass http://auth-server;
 proxy_pass_request_body off;
 proxy_set_header Content-Length "";
 proxy_set_header X-Original-URI $request_uri;
}

The auth_request directive takes a URI parameter that must be a
local internal location. The auth_request_set directive allows you
to set variables from the authentication subrequest.

Discussion
The http_auth_request_module enables authentication on every
request handled by the NGINX server. The module makes a subre‐
quest before serving the original to determine if the request has
access to the resource it’s requesting. The entire original request is
proxied to this subrequest location. The authentication location acts
as a typical proxy to the subrequest and sends the original request,
including the original request body and headers. The HTTP status
code of the subrequest is what determines whether or not access is
granted. If the subrequest returns with an HTTP 200 status code,
the authentication is successful and the request is fulfilled. If the
subrequest returns HTTP 401 or 403, the same will be returned for
the original request.

If your authentication service does not request the request body, you
can drop the request body with the proxy_pass_request_body
directive, as demonstrated. This practice will reduce the request size
and time. Because the response body is discarded, the Content-
Length header must be set to an empty string. If your authentication
service needs to know the URI being accessed by the request, you’ll
want to put that value in a custom header that your authentication
service checks and verifies. If there are things you do want to keep
from the subrequest to the authentication service, like response
headers or other information, you can use the auth_request_set
directive to make new variables out of response data.

76 | Chapter 15: HTTP Authentication Subrequests

CHAPTER 16

Secure Links

16.0 Introduction
Secure links are a way to keep static assets protected with the md5
hashing algorithm. With this module, you can also put a limit on the
length of time for which the link is accepted. Using secure links ena‐
bles your NGINX application server to serve static content securely
while taking this responsibility off of the application server. This
module is included in the free and open source NGINX. However, it
is not built into the standard NGINX package but instead the
nginx-extras package. Alternatively, it can be enabled with the --
with-http_secure_link_module configuration parameter when
building NGINX from source.

16.1 Securing a Location
Problem
You need to secure a location block using a secret.

Solution
Use the secure link module and the secure_link_secret directive
to restrict access to resources to users who have a secure link:

77

 location /resources {
 secure_link_secret mySecret;
 if ($secure_link = "") { return 403; }

 rewrite ^ /secured/$secure_link;
 }

 location /secured/ {
 internal;
 root /var/www;
 }

This configuration creates an internal and public-facing location
block. The public-facing location block /resources will return a 403
Forbidden unless the request URI includes an md5 hash string that
can be verified with the secret provided to the secure_link_secret
directive. The $secure_link variable is an empty string unless the
hash in the URI is verified.

Discussion
Securing resources with a secret is a great way to ensure your files
are protected. The secret is used in conjunction with the URI. This
string is then md5 hashed, and the hex digest of that md5 hash is used
in the URI. The hash is placed into the link and evaluated by
NGINX. NGINX knows the path to the file being requested as it’s in
the URI after the hash. NGINX also knows your secret as it’s pro‐
vided via the secure_link_secret directive. NGINX is able to
quickly validate the md5 hash and store the URI in the $secure_link
variable. If the hash cannot be validated, the variable is set to an
empty string. It’s important to note that the argument passed to the
secure_link_secret must be a static string; it cannot be a variable.

16.2 Generating a Secure Link with a Secret
Problem
You need to generate a secure link from your application using a
secret.

78 | Chapter 16: Secure Links

Solution
The secure link module in NGINX accepts the hex digest of an md5
hashed string, where the string is a concatenation of the URI path
and the secret. Building on the last section, Recipe 16.1, we will cre‐
ate the secured link that will work with the previous configuration
example given there’s a file present at /var/www/secured/index.html.
To generate the hex digest of the md5 hash, we can use the Unix
openssl command:

$ echo -n 'index.htmlmySecret' | openssl md5 -hex
(stdin)= a53bee08a4bf0bbea978ddf736363a12

Here we show the URI that we’re protecting, index.html, concaten‐
ated with our secret, mySecret. This string is passed to the openssl
command to output an md5 hex digest.

The following is an example of the same hash digest being construc‐
ted in Python using the hashlib library that is included in the
Python Standard Library:

import hashlib
hashlib.md5.(b'index.htmlmySecret').hexdigest()
'a53bee08a4bf0bbea978ddf736363a12'

Now that we have this hash digest, we can use it in a URL. Our
example will be for www.example.com making a request for the
file /var/www/secured/index.html through our /resources location.
Our full URL will be the following:

www.example.com/resources/a53bee08a4bf0bbea978ddf736363a12/\
index.html

Discussion
Generating the digest can be done in many ways, in many languages.
Things to remember: the URI path goes before the secret, there are
no carriage returns in the string, and use the hex digest of the md5
hash.

16.2 Generating a Secure Link with a Secret | 79

16.3 Securing a Location with an Expire Date
Problem
You need to secure a location with a link that expires at some future
time and is specific to a client.

Solution
Utilize the other directives included in the secure link module to set
an expire time and use variables in your secure link:

location /resources {
 root /var/www;
 secure_link $arg_md5,$arg_expires;
 secure_link_md5 "$secure_link_expires$uri$remote_addr
 mySecret";
 if ($secure_link = "") { return 403; }
 if ($secure_link = "0") { return 410; }
}

The secure_link directive takes two parameters separated with a
comma. The first parameter is the variable that holds the md5 hash.
This example uses an HTTP argument of md5. The second parame‐
ter is a variable that holds the time in which the link expires in Unix
epoch time format. The secure_link_md5 directive takes a single
parameter that declares the format of the string that is used to con‐
struct the md5 hash. Like the other configuration, if the hash does
not validate, the $secure_link variable is set to an empty string.
However, with this usage, if the hash matches but the time has
expired, the $secure_link variable will be set to 0.

Discussion
This usage of securing a link is more flexible and looks cleaner than
the secure_link_secret shown in Recipe 16.1. With these direc‐
tives, you can use any number of variables that are available to
NGINX in the hashed string. Using user-specific variables in the
hash string will strengthen your security as users won’t be able to
trade links to secured resources. It’s recommended to use a variable
like $remote_addr or $http_x_forwarded_for, or a session cookie
header generated by the application. The arguments to secure_link
can come from any variable you prefer, and they can be named

80 | Chapter 16: Secure Links

whatever best fits. The conditions around what the $secure_link
variable is set to returns known HTTP codes for Forbidden and
Gone. The HTTP 410, Gone, works great for expired links as the
condition is to be considered permanent.

16.4 Generating an Expiring Link
Problem
You need to generate a link that expires.

Solution
Generate a timestamp for the expire time in the Unix epoch format.
On a Unix system, you can test by using the date as demonstrated in
the following:

$ date -d "2020-12-31 00:00" +%s --utc
1609372800

Next you’ll need to concatenate your hash string to match the string
configured with the secure_link_md5 directive. In this case, our
string to be used will be 1293771600/resources/

index.html127.0.0.1 mySecret. The md5 hash is a bit different
than just a hex digest. It’s an md5 hash in binary format, base64 enco‐
ded, with plus signs (+) translated to hyphens (-), slashes (/) trans‐
lated to underscores (_), and equal (=) signs removed. The following
is an example on a Unix system:

$ echo -n '1609372800/resources/index.html127.0.0.1 mySecret' \
 | openssl md5 -binary \
 | openssl base64 \
 | tr +/ -_ \
 | tr -d =
TG6ck3OpAttQ1d7jW3JOcw

Now that we have our hash, we can use it as an argument along with
the expire date:

/resources/index.html?md5=TG6ck3OpAttQ1d7jW3JOcw&expires=1609372
 800'

The following is a more practical example in Python utilizing a rela‐
tive time for the expiration, setting the link to expire one hour from
generation. At the time of writing this example works with Python
2.7 and 3.x utilizing the Python Standard Library:

16.4 Generating an Expiring Link | 81

from datetime import datetime, timedelta
from base64 import b64encode
import hashlib

Set environment vars
resource = b'/resources/index.html'
remote_addr = b'127.0.0.1'
host = b'www.example.com'
mysecret = b'mySecret'

Generate expire timestamp
now = datetime.utcnow()
expire_dt = now + timedelta(hours=1)
expire_epoch = str.encode(expire_dt.strftime('%s'))

md5 hash the string
uncoded = expire_epoch + resource + remote_addr + mysecret
md5hashed = hashlib.md5(uncoded).digest()

Base64 encode and transform the string
b64 = b64encode(md5hashed)
unpadded_b64url = b64.replace(b'+', b'-')\
 .replace(b'/', b'_')\
 .replace(b'=', b'')

Format and generate the link
linkformat = "{}{}?md5={}?expires={}"
securelink = linkformat.format(
 host.decode(),
 resource.decode(),
 unpadded_b64url.decode(),
 expire_epoch.decode()
)
print(securelink)

Discussion
With this pattern we’re able to generate a secure link in a special for‐
mat that can be used in URLs. The secret provides security of a vari‐
able that is never sent to the client. You’re able to use as many other
variables as you need to in order to secure the location. md5 hashing
and base64 encoding are common, lightweight, and available in
nearly every language.

82 | Chapter 16: Secure Links

CHAPTER 17

API Authentication Using JWT

17.0 Introduction
JSON Web Tokens (JWTs) are quickly becoming a widely used and
preferred authentication method. These authentication tokens have
the ability to store some information about the user as well as infor‐
mation about the user’s authorization into the token itself. These
tokens can also be validated asymmetrically, which means load bal‐
ancers and proxies are able to validate the token with a public key
and do not need the private key that the token was signed with, thus
enhancing security and flexibility. An advantage of offloading
authentication verification to your NGINX Plus layer is that you’re
saving cycles on your authentication service, as well as speeding up
your transactions. The JWT authentication module described in this
chapter is available only with an NGINX Plus subscription.

17.1 Validating JWTs
Problem
You need to validate a JWT before the request is handled.

Solution
Use NGINX Plus’s HTTP JWT authentication module to validate the
token signature and embed JWT Claims and headers as NGINX
variables:

83

location /api/ {
 auth_jwt "api";
 auth_jwt_key_file conf/keys.json;
}

This configuration enables validation of JWTs for this location. The
auth_jwt directive is passed a string, which is used as the authenti‐
cation realm. The auth_jwt takes an optional token parameter of a
variable that holds the JWT. By default, the Authentication header
is used per the JWT standard. The auth_jwt directive can also be
used to cancel effects of required JWT authentication from inherited
configurations. To turn off authentication, pass the keyword to the
auth_jwt directive with nothing else. To cancel inherited authenti‐
cation requirements, pass the off keyword to the auth_jwt directive
with nothing else. The auth_jwt_key_file takes a single parameter.
This parameter is the path to the key file in standard JSON Web Key
format.

Discussion
NGINX Plus is able to validate the JSON web signature types of
tokens as opposed to the JSON web encryption type, where the
entire token is encrypted. NGINX Plus is able to validate signatures
that are signed with the HS256, RS256, and ES256 algorithms. Hav‐
ing NGINX Plus validate the token can save the time and resources
of making a subrequest to an authentication service. NGINX Plus
deciphers the JWT header and payload, and captures the standard
headers and claims into embedded variables for your use.

Also See
RFC standard documentation of JSON Web Signature
RFC standard documentation of JSON Web Algorithms
RFC standard documentation of JSON Web Token
NGINX embedded variables
Detailed NGINX blog

17.2 Creating JSON Web Keys
Problem
You need a JSON Web Key for NGINX Plus to use.

84 | Chapter 17: API Authentication Using JWT

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7519
http://bit.ly/2fucAac
http://bit.ly/2f0Mjj0

Solution
NGINX Plus utilizes the JSON Web Key (JWK) format as specified
in the RFC standard. The standard allows for an array of key objects
within the JWK file.

The following is an example of what the key file may look like:

{"keys":
 [
 {
 "kty":"oct",
 "kid":"0001",
 "k":"OctetSequenceKeyValue"
 },
 {
 "kty":"EC",
 "kid":"0002"
 "crv":"P-256",
 "x": "XCoordinateValue",
 "y": "YCoordinateValue",
 "d": "PrivateExponent",
 "use": "sig"
 },
 {
 "kty":"RSA",
 "kid":"0003"
 "n": "Modulus",
 "e": "Exponent",
 "d": "PrivateExponent"
 }
]
}

The JWK file shown demonstrates the three initial types of keys
noted in the RFC standard. The format of these keys is also part of
the RFC standard. The kty attribute is the key type. This file shows
three key types: the Octet Sequence (oct), the EllipticCurve (EC),
and the RSA type. The kid attribute is the key ID. Other attributes to
these keys are specified to the standard for that type of key. Look to
the RFC documentation of these standards for more information.

Discussion
There are numerous libraries available in many different languages
to generate the JSON Web Key. It’s recommended to create a key ser‐
vice that is the central JWK authority to create and rotate your
JWKs at a regular interval. For enhanced security, it’s recommended

17.2 Creating JSON Web Keys | 85

to make your JWKs as secure as your SSL/TLS certifications. Secure
your key file with proper user and group permissions. Keeping them
in memory on your host is best practice. You can do so by creating
an in-memory filesystem like ramfs. Rotating keys on a regular
interval is also important; you may opt to create a key service that
creates public and private keys and offers them to the application
and NGINX via an API.

Also See
RFC standardization documentation of JSON Web Key

86 | Chapter 17: API Authentication Using JWT

https://tools.ietf.org/html/rfc7517

CHAPTER 18

OpenId Connect Single Sign-On

18.0 Introduction
Single sign-on (SSO) authentication providers are a great way to
reduce authentication requests to your application and provide your
users with seamless integration into an application they already log
in to on a regular basis. As more authentication providers bring
themselves to market, your application can be ready to integrate by
using NGINX Plus to validate the signature of their JSON Web
Tokens. In this chapter we’ll explore using the NGINX Plus JWT
authentication module for HTTP in conjunction with an existing
OpenId Connect OAuth 2.0 provider from Google. As in Chap‐
ter 17, this chapter describes the JWT authentication module, which
is only available with an NGINX Plus subscription.

18.1 Authenticate Users via Existing OpenId
Connect Single Sign-On (SSO)
Problem
You want to offload OpenId Connect authentication validation to
NGINX Plus.

87

Solution
Use NGINX Plus’s JWT module to secure a location or server and
tell the auth_jwt directive to use $cookie_auth_token as the token
to be validated:

 location /private/ {
 auth_jwt "Google Oauth" token=$cookie_auth_token;
 auth_jwt_key_file /etc/nginx/google_certs.jwk;
 }

This configuration tells NGINX Plus to secure the /private/ URI
path with JWT validation. Google OAuth 2.0 OpenId Connect uses
the cookie auth_token rather than the default Bearer Token. Thus,
we must tell NGINX to look for the token in this cookie rather than
the NGINX Plus Default location. The auth_jwt_key_file location
is set to an arbitrary path, a step that we will cover in Recipe 18.2.

Discussion
This configuration demonstrates how you can validate a Google
OAuth 2.0 OpenId Connect JSON Web Token with NGINX Plus.
The NGINX Plus JWT authentication module for HTTP is able to
validate any JSON Web Token that adheres to the RFC for JSON
Web Signature specification, instantly enabling any single sign-on
authority that utilizes JSON Web Tokens to be validated at the
NGINX Plus layer. The OpenId 1.0 protocol is a layer on top of the
OAuth 2.0 authentication protocol that adds identity, enabling the
use of JSON Web Tokens to prove the identity of the user sending
the request. With the signature of the token, NGINX Plus can vali‐
date that the token has not been modified since it was signed. In this
way, Google is using an asynchronous signing method and makes it
possible to distribute public JWKs while keeping its private JWK
secret.

Also See
Detailed NGINX Blog on OpenId Connect
OpenId Connect

88 | Chapter 18: OpenId Connect Single Sign-On

http://bit.ly/2fB704l
http://openid.net/connect/

18.2 Obtaining JSON Web Key from Google
Problem
You need to obtain the JSON Web Key from Google to use when
validating OpenId Connect tokens with NGINX Plus.

Solution
Utilize Cron to request a fresh set of keys every hour to ensure your
keys are always up-to-date:

0 * * * * root wget https://www.googleapis.com/oauth2/v3/ \
 certs-O /etc/nginx/google_certs.jwk

This code snippet is a line from a crontab file. Unix-like systems
have many options for where crontab files can live. Every user will
have a user-specific crontab, and there’s also a number of files and
directories in the /etc/ directory.

Discussion
Cron is a common way to run a scheduled task on a Unix-like sys‐
tem. JSON Web Keys should be rotated on a regular interval to
ensure the security of the key, and in turn, the security of your sys‐
tem. To ensure that you always have the most up-to-date key from
Google, you’ll want to check for new JWKs at a regular interval. This
cron solution is one way of doing so.

Also See
Cron

18.2 Obtaining JSON Web Key from Google | 89

https://linux.die.net/man/8/cron

CHAPTER 19

ModSecurity Web Application
Firewall

19.0 Introduction
ModSecurity is an open source web application firewall (WAF) that
was first built for Apache web servers. It was made available to
NGINX as a module in 2012 and added as an optional feature to
NGINX Plus in 2016. This chapter will detail installing ModSecurity
3.0 with NGINX Plus through dynamic modules. It will also cover
compiling and installing the ModSecurity 2.9 module and NGINX
from source. ModSecurity 3.0 with NGINX Plus is far superior to
ModSecurity 2.x in terms of security and performance. When run‐
ning ModSecurity 2.9 configured from open source, it’s still wrapped
in Apache and, therefore, requires much more overhead than 3.0,
which was designed for NGINX natively. The plug-and-play ModSe‐
curity 3.0 module for NGINX is only available with an NGINX Plus
subscription.

19.1 Installing ModSecurity for NGINX Plus
Problem
You need to install the ModSecurity module for NGINX Plus.

91

Solution
Install the module from the NGINX Plus repository. The package
name is nginx-plus-module-modsecurity. On an Ubuntu-based
system, you can install NGINX Plus and the ModSecurity module
through the advanced packaging tool, also known as apt-get:

$ apt-get update
$ apt-get install nginx-plus
$ apt-get install nginx-plus-module-modsecurity

Discussion
Installing NGINX Plus and the ModSecurity module is as easy as
pulling it from the NGINX Plus repository. Your package manage‐
ment tool, such as apt-get or yum, will install NGINX Plus as well as
the module and place the module in the modules directory within
the default NGINX Plus configuration directory /etc/nginx/.

19.2 Configuring ModSecurity in NGINX Plus
Problem
You need to configure NGINX Plus to use the ModSecurity module.

Solution
Enable the dynamic module in your NGINX Plus configuration, and
use the modsecurity_rules_file directive to point to a ModSecur‐
ity rule file:

load_module modules/ngx_http_modsecurity.so;

The load_module directive is applicable in the main context, which
means that this directive is to be used before opening the HTTP or
Stream blocks.

Turn on ModSecurity and use a particular rule set:

 modsecurity on;
 location / {
 proxy_pass http://backend;
 modsecurity_rules_file rule-set-file;
 }

The modsecurity directive turns on the module for the given con‐
text when passed the on parameter. The modsecurity_rules_file

92 | Chapter 19: ModSecurity Web Application Firewall

directive instructs NGINX Plus to use a particular ModSecurity rule
set.

Discussion
The rules for ModSecurity can prevent common exploits of web
servers and applications. ModSecurity is known to be able to pre‐
vent application-layer attacks such as HTTP violations, SQL injec‐
tion, cross-site scripting, distributed-denial-of-service, and remote
and local file-inclusion attacks. With ModSecurity, you’re able to
subscribe to real-time blacklists of malicious user IPs to help block
issues before your services are affected. The ModSecurity module
also enables detailed logging to help identify new patterns and
anomalies.

Also See
OWASP ModSecurity Core Rule Set
TrustWave ModSecurity Paid Rule Set

19.3 Installing ModSecurity from Source for a
Web Application Firewall
Problem
You need to run a web application firewall with NGINX using Mod‐
Security and a set of ModSecurity rules on a CentOS or RHEL-based
system.

Solution
Compile ModSecurity and NGINX from source and configure
NGINX to use the ModSecurity module.

First update security and install prerequisites:

 $ yum --security update -y && \
 yum -y install automake \
 autoconf \
 curl \
 curl-devel \
 gcc \
 gcc-c++ \
 httpd-devel \
 libxml2 \

19.3 Installing ModSecurity from Source for a Web Application Firewall | 93

http://bit.ly/2fdZ7Dd
http://bit.ly/2eJYuAx

 libxml2-devel \
 make \
 openssl \
 openssl-devel \
 perl \
 wget

Next, download and install PERL 5 regular expression pattern
matching:

$ cd /opt && \
 wget http://ftp.exim.org/pub/pcre/pcre-8.39.tar.gz && \
 tar -zxf pcre-8.39.tar.gz && \
 cd pcre-8.39 && \
 ./configure && \
 make && \
 make install

Download and install zlib from source:

$ cd /opt && \
 wget http://zlib.net/zlib-1.2.8.tar.gz && \
 tar -zxf zlib-1.2.8.tar.gz && \
 cd zlib-1.2.8 && \
 ./configure && \
 make && \
 make install

Download and install ModSecurity from source:

$ cd /opt && \
 wget \
 https://www.modsecurity.org/tarball/2.9.1/modsecurity-2.9.1.\
 tar.gz&& \
 tar -zxf modsecurity-2.9.1.tar.gz && \
 cd modsecurity-2.9.1 && \
 ./configure --enable-standalone-module && \
 make

Download and install NGINX from source and include any modules
you may need with the configure script. Our focus here is the Mod‐
Security module:

$ cd /opt && \
 wget http://nginx.org/download/nginx-1.11.4.tar.gz && \
 tar zxf nginx-1.11.4.tar.gz && \
 cd nginx-1.11.4 && \
 ./configure \
 --sbin-path=/usr/local/nginx/nginx \
 --conf-path=/etc/nginx/nginx.conf \
 --pid-path=/usr/local/nginx/nginx.pid \
 --with-pcre=../pcre-8.39 \
 --with-zlib=../zlib-1.2.8 \

94 | Chapter 19: ModSecurity Web Application Firewall

 --with-http_ssl_module \
 --with-stream \
 --with-http_ssl_module \
 --with-http_secure_link_module \
 --add-module=../modsecurity-2.9.1/nginx/modsecurity \
 && \
 make && \
 make install && \
 ln -s /usr/local/nginx/nginx /usr/sbin/nginx

This will yield NGINX compiled from source with the ModSecurity
version 2.9.1 module installed. From here we are able to use the Mod
SecurityEnabled and ModSecurityConfig directives in our config‐
urations:

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 location / {
 ModSecurityEnabled on;
 ModSecurityConfig modsecurity.conf;
 }
}

This configuration for an NGINX server turns on ModSecurity for
the location / and uses a ModSecurity configuration file located at
the base of the NGINX configuration.

Discussion
This section compiles NGINX from source with the ModSecurity
for NGINX. It’s advised when compiling NGINX from source to
always check that you’re using the latest stable packages available.
With the preceding example, you can use the open source version of
NGINX along with ModSecurity to build your own open source web
application firewall.

Also See
ModSecurity Source
Updated and maintained ModSecurity Rules from SpiderLabs

19.3 Installing ModSecurity from Source for a Web Application Firewall | 95

https://github.com/SpiderLabs/ModSecurity
http://bit.ly/2eJYuAx

CHAPTER 20

Practical Security Tips

20.0 Introduction
Security is done in layers, and much like an onion, there must be
multiple layers to your security model for it to be truly hardened. In
Part II of this book, we’ve gone through many different ways to
secure your web applications with NGINX and NGINX Plus. Many
of these security methods can be used in conjunction to help harden
security. The following are a few more practical security tips to
ensure your users are using HTTPS and to tell NGINX to satisfy one
or more security methods.

20.1 HTTPS Redirects
Problem
You need to redirect unencrypted requests to HTTPS.

Solution
Use a rewrite to send all HTTP traffic to HTTPS:

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 return 301 https://$host$request_uri;
}

97

This configuration listens on port 80 as the default server for both
IPv4 and IPv6 and for any hostname. The return statement returns
a 301 permanent redirect to the HTTPS server at the same host and
request URI.

Discussion
It’s important to always redirect to HTTPS where appropriate. You
may find that you do not need to redirect all requests but only those
with sensitive information being passed between client and server.
In that case, you may want to put the return statement in particular
locations only, such as /login.

20.2 Redirecting to HTTPS Where SSL/TLS Is
Terminated Before NGINX
Problem
You need to redirect to HTTPS, however, you’ve terminated
SSL/TLS at a layer before NGINX.

Solution
Use the standard X-Forwarded-Proto header to determine if you
need to redirect:

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 if ($http_x_forwarded_proto = 'http') {
 return 301 https://$host$request_uri;
 }
}

This configuration is very much like HTTPS redirects. However, in
this configuration we’re only redirecting if the header X-Forwarded-
Proto is equal to HTTP.

Discussion
It’s a common use case that you may terminate SSL/TLS in a layer in
front of NGINX. One reason you may do something like this is to
save on compute costs. However, you need to make sure that every

98 | Chapter 20: Practical Security Tips

request is HTTPS, but the layer terminating SSL/TLS does not have
the ability to redirect. It can, however, set proxy headers. This con‐
figuration works with layers such as the Amazon Web Services Elas‐
tic Load Balancer, which will offload SSL/TLS at no additional
cost. This is a handy trick to make sure that your HTTP traffic is
secured.

20.3 HTTP Strict Transport Security
Problem
You need to instruct browsers to never send requests over HTTP.

Solution
Use the HTTP Strict Transport Security (HSTS) enhancement by
setting the Strict-Transport-Security header:

 add_header Strict-Transport-Security max-age=31536000;

This configuration sets the Strict-Transport-Security header to a
max age of a year. This will instruct the browser to always do an
internal redirect when HTTP requests are attempted to this domain,
so that all requests will be made over HTTPS.

Discussion
For some applications a single HTTP request trapped by a man in
the middle attack could be the end of the company. If a form post
containing sensitive information is sent over HTTP, the HTTPS
redirect from NGINX won’t save you; the damage is done. This opt-
in security enhancement informs the browser to never make an
HTTP request, therefore the request is never sent unencrypted.

Also See
RFC-6797 HTTP Strict Transport Security

OWASP HSTS Cheat Sheet

20.3 HTTP Strict Transport Security | 99

https://tools.ietf.org/html/rfc6797
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

20.4 Satisfying Any Number of Security
Methods
Problem
You need to provide multiple ways to pass security to a closed site.

Solution
Use the satisfy directive to instruct NGINX that you want to sat‐
isfy any or all of the security methods used:

location / {
 satisfy any;

 allow 192.168.1.0/24;
 deny all;

 auth_basic "closed site";
 auth_basic_user_file conf/htpasswd;
}

This configuration tells NGINX that the user requesting the loca
tion / needs to satisfy one of the security methods: either the
request needs to originate from the 192.168.1.0/24 CIDR block or be
able to supply a username and password that can be found in the
conf/htpasswd file. The satisfy directive takes one of two options:
any or all.

Discussion
The satisfy directive is a great way to offer multiple ways to
authenticate to your web application. By specifying any to the sat
isfy directive, the user must meet one of the security challenges. By
specifying all to the satisfy directive, the user must meet all of the
security challenges. This directive can be used in conjunction with
the http_access_module detailed in Chapter 11, the
http_auth_basic_module detailed in Chapter 14, the
http_auth_request_module detailed in Chapter 15, and the
http_auth_jwt_module detailed in Chapter 17. Security is only truly
secure if it’s done in multiple layers. The satisfy directive will help
you achieve this for locations and servers that require deep security
rules.

100 | Chapter 20: Practical Security Tips

PART III

Part III: Deployment and
Operations

This is the third and final part of the NGINX Cookbook. This part
will focus on deployment and operations of NGINX and NGINX
Plus, the licensed version of the server. Throughout this part, you
will learn about deploying NGINX to Amazon Web Services, Micro‐
soft Azure, and Google Cloud Compute, as well as working with
NGINX in Docker containers. This part will dig into using configu‐
ration management to provision NGINX servers with tools such as
Puppet, Chef, Ansible, and SaltStack. It will also get into automating
with NGINX Plus through the NGINX Plus API for on-the-fly
reconfiguration and using Consul for service discovery and configu‐
ration templating. We’ll use an NGINX module to conduct A/B test‐
ing and acceptance during deployments. Other topics covered are
using NGINX’s GeoIP module to discover the geographical origin of
our clients, including it in our logs, and using it in our logic. You’ll
learn how to format access logs and set log levels of error logging for
debugging. Through a deep look at performance, this part will pro‐
vide you with practical tips for optimizing your NGINX configura‐
tion to serve more requests faster. It will help you install, monitor,
and maintain the NGINX application delivery platform.

CHAPTER 21

Deploying on AWS

21.0 Introduction
Amazon Web Services (AWS), in many opinions, has led the cloud
infrastructure landscape since the arrival of S3 and EC2 in 2006.
AWS provides a plethora of infrastructure-as-a-service (IaaS) and
platform-as-a-service (PaaS) solutions. Infrastructure as a service,
such as Amazon EC2 or Elastic Cloud Compute, is a service provid‐
ing virtual machines in as little as a click or API call. This chapter
will cover deploying NGINX into an Amazon Web Service environ‐
ment, as well as some common patterns.

21.1 Auto-Provisioning on AWS
Problem
You need to automate the configuration of NGINX servers on Ama‐
zon Web Services for machines to be able to automatically provision
themselves.

Solution
Utilize EC2 UserData as well as a pre-baked Amazon Machine
Image. Create an Amazon Machine Image with NGINX and any
supporting software packages installed. Utilize Amazon EC2 User
Data to configure any environment-specific configurations at run‐
time.

103

Discussion
There are three patterns of thought when provisioning on Amazon
Web Services:

Provision at boot
Start from a common Linux image, then run configuration
management or shell scripts at boot time to configure the
server. This pattern is slow to start and can be prone to errors.

Fully baked Amazon Machine Images (AMIs)
Fully configure the server, then burn an AMI to use. This pat‐
tern boots very fast and accurately. However, it’s less flexible to
the environment around it, and maintaining many images can
be complex.

Partially baked AMIs
It’s a mix of both worlds. Partially baked is where software
requirements are installed and burned into an AMI, and envi‐
ronment configuration is done at boot time. This pattern is flex‐
ible compared to a fully baked pattern, and fast compared to a
provision-at-boot solution.

Whether you choose to partially or fully bake your AMIs, you’ll
want to automate that process. To construct an AMI build pipeline,
it’s suggested to use a couple of tools:

Configuration management
Configuration management tools define the state of the server
in code, such as what version of NGINX is to be run and what
user it’s to run as, what DNS resolver to use, and who to proxy
upstream to. This configuration management code can be
source controlled and versioned like a software project. Some
popular configuration management tools are Ansible, Chef,
Puppet, and SaltStack, which will be described in Chapter 25.

Packer from HashiCorp
Packer is used to automate running your configuration manage‐
ment on virtually any virtualization or cloud platform and to
burn a machine image if the run is successful. Packer basically
builds a virtual machine on the platform of your choosing,
SSH’s into the virtual machine, runs any provisioning you spec‐
ify, and burns an image. You can utilize Packer to run the con‐

104 | Chapter 21: Deploying on AWS

figuration management tool and reliably burn a machine image
to your specification.

To provision environmental configurations at boot time, you can
utilize the Amazon EC2 UserData to run commands the first time
the instance is booted. If you’re using the partially baked method,
you can utilize this to configure environment-based items at boot
time. Examples of environment-based configurations might be what
server names to listen for, resolver to use, domain name to proxy to,
or upstream server pool to start with. UserData is a Base64-encoded
string that is downloaded at the first boot and run. The UserData
can be as simple as an environment file accessed by other bootstrap‐
ping processes in your AMI, or it can be a script written in any lan‐
guage that exists on the AMI. It’s common for UserData to be a bash
script that specifies variables or downloads variables to pass to con‐
figuration management. Configuration management ensures the
system is configured correctly, templates configuration files based
on environment variables, and reloads services. After UserData
runs, your NGINX machine should be completely configured, in a
very reliable way.

21.2 Routing to NGINX Nodes Without an ELB
Problem
You need to route traffic to multiple active NGINX nodes or create
an active-passive failover set to achieve high availability without a
load balancer in front of NGINX.

Solution
Use the Amazon Route53 DNS service to route to multiple active
NGINX nodes or configure health checks and failover between an
active-passive set of NGINX nodes.

Discussion
DNS has balanced load between servers for a long time; moving to
the cloud doesn’t change that. The Route53 service from Amazon
provides a DNS service with many advanced features, all available
through an API. All the typical DNS tricks are available, such as
multiple IP addresses on a single A record and weighted A records.

21.2 Routing to NGINX Nodes Without an ELB | 105

When running multiple active NGINX nodes, you’ll want to use one
of these A record features to spread load across all nodes. The
round-robin algorithm is used when multiple IP addresses are listed
for a single A record. A weighted distribution can be used to distrib‐
ute load unevenly by defining weights for each server IP address in
an A record.

One of the more interesting features of Route53 is its ability to
health check. You can configure Route53 to monitor the health of an
endpoint by establishing a TCP connection or by making a request
with HTTP or HTTPS. The health check is highly configurable with
options for the IP, hostname, port, URI path, interval rates, moni‐
toring, and geography. With these health checks, Route53 can take
an IP out of rotation if it begins to fail. You could also configure
Route53 to failover to a secondary record in case of a failure, which
would achieve an active-passive, highly available setup.

Route53 has a geological-based routing feature that will enable you
to route your clients to the closest NGINX node to them, for the
least latency. When routing by geography, your client is directed to
the closest healthy physical location. When running multiple sets of
infrastructure in an active-active configuration, you can automati‐
cally failover to another geological location through the use of
health checks.

When using Route53 DNS to route your traffic to NGINX nodes in
an Auto Scaling group, you’ll want to automate the creation and
removal of DNS records. To automate adding and removing NGINX
machines to Route53 as your NGINX nodes scale, you can use Ama‐
zon’s Auto Scaling Lifecycle Hooks to trigger scripts within the
NGINX box itself or scripts running independently on Amazon
Lambda. These scripts would use the Amazon CLI or SDK to inter‐
face with the Amazon Route53 API to add or remove the NGINX
machine IP and configured health check as it boots or before it is
terminated.

21.3 The ELB Sandwich
Problem
You need to autoscale your NGINX layer and distribute load evenly
and easily between application servers.

106 | Chapter 21: Deploying on AWS

Solution
Create an elastic load balancer (ELB) or two. Create an Auto Scaling
group with a launch configuration that provisions an EC2 instance
with NGINX installed. The Auto Scaling group has a configuration
to link to the elastic load balancer, which will automatically register
any instance in the Auto Scaling group to the load balancers config‐
ured on first boot. Place your upstream applications behind another
elastic load balancer and configure NGINX to proxy to that ELB.

Discussion
This common pattern is called the ELB sandwich (see Figure 21-1),
putting NGINX in an Auto Scaling group behind an ELB and the
application Auto Scaling group behind another ELB. The reason for
having ELBs between every layer is because the ELB works so well
with Auto Scaling groups; they automatically register new nodes and
remove ones being terminated, as well as run health checks and only
pass traffic to healthy nodes. The reason behind building a second
ELB for NGINX is because it allows services within your application
to call out to other services through the NGINX Auto Scaling group
without leaving the network and reentering through the public
ELB. This puts NGINX in the middle of all network traffic within
your application, making it the heart of your application’s traffic
routing.

21.3 The ELB Sandwich | 107

Figure 21-1. This image depicts NGINX in an ELB sandwich pattern
with an internal ELB for internal applications to utilize. A user makes
a request to App-1, and App-1 makes a request to App-2 through
NGINX to fulfill the user’s request.

21.4 Deploying from the Marketplace
Problem
You need to run NGINX Plus in AWS with ease with a pay-as-you-
go license.

108 | Chapter 21: Deploying on AWS

Solution
Deploy through the AWS Marketplace. Visit the AWS Marketplace
and search “NGINX Plus” (see Figure 21-2). Select the Amazon
Machine Image (AMI) that is based on the Linux distribution of
your choice; review the details, terms, and pricing; then click the
Continue link. On the next page you’ll be able to accept the terms
and deploy NGINX Plus with a single click, or accept the terms and
use the AMI.

Figure 21-2. The AWS Marketplace after searching for NGINX

Discussion
The AWS Marketplace solution to deploying NGINX Plus provides
ease of use and a pay-as-you-go license. Not only do you have noth‐
ing to install, but you also have a license without jumping through
hoops like getting a purchase order for a year license. This solution
enables you to try NGINX Plus easily without commitment. You can
also use the NGINX Plus Marketplace AMI as overflow capacity. It’s
a common practice to purchase your expected workload worth of
licenses and use the Marketplace AMI in an Auto Scaling group as
overflow capacity. This strategy ensures you only pay for as much
licensing as you use.

21.4 Deploying from the Marketplace | 109

https://aws.amazon.com/marketplace

CHAPTER 22

Deploying on Azure

22.0 Introduction
Azure is a powerful cloud platform offering from Microsoft. Azure
enables cross-platform virtual machine hosting inside of virtual
cloud networks. NGINX is an amazing application delivery platform
for any OS or application type and works seamlessly in Microsoft
Azure. NGINX has provided a pay-per-usage NGINX Plus Market‐
place offering, which this chapter will explain how to use, making it
easy to get up and running quickly with on-demand licensing in
Microsoft Azure.

22.1 Creating an NGINX Virtual Machine Image
Problem
You need to create a virtual machine image of your own NGINX
server configured as you see fit to quickly create more servers or use
in scale sets.

Solution
Create a virtual machine from a base operating system of your
choice. Once the VM is booted, log in and install NGINX or
NGINX Plus in your preferred way, either from source or through
the package management tool for the distribution you’re running.
Configure NGINX as desired and create a new virtual machine
image. To create a virtual machine image, you must first generalize

111

the VM. To generalize your virtual machine, you need to remove
the user that Azure provisioned, connect to it over SSH, and run
the following command:

$ sudo waagent -deprovision+user -force

This command deprovisions the user that Azure provisioned when
creating the virtual machine. The -force option simply skips a con‐
firmation step. After you’ve installed NGINX or NGINX Plus and
removed the provisioned user, you can exit your session.

Connect your Azure CLI to your Azure account using the Azure
login command, then ensure you’re using the Azure Resource Man‐
ager mode. Now deallocate your virtual machine:

$ azure vm deallocate -g <ResourceGroupName> \
 -n <VirtualMachineName>

Once the virtual machine is deallocated, you will be able to general‐
ize the virtual machine with the azure vm generalize command:

$ azure vm generalize -g <ResourceGroupName> \
 -n <VirtualMachineName>

After your virtual machine is generalized, you can create an image.
The following command will create an image and also generate an
Azure Resources Manager (ARM) template for you to use to boot
this image:

$ azure vm capture <ResourceGroupName> <VirtualMachineName> \
 <ImageNamePrefix> -t <TemplateName>.json

The command line will produce output saying that your image has
been created, that it’s saving an ARM template to the location you
specified, and that the request is complete. You can use this ARM
template to create another virtual machine from the newly created
image. However, to use this template Azure has created, you must
first create a new network interface:

$ azure network nic create <ResourceGroupName> \
 <NetworkInterfaceName> \
 <Region> \
 --subnet-name <SubnetName> \
 --subnet-vnet-name <VirtualNetworkName>

This command output will detail information about the newly cre‐
ated network interface. The first line of the output data will be the
network interface ID, which you will need to utilize the ARM tem‐

112 | Chapter 22: Deploying on Azure

plate created by Azure. Once you have the ID, you can create a
deployment with the ARM template:

$ azure group deployment create <ResourceGroupName> \
 <DeploymentName> \
 -f <TemplateName>.json

You will be prompted for multiple input variables such as vmName,
adminUserName, adminPassword, and networkInterfaceId. Enter a
name of your choosing for the virtual machine name, admin user‐
name, and password. Use the network interface ID harvested from
the last command as the input for the networkInterfaceId prompt.
These variables will be passed as parameters to the ARM template
and used to create a new virtual machine from the custom NGINX
or NGINX Plus image you’ve created. After entering the necessary
parameters, Azure will begin to create a new virtual machine from
your custom image.

Discussion
Creating a custom image in Azure enables you to create copies of
your preconfigured NGINX or NGINX Plus server at will. Azure
creating an ARM template enables you to quickly and reliably
deploy this same server time and time again as needed. With the vir‐
tual machine image path that can be found in the template, you can
use this image to create different sets of infrastructure such as vir‐
tual machine scaling sets or other VMs with different configura‐
tions.

Also See
Installing Azure cross-platform CLI
Azure cross-platform CLI login
Capturing Linux virtual machine images

22.2 Load Balancing Over NGINX Scale Sets
Problem
You need to scale NGINX nodes behind an Azure load balancer to
achieve high availability and dynamic resource usage.

22.2 Load Balancing Over NGINX Scale Sets | 113

https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-install/
https://azure.microsoft.com/en-us/documentation/articles/xplat-cli-connect/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-capture-image/

Solution
Create an Azure load balancer that is either public facing or inter‐
nal. Deploy the NGINX virtual machine image created in the prior
section or the NGINX Plus image from the Marketplace described
in Recipe 22.3 into an Azure virtual machine scale set (VMSS). Once
your load balancer and VMSS are deployed, configure a backend
pool on the load balancer to the VMSS. Set up load-balancing rules
for the ports and protocols you’d like to accept traffic on, and direct
them to the backend pool.

Discussion
It’s common to scale NGINX to achieve high availability or to han‐
dle peak loads without overprovisioning resources. In Azure you
achieve this with virtual machine scaling sets. Using the Azure load
balancer provides ease of management for adding and removing
NGINX nodes to the pool of resources when scaling. With Azure
load balancers, you’re able to check the health of your backend pools
and only pass traffic to healthy nodes. You can run internal Azure
load balancers in front of NGINX where you want to enable access
only over an internal network. You may use NGINX to proxy to an
internal load balancer fronting an application inside of a VMSS,
using the load balancer for the ease of registering and deregistering
from the pool.

22.3 Deploying Through the Marketplace
Problem
You need to run NGINX Plus in Azure with ease and a pay-as-you-
go license.

Solution
Deploy an NGINX Plus virtual machine image through the Azure
Marketplace:

1. From the Azure dashboard, select the New icon, and use the
search bar to search for “NGINX.” Search results will appear.

2. From the list, select the NGINX Plus Virtual Machine Image
published by NGINX, Inc.

114 | Chapter 22: Deploying on Azure

3. When prompted to choose your deployment model, select the
Resource Manager option, and click the Create button.

4. You will then be prompted to fill out a form to specify the name
of your virtual machine, the disk type, the default username and
password or SSH key pair public key, which subscription to bill
under, the resource group you’d like to use, and the location.

5. Once this form is filled out, you can click OK. Your form will be
validated.

6. When prompted, select a virtual machine size, and click the
Select button.

7. On the next panel, you have the option to select optional con‐
figurations, which will be the default based on your resource
group choice made previously. After altering these options and
accepting them, click OK.

8. On the next screen, review the summary. You have the option of
downloading this configuration as an ARM template so that you
can create these resources again more quickly via a JSON tem‐
plate.

9. Once you’ve reviewed and downloaded your template, you can
click OK to move to the purchasing screen. This screen will
notify you of the costs you’re about to incur from this virtual
machine usage. Click Purchase and your NGINX Plus box will
begin to boot.

Discussion
Azure and NGINX have made it easy to create an NGINX Plus vir‐
tual machine in Azure through just a few configuration forms. The
Azure Marketplace is a great way to get NGINX Plus on demand
with a pay-as-you-go license. With this model, you can try out the
features of NGINX Plus or use it for on-demand overflow capacity
of your already licensed NGINX Plus servers.

22.3 Deploying Through the Marketplace | 115

CHAPTER 23

Deploying on Google
Cloud Compute

23.0 Introduction
Google Cloud Compute is an advanced cloud platform that enables
its customers to build diverse, high-performing web applications at
will on hardware they provide and manage. Google Cloud Compute
offers virtual networking and machines, a tried-and-true platform-
as-a-service (PaaS) offering, as well as many other managed service
offerings such as Bigtable, BigQuery, and SQL. In this chapter, we
will discuss how to deploy NGINX servers to Google Cloud Com‐
pute, how to create virtual machine images, and how and why you
might want to use NGINX to serve your Google App Engine appli‐
cations.

23.1 Deploying to Google Compute Engine
Problem
You need to create an NGINX server in Google Compute Engine to
load balance or proxy for the rest of your resources in Google Com‐
pute or App Engine.

Solution
Start a new virtual machine in Google Compute Engine. Select a
name for your virtual machine, zone, machine type, and boot disk.

117

Configure identity and access management, firewall, and any
advanced configuration you’d like. Create the virtual machine.

Once the virtual machine has been created, log in via SSH or
through the Google Cloud Shell. Install NGINX or NGINX Plus
through the package manager for the given OS type. Configure
NGINX as you see fit and reload.

Alternatively, you can install and configure NGINX through the
Google Compute Engine startup script, which is an advanced con‐
figuration option when creating a virtual machine.

Discussion
Google Compute Engine offers highly configurable virtual machines
at a moment’s notice. Starting a virtual machine takes little effort
and enables a world of possibilities. Google Compute Engine offers
networking and compute in a virtualized cloud environment. With a
Google Compute instance, you have the full capabilities of an
NGINX server wherever and whenever you need it.

23.2 Creating a Google Compute Image
Problem
You need to create a Google Compute Image to quickly instantiate a
virtual machine or create an instance template for an instance
group.

Solution
Create a virtual machine as described in the previous section. After
installing and configuring NGINX on your virtual machine
instance, set the auto-delete state of the boot disk to false. To set
the auto-delete state of the disk, edit the virtual machine. On the
edit page under the disk configuration is a checkbox labeled “Delete
boot disk when instance is deleted.” Deselect this checkbox and save
the virtual machine configuration. Once the auto-delete state of the
instance is set to false, delete the instance. When prompted, do not
select the checkbox that offers to delete the boot disk. By performing
these tasks, you will be left with an unattached boot disk with
NGINX installed.

118 | Chapter 23: Deploying on Google Cloud Compute

After your instance is deleted and you have an unattached boot disk,
you can create a Google Compute Image. From the Image section of
the Google Compute Engine console, select Create Image. You will
be prompted for an image name, family, description, encryption
type, and the source. The source type you need to use is disk; and
for the source disk, select the unattached NGINX boot disk. Select
Create and Google Compute Cloud will create an image from your
disk.

Discussion
You can utilize Google Cloud Images to create virtual machines with
a boot disk identical to the server you’ve just created. The value in
creating images is being able to ensure that every instance of this
image is identical. When installing packages at boot time in a
dynamic environment, unless using version locking with private
repositories, you run the risk of package version and updates not
being validated before being run in a production environment. With
machine images, you can validate that every package running on
this machine is exactly as you tested, strengthening the reliability of
your service offering.

Also See
Create, delete, and depreciate private images

23.3 Creating a Google App Engine Proxy
Problem
You need to create a proxy for Google App Engine to context switch
between applications or serve HTTPS under a custom domain.

Solution
Utilize NGINX in Google Compute Cloud. Create a virtual
machine in Google Compute Engine, or create a virtual machine
image with NGINX installed and create an instance template with
this image as your boot disk. If you’ve created an instance tem‐
plate, follow up by creating an instance group that utilizes that
template.

23.3 Creating a Google App Engine Proxy | 119

http://bit.ly/2jEp2mK

Configure NGINX to proxy to your Google App Engine endpoint.
Make sure to proxy to HTTPS because Google App Engine is public,
and you’ll want to ensure you do not terminate HTTPS at your
NGINX instance and allow information to travel between NGINX
and Google App Engine unsecured. Because App Engine provides
just a single DNS endpoint, you’ll be using the proxy_pass directive
rather than upstream blocks in the open source version of NGINX.
When proxying to Google App Engine, make sure to set the end‐
point as a variable in NGINX, then use that variable in the
proxy_pass directive to ensure NGINX does DNS resolution on
every request. For NGINX to do any DNS resolution, you’ll need to
also utilize the resolver directive and point to your favorite DNS
resolver. Google makes the IP address 8.8.8.8 available for public
use. If you’re using NGINX Plus, you’ll be able to use the resolve
flag on the server directive within the upstream block, keepalive
connections, and other benefits of the upstream module when
proxying to Google App Engine.

You may choose to store your NGINX configuration files in Google
Storage, then use the startup script for your instance to pull down
the configuration at boot time. This will allow you to change your
configuration without having to burn a new image. However, it will
add to the startup time of your NGINX server.

Discussion
You would want to run NGINX in front of Google App Engine if
you’re using your own domain and want to make your application
available via HTTPS. At this time, Google App Engine does not
allow you to upload your own SSL certificates. Therefore, if you’d
like to serve your app under a domain other than appspot.com with
encryption, you’ll need to create a proxy with NGINX to listen at
your custom domain. NGINX will encrypt communication between
itself and your clients, as well as between itself and Google App
Engine.

Another reason you may want to run NGINX in front of Google
App Engine is to host many App Engine apps under the same
domain and use NGINX to do URI-based context switching. Micro‐
services are a common architecture, and it’s common for a proxy
like NGINX to conduct the traffic routing. Google App Engine

120 | Chapter 23: Deploying on Google Cloud Compute

makes it easy to deploy applications, and in conjunction with
NGINX, you have a full-fledged application delivery platform.

23.3 Creating a Google App Engine Proxy | 121

CHAPTER 24

Deploying on Docker

24.0 Introduction
Docker is an open source project that automates the deployment of
Linux applications inside software containers. Docker provides an
additional layer of abstraction and automation of operating-system-
level virtualization on Linux. Containerized environments have
made a huge break into the production world, and I’m excited about
it. Docker and other container platforms enable fast, reliable, cross-
platform application deployments. In this chapter we’ll discuss the
official NGINX Docker image, creating your own Dockerfile to run
NGINX, and using environment variables within NGINX, a com‐
mon Docker practice.

24.1 Running Quickly with the NGINX Image
Problem
You need to get up and running quickly with the NGINX image
from Docker Hub.

Solution
Use the NGINX image from Docker Hub. This image contains a
default configuration, so you’ll need to either mount a local configu‐
ration directory or create a Dockerfile and ADD in your configuration
to the image build. We’ll mount a volume and get NGINX running
in a Docker container locally in two commands:

123

$ docker pull nginx:latest
$ docker run -it -p 80:80 -v $PWD/nginx-conf:/etc/nginx \
 nginx:latest

The first docker command pulls the nginx:latest image from
Docker Hub. The second docker command runs this NGINX image
as a Docker container in the foreground, mapping localhost:80 to
port 80 of the NGINX container. It also mounts the local directory
nginx-conf as a container volume at /etc/nginx. nginx-conf is a local
directory that contains the necessary files for NGINX configuration.
When specifying mapping from your local machine to a container,
the local machine port or directory comes first, and the container
port or directory comes second.

Discussion
NGINX has made an official Docker image available via Docker
Hub. This official Docker image makes it easy to get up and going
very quickly in Docker with your favorite application delivery plat‐
form, NGINX. In this section we were able to get NGINX up and
running in a container with only two commands! The official
NGINX Docker image mainline that we used in this example is built
off of the Debian Jessie Docker image. However, you can choose
official images built off of Alpine Linux. The Dockerfile and source
for these official images are available on GitHub.

Also See
Official NGINX Docker image, NGINX
Docker repo on GitHub

24.2 Creating an NGINX Dockerfile
Problem
You need to create an NGINX Dockerfile in order to create a Docker
image.

Solution
Start FROM your favorite distribution’s Docker image. Use the RUN
command to install NGINX. Use the ADD command to add your
NGINX configuration files. Use the EXPOSE command to instruct

124 | Chapter 24: Deploying on Docker

https://hub.docker.com/_/nginx/
https://github.com/nginxinc/docker-nginx/

Docker to expose given ports or do this manually when you run the
image as a container. Use CMD to start NGINX when the image is
instantiated as a container. You’ll need to run NGINX in the fore‐
ground. To do this, you’ll need to start NGINX with -g "daemon
off;" or add daemon off; to your configuration. This example will
use the latter with daemon off; in the configuration file within the
main context. You will also want to alter your NGINX configuration
to log to /dev/stdout for access logs and /dev/stderr for error logs;
doing so will put your logs into the hands of the Docker daemon,
which will make them available to you more easily based on the log
driver you’ve chosen to use with Docker:

Dockerfile:

FROM centos:7

Install epel repo to get nginx and install nginx
RUN yum -y install epel-release && \
 yum -y install nginx

add local configuration files into the image
ADD /nginx-conf /etc/nginx

EXPOSE 80 443

CMD ["nginx"]

The directory structure looks as follows:

.
├── Dockerfile
└── nginx-conf
 ├── conf.d
 │ └── default.conf
 ├── fastcgi.conf
 ├── fastcgi_params
 ├── koi-utf
 ├── koi-win
 ├── mime.types
 ├── nginx.conf
 ├── scgi_params
 ├── uwsgi_params
 └── win-utf

I choose to host the entire NGINX configuration within this Docker
directory for ease of access to all of the configurations with only one
line in the Dockerfile to add all my NGINX configurations.

24.2 Creating an NGINX Dockerfile | 125

Discussion
You will find it useful to create your own Dockerfile when you
require full control over the packages installed and updates. It’s
common to keep your own repository of images so that you know
your base image is reliable and tested by your team before running it
in production.

24.3 Building an NGINX Plus Image
Problem
You need to build an NGINX Plus Docker image to run NGINX
Plus in a containerized environment.

Solution
Use these Dockerfiles to build NGINX Plus Docker images. You’ll
need to download your NGINX Plus repository certificates and keep
them in the directory with this Dockerfile named nginx-repo.crt and
nginx-repo.key, respectively. With that, these Dockerfiles will do the
rest of the work installing NGINX Plus for your use and linking
NGINX access and error logs to the Docker log collector.

Ubuntu:

FROM ubuntu:14.04

MAINTAINER NGINX Docker Maintainers "docker-maint@nginx.com"

Set the debconf frontend to Noninteractive
RUN echo 'debconf debconf/frontend select Noninteractive' \
 | debconf-set-selections

RUN apt-get update && apt-get install -y -q wget \
 apt-transport-https lsb-release ca-certificates

Download certificate and key from the customer portal
(https://cs.nginx.com) and copy to the build context
ADD nginx-repo.crt /etc/ssl/nginx/
ADD nginx-repo.key /etc/ssl/nginx/

Get other files required for installation
RUN wget -q -O - http://nginx.org/keys/nginx_signing.key \
 | apt-key add -
RUN wget -q -O /etc/apt/apt.conf.d/90nginx \
 https://cs.nginx.com/static/files/90nginx

126 | Chapter 24: Deploying on Docker

RUN printf "deb https://plus-pkgs.nginx.com/ubuntu \
 `lsb_release -cs` nginx-plus\n" \
 >/etc/apt/sources.list.d/nginx-plus.list

Install NGINX Plus
RUN apt-get update && apt-get install -y nginx-plus

forward request logs to Docker log collector
RUN ln -sf /dev/stdout /var/log/nginx/access.log
RUN ln -sf /dev/stderr /var/log/nginx/error.log

EXPOSE 80 443

CMD ["nginx", "-g", "daemon off;"]

CentOS 7:

FROM centos:centos7

MAINTAINER NGINX Docker Maintainers "docker-maint@nginx.com"

RUN yum install -y ca-certificates

Download certificate and key from the customer portal
(https://cs.nginx.com) and copy to the build context
ADD nginx-repo.crt /etc/ssl/nginx/
ADD nginx-repo.key /etc/ssl/nginx/

Get other files required for installation
RUN wget -q -O /etc/yum.repos.d/nginx-plus-7.repo \
 https://cs.nginx.com/static/files/nginx-plus-7.repo

Install NGINX Plus
RUN yum install -y nginx-plus

forward request logs to Docker log collector
RUN ln -sf /dev/stdout /var/log/nginx/access.log
RUN ln -sf /dev/stderr /var/log/nginx/error.log

EXPOSE 80 443

CMD ["nginx", "-g", "daemon off;"]

To build these Dockerfiles into Docker images, run the following in
the directory that contains the Dockerfile and your NGINX Plus
repository certificate and key:

$ docker build --no-cache -t nginxplus .

This docker build command uses the flag --no-cache to ensure
that whenever you build this, the NGINX Plus packages are pulled

24.3 Building an NGINX Plus Image | 127

fresh from the NGINX Plus repository for updates. If it’s acceptable
to use the same version on NGINX Plus as the prior build, you can
omit the --no-cache flag. In this example, the new Docker image is
tagged nginxplus.

Discussion
By creating your own Docker image for NGINX Plus, you can con‐
figure your NGINX Plus container however you see fit and drop it
into any Docker environment. This opens up all of the power and
advanced features of NGINX Plus to your containerized environ‐
ment. These Dockerfiles do not use the Dockerfile property ADD to
add in configuration; you will need to add in your configuration
manually.

Also See
NGINX blog on Docker images

24.4 Using Environment Variables in NGINX
Problem
You need to use environment variables inside your NGINX configu‐
ration in order to use the same container image for different envi‐
ronments.

Solution
Use the ngx_http_perl_module to set variables in NGINX from
your environment:

daemon off;
env APP_DNS;
include /usr/share/nginx/modules/*.conf;
...
http {
 perl_set $upstream_app 'sub { return $ENV{"APP_DNS"}; }';
 server {
 ...
 location / {
 proxy_pass https://$upstream_app;
 }
 }
}

128 | Chapter 24: Deploying on Docker

http://bit.ly/2crOMB6

To use perl_set you must have the ngx_http_perl_module

installed; you can do so by loading the module dynamically or stati‐
cally if building from source. NGINX by default wipes environment
variables from its environment; you need to declare any variables
you do not want removed with the env directive. The perl_set
directive takes two parameters: the variable name you’d like to set
and a perl string that renders the result.

The following is a Dockerfile that loads the ngx_http_perl_module
dynamically, installing this module from the package management
utility. When installing modules from the package utility for Cen‐
tOS, they’re placed in the /usr/lib64/nginx/modules/ directory, and
configuration files that dynamically load these modules are placed in
the /usr/share/nginx/modules/ directory. This is why in the preceding
configuration snippet we include all configuration files at that path:

FROM centos:7

Install epel repo to get nginx and install nginx
RUN yum -y install epel-release && \
 yum -y install nginx nginx-mod-http-perl

add local configuration files into the image
ADD /nginx-conf /etc/nginx

EXPOSE 80 443

CMD ["nginx"]

Discussion
A typical practice when using Docker is to utilize environment vari‐
ables to change the way the container operates. You can use environ‐
ment variables in your NGINX configuration so that your NGINX
Dockerfile can be used in multiple, diverse environments.

24.4 Using Environment Variables in NGINX | 129

CHAPTER 25

Using Puppet/Chef/
Ansible/SaltStack

25.0 Introduction
Configuration management tools have been an invaluable utility in
the age of the cloud. Engineers of large-scale web applications are no
longer configuring servers by hand but rather by code, using one of
the many configuration management tools available. Configuration
management tools enable engineers to write configurations and
code one time to produce many servers with the same configuration
in a repeatable, testable, and modular fashion. In this chapter we’ll
discuss a few of the most popular configuration management tools
available and how to use them to install NGINX and template a base
configuration. These examples are extremely basic but demonstrate
how to get an NGINX server started with each platform.

25.1 Installing with Puppet
Problem
You need to install and configure NGINX with Puppet to manage
NGINX configurations as code and conform with the rest of your
Puppet configurations.

131

Solution
Create a module that installs NGINX, manages the files you need,
and ensures that NGINX is running:

 class nginx {
 package {"nginx": ensure => 'installed',}
 service {"nginx":
 ensure => 'true',
 hasrestart => 'true',
 restart => '/etc/init.d/nginx reload',
 }
 file { "nginx.conf":
 path => '/etc/nginx/nginx.conf',
 require => Package['nginx'],
 notify => Service['nginx'],
 content => template('nginx/templates/nginx.conf.erb'),
 user=>'root',
 group=>'root',
 mode='0644';
 }
}

This module uses the package management utility to ensure the
NGINX package is installed. It also ensures NGINX is running and
enabled at boot time. The configuration informs Puppet that the
service does have a restart command with the hasrestart directive,
and we override the restart command with an NGINX reload. It
will manage and template the nginx.conf file with the Embedded
Ruby (ERB) templating language. The templating of the file will
happen after the NGINX package is installed due to the require
directive. However, it will notify the NGINX service to reload
because of the notify directive. The templated configuration file is
not included. However, it can be simple to install a default NGINX
configuration file, or very complex if using Embedded Ruby (ERB)
or Embedded Puppet (EPP) templating language loops and variable
substitution.

Discussion
Puppet is a configuration management tool based in the Ruby pro‐
gramming language. Modules are built in a domain-specific lan‐
guage and called via a manifest file that defines the configuration for
a given server. Puppet can be run in a master-slave or masterless
configuration. With Puppet, the manifest is run on the master and
then sent to the slave. This is important because it ensures that the

132 | Chapter 25: Using Puppet/Chef/Ansible/SaltStack

slave is only delivered the configuration meant for it and no extra
configurations meant for other servers. There are a lot of extremely
advanced public modules available for Puppet. Starting from these
modules will help you get a jump-start on your configuration. A
public NGINX module from voxpupuli on GitHub will template out
NGINX configurations for you.

Also See
Puppet documentation
Puppet package documentation
Puppet service documentation
Puppet file documentation
Puppet templating documentation
Voxpupuli NGINX module

25.2 Installing with Chef
Problem
You need to install and configure NGINX with Chef to manage
NGINX configurations as code and conform with the rest of your
Chef configurations.

Solution
Create a cookbook with a recipe to install NGINX and configure
configuration files through templating, and ensure NGINX reloaded
after the configuration is put in place. The following is an example
recipe:

package 'nginx' do
 action :install
end

service 'nginx' do
 supports :status => true, :restart => true, :reload => true
 action [:start, :enable]
end

template 'nginx.conf' do
 path "/etc/nginx.conf"
 source "nginx.conf.erb"
 owner 'root'
 group 'root'

25.2 Installing with Chef | 133

https://docs.puppet.com/
http://bit.ly/2jfgpm4
http://bit.ly/2jMq2cx
http://bit.ly/2jMz4q3
http://bit.ly/2isqAlP
http://bit.ly/2jMspMn

 mode '0644'
 notifies :reload, 'service[nginx]', :delayed
end

The package block installs NGINX. The service block ensures that
NGINX is started and enabled at boot, then declares to the rest of
Chef what the nginx service will support as far as actions. The tem
plate block templates an ERB file and places it at /etc/nginx.conf
with an owner and group of root. The template block also sets the
mode to 644 and notifies the nginx service to reload, but waits until
the end of the Chef run declared by the :delayed statement. The
templated configuration file is not included. However, it can be as
simple as a default NGINX configuration file or very complex with
Embedded Ruby (ERB) templating language loops and variable sub‐
stitution.

Discussion
Chef is a configuration management tool based in Ruby. Chef can be
run in a master-slave, or solo configuration, now known as Chef
Zero. Chef has a very large community and many public cookbooks,
called the Supermarket. Public cookbooks from the Supermarket
can be installed and maintained via a command-line utility called
Berkshelf. Chef is extremely capable, and what we have demon‐
strated is just a small sample. The public NGINX cookbook for
NGINX in the Supermarket is extremely flexible and provides the
options to easily install NGINX from a package manager or from
source, and the ability to compile and install many different mod‐
ules as well as template out the basic configurations.

Also See
Chef documentation
Chef package
Chef service
Chef template
Chef Supermarket for NGINX

134 | Chapter 25: Using Puppet/Chef/Ansible/SaltStack

https://docs.chef.io/
https://docs.chef.io/resource_package.html
https://docs.chef.io/resource_service.html
https://docs.chef.io/resource_template.html
https://supermarket.chef.io/cookbooks/nginx

25.3 Installing with Ansible
Problem
You need to install and configure NGINX with Ansible to manage
NGINX configurations as code and conform with the rest of your
Ansible configurations.

Solution
Create an Ansible playbook to install NGINX and manage the
nginx.conf file. The following is an example task file for the playbook
to install NGINX. Ensure it’s running and template the configura‐
tion file:

- name: NGINX | Installing NGINX
 package: name=nginx state=present

- name: NGINX | Starting NGINX
 service:
 name: nginx
 state: started
 enabled: yes

- name: Copy nginx configuration in place.
 template:
 src: nginx.conf.j2
 dest: "/etc/nginx/nginx.conf"
 owner: root
 group: root
 mode: 0644
 notify:
 - reload nginx

The package block installs NGINX. The service block ensures that
NGINX is started and enabled at boot. The template block tem‐
plates a Jinja2 file and places the result at /etc/nginx.conf with an
owner and group of root. The template block also sets
the mode to 644 and notifies the nginx service to reload. The tem‐
plated configuration file is not included. However, it can be as sim‐
ple as a default NGINX configuration file or very complex with
Jinja2 templating language loops and variable substitution.

25.3 Installing with Ansible | 135

Discussion
Ansible is a widely used and powerful configuration management
tool based in Python. The configuration of tasks is in YAML, and
you use the Jinja2 templating language for file templating. Ansible
offers a master named Ansible Tower on a subscription model.
However, it’s commonly used from local machines or build servers
directly to the client or in a masterless model. Ansible bulk SSH’s
into its servers and runs the configurations. Much like other config‐
uration management tools, there’s a large community of public roles.
Ansible calls this the Ansible Galaxy. You can find very sophisticated
roles to utilize in your playbooks.

Also See
Ansible documentation
Ansible packages
Ansible service
Ansible template
Ansible Galaxy

25.4 Installing with SaltStack
Problem
You need to install and configure NGINX with SaltStack to manage
NGINX configurations as code and conform with the rest of your
SaltStack configurations.

Solution
Install NGINX through the package management module and man‐
age the configuration files you desire. The following is an example
state file (sls) that will install the nginx package and ensure the ser‐
vice is running, enabled at boot, and reloads if a change is made to
the configuration file:

nginx:
 pkg:
 - installed
 service:
 - name: nginx
 - running
 - enable: True

136 | Chapter 25: Using Puppet/Chef/Ansible/SaltStack

http://docs.ansible.com/
http://bit.ly/2jfiwGv
http://bit.ly/2jMGF7E
http://bit.ly/2j8j526
https://galaxy.ansible.com

 - reload: True
 - watch:
 - file: /etc/nginx/nginx.conf

/etc/nginx/nginx.conf:
 file:
 - managed
 - source: salt://path/to/nginx.conf
 - user: root
 - group: root
 - template: jinja
 - mode: 644
 - require:
 - pkg: nginx

This is a basic example of installing NGINX via a package manage‐
ment utility and managing the nginx.conf file. The NGINX package
is installed and the service is running and enabled at boot. With
SaltStack you can declare a file managed by Salt as seen in the exam‐
ple and templated by many different templating languages. The tem‐
plated configuration file is not included. However, it can be as
simple as a default NGINX configuration file or very complex with
the Jinja2 templating language loops and variable substitution. This
configuration also specifies that NGINX must be installed prior to
managing the file because of the require statement. After the file is
in place, NGINX is reloaded because of the watch directive on the
service and reloads as opposed to restarts because the reload direc‐
tive is set to True.

Discussion
SaltStack is a powerful configuration management tool that defines
server states in YAML. Modules for SaltStack can be written in
Python. Salt exposes the Jinja2 templating language for states as well
as for files. However, for files there are many other options, such as
Mako, Python itself, and others. Salt works in a master-slave config‐
uration as well as a masterless configuration. Slaves are called min‐
ions. The master-slave transport communication, however, differs
from others and sets SaltStack apart. With Salt you’re able to choose
ZeroMQ, TCP, or Reliable Asynchronous Event Transport (RAET)
for transmissions to the Salt agent; or you can not use an agent, and
the master can SSH instead. Because the transport layer is by default
asynchronous, SaltStack is built to be able to deliver its message to a
large number of minions with low load to the master server.

25.4 Installing with SaltStack | 137

Also See
SaltStack
Installed packages
Managed files
Templating with Jinja

138 | Chapter 25: Using Puppet/Chef/Ansible/SaltStack

https://docs.saltstack.com/
http://bit.ly/2jfxTyx
http://bit.ly/2ist5EN
http://bit.ly/2jrQfcM

CHAPTER 26

Automation

26.0 Introduction
There are many ways to automate NGINX and NGINX Plus config‐
uration files, such as rerunning your configuration management
tools or cron jobs that retemplate configuration files. As dynamic
environments increase in popularity and necessity, the need for con‐
figuration automation becomes more relevant. In Chapter 25, we
made sure that NGINX was reloaded after the configuration file was
templated. In this chapter, we’ll discuss further on-the-fly reconfigu‐
ration of NGINX configuration files with the NGINX Plus API and
Consul Template.

26.1 Automating with NGINX Plus
Problem
You need to reconfigure NGINX Plus on the fly to load balance for a
dynamic environment.

Solution
Use the NGINX Plus API to reconfigure NGINX Plus upstream
pools:

$ curl 'http://nginx.local/upstream_conf?\
 add=&upstream=backend&server=10.0.0.42:8080'

139

The curl call demonstrated makes a request to NGINX Plus and
requests a new server be added to the backend upstream configura‐
tion.

Discussion
Covered in great detail in Chapter 8 of Part I, NGINX Plus offers an
API to reconfigure NGINX Plus on the fly. The NGINX Plus API
enables adding and removing servers from upstream pools as well as
draining connections. You can use this API to automate your
NGINX Plus configuration as application servers spawn and release
in the environment.

26.2 Automating Configurations with Consul
Templating
Problem
You need to automate your NGINX configuration to respond to
changes in your environment through use of Consul.

Solution
Use the consul-template daemon and a template file to template
out the NGINX configuration file of your choice:

upstream backend { {{range service "app.backend"}}
 server {{.Address}};{{end}}
}

This example is of a Consul Template file that templates an
upstream configuration block. This template will loop through
nodes in Consul identifying as app.backend. For every node in
Consul, the template will produce a server directive with that node’s
IP address.

The consul-template daemon is run via the command line and can
be used to reload NGINX every time the configuration file is tem‐
plated with a change:

consul-template -consul consul.example.internal -template \
 template:/etc/nginx/conf.d/upstream.conf:"nginx -s reload"

The command demonstrated instructs the consul-template dae‐
mon to connect to a Consul cluster at consul.example.internal

140 | Chapter 26: Automation

and to use a file named template in the current working directory to
template the file and output the generated contents to /etc/nginx/
conf.d/upstream.conf, then to reload NGINX every time the templa‐
ted file changes. The -template flag takes a string of the template
file, the output location, and the command to run after the templat‐
ing process takes place; these three variables are separated by a
colon. If the command being run has spaces, make sure to wrap it in
double quotes. The -consul flag instructs the daemon to what Con‐
sul cluster to connect to.

Discussion
Consul is a powerful service discovery tool and configuration store.
Consul stores information about nodes as well as key-value pairs in
a directory-like structure and allows for restful API interaction.
Consul also provides a DNS interface on each client, allowing for
domain name lookups of nodes connected to the cluster. A separate
project that utilizes Consul clusters is the consul-template dae‐
mon; this tool templates files in response to changes in Consul
nodes, services, or key-value pairs. This makes Consul a very power‐
ful choice for automating NGINX. With consul-template you can
also instruct the daemon to run a command after a change to the
template takes place. With this, we can reload the NGINX configu‐
ration and allow your NGINX configuration to come alive along
with your environment. With Consul you’re able to set up health
checks on each client to check the health of the intended service.
With this failure detection, you’re able to template your NGINX
configuration accordingly to only send traffic to healthy hosts.

Also See
Consul home page
Introduction to Consul Template
Consul template GitHub

26.2 Automating Configurations with Consul Templating | 141

https://www.consul.io
http://bit.ly/2iosmkV
https://github.com/hashicorp/consul-template

CHAPTER 27

A/B Testing with split_clients

27.0 Introduction
NGINX has a module named split_clients that allows you to pro‐
grammatically divide up your users based on a variable key. NGINX
splits users by using a lightweight hashing algorithm to hash a given
string. Then it mathematically divides them by percentages, map‐
ping predefined values to a variable you can use to change the
response of your server. This chapter covers the split_clients
module.

27.1 A/B Testing
Problem
You need to split clients between two or more versions of a file or
application to test acceptance.

Solution
Use the split_clients module to direct a percentage of your clients
to a different upstream pool:

split_clients "${remote_addr}AAA" $variant {
 20.0% "backendv2";
 * "backendv1";
}

143

The split_clients directive hashes the string provided by you as
the first parameter and divides that hash by the percentages pro‐
vided to map the value of a variable provided as the second parame‐
ter. The third parameter is an object containing key-value pairs
where the key is the percentage weight and the value is the value to
be assigned. The key can be either a percentage or an asterisk. The
asterisk denotes the rest of the whole after all percentages are taken.
The value of the $variant variable will be backendv2 for 20% of cli‐
ent IP addresses and backendv1 for the remaining 80%.

In this example, backendv1 and backendv2 represent upstream
server pools and can be used with the proxy_pass directive as such:

location / {
 proxy_pass http://$variant
}

Using the variable $variant, our traffic will split between two differ‐
ent application server pools.

Discussion
This type of A/B testing is useful when testing different types of
marketing and frontend features for conversion rates on ecommerce
sites. It’s common for applications to use a type of deployment called
canary release. In this type of deployment, traffic is slowly switched
over to the new version. Splitting your clients between different ver‐
sions of your application can be useful when rolling out new ver‐
sions of code, to limit the blast radius in case of an error. Whatever
the reason for splitting clients between two different application
sets, NGINX makes this simple through use of this split_clients
module.

Also See
split_client documentation

144 | Chapter 27: A/B Testing with split_clients

http://bit.ly/2jsdkw4

CHAPTER 28

Locating Users by IP Address Using
the GeoIP Module

28.0 Introduction
Tracking, analyzing, and utilizing the location of your clients in your
application or your metrics can take your understanding of them to
the next level. There are many implementations for the location of
your clients, and NGINX makes locating them easy through use of
the GeoIP module and a couple directives. This module makes it
easy to log location, control access, or make decisions based on cli‐
ent locations. It also enables the geography of the client to be looked
up initially upon ingestion of the request and passed along to any of
the upstream applications so they don’t have to do the lookup. This
NGINX module is not installed by default and will need to be stati‐
cally compiled from source, dynamically imported, or included in
the NGINX package by installing nginx-full or nginx-extras in
Ubuntu, which are both built with this module. On RHEL deriva‐
tives such as CentOS, you can install the nginx-mod-http-geoip pack‐
age and dynamically import the module with the load_module
directive. This chapter will cover importing the GeoIP dynamic
module, installing the GeoIP database, the embedded variables
available in this module, controlling access, and working with prox‐
ies.

145

28.1 Using the GeoIP Module and Database
Problem
You need to install the GeoIP database and enable its embedded
variables within NGINX to log and tell your application the location
of your clients.

Solution
Download the GeoIP country and city databases and unzip them:

mkdir /etc/nginx/geoip
cd /etc/nginx/geoip
wget "http://geolite.maxmind.com/\
download/geoip/database/GeoLiteCountry/GeoIP.dat.gz"
gunzip GeoIP.dat.gz
wget "http://geolite.maxmind.com/\
download/geoip/database/GeoLiteCity.dat.gz"
gunzip GeoLiteCity.dat.gz

This set of commands creates a geoip directory in the /etc/nginx
directory, moves to this new directory, and downloads and unzips
the packages.

With the GeoIP database for countries and cities on the local disk,
we can now instruct the NGINX GeoIP module to use them to
expose embedded variables based on the client IP address:

load_module "/usr/lib64/nginx/modules/ngx_http_geoip_module.so";

http {
 geoip_country /etc/nginx/geoip/GeoIP.dat;
 geoip_city /etc/nginx/geoip/GeoLiteCity.dat;
...
}

The load_module directive dynamically loads the module from its
path on the filesystem. The load_module directive is only valid in
the main context. The geoip_country directive takes a path to the
GeoIP.dat file containing the database mapping IP addresses to
country codes and is valid only in the HTTP context.

Discussion
The geoip_country and geoip_city directives expose a number of
embedded variables available in this module. The geoip_country

146 | Chapter 28: Locating Users by IP Address Using the GeoIP Module

directive enables variables that allow you to distinguish the country
of origin of your client. These variables include $geoip_coun
try_code, $geoip_country_code3, and $geoip_country_name. The
country code variable returns the two-letter country code, and the
variable with a 3 at the end returns the three-letter country code.
The country name variable returns the full name of the country.

The geoip_city directive enables quite a few variables. The
geoip_city directive enables all the same variables as the
geoip_country directive, just with different names, such as
$geoip_city_country_code, $geoip_city_country_code3, and
$geoip_city_country_name. Other variables include $geoip_city,
$geoip_city_continent_code, $geoip_latitude, $geoip_longi

tude, and $geoip_postal_code, all of which are descriptive of the
value they return. $geoip_region and $geoip_region_name

describe the region, territory, state, province, federal land, and the
like. Region is the two-letter code, where region name is the full
name. $geoip_area_code, only valid in the US, returns the three-
digit telephone area code.

With these variables, you’re able to log information about your cli‐
ent. You could optionally pass this information to your application
as a header or variable, or use NGINX to route your traffic in partic‐
ular ways.

Also See
GeoIP update

28.2 Restricting Access Based on Country
Problem
You need to restrict access from particular countries for contractual
or application requirements.

Solution
Map the country codes you want to block or allow to a variable:

28.2 Restricting Access Based on Country | 147

https://github.com/maxmind/geoipupdate

load_module
 "/usr/lib64/nginx/modules/ngx_http_geoip_module.so";

http {
 map $geoip_country_code $country_access {
 "US" 0;
 "RU" 0;
 default 1;
 }
 ...
}

This mapping will set a new variable $country_access to a 1 or a 0.
If the client IP address originates from the US or Russia, the variable
will be set to a 0. For any other country, the variable will be set to a
1.

Now, within our server block, we’ll use an if statement to deny
access to anyone not originating from the US or Russia:

server {
 if ($country_access = '1') {
 return 403;
 }
 ...
}

This if statement will evaluate True if the $country_access variable
is set to 1. When True, the server will return a 403 unauthorized.
Otherwise the server operates as normal. So this if block is only
there to deny people who are not from US or Russia.

Discussion
This is a short but simple example of how to only allow access from
a couple countries. This example can be expounded upon to fit your
needs. You can utilize this same practice to allow or block based on
any of the embedded variables made available from the GeoIP mod‐
ule.

28.3 Finding the Original Client
Problem
You need to find the original client IP address because there are
proxies in front of the NGINX server.

148 | Chapter 28: Locating Users by IP Address Using the GeoIP Module

Solution
Use the geoip_proxy directive to define your proxy IP address range
and the geoip_proxy_recursive directive to look for the original
IP:

load_module "/usr/lib64/nginx/modules/ngx_http_geoip_module.so";

http {
 geoip_country /etc/nginx/geoip/GeoIP.dat;
 geoip_city /etc/nginx/geoip/GeoLiteCity.dat;
 geoip_proxy 10.0.16.0/26;
 geoip_proxy_recursive on;
...
}

The geoip_proxy directive defines a CIDR range in which our
proxy servers live and instructs NGINX to utilize the X-Forwarded-
For header to find the client IP address. The
geoip_proxy_recursive directive instructs NGINX to recursively
look through the X-Forwarded-For header for the last client IP
known.

Discussion
You may find that if you’re using a proxy in front of NGINX,
NGINX will pick up the proxy’s IP address rather than the client’s.
For this you can use the geoip_proxy directive to instruct NGINX
to use the X-Forwarded-For header when connections are opened
from a given range. The geoip_proxy directive takes an address or a
CIDR range. When there are multiple proxies passing traffic in front
of NGINX, you can use the geoip_proxy_recursive directive to
recursively search through X-Forwarded-For addresses to find the
originating client. You will want to use something like this when uti‐
lizing load balancers such as the AWS ELB, Google’s load balancer,
or Azure’s load balancer in front of NGINX.

28.3 Finding the Original Client | 149

CHAPTER 29

Debugging and Troubleshooting
with Access Logs, Error Logs, and

Request Tracing

29.0 Introduction
Logging is the basis of understanding your application. With
NGINX you have great control over logging information meaning‐
ful to you and your application. NGINX allows you to divide access
logs into different files and formats for different contexts and to
change the log level of error logging to get a deeper understanding
of what’s happening. The capability of streaming logs to a central‐
ized server comes innately to NGINX through its Syslog logging
capabilities. In this chapter, we’ll discuss access and error logs,
streaming over the Syslog protocol, and tracing requests end to end
with request identifiers generated by NGINX.

29.1 Configuring Access Logs
Problem
You need to configure access log formats to add embedded variables
to your request logs.

Solution
Configure an access log format:

151

http {
 log_format geoproxy
 '[$time_local] $remote_addr '
 '$realip_remote_addr $remote_user '
 '$request_method $server_protocol '
 '$scheme $server_name $uri $status '
 '$request_time $body_bytes_sent '
 '$geoip_city_country_code3 $geoip_region '
 '"$geoip_city" $http_x_forwarded_for '
 '$upstream_status $upstream_response_time '
 '"$http_referer" "$http_user_agent"';
 ...
}

This log format configuration is named geoproxy and uses a num‐
ber of embedded variables to demonstrate the power of NGINX log‐
ging. This configuration shows the local time on the server when the
request was made, the IP address that opened the connection, and
the IP of the client as NGINX understands it per geoip_proxy or
realip_header instructions. $remote_user shows the username of
the user authenticated by basic authentication, followed by the
request method and protocol, as well as the scheme, such as HTTP
or HTTPS. The server name match is logged as well as the request
URI and the return status code. Statistics logged include the pro‐
cessing time in milliseconds and the size of the body sent to the cli‐
ent. Information about the country, region, and city are logged. The
HTTP header X-Forwarded-For is included to show if the request is
being forwarded by another proxy. The upstream module enables
some embedded variables that we’ve used that show the status
returned from the upstream server and how long the upstream
request takes to return. Lastly we’ve logged some information about
where the client was referred from and what browser the client is
using. The log_format directive is only valid within the HTTP con‐
text.

This log configuration renders a log entry that looks like the follow‐
ing:

[25/Nov/2016:16:20:42 +0000] 10.0.1.16 192.168.0.122 Derek
GET HTTP/1.1 http www.example.com / 200 0.001 370 USA MI
"Ann Arbor" - 200 0.001 "-" "curl/7.47.0"

To use this log format, use the access_log directive, providing a
logfile path and the format name geoproxy as parameters:

152 | Chapter 29: Debugging and Troubleshooting with Access Logs, Error Logs, and Request
Tracing

server {
 access_log /var/log/nginx/access.log geoproxy;
 ...
}

The access_log directive takes a logfile path and the format name
as parameters. This directive is valid in many contexts and in each
context can have a different log path and or log format.

Discussion
The log module in NGINX allows you to configure log formats for
many different scenarios to log to numerous logfiles as you see fit.
You may find it useful to configure a different log format for each
context, where you use different modules and employ those mod‐
ules’ embedded variables, or a single, catchall format that provides
all necessary information you could ever want. It’s also possible to
structure format to log in JSON or XML. These logs will aid you in
understanding your traffic patterns, client usage, who your clients
are, and where they’re coming from. Access logs can also aid you in
finding lag in responses and issues with upstream servers or particu‐
lar URIs. Access logs can be used to parse and play back traffic pat‐
terns in test environments to mimic real user interaction. There’s
limitless possibility to logs when troubleshooting, debugging, or
analyzing your application or market.

29.2 Configuring Error Logs
Problem
You need to configure error logging to better understand issues with
your NGINX server.

Solution
Use the error_log directive to define the log path and the log level:

error_log /var/log/nginx/error.log warn;

The error_log directive requires a path; however, the log level is
optional. This directive is valid in every context except for if state‐
ments. The log levels available are debug, info, notice, warn, error,
crit, alert, or emerg. The order in which these log levels were
introduced is also the order of severity from least to most. The

29.2 Configuring Error Logs | 153

debug log level is only available if NGINX is configured with the --
with-debug flag.

Discussion
The error log is the first place to look when configuration files are
not working correctly. The log is also a great place to find errors
produced by application servers like FastCGI. You can use the error
log to debug connections down to the worker, memory allocation,
client IP, and server. The error log cannot be formatted. However, it
follows a specific format of date, followed by the level, then the mes‐
sage.

29.3 Forwarding to Syslog
Problem
You need to forward your logs to a Syslog listener to aggregate logs
to a centralized service.

Solution
Use the access_log and error_log directives to send your logs to a
Syslog listener:

error_log syslog:server=10.0.1.42 debug;

access_log syslog:server=10.0.1.42,tag=nginx,severity=info
 geoproxy;

The syslog parameter for the error_log and access_log directives
is followed by a colon and a number of options. These options
include the required server flag that denotes the IP, DNS name, or
Unix socket to connect to, as well as optional flags such
as facility, severity, tag, and nohostname. The server option
takes a port number, along with IP addresses or DNS names. How‐
ever, it defaults to UDP 514. The facility option refers to the
facility of the log message defined as one of the 23 defined in the
RFC standard for Syslog; the default value is local7. The tag option
tags the message with a value. This value defaults to nginx.
severity defaults to info and denotes the severity of the message
being sent. The nohostname flag disables adding the hostname field
into the Syslog message header and does not take a value.

154 | Chapter 29: Debugging and Troubleshooting with Access Logs, Error Logs, and Request
Tracing

Discussion
Syslog is a standard protocol for sending log messages and collect‐
ing those logs on a single server or collection of servers. Sending
logs to a centralized location helps in debugging when you’ve got
multiple instances of the same service running on multiple hosts.
This is called aggregating logs. Aggregating logs allows you to view
logs together in one place without having to jump from server to
server and mentally stitch together logfiles by timestamp. A com‐
mon log aggregation stack is ElasticSearch, Logstash, and Kibana,
also known as the ELK Stack. NGINX makes streaming these logs to
your Syslog listener easy with the access_log and error_log direc‐
tives.

29.4 Request Tracing
Problem
You need to correlate NGINX logs with application logs to have an
end-to-end understanding of a request.

Solution
Use the request identifying variable and pass it to your application
to log as well:

log_format trace '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent" '
 '"$http_x_forwarded_for" $request_id';
upstream backend {
 server 10.0.0.42;
}
server {
 listen 80;
 add_header X-Request-ID $request_id; # Return to client
 location / {
 proxy_pass http://backend;
 proxy_set_header X-Request-ID $request_id; #Pass to app
 access_log /var/log/nginx/access_trace.log trace;
 }
}

In this example configuration, a log_format named trace is set up,
and the variable $request_id is used in the log. This $request_id
variable is also passed to the upstream application by use of the

29.4 Request Tracing | 155

proxy_set_header directive to add the request ID to a header when
making the upstream request. The request ID is also passed back to
the client through use of the add_header directive setting the
request ID in a response header.

Discussion
Made available in NGINX Plus R10 and NGINX version 1.11.0, the
$request_id provides a randomly generated string of 32 hexadeci‐
mal characters that can be used to uniquely identify requests. By
passing this identifier to the client as well as to the application, you
can correlate your logs with the requests you make. From the front‐
end client, you will receive this unique string as a response header
and can use it to search your logs for the entries that correspond.
You will need to instruct your application to capture and log this
header in its application logs to create a true end-to-end relationship
between the logs. With this advancement, NGINX makes it possible
to trace requests through your application stack.

156 | Chapter 29: Debugging and Troubleshooting with Access Logs, Error Logs, and Request
Tracing

CHAPTER 30

Performance Tuning

30.0 Introduction
Tuning NGINX will make an artist of you. Performance tuning of
any type of server or application is always dependent on a number
of variable items, such as, but not limited to, the environment, use
case, requirements, and physical components involved. It’s common
to practice bottleneck-driven tuning, meaning to test until you’ve hit
a bottleneck, determine the bottleneck, tune for limitation, and
repeat until you’ve reached your desired performance requirements.
In this chapter we’ll suggest taking measurements when perfor‐
mance tuning by testing with automated tools and measuring
results. This chapter will also cover connection tuning for keeping
connections open to clients as well as upstream servers, and serving
more connections by tuning the operating system.

30.1 Automating Tests with Load Drivers
Problem
You need to automate your tests with a load driver to gain consis‐
tency and repeatability in your testing.

Solution
Use an HTTP load testing tool such as Apache JMeter, Locust,
Gatling, or whatever your team has standardized on. Create a con‐
figuration for your load-testing tool that runs a comprehensive test

157

on your web application. Run your test against your service. Review
the metrics collected from the run to establish a baseline. Slowly
ramp up the emulated user concurrency to mimic typical produc‐
tion usage and identify points of improvement. Tune NGINX and
repeat this process until you achieve your desired results.

Discussion
Using an automated testing tool to define your test gives you a con‐
sistent test to build metrics off of when tuning NGINX. You must be
able to repeat your test and measure performance gains or losses to
conduct science. Running a test before making any tweaks to the
NGINX configuration to establish a baseline gives you a basis to
work from so that you can measure if your configuration change has
improved performance or not. Measuring for each change made will
help you identify where your performance enhancements come
from.

30.2 Keeping Connections Open to Clients
Problem
You need to increase the number of requests allowed to be made
over a single connection from clients and the amount of time idle
connections are allowed to persist.

Solution
Use the keepalive_requests and keepalive_timeout directives to
alter the number of requests that can be made over a single connec‐
tion and the time idle connections can stay open:

http {
 keepalive_requests 320;
 keepalive_timeout 300s;
 ...
}

The keepalive_requests directive defaults to 100, and the
keepalive_timeout directive defaults to 75 seconds.

158 | Chapter 30: Performance Tuning

Discussion
Typically the default number of requests over a single connection
will fulfill client needs because browsers these days are allowed to
open multiple connections to a single server per fully qualified
domain name. The number of parallel open connections to a
domain is still limited typically to a number less than 10, so in this
regard, many requests over a single connection will happen. A trick
commonly employed by content delivery networks is to create mul‐
tiple domain names pointed to the content server and alternate
which domain name is used within the code to enable the browser
to open more connections. You might find these connection opti‐
mizations helpful if your frontend application continually polls your
backend application for updates, as an open connection that allows a
larger number of requests and stays open longer will limit the num‐
ber of connections that need to be made.

30.3 Keeping Connections Open Upstream
Problem
You need to keep connections open to upstream servers for reuse to
enhance your performance.

Solution
Use the keepalive directive in the upstream context to keep con‐
nections open to upstream servers for reuse:

proxy_http_version 1.1;
proxy_set_header Connection "";

upstream backend {
 server 10.0.0.42;
 server 10.0.2.56;

 keepalive 32;
}

The keepalive directive in the upstream context activates a cache of
connections that stay open for each NGINX worker. The directive
denotes the maximum number of idle connections to keep open per
worker. The proxy modules directives used above the upstream
block are necessary for the keepalive directive to function properly

30.3 Keeping Connections Open Upstream | 159

for upstream server connections. The proxy_http_version direc‐
tive instructs the proxy module to use HTTP version 1.1, which
allows for multiple requests to be made over a single connection
while it’s open. The proxy_set_header directive instructs the proxy
module to strip the default header of close, allowing the connection
to stay open.

Discussion
You would want to keep connections open to upstream servers to
save the amount of time it takes to initiate the connection, and the
worker process can instead move directly to making a request over
an idle connection. It’s important to note that the number of open
connections can exceed the number of connections specified in the
keepalive directive as open connections and idle connections are
not the same. The number of keepalive connections should be kept
small enough to allow for other incoming connections to your
upstream server. This small NGINX tuning trick can save some
cycles and enhance your performance.

30.4 Buffering Responses
Problem
You need to buffer responses between upstream servers and clients
in memory to avoid writing responses to temporary files.

Solution
Tune proxy buffer settings to allow NGINX the memory to buffer
response bodies:

server {
 proxy_buffering on;
 proxy_buffer_size 8k;
 proxy_buffers 8 32k;
 proxy_busy_buffer_size 64k;
 ...
}

The proxy_buffering directive is either on or off; by default it’s on.
The proxy_buffer_size denotes the size of a buffer used for read‐
ing the first part of the response from the proxied server and
defaults to either 4k or 8k, depending on the platform. The

160 | Chapter 30: Performance Tuning

proxy_buffers directive takes two parameters: the number of buf‐
fers and the size of the buffers. By default the proxy_buffers direc‐
tive is set to a number of 8 buffers of size either 4k or 8k, depending
on the platform. The proxy_busy_buffer_size directive limits the
size of buffers that can be busy, sending a response to the client
while the response is not fully read. The busy buffer size defaults to
double the size of a proxy buffer or the buffer size.

Discussion
Proxy buffers can greatly enhance your proxy performance, depend‐
ing on the typical size of your response bodies. Tuning these settings
can have adverse effects and should be done by observing the aver‐
age body size returned, and thoroughly and repeatedly testing.
Extremely large buffers set when they’re not necessary can eat up the
memory of your NGINX box. You can set these settings for specific
locations that are known to return large response bodies for optimal
performance.

30.5 Buffering Access Logs
Problem
You need to buffer logs to reduce the opportunity of blocks to the
NGINX worker process when the system is under load.

Solution
Set the buffer size and flush time of your access logs:

http {
 access_log /var/log/nginx/access.log main buffer=32k
 flush=1m;
}

The buffer parameter of the access_log directive denotes the size
of a memory buffer that can be filled with log data before being
written to disk. The flush parameter of the access_log directive
sets the longest amount of time a log can remain in a buffer before
being written to disk.

30.5 Buffering Access Logs | 161

Discussion
Buffering log data into memory may be a small step toward optimi‐
zation. However, for heavily requested sites and applications, this
can make a meaningful adjustment to the usage of the disk and
CPU. When using the buffer parameter to the access_log direc‐
tive, logs will be written out to disk if the next log entry does not fit
into the buffer. If using the flush parameter in conjunction with the
buffer parameter, logs will be written to disk when the data in the
buffer is older than the time specified. When buffering logs in this
way, when tailing the log, you may see delays up to the amount of
time specified by the flush parameter.

30.6 OS Tuning
Problem
You need to tune your operating system to accept more connections
to handle spike loads or highly trafficked sites.

Solution
Check the kernel setting for net.core.somaxconn, which is the maxi‐
mum number of connections that can be queued by the kernel for
NGINX to process. If you set this number over 512, you’ll need to
set the backlog parameter of the listen directive in your NGINX
configuration to match. A sign that you should look into this kernel
setting is if your kernel log explicitly says to do so. NGINX handles
connections very quickly, and for most use cases, you will not need
to alter this setting.

Raising the number of open file descriptors is a more common
need. In Linux, a file handle is opened for every connection; and
therefore NGINX may open two if you’re using it as a proxy or load
balancer because of the open connection upstream. To serve a large
number of connections, you may need to increase the file descriptor
limit system-wide with the kernel option sys.fs.file_max, or for
the system user NGINX is running as in the /etc/security/limits.conf
file. When doing so you’ll also want to bump the number of
worker_connections and worker_rlimit_nofile. Both of these
configurations are directives in the NGINX configuration.

162 | Chapter 30: Performance Tuning

Enable more ephemeral ports. When NGINX acts as a reverse proxy
or load balancer, every connection upstream opens a temporary
port for return traffic. Depending on your system configuration, the
server may not have the maximum number of ephemeral ports
open. To check, review the setting for the kernel set‐
ting net.ipv4.ip_local_port_range. The setting is a lower- and
upper- bound range of ports. It’s typically OK to set this kernel set‐
ting from 1024 to 65535. 1024 is where the registered TCP ports
stop, and 65535 is where dynamic or ephemeral ports stop. Keep in
mind that your lower bound should be higher than the highest open
listening service port.

Discussion
Tuning the operating systems is one of the first places you look
when you start tuning for a high number of connections. There are
many optimizations you can make to your kernel for your particular
use case. However, kernel tuning should not be done on a whim,
and changes should be measured for their performance to ensure
the changes are helping. As stated before, you’ll know when it’s time
to start tuning your kernel from messages logged in the kernel log or
when NGINX explicitly logs a message in its error log.

30.6 OS Tuning | 163

CHAPTER 31

Practical Ops Tips and Conclusion

31.0 Introduction
This last chapter will cover practical operations tips and is the con‐
clusion to this book. Throughout these three parts, we’ve discussed
many ideas and concepts pertinent to operations engineers. How‐
ever, I thought a few more might be helpful to round things out. In
this chapter I’ll cover making sure your configuration files are clean
and concise, as well as debugging configuration files.

31.1 Using Includes for Clean Configs
Problem
You need to clean up bulky configuration files to keep your configu‐
rations logically grouped into modular configuration sets.

Solution
Use the include directive to reference configuration files, directo‐
ries, or masks:

http {
 include config.d/compression.conf;
 include sites-enabled/*.conf
}

165

The include directive takes a single parameter of either a path to a
file or a mask that matches many files. This directive is valid in any
context.

Discussion
By using include statements you can keep your NGINX configura‐
tion clean and concise. You’ll be able to logically group your config‐
urations to avoid configuration files that go on for hundreds of lines.
You can create modular configuration files that can be included in
multiple places throughout your configuration to avoid duplication
of configurations. Take the example fastcgi_param configuration file
provided in most package management installs of NGINX. If you
manage multiple FastCGI virtual servers on a single NGINX box,
you can include this configuration file for any location or context
where you require these parameters for FastCGI without having to
duplicate this configuration. Another example is SSL configurations.
If you’re running multiple servers that require similar SSL configu‐
rations, you can simply write this configuration once and include it
wherever needed. By logically grouping your configurations
together, you can rest assured that your configurations are neat and
organized. Changing a set of configuration files can be done by edit‐
ing a single file rather than changing multiple sets of configuration
blocks in multiple locations within a massive configuration file.
Grouping your configurations into files and using include state‐
ments is good practice for your sanity and the sanity of your collea‐
gues.

31.2 Debugging Configs
Problem
You’re getting unexpected results from your NGINX server.

Solution
Debug your configuration, and remember these tips:

• NGINX processes requests looking for the most specific
matched rule. This makes stepping through configurations by
hand a bit harder, but it’s the most efficient way for NGINX to

166 | Chapter 31: Practical Ops Tips and Conclusion

work. There’s more about how NGINX processes requests in the
documentation link in the section “Also See” on page 168.

• You can turn on debug logging. For debug logging you’ll need
to ensure that your NGINX package is configured with the --
with-debug flag. Most of the common packages have it; but if
you’ve built your own or are running a minimal package, you
may want to at least double-check. Once you’ve ensured you
have debug, you can set the error_log directive’s log level to
debug: error_log /var/log/nginx/error.log debug.

• You can enable debugging for particular connections.
The debug_connection directive is valid inside the events con‐
text and takes an IP or CIDR range as a parameter. The direc‐
tive can be declared more than once to add multiple IP
addresses or CIDR ranges to be debugged. This may be helpful
to debug an issue in production without degrading performance
by debugging all connections.

• You can debug for only particular virtual servers. Because the
error_log directive is valid in the main, HTTP, mail, stream,
server, and location contexts, you can set the debug log level in
only the contexts you need it.

• You can enable core dumps and obtain backtraces from them.
Core dumps can be enabled through the operating system or
through the NGINX configuration file. You can read more
about this from the admin guide in the section “Also See” on
page 168.

• You’re able to log what’s happening in rewrite statements with
the rewrite_log directive on: rewrite_log on.

Discussion
The NGINX platform is vast, and the configuration enables you to
do many amazing things. However, with the power to do amazing
things, there’s also the power to shoot your own foot. When debug‐
ging, make sure you know how to trace your request through your
configuration; and if you have problems, add the debug log level to
help. The debug log is quite verbose but very helpful in finding out
what NGINX is doing with your request and where in your configu‐
ration you’ve gone wrong.

31.2 Debugging Configs | 167

Also See
How NGINX processes requests
Debugging admin guide
Rewrite log

31.3 Conclusion
This book’s three parts have focused on high-performance load bal‐
ancing, security, and deploying and maintaining NGINX and
NGINX Plus servers. This book has demonstrated some of the most
powerful features of the NGINX application delivery platform.
NGINX continues to develop amazing features and stay ahead of the
curve.

This book has demonstrated many short recipes that enable you to
better understand some of the directives and modules that make
NGINX the heart of the modern web. The NGINX sever is not just a
web server, nor just a reverse proxy, but an entire application deliv‐
ery platform, fully capable of authentication and coming alive with
the environments that it’s employed in. May you now know that.

168 | Chapter 31: Practical Ops Tips and Conclusion

http://bit.ly/2crNKVM
http://bit.ly/2iQYNsZ
http://bit.ly/2j96jAH

About the Author
Derek DeJonghe has had a lifelong passion for technology. His
background and experience in web development, system adminis‐
tration, and networking give him a well-rounded understanding of
modern web architecture. Derek leads a team of site reliability engi‐
neers and produces self-healing, auto-scaling infrastructure for
numerous applications. He specializes in Linux cloud environments.
While designing, building, and maintaining highly available applica‐
tions for clients, he consults for larger organizations as they embark
on their journey to the cloud. Derek and his team are on the fore‐
front of a technology tidal wave and are engineering cloud best
practices every day. With a proven track record for resilient cloud
architecture, Derek helps RightBrain Networks be one of the stron‐
gest cloud consulting agencies and managed service providers in
partnership with AWS today.

	Copyright
	Table of Contents
	Part I. Part I: Load Balancing and HTTP Caching
	Chapter 1. High-Performance Load Balancing
	1.0 Introduction
	1.1 HTTP Load Balancing
	1.2 TCP Load Balancing
	1.3 Load-Balancing Methods
	1.4 Connection Limiting

	Chapter 2. Intelligent Session Persistence
	2.0 Introduction
	2.1 Sticky Cookie
	2.2 Sticky Learn
	2.3 Sticky Routing
	2.4 Connection Draining

	Chapter 3. Application-Aware Health Checks
	3.0 Introduction
	3.1 What to Check
	3.2 Slow Start
	3.3 TCP Health Checks
	3.4 HTTP Health Checks

	Chapter 4. High-Availability Deployment Modes
	4.0 Introduction
	4.1 NGINX HA Mode
	4.2 Load-Balancing Load Balancers with DNS
	4.3 Load Balancing on EC2

	Chapter 5. Massively Scalable Content Caching
	5.0 Introduction
	5.1 Caching Zones
	5.2 Caching Hash Keys
	5.3 Cache Bypass
	5.4 Cache Performance
	5.5 Purging

	Chapter 6. Sophisticated Media Streaming
	6.0 Introduction
	6.1 Serving MP4 and FLV
	6.2 Streaming with HLS
	6.3 Streaming with HDS
	6.4 Bandwidth Limits

	Chapter 7. Advanced Activity Monitoring
	7.0 Introduction
	7.1 NGINX Traffic Monitoring
	7.2 The JSON Feed

	Chapter 8. DevOps On-the-Fly Reconfiguration
	8.0 Introduction
	8.1 The NGINX API
	8.2 Seamless Reload
	8.3 SRV Records

	Chapter 9. UDP Load Balancing
	9.0 Introduction
	9.1 Stream Context
	9.2 Load-Balancing Algorithms
	9.3 Health Checks

	Chapter 10. Cloud-Agnostic Architecture
	10.0 Introduction
	10.1 The Anywhere Load Balancer
	10.2 The Importance of Versatility

	Part II. Part II: Security and Access
	Chapter 11. Controlling Access
	11.0 Introduction
	11.1 Access Based on IP Address
	Problem
	Solution
	Discussion

	11.2 Allowing Cross-Origin Resource Sharing
	Problem
	Solution
	Discussion

	Chapter 12. Limiting Use
	12.0 Introduction
	12.1 Limiting Connections
	Problem
	Solution
	Discussion

	12.2 Limiting Rate
	Problem
	Solution
	Discussion

	12.3 Limiting Bandwidth
	Problem
	Solution
	Discussion

	Chapter 13. Encrypting
	13.0 Introduction
	13.1 Client-Side Encryption
	Problem
	Solution
	Discussion
	Also See

	13.2 Upstream Encryption
	Problem
	Solution
	Discussion

	Chapter 14. HTTP Basic Authentication
	14.0 Introduction
	14.1 Creating a User File
	Problem
	Solution
	Discussion

	14.2 Using Basic Authentication
	Problem
	Solution
	Discussion

	Chapter 15. HTTP Authentication Subrequests
	15.0 Introduction
	15.1 Authentication Subrequests
	Problem
	Solution
	Discussion

	Chapter 16. Secure Links
	16.0 Introduction
	16.1 Securing a Location
	Problem
	Solution
	Discussion

	16.2 Generating a Secure Link with a Secret
	Problem
	Solution
	Discussion

	16.3 Securing a Location with an Expire Date
	Problem
	Solution
	Discussion

	16.4 Generating an Expiring Link
	Problem
	Solution
	Discussion

	Chapter 17. API Authentication Using JWT
	17.0 Introduction
	17.1 Validating JWTs
	Problem
	Solution
	Discussion
	Also See

	17.2 Creating JSON Web Keys
	Problem
	Solution
	Discussion
	Also See

	Chapter 18. OpenId Connect Single Sign-On
	18.0 Introduction
	18.1 Authenticate Users via Existing OpenId Connect Single Sign-On (SSO)
	Problem
	Solution
	Discussion
	Also See

	18.2 Obtaining JSON Web Key from Google
	Problem
	Solution
	Discussion
	Also See

	Chapter 19. ModSecurity Web Application Firewall
	19.0 Introduction
	19.1 Installing ModSecurity for NGINX Plus
	Problem
	Solution
	Discussion

	19.2 Configuring ModSecurity in NGINX Plus
	Problem
	Solution
	Discussion
	Also See

	19.3 Installing ModSecurity from Source for a Web Application Firewall
	Problem
	Solution
	Discussion
	Also See

	Chapter 20. Practical Security Tips
	20.0 Introduction
	20.1 HTTPS Redirects
	Problem
	Solution
	Discussion

	20.2 Redirecting to HTTPS Where SSL/TLS Is Terminated Before NGINX
	Problem
	Solution
	Discussion

	20.3 HTTP Strict Transport Security
	Problem
	Solution
	Discussion
	Also See

	20.4 Satisfying Any Number of Security Methods
	Problem
	Solution
	Discussion

	Part III. Part III: Deployment and Operations
	Chapter 21. Deploying on AWS
	21.0 Introduction
	21.1 Auto-Provisioning on AWS
	Problem
	Solution
	Discussion

	21.2 Routing to NGINX Nodes Without an ELB
	Problem
	Solution
	Discussion

	21.3 The ELB Sandwich
	Problem
	Solution
	Discussion

	21.4 Deploying from the Marketplace
	Problem
	Solution
	Discussion

	Chapter 22. Deploying on Azure
	22.0 Introduction
	22.1 Creating an NGINX Virtual Machine Image
	Problem
	Solution
	Discussion
	Also See

	22.2 Load Balancing Over NGINX Scale Sets
	Problem
	Solution
	Discussion

	22.3 Deploying Through the Marketplace
	Problem
	Solution
	Discussion

	Chapter 23. Deploying on Google Cloud Compute
	23.0 Introduction
	23.1 Deploying to Google Compute Engine
	Problem
	Solution
	Discussion

	23.2 Creating a Google Compute Image
	Problem
	Solution
	Discussion
	Also See

	23.3 Creating a Google App Engine Proxy
	Problem
	Solution
	Discussion

	Chapter 24. Deploying on Docker
	24.0 Introduction
	24.1 Running Quickly with the NGINX Image
	Problem
	Solution
	Discussion
	Also See

	24.2 Creating an NGINX Dockerfile
	Problem
	Solution
	Discussion

	24.3 Building an NGINX Plus Image
	Problem
	Solution
	Discussion
	Also See

	24.4 Using Environment Variables in NGINX
	Problem
	Solution
	Discussion

	Chapter 25. Using Puppet/Chef/Ansible/SaltStack
	25.0 Introduction
	25.1 Installing with Puppet
	Problem
	Solution
	Discussion
	Also See

	25.2 Installing with Chef
	Problem
	Solution
	Discussion
	Also See

	25.3 Installing with Ansible
	Problem
	Solution
	Discussion
	Also See

	25.4 Installing with SaltStack
	Problem
	Solution
	Discussion
	Also See

	Chapter 26. Automation
	26.0 Introduction
	26.1 Automating with NGINX Plus
	Problem
	Solution
	Discussion

	26.2 Automating Configurations with Consul Templating
	Problem
	Solution
	Discussion
	Also See

	Chapter 27. A/B Testing with split_clients
	27.0 Introduction
	27.1 A/B Testing
	Problem
	Solution
	Discussion
	Also See

	Chapter 28. Locating Users by IP Address Using the GeoIP Module
	28.0 Introduction
	28.1 Using the GeoIP Module and Database
	Problem
	Solution
	Discussion
	Also See

	28.2 Restricting Access Based on Country
	Problem
	Solution
	Discussion

	28.3 Finding the Original Client
	Problem
	Solution
	Discussion

	Chapter 29. Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing
	29.0 Introduction
	29.1 Configuring Access Logs
	Problem
	Solution
	Discussion

	29.2 Configuring Error Logs
	Problem
	Solution
	Discussion

	29.3 Forwarding to Syslog
	Problem
	Solution
	Discussion

	29.4 Request Tracing
	Problem
	Solution
	Discussion

	Chapter 30. Performance Tuning
	30.0 Introduction
	30.1 Automating Tests with Load Drivers
	Problem
	Solution
	Discussion

	30.2 Keeping Connections Open to Clients
	Problem
	Solution
	Discussion

	30.3 Keeping Connections Open Upstream
	Problem
	Solution
	Discussion

	30.4 Buffering Responses
	Problem
	Solution
	Discussion

	30.5 Buffering Access Logs
	Problem
	Solution
	Discussion

	30.6 OS Tuning
	Problem
	Solution
	Discussion

	Chapter 31. Practical Ops Tips and Conclusion
	31.0 Introduction
	31.1 Using Includes for Clean Configs
	Problem
	Solution
	Discussion

	31.2 Debugging Configs
	Problem
	Solution
	Discussion
	Also See

	31.3 Conclusion

	About the Author

